Supplemental Material

SI. FIRST-ORDER BORN APPROXIMATION

In this section, we provide some more details on the calculation of the self-energy with the FB approximation.
Essentially, a summation of k over the unperturbed retarded Green function [corresponding to the Hamiltonian in
Eq. ([l)] needs to be calculated and plugged into Eq. (ﬁ) It can be written as follows:
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Making use of the notation introduced on the last line of Eq. (@) we obtain for the summation over Im{g(o)( k,w)}
(assuming vg = v, = v and wg = 0):
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with qg = kr — Q.
In the weak tilt limit (Jw,/v| < 1) close to the nodal-ring energy (Jw/v| < @) and introducing polar coordinates
with radius k = \/¢% + k2 and polar angle 6 (k. = k cosf), the solution k* of the Dirac-delta function is given by:
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Plugging in this solution, we obtain:
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Furthermore, we obtam in a similar manner that Im{g(o)( w)} o w?

butions, while 92 = 0 by definition.
For the real part of the Green function, we get the following contributions:
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where the arrow indicates the introduction of a cutoff wavevector k¢ and we only keep the terms up to leading order
in kc. The cutoff wave vector represents the maximal distance to the nodal ring for the integration over k in both the
radial and the axial directions. The energy scale of w and the cutoff wave vector are assumed to obey the following
constraints: |w/v| < k¢ < Q. Similarly, we obtain:
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Combining all these results yields Eq. (B) Note that the angular dependence of the integrands in Eqgs. (@)—(@) is
different. The op-term diverges in all directions, whereas the o3(1) term only diverges away from_the radial plane
(axial direction). If an anisotropic cutoff is considered, the connection between Eq. (@) and Eq. (@) (last equality)
would not hold for example. The crucial aspects for the phenomenology of exceptional lines and bulk Fermi ribbons,
however, is the proportionality of self-energy terms to the Pauli matrices and their dependency on w and they do not
depend on the details of the cutoff implementation. Similar remarks can be made for the self-energy terms in the case
of strong tilt.

In case of very strong tilt |w,/v| > 1, the Dirac-delta function in Eq. (@) has solutions within the integration
boundaries when
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This implies that we have to introduce a cutoff wavevector for the imaginary part as well, unlike in the case of weak
tilt. Integrating over @ first and assuming an isotropic cutoff, we obtain:
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The summation over the real part of the Green function yields the following components:
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with z = cos 0, knax = kmin from Eq. (@), and where we have made use of the following identity:
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where we have made use of the following identity:

/dx V1I—22x {—z'7r\/b2 —a2/(2]b]®) + 1/b* — Vb2 — a2 arccosh(|b/a|)/|b]*  (|b] > |a| > 0)

a? — 222 | 1/0* — Va2 — b2 arcsin(|b/al)/|b]? (la| > 16| > 0)’
and
1 V odow.Q 1 k22
(0) K 1 VW, / k/ T
zk:Re{g3 (k,w)} — 5 28(2702 B P [ dk [ dx VI =22 (@ — s|o|k)Z — (w,k)2a?
5 0 0
1 Z 1% E drv@ P ma;k |w — s|v|k|
)? 2|vjw, / V(W = sulk)2 = (w.k)?
S |ow/w:| 0
~_ TQuw vQuw v ) (1
T ol /dk _w2k2 Ve = Zk:Re{QO (k,w)}

where we have made use of the following identity:
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Combining all these results yields Eq. (@)
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It is a straightforward calculation to verify that the energy-independent imaginary contribution to the summation
over the Green function in case of very strong radial tilt (Jwg/v| > 1) is proportional to o; rather than o3 in case of
strong axial tilt. Following the same procedure as for axial tilt, we get:
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Similarly, we obtain:
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leading to
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SII. SELF-CONSISTENT BORN APPROXIMATION

The SB approximation, considering a scalar disorder potential (S12.3 = 0) and energies close to the nodal loop
(w — 0), leads to the following self-consistency equation for the retarded self-energy ©(5B) = lim,,_,o 2(5B)(w):
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We consider the following Hamiltonian for a NLSM with nodal ring with radius @ in the k, = 0 plane, positive
velocities vg = v, = v > 0 and positive axial tilt (wg =0, w, > 0):

H()/h=w.k, 00+ (vQ/2)[(kr/Q)? — 1] 01 + vk, 03. (S25)

Note that this Hamiltonian has a quadratic term, which vanishes close to the nod op and regularizes the nonphysical
cone tops of the linearized model, present in Eq. ([l). Solving for £B) in Eq. (524), we get:
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with cutoff wave vector k¢ for the integration over k along the axial direction (note that this cutoff implementa-
tion differs from that of the FB approximation, but that it does not affect the phenomenology of the quasiparticle
spectrum). The newly introduced integration constants, I; and I, are approximately real, such that the self-energy
becomes:
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In the limit ¢, > 1, I » < 1 we obtain:
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recovering the result of Eq. (@) that is responsible for the appearance of a bulk Fermi ribbon.
For c, < 1, the integrations over J and vkJ yield:
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Up to a cutoff-independent constant in the real part, this is in exact agreement with the result based on the FB
approximation in Eq. (4). Note that we have neglected the o< o} self-energy correction that leads to a renormalization
of the nodal-ring radius in this section, as it is irrelevant for the appearance of a bulk Fermi ribbon.

SIII. HIGHER-ORDER CORRECTIONS

In Fig. E, we have plotted the complex quasiparticle spectrum for strong axial tilt while neglecting the « w terms
in the self-energy, resulting in a flat bulk Fermi ribbon with a sharp square-root singularity at its edges. We can
also solve for the spectrum while taking into account the higher-order corrections. From Eq. ([LJ), we can write the
self-energy as follows:
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with real parameters ©,1/7,=2 and ®, all being proportional to 7. Plugging this into Eq. (H) and solving for E(k)
with Eq. (), yields:
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A flat bulk Fermi ribbon is realized for values of kg and k. that satisfy:
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with constant C'. Only when neglecting @, = and @ is this realized by k, = 0 and |kg — Q| < 1/|w,7|. In general,
these conditions cannot be met. In Fig. 51|, the exact spectrum, according to Eq. (S836) is presented for the same
parameters as considered in Fig. 51|, with the flat bulk Fermi ribbon and square-root singularities only approximately
realized.
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FIG. S1. The spectrum of a type-II nodal-line semimetal with strong axial tilt (along k.) and disorder, according to the
solution of Eq. (@)7 evaluated close to the nodal ring with k., = 0. The same parameter set as in Fig. P has been considered.



