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Abstract We continue studying the cohomology of the hairy graph complexes which compute the ratio-
nal homotopy of embedding spaces, generalizing the Vassiliev invariants of knot theory, after the second
part in this series. In that part we have proven that the hairy graph complex HGCm,n with the extra
differential is almost acyclic for even m. In this paper we give the expected same result for odd m. As
in the previous part, our results yield a way to construct many hairy graph cohomology classes by the
waterfall mechanism also for odd m. However, the techniques are quite different. The main tool used in
this paper is a new differential, deleting a vertex in non-hairy Kontsevich’s graphs, and a similar map
for hairy vertices. We hope that the new differential can have further applications in the study of Kont-
sevich’s graph cohomology. Namely it is conjectured that the Kontsevich’s graph complex with deleting
a vertex as an extra differential is acyclic.

Keywords Graph complexes · Extra differential · Hairy graph complexes · Deleting a vertex

1 Introduction

This paper is the third in the series of papers [5,6], dealing with extra differentials on graph complexes.
In the second paper, [6], the deformed differential was introduced for hairy graphs HGCm,n for even m
and both parities of n, and we proved that the complex with that differential is almost acyclic. The main
purpose of this paper is to prove the same for odd m, as conjectured there, [6, Conjecture 1], finishing
the program for hairy graph complexes. A reader familiar to those papers and the importance of their
results can skip the first, general part of this introduction, since it mainly repeats what was explained
earlier.

1.1 General introduction

Generally speaking, graph complexes are graded vector spaces of formal linear combinations of isomor-
phism classes of some kind of graphs, with the standard differential defined by vertex splitting (or, dually,
edge contraction). The various graph cohomology theories are arguably some of the most fascinating ob-
jects in homological algebra. Each of graph complexes play a certain role in a subfield of homological
algebra, algebraic topology or mathematical physics. They have an elementary and simple combinatorial
definition, yet we know almost nothing about what their cohomology actually is.
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The most basic graph complexes are introduced by Maxim Kontsevich in [8,9]. These complexes come
in versions GCn, where n ranges over integers (see 2.2 for the definition). Physically, GCn is formed by
vacuum Feynman diagrams of a topological field theory in dimension n. Alternatively, GCn governs
the deformation theory of En operads in algebraic topology [19] or stable cohomology of the algebraic
polyvector fields [20]. Some examples of graphs are:

, , .

There are many other graph complexes, and we mention only some of them. Ribbon graph complexes
describe the cohomology of the moduli spaces of curves [13,12,8]. Lie decorated graph complexes describe
the cohomology of the automorphisms of a free group and play a central role in many results in low
dimensional topology [3,8]. Oriented graph complexes, that are quasi-isomorphic to Kontsevich’s graph
complexes [21,11,23], govern for example the quantization of Lie bialgebras [10].

In this paper, apart from Kontsevich’s graph complex, we consider hairy graph complexes. These are
complexes spanned by graphs with external legs (“hairs”). These complexes come in versions HGCm,n
where m and n range over integers (see 2.4 for the definition). They compute the rational homotopy of
the spaces of embeddings of disks modulo immersions, fixed at the boundary Emb∂(Dm,Dn), provided
that n − m ≥ 3, see [1,4]. Furthermore, the diagrams enumerating Vassiliev invariants of knot theory
appear as the top cohomology of the hairy graph complex HGC1,3. Some examples of hairy graphs are:

, , .

Both kinds of complexes split into the product of subcomplexes with fixed loop order and hairy
graph complex splits into the product of subcomplexes with fixed number of hairs, cf. (2.26) and (2.28).
Furthermore, the complexes GCn and GCn′ , respectively HGCm,n and HGCm′,n′ , are isomorphic up to
some unimportant degree shifts if m ≡ m′ mod 2 and n ≡ n′ mod 2. Hence it suffices to understand 2
possible cases of GCn and 4 possible cases of HGCm,n according to parity of m and n.

The long standing open problem we are attacking in this paper is the following.

Open Problem: Compute the cohomologies H (GCn) and H (HGCm,n).

Very little is known about those homologies, and very few tools are available to compute them. The
most non-trivial result about Kontsevich’s graph cohomology is that zero-th cohomology H0(GC2) is
isomorphic to Grothendiech-Teichmüller Lie algebra grt1, shown by Willwacher in [19]. About the hairy
graph complex it is known [18, Propositions 4.1 and 4.4] that the first cohomology of the 2-hair subspace
H−1(H2HGC1,3) and the first cohomology of the 3-hair subspace H1(H3HGC2,3) are each isomorphic
to the third cohomology of the non-hairy graph complex H−3(GC3). Classes in low degrees have been
computed by hand or with computer assistance [7,2], and the Euler characteristics have been computed
in [15,1,14].

This paper, together with two previous papers from this series [5,6], deals with extra differentials
on graph complexes. The basic idea is to deform the standard differential δ to δ + δextra making the
complex (almost) acyclic. The extra piece does not fix loop order or the number of hairs, and a spectral
sequence can be found such that the standard differential is the first differential. Therefore, on the first
page of the spectral sequence we see the standard cohomology we are interested in, and because the
whole differential is acyclic, classes of it cancel with each other on further pages, cf. Table 4. We call this
the cancelling mechanism. We can say that classes come in pairs.

In the first paper of the series [5] a deformed differential was introduced for non-hairy graphs GCn
for both parity of n. In the second paper of the series [6] a deformed differential was introduced for hairy
graphs HGCm,n for even m and both parities of n:

Γ 7→ δΓ +
∑
S

Γ

S (1.1)
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summed over all subsets S of the set of hairs with at least two elements. For odd m in [6] the existence
of the suitable extra differential ∆ was just conjectured. ∆ transforms a hair into an edge, connecting a
hairy vertex with another vertex in all possible ways, see Subsection 2.5 for details.

Conjecture 1 ([6, Conjecture 1]). The complex (HGC−1,n, δ +∆) is almost acyclic for all n.

We call the spectral sequence arising from differential (1.1), respectively δ +∆, the first.
Furthermore, [19], [16] and [17] introduce other deformed differentials on HGCn,n and HGCn−1,n

making them (almost) quasi-isomorphic to fGCc≥2n :

H (HGCn,n, D
′) ∼= H

(
fGCc≥2n

)
, H (HGCn−1,n, D

′) ∼= H
(

fGCc≥2n

)
,

see Theorem C.1. One checks that all classes that come from H (GCn) live in one-hair part of H (HGC).
Therefore, the spectral sequence argument and the canceling mechanism can be used for this extra
differential for other classes of H (HGC), so they come in pairs. We call the spectral sequence arising
from D′ the second. These pairs are different from those that come from the first spectral sequence.

One can start from one-hair classes that come from H (GC), find their pairs using the first spectral
sequence, then find its pair using the second spectral sequence, and so on. This mechanism is called
“waterfall mechanism”. The mechanism is introduced in [6] and we describe it roughly in Appendix C.

1.2 Speciality of this paper

The main purpose of this paper is to prove Conjecture 1 ([6, Conjecture 1]), making the tentative waterfall
mechanism real also in the case of odd m.

Theorem 1.1.
– The complex (HGC−1,1, δ +∆) is acyclic.
– The cohomology H (HGC−1,0, δ +∆) is one-dimensional, the class being represented by a graph with

one vertex and three hairs on it.

This odd case appears to be much more complicated than even case dealt in [6]. In even case hairs
and edges have the same parity, so hairs can be understood as edges, say towards a special vertex. In
this picture, the extra peace in the deformed differential (1.1) is nothing but splitting the special vertex.
The natural extension of the standard differential is easily seen to be acyclic because of the role of the
special vertex.

In the odd case the added differential ∆ is not that nice. Unlike in the even case, extra part ∆ is
not of the same kind as standard differential (splitting a vertex), but something else (transforming a
hair to an edge). It turns out that just the differential ∆ does not make any simple complex acyclic
(see discussions at the beginnings of Sections 6 and 7). Technical complexity of this article is in avoiding
those difficulties.

To do that we introduce a new operation called deleting a vertex. In non-hairy Kontsevich’s complex
GCn we denote it by D and it deletes a vertex and reconnects its edges to other vertices in all possible
ways, summed over all vertices. For n = −1 D is of degree 1, and under some weak assumptions it is
again a differential.

We hope that deleting a vertex D can have further uses. However, in this paper we only get one small
extra result in Corollary 3.11, strengthening the result from the first paper in this series about H (fGCn)
for even n (cf. [5, Corollary 4]). Computer calculations imply that the complex (GC−1, D) is far from
acyclic, but there is a hope that (GC−1, δ +D) is acyclic, as stated in the following conjecture. If so, it
will lead to a kind of waterfall mechanism in GCn for odd n.

Conjecture 2. Kontsevich’s graph complex with the combined differential (GC−1, δ +D) is acyclic.

In the hairy complex we will introduce a sort of deleting a vertex only in certain cases with low
number of hairs, needed in this paper. They are probably auxiliary maps with less general importance
than D.

As shown in Theorem 1.1 (HGC−1,n, δ +∆) is acyclic for n odd, while for n even it has one class
of cohomology. By the definition, those complexes are spanned by connected graphs. The version that
includes disconnected graphs stays acyclic for n odd, but for n even the class in connected version
produces a number of non-trivial classes in disconnected version. They are studied in Corollary 7.15. It
introduces a list of quasi-isomorphisms from some part of non-hairy graph complexes to the hairy graph
complex.
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Structure of the paper

In Section 2 we define notions, recall results needed in this paper and systematize the notation. Section
3 introduces the deleting a vertex D in non-hairy graphs and provides some results about it. In Section
4 we introduce some new subcomplexes of hairy graph complex needed later in the paper, while Section
5 introduces few maps that delete vertices in hairy complex and shows some needed results. Finally, in
sections 6 and 7 we prove the first and the second part of Theorem 1.1. Appendix A clarifies the use of
complexes with distinguishable vertices. All technical results are moved to the second Appendix B. The
last Appendix C recalls waterfall mechanism and gives some examples for illustration.

Acknowledgements

I am very grateful to Thomas Willwacher for reading the draft of this paper and many suggestions. I
also thank Anton Khoroshkin for a fruitful discussion.

2 Background and definitions

In this section we recall basic notation and several results shown in the literature that will be used in
the paper.

2.1 General notation

We work over a field K of characteristic zero. All vector spaces and differential graded vector spaces are
assumed to be K-vector spaces.

Graph complexes as vector spaces are generally defined by the graphs that span them. When we say
a graph in a graph complex, we only mean the base graph, while any linear combination (or a series) of
graphs will be called an element of the graph complex.

Let ([C], d) be a graph complex spanned by a set of graphs C and [D] ⊂ [C] be a subspace spanned
by a set of graphs D ⊂ C. If [D] is closed under the differential, ([D], d) is a subcomplex. Let Dc = S \D
be the complement of D in C. If [D] is not closed under the differential, but [Dc] is, we can still safely
define the complex ([D], d), and assume that we get zero every time when the differential gives a term
outside of [D]. Technically, that complex is the quotient ([C], d) / ([Dc], d).

2.2 Kontsevich’s graph complexes

In this subsection we quickly recall the construction of the hairless graph complexes. For more details
see [19], or for more elementary definition see [22].

Consider the set of directed graphs gra≥iv,e with v > 0 distinguishable vertices and e ≥ 0 distinguishable
directed edges (numbered from 1 to v, respectively e), all vertices being at least i-valent (i ∈ {0, 1, 2, 3}),
without tadpoles (edges that start and end at the same vertex).

For n ∈ Z we define a degree of an element of gra≥iv,e to be d = (v − 1)n+ (1− n)e. We may say that
the degree of a vertex is n and the degree of an edge is 1− n. Let

V ≥iv,e :=
〈
gra≥iv,e

〉
[−(v − 1)n− (1− n)e] (2.1)

be the vector space of formal series of gra≥iv,e with coefficients in K. It is a graded vector space with
non-zero term only in degree d = (v − 1)n+ (1− n)e.

Let Sk be the k-th symmetric group. There is a natural right action of the group Sv ×
(
Se n S×e2

)
on gra≥iv,e, where Sv permutes vertices, Se permutes edges and S×e2 changes the direction of edges. Let
sgnv, sgne and sgn2 be one-dimensional representations of Sv, respectively Se, respectively S2, where
the odd permutation reverses the sign. They can be considered as representations of the whole product
Sv ×

(
Se n S×e2

)
.
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The full graph complex is

fGC≥in :=


∏
v,e

(
V ≥iv,e ⊗ sgne

)Sv×(SenS×e
2 ) '

∏
v,e

(
V ≥iv,e ⊗ sgne

)
Sv×(SenS×e

2 )
n even,∏

v,e

(
V ≥iv,e ⊗ sgnv ⊗ sgn⊗e2

)Sv×(SenS×e
2 ) '

∏
v,e

(
V ≥iv,e ⊗ sgnv ⊗ sgn⊗e2

)
Sv×(SenS×e

2 )
n odd.

(2.2)
Here the group in the subscript means taking the space of coinvariants, and the group in superscript
means taking the space of invariants. Because the group is finite, the two spaces are isomorphic to each
other, as stated.

If there is a multiple edge in a graph (more than one edge between the same par of vertices), switching
them does not change the graph. For n even switching edges changes the sign in definition (2.2), so graphs
with a multiple edge are zero in space of coinvariants fGC≥in . Therefore, for even n me may assume there
are no graphs with multiple edges.

Note that the full graph complex is actually a graded space, called complex by abuse of notation, as
many others in this paper. It becomes a complex after adding a differential. The standard differential δ
on fGCn is defined as follows:

δ(Γ ) :=
∑

x∈V (Γ )

1

2
sx(Γ )− ax(Γ ), (2.3)

where V (Γ ) is the set of vertices of Γ , sx stands for “splitting of x” and means inserting instead
of the vertex x and summing over all possible ways of connecting the edges that have been connected

to x to the new two vertices, and ax stands for “adding an edge at x” and means adding
x

on the
vertex x. Unless x is an isolated vertex, ax will cancel two terms of the splitting sx. To precisely define
the sign of the resulting graph, we set that, before acting of Sv × (Se n Se2), a new vertex and an edge
get the next free number and the edge is directed towards the new vertex. If a vertex next to an N -fold
edge (N edges between same two vertices) is split such that one new vertex gets k edges, and another
N − k, there is a factor

(
N
k

)
, coming from distinguishing edges. One can check that the minimal valence

condition ≥ i for i ∈ {0, 1, 2, 3} is preserved under the differential, so the complex is well defined. It is
also clear that the differential is indeed of degree 1.

Since the differential does not change the number e− v, the full graph complex fGC≥in splits into the
direct product of subcomplexes:

(
fGC≥in , δ

)
=

(∏
b∈Z

BbfGC≥in , δ

)
, (2.4)

where BbfGC≥in is the part of fGC≥in spanned by graphs in which e− v = b.
For the chosen parity of n, the actual number n matters only for the degree shift of the subcomplexes

BbfGC≥in in the product. If we know the cohomology for one n, cohomology for another n of the same

parity is straightforward. Therefore, in this paper we will only deal with the complexes fGC≥i0 and fGC≥i1 ,

as representatives for the even and the odd complexes. Note that in fGC≥i0 the degree is d = e and in

fGC≥i1 the degree is d = v − 1.
Let

fGCc≥in ⊂ fGC≥in (2.5)

be the subcomplex spanned by the connected graphs.
If i = 0 we will usually omit the superscript ≥ 0, e.g. we consider

fGCn := fGC≥0n . (2.6)

We introduce a shorter notation

GCn := fGCc≥3n (2.7)

because that complex is particularly important.
Cohomology of these subcomplexes is related to the cohomology of the full complexes, as shows the

following result.
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Proposition 2.1 ([19, Proposition 3.4]). The cohomologies satisfy

H (fGCc0) = H
(

fGCc≥20

)
= H (GC0)⊕

⊕
j≥1

K[−4j − 1],

H (fGCc1) = H
(

fGCc≥21

)
= H (GC1)⊕

⊕
j≥0

K[−4j − 2].

2.3 The spectral sequence of [5]

In the first paper of this series we introduced deformed differentials on the graph complexes above. In
this paper we only need the even case, n = 0. There is an extra differential ∇ on fGC0 that acts by
adding one edge in all possible ways, see Figure 1. Every edge is added twice, once from one vertex to
the other and once in the other way round.

Γ
∇7−→ Γ

Fig. 1 The action of ∇ to the graph Γ . The graph at the right means the sum over all graphs that can be formed by
attaching arrow ends to vertices, without making a tadpole.

It holds that δ∇+∇δ = 0, so the differential on fGC0 can be deformed to δ+∇. The result we need
is the following.

Proposition 2.2 ([5, Corollary 4]). There is a spectral sequence converging to

H (fGCc0, δ +∇) = 0

whose E1 term is
H (fGCc0, δ) .

The result implies that the homological classes of H (fGCc0, δ) have to be canceled on later pages of
the spectral sequence. Therefore they come in pairs.

2.4 Hairy graph complex

The hairy graph complexes HGCm,n in general are defined and studied in the second paper of this series,
[6]. There are essentially four types of complexes depending on the parity of n and m. In this paper we
are interested in two types, those with parity of edges and hairs being the opposite, i.e. m is odd. We
will deal with the complexes HGC−1,0 and HGC−1,1 as representatives of those types.

For h ∈ N0 let HhfHGC≥i−1,n be the complex spanned by graphs similar to those of fGC≥in , but with

h hairs attached to vertices, strictly defined as follows. Consider the set of directed graphs gra≥iv,e,h with
v > 0 distinguishable vertices, e ≥ 0 distinguishable directed edges and h ≥ 0 distinguishable hairs
attached to some vertices, all vertices being at least i-valent (i ∈ {0, 1, 2, 3}), without tadpoles (edges
that start and end at the same vertex). In hairy graphs, the valence includes also the attached hairs, i.e.
the valence of a vertex is the number of edges and hairs attached to it.

For n,m ∈ Z let a degree of an element of gra≥iv,e,h be d = −m+ vn+ (1−n)e+ (m+ 1−n)h. In this
paper we consider only the case m = −1, so d = 1 + vn+ (1− n)e− nh. Let

V ≥iv,e,h := 〈gra≥iv,e,h〉[−1− vn− (1− n)e+ nh] (2.8)

be the vector space of formal series of gra≥iv,e,h with coefficients in K. It is a graded vector space with
non-zero term only in degree d = 1 + vn+ (1− n)e− nh.
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There is a natural right action of the group Sv × Sh ×
(
Se n S×e2

)
on gra≥iv,e,h, where Sv permutes

vertices, Sh permutes hairs, Se permutes edges and S×e2 changes the direction of edges. Let sgnv, sgnh,
sgne and sgn2 be one-dimensional representations of Sv, respectively Sh, respectively Se, respectively S2,
where the odd permutation reverses the sign. They can be considered as representations of the whole
product Sv × Sh ×

(
Se n S×e2

)
.

The full hairy graph complex is

HhfHGC≥i−1,n :=


∏
v,e

(
V ≥iv,e,h ⊗ sgne

)Sv×Sh×(SenS×e
2 )

for n even,∏
v,e

(
V ≥iv,e,h ⊗ sgnv ⊗ sgnh⊗ sgn⊗e2

)Sv×Sh×(SenS×e
2 )

for n odd.

(2.9)

Because the group is finite, the space of invariants may be replaced by the space of coinvariants.
As in the non-hairy case, for symmetry reasons there are no graphs with multiple edges for even n.

Similarly, for odd n there are no graphs with multiple hairs on the same vertex.
The standard differential is similar to the one of fGC≥in :

δ(Γ ) :=
∑

x∈V (Γ )

1

2
sx(Γ )− ax(Γ )− h(x)ex(Γ ), (2.10)

where in “splitting of x” sx hairs are also attached in all possible ways to the new two vertices. There is
a factor

(
N
k

)
for splitting a vertex with N hairs into vertices with k and N − k hairs, like in splitting of

a multiple edge. “Adding an edge at x” ax is the same as before and ex stands for “extracting a hair at

x” and means adding
x

on the vertex x instead of one hair, while h(x) is the number of hairs on
the vertex x. Unless x is an isolated vertex with a hair, h(x)ex will cancel two terms of the splitting sx.
To precisely define the sign of the resulting graph, we set that, before acting of Sv × (Se n Se2), a new
vertex and an edge get the next free number and the edge is directed towards the new vertex. It is easily
seen that δ is indeed a differential, i.e. δ2 = 0.

Example 2.3. To clarify the signs and cancellations, let us calculate the differential of

Γ = . . . ∈ H1fHGC≥0−1,n

with v vertices and v − 1 edges. Let us chose the representative of the class Γ in V ≥0v,v−1,1 to be

1 2
. . .

v

1 2 v−1
.

After splitting the last vertex v sv(Γ ) has two addends, one where the edge v − 1 is connected to v
and one where it is connected to the new vertex v + 1. One addend can be transformed to another by
switching vertices v and v + 1, and changing the direction of the edge v between them. Both operations
change the sign of the class Γ if n is odd, so there is never a change at the end and both addends form
the same class as av(Γ ). Since we have the sum 1

2sx + ax, those addends cancel with adding an antenna
av(Γ ).

After splitting a 2-valent vertex x (any vertex other than v) sx(Γ ) has two addends with both edges
(or the hair) connected to the same vertex, x or v+ 1. It is again seen that both addends form the same
class as ax(Γ ) and they cancel with ax(Γ ).

The remaining addends of sx(Γ ) have edges (or the hair) connected to different vertices. It is seen
that both addends form the same class, and the class looks like

. . .

with v + 1 vertices. Because of the factor 1
2 , two addends add up to one class.

Let us check if the results of splitting different vertices add up or cancel. For our chosen representative
sx(Γ ) gives

1 2
. . .

x v+1
. . .

v

1 2 x−1 v x v−1
.
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To transform it to the result of splitting the neighbouring vertex x+ 1 we need to switch vertices v + 1
and x+ 1, and switch edges v and x. For any parity of n one switching changes the sign of the class, so
the terms cancel.

Extending the hair h1(Γ ) will end up in the same class. For our chosen representative h1 gives

v+1 1 2
. . .

v

v 1 2 v−1
.

One can see that this cancels with splitting the first vertex s1(Γ ).
In the result we have addends h1(Γ ), s1(Γ ), . . . , sv−1(Γ ) that are all the same up to the sign, and

neighbouring addends cancel. Therefore, if v is even the result is δ(Γ ) = 0, and if v is odd it holds that

δ(Γ ) = . . .

with v + 1 vertices.

In particular
H0fHGC≥i−1,n = fGC≥in [−1− n]. (2.11)

We define the full hairy graph complex

fHGC≥i−1,n :=
∏
h≥0

HhfHGC≥i−1,n. (2.12)

We often need a subcomplex without hairless part:

H≥1fHGC≥i−1,n :=
∏
h≥1

HhfHGC≥i−1,n. (2.13)

The differential does not change the number e− v again, so the full hairy graph complex fHGC≥i−1,n
splits into the direct product of (in each degree) finite dimensional subcomplexes:(

fHGC≥i−1,n, δ
)

=

(∏
b∈Z

BbfHGC≥i−1,n, δ

)
, (2.14)

where BbfHGC≥i−1,n is the part of fHGC≥in spanned by graphs where e − v = b. The same is true for

H≥1fHGC≥i−1,n.
Similarly to the non-hairy complex, for a chosen parity of n, the actual number n matters only for

the degree shift of the subcomplexes BbfHGC≥i−1,n in the product. If we know the cohomology for one n,
cohomology for another n of the same parity is straightforward. Therefore, in this paper we will only deal
with complexes fHGC≥i−1,0 and fHGC≥i−1,1, and their subcomplexes, as representatives for even and odd

complexes. Note that in fHGC≥i−1,0 the degree is d = e+ 1 and in fHGC≥i−1,1 the degree is d = v + 1− h.
Similarly to the non-hairy complex, let

fHGCc≥i−1,n ⊂ fHGC≥i−1,n (2.15)

be the subcomplex spanned by connected graphs.
In the hairy case, we skip the superscript if i = 1, e.g. we consider

fHGC−1,n = fHGC≥1−1,n, (2.16)

because those complexes will be used the most, unlike in the non-hairy case where skipping superscript
means including all valences. We also introduce a shorter notation

HGC−1,n := H≥1fHGCc≥3−1,n. (2.17)

This complex is the closest to the one defined in [6]. Strictly speaking, HGC−1,n for odd n defined in
[6] has another graph that we do not allow here, the graph with no vertices and two hairs. It comes
naturally if a hair is understood as an edge towards 1-valent vertex of another type, being the case in
that paper.
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2.5 Extra differential in hairy graph complexes

In [6] an extra differential ∆ has been defined on HGC−1,n that anti-commutes with δ, so that δ +∆ is

also a differential. Here, on fHGC≥i−1,n we define the following additional operation ∆ : HhfHGC≥i−1,n →
Hh−1fHGC≥i−1,n:

∆Γ =
∑

x∈V (Γ )

∆x =
∑

x∈V (Γ )

h(x)∆̃x, (2.18)

where ∆̃x deletes a hair on vertex x and connects x to other vertices in all possible ways with a new
edge, and ∆x = h(x)∆̃x for h(x) being the number of hairs on x, see example in Figure 2. To precisely
define the sign of the resulting graph, we set that, before the acting of Sv × Sh ×

(
Se n S×e2

)
, the last

hair is being deleted and the new edge get the next free number. Quotiented to HGC−1,n, ∆ is the same
differential as defined in [6].

Lemma 2.4. ∆ squares to zero and anti-commutes with δ, so δ +∆ is also a differential.

Proof. A straightforward verification, c.f. [6, Lemma 1].

∆7−→ 2 +

Fig. 2 Example of the action ∆. The graphs at the right mean the sum over all graphs that can be formed by attaching
ends of the arrow to vertices, without making a tadpole.

2.6 Adding a hair

We will need the following map. Let

χ1 : HhfHGC−1,n → Hh+1fHGC−1,n (2.19)

be the map that adds a hair in all possible ways. Also, let for even n

χd : HhfHGC−1,n → Hh+dfHGC−1,n,

χd =
(
χ1
)d

(2.20)

for d ≥ 2. It adds d hairs in all possible ways, but there is a multinomial coefficient
(

d
k1,k2,...

)
before,

where ki is the number of hairs added to the vertex i. We also set χ0 = Id and χd = 0 for d < 0. Check
that for odd n the latter map would not make sense because for symmetry reasons adding two hairs in
all possible ways gives zero.

Lemma 2.5. For every d ≥ 0 and every Γ ∈ H0fHGC−1,0

∆χd(Γ ) = dχd−1∇(Γ ).

Proof. Straightforward.
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2.7 Transforming a hair into an antenna

We define two maps

c, c(2) : HhfHGC−1,n → Hh−1fHGC−1,n,

c(Γ ) =
∑

i∈H(Γ )

ci(Γ ) (2.21)

c(2)(Γ ) =
∑

i∈H(Γ )

c
(2)
i (Γ ) (2.22)

where H(Γ ) is the set of hairs of Γ and ci(Γ ) deletes the hair i at vertex x and adds an antenna like ax.

Similarly, c
(2)
i (Γ ) deletes the hair and adds an antenna of length 2: . An example is sketched in

Figure 3.

c7−→ 2 + ,
c(2)7−→ 2 +

Fig. 3 Examples of the actions c and c(2), transforming a hair into an antenna.

Lemma 2.6. For every Γ ∈ fHGC−1,n it holds that

δc(Γ ) = cδ(Γ ) + c(2)(Γ ).

Proof. In cδ(Γ ) we first split a vertex, summed over all vertices, and then transform a hair into an
antenna, summed over all hairs. After choosing a vertex and a hair we can do the opposite, first transform
the hair, and then split the vertex. All addends are the same, and hence commute, except −h(x)ex from
δ (2.10), if the chosen hair is on the chosen vertex x. That means, if we first split, there is an addend

−ciex(Γ ) = −c(2)i (Γ ) not cancelled by anything in the opposite action.

Moreover, apart from actions considered, δc(Γ ) has an extra term, splitting the new vertex created
by Γ . But that term is 0 because sx and ax cancel. In total, summed over all hairs we have

cδ(Γ ) = δc(Γ )− c(2)(Γ ),

what was to be demonstrated.

Lemma 2.7. For every Γ ∈ fHGC−1,n it holds that

∆c(Γ ) = c∆(Γ ).

Proof. Both c and ∆ choose a hair, one is transformed to an antenna and one connected to other vertices.
We can do it in any order. Only term that appears in ∆c(Γ ) but not in c∆(Γ ) is when ∆ connects a
hair j to the new vertex created by ci. But that term is cancelled with the term when ∆ connects a hair
i to the new vertex created by cj , because exchanging chosen hairs for odd n, respectively created edges
for even n, gives the sign −1.

10



2.8 Some simple graphs

Here we define some simple graphs. They live in the hairy graph complexes, and if they have no hairs,
also in the standard graph complexes.

Let

σa := (2.23)

be a graph with one vertex and a ≥ 0 hairs, and we call it a star. Let

λa := (2.24)

with a − 1 hairs on one vertex for a ≥ 1. Hairless graphs that exist in fGCn are denoted by simpler
notation σ := σ0 and λ := λ1. Because of symmetry reasons in fHGC−1,1 there can not be more than
one hair on the same vertex, so in that complex only σ1 and λ2 exist, together with hairless σ0 and λ1.

For two graphs Γ and Γ ′, the graph Γ ∪ Γ ′ is the disconnected graph that consists of Γ and Γ ′. For
the matter of sign, all vertices, edges and hairs of the first graph come before those of the second one.
For a graph Γ and n ≥ 1, Γ∪n is the graph that consist of n copies of the graphs Γ put together.

The following graph in fHGC−1,n will be used often:

α :=
∑
n≥1

1

n!
σ∪n1 = +

1

2
+

1

3!
+ . . . (2.25)

2.9 List of graph complexes

For the reader’s convenience, we provide Table 1 of all graph complexes used and defined in the pa-
per, with a short explanation and the reference to the definition. Similarly, in Table 2 we provide all
differentials and important maps.

The most notations of graph complexes, except some technical complexes, are of the form pNesi ,
meaning as follows.

– The first small letter p is either f, meaning full complex, either omitted. General complexes are full,
but some its subcomplexes are particularly important, and they are labeled without f.

– Capital letters N is the main type of complex. It can be:
– GC - graph complex,
– HGC - hairy graph complex.

– The ending e deals with connectivity and if stated means:
– c - connected graphs,
– d - disconnected graphs.

– The subscript i defines degrees and parity (1 number for ordinary complexes and 2 numbers for hairy
complexes).

– The superscript s deals mostly with valences and if stated means:
– ≥ i - all vertices are at least i-valent,
– † - all vertices at least 1-valent and no connected component λ1,
– ‡ - all vertices at least 1-valent and no connected component λ1, σ1 or λ2,
– \ - all vertices at least 2-valent and hairy vertices at least 3-valent.

2.10 Splitting of complexes and spectral sequences

We often need subcomplex of the particular complex spanned by graphs that have some number fixed,
e.g. number of vertices. Let v be the number of vertices in a graph, e the number of edges, h the number
of hairs, c the number of connected components and p the number of tree-like connected components
(connected components with 1 vertex more than edges). Prefixes are listed in Table 3.

We have already used prefixes B and H in (2.4), (2.9) and (2.14).
Let Γ be an element of a graph complex C. We also use prefixes from above in front of the graph Γ ,

indicating the part of Γ with fixed number. E.g. H5Γ is the part of Γ with 5 hairs.

11



Notation Explanation Reference

fGC≥in Graph complex with graphs whose vertices are at least i-valent (2.2)

fGCn = fGC≥0
n (2.6)

fHGC≥i−1,n Hairy graph complex with graphs whose vertices are at least i-valent (2.12)

fHGC−1,n = fHGC≥1
−1,n (2.16)

pNcsi Subcomplex of pNs
i spanned by connected graphs (2.5), (2.15)

GCn = fGCc≥3
n (2.7)

H≥1pHGCesi ⊂ pHGCesi without hairless graphs (2.9)

HGC−1,n = H≥1fGCc≥3
n (2.17)

fHGC†−1,n ⊂ fHGC−1,n with no connected component λ1 Definition 4.2

fGC†n = H0fHGC†−1,n[−1− n] Definition 4.2

fHGC‡−1,n ⊂ fHGC−1,n with no connected component σ0, σ1 or λ2 Definition 4.4

fHGC\−1,n ⊂ fHGC≥2 spanned by graphs that do not have 2-valent vertex with a hair Definition 4.6

fHGC
†/‡
−1,n fHGC†−1,n/fHGC‡−1,n Definition 4.12

UR−1,n ⊂ fHGC†−1,n with all connected components σ1 or λ2 Definition 4.12

HL1 =
(
∆+D(1)

) (
H1fHGC†−1,1

)
(6.6)

HL0 = ∆
(
H1fHGC−1,0

)
(7.7)

H[pHGCs
−1,n = H≥1pHGCs

−1,n ⊕HLn
(6.5), (6.8), (6.9),

(7.6), (7.8)
fHGCd−1,0 ⊂ fHGC−1,0 spanned by disconnected graphs (7.14)

Table 1 The table of graph complexes used in the paper. Universal letters p, N, e, i and s mean any letter, and also
without the letter.

Notation Largest domain and codomain Explanation Reference

δ
fGCn → fGCn

fHGC≥0
−1,n → fHGC≥0

−1,n

standard differential, splitting a vertex
(2.3)
(2.10)

∇ fGC0 → fGC0 adding an edge in all possible ways Figure 1

∆ fHGC≥0
−1,n → fHGC≥0

−1,n transforming a hair into an edge (2.18)

D
fGC0 → fGC0

fGC1 → fGC1
deleting a vertex

(3.1)
(3.2)

D(1) H1fHGC−1,n → H0fHGC−1,n deleting the hairy vertex (5.1)

D(push) H1fHGC−1,n → H1fHGC−1,n “pushing the hair” (5.3)

D(2) H2fHGC−1,0 → H0fHGC−1,0 “deleting the flower” (5.4)
χ1 fHGC−1,n → fHGC−1,n adding a hair (2.19)

χd fHGC−1,0 → fHGC−1,0 adding d hairs (2.20)
c fHGC−1,0 → fHGC−1,0 transforming a hair into an antenna (2.21)

Table 2 The table of differentials and important maps between graph complexes.

Prefix Explanation

Vk Graphs with number of vertices v = k

Ek Graphs with number of edges e = k

Hk Graphs with number of hairs h = k

Ck Graphs with number of connected components c = k

Bk Graphs with e− v = k

Ak Graphs with e+ h = k

Fk Graphs with e+ h− v = k

Pk Graphs with number of tree-like connected components p = k

Table 3 The table of prefixes that determine certain subcomplexes of a complex. The prefixes mean the subcomplex of
the complex that follows, spanned by graphs with the fixed number stated.

Some differentials do not change some numbers from the above, so the complex splits as a direct
product of complexes with fixed that number, e.g.(

fGC≥in , δ
)

=
∏
b∈Z

(
BbfGC≥in , δ

)
, (2.26)

(
fGC≥in ,∇

)
=
∏
v∈N

(
VvfGC≥in ,∇

)
, (2.27)
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(
fHGC≥i−1,n, δ

)
=
∏
b∈Z

(
BbfHGC≥i−1,n, δ

)
=
∏
h∈N

(
HhfHGC≥i−1,n, δ

)
=
∏
b∈Z

∏
h∈N

(
BbHhfHGC≥i−1,n, δ

)
,

(2.28)(
fHGC≥i−1,n, ∆

)
=
∏
v∈N

(
VvfHGC≥i−1,n, ∆

)
=
∏
a∈Z

(
AafHGC≥i−1,n, ∆

)
=
∏
v∈N

∏
a∈Z

(
AaVvfHGC≥i−1,n, ∆

)
,

(2.29)(
fHGC≥i−1,n, δ +∆

)
=
∏
f∈Z

(
Ff fHGC≥i−1,n, δ +∆

)
. (2.30)

We also use superscripts in the prefix of the form of inequality, e.g. V≥k, that obviously means the
subcomplex spanned by graphs which fulfill the inequality, e.g.

V≥vC =
∏
k≥v

VkC. (2.31)

We have already used this notation in (2.13). Those subcomplexes with inequality often form a
filtration of the complex. To this filtration a spectral sequence is associated. We say that the spectral
sequence is on the number given by the prefix. E.g. the spectral sequence of (fGCn, δ +∆) on the
number of vertices is the one associated to the filtration

(
V≥vfGCn, δ +∆

)
. Note that the expression

on the number does not include the data weather the differential can increase or decrease the number,
and therefore which filtration is used, the one defined with ≥ or ≤. But in any given case it will be clear
weather the differential increases or decreases the number. In this case it is ≥ v, not ≤ v, because the
differential δ+∆ can increase, but not decrease the number of vertices. Its first differential is clearly ∆.

We say that a spectral sequence converges correctly if it converges to the cohomology of the whole
complex. To ensure correct convergence standard spectral sequence arguments, i.e. those from [5, Ap-
pendix C], are used. For doing so, it is often useful for a complex to be finite dimensional in each degree.
It is mostly not the case, but after splitting a complex as in (2.26)–(2.29), each subcomplex often has
that property. So, the spectral sequence arguments can be used for each of them, and so we can compute
the cohomology of the whole complex.

The following superscript will also be used.

B≤f,parC :=
∏
i≥0

Bf−2iC, B<f,parC :=
∏
i>0

Bf−2iC (2.32)

i.e. it is the product of subcomplexes with e− v ≤ f , respectively e− v < f of the same parity as f .
As explained in the appendix A we use the notation V̄vC for the space similar to VvC but with

distinguishable vertices, i.e. the space of coinvariants of other groups (permuting edges, hairs, etc.)
before taking coinvariants of the symmetric group Sv that permutes vertices. It holds that

VvC =
(
V̄vC

)Sv
. (2.33)

Let Sv−1 act on V̄vC as sub-action of Sv that permutes the first v − 1 vertices, leaving the last vertex.
We define

V̇vC :=
(
V̄vC

)Sv−1
. (2.34)

We may need the total spaces

V̄C :=
∏
v≥1

V̄vC, (2.35)

V̇C :=
∏
v≥1

V̇vC. (2.36)

3 Deleting a vertex in non-hairy graphs

In this section we introduce a new operation D on the non-hairy graph complexes fGCn which we call
“deleting a vertex”. Under some weak conditions, it holds that D2 = 0 and a grading can be settled such
that D is a differential. We also obtain one further result about the spectral sequence of [5] for n = 0.
The results will be used for the hairy graph complex in Section 7.
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3.1 Even case

For a graph Γ ∈ fGC0 we call the set of its vertices V (Γ ) and define

D(Γ ) :=
∑

x∈V (Γ )

Dx(Γ ) =
∑

x∈V (Γ )

(−1)v(x)D̃x(Γ ) (3.1)

where v(x) is the valence of the vertex x, D̃x deletes the vertex x and sums over all ways of recon-
necting edges that were connected to x to the other vertices, skipping graphs with a tadpole, and
Dx = (−1)v(x)D̃x. An example is sketched in Figure 4.

x

Dx7−→ (−1)3

Fig. 4 Example of the action Dx, deleting the vertex x. The graph at the right means the sum over all graphs that can
be formed by attaching ends of arrows to vertices, without making a tadpole.

We can restrict D to fGC≥10 and fGC≥20 . The following propositions about D are stated in the broadest

space possible, i.e. in fGC≥i0 for the smallest i where it holds.

Proposition 3.1. In fGC≥20 it holds that
D2 = 0.

Proof. For a graph Γ

D2(Γ ) =
∑

x,y∈V (Γ )
x 6=y

DyDx(Γ ).

We now fix x, y ∈ V (Γ ), x 6= y. Since D does not change the number of edges, we can distinguish them,

see Appendix A. Recall that for even n there are no multiple edges in a graph. Vertices of Γ ∈ fGC≥20

are at least 2-valent, so there exist an edge between x and another vertex that is not y. We choose one
of them and call it f .

DyDx first deletes vertex x, reconnects its edges to other vertices, deletes vertex y and reconnects its
edges, including those that came from x, to other vertices. Let us fix one way of reconnecting edges that
are not f and the final destination of f . For that way of reconnecting, in DyDx there are two terms: the
one where f goes directly to its final destination with Dx and the one where f goes to y with Dx and
to its final destination with Dy. In the later the valence of y while applying Dy is by 1 bigger than its
valence while applying Dy in the former term, making the terms cancel each other because of the sign
dependence on valence. It follows that DyDx(Γ ) = 0 and therefore D2(Γ ) = 0.

Proposition 3.2. In fGC≥10 it holds that
D4 = 0.

Proof. From the previous proof we see that DyDx(Γ ) may only be non-zero if x is 1-valent vertex with
an edge connecting to y.

So DzDyDx(Γ ) 6= 0 implies x is of that kind. But also DzDy(Dx(Γ )) 6= 0 implies y is 1-valent and
connected to z in Dx(Γ ). Since Dx did not change the valence of y, already in Γ it was 1-valent, and
vertices x and y formed λ = .

Now let us pick a term in D4(Γ ), say DwDzDyDx(Γ ). It being non-zero implies DzDyDx(Γ ) 6= 0,
so x and y form λ. Similarly, DwDzDy(Dx(Γ )) 6= 0 imply y and z form λ in Dx(Γ ). Since the edge at z

came from x, z was isolated in Γ what is not possible in fGC≥10 . Therefore DwDzDyDx(Γ ) is always 0
and D4 = 0.

Recall the extra differential ∇ : fGC0 → fGC0 that acts by adding one edge in all possible ways
defined in [5] and cited in 2.3.
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Proposition 3.3. In fGC0 it holds that

δD −Dδ = ∇.

Proof.

(δD(Γ )−Dδ(Γ )) = δ

(∑
x

Dx(Γ )

)
−D

(∑
y

1

2
sy(Γ )− ay(Γ )

)
=
∑
x

∑
y

y 6=x

(
1

2
syDx(Γ )− ayDx(Γ )

)

− 1

2

∑
y

∑
x
x 6=y

Dxsy(Γ ) +Dysy(Γ ) +Dzsy(Γ )

+
∑
y

∑
x
x6=y

Dxay(Γ ) +Dyay(Γ ) +Dzay(Γ )

 =

1

2

∑
x,y
x 6=y

syDx(Γ )−
∑
x,y
x6=y

ayDx(Γ )−1

2

∑
x,y
x 6=y

Dxsy(Γ )−
∑
x

Dzsx(Γ )+
∑
x,y
x 6=y

Dxay(Γ )+
∑
x

Dxax(Γ )+
∑
x

Dzax(Γ ),

where x and y run through V (Γ ) and z is the name of the newly added vertex.
For different x, y ∈ V (Γ ) it easily follows that

syDx(Γ ) = Dxsy(Γ ).

The term Dzsx(Γ ) first splits a new vertex z from the vertex x, connects them with an edge, say g,
and reconnects some of the edges from x to z. Afterwards it deletes vertex z and reconnects edges from
it to other vertices, possibly back to x, and reconnects g also to other vertex. The final result is that
some of the edges are reconnected from x to other vertices, and there is a new edge g connecting x and
some other vertex. The edge g can be seen as added at the end, and before that, since number of edges
is not changed, we can distinguish edges. Suppose there is an edge that at the end stays at x, and call
it f . We fix one way of reconnecting all other edges. For that way of reconnecting there are two terms
in Dzsx(Γ ): one where f stays at x and one where it is reconnected to z and back to x, and they cancel
each other because valence of z differ by one in them. Therefore everything what survives from Dzsx(Γ )
is reconnecting all edges from x to other vertices and adding an edge g from x to some other vertex, say
y. That is exactly the same as deleting vertex x and adding an edge at y, with the opposite sign because
the valence of the vertex being deleted differs by one. So we get

Dzsx(Γ ) = −
∑
y

y 6=x

ayDx(Γ ).

An easy argument, that is left to the reader, implies

Dxax(Γ ) = −
∑
y

y 6=x

Dxay(Γ ).

The last term
∑
xDzax(Γ ) clearly adds an edge from x to some other vertex, so it holds that∑

x

Dzax(Γ ) = ∇(Γ ).

By equations obtained, all except the last term of the above expression cancel, and the claimed formula
follows.

Propositions 3.1 and 3.3 easily imply D∇+∇D = 0 in fGC≥20 . But we need a bit stronger result.

Proposition 3.4. In fGC≥10 it holds that

D∇+∇D = 0.

Proof. D∇ puts an edge in all possible ways and then deletes a vertex, say x. If the new edge has been
connected to x, it is moved to another vertex. Let finally the new edge connect vertices y and z. To that
position it can come in three different ways:
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– directly been connected to y and z by ∇, what is exactly the corresponding term from ∇D;
– been connected from y to x by ∇ and then moved to z by Dx, what is the negative of the term in
∇D because of the sign changes in deleting vertex x with one more valence;

– and the same from z to x, what is also the negative of the term in ∇D.

All terms in ∇D are come like this, so indeed D∇ = ∇D − 2∇D = −∇D.

Proposition 3.5. In fGC≥10 it holds that

∇D2 = 0.

Proof. From the proof of Proposition 3.1 the term DyDx(Γ ) of D2(Γ ) may only be non-zero if x is
a 1-valent vertex with an edge connecting to y. Then DyDx deletes x, y and the edge between them,
reconnects all other edges from y elsewhere and adds an edge in all possible ways. Then ∇ adds another
edge in all possible ways. Adding one edge on one place and another edge on another place cancels with
adding edges in the opposite order, hence the result.

3.2 Odd case

Like in the even case, for a graph Γ ∈ fGC1 we define

D(Γ ) :=
∑

x∈V (Γ )

Dx =
∑

x∈V (Γ )

(−1)v(x)D̃x. (3.2)

Note that multiple edges are now possible. Similarly as with splitting, if an N -fold edge went to the
vertex being deleted, there is a factor

(
N

k1,k2,...

)
where ki is the number of edges from that multiple edge

that go to the vertex i. We can restrict D to fGC≥11 .

Proposition 3.6. On fGC≥11 it holds that

D2 = 0.

Proof. Like in the proof of Proposition 3.1 we write

D2(Γ ) =
∑

x,y∈V (Γ )
x 6=y

DyDx(Γ ),

fix x, y ∈ V (Γ ) and distinguish edges. If there is an edge from x to a vertex other than y the same
reasoning from Proposition 3.1 leads to DyDx(Γ ) = 0. If not, all edges from x go to y and let there
be k > 0 of them. Let Γ ′ be the graph obtained from Γ by deleting vertex x and all k edges at x.
Then DyDx(Γ ) is actually Dy(Γ ′) where we add k edges in all possible ways. But adding an edge from
one vertex to another cancels with adding an opposite edge, leading to the conclusion DyDx(Γ ) = 0.
Therefore it again holds that D2 = 0.

Proposition 3.7. On fGC1 it holds that

δD +Dδ = 0.

Proof. The argument, with a bit of care for the signs, is the same as in the proof of Proposition 3.3.
Only in the last term adding an edge from one vertex to another cancels with adding the opposite one,
leading to the result 0.
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3.3 More about the spectral sequence of [5] for the even case

Recall from [5, Corollary 4] that H (fGCc0, δ +∇) = 0 and that there is a spectral sequence converging
to it whose E1 term (i.e. the first page) is H (fGCc0, δ) with the differential ∇. The spectral sequence is
on the number b = e− v. The following corollaries calculate homologies of some similar complexes.

Corollary 3.8. The complex
(

fGCc≥20 , δ +∇
)

is acyclic.

Proof. On the mapping cone of the inclusion
(

fGCc≥20 , δ +∇
)
↪→ (fGCc0, δ +∇) we set up a spectral

sequence mentioned above, on the number b = e−v. The complex with the first differential is the mapping

cone of the inclusion
(

fGCc≥20 , δ
)
↪→ (fGCc0, δ). It is acyclic by Proposition 2.1. The spectral sequence

converges correctly because the space in each degree e is finitely dimensional, so the whole mapping cone

is acyclic. That leads to H
(

fGCc≥20 , δ +∇
)

= H (fGCc0, δ +∇) = 0.

Corollary 3.9. The complex
(

fGC≥20 , δ +∇
)

is acyclic.

Proof. On
(

fGC≥20 , δ +∇
)

we set up a spectral sequence on the number of connected components. It

clearly converges to the cohomology of the whole complex. In the c-th row there is a complex((
fGCc≥20 , δ +∇

)⊗c)Sc

[1− c]

that is acyclic by (1), hence the result.

On fGC≥10 let us conjugate the differential δ+∇ to eD(δ+∇)e−D. We have the following proposition.

Proposition 3.10. In fGC≥10 it holds that

eD(δ +∇)e−D = δ +D∇.

Proof. Using results of Propositions 3.2 to 3.5 it holds that

eD(δ +∇)e−D =

(
Id +D +

D2

2
+
D3

6

)
(δ +∇)

(
Id−D +

D2

2
− D3

6

)
=

= δ +∇+Dδ +D∇− δD −∇D −DδD +
D2δ

2
− D2δD

2
+
δD2

2
+
DδD2

2
= δ +D∇.

Note that conjugated differential δ + D∇ can not change b = e − v by an odd amount. Therefore
complexes with that differential split into the direct sum of two complexes, one with even and one with
odd b. The following result is now straightforward.

Corollary 3.11. There is a spectral sequence converging to

H
(

fGC≥20 , δ +D∇
)

= 0

whose first page is

H
(

fGC≥20 , δ
)

Furthermore, in this spectral sequence, differentials on odd pages are 0.

The corollary is similar to [5, Corollary 4], but this time the complex includes disconnected graphs.
Indeed, [5, Corollary 4] implies the same result for disconnected graphs, and in this sense our result is
weaker. There is the filtration on b = e − v in both cases, but different total differentials δ + ∇ and

δ + D∇, that are both acyclic. So, in both cases there are cancellations of classes in H
(

fGC≥20 , δ
)

as

drawn in Table 4. For disconnected graphs our result is stronger because we know that there are no
cancellations on odd pages. An example of cancelling with our differential δ +D∇ is depicted in Figure
5, c.f. cancelling of the same classes with the differential δ +∇ in [5, Figure 2].
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 2 0 0 1 2 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 1 1 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 1 1 0

5 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0

6 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0 2 0 1 0 2

7 0 0 0 0 0 0 0 0 1 0 0 1 0 2 0 0 1 1 1 0

8 0 0 0 0 0 0 0 0 0 1 0 2 1 1 1 1 2 1 2

9 0 0 0 0 0 0 0 0 0 0 1 0 1 2 0 3 0 3

10 0 0 0 0 0 0 0 0 0 0 0 2 0 ? ? ? ?

11 0 0 0 0 0 0 0 0 0 0 0 0 2 ? ? ?

12 0 0 0 0 0 0 0 0 0 0 0 0 0 3 ?

Table 4 Table of dimensions of cohomology H (fGC0, δ). The column number represents the number of edges e and the
row number represents b = e− v. Known cancellations are depicted by arrows.

0
δ

D∇

Fig. 5 The first cancelling from Table 4. A loop cocyle cancels another graph cocyle in the spectral sequence, c.f. cancelling
of the same classes with the differential δ +∇ in [5, Figure 2].

4 Constraints on hairy graphs

In this section we study subcomplexes of Hairy graph complex spanned by graphs that fulfil certain
constraints. Some of them are standard simplifications of graph complexes by restricting the minimal
valence of vertices, cf. [19, Proposition 3.4]. The others seem technical, like disallowing certain small
graphs to be a connected component (constraints † and ‡). We need all that complexes for the final
proofs whose strategies are explained at the beginnings of Sections 6 and 7.

4.1 Simplifying the full graph complex

Proposition 2.1 ([19, Proposition 3.4]) can easily be extended to the hairy case as follows.

Proposition 4.1. The cohomologies satisfy

H
(

fHGCc≥0−1,n, δ
)

= H
(

fHGCc≥2−1,n, δ
)

= H
(

fHGCc≥3−1,n, δ
)
⊕

⊕
j≥3

j≡2n+1 mod 4

K[−1− j].

Proof. The same argument as in [19, Proposition 3.4]. Roughly, we construct subcomplex fHGCc1−1,n
of fHGCc≥0−1,n spanned by graphs with at least one 1-valent vertices (including one vertex graph σ =
σ0 = •). Graphs in that complex have “antennas”, that are parts that end with a 1-valent vertex.
One can make a spectral sequence whose first differential acts only on antennas, and it is easily shown
that the complex with that differential is acyclic, hence

(
fHGCc1−1,n, δ

)
is acyclic. Since fHGCc≥0−1,n =

fHGCc≥2−1,n ⊕ fHGCc1−1,n, this shows the first equality.
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Next, let fHGCc2−1,n be subcomplex of fHGCc≥2−1,n with at least one 2-valent vertex. It contains loops
(graphs with no hairs and only 2-valent vertices) whose cohomology is easily seen to be⊕

j≥3
j≡2n+1 mod 4

K[−1− j].

On the rest we can make a spectral sequence with the first differential extending the chain of edges and
2-valent vertices between non-2-valent or hairy vertices. It is again easily shown that the complex with
that differential is acyclic. Since fHGCc≥2−1,n = fHGCc≥3−1,n⊕ fHGCc2−1,n, the second equality follows.

Recall that the standard valence constraint for hairy complexes in this paper is ≥ 1, i.e. the notation
fHGCc means fHGCc≥1, see (2.16). But that constraint is exactly the one not mentioned in Proposition
4.1. Luckily, in subspace fHGCc ⊂ fHGCc≥0 only one graph is excluded, the one vertex graph σ = σ0 = •.
This makes the cohomology H (fHGCc−1,n, δ) different from H

(
fHGCc≥0−1,n, δ

)
= H

(
fHGCc≥2−1,n, δ

)
by

one class. The class is represented by λ = λ1 = . If this graph is excluded too, the resulting complex

will again be quasi-isomorphic to
(

fHGCc≥0−1,n, δ
)

. In the next definition we define that complex, and in

the following lemma we state the result. Although we work with connected graphs now, the definition is
already made suitable for disconnected graphs.

Definition 4.2. Let fHGC†−1,n ⊂ fHGC−1,n be the subspace spanned by graphs that do not have λ as
a connected component. Let

fGC†n := H0fHGC†−1,n[−1− n] ⊂ fGC≥1n ,

c.f. (2.11).

Lemma 4.3. Space fHGCc†−1,n is closed under differential δ and the cohomologies satisfy

H
(

fHGCc≥0−1,n, δ
)

= H
(

fHGCc†−1,n, δ
)
.

Proof. The discussion above implies the result.

The following constraint is motivated as follows, c.f. proof of Proposition 6.8. In the hairy complexes
with the extra differential (fHGC−1,n, δ +∆) the number of hairs h is unbounded. That makes the
spectral sequences on h (that has δ as the first differential) and the one on the number of connected
components c unbounded from above and we can not use standard results for convergence.

The complex splits as in (2.30):

(fHGC−1,n, δ +∆) =
∏
f∈Z

(
Ff fHGC−1,n, δ +∆

)
where f = e+h− v. In every Ff fHGC−1,n for the fixed degree d = 1 + vn+ (1−n)e−nh, the number of
edges e = d+ nf − 1 is fixed too. So, increasing the number of hairs h increases the number of vertices
v by the same amount. Since e is fixed, that increase will eventually force a graph to have connected
components that are stars σ1 = . In the next subsection we will show that components σ1 are mostly
irrelevant for the cohomology of the deformed complex, so we can disallow them and bound h from above
while preserving the result about cohomology. Now we define the complex without σ1, and also without
λ2 = to preserve the cohomology with the standard differential, as stated in the following lemma.
Because of its importance, we have a separate name for this complex, the bounded graph complex.

Definition 4.4. Let the bounded graph complex fHGC‡−1,n ⊂ fHGC†−1,n be the subspace spanned by

graphs that do not have λ, σ1 = or λ2 = as a connected component.

Recall that Example 2.3 implies in particular that δ(σ1) = λ2.

Lemma 4.5. Space fHGC‡−1,n is closed under the differential δ and the cohomologies satisfy

H
(

fHGCc†−1,n, δ
)

= H
(

fHGCc‡−1,n, δ
)
.
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Proof. The new complex has two graphs less and they cancel each other by the differential, so it does
not change the cohomology.

The following constraint is necessary for Lemma 5.2 used in the proof of Proposition 6.9.

Definition 4.6. Let fHGC\−1,n ⊂ fHGC≥2−1,n be the subspace spanned by graphs that do not have
2-valent vertex with a hair.

Lemma 4.7. Space fHGC\−1,n is closed under differential δ and the cohomologies satisfy

H
(

fHGCc≥2−1,n, δ
)

= H
(

fHGCc\−1,n, δ
)
.

Proof. The idea of proving is similar to the one for Proposition 4.1. It holds that fHGCc≥2−1,n = fHGCc\−1,n

⊕ fHGCc
/\
−1,n where fHGCc

/\
−1,n is the subspace of fHGCc≥2−1,n spanned by graphs with at least one 2-

valent vertex with a hair. Those graphs have “hairy antennas”, i.e. parts that end with 2-valent vertex
with one hair, or they are linear graphs with two 2-valent hairy vertices at the ends, including σ2 = .
One can make a spectral sequence whose first differentials acts only on hairy antennas (extends the
linear graphs respectively), and show that the complex with that differential is acyclic. This implies the
result.

We systematize the results in the following proposition.

Proposition 4.8. The cohomologies satisfy

H
(

fHGCc≥0−1,n, δ
)

= H
(

fHGCc†−1,n, δ
)

= H
(

fHGCc‡−1,n, δ
)

= H
(

fHGCc≥2−1,n, δ
)

= H
(

fHGCc\−1,n, δ
)
.

Proof. Follows from Proposition 4.1 and Lemmas 4.3, 4.5 and 4.7.

The results can be extended to complexes that allow disconnected graphs as follows.

Corollary 4.9. All mentioned spaces are closed under differential δ and the cohomologies satisfy

H
(

fHGC≥0−1,n, δ
)

= H
(

fHGC†−1,n, δ
)

= H
(

fHGC‡−1,n, δ
)

= H
(

fHGC≥2−1,n, δ
)

= H
(

fHGC\−1,n, δ
)
,

Proof. The complexes are just the symmetric product of their connected parts, so the corollary directly
follows from the proposition.

By Proposition 4.1 all classes missing in “3-valent complex” are in hairless part, so Proposition 4.8
also implies the following corollary. Recall that HGC−1,n = H≥1fHGCc≥3−1,n.

Corollary 4.10. All mentioned spaces are closed under differential δ and the cohomologies satisfy

H
(

H≥1fHGCc≥0−1,n, δ
)

= H
(
H≥1fHGCc−1,n, δ

)
= H

(
H≥1fHGCc†−1,n, δ

)
=

= H
(

H≥1fHGCc‡−1,n, δ
)

= H
(

H≥1fHGCc≥2−1,n, δ
)

= H
(

H≥1fHGCc\−1,n, δ
)

= H (HGC−1,n, δ) .

Proof. The differential δ does not change the number of hairs h, so previous results can be easily restricted
to H≥1. Namely, Proposition 4.1 implies that the first, the fifth and the seventh term are equal, since
the extra loop peace lives in hairless h = 0 space.

Similarly, Proposition 4.8 implies that the first, the third, the forth, the fifth and the sixth terms are
equal.

Note that first three complexes
(

H≥1fHGCc≥0−1,n, δ
)

,
(
H≥1fHGCc−1,n, δ

)
,
(

H≥1fHGCc†−1,n, δ
)

are

equal already as complexes.
All this together concludes the corollary.

For n = 0 the b = e−v = −1 part of the cohomology is almost zero, as stated in the following lemma.

Lemma 4.11 ([1, Proposition 3.3], [17, Theorem 3]). H
(
B−1HGC−1,0, δ

)
is 1-dimensional, the class

being represented by the star σ3 = .
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4.2 The bounded graph complex with the extra differential

As already announced, in this subsection we show that components σ1 are mostly irrelevant for the
cohomology of (fHGC−1,n, δ +∆), so we can switch to bounded complex while preserving the result

about cohomology. Check that bounded space fHGC‡−1,n is closed under the extra differential ∆.
We will actually prove that the quotient between full complex and bounded complex, defined as

follows, is almost acyclic.

Definition 4.12. The unbounded hairy graph complex fHGC
†/‡
−1,n ⊂ fHGC†−1,n is the subspace spanned

by graphs that have at least one connected component σ1 or λ2, i.e. it is the quotient fHGC†−1,n/fHGC‡−1,n.

The unbounded remainder UR−1,n ⊂ fHGC†−1,n is the subspace spanned by graphs with all connected
components σ1 or λ2.

Although the unbounded graph complex fHGC
†/‡
−1,n is closed under the standard differential δ, it is not

closed under the extra differential ∆. However, its complements, bounded graph complex is closed under

∆. Therefore we can talk about complex
(

fHGC
†/‡
−1,n, δ +∆

)
and understand that forbidden graphs are

identified to zero. Formally, this complex is the quotient
(

fHGC†−1,n, δ +∆
)
/
(

fHGC‡−1,n, δ +∆
)

.

Note that because of symmetry reasons, there can be at most one connected component λ2 = in
a graph for both parities of n. Also, check that unbounded remainder UR−1,n is closed under δ and ∆.

Lemma B.1 from the appendix implies that cohomology H (UR−1,n, δ +∆) is one-dimensional, the
class being represented by

α =
∑
n≥1

1

n!
σ∪n1 .

Proposition 4.13. H
(

fHGC
†/‡
−1,n, δ +∆

)
is one-dimensional, the class being represented by α.

Proof. Let Γ̃ ∈ fHGC
†/‡
−1,n be a graph. It may be either Γ̃ ∈ UR−1,n or we can write Γ̃ = Γ ∪ γ where

Γ ∈ fHGC‡−1,n and γ ∈ UR−1,n. In the latter case we call Γ the main part of Γ̃ and γ the secondary

part of Γ̃ . In the former case the whole graph is the secondary part, while the main part is empty.

Let us set up a spectral sequence of
(

fHGC
†/‡
−1,n, δ +∆

)
on the number of edges in the main part,

empty main part having 0 edges. It is easily seen that the differential can not decrease that number. To
ensure the correct convergence we split unbounded complex similarly as the full complex:(

fHGC
†/‡
−1,n, δ +∆

)
=
∏
f∈Z

(
Ff fHGC

†/‡
−1,n, δ +∆

)
.

In every Ff fHGC
†/‡
−1,n for the fixed degree d = 1 + vn + (1 − n)e − nh, the total number of edges

e = d+nf−1 is fixed too, so the number of edges in the main part is bounded and therefore the spectral
sequence converges correctly.

One can check that the first part of the differential is the one that acts within the secondary part
only. Therefore the complexes on the first page are the direct product of complexes for the fixed main
part, which are all clearly isomorphic to UR−1,n. Therefore, using Lemma B.1, on the first page of the

spectral sequence we have classes represented by Γ ∪ α for Γ ∈ fHGC‡−1,n, together with the class [α]
itself.

On the second page matters the part of the differential that acts within the main part only, and the
one that connects the main part to the secondary part. The element is now uniquely determined by the
main part Γ so we can investigate what does the differential do to it:

Γ 7→ δ(Γ ) +∆(Γ ) +
∑

x∈V (Γ )

h(x)ex(Γ ) +
∑

x∈V (Γ )

ax(Γ ) = ∆(Γ ) +
∑

x∈V (Γ )

1

2
sx(Γ ).

The first sum corresponds to connecting a hair to one σ1 in α, and the second sum corresponds to
connecting a hair from one σ1 to the main part.

Lemma B.2 shows that this complex is acyclic. So, only the class without the main part, [α] survives.
That was to be demonstrated.
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5 Deleting vertices in hairy graphs

In this section we introduce a few maps that manipulate hairs in hairy graphs with low number of hairs,
and also delete some vertices. The simplest example is D(1) defined on graphs with one hair that deletes
the hairy vertex in a similar way as deleting a vertex D. We prove a list of lemmas and propositions
needed in final sections 6 and 7.

5.1 One hair

Let D(1) : H1fHGC−1,n → H0fHGC−1,n be defined on a graph Γ as

D(1)(Γ ) = (−1)v(x)D̃x (5.1)

where x is the vertex with the hair, v(x) is its valence and D̃x deletes vertex x and the hair, and sums
over all ways of reconnecting edges that were connected to x to the other vertices, skipping graphs with
a tadpole. An example is sketched in Figure 6.

D(1)

7−→ (−1)4

Fig. 6 Example of the action D(1), deleting the hairy vertex. The graph at the right means the sum over all graphs that
can be formed by attaching ends of arrows to vertices, skipping graphs with a tadpole.

Also, let the “pushing the hair” D̃(push) : H1fHGC−1,n → H1fHGC−1,n be defined on a graph Γ as

D̃(push)(Γ ) = (−1)v(x)
∑
y

v(x, y)D̃y
x(Γ ), (5.2)

where x is again the vertex with the hair, y runs through all vertices of Γ , v(x, y) is the number of edges
between vertices x and y, and whenever v(x, y) > 0 D̃y

x deletes vertex x, the hair and one edge between x
and y, sums over all ways of reconnecting the other edges that were connected to x to the other vertices,
skipping graphs with a tadpole, and adds a hair on y.

For a graph Γ ∈ H1fHGC≥2−1,n let

D(push)(Γ ) :=
1

v(x)− 1
D̃(push)(Γ ), (5.3)

where x is the hairy vertex. An example is sketched in Figure 7.

D(push)

7−→
(−1)4

4− 1

 + +


Fig. 7 Example of the action D(push), pushing the hair. The graphs at the right mean the sum over all graphs that can
be formed by attaching ends of arrows to vertices, without making a tadpole.

Lemma 5.1. On H1fHGC≥2−1,n it holds that

D(1) = ∆D(push).
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Proof. As defined D(1) deletes the hairy vertex x and reconnects its edges to all other edges in all possible
ways. D(push) “saves” one of those edges by transforming it into a hair, and does the same reconnection
with the other edges. The operation ∆ after that connects the hair (“saved edge”) to other edges in all
possible ways, so the result is the same as the one of D(1). We can save v(x) − 1 different edges (one
valence comes from the hair), so ∆D(push) does the same thing v(x) − 1 times. It is cancelled by the
factor 1

v(x)−1 from (5.3). Another factor (−1)v(x) is the same in both definitions. That concludes the

proof.

The following lemma would not work on fHGC≥2−1,n. But we need such a claim in the proof of Propo-
sition 6.9. This was the very reason for strengthening the constraint ≥ 2 to \, see Definition 4.6.

Lemma 5.2. On H1fHGC\−1,0 it holds that

D(1)D(push) = 0.

Proof. Recall that in fHGC−1,0 there are no multiple edges. Let Γ ∈ H1fHGC\−1,n be a graph, and x the

hairy vertex in Γ . One term in D(1)D(push)(Γ ) will delete the hair, the vertex x, one of its neighbours y
and edge between them, and reconnect all edges that were connected to x and y elsewhere.

Recall that the constraint \ means that all vertices are at least 2-valent, and all hairy vertices are at
least 3-valent. Therefore x has at least two edges adjacent to it. Chose an edge e at x that did not go
towards y. That edge can go directly to its final destination, or first to y and then to final destination.
Those two terms will cancel, implying the result.

Proposition 5.3. In H1fHGC−1,n it holds that

δD(1) −D(1)δ = ∆.

Proof. Let Γ ∈ H1fHGC−1,n be a graph and let x be the hairy vertex in Γ . Then

δD(1)(Γ )−D(1)δ(Γ ) =

=
∑
y

y 6=x

(
1

2
syDx(Γ )− ayDx(Γ )

)
−Dx

∑
y

y 6=x

(
1

2
sy(Γ )− ay(Γ )

)
−Dx (s′x(Γ )− ax(Γ )) +Dzex(Γ ) =

=
1

2

∑
y

x6=y

syDx(Γ )−
∑
y

x 6=y

ayDx(Γ )− 1

2

∑
y

x 6=y

Dxsy(Γ ) +
∑
y

x 6=y

Dxay(Γ )−Dzs
′
x(Γ ) +Dxax(Γ ) +Dzex(Γ ),

where y runs through V (Γ ), z is the name of the newly added vertex and s′x is the part of sx which
moves the hair to the new vertex z. It holds that sx = 2s′x.

Using the same arguments as in the proof of Proposition 3.3 it follows that:

syDx(Γ ) = Dxsy(Γ ),

Dzs
′
x(Γ ) = −

∑
y

y 6=x

ayDx(Γ ),

Dxax(Γ ) = −
∑
y

y 6=x

Dxay(Γ ).

It clearly holds that

Dzex(Γ ) = ∆(Γ ),

so the claimed formula follows.

Proposition 5.4. In H2fHGC−1,1 it holds that

D(1)∆ = 0.
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Proof. Let Γ ∈ H2fHGCc−1,1 be a graph. Recall that for symmetry reasons for odd n = 1 both hairs
can not be on the same vertex. Let them be on vertices x and y. The left-hand side is

D(1)∆(Γ ) = D(1)(∆x(Γ ) +∆y(Γ )) = Dy∆x(Γ ) +Dx∆y(Γ ).

In the first term ∆x first deletes the hair on x and connects an edge f from x to all other vertices.
Then Dy deletes a vertex y and reconnects all its edges to other vertices in all possible ways. If f has
been connected to y, it is also reconnected to all other vertices, what is exactly the same term as if f
has been connected at first to its final destination, but with the opposite sign. So, the terms cancel and
Dy∆x(Γ ) = 0. The same argument leads to Dx∆y(Γ ) = 0, so the formula holds.

5.2 Two hairs

A special care has to be taken for even n, i.e. in the complex fHGC−1,0 because here one vertex can have
multiple hairs. Results of this subsection are therefore used only in Section 7, particularly for Lemma
7.14 used in the proof of Proposition 7.11.

We define D(2−1) : H2fHGC−1,0 → H1fHGC−1,0. Let Γ ∈ H2fHGC−1,0 be a graph whose both hairs
are on the 3-valent vertex y, and let x be another end of the only edge at y, like in the picture:

x

y

We call this structure a flower on the vertex y with the root x. Then D(2−1)(Γ ) is the graph obtained
from gamma by deleting the flower, i.e. both hairs, vertex y and the edge between x and y, and puts a
hair on x. For the matter of sign we consider the edge in the flower to be the last one. If Γ is not of that
type, D(2−1)(Γ ) = 0. Then D(2) : H2fHGC−1,0 → H0fHGC−1,0 is defined as

D(2)(Γ ) := D(1)D(2−1)(Γ ). (5.4)

An example is sketched in Figure 8.

D(2)

7−→ (−1)4

Fig. 8 Example of the action D(2), deleting the flower. The graph at the right means the sum over all graphs that can
be formed by attaching ends of arrows to vertices, without making a tadpole.

Proposition 5.5. In the connected part H2fHGCc−1,0 it holds that

D(1)∆ = 2∇
(
δD(2) +D(2)δ

)
.

Proof. We do the proof of the first claim for four different cases of Γ ∈ H2fHGCc−1,0:

1. Γ has hairs on two different vertices, x and y. By the definition δD(2)(Γ ) = δ(0) = 0. Differential δ
can not move hairs to the same vertex, so it is also D(2)δ(Γ ) = 0. The left-hand side is zero because
of the same argument as in the proof of Proposition 5.4, hence the formula holds.

2. Γ has both hairs on the same vertex that is 2-valent. Because Γ is connected it must be Γ = σ2 = ,
and the formula is easily checked.
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3. Γ has both hairs on the same vertex y that is 3-valent. Let x be another end of the only edge at y,
i.e. there is a flower on y with the root x.

δD(2)(Γ ) +D(2)δ(Γ ) =
∑
w

w 6=x,y

(
1

2
swD

(2)(Γ )− awD(2)(Γ )

)

+D(2)
∑
w

w 6=x,y

(
1

2
sw(Γ )− aw(Γ )

)
+D(2)

(
1

2
sx(Γ )− ax(Γ )

)
+D(2)fy(Γ )

where s′y is the term of sy that splits y to y and z where both hairs stay at y and the edge goes
to z. Other terms of sy cancel out with ay and h(y)ey. Using similar arguments as in the proof of
Proposition 3.3 one easily checks that

swD
(2)(Γ ) = −D(2)sw(Γ ),

1

2
D(2)sx(Γ ) =

∑
w

w 6=x,y

awD
(2)(Γ ),

D(2)ax(Γ ) = −
∑
w

w 6=x,y

D(2)aw(Γ ),

2∇D(2)s′y(Γ ) = D(1)∆(Γ ),

so the formula follows.
4. Γ has both hairs on the same vertex x that is more than 3-valent. Then by the definition δD(2)(Γ ) =
δ(0) = 0 and the only term that remains from D(2)δ(Γ ) is D(2)s′x(Γ ), where s′x is the term of sx that
splits x to x and y where both hairs stay at x and all edges go to y. It still holds 2∇D(2)s′y(Γ ) =

D(1)∆(Γ ), so the formula follows.

Note that the previous proposition fails for the disconnected graph Γ ∪ σ2 ∈ H2fHGC−1,0 where
Γ ∈ H0fHGC−1,0.

Proposition 5.6. For the connected part H3fHGCc−1,0 it holds that

∇D(2)∆ = 0.

Proof. The only possibility that D(2)∆(Γ ) is not 0 is when ∆(Γ ) has a flower, say at a vertex y with
the root x. If the edge from x to y is created by ∆, y was disconnected from the rest of the graph in Γ ,
what is not possible. So the flower already existed in Γ . We have 2 cases:

1. The third hair in Γ is on the vertex w 6= x. Then the part of ∆ that saves the flower deletes the hair
on w and makes an edge between w and another vertex z that is not x. If z = x, D(2) will move it
again to another vertex, cancelling the term where ∆ sent it to its final destination immediately.

2. The third hair in Γ is on the vertex x. ∆ deletes it and makes an edge between x and another vertex.
D(2) then reconnects the edge from x to another vertex, so the resulting action is adding an edge in
all possible ways. Then ∇ adds another edge in all possible ways. Adding one edge on one place and
another edge on another place cancels with adding edges in the opposite order.

Note that the previous proposition fails for the disconnected graph Γ ∪ σ3 ∈ H3fHGC−1,0 where
Γ ∈ H0fHGC−1,0.
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6 Hairy complex, even edges and odd hairs

In this section we prove the first part of Theorem 1.1, i.e. that H (HGC−1,1, δ +∆) = 0. The following
diagram describes the way to do that. ‘Almost acyclic’ means that there are only a few classes of
cohomology that are easy to calculate.

The easiest way to show that a complex with a differential δ + ∆ is acyclic would be to make the
spectral sequence in which the first differential is ∆, and to use the fact that the complex with the

differential ∆ is acyclic. But neither
(

H≥1fHGC≥1−1,1, ∆
)

nor
(

fHGC≥1−1,1, ∆
)

is acyclic, there are classes

with 1 or no hairs. For technical reasons we need to disallow λ as a connected component and change

the constraint ≥ 1 to †. We then change the hairless part in
(

fHGC†−1,1, ∆
)

to kill classes with 1 or no

hairs and make the new complex,
(

H[fHGC†−1,1, ∆
)

, almost acyclic (Corollary 6.5).

The spectral sequence argument now leads to the conclusion that the complex with the differential
δ+∆ is almost acyclic (Proposition 6.6). But it is not our intended result, there is a complicated hairless
part. To remove it (Proposition 6.8), we need a change of constraint to \ (at least 2-valent vertices, at
least 3-valent hairy vertices). The standard result that the change of constraint does not change the
cohomology of the standard differential δ (Corollary 4.9), can be used in the spectral sequence with the
standard differential being the first one (Proposition 6.8). But the spectral sequence is bounded, and

hence converges correctly, only if we change to the bounded complex H[fHGC‡−1,1 before that (Proposition
6.7).

(
fHGC−1,1 ⊕ fGC≥11 [−3], ∆+D(1)

)
is almost acyclic, except for the classes without hairs

(
fHGC†−1,1 ⊕ fGC†1[−3], ∆+D(1)

)
is almost acyclic, except for the classes without hairs

(
H[fHGC†−1,1, ∆+D(1)

)
is almost acyclic

(
H[fHGC†−1,1, δ

′ +∆+D(1)
)

is almost acyclic

(
H[fHGC‡−1,1, δ

′ +∆+D(1)
)

is acyclic

(
H[fHGC\−1,1, δ

′ +∆+D(1)
)

is acyclic

(
H≥1fHGC\−1,1, δ +∆

)
is acyclic

(
H≥1fHGCc\−1,1, δ +∆

)
is acyclic

(HGC−1,1, δ +∆) is acyclic

6.1, 6.2

6.3, 6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

Recall that in the complex HGC−1,1 and all other complexes we are working with in this section, the
degree is d = v + 1− h.
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6.1 The differential ∆

In this subsection we want to study the cohomology of (fHGC−1,1, ∆). We will actually study a slightly
different complex with an extra term H0fHGC−1,1[−1]:(

fHGC−1,1 ⊕H0fHGC−1,1[−1], ∆+D(1)
)

(6.1)

where∆ : fHGC−1,1 → fHGC−1,1 andD(1) : H1fHGC−1,1 → H0fHGC−1,1[−1] is deleting the hairy vertex
defined in (5.1). Recall that the degree is d = v + 1 − h, so the degree shift [−1] is necessarily to make
the differential of the degree +1. Proposition 5.4 shows that D(1)∆ = 0 in fHGC−1,1, so the differential
indeed squares to 0. Note that this complex is actually the mapping cone of D(1) : (fHGC−1,1, ∆) →(
H0fHGC−1,1[−1], 0

)
.

Recall from (2.11) that H0fHGC−1,1[−1] = fGC≥11 [−3]. For simplicity we use the latter notation.
Similarly to (2.29), our new complex splits as the product of subcomplexes with fixed number of

vertices v, with the extra term having v − 1 vertices:(
fHGC−1,1 ⊕ fGC≥11 [−3], ∆+D(1)

)
=
∏
v∈N

(
VvfHGC−1,1 ⊕Vv−1fGC≥11 [−3], ∆+D(1)

)
. (6.2)

In each subcomplex, the degree d = v + 1 − h is up to the shift equal to the negative number of hairs
−h. We may write it as:

v + 1vv − 1v − 2d =

H0VvfHGC−1,1

⊕

Vv−1fGC≥11 [−3]

H1VvfHGC−1,1H2VvfHGC−1,1H3VvfHGC−1,1. . . ∆ ∆ ∆ ∆

D(1)

The case with one vertex is done separately by hand, as follows.

Proposition 6.1. H
(
V1fHGC−1,1, ∆

)
is one-dimensional, the class being represented by σ1 = .

Proof. In V1fHGC−1,1 multiple hairs are not possible because of the symmetry reasons. Single vertex
without a hair is excluded because of valence condition. Therefore, the whole complex V1fHGC−1,1 is
one dimensional and generated by σ1. This implies the proposition.

The general proposition is as follows.

Proposition 6.2. Hd
(

VvfHGC−1,1 ⊕Vv−1fGC≥11 [−3], ∆+D(1)
)

= 0 for all v ≥ 2 and d ≤ v.

Note that the proposition does not say anything about the cohomology at degree d = v + 1, and for
d ≥ v + 2 it is trivially 0.

Proof. Vv−1fGC≥11 [−3] is isomorphic to the subspace of VvfGC1[−2] spanned by graphs with an isolated
vertex, the isomorphism being adding an isolated vertex ∪σ0. Since the proposition does not say anything
about the cohomology at degree v+1 we may safely replace Vv−1fGC≥11 [−3] with the whole VvfGC1[−2].
The purpose is to make D(1) not changing the number of vertices, so the new D(1) : VvH1fHGC−1,1 →
VvfGC1[−2] reconnects all edges from the hairy vertex and deletes it, but restores the vertex without
its hair.

Since the differential does not change the number of vertices, we can use Proposition A.1 and work
with fixed number of vertices and distinguish them. Let V̄ v := V̄vfHGC−1,1 and W̄ v := V̄vfGC1[−2].

We will show the proposition by induction on v. In each step we prove that
Hv+1−h (V̄ v ⊕ W̄ v, ∆+D(1)

)
= 0 for every h ≥ 1, assuming that the same is true for v−1 vertices. It is

actually enough to use a weaker assumption, without the claim for h = 1. So in each step we prove that
Hv+1−h (V̄ v ⊕ W̄ v, ∆+D(1)

)
= 0 assuming that for every h ≥ 2 Hv−h

(
V̄ v−1 ⊕ W̄ v−1, ∆+D(1)

)
= 0,

or equivalently, since the added term W̄ v−1 does not affect the cohomology for h ≥ 2. assuming that for
every h ≥ 2 Hv−h

(
V̄ v−1, ∆

)
= 0.
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The assumption is also true for the v = 1 because the class from Proposition 6.1 has h = 1. Therefore
proving the base of the induction (v = 2) is analogous to proving the step.

On V̄ v we choose one vertex, say the last one, and set up a spectral sequence on the total valence s of
non-chosen vertices. So, an edge between non-chosen vertices counts twice, a hair on non-chosen vertex
and an edge between non-chosen vertex and the chosen vertex counts ones, and hair on the chosen vertex
does not count. The differential ∆ can not decrease s and splits ∆ = ∆0 +∆1 where ∆0 is the part that
does not change s. ∆0 connects a hair from a non-chosen vertex to the chosen vertex, see an example on
Figure 9, and ∆1 connects something to a non-chosen vertex increasing s always by 1.

To check the correct convergence, let us split the complex as the product of subcomplexes with fixed
a = e+ h, as in (2.29):

(V̄ v, ∆) =
∏
a∈Z

(
AaV̄ v, ∆

)
.

For fixed degree v + 1 − h, i.e. fixed number of hairs h, s can get only finitely possible values, so the
spectral sequence converges correctly in each

(
AaV̄ v, ∆

)
, and therefore in the whole (V̄ v, ∆).

On the first page of the spectral sequence there is the cohomology (V̄ v, ∆0). Let β : V̄ v → V̄ v be the
sum over all edges at the chosen vertex of deleting that edge (as heading towards the chosen vertex for
the matter of sign) and putting a hair on non-chosen vertex that was connected to that edge, unless it
makes the chosen vertex 0-valent, being forbidden by definition, see an example on Figure 9.

∆0

β

Fig. 9 Example of the actions ∆0 and β, the chosen vertex is one on the top. It there are more hairs on non-chosen
vertices on the left-hand-side, or more edges from the chosen vertex on the right-hand-side, the action is the sum of the
actions on all of them.

If the chosen vertex is not hairless or not 1-valent, it is clear that ∆0β + β∆0 = CId where C is the
number of edges at the chosen vertex plus the number of hairs on non-chosen vertices. So all classes of
H
(
V̄ v, ∆0

)
must be represented by graphs whose chosen vertex is isolated with a hair and there are no

other hairs (C = 0 in that case), or the chosen vertex is 1-valent without a hair (β cannot disconnect
the last edge leaving the chosen vertex 0-valent). Classes that fulfil the former condition we call classes
of the first type, and classes that fulfil the latter condition we call classes of the second type.

In what follows, by gluing a 1-vertex graph ∪σ0 or ∪σ1 in complexes V̄ v with distinguishable vertices
we mean adding a new vertex with the highest number, so that it becomes chosen.

Every graph of the form Γ ∪ σ1, Γ ∈ H0V̄ v−1, clearly represents a cohomology class of the first type.
Graphs whose chosen vertex is 1-valent without a hair would not form classes of the second type if the
vertex would be allowed to be 0-valent. Therefore, cutting that possibility implies that classes of the
second type are represented by graphs of the form

∆0(Γ ∪ σ0) =: c(Γ ) (6.3)

for Γ ∈ H≥1V̄ v−1, c.f. the analogous definition for indistinguishable vertices (2.21). All classes are
sketched in Figure 10.

28



01234567. . .
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×

×

×

×

×

Fig. 10 Classes on the first page of the spectral sequence of AaV̄ v for fixed a = e + h. The numbers at the bottom are
the numbers of hairs h, while the degree is d = v+ 1− h. On the vertical axis is the total valence of non-chosen vertices s,
the number on which we set up the spectral sequence, starting at 2a− 1 for h = 0. Classes of the second type are labelled
by × and the position where there are both classes is labelled by ⊗.

Let (C, ∆1) be the complex spanned by second-type classes of the second page of the spectral sequence.
It is easily seen that c :

(
H≥1V̄ v−1, ∆

)
→ (C, ∆1) is an isomorphism of degree 2, so we can replace (C, ∆1)

with
(
H≥1V̄ v−1[−2], ∆

)
.

The whole complex on the second page, including first-type classes, is depicted in Figure 11. The
first row (only one term in degree d = v) represents the first-type classes Γ ∪ σ1 for Γ ∈ H0V̄ v−1. The
second row represents the second type classes as discussed above. There is a map that maps first-type
class Γ ∪ σ1 to the second-type class ∆1(Γ ∪ σ1) that is obtained from Γ by adding an antenna in all
possible ways. The isomorphic element in H1V̄ v−1[−2] is χ1(Γ ), where χ1 adds a hair, c.f. (2.19).

v + 1vv − 1v − 2v − 3d =

H0V̄ v−1

H1V̄ v−1[−2]H2V̄ v−1[−2]H3V̄ v−1[−2]H4V̄ v−1[−2]H5V̄ v−1[−2]. . .
∆ ∆ ∆ ∆ ∆

χ1

Fig. 11 The complex on the second page of the spectral sequence.

We want to study the cohomology of the complex in the figure for d ≤ v. Recall that we are not
interested in the cohomology at degree d = v + 1. Here we set up the 2-row spectral sequence as in the
figure, such that on the first page there is a complex with horizontal differentials, i.e.

(
H0V̄ v−1, 0

)
and(

V̄ v−1[−2], ∆
)
.

By the induction hypothesis, the cohomology of the second row Hd
(
V̄ v−1[−2], ∆

)
is zero for h ≥ 2,

i.e. in for degrees d ≤ v after our degree shift. Let us chose Γ ∈ H0V̄ v−1 in the upper row. We do not
know whether the Γ is cancelled with something in the second row at the degree d = v + 1. If it is, Γ
does not for a class in Hd(V̄ v, ∆).

If it is not, there is a class in degree d = v in the complex from Figure 11, i.e. on the second
page of the original spectral sequence represented by Γ + Γ2(Γ ) for Γ2(Γ ) ∈ H2V̄ v−1 (Γ2 depends on
Γ ), where χ1(Γ ) + ∆(Γ2(Γ )) = 0. Back in the starting complex

(
V̄ v, ∆

)
the isomorphic element is

Γ ∪ σ1 +∆0(Γ2(Γ ) ∪ σ0) from the second page. It is clearly sent to 0 by the whole ∆, so it represents a
class of the starting complex V̄ v, in the degree d = v.

Now we come back to the whole complex
(
V̄ v ⊕ W̄ v, ∆+D(1)

)
. Let us set up a spectral sequence of

three rows: V̄ v, the part of W̄ v where the chosen vertex is isolated, and the rest of W̄ v (see Figure 12).
The spectral sequence clearly converges correctly. On the first page in the first row in degree d = v (h = 1)
we may have classes represented by Γ ∪σ1 +∆0(Γ2(Γ )∪σ0) for some Γ ∈ H0V̄ v−1 and Γ2(Γ ) ∈ H2V̄ v−1,
as shown above. In the degree d = v + 1 (h = 0) of the first page we are not interested. In the other
rows in the degree d = v + 1 (h = 0) there is still the whole space, particularly in the second row there
is Γ ∪ σ0 for every Γ ∈ H0V̄ v−1.
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H0V̄ v

Part of W̄ v with chosen vertex isolated

The rest of W̄ v

H1V̄ vH2V̄ vH3V̄ v. . . ∆ ∆ ∆ ∆

D
(1)
chosen vertex

D
(1)
other vertices

Fig. 12 Complex
(
V̄ v + W̄ v ,∆+D(1)

)
split into 3-row spectral sequence.

On the second page Γ ∪ σ1 +∆0(Γ2(Γ )∪ σ0) is mapped by part of D(1) to the part of W̄ v where the
chosen vertex is isolated, i.e. chosen vertex has been deleted (and restored). The only part of Γ ∪ σ1 +
∆(Γ2(Γ ) ∪ σ0) that has a hair on the chosen vertex is Γ ∪ σ1, so the differential is actually Γ ∪ σ1 +
∆(Γ2(Γ ) ∪ σ0) 7→ Γ ∪ σ0. It is clearly an injection, making the cohomology in the degree d = v acyclic.
That was to be demonstrated.

6.2 Removing λ

In this subsection we transform the result to the complex with the constraint † that does not have
λ = as a connected component. Recall that it does not have σ0 = • as a connected component either,
because the minimal valence is 1. Check that ∆ and D(1) can not produce that connected components,
so complexes with the the constraint † are closed under their action.

Proposition 6.3. H
(

V1fHGC†−1,1, ∆
)

is one-dimensional, the class being represented by σ1 = .

Proof. In the complex of graphs with one vertex there can not be λ, so V1fHGC†−1,1 = V1fHGC−1,1 and
the result is the same as in the Proposition 6.1.

Proposition 6.4. Hd
(

VvfHGC†−1,1 ⊕Vv−1fGC†1[−3], ∆+D(1)
)

= 0 for v > 1 and d ≤ v.

Proof. We again do the proof by induction on v. For v = 2 there is λ only in the hairless part and it
represents a cohomology class, so in degrees we are considering it does not change the result of Proposition
6.2.

Let us pick v > 2 and assume that the proposition holds for every number of vertices smaller than v.

On
(

VvfHGC−1,1 ⊕Vv−1fGC≥11 [−3], ∆+D(1)
)

we set up a spectral sequence on the number

of λ-s. The differential can not increase that number, and it is bounded, so the spectral
sequence converges correctly. The lowest row on the first page is our intended complex(

VvfHGC†−1,1 ⊕Vv−1fGC†1[−3], ∆+D(1)
)

.

The first differential in the other rows does not effect any λ, so it is the same as the complex without
them, but now with fewer vertices (by 2, 4, etc.), with a degree shift. All of them are acyclic by the
assumption of induction in degrees that correspond to more than one hair (d ≤ v−1). Therefore, if there
is a class with a hair (d ≤ v) in the last row, it can not be cancelled by anything, contradicting the result
that the whole complex is acyclic in that degrees (Proposition 6.2).

6.3 Reducing the complex

To simplify the result we define another complex

H[VvfHGC†−1,1 := H≥1VvfHGC†−1,1 ⊕
(
∆+D(1)

)(
H1VvfHGC†−1,1

)
. (6.4)
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We have changed the term with the highest degree H0VvfHGC†−1,1 ⊕ Vv−1fGC†1[−3] with its subspace(
∆+D(1)

) (
H1VvfHGC†−1,1

)
, the image of the differential, to ensure the acyclicity at that degree. The

whole complex, including all numbers of vertices, is

H[fHGC†−1,1 :=
∏
v∈N

H[VvfHGC†−1,1 = H≥1fHGC†−1,1 ⊕HL1 (6.5)

where
HL1 :=

(
∆+D(1)

)(
H1fHGC†−1,1

)
⊂ H0fHGC†−1,1 ⊕ fGC†1[−3] (6.6)

is the hairless part.

Corollary 6.5. H
(

H[fHGC†−1,1, ∆+D(1)
)

is one-dimensional, the class being represented by σ1.

6.4 The differential δ +∆

On fHGC†−1,1 there is the standard differential δ. We extend it to δ′ : fHGC†−1,1 ⊕ fGC≥11 [−3] →
fHGC†−1,1 ⊕ fGC≥11 [−3] as follows

δ′(Γ, γ) =
(
δ(Γ ),H0Γ − δ(γ)

)
, (6.7)

where H0Γ is part of Γ without hairs. It clearly squares to 0 and has degree 1, so it is a differential.

Differentials δ and∆ anti-commute (Lemma 2.4), so
(

H≥1fHGC†−1,1, δ +∆
)

is a complex. Proposition

5.3 implies that(
∆+D(1)

)
δ′(Γ, γ)+δ′

(
∆+D(1)

)
(Γ, γ) =

(
∆+D(1)

) (
δ(Γ ),H0Γ − δ(γ)

)
+δ′

(
∆(Γ ), D(1)H1Γ

)
=

=
(
∆δ(Γ ), D(1)H1δ(Γ )

)
+
(
δ∆(Γ ),H0∆(Γ )− δD(1)H1Γ

)
= (0, 0),

i.e. δ′ and ∆+D(1) anti-commute and
(

H≥1fHGC†−1,1 ⊕ fGC†1[−3], δ′ +∆+D(1)
)

is also a complex. Be-

cause of the same reason the restriction δ′ : H[fHGC†−1,1 → H[fHGC†−1,1 is well defined, so(
H[fHGC†−1,1, δ

′
)

and
(

H[fHGC†−1,1, δ
′ +∆+D(1)

)
are also complexes.

Proposition 6.6. H
(

H[fHGC†−1,1, δ
′ +∆+D(1)

)
is one-dimensional, the class being represented by

α =
∑
n≥1

1
n!σ
∪n
1 .

Proof. We set up a spectral sequence on v from the splitting (6.2), such that the first differential is
∆+D(1). By Corollary 6.5 on the first page survives only σ1.

We can split the complex
(

fHGC†−1,1 ⊕ fGC†1[−3], δ′ +∆+D(1)
)

as the product of subcomplexes

with fixed f = e+ h− v:(
fHGC†−1,1 ⊕ fGC†1[−3], δ′ +∆+D(1)

)
=
∏
f∈Z

(
Ff fHGC†−1,1 ⊕ Ff fGC†1[−3], δ′ +∆+D(1)

)
.

The same splitting can be done for the subcomplex H[fHGC†−1,1:(
H[fHGC†−1,1, δ

′ +∆+D(1)
)

=
∏
f∈Z

(
FfH[fHGC†−1,1, δ

′ +∆+D(1)
)
.

For fixed v and degree d = v + 1 − h the numbers of edges e and hairs h are bounded in each
FfH[fHGC†−1,1. The standard spectral sequence argument (e.g. [5, Proposition 19]) implies that the spec-

tral sequence converges correctly in each
(

FfH[fHGC†−1,1, δ
′ +∆+D(1)

)
, and therefore in the whole(

H[fHGC†−1,1, δ
′ +∆+D(1)

)
.

The cohomology of
(

H[fHGC†−1,1, δ
′ +∆+D(1)

)
is therefore one-dimensional. One checks that α is

mapped to 0 by the whole differential δ′ +∆+D(1), and since σ1 is the highest part of α, α represents

the class in H
(

H[fHGC†, δ′ +∆+D(1)
)

.
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6.5 Bounded complex

Recall from Definition 4.4 that bounded complex, the one decorated by ‡, is spanned by graphs that do
not have λ = , σ1 = or λ2 = as a connected component. Let

H[fHGC‡−1,1 := H≥1fHGC‡−1,1 ⊕HL1 ⊂ H[fHGC†−1,1, (6.8)

where HL1 is as in (6.6).

Proposition 6.7. The complex
(

H[fHGC‡−1,1, δ
′ +∆+D(1)

)
is acyclic.

Proof. We write(
H[fHGC†−1,1, δ

′ +∆+D(1)
)

=
(

fHGC
†/‡
−1,1 ⊕H[fHGC‡−1,1, δ

′ +∆+D(1)
)
.

On it we set up a spectral sequence of two obvious rows: fHGC
†/‡
−1,1 and H[fHGC‡−1,1. The spectral

sequence clearly converges correctly.
Proposition 4.13 implies that in the first page there is a class [α] in the first row. The class survives

all pages because of Proposition 6.6 that says that the whole complex has the class [α]. Therefore the
second row has to be acyclic. That was to be demonstrated.

6.6 At least 2-valent vertices

Let

H[fHGC\−1,1 := H≥1fHGC\−1,1 ⊕HL1 ⊂ H[fHGC†−1,1. (6.9)

Recall Definition 4.6, that fHGC\−1,1 is the complex spanned by graphs whose vertices are at least 2-
valent, and hairy vertices are at least 3-valent.

Proposition 6.8. The complex
(

H[fHGC\−1,1, δ
′ +∆+D(1)

)
is acyclic.

Proof. We prove that the inclusion
(

H[fHGC\−1,1, δ
′ +∆+D(1)

)
↪→
(

H[fHGC‡−1,1, δ
′ +∆+D(1)

)
is a

quasi-isomorphism and use Proposition 6.7. We show that the mapping cone is acyclic. On it let us set
up a spectral sequence on the number of hairs h.

We again split complexes as the product of subcomplexes with fixed f = e+ h− v:(
H[fHGC\−1,1, δ

′ +∆+D(1)
)

=
∏
f∈Z

(
FfH[fHGC\−1,1, δ

′ +∆+D(1)
)
,

(
H[fHGC‡−1,1, δ

′ +∆+D(1)
)

=
∏
f∈Z

(
FfH[fHGC‡−1,1, δ

′ +∆+D(1)
)
.

For fixed degree d = v+ 1−h the number of edges e is fixed in each FfH[fHGC\−1,1 and FfH[fHGC‡−1,1.
Also, increasing the number of hairs h increases the number of vertices v by the same amount. Since the
number of edges e is fixed, for h big enough, there will be an isolated vertex. But that is not possible
in either H[fHGC\−1,1 or H[fHGC‡−1,1. So, the spectral sequence of the mapping cone of the inclusion(

FfH[fHGC\−1,1, δ
′ +∆+D(1)

)
↪→
(

FfH[fHGC‡−1,1, δ
′ +∆+D(1)

)
is bounded above and converges

correctly for every f , and therefore also the spectral sequence of the mapping cone of the whole inclusion(
H[fHGC\−1,1, δ

′ +∆+D(1)
)
↪→
(

H[fHGC‡−1,1, δ
′ +∆+D(1)

)
converges correctly. This convergence is

the very reason why we introduced the bounded complex.
On the first page of the spectral sequence, for h = 0 there is a mapping cone of the identity

(HL1, δ
′)→ (HL1, δ

′), so it is acyclic. For h > 0 there is a mapping cone of the inclusion
(

fHGC\−1,1, δ
)
→(

fHGC‡−1,1, δ
)

. It is acyclic by Corollary 4.9. That concludes the proof.
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6.7 Removing the hairless part

Proposition 6.9. The complex
(

H≥1fHGC\−1,1, δ +∆
)

is acyclic.

Proof. On
(

H[fHGC\−1,1, δ
′ +∆+D(1)

)
we set up a spectral sequence of two obvious rows: H≥1fHGC\−1,1

and HL1. Clearly the spectral sequence converges correctly. Proposition 6.8 implies that the whole com-
plex is acyclic, so all classes of the first page cancel out. We claim that there are no classes on the first
page.

Suppose the opposite, that there is a class in the first row represented by Γ ∈ H≥1fHGC\−1,1. Let

∆ = ∆0 +∆1 where ∆0 : H≥1fHGC\−1,1 → H≥1fHGC\−1,1 and ∆1 : H≥1fHGC\−1,1 → HL1. It holds that

(δ+∆0)(Γ ) = 0 and
(
∆1 +D(1)

)
(Γ ) represents a class in HL1. We write Γ =

∑
h≥1 HhΓ where HhΓ is

the part of Γ with h hairs. Then it holds that

∆
(
H2Γ

)
+ δ

(
H1Γ

)
= 0

and
(
∆+D(1)

) (
H1Γ

)
represents a class in HL1.

Let γ := D(push)
(
H1Γ

)
. It is for sure in H1fHGC†−1,1. Lemma 5.1 implies

∆(γ) = D(1)
(
H1Γ

)
,

and Lemma 5.2 implies

D(1)(γ) = 0.

This relation was the very reason of introducing the constraint \. Propositions 5.3 and 5.4 imply that

∆
(
H1Γ

)
= δD(1)

(
H1Γ

)
−D(1)δ

(
H1Γ

)
= δD(1)

(
H1Γ

)
+D(1)∆

(
H2Γ

)
= δD(1)

(
H1Γ

)
.

The equalities are diagrammatically expressed in Figure 13.

H2Γ

γ H1Γ δ
(
H1Γ

)

D(1)
(
H1Γ

)
∆
(
H1Γ

)

0 D(1)
(
H1Γ

)

−∆

δD(push)

D(1)
∆∆

D(1)
δ

Id

Fig. 13 Maps in H≥1fHGC\−1,1 ⊕H0fHGC†−1,1 ⊕ fGC†1[−3]. The rows are, from the bottom up: fGC†1[−3], H0fHGC†−1,1,

H1fHGC\−1,1 and H2fHGC\−1,1.

Note that the complex in the figure is bigger than H[fHGC\−1,1, its hairless part is the whole

H0fHGC†−1,1 ⊕ fGC†1[−3] instead of only HL1. Indeed, both mentioned elements of the hairless part(
D(1)

(
H1Γ

)
, 0
)

and
(
δ
(
H1Γ

)
, D(1)

(
H1Γ

))
are in HL1 because they are images of γ, respectively

(
H1Γ

)
,

under the action of
(
∆+D(1)

)
.

Since
(
∆+D(1)

) (
H1Γ

)
= δ′

(
D(1)

(
H1Γ

)
, 0
)
, the former is exact in HL1, contradicting the assump-

tion.
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6.8 Connected complex

In this subsection we transform the result to the connected complex.

Proposition 6.10. The complex
(

H≥1fHGCc\−1,1, δ +∆
)

is acyclic.

Proof. The complex splits as:(
H≥1fHGCc\−1,1, δ +∆

)
=
∏
f∈Z

(
FfH≥1fHGCc\−1,1, δ +∆

)
,

where f = e + h − v. In each of the subcomplexes the degree d = v + 1 − h = e + 1 − f is determined

by the number of edges e. We show that for every f ∈ Z He+1−f
(

FfH≥1fHGCc\−1,1δ +∆
)

= 0 by the

induction on e.
For e = 0 it is clear. Let us suppose that the claim holds for every number of edges less than e, i.e.

suppose that for every f

Hd
(

FfH≥1fHGCc\−1,1δ +∆
)

= 0 (6.10)

in every degree d < e+ 1− f .
Let us add the hairless part. The assumption implies that the inclusion(

FfH0fHGCc\−1,1, δ
)
↪→
(

Ff fHGCc\−1,1, δ +∆
)

(6.11)

is a quasi-isomorphism for every f in every degree d < e+ 1− f .
Let ∆C be the part of ∆ that does not connect two connected components. Taking symmetric product

gives

S+
(

H0fHGCc\−1,1[−1], δ +∆
)

[1] =
(

H0fHGC\−1,1, δ +∆C

)
, (6.12)

S+
(

fHGCc\−1,1[−1], δ +∆
)

[1] =
(

fHGC\−1,1, δ +∆C

)
. (6.13)

Taking cohomology commutes with the symmetric product, so the cohomology of the mapping cone of
the inclusion (

H0fHGC\−1,1, δ
)
↪→
(

fHGC\−1,1, δ +∆C

)
(6.14)

is the symmetric product of the cohomology of the mapping cone of(
H0fHGCc\−1,1, δ

)
↪→
(

fHGCc\−1,1, δ +∆
)

(6.15)

that split as a direct product of inclusions (6.11). Cohomology of Ff part of (6.14) in degree that
corresponds to e− 1 edges (d = e− f) comes from cohomologies from (6.11) for different f -s in degrees
that correspond to ≤ e − 1 edges (d ≤ e − f). Therefore (6.11) being quasi-isomorphism for every f in
every degree d < e+ 1− f implies that (6.14) is a quasi-isomorphism in degree d = e− f .

We need to prove the claim for e edges, i.e. that for every f

He+1−f
(

FfH≥1fHGCc\−1,1δ +∆
)

= 0.

Suppose the opposite, that there is a class represented by Γ ∈ FfH≥1fHGCc\−1,1 of degree e+ 1− f ,

i.e. it is a sum of graphs with e edges. By Proposition 6.9 there is γ ∈ H≥1fHGC\−1,1 of degree e− f (i.e.

it is a sum of graphs with e− 1 edges) such that Γ = (δ +∆)(γ) in H≥1fHGCc\−1,1.

Since in H≥1Ff fHGC\−1,1 every connected component has at least one edge, the number of connected

components is bounded. We write γ =
∑k
i=1 Ciγ where Ciγ is the part with i connected components.

Choose γ such that k is minimal possible. If k = 1 we are done, so suppose that k > 1.
It holds that Ckγ ∈ CkFf fHGC\−1,1 and (δ + ∆0)Ckγ = 0. Ckγ is of degree e − f (e − 1 edges)

and inclusion (6.14) is quasi-isomorphism in that degree, so all classes are generated by hairless graphs.

Therefore there is a hairless representative of the class [Ckγ], i.e. there is γ′ ∈ CkFf fHGC\−1,1 of degree

e− f − 1 such that Ckγ − (δ +∆C)γ′ is hairless.
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It holds that

(δ +∆)(γ − (δ +∆)γ′) = Γ.

∆ does not act on hairless part, so only δ acts on the part with the maximal k connected components
Ckγ− (δ +∆0) γ′. But δ can not change the number of connected components, and since right-hand side
is connected, it holds that

(δ +∆)(Ckγ − (δ +∆0) γ′) = δ(Ckγ − (δ +∆0) γ′) = 0.

Therefore, that part can be removed and the resulting element is still mapped to Γ by (δ + ∆). It has
less than k connecting components, contradicting the minimality of k.

Recall from (2.17) that HGC−1,1 = H≥1fHGCc≥3−1,1.

Proposition 6.11 (The first part of Theorem 1.1). The complex (HGC−1,1, δ +∆) is acyclic.

Proof. On the mapping cone of the inclusion (HGC−1,1, δ +∆)→
(

H≥1fHGCc\−1,1, δ +∆
)

we set up a

spectral sequence on the number of hairs. The discussion from the proof of Proposition 6.8 implies that
the spectral sequence converges correctly.

On the first page there is the mapping cone of the inclusion (HGC−1,1, δ)→
(

H≥1fHGCc\−1,1, δ
)

. It is

acyclic by Corollary 4.10. This implies that the mapping cone is acyclic, and Proposition 6.10 concludes
the proof.

7 Hairy complex, odd edges and even hairs

In this section we prove the second part of Theorem 1.1, i.e. that H (HGC−1,0, δ +∆) is one-dimensional,
the class being represented by the star σ3. The proving strategy is very similar to the one in previous
section, as shown in the following diagram.

(fHGC−1,0, ∆) is almost acyclic, except for the classes without hairs

(fHGC−1,0, δ +∆) is almost acyclic, except for classes whose generators have hairless part

(
fHGC†−1,0, δ +∆

)
is almost acyclic, except for classes whose generators have hairless part

(
H[fHGC†−1,0, δ +∆

)
is almost acyclic

(
H[fHGC‡−1,0, δ +∆

)
is almost acyclic

H
(

H≥1fHGCc‡−1,0, δ +∆
)

is one-dimensional, the class being represented by the star σ3 =

H (HGC−1,0, δ +∆) is one-dimensional, the class being represented by the star σ3

7.1, 7.2, 7.3, 7.4

7.6

7.7

7.8

7.9

7.11

7.16

Recall that in the complex HGC−1,0 and all other complexes we are working with in this section, the
degree is d = e+ 1.
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7.1 The differential ∆

In this subsection we study the cohomology of (fHGC−1,0, ∆). As in (2.29) the complex (fHGC−1,0, ∆)
split into the double direct product of complexes, for fixed number of vertices v and for fixed a = e+ h:

(fHGC−1,0, ∆) =
∏
v∈N

∏
a∈Z

(AaVvfHGC−1,0, ∆) . (7.1)

The cases with one and two vertices are done separately as follows.

Proposition 7.1. H
(
AaV1fHGC−1,0, ∆

)
is 1-dimensional for a ≥ 1, the class being represented by

σa = with a hairs.

Proof. The whole space AaV1fHGC−1,0 is generated only by σa, implying the proposition.

Proposition 7.2. H
(
AaV2fHGC−1,0, ∆

)
is zero for even a ≥ 2 and 1-dimensional for odd a ≥ 1, the

class being represented by λa = with a− 1 hairs on one vertex.

Proof. Because of the symmetry reasons there are no multiple edges, so there can be either no edge or
one edge between the two vertices, i.e. the degree is either 1 on 2.

In degree 1 graphs are σi ∪ σa−i for i ≥ a/2 (opposite graph is the same). In degree 2 graphs are

λa,i := with i and a− i− 1 hairs for i ≥ (a− 1)/2.

One easily checks that ∆(σi ∪ σa−i) = iλa,i−1 + (a − i)λa,i for i > a/2 and ∆(σi ∪ σi = 2iλa,i for
i = a/2. It is now straightforward to check that the cohomology is zero for even a and 1-dimensional for
odd a, generated by any λa,i, in particular by λa,a−1 = λa.

The following two propositions give result for v = 3 and the general one, respectively. Let us first
define for a ≥ 2

ρa :=

a−1∑
i=1

(−1)i

i!(a− 1− i)!
σi ∪ λa−i =

a−1∑
i=1

(−1)i

i!(a− 1− i)!

i

a−i−1
∈ AaV3fHGC−1,0. (7.2)

Proposition 7.3. H
(
AaV3fHGC−1,0, ∆

)
is acyclic for odd a ≥ 1 and 1-dimensional for even a ≥ 2,

the class being represented by ρa.

Proposition 7.4. Ha−h+1 (AaVvfHGC−1,0, ∆) = 0 for v ≥ 4 and h ≥ 1.

Note that the general proposition does not say anything about the cohomology at degree d = a + 1
and for d > a+ 1 it is trivially 0.

We start proving propositions together, and we will divert at some point. The proof strategy is very
similar to its odd analogue Proposition 6.2. The proof is inductive on the number of vertices v and
the step uses the spectral sequence on the total valence s of non-chosen vertices. We highlight the key
differences for the readers convenience:

– In this case there is no extra non-hairy term.
– Subcomplexes (AaVvfHGC−1,0, ∆) with different a = e + h have sometimes different treatment, so

we work with them through the whole proof. That was not necessary in the odd case.
– We again choose one distinguished vertex. In the odd case we simply switched to the complex with

distinguishable vertices V̄ vfHGC−1,1 and chose one. Here, for inductive argument to work, we must

leave other vertices indistinguishable. Therefore we work with the complex V̇ vAafHGC−1,0 of graphs
with one vertex chosen, and other indistinguishable, c.f. Appendix A.

– In this case there can be multiple hairs on one vertex. Therefore, on the first page of the main
spectral sequence in the proof, classes of the first type are now of the form Γ ∪̇σh for any h ≥ 1. This
introduces the whole new line of classes of the first type, see Figure 14. To kill them, this time we
need to investigate the third page of the spectral sequence too.
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Joint part of the proof of Propositions 7.3 and 7.4. For the matter of shortening the notation let

V va := AaVvfHGC−1,0. (7.3)

On V va we choose one vertex and get

V̇ va := AaV̇vfHGC−1,0, (7.4)

the complex with one vertex chosen, while the others are indistinguishable (see appendix A). In what
follows we will relate it to the complex of v−1 indistinguishable vertices V v−1a , i.e. to the original complex
with one vertex less. The general structure of the recursive proof is as follows:

– From Proposition 7.2 we know the cohomology of V 2
a . We use it to find cohomology of V̇ 3

a , and
symmetrizing we get cohomology of V 3

a . This is the content of Proposition 7.3.
– We use cohomology of V 3

a to find cohomology of V̇ 4
a . Although it is not zero, after symmetrizing we

get that H(V 4
a ) = 0. This is the base of the induction of Proposition 7.4.

– We will see that H(V v−1a ) = 0 implies H(V̇ va ) = 0 and that after symmetrization (Proposition A.2)
implies H(V va ) = 0. This is the step of the induction of Proposition 7.4.

Let us set up a spectral sequence on
(
V̇ va , ∆

)
on the total valence s of non-chosen vertices, including

hairs. So, an edge between non-chosen vertices counts twice, a hair on a non-chosen vertex and an edge
between a non-chosen vertex and the chosen vertex counts once, and hairs on the chosen vertex do not
count. The differential can not decrease s and splits ∆ = ∆0 + ∆1 where ∆0 is the part that does not
change s. ∆0 connects a hair from a non-chosen vertex to the chosen vertex and ∆1 connects an edge to
a non-chosen vertex, increasing s always by 1.

For fixed a = e + h, s can have only finitely many possible values, so the spectral sequence is finite
and converges correctly.

On the first page of the spectral sequence there is the cohomology of
(
V̇ va , ∆0

)
. Let β : V̇ va → V̇ va be

the sum over all edges at the chosen vertex of deleting that edge (as a last edge in numbering, for the
matter of sign) and putting a hair on the non-chosen vertex that was connected to that edge, unless it
makes the chosen vertex 0-valent, being forbidden by definition. Maps ∆0 and β are analogous to those
in odd case depicted in Figure 9.

If the chosen vertex is not hairless or not 1-valent, it is clear that ∆0β + β∆0 = CId where C is the
number of edges at the chosen vertex plus the number of hairs on non-chosen vertices. So, all classes of

H
(
V̇ va , ∆0

)
must be represented by graphs whose chosen vertex is isolated with some hairs and there are

no other hairs (C = 0 in that case), or the chosen vertex is 1-valent without hairs (β cannot disconnect
the last edge leaving the chosen vertex 0-valent). Classes that fulfil the former condition we call classes
of the first type, and classes that fulfil the latter condition we call classes of the second type.

Let · ∪̇σh : H0V v−1a−h → V̇ va be the operation of disjoint union with the star σh that maps Γ with
distinguishable vertices to Γ ∪̇σh with chosen vertex being the one in the star, while the other vertices
remain indistinguishable.

Every graph of the form Γ ∪̇σh, where Γ ∈ H0V v−1a−h , h ≥ 1, clearly represents a cohomology class of
the first type. Graphs whose chosen vertex is 1-valent without hairs would not form classes of the second
type if the vertex would be allowed to be 0-valent. Therefore, cutting that possibility implies that classes
of the second type are represented by graphs of the form

∆0(Γ ∪̇σ0) =: ċ(Γ ) (7.5)

for Γ ∈ H≥1V v−1a , c.f. the analogous definition for all indistinguishable vertices (2.21). All classes are
sketched in Figure 14.
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Fig. 14 Classes on the first page of the spectral sequence of V̇ va . The numbers at the bottom are the number of hairs h,
while the degree is d = e + 1 = a − h + 1. On the vertical axis is the total valence of non-chosen vertices s, the number
on which we set up the spectral sequence, starting at 2a − 1 for h = 0. Classes of the second type are labelled by × and
classes of the first type are labelled by �. The position where there are both classes is labelled by ⊗.

On the second page of the spectral sequence we have a complex of second-type classes and first type
classes with one hair, while the other first type classes are isolated. Let (C, ∆1) be the complex spanned by
second-type classes of the second page of the spectral sequence. It is easily seen that ċ :

(
H≥1V̄ v−1a , ∆

)
→

(C, ∆1) is an isomorphism of degree 1, so we can replace (C, ∆1) with
(
H≥1V̄ v−1a [−1], ∆

)
.

Proof of Proposition 7.3. Here we study the case v = 3. No graphs satisfying a < 2 exist. For a = 2
whole V 3

2 is 1-dimensional, generated by ρ2 = −σ1 ∪ λ1. Hence, the cohomology is 1-dimensional, the
class being represented by the same element, as expected.

If a > 2 on the first page of the spectral sequence there is only one class of the first type, namely
λ1∪̇σa−1 of degree 2. It does not intrude the line with the second type classes and survives until the
second page. On the second page in the line of second-type classes we have the complex isomorphic to
H≥1V 2

a [1], what is equal to V 2
a [1] in this case. So, by Proposition 7.2 there is a class represented by ċ(λa)

of degree 3 for odd a, and no class for even a.

Lemma B.3 shows that for odd a the two classes cancel on further pages, so V̇ a3 is acyclic. Proposition
A.2 implies that V a3 is acyclic too.

For even a the class in the degree 2 survives. The element ρa in V a3 (defined as a space of invariants)
is also an element of V̇ a3 where it is equal to the sum over all vertices to be chosen in ρa. It contains
λ1∪̇σa−1 that forms a class that survives all pages, and since ∆(ρa) = 0 (Lemma B.4), ρa represents

the class in H
(
V̇ a3 , ∆

)
. Proposition A.2 implies that it is also a class in H (V a3 ). That concludes the

proposition.

Proof of Proposition 7.4. For v ≥ 4 we prove by induction that Ha−h+1 (V va , ∆) = 0 for h ≥ 1. We prove
the base (v = 4) and the step together.

We continue studying the spectral sequence on
(
V̇ va , ∆

)
on the total valence s of non-chosen vertices

whose first page is depicted on Figure 14. Isolated first-type classes survive the second page, while the
line of second-type classes and first-type classes with one hair is depicted on Figure 15. The second row
represents the second type classes

(
H≥1V̄ v−1a [−1], ∆

)
as discussed above. But the (a + 1)-degree term

H1V av−1[1] is split into the sum Ker∆
(
H1V av−1

)
⊕ Im∆

(
H1V av−1

)
, and we only leave the first term in the

second row, while we put the first term in the first row. The other term in the first row is in degree a
and represents the first type classes Γ ∪̇σ1 for Γ ∈ H0V̄ v−1a−1 .

There is a map that maps first-type class Γ ∪̇σ1 to the second-type class ∆1(Γ ∪̇σ1) that is obtained
from Γ by adding an antenna in all possible ways, antenna ending with the chosen vertex. The isomorphic
element in H1V̄ v−1a [−1] is χ1(Γ ), where χ1 adds a hair in all possible ways, see (2.19). That element is
further split into χ1

1(Γ ) ∈ Ker∆
(
H1V v−1a

)
and χ1

0(Γ ) = ∆
(
χ1(Γ )

)
= ∇(Γ ) ∈ Im∆

(
H1V v−1a

)
⊂ H0V v−1a

(see Lemma 2.5).
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Im∆(H1V v−1
a ) ⊂ H0V v−1

aH0V v−1
a−1

Ker∆(H1V v−1
a )H2V v−1

a [−1]H3V v−1
a [−1]H4V v−1

a [−1]H5V v−1
a [−1]. . .

∆ ∆ ∆ ∆ ∆

∇

χ1
1

a+ 1aa− 1a− 2a− 3d =

Fig. 15 The complex on the second page of the spectral sequence.

Recall that we are not interested in the cohomology Ha+1
(
V̇ va , ∆

)
. Classes in that degree of the

complex on the first page from Figure 15 can not kill anything after the second page, so they can not
change the existence of classes in other degrees. Therefore, we are not interested in classes of degree a+1
also in the complex from Figure 15.

In that complex we set up the 2-row spectral sequence as in the figure, such that on the first page

there is a complex with horizontal differentials, i.e.
(

H0V̄ v−1a−1
∇→ Im∆(H1V v−1a )

)
and a reduced version

of
(
V̄ v−1a [−1], ∆

)
.

The cohomology of the first row in degree a is clearly Ker∇
(
H0V v−1a−1

)
. The cohomology of the second

row in relevant degrees (d ≤ a) is the same as Hd
(
V v−1a [−1], ∆

)
.

For the base of induction (v = 4) Proposition 7.3 implies that for even a in the second row there is
a class represented by ρa in degree 3. That class survives the spectral sequence because even if a = 2 it
cannot be killed by the first row, since in that case in the first row there is H0V 1

3 = 0.

For the step of the induction, assumption implies that the second row is acyclic. So, in any case
cohomology has Ker∇

(
H0V v−1a−1

)
in degree a, and the rest of the cohomology is zero except for v = 4 and

even a, when there is an extra class in degree 3 being represented by ρa.

On the third page of the spectral sequence we have a line of classes of the first type represented
by Γ ∪̇σh for Γ ∈ H0V v−1a−h in degrees d ≤ a − 1 and classes of the first type represented by Γ ∪̇σ1 for

Ker∇
(
H0V v−1a−1

)
in the degree a. All classes appear in even s (the total valence of non-chosen vertices).

For v = 4 and even a the class ċ(ρa) has an odd s, so it must be outside of the mentioned line and it
survives the third page.

Back to the line, if h > 1 the whole differential ∆ = ∆0 + ∆1 sends the representative Γ ∪̇σh of the
class as pictured in Figure 16.

Γ

h
0

χ1(Γ )

h−1

Γ

h−1

∇(Γ )

h−1

+ χ1(Γ )

h−2

∆0

∆1

∆0

∆1

.

Fig. 16 Cancelling on the third page of the spectral sequence. The chosen vertex is marked with an empty circle.

The very last term does not represent a class on the first page (or does not exist when h = 1), so on
the third page of the spectral sequence there is the differential Γ ∪ σh 7→ ∇(Γ ) ∪ σh−1. Even if h = 2
the differential is well defined because it certainly ends in Ker∇

(
H0V a−1v−1

)
. So the complex on the third

page looks like in Figure 17.
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Ker∇
(

H0V a−1
v−1

)
H0V a−2

v−1H0V a−3
v−1H0V a−4

v−1H0V a−5
v−1

. . . ∇ ∇ ∇ ∇ ∇

Fig. 17 Third page of the spectral sequence on V̇ va .

This complex is a reduced version of
(

Vv−1fGC≥10 ,∇
)

, and since v − 1 6= 2 the following lemma

implies that it is acyclic.

Lemma 7.5. H
(

fGC≥10 ,∇
)

is 1-dimensional, the class being represented by λ1.

Proof. Corollary [5, Corollary 3] clearly implies that H
(

fGCc≥10 ,∇
)

is one-dimensional, the class being

represented by λ1. On fGC≥10 we set up a spectral sequence on the number of connected components.
The first differential does not change that number, so the cohomology is the symmetric product of λ1.
But there can not be more than one λ1 because of the symmetry reasons, so the only class remaining is
connected graph λ1, concluding the proof.

If v = 4 and a > 2 even (for a = 2 the class is out of interest because it is of degree a+1), there is one
term left that survives on the third page, and therefore till the end: ċ(ρa). Analogously to Lemma 2.7 we
have that ċ∆ = ∆ċ. Now, Lemma B.4 implies that ∆ (ċ(ρa)) = ċ(∆(ρa)) = 0, so ċ(ρa) represents a class

of the whole H
(
V̇ 4
a , ∆

)
. After taking invariants of the action of the symmetric group Sv the class is sent

to c(ρa) by the symmetrization map, and it is zero because of Lemma B.5. Proposition A.2 implies that
H
(
V 4
a , ∆

)
= 0, concluding the base of the induction.

For the step, nothing survives the third page, so already V̇ av is acyclic, and because of Proposition
A.2 V av is acyclic too. This finishes the step of the induction.

7.2 The differential δ +∆

Propositions 7.1 to 7.4 imply that all classes of H (fHGC−1,0, ∆) are in degrees 1 or 2 (have no or one
edge), or hairless. We now want to change the differential to to δ + ∆ that exist because δ and ∆
anti-commute (Lemma 2.4). With that differential there are no purely hairless classes, but we have the
following proposition.

Proposition 7.6. Let [Γ ] be a non-trivial class of the cohomology He+1 (fHGC−1,0, δ +∆) for e ≥ 2.
Then the representative Γ ∈ fHGC−1,0 has a hairless part.

Proof. Suppose the opposite, that Γ ∈ H≥1fHGC−1,0. We write Γ =
∑
h≥1 HhΓ where HhΓ is the part

of Γ with h hairs. The equality (δ + ∆)(Γ ) = 0 separated by number of hairs imply that ∆(HhΓ ) +
δ(Hh−1Γ ) = 0 for every h ≥ 1.

Particularly, for h = 1 we get ∆(H1Γ ) = 0. By Proposition 7.4 (fHGC−1,0, ∆) is acyclic at that
degree, so there is H2γ ∈ fHGC−1,0 such that ∆(H2γ) = H1Γ . Γ2 := Γ − (δ +∆)(H2γ) ∈ H≥2fHGC−1,0
is also a representative of [Γ ] in the starting complex.

For h = 2 we get ∆(H2Γ ) + δ(H1Γ ) = 0, implying that ∆(H2Γ2) = 0. By the same argument there
is H3γ ∈ fHGC−1,0 such that ∆(H3γ) = H2Γ2. Γ3 := Γ2 − (δ + ∆)(H3γ) ∈ H≥3fHGC−1,0 is another
representative of [Γ ] in the starting complex, .

We can continue this argument to infinity and get Hhγ for h ≥ 2 such that Γ = (δ +∆)
∑
h≥2 Hhγ.

This contradicts the assumption that [Γ ] is a non-trivial class.

Note that this proof is actually an elementary explanation of the spectral sequence argument where
the first differential is ∆.
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7.3 Removing λ

In this subsection we transform the result to the complex with the constraint † that does not have λ =
as a connected component. Recall that it does not have σ0 = • as a connected component either, because
the minimal valence is 1. Check that δ and ∆ can not produce that connected components, so complexes
with the the constraint † are closed under their action.

Proposition 7.7. Let [Γ ] be a non-trivial class of the cohomology He+1
(

fHGC†−1,0, δ +∆
)

for e ≥ 1.

Then the representative Γ ∈ fHGC†−1,0 has a hairless part.

Note that the result is improved by including e = 1, compared to Proposition 7.6.

Proof. On (fHGC−1,0, δ +∆) we make the spectral sequence on the number of connected components λ.
By symmetry reasons (exchanging hairs gives sign −1) there can be only one such connected component,
so the spectral sequence has only two rows.

On the first page in the second row there is the complex of our interest
(

fHGC†−1,0, δ +∆
)

. Graphs in

the first row are of the form Γ ∪ λ, where Γ ∈ fHGC†−1,0, together with λ itself, and the first differential

acts only within Γ . So the first row is isomorphic to
(

fHGC†−1,0[−1]⊕ [λ], δ +∆
)

.

Let Γ ∪λ represent a class on the first page in the first row. It is mapped to second row to ∆1(Γ ∪λ)
where ∆1 connects ∆ and λ. It actually adds length-2 antenna instead of a hair to Γ , i.e. it is 2c(2)(Γ )
(factor 2 comes from the two vertices in λ to which ∆1 can connect) defined in (2.22). Lemmas 2.6 and
2.7 imply that

(δ +∆)c(Γ ) = cδ(Γ ) + c(2)(Γ ) + c∆(Γ ) = c(δ +∆)(Γ ) + c(2)(Γ ) = c(2)(Γ )

because (δ+∆)(Γ ) = 0. So, ∆1(Γ ∪λ) = 2c(2)(Γ ) is exact in the second row and Γ ∪λ−2c(Γ ) represents
a class of H (fHGC−1,0, δ +∆) coming from the first row. This shows that there are no cancellations
between rows on the second page, and all classes from the first page survive the spectral sequence.

Now suppose that there is a non-trivial class [Γ ] of He+1
(

fHGC†−1,0, δ +∆
)

for e ≥ 2 without a

hairless part. It sits in the second row of our spectral sequence, and can not be cancelled, so it represents
also a class of He+1 (fHGC−1,0, δ +∆), contradicting Proposition 7.6. That was to be demonstrated for
degrees d ≥ 3.

Degree e = 1 needs a special treatment. With 2 hairs there are no classes in both in the first row and
in the second row. Recall that classes in the first row are generated by Γ ∪ λ where Γ represents a class

of H
(

fHGC†−1,0, δ +∆
)

in degree 2. By the construction above, the whole class of H3 (fHGC−1,0, δ +∆)

is represented by Γ ∪ λ− 2c(Γ ). By Proposition 7.6 it has to have hairless part, so Γ has to have a part
with one hair.

There is only one graph in fHGC†−1,0 with 1 edge and 1 hair, namely λ2 = . So Γ is of the
form λ2 + Γ ′ where Γ ′ has all parts with more then 1 hair. But λ2 is exact because λ2 = (δ +∆)σ1, so
Γ ′ = Γ − (δ + ∆)σ1 represents the same class, contradicting the conclusion that it has to have a part
with one hair.

7.4 Reducing the complex

In this subsection we reduce the complex to kill hairless classes. Let us define another complex

H[fHGC†−1,0 := H≥1fHGC−1,0† ⊕HL0 (7.6)

where

HL0 := ∆
(

H1fHGC†−1,0

)
. (7.7)

Since δ and ∆ anti-commute (Lemma 2.4), HL0 is closed under the operation δ. Therefore, the whole

space H[fHGC†−1,0 is closed under δ+∆ and
(

H[fHGC†−1,0, δ +∆
)

is a subcomplex of
(

fHGC†−1,0, δ +∆
)

.
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Proposition 7.8. All classes of the cohomology H
(

H[fHGC†−1,0, δ +∆
)

consist of graphs with no edges,

i.e. He+1
(

H[fHGC†−1,0, δ +∆
)

= 0 for e ≥ 1.

Proof. Let [Γ ] be a non-trivial class in He+1
(

H[fHGC†−1,0, δ +∆
)

for e ≥ 1. If Γ is exact in(
fHGC†−1,0, δ +∆

)
then there is γ ∈ fHGC†−1,0 such that (δ + ∆)(γ) = Γ . But γ must be also in

H[fHGC†−1,0, contradicting the assumption that [Γ ] be a non-trivial class. So Γ represents a class also

in
(

fHGC†−1,0, δ +∆
)

. By Proposition 7.7 Γ has a hairless part H0Γ 6= 0.

Since Γ ∈ H[fHGC†−1,0 its hairless part must be in HL0, i.e. there exist γ1 ∈ H1fHGC†−1,0 such that

∆(γ1) = H0Γ . Γ−(δ+∆)(γ) is also a representative of [Γ ], this time with zero hairless part, contradicting
Proposition 7.7.

7.5 Bounded complex

Recall from Definition 4.4 that bounded complex, the one decorated by ‡, is spanned by graphs that do
not have λ = , σ1 = or λ2 = as a connected component. Let

H[fHGC‡−1,0 := H≥1fHGC‡−1,0 ⊕HL0 ⊂ H[fHGC†−1,0, (7.8)

where HL0 is as in (7.7).

Proposition 7.9. All classes of the cohomology H
(

H[fHGC‡−1,0, δ +∆
)

consist of the graphs that have

no edges, i.e. He+1
(

H[fHGC‡−1,0, δ +∆
)

= 0 for e ≥ 1.

Proof. On H[fHGC†−1,0 we set up a spectral sequence of two rows: fHGC
†/‡
−1,0 and H[fHGC‡−1,0. For the

degree d ≥ 2 (e ≥ 1) the total complex is acyclic by Proposition 7.8 and in the first row by Proposition
4.13 there is only a class [α] in the degree 1 that go to zero by the whole differential, so it cannot cancel
anything in the second row. That concludes the proof.

Let us say that classes of H
(

H[fHGC‡−1,0, δ +∆
)

with no edges are generated by Σj that we are

going to define in (7.9). Since we do not need this fact later, we skip the proof.

7.6 The morphisms πf

In this subsection we want to find a kind of map between two complexes,
(

fGC≥20 , δ +D∇
)

and(
fHGC‡−1,0, δ +∆

)
that will have a nice behaviour. Recall that δ + D∇ is the conjugated differential

eD(δ +∇)e−D, see Proposition 3.10. A motivating example is depicted in Figure 18.

−3χ2

 + 6χ1D

 

δ +D∇ δ +∆

π

π

Fig. 18 A motivation for the map π based on the equality from Figure 5. The right vertical mapping can be deduced
from Lemma 2.5, Proposition 3.3, and equalities χ1δ = δχ1 and χ2δΓ −δχ2Γ = 1

3
∆(Γ ∪σ3). Those equalities can be easily

checked, or one can note that they are the simplest cases of Lemma B.7.
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Recall that the differential δ + ∆ does not change the number f = e − v + h, so it is not surprising
that π from Figure 18 sends to the fixed subspace Ff fHGC‡−1,0. The map π possibly adds some stars,

hairs or deletes vertices, in all cases increases f , so the target space Ff fHGC‡−1,0 makes a restriction for

the maximal f of the starting graph Γ ∈ fGC≥20 . In the non-hairy spaces f is equal to b = e− v, so we
deduce that b has to be at most f of the target space, and it will also be of the same parity. Therefore
we will define maps

πf : B≤f,parfGC≥20 → Ff fHGC‡−1,0,

where prefix B≤f,par means all graphs with b = e− v ≤ f of the same parity as f .
Note that the subspace B≤f,parfGC≥20 ⊂ fGC≥20 is not closed under δ +D∇, but its complement is.

So, by complex
(

B≤f,parfGC≥20 , δ +D∇
)

we mean the complex with forbidden graphs identified with

zero, or equivalently it is the quotient of
(

fGC≥20 , δ +D∇
)

and the complement of B≤f,parfGC≥20 .

We also see in example from Figure 18 that π acts differently for different b = e− v. For the maximal
possible b (b = f) π is the identity. For b = f − 2 π adds a star σ3 in the first term, and we can expect
that there is a similar term for other b. For b = f − 4, to reach the correct f , we can add two stars σ3
or one star σ5. We actually add

Σ2 :=
1

2 · 62
+
−1

5!
.

The general definition of those elements for j ≥ 1 is

Σj :=
∑
ki≥0∑
i iki=j

∏
i>0

(−1)ki

ki!((2i+ 1)!)ki

⋃
i>0

σ∪ki2i+1 ∈ fHGC‡−1,0. (7.9)

Elements Σj will mostly me used to make union with another graph. Although Σ0 is not defined, we
mean Γ ∪Σ0 = Γ .

Another example of Σj is

Σ3 =
−1

6 · 63
+

1

6 · 5!
+
−1

7!
.

The key property of Σj is
(δ +∆)(Σj) = 0 (7.10)

as shown in Lemma B.6. The coefficients in (7.9) are indeed not surprising, they divide a graph with its
order of symmetry (exchanging same stars and hairs in a star) such that coefficients from the operations
disappear.

We are now ready to define maps πf .

Definition 7.10. For every f ∈ Z we define degree-0 map πf : B≤f,parfGC≥20 [−1]→ FfH≥1fHGCd‡−1,0.

Let Γ ∈ BbfGC≥20 for b = e− v ≤ f of the same parity as f . Then

πf (Γ ) :=

f−b
2∑
i=0

1

(2i)!
χ2i(Γ ) ∪Σ f−b

2 −i
−

f−b
2∑
i=1

1

(2i− 1)!
χ2i−1D(Γ ) ∪Σ f−b

2 −i
. (7.11)

Lemma B.8 implies that πf :
(

B≤f,parfGC≥20 [−1], δ +D∇
)
→
(

Ff fHGC‡−1,0, δ +∆
)

is a morphism

of complexes for every f ∈ Z.

7.7 Connected complex

In this subsection we transform the result to the connected complex. This result is much more com-
plicated than the analogous result for odd case from Subsection 6.8. The problem this time is that(

H≥1fHGCc‡−1,0, δ +∆
)

is not fully acyclic, there is a class represented by the star σ3 as shows the fol-

lowing proposition. This makes the complex with disconnected graphs
(

H≥1fHGC‡−1,0, δ +∆
)

far from

acyclic. Corollary 7.15 gives an insight to its cohomology, using map πf from the previous subsection.
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Therefore, the result that the complex with special hairless part
(

H[fHGC‡−1,0, δ +∆
)

is almost

acyclic (Proposition 7.9) may be surprising. It seems that all disconnected classes are cancelled with the
hairless part, leaving connected part acyclic. This is exactly what happens, as shown in the following
proposition, particularly in its Claim IX.

Proposition 7.11. The cohomology H
(

H≥1fHGCc‡−1,0, δ +∆
)

is one-dimensional, the class being rep-

resented by the star σ3.

Proof. We prove the statement by the induction on the degree d = e+ 1.
The following lemma shows the claim in degrees d = 1 and 2.

Lemma 7.12.
– H1

(
H≥1fHGCc‡−1,0, δ +∆

)
is one dimensional, the class being generated by σ3 = .

– H2
(

H≥1fHGCc‡−1,0, δ +∆
)

= 0.

Proof. Relevant graphs have at most 1 edge. Connected graphs with at most 1 edge are either a star, or a
graph with 2 vertices and an edge between them. In both cases, second differential∆ does not do anything,

and all graphs have b = −1. So we need to show the lemma for the complex
(

B−1H≥1fHGCc‡−1,0, δ
)

.

This shows Lemma 4.11 together with Corollary 4.10.

Let d ≥ 2 and suppose that H
(

H≥1fHGCc‡−1,0, δ +∆
)

is one-dimensional up to degree d, the class

being represented by the star σ3. We want to prove the same in degree d+ 1. We do it through a series
of claims as follows.

Let Γ ∈ fHGC‡−1,0 be a graph. Let p(Γ ) be the number of tree-like connected components in Γ , i.e.
connected components that have one vertex more than edges (b = e − v of the connected component
is −1). Differential δ acts within connected components and does not change b, so it can not change
p. Differential ∆ can save p or decrease it by connecting a hair from tree-like connected component to

something. Therefore, we can define a filtration on
(

fHGC‡−1,0, δ +∆
)

:

P≤xfHGC‡−1,0 ⊂ fHGC‡−1,0

spanned by all graphs Γ such that p(Γ ) ≤ x. Let ∆P be the part of ∆ that saves p. It leaves tree-like
connected components intact.

Claim I. H
(

H≥1fHGCc‡−1,0, δ +∆P

)
is one-dimensional up to degree d, the class being represented by

the star σ3.

Proof. We set up the spectral sequence of H
(

H≥1fHGCc‡−1,0, δ +∆
)

on the number of tree-like con-

nected components. A connected graph is either tree-like or it is not, so the spectral sequence has two
rows on the first page:

–
(

B−1H≥1fHGCc‡−1,0, δ
)

and

–
(

B≥0H≥1fHGCc‡−1,0, δ +∆P

)
.

By Lemma 4.11 together with Corollary 4.10 the first row has 1-dimensional cohomology, the class being
represented by the star σ3. That class survives the spectral sequence, so classes of the second row have
nothing to cancel with. Therefore, by the assumption, the second row is acyclic up to degree d. That
implies the result.

Claim II. H
(

fHGCc‡−1,0, δ +∆P

)
is generated by [σ3] and classes of H

(
fGCc†0[−1], δ

)
, up to degree

d.

Proof. We set up the spectral sequence of
(

fHGCc‡−1,0, δ +∆P

)
of two rows on the first page:

–
(

H≥1fHGCc‡−1,0, δ +∆P

)
(complex from Claim I) and
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–
(

fGCc†0[−1], δ
)

.

Class [σ3] from the first row survives the spectral sequence, implying the result.

Let ∆CP be the part of ∆ that fixes both number of tree-like connected components and the number
of all connected components.

Claim III. Hd
(

fHGC‡−1,0, δ +∆CP

)
is generated by the classes represented by the degree-d union of a

class representative of H
(

fGC†0[−1], δ
)

and any number of σ3.

Proof. The complex
(

fHGC‡−1,0, δ +∆CP

)
is the symmetric product of the complex from Claim II(

fHGCc‡−1,0, δ +∆P

)
: (

fHGC‡−1,0, δ +∆CP

)
= S+

(
fHGCc‡−1,0, δ +∆P

)
. (7.12)

The cohomology commutes with the symmetric product and any of the factors in the symmetric product

has the degree ≤ d. Therefore Hd
(

fHGC‡−1,0, δ +∆CP

)
is generated by the classes represented by the

degree-d union of class representatives of H
(

fGCc†0[−1], δ
)

and any number of σ3. Since d ≥ 2 (e ≥ 1)

there has to be at least one connected component that is not a star, so it is hairless.

Since H
(

fGC†0[−1], δ
)

is the symmetric product of H
(

fGCc†0[−1], δ
)

, the union of hairless connected

components forms a representative of a class of H
(

fGC†0[−1], δ
)

, implying the result.

Let us define a map π0
f : B≤f,parfGC≥20 [−1]→ Ff fHGC‡−1,0 as

π0
f (Γ ) := Γ ∪ σ∪

f−b
2

3 . (7.13)

It is clearly ∆Pπ
0
f (Γ ) = π0

fδ(Γ ), so the map π0
f is the map of complexes

(
B≤f,parfGC≥20 [−1], δ

)
→(

Ff fHGC‡−1,0, δ +∆P

)
. The same is true with ∆CP instead of ∆P .

Claim IV. For every f ≥ 0 the map π0
f :

(
B≤f,parfGC≥20 [−1], δ

)
→
(

Ff fHGC‡−1,0, δ +∆CP

)
is a

quasi-isomorphism in degree d.

Proof. The map π0
f is constructed exactly to map classes of

(
B≤f,parfGC†0[−1], δ

)
to classes of(

Ff fHGC‡−1,0, δ +∆CP

)
described in Claim III.

Proposition 4.8 for hairless part and for fixed b implies that the inclusion
(

BbfGC≥20 [−1], δ
)
↪→(

BbfGC†0[−1], δ
)

is a quasi-isomorphism, implying the same for
(

B≤f,parfGC≥20 [−1], δ
)

↪→(
B≤f,parfGC†0[−1], δ

)
. This implies the result.

Claim V. For every f ≥ 0 the map π0
f :
(

B<f,parfGC≥20 [−1], δ
)
→
(

FfH≥1fHGC‡−1,0, δ +∆CP

)
is a

quasi-isomorphism in degree d.

Note that we have restricted π0
f to B<f,parfGC≥20 [−1], where prefix B<f,par means all graphs with

b = e − v < f of the same parity as f . The image of this restriction always has at least one hairy
component σ3, so we can co-restrict it to FfH≥1fHGC‡−1,0.

Proof. On the mapping cone of the map π0
f :
(

B≤f,parfGC≥20 [−1], δ
)
→
(

Ff fHGC‡−1,0, δ +∆CP

)
from

Claim IV we set up the spectral sequence of two rows on the first page:

– the mapping cone of π0
f :
(

B<f,parfGC≥20 [−1], δ
)
→
(

FfH≥1fHGC‡−1,0, δ +∆CP

)
and
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– the mapping cone of the inclusion
(

Bf fGC≥20 [−1], δ
)
↪→
(

Bf fGC†0[−1], δ
)

.

By Proposition 4.8 the latter map is a quasi-isomorphism, so the second row is acyclic. Therefore Claim
IV implies the result.

Let

fHGCd−1,0 ⊂ fHGC−1,0 (7.14)

be the subset spanned by disconnected graphs. The image of the restriction π0
f : B<f,parfGC≥20 [−1] →

FfH≥1fHGC‡−1,0, having at least one hairy component σ3, can be further co-restricted to the disconnected

part FfH≥1fHGCd‡−1,0. We have the following claim.

Claim VI. For every f ≥ 0 the map π0
f :
(

B<f,parfGC≥20 [−1], δ
)
→
(

FfH≥1fHGCd‡−1,0, δ +∆CP

)
is a

quasi-isomorphism in degree d.

Proof. By definition ∆CP can not reduce the number of connected components, so we have a direct sum
of complexes(

FfH≥1fHGC‡−1,0, δ +∆CP

)
=
(

FfH≥1fHGCc‡−1,0, δ +∆CP

)
⊕
(

FfH≥1fHGCd‡−1,0, δ +∆CP

)
.

The map π0
f maps exclusively to the second addend, so Claim V implies the result.

Claim VII. For every f ≥ 0 the map π0
f :
(

B<f,parfGC≥20 [−1], δ
)
→
(

FfH≥1fHGCd‡−1,0, δ +∆P

)
is a

quasi-isomorphism in degree d.

Proof. On the mapping cone of π0
f :
(

B<f,parfGC≥20 [−1], δ
)
→
(

FfH≥1fHGCd‡−1,0, δ +∆P

)
we set up

a spectral sequence on the number of connected components, such that on the first page is the mapping
cone of the map from Claim VI. For fixed b and f this spectral sequence is bounded, hence converges
correctly. Claim VI implies the result.

We split the map πf into connected and disconnected part: πf (Γ ) = πconnf (Γ ) + πdisconnf (Γ ) where

πconnf : B<f,parfGC≥20 [−1] → FfH≥1fHGCc‡−1,0 and πdisconnf : B<f,parfGC≥20 [−1] → FfH≥1fHGCd‡−1,0.

Explicitly, using (7.11), for connected graph Γ ∈ B<f,parfGCc≥20 [−1]

πdisconnf (Γ ) :=

f−b
2 −1∑
i=0

1

(2i)!
χ2i(Γ ) ∪Σ f−b

2 −i
−

f−b
2 −1∑
i=1

1

(2i− 1)!
χ2i−1D(Γ ) ∪Σ f−b

2 −i
, (7.15)

πconnf (Γ ) =
1

(f − b)!
χf−b(Γ )− 1

(f − b− 1)!
χf−b−1D(Γ ), (7.16)

and for disconnected graph Γ ∈ B<f,parfGC≥20 [−1] it is πdisconnf (Γ ) = πf and πconnf (Γ ) = 0.

Claim VIII. For every f ≥ 0 the map πdisconnf :
(

B<f,parfGC≥20 [−1], δ +D∇
)
→(

FfH≥1fHGCd‡−1,0, δ +∆
)

is a quasi-isomorphism in degree d.

Proof. On
(

B<f,parfGC≥20 [−1], δ +D∇
)

we consider the filtration on x B≥f−2xB<f,parfGC≥20 [−1], and

on
(

FfH≥1fHGCd‡−1,0, δ +∆
)

we consider the filtration on the number of tree-like connected components

P≤xFfH≥1fHGCd‡−1,0. We have the following lemma.

Lemma 7.13. For every f ≥ 0 the map πdisconnf respects the filtrations B≥f−2xB<f,parfGC≥20 [−1] and

P≤xFfH≥1fHGCd‡−1,0, i.e. for every x ∈ Z πf

(
B≥f−2xB<f,parfGC≥20 [−1]

)
⊂ P≤xFfH≥1fHGCd‡−1,0.

46



Proof. Let Γ ∈ B≥f−2xB<f,parfGC≥20 [−1] be a graph with v vertices and e edges. All those constraints
mean that b = e− v is of the same parity as f and f − 2x ≤ b < f .

Tree-like hairless connected component needs to have 1-valent vertex, so there are none in Γ . Adding
hairs can not change this. All connected components of addends of Σj (7.9) are tree like, and there are
at most j of them.

Therefore, the first sum in πdisconnf (Γ ), (7.15) or (7.11), has the most number of tree-like connected

components for i = 0 and it is f−b
2 ≤ x. The second sum has even less hairy connected components,

hence the result.

On the mapping cone of πdisconnf :
(

B≤f,parfGC≥20 [−1], δ +D∇
)
→
(

FfH≥1fHGCd‡−1,0, δ +∆
)

we construct the filtration from the lemma. The first differentials of the complexes are δ, respec-

tively δ + ∆P . On the first page we have the mapping cone of the map
(

B<f,parfGC≥20 [−1], δ
)
→(

FfH≥1fHGCd‡−1,0, δ +∆P

)
that sends Γ with b = f − 2x to the part of πf (Γ ) with x tree-like con-

nected components. Only addend in πdisconnf (Γ ), (7.15) or (7.11), with that much tree-like connected

components is C Γ ∪ σ∪
f−b
2

3 = Cπ0
f (Γ ) where C is an irrelevant coefficient. So, it is the mapping cone

of the map from Claim VII. The spectral sequence is bounded, so it converges correctly and Claim VII
implies the result.

Claim IX. The claim of the induction holds in degree d+ 1, i.e. Hd+1
(

H≥1fHGCc‡−1,0, δ +∆
)

= 0.

Proof. On the complex from Proposition 7.9
(

H[fHGC‡−1,0, δ +∆
)

we set up a spectral sequence of three
rows:

–
(

H≥1fHGCd‡−1,0, δ +∆
)

(complex from Claim VIII),

–
(

H≥1fHGCc‡−1,0, δ +∆
)

(complex we are interested in) and

– (HL0, δ).

Proposition 7.9 implies that the whole complex is acyclic in degree d+ 1, so all classes of the first page
in that degree cancel on further pages.

Let us take a class in the first row of degree d. Claim VIII implies that it is generated by πdisconnf (Γ )

for some f ∈ Z and Γ being a class representative of a class in H
(

B<f,parfGC≥20 [−1], δ +D∇
)

. In

particular (δ +D∇)(Γ ) = 0.
That representative is sent to (δ + ∆)πdisconnf (Γ ) in the second row. Lemma B.8 implies that (δ +

∆)πf (Γ ) = (δ + ∆)πdisconnf (Γ ) + (δ + ∆)πconnf (Γ ) = 0, so (δ + ∆)πdisconnf (Γ ) is exact in the second
row, and can not represent a class. The class was chosen arbitrary, so we conclude that there are no
cancellations between first row in degree d and the second row in degree d+ 1. The following lemma says
that there are also no cancellations between second and third row.

Lemma 7.14. In the spectral sequence of
(

H[fHGC‡−1,0, δ +∆
)

containing rows H≥1fHGCd‡−1,0,

H≥1fHGCc‡−1,0 and HL0 classes of H
(

H≥1fHGCc‡−1,0, δ +∆
)

and H (HL0, δ) from the first page do

not cancel on the second page.

Proof. Suppose the opposite, i.e. there is Γ ∈ H≥1fHGCc‡−1,0 and γ ∈ HL0 that represent classes in

H
(

H≥1fHGCc‡−1,0, δ +∆
)

, respectively H (HL0, δ), and that cancel each other. Then, (δ+∆)Γ is in the

class of γ. We may choose γ such that (δ +∆)Γ = γ.
Let Γ =

∑
i≥1 HiΓ where HiΓ is the part with i hairs. Propositions 5.3, 5.5 and 5.6 imply

δD(1)
(
H1Γ

)
−D(1)δ

(
H1Γ

)
= ∆

(
H1Γ

)
,

2∇
(
δD(2)

(
H2Γ

)
+D(2)δ

(
H2Γ

))
= D(1)∆

(
H2Γ

)
,

2∇D(2)∆
(
H3Γ

)
= 0.
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Summing all those equalities using δ∇ = −∇δ implies

δ
(
D(1)

(
H1Γ

)
− 2∇D(2)

(
H2Γ

))
=

= D(1)
(
δ
(
H1Γ

)
+∆

(
H2Γ

))
− 2∇D(2)

(
δ
(
H2Γ

)
+∆

(
H3Γ

))
+∆

(
H1Γ

)
.

Equality (δ+∆)Γ = γ separated by the number of hairs says ∆
(
H1Γ

)
= γ and δ

(
HiΓ

)
+∆

(
Hi+1Γ

)
= 0

for i ≥ 2, so

δ
(
D(1)

(
H1Γ

)
− 2∇D(2)

(
H2Γ

))
= γ.

Lemma 5.1 and definition (5.4) imply that

D(1)
(
H1Γ

)
+D(2)

(
H2Γ

)
= D(1)

(
H1Γ

)
+D(1)D(2−1) (H2Γ

)
= ∇D(push)

((
H1Γ

)
+D(2−1) (H2Γ

))
so it is in HL0, and γ is exact in (HL0, δ), contradicting the assumption.

Therefore, a class in the middle row at degree d + 1, i.e. in Hd+1
(

H≥1fHGCc‡−1,0, δ +∆
)

, can not

cancel with anything. Since everything cancels, there can not be a class in Hd
(

H≥1fHGCc‡−1,0, δ +∆
)

.

That was to be demonstrated in this claim.

The last claim finishes the step of the induction. That was to be demonstrated in this proposition.

Corollary 7.15. The map πf :
(

B≤f,parfGC≥20 [−1], δ +D∇
)
→
(

Ff fHGC‡−1,0, δ +∆
)

is a quasi-

isomorphism in every degree d ≥ 2 (e ≥ 1) for every f ∈ Z.

Proof. Since the induction in the proof of Proposition 7.11 is shown, all its claims hold for every d ≥ 2.
We use Claim IV (π0

f is quasi-isomorphism with differential δ+∆CP ), skip Claims V (removing hairless
part) and VI (removing connected part), and the analogous arguments as in Claims VII (transforming
∆CP to ∆P ) and VIII (transforming π0

f to πdisconnf , this time to πf ) imply the result.

We finish the proof of Theorem 1.1 with the following proposition. It extends the result of Corollary
4.10 to the extra differential. The proof uses standard spectral sequence argument that sees a known
differential at the first page.

Proposition 7.16. The inclusions

(HGC−1,n, δ +∆) ↪→
(

H≥1fHGCc≥2−1,n, δ +∆
)
↪→
(

H≥1fHGCc‡−1,n, δ +∆
)

are quasi-isomorphisms.

Proof. First of all we split all complexes as in (2.30):

(C, δ +∆) =
∏
f∈Z

(
FfC, δ +∆

)
where f = e+h− v. On the mapping cone of any inclusion we set up a spectral sequence on the number
e− v. One checks that in each degree d = 1 + vn+ (1− n)e− nh the spectral sequence is bounded, so it
converges correctly. On the first page of the spectral sequence there is a mapping cone of the inclusion
of complexes only with the standard differential δ, so it is acyclic by Corollary 4.10. Therefore the whole
mapping cone is acyclic, and the inclusion is quasi-isomorphism.

Now Propositions 7.11 and 7.16 conclude the proof of the second part of Theorem 1.1 saying that
the cohomology H (HGC−1,0, δ +∆) is one-dimensional, the class being represented by σ3.
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A Group action

In this section of appendix we clarify one way of calculating cohomology of a graph complex, by doing so first with
distinguishing some or all vertices.

In defining graph complexes we start with a graph with distinguishable elements (vertices, edges, hairs). The graph
complex is the space of invariants of a finite group that permutes elements acting on the starting space (recall subsections
2.2 and 2.4). Since the groups are finite, the space of invariants is isomorphic to the space of coinvariants. For the simplicity
we work with the former space.

In this paper we are interested only in the action of the symmetric group Sv that permutes vertices, taking as a starting
space the space that already is the space of invariants of the action of the other groups. The same can similarly be done
with the other elements of the graph.

The space of invariants of the action ρ of finite group G on the space V is

V G = {γ ∈ V |ρg(γ) = γ for all g ∈ G} . (A.1)

Let (V, d) be a complex and G a finite group acting on C by the action of degree 0 ρg : C → C for g ∈ G. Let the action
and the differential commute, i.e.

ρgd(γ) = dρg(γ) (A.2)

for every g ∈ G and γ ∈ C. The action of the group can be extended to cohomology of C as ρg([γ]) = [ρg(γ)] for [γ] ∈ H(C).

Proposition A.1. Let a finite group G act on a vector space C over a field of characteristic zero. Then

H
(

CG, d
)

= H(C, d)G.

Proof. Standard result.

In particular, we are interested in the graph complex (C, d) where d does not change the number of vertices, i.e.

(C, d) =
∏
v

(VvC, d) . (A.3)

Let V̄vC be the space with distinguishable vertices, before taking invariants of Sv . E.g. for hairy graph complexes it is

V̄vHhfHGC≥i−1,n :=


∏
e

(
V ≥iv,e,h ⊗ sgne

)Sh×
(
SenS×e

2

)
for n even,∏

e

(
V ≥iv,e,h ⊗ sgnv ⊗ sgnh⊗ sgn⊗e2

)Sh×
(
SenS×e

2

)
for n odd,

(A.4)

c.f. definition 2.9. It is always

VvC = (V̄vC)Sv (A.5)

and the differential on VvC that does not change the number of vertices is induced from the one on V̄vC. The proposition
A.1 gives us an easy tool to calculate the cohomology of the graph complex:

H(C, d) =
∏
v

H
(
V̄vC, d

)Sv . (A.6)

Cohomology is often easier to calculate on the space V̄C with distinguishable vertices.

The more interesting use in this paper will be an intermediate step: distinguishing one vertex and indistinguishing
other vertices. On V̄vC there is the action of Sv−1 that permutes first v− 1 vertices, while leaving the last vertex fixed. It
is the sub-action of the action of the whole Sv . We define

V̇vC :=
(
V̄vC

)Sv−1 . (A.7)

Let us consider the inclusion i : V̇vC ↪→ V̄vC and symmetrization map s : V̄vC ↪→ VvC. The following proposition

states that it is enough to consider classes of H
(

V̇vC
)

in finding H (VvC).

Proposition A.2. Let (V̄vC, δ) be a graph complex with v distinguishable vertices, and let Sv act by permuting all vertices

and Sv−1 act by permuting first v − 1 vertices. Let VvC = (V̄vC)Sv and V̇vC =
(
V̄vC

)Sv−1 . Then

H (VvC, d) = si
(
H
(

V̇vC, d
))

,

where i : V̇vC ↪→ V̄vC is inclusion and s : V̄vC ↪→ VvC is a symmetrization map.

Proof. Standard result. Note that graph complexes are over a field of characteristic zero.

49



B Technical results

B.1 Unbounded remainder

The following lemma calculates the cohomology of (UR−1,n, δ +∆) defined in Definition 4.12.

Lemma B.1. H (UR−1,n, δ +∆) is 1-dimensional, the class being represented by α =
∑
n≥1

1
n!
σ∪n1 .

Proof. On UR−1,n we set up a spectral sequence on the number of vertices. The spectral sequence clearly converges
correctly. The first differential is ∆. In the first row there is just σ1, and it survives on the first page. All other rows have
two terms, one with and one without λ2, that cancel on the first page. Therefore, the cohomology must be 1-dimensional.
One easily checks that (δ +∆)α = 0 and since α has σ1 in the first row, it represents the class.

B.2 Trivial vertex splitting

The following lemma shows that the differential that splits vertices without cancelling terms “adding an edge” and “ex-
tracting a hair”, makes cohomology trivial. The result is not the most general one, but adjusted to our needs in Proposition
4.13.

Lemma B.2. The complex fHGC‡−1,n with the differential Γ 7→ ∆(Γ ) +
∑
x∈V (Γ )

1
2
sx is acyclic.

Proof. Let an antenna be a maximal connected subgraph consisting of at least one 1-valent vertex and 2-valent vertices.
Note that there are two kinds of linear graphs (those that do not have 3- or more-valent vertex) that are entirely considered
an antenna: hairless one (that is longer than two vertices) and the one with a hair on one end. They can also be a connected
component in a graph, and we call them linear antennas. Moreover, vertices that are not part of an antenna are called
quasi-antennas.

The length of an antenna is the number of vertices in it, and the length of a quasi-antenna is zero. Let l be the total
length of all antennas in the graph. We set up a spectral sequence on the number l−e. The differential can not increase that
number. To ensure the correct converging of the spectral sequence, we split the complex into the product of complexes for

fixed c = e+h− v. For fixed degree e, h− v is fixed too. Since from the definition of fHGC‡−1,n there is no σ1 in the graph
as a connected component, with the fixed number of edges, the number of vertices v is bounded, and so is the number of
hairs h. Therefore, for the fixed degree e and the row in the spectral sequence l− e the space is finite-dimensional, and the
standard spectral sequence argument (e.g. [5, Proposition 19]) implies that the spectral sequence converges correctly.

It is easy to check that the first part of the differential is only extending an antenna. When summed all together,
even-length antennas (including quasi-antennas, i.e. vertices that are not in an antenna) are extended by one vertex, and
odd-length antennas are sent to 0. For linear antennas it is the opposite. There is a homotopy that contracts an odd-length
antenna and even-length linear antenna different than λ (because the result would be σ what is not allowed). There is
always an antenna (at least quasi-antenna) in the graph, so the homotopy implies the acyclicity.

B.3 Results for Subsection 7.1

The following three lemmas are necessarily calculations used in the proof of Propositions 7.3 and 7.4.

Lemma B.3.
(

AaV̇3fHGC−1,0,∆
)

is acyclic for odd a ≥ 3.

Proof. Like in the proof of Propositions 7.3 and 7.4 we set up a spectral sequence on the total valence of nonchosen vertices,
including hairs, and get two classes that survive second page: λ1∪̇σa−1 and ċ(λa). Let

ξ :=

a−1∑
i=1

a−i−1∑
j=0

(−1)i
( a− 1

i, j, a− i− j − 1

)
a−i−j−1 j

i

∈ V̇ a3

where the upper vertex is chosen. We will work also with

ξ̄ :=

a−1∑
i=0

a−i−1∑
j=0

(−1)i
( a− 1

i, j, a− i− j − 1

)
a−i−j−1 j

i

= ξ +

a−1∑
j=0

(a− 1

j

)
a−j−1 j

.
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It is not an element of AaV̇3fHGC−1,0 because it has terms with an isolated vertex. It holds that

∆(ξ̄) =

a−1∑
j=0

a−j−1∑
i=0

(−1)i
( a− 1

i, j, a− i− j − 1

)
∆


a−i−j−1 j

i


= 2

a−1∑
j=0

a−j−1∑
i=1

(−1)i
(a− 1)!

(i− 1)!j!(a− i− j − 1)!

a−i−j−1 j

i−1

+ 2

a−1∑
j=0

a−j−2∑
i=0

(−1)i
(a− 1)!

i!j!(a− i− j − 2)!

a−i−j−2 j

i

= 0,

The second sum after substitution i − 1 → i gives exactly negative of the first sum, hence the result is zero. Recall that
ċ(Γ ) = ∆0(Γ ∪̇σ0) where ∪̇σ0 means adding a stair whose dot becomes chosen, and ∆0 connects a hair to the chosen vertex.
Therefore

∆(ξ) = ∆(ξ̄)−∆


a−1∑
j=0

(a− 1

j

)
a−j−1 j

 = −ċ

a−1∑
j=0

(a− 1

j

)
a−j−1 j

 .

Let

ν :=

a−1∑
j=1

(a
j

)
a−j j

,

ν̄ :=
a∑
j=0

(a
j

)
a−j j

= ν + 2
a

.

It holds that

∆(ν̄) =

a∑
j=0

a!

j!(a− j)!

(a− j)
a−j−1 j

+ j
a−j j−1

 =

a−1∑
j=0

2a
(a− 1

j

)
a−j−1 j

,

∆(ν) = ∆(ν̄)− 2aλa,

∆(2aξ + ċ(ν)) = 2a∆(ξ) + ċ(∆(ν)) = −2aċ(λa).

Element 2aξ + ċ(ν) contains λ1∪̇σa−1 that survives the second page of the spectral sequence, and the target is exactly
multiple of λa that also survives, so the two cancel each other. That was to be demonstrated.

Recall (7.2):

ρa :=

a−1∑
i=1

(−1)i

i!(a− 1− i)!
σi ∪ λa−i ∈ AaV3fHGC−1,0.

Lemma B.4. For even a ≥ 2 it holds that

∆(ρa) = 0.
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Proof.

∆(ρa) =

a−1∑
i=1

(−1)i

i!(a− i− 1)!
∆


a−i−1

i


=

a−1∑
i=1

(−1)i

(i− 1)!(a− i− 1)!

a−i−1

i−1

+

a−1∑
i=1

(−1)i

(i− 1)!(a− i− 1)!

a−i−1

i−1

+

a−2∑
i=1

(−1)i

i!(a− i− 2)!

a−i−2

i

Addend i = 1 of the first term is zero because of symmetry reasons, exchanging two edges gives the sign −1. Other addends
of the first term for i cancel the third term for i− 1, while the second term is easily seen to be 0 for even a, concluding the
proof.

Lemma B.5. For even a ≥ 2 it holds that

c(ρa) = 0.

Proof. Because of the symmetry c(λa) = 0 for every a ≥ 1. Therefore

c(ρa) =

a−1∑
i=1

(−1)i

i!(a− 1− i)!
c(σi) ∪ λa−i =

a−1∑
i=1

(−1)i

(i− 1)!(a− 1− i)!
λi ∪ λa−i

Exchanging edges gives λi ∪ λa−i = −λa−1 ∪ λi, so the substitution i→ a− 1 gives

c(ρa) = −
a−1∑
i=1

(−1)a−1

(i− 1)!(a− 1− i)!
λi ∪ λa−i.

For a even this is exactly negative of the upper expression, so c(ρa) = 0.

B.4 The morphisms πf

The following three lemmas are needed to define the morphisms πf in Subsection 7.6. Recall (7.9):

Σm =
∑
ki≥0∑
i
iki=m

∏
i>0

(−1)ki

ki!((2i+ 1)!)ki

⋃
i>0

σ
∪ki
2i+1,

and that we mean Γ ∪Σ0 = Γ .

Lemma B.6. For every m ≥ 1 it holds that

(δ +∆)(Σm) = 0.
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Proof. We first calculate δ(Σm). In all sums, products and unions i, i′ and j are ≥ 1.

δ(Σm) =
∑
ki≥0∑
i iki=m

∏
i

(−1)ki

ki!((2i+ 1)!)ki

∑
i

kiδ (σ2i+1) ∪ σ∪ki−1
2i+1 ∪

⋃
j 6=i

σ
∪kj
2j+1

 =

=
∑
ki≥0∑
i
iki=m

∑
i

ki>0

(−1)ki

(ki − 1)!((2i+ 1)!)ki

∏
j 6=i

(−1)kj

kj !((2j + 1)!)kj

i−1∑
h=1

(2i+ 1

2h

)
2h 2i−2h+1

∪ σ∪ki−1
2i+1 ∪

⋃
j 6=i

σ
∪kj
2j+1 =

= −
∑
ki≥0∑
i
iki=m

∑
i

ki>0

i−1∑
h=1

 1

(2h)!(2i− 2h+ 1)!
2h 2i−2h+1



∪
(

1

(ki − 1)!

(
−1

(2i+ 1)!
σ2i+1

)∪ki−1
)
∪
⋃
j 6=i

(
1

kj !

(
−1

(2j + 1)!
σ2j+1

)∪kj)
=

= −
∑
i,i′

∑
kj≥0

i+i′+
∑

j jkj=m

 1

(2i)!(2i′ + 1)! 2i 2i′+1

 ∪⋃
j

(
1

kj !

(
−1

(2j + 1)!
σ2j+1

)∪kj)
.

Let us now calculate ∆(Σm):

∆(Σm) =
∑
ki≥0∑
i
iki=m

∏
i

(−1)ki

ki!((2i+ 1)!)ki

∑
i

ki(ki − 1)(2i+ 1)
2i 2i+1

∪ σ∪ki−2
2i+1 ∪

⋃
j 6=i

σ
∪kj
2j+1+

+
∑
i,i′

i6=i′

kiki′ (2i+ 1)
2i 2i′+1

∪ σ∪ki−1
2i+1 ∪ σ∪ki′−1

2i′+1
∪
⋃

j 6=i,i′
σ
∪kj
2j+1

 =

=
∑
ki≥0∑
i iki=m

∑
i

ki≥2

 1

(2i)!(2i+ 1)! 2i 2i+1

 ∪( 1

(ki − 2)!

(
−1

(2i+ 1)!
σ2i+1

)∪ki−2
)
∪

∪
⋃
j 6=i

(
1

kj !

(
−1

(2j + 1)!
σ2j+1

)∪kj)
+

+
∑
ki≥0∑
i
iki=m

∑
i,i′

i 6=i′;ki,ki′≥1

 1

(2i)!(2i′ + 1)! 2i 2i′+1

 ∪( 1

(ki − 1)!

(
−1

(2i+ 1)!
σ2i+1

)∪ki−1
)
∪

∪
(

1

(ki′ − 1)!

(
−1

(2i′ + 1)!
σ2i′+1

)∪ki′−1
)
∪
⋃
j 6=i

(
1

kj !

(
−1

(2j + 1)!
σ2j+1

)∪kj)
=

=
∑
i

∑
kj≥0

2i+
∑

j
jkj=m

 1

(2i)!(2i+ 1)! 2i 2i+1

 ∪⋃
j

(
1

kj !

(
−1

(2j + 1)!
σ2j+1

)∪kj)

+
∑
i,i′

i 6=i′

∑
kj≥0

i+i′+
∑

j jkj=m

 1

(2i)!(2i′ + 1)! 2i 2i′+1

 ∪⋃
j

(
1

kj !

(
−1

(2j + 1)!
σ2j+1

)∪kj)

=
∑
i,i′

∑
kj≥0

i+i′+
∑

j
jkj=m

 1

(2i)!(2i′ + 1)! 2i 2i′+1

 ∪⋃
j

(
1

kj !

(
−1

(2j + 1)!
σ2j+1

)∪kj)
.

We get exactly the negative expression of δ(Σm), so (δ +∆)(Σm) = 0.
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Lemma B.7. For every Γ ∈ fGC≥1
0 and m ≥ 0 it holds that

m−1∑
n=0

1

(2n)!

(
∆
(
χ2n(Γ ) ∪Σm−n

)
−∆χ2n(Γ ) ∪Σm−n − χ2n(Γ ) ∪∆(Σm−n)

)
=

= −
m∑
n=0

1

(2n)!

(
δχ2n(Γ )− χ2nδ(Γ )

)
∪Σm−n,

m−1∑
n=1

1

(2n− 1)!

(
∆
(
χ2n−1(Γ ) ∪Σm−n

)
−∆χ2n−1(Γ ) ∪Σm−n − χ2n−1(Γ ) ∪∆(Σm−n)

)
=

= −
m∑
n=1

1

(2n− 1)!

(
δχ2n−1(Γ )− χ2n−1δ(Γ )

)
∪Σm−n.

Proof. Let us prove only the first equation, while the second equation is similar. We make notations such that the claim is∑
Ln = −

∑
Rn. Ln is exactly the part of ∆

(
χ2n(Γ ) ∪Σm−n

)
that connects χ2n(Γ ) with Σm−n. It can be done in two

ways, a hair from χ2n(Γ ) connects to a star in Σm−n, or a star from Σm−n connects to χ2n(Γ ). In both cases “a flower”
with 2 or more hairs is added to χ2n(Γ ). Let fk be a map that adds a flower with k hairs to a vertex in all possible ways.
In all sums i and j are ≥ 1. It holds that:

Ln =
1

(2n)!

∑
kj≥0∑

j
jkj=m−n

∏
j

(−1)kj

kj !((2j + 1)!)kj

∑
i

ki
(
2nf2i+1χ

2n−1(Γ ) + (2i+ 1)f2iχ
2n(Γ )

)
∪ σ∪ki−1

2i+1 ∪
⋃
j 6=i

σ
∪kj
2j+1 =

= −
∑
i

∑
kj≥0

i+
∑

j
jkj=m−n

(
1

(2i+ 1)!(2n− 1)!
f2i+1χ

2n−1(Γ ) +
1

(2i)!(2n)!
f2iχ

2n(Γ )

)
∪
⋃
j

(
1

kj !

(
−1

(2j + 1)!
σ2j+1

)∪kj)
=

= −
∑
i

(
1

(2i+ 1)!(2n− 1)!
f2i+1χ

2n−1(Γ ) +
1

(2i)!(2n)!
f2iχ

2n(Γ )

)
∪Σm−n−i.

On the other side there is

Rn =
Σm−n

(2n)!
∪
∑
x

(
1

2
sx(χ2n(Γ ))− ax(χ2n(Γ ))− h(x)ex(χ2n(Γ ))−

1

2
χ2n(sx(Γ )) + χ2n(ax(Γ ))

)
,

where x runs through vertices of Γ . It is clear that sx(χ2n(Γ )) = χ2n(sx(Γ )). In χ2n(ax(Γ )) hairs are added to vertices of
Γ or to the new vertex of the antenna. Terms −ax(χ2n(Γ )) and −h(x)ex(χ2n(Γ )) cancel exactly the terms of χ2n(ax(Γ ))
where no or one hair is added to the new vertex. So

Rn =
Σm−n

(2n)!
∪

2n∑
i=2

(2n

i

)
fi(χ

2n−i(Γ )) =
2n∑
i=2

1

i!(2n− i)!
fi(χ

2n−i(Γ )) ∪Σm−n.

Now a simple play with the sums leads to the result.

Lemma B.8. For every Γ ∈ BbfGC≥1
0 and m ∈ Z of the same parity as b it holds that

(δ +∆)πm(Γ ) = πm(δ +D∇)(Γ )

in the space fHGC‡−1,0.

Proof. The left-hand side is

(δ +∆)πm(Γ ) = (δ +∆)


m−b

2∑
n=0

1

(2n)!
χ2n(Γ ) ∪Σm−b

2
−n −

m−b
2∑

n=1

1

(2n− 1)!
χ2n−1D(Γ ) ∪Σm−b

2
−n

 =

=

m−b
2∑

n=0

δ
(
χ2n(Γ )

)
(2n)!

∪Σm−b
2
−n +

m−b
2
−1∑

n=0

χ2n(Γ )

(2n)!
∪ δΣm−b

2
−n

−

m−b
2∑

n=1

δ
(
χ2n−1D(Γ )

)
(2n− 1)!

∪Σm−b
2
−n +

m−b
2
−1∑

n=1

χ2n−1D(Γ )

(2n− 1)!
∪ δΣm−b

2
−n

+

m−b
2∑

n=0

∆

(
χ2n(Γ ) ∪Σm−b

2
−n

)
(2n)!

−

m−b
2∑

n=1

∆

(
χ2n−1D(Γ ) ∪Σm−b

2
−n

)
(2n− 1)!

.
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Using Lemmas 2.5, B.6 and B.7, and Proposition 3.3 it follows that:

(δ +∆)πm(Γ ) =

m−b
2∑

n=0

χ2nδ(Γ )

(2n)!
∪Σm−b

2
−n +

m−b
2
−1∑

n=0

χ2n(Γ )

(2n)!
∪ δΣm−b

2
−n

−

m−b
2∑

n=1

χ2n−1δD(Γ )

(2n− 1)!
∪Σm−b

2
−n +

m−b
2
−1∑

n=1

χ2n−1D(Γ )

(2n− 1)!
∪ δΣm−b

2
−n

+

m−b
2∑

n=0

∆χ2n(Γ ) ∪Σm−b
2
−n

(2n)!
+

m−b
2
−1∑

n=0

χ2n(Γ ) ∪∆Σm−b
2
−n

(2n)!

−

m−b
2∑

n=1

∆χ2n−1D(Γ ) ∪Σm−b
2
−n

(2n− 1)!
+

m−b
2
−1∑

n=1

χ2n−1D(Γ ) ∪∆Σm−b
2
−n

(2n− 1)!
=

=

m−b
2∑

n=0

(
χ2nδ(Γ )

(2n)!
∪Σm−b

2
−n

)
−

m−b
2∑

n=1

(
χ2n−1Dδ(Γ )

(2n− 1)!
∪Σm−b

2
−n

)

+

m−b
2∑

n=1

χ2n−2D∇(Γ )

(2n− 2)!
∪Σm−b

2
−n.

The right-hand side of the claim is πm(δ(Γ ) + D∇(Γ )). The first term under πm is in BbfGC≥1
0 , and the second one

is in Bb+2fGC≥1
0 , so by Propositions 3.3 and 3.4 it follows that

πm(δ +D∇)(Γ ) =

m−b
2∑

n=0

1

(2n)!
χ2nδ(Γ ) ∪Σm−b

2
−n −

m−b
2∑

n=1

1

(2n− 1)!
χ2n−1Dδ(Γ ) ∪Σm−b

2
−n

+

m−b
2
−1∑

n=0

1

(2n)!
χ2nD∇(Γ ) ∪Σm−b

2
−n−1

−

m−b
2
−1∑

n=1

1

(2n− 1)!
χ2n−1DD∇(Γ ) ∪Σm−b

2
−n−1

.

This is the same result as on the left-hand side, what was to be shown.

C New waterfall mechanism

In this section of appendix we will use other results from the literature and give an idea what these results, together with
our result, imply. More precisely, we will explain the “waterfall mechanism” introduced in [6], and give some examples.

There is a Lie bracket on HGCm,n defined as

[Γ1, Γ2] = ∆(Γ1 ∪ Γ2)−∆Γ1 ∪ Γ2 − Γ1 ∪∆Γ2, (C.1)

i.e. it transforms a hair from one graph to an edge connecting to the other graph. Let

h1 :=
∑
k≥1

1

(2k + 1)!
σ2k+1. (C.2)

It is a Maurer-Cartan element in HGCn−1,n. Recall that χ(1) adds a hair in all possible ways. We have the following
theorem.

Theorem C.1 ( [16,17,19,6]). There are quasi-isomorphisms(
fGCc≥2

n , δ
)
→
(

HGCn,n, δ + χ(1)
)
,

K⊕
(

fGCc≥2
n , δ

)
→ (HGCn−1,n, δ + [h1, ·]) .

Furthermore the spectral sequence obtained by the filtration by number of hairs abuts at the second page in the first case.

We call the spectral sequence arising from the deformed differential of Theorem 1.1 the first spectral sequence, and the
one arising from the deformed differential of Theorem C.1 the second.

The convergence of both spectral sequences implies that the hairy graph cohomology classes must come “in pairs”, apart

from classes that come from fGCc≥2
n in the second spectral sequence. More concretely, given a hairy graph cohomology

class Γ , it will survive up to some page of the spectral sequence, on which it is either killed by or kills (the image of)
another hairy graph cohomology class.

Non-loop classes [Γ ] ∈ H(GCn, δ) are sent to [χ(1)(Γ )] in Theorem C.1, so those classes always have 1 hair. Loop
classes are sent differently, see [16] for more details. Let Γ live in tri-degree

(cohom. degree, number of hairs, e− v) = (d, h, b).
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Then the “partner class” from the first spectral sequence lives in tri-degree (d + 1, h − j, b + j) (or (d − 1, h + j, b − j))
for some yet unknown positive integer j. Then the “partner class” from the second spectral sequence lives in tri-degree
(d+ 1, h+ 1, b) (or (d− 1, h− 1, b)), since the spectral sequence abuts on the second page.

Now, using the constraints provided by the first and the second spectral sequences together, we may construct a large
set of hairy graph cohomology classes from (assumed to be known) non-hairy classes. Concretely, we pick up a non-hairy
class and embed it into the hairy complex, find its partner from the first spectral sequence, then partner’s partner from the
second spectral sequence, then its partner again from the first spectral sequence etc., until at some point we reach another
hairy graph cohomology class that comes from non-hairy one.

For an illustration of the process, see the computer generated table of the hairy graph cohomology in Figures 19 and
21, in which (some of) the cancellations in the two spectral sequences have been inscribed. In Figure 20 we see a string of
4 classes formed by waterfall mechanism.

This mechanism was described and proven in [6] for even n. It was also described for odd m where it was only
conjectured.

0 1 2 3 4 5 6 7

9 22

8 11 23

7 22 54 14

6 11 23 35, 13 45

5 12 34 68 18

4 11 13 25 37, 15 49, 37

3 12 14 36 48

2 13 15 27 29

1 14 16 28 210, 17 19

Fig. 19 [6, Figure 2] Computer generated table of the dimensions of the hairy graph cohomology dimH(HGC−1,1). The
rows indicate the number of hairs h (↑), the columns b = e − v (→). A table entry 13 means that there the degree 3
subspace is one-dimensional. The arrows indicate (some of) the cancellations of classes in the two spectral sequences. The
computer program used approximate (floating point) arithmetic, so the displayed numbers should not be considered as
rigorous results.
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