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Supplemental Material

SI. FIRST-ORDER BORN APPROXIMATION

In this section, we provide some more details on the calculation of the self-energy with the FB approximation.
Essentially, a summation of k over the unperturbed retarded Green function [corresponding to the Hamiltonian in
Eq. (1)] needs to be calculated and plugged into Eq. (7). It can be written as follows:

G(0)(k, ω) =
1

2

∑
s

(
σ0 + s

∑
α

σαvα · (k−Q ekR
)/

√∑
β
[vβ · (k−Q ekR

)]2

)

×
(

ω − Es(k)/~
[ω − Es(k)/~]2 + η2

− i π δ[ω − Es(k
′)/~]

)
≡
∑
ν

[Re{G(0)
ν (k, ω)}+ i Im{G(0)

ν (k, ω)}]σν .

(S1)

Making use of the notation introduced on the last line of Eq. (S1), we obtain for the summation over Im{G(0)
0 (k, ω)}

(assuming vR = vz = v and wR = 0):

∑
k

Im{G(0)
0 (k, ω)} = −1

2

∑
s

π
V

(2π)2

+∞∫
0

dkR kR

+∞∫
−∞

dkz δ(ω − wzkz − s|v|
√
(kR −Q)2 + k2z)

= −1

2

∑
s

π
V

(2π)2
Q

+∞∫
−Q

dqR

+∞∫
−∞

dkz δ(ω − wzkz − s|v|
√
q2R + k2z),

(S2)

with qR ≡ kR −Q.
In the weak tilt limit (|wz/v| ≪ 1) close to the nodal-ring energy (|ω/v| ≪ Q) and introducing polar coordinates

with radius k =
√
q2R + k2z and polar angle θ (kz = k cos θ), the solution k∗ of the Dirac-delta function is given by:

k∗ = ω/(s|v|+ wz cos θ) ≈ sω/|v| − wzω cos θ/v2. (S3)

Plugging in this solution, we obtain:

∑
k

Im{G(0)
0 (k, ω)} = −π

V
(2π)2

Q

2

2π∫
0

dθ
|ω|

(|v|+ swz cos θ)2
≈ −VQ|ω|

4v2
. (S4)

Similarly, we retrieve for Im{G(0)
3 (k, ω)}:

∑
k

Im{G(0)
3 (k, ω)} = −1

2

∑
s

sπ
V

(2π)2

+∞∫
−Q

dqR (qR +Q)

+∞∫
−∞

dkz
vkz

|v|
√

q2R + k2z
δ(ω − wzkz − s|v|

√
q2R + k2z)

= −1

2

∑
s

sπϑ(sω)
V

(2π)2
vQ|ω|
|v|

2π∫
0

dθ
cos θ

(|v|+ swz cos θ)2
≈ VQwz|ω|

4v3

= −wz

v

∑
k

Im{G(0)
0 (k, ω)}.

(S5)

Furthermore, we obtain in a similar manner that Im{G(0)
1 (k, ω)} ∝ ω2 is negligible with respect to the other contri-

butions, while G(0)
2 = 0 by definition.

For the real part of the Green function, we get the following contributions:

∑
k

Re{G(0)
0 (k, ω)} =

1

2

∑
s

V
(2π)2

P
+∞∫

−qR

dqR (qR +Q)

+∞∫
−∞

dkz
1

ω − wzkz − s|v|
√
q2R + k2z

→ 1

2

∑
s

V
(2π)2

P Q

2π∫
0

dθ

kR
C∫

0

dk
k

ω − (s|v|+ wz cos θ)k
≈ −V Qω

2πv2
ln

∣∣∣∣vkCω
∣∣∣∣ ,

(S6)
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where the arrow indicates the introduction of a cutoff wavevector kC and we only keep the terms up to leading order
in kC. The cutoff wave vector represents the maximal distance to the nodal ring for the integration over k in both the
radial and the axial directions. The energy scale of ω and the cutoff wave vector are assumed to obey the following
constraints: |ω/v| ≪ kC < Q. Similarly, we obtain:

∑
k

Re{G(0)
1 (k, ω)} =

1

2

∑
s

s
V

(2π)2
P

+∞∫
−Q

dqR (qR +Q)

+∞∫
−∞

dkz
vqR

|v|
√
q2R + k2z

1

ω − wzkz − s|v|
√
q2R + k2z

→ 1

2

∑
s

s
V

(2π)2
2v

|v|
P

π∫
0

dθ sin2θ

kC∫
0

dk
k2

ω − (s|v|+ wz cos θ)k
≈ −V k2C

8πv
,

(S7)

having considered 4D spherical coordinates on the last line, and

∑
k

Re{G(0)
3 (k, ω)} → 1

2

∑
s

s
V

(2π)2
P vQ

|v|

2π∫
0

dθ cos θ

kC∫
0

dk
k

ω − (s|v|+ wz cos θ)k

≈ VwzQω

2πv3
ln

∣∣∣∣vkCω
∣∣∣∣ = −wz

v

∑
k

Re{Σ(FB)
0 (ω)}.

(S8)

Combining all these results yields Eq. (9). Note that the angular dependence of the integrands in Eqs. (S6)-(S8) is
different. The σ0-term diverges in all directions, whereas the σ3(1) term only diverges away from the radial plane
(axial direction). If an anisotropic cutoff is considered, the connection between Eq. (S6) and Eq. (S8) (last equality)
would not hold for example. The crucial aspects for the phenomenology of exceptional lines and bulk Fermi ribbons,
however, is the proportionality of self-energy terms to the Pauli matrices and their dependency on ω and they do not
depend on the details of the cutoff implementation. Similar remarks can be made for the self-energy terms in the case
of strong tilt.

In case of very strong tilt |wz/v| ≫ 1, the Dirac-delta function in Eq. (S2) has solutions within the integration
boundaries when

− 1 ≤ ω − s|v|k
wzk

≤ 1 ⇒ k ≥ −s|v|ω + |wzω|
w2

z − v2
≡ kmin. (S9)

This implies that we have to introduce a cutoff wavevector for the imaginary part as well, unlike in the case of weak
tilt. Integrating over θ first and assuming an isotropic cutoff, we obtain:

∑
k

Im{G(0)
0 (k, ω)} → −1

2

∑
s

π
V

(2π)2
2Q

kC∫
kmin

dk
k√

(wzk)2 − (ω − s|v|k)2
≈ −V QkC

2π|wz|
,

∑
k

Im{G(0)
1 (k, ω)} → −1

2

∑
s

sπ
V

(2π)2
2v

|v|

π∫
0

dθ sin2θ

kC∫
0

dk k2 δ(ω − wzk cos θ − s|v|k)

≈ −1

2

∑
s

π
V

(2π)2
2vω

w2
z

kC∫
kmin

dk
k√

(wzk)2 − ω2
≈ −V vkCω

2π|wz|3
,

∑
k

Im{G(0)
3 (k, ω)} → −1

2

∑
s

sπ
V

(2π)2
vQ

|v|

2π∫
0

dθ cos θ

kC∫
0

dk k δ(ω − wzk cos θ − s|v|k)

= −1

2

∑
s

sπ
V

(2π)2
2vQ

|v|wz

kC∫
kmin

dk
ω − s|v|k√

(wzk)2 − (ω − s|v|k)2
≈ V vQkC

2πwz|wz|

= − v

wz

∑
k

Im{G(0)
0 (k, ω)}.

(S10)
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The summation over the real part of the Green function yields the following components:

∑
k

Re{G(0)
0 (k, ω)} → 1

2

∑
s

V
(2π)2

4QP
kC∫
0

dk

1∫
0

dx
1√

1− x2

k(ω − s|v|k)
(ω − s|v|k)2 − (wzk)2x2

=
1

2

∑
s

V
(2π)2

2πQ

kmax∫
0

dk
k(ω − s|v|k)

|ω − s|v|k|
√
(ω − s|v|k)2 − (wzk)2

≈ V
(2π)2

2πQω

|ω|

|ω/wz|∫
0

dk
k√

ω2 − w2
zk

2
= V Qω

2πw2
z

,

(S11)

with x ≡ cos θ, kmax ≡ kmin from Eq. (S9), and where we have made use of the following identity:

1∫
0

dx
1√

1− x2

1

a2 − b2x2
=

{
−iπ/(2|a|

√
b2 − a2) (|b| > |a| > 0)

π/(2|a|
√
a2 − b2) (|a| > |b| > 0)

, (S12)

for a, b ∈ R, and

∑
k

Re{G(0)
1 (k, ω)} → 1

2

∑
s

s
V

(2π)2
4vwz

|v|
P

kC∫
0

dk

1∫
0

dx
k3

√
1− x2x

(ω − s|v|k)2 − (wzk)2x2

≈ −1

2

∑
s

s
V

(2π)2
4vwz

|vw3
z |

kC∫
kmin

dk
√

(wzk)2 − (ω − s|v|k)2 arccosh(|wzk|/|ω − s|v|k|)

≈ −V vkCω

π2w3
z

arccosh(|wz/v|),

(S13)

where we have made use of the following identity:

1∫
0

dx

√
1− x2x

a2 − b2x2
=

{
−iπ

√
b2 − a2/(2|b|3) + 1/b2 −

√
b2 − a2 arccosh(|b/a|)/|b|3 (|b| > |a| > 0)

1/b2 −
√
a2 − b2 arcsin(|b/a|)/|b|3 (|a| > |b| > 0)

, (S14)

and

∑
k

Re{G(0)
3 (k, ω)} → 1

2

∑
s

s
V

(2π)2
4vwzQ

|v|
P

kC∫
0

dk

1∫
0

dx
1√

1− x2

k2x2

(ω − s|v|k)2 − (wzk)2x2

=
1

2

∑
s

s
V

(2π)2
4πvQ

2|v|wz
P

kmax∫
0

dk
|ω − s|v|k|√

(ω − s|v|k)2 − (wzk)2

≈ − V
(2π)2

2πvQω

wz|ω|

|ω/wz|∫
0

dk
k√

ω2 − w2
zk

2
= −V vQω

2πw3
z

= − v

wz

∑
k

Re{G(0)
0 (k, ω)},

(S15)

where we have made use of the following identity:

1∫
0

dx
1√

1− x2

x2

a2 − b2x2
=

{
−π[1 + i|a|/

√
b2 − a2]/(2b2) (|b| > |a| > 0)

−π[1− |a|/
√
a2 − b2]/(2b2) (|a| > |b| > 0)

. (S16)

Combining all these results yields Eq. (10).
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It is a straightforward calculation to verify that the energy-independent imaginary contribution to the summation
over the Green function in case of very strong radial tilt (|wR/v| ≫ 1) is proportional to σ1 rather than σ3 in case of
strong axial tilt. Following the same procedure as for axial tilt, we get:

∑
k

Im{G(0)
0 (k, ω)} =

1

2

∑
s

π
V

(2π)2

+∞∫
−Q

dqR (qR +Q)

+∞∫
−∞

dkz δ(ω − wRqR − s|v|
√
q2R + k2z)

= −1

2

∑
s

π
V

(2π)2

π∫
0

dθ sin θ

+∞∫
0

dk k2 δ(ω − wRk sin θ − s|v|k)

︸ ︷︷ ︸
(A)

− (wR ↔ −wR)︸ ︷︷ ︸
(B)

+−1

2

∑
s

π
V

(2π)2
Q

2π∫
0

dθ

+∞∫
0

dk k δ(ω − wRk sin θ − s|v|k)

︸ ︷︷ ︸
(C)

,

(S17)

with the terms evaluating as follows:

(A) → −1

2

∑
s

π
V

(2π)2
2

wR

kC∫
kmin

dk
k(ω − s|v|k)√

(wRk)2 − (ω − s|v|k)
≈ −V kCω

2πwR|wR|
,

(C) → −1

2

∑
s

π
V

(2π)2
4Q

kC∫
kmin

dk
k√

(wRk)2 − (ω − s|v|k)
≈ −V QkC

π|wR|
,

(S18)

resulting in ∑
k

Im{G(0)
0 (k, ω)} ≈ −V QkC

π|wR|
. (S19)

Similarly, we obtain:

∑
k

Im{G(0)
1 (k, ω)} = −1

2

∑
s

sπ
V

(2π)2
v

|v|

+∞∫
−Q

dqR (qR +Q)

+∞∫
−∞

dkz
qR√

q2R + k2z
δ(ω − wRqR − s|v|

√
q2R + k2z)

= −1

2

∑
s

sπ
V

(2π)2
v

|v|

π∫
0

dθ sin2 θ

+∞∫
0

dk k2 δ (ω − wRk sin θ − s|v|k)

︸ ︷︷ ︸
(D)

+(wR ↔ −wR)︸ ︷︷ ︸
(E)

+−1

2

∑
s

sπ
V

(2π)2
vQ

|v|

π∫
0

dθ sin θ

+∞∫
0

dk k δ (ω − wRk sin θ − s|v|k)

︸ ︷︷ ︸
(F)

− (wR ↔ −wR)︸ ︷︷ ︸
(G)

,

(S20)

with

(D) → −1

2

∑
s

sπ
V

(2π)2
2v

|v|w2
R

kC∫
kmin

dk
(ω − s|v|k)2√

(wRk)2 − (ω − s|v|k)2
≈ V vkCω

π|wR|3
,

(F) → −1

2

∑
s

sπ
V

(2π)2
2vQ

|v|wR

kC∫
kmin

dk
ω − s|v|k√

(wRk)2 − (ω − s|v|k)2
≈ V vQkC

2πwR|wR|
,

(S21)
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leading to ∑
k

Im{G(0)
1 (k, ω)} ≈ V vQkC

πwR|wR|
= − v

wz

∑
k

Im{G(0)
0 (k, ω)}, (S22)

and finally

∑
k

Im{G(0)
3 (k, ω)} = −1

2
sπ

V
(2π)2

v

|v|

+∞∫
−Q

dqR (qR +Q)

+∞∫
−∞

dkz
kz√

q2R + k2z
δ(ω − wRqR − s|v|

√
q2R + k2z) = 0. (S23)

SII. SELF-CONSISTENT BORN APPROXIMATION

The SB approximation, considering a scalar disorder potential (S1,2,3 = 0) and energies close to the nodal loop
(ω → 0), leads to the following self-consistency equation for the retarded self-energy Σ(SB) ≡ limω→0 Σ

(SB)(ω):

Σ(SB) =
γ

(2π)3

∫
d3k

1

ω −H(k)/~− Σ(SB)
. (S24)

We consider the following Hamiltonian for a NLSM with nodal ring with radius Q in the kz = 0 plane, positive
velocities vR = vz = v > 0 and positive axial tilt (wR = 0, wz > 0):

H(k)/~ = wzkz σ0 + (vQ/2)[(kR/Q)2 − 1]σ1 + vkz σ3. (S25)

Note that this Hamiltonian has a quadratic term, which vanishes close to the nodal loop and regularizes the nonphysical
cone tops of the linearized model, present in Eq. (1). Solving for Σ(SB) in Eq. (S24), we get:

Σ
(SB)
0 =

γ

2π

[(
−ω − Re{Σ(SB)

0 }+ czRe{Σ(SB)
3 }

c2z − 1
− i Im{Σ(SB)

0 }

)∫
dk J − cz

∫
dk vkJ

]
,

Σ
(SB)
3 =

γ

2π

[(
cz

ω − Re{Σ(SB)
0 }+ czRe{Σ(SB)

3 }
c2z − 1

+ i Im{Σ(SB)
3 }

)∫
dk J +

∫
dk vkJ

]
,

(S26)

with cz ≡ wz/v,

J ≡ 1

2π

∫
dkR kR det(k2R/Q

2)−1,

det(x) ≡ (ω − wzkz − Σ
(SB)
0 )2 − (vQ/2)2(x− 1)2 − (vkz +Σ

(SB)
3 )2,

(S27)

and k ≡ kz + q, with:

q ≡ 1

v

cz(ω − Re{Σ(SB)
0 }) + Re{Σ(SB)

3 }
c2z − 1

. (S28)

For cz > 1, we get the following solutions for the integration over J and vkJ , respectively:

−I1 ≡ γ

2π

∫
dk J ≈ − γQ

4v2
√

c2z − 1
,

iI2 ≡ γ

2π

∫
dk vkJ ≈ i

γQkC

2πv
√
c2z − 1

sgn(−czIm{Σ(SB)
0 }+ Im{Σ(SB)

3 }),
(S29)

with cutoff wave vector kC for the integration over k along the axial direction (note that this cutoff implementa-
tion differs from that of the FB approximation, but that it does not affect the phenomenology of the quasiparticle
spectrum). The newly introduced integration constants, I1 and I2, are approximately real, such that the self-energy
becomes:

Σ
(SB)
0 =

I1
c2z(1 + I1) + I1 − 1

ω − i
czI2
1− I1

,

Σ
(SB)
3 = − czI1

c2z(1 + I1) + I1 − 1
ω + i

I2
1 + I1

= −czRe{Σ(SB)
0 } − i Im{Σ(SB)

0 }/cz.
(S30)
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In the limit cz ≫ 1, I1,2 ≪ 1 we obtain:

Σ
(SB)
0 ≈ i γ

QkC
2πwz

,

Σ
(SB)
3 ≈ −i γ

vQkC
2πw2

z

,

(S31)

recovering the result of Eq. (10) that is responsible for the appearance of a bulk Fermi ribbon.
For cz < 1, the integrations over J and vkJ yield:

γ

2π

∫
dk J ≈ − γQ

2πv2
√

1− c2z
ln

∣∣∣∣kCq
∣∣∣∣− i

γQ sgn(Γ)

4v2
√

1− c2z
≡ −H1 − iH2,

γ

2π

∫
dk vkJ ≈ −γQ[cz(ω − Re{Σ(SB)

0 }) + Re{Σ(SB)
3 }]

2πv2(1− c2z)
3/2

≡ −H3[cz(ω − Re{Σ(SB)
0 }) + Re{Σ(SB)

3 }],
(S32)

with:

Γ ≡ (ω − Re{Σ(SB)
0 }+ czRe{Σ(SB)

3 })(−Im{Σ(SB)
0 }+ czIm{Σ(SB)

3 }). (S33)

In the limit cz ≪ 1, H1,2,3 ≪ 1, we obtain:

Σ
(SB)
0 ≈ −H1ω − iH2ω ≈ −γQω

2πv2
ln

∣∣∣∣kCq
∣∣∣∣− i

γQ|ω|
4v2

,

Σ
(SB)
3 ≈ czH1ω + i czH2ω = −czΣ

(SB)
0 .

(S34)

Up to a cutoff-independent constant in the real part, this is in exact agreement with the result based on the FB
approximation in Eq. (9). Note that we have neglected the ∝ σ1 self-energy correction that leads to a renormalization
of the nodal-ring radius in this section, as it is irrelevant for the appearance of a bulk Fermi ribbon.

SIII. HIGHER-ORDER CORRECTIONS

In Fig. 2, we have plotted the complex quasiparticle spectrum for strong axial tilt while neglecting the ∝ ω terms
in the self-energy, resulting in a flat bulk Fermi ribbon with a sharp square-root singularity at its edges. We can
also solve for the spectrum while taking into account the higher-order corrections. From Eq. (10), we can write the
self-energy as follows:

Σ(ω) = (Θω − i/τ)(σ0 − σ3/cz) + (Ξω + iΦω)σ1, (S35)

with real parameters Θ, 1/τ,Ξ and Φ, all being proportional to γ. Plugging this into Eq. (7) and solving for Es(k)
with Eq. (8), yields:

Es(k)/~ =
g(kR, kz) + s

√
g(kR, kz)2 + fh(kR, kz)

f
, f ≡ (1−Θ)2 −Θ2/c2z − (Ξ + iΦ)2,

g(kR, kz) ≡ [1− (1− 1/c2z)Θ](wzkz − i/τ) + v(kR −Q)(Ξ + iΦ),

h(kR, kz) ≡ v2(kR −Q)2 − (1− 1/c2z)(wzkz − i/τ)2.

(S36)

A flat bulk Fermi ribbon is realized for values of kR and kz that satisfy:

g(kR, kz) = C, 0 > g(kR, kz)
2 + fh(kR, kz) ∈ R, (S37)

with constant C. Only when neglecting Θ,Ξ and Φ is this realized by kz = 0 and |kR − Q| < 1/|wzτ |. In general,
these conditions cannot be met. In Fig. S1, the exact spectrum, according to Eq. (S36) is presented for the same
parameters as considered in Fig. S1, with the flat bulk Fermi ribbon and square-root singularities only approximately
realized.
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FIG. S1. The spectrum of a type-II nodal-line semimetal with strong axial tilt (along kz) and disorder, according to the
solution of Eq. (S36), evaluated close to the nodal ring with kz = 0. The same parameter set as in Fig. 2 has been considered.


