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ABSTRACT
The Android Application Programming Interface provides the nec-
essary building blocks for app developers to harness the functional-
ities of the Android devices, including for interacting with services
and accessing hardware. This API thus evolves rapidly to meet
new requirements for security, performance and advanced features,
creating a race for developers to update apps. Unfortunately, given
the extent of the API and the lack of automated alerts on important
changes, Android apps are suffered from API-related compatibility
issues. These issues can manifest themselves as runtime crashes
creating a poor user experience. We propose in this paper an au-
tomated approach named CiD for systematically modelling the
lifecycle of the Android APIs and analysing app bytecode to flag us-
ages that can lead to potential compatibility issues. We demonstrate
the usefulness of CiD by helping developers repair their apps, and
we validate that our tool outperforms the state-of-the-art on bench-
mark apps that take into account several challenges for automatic
detection.
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• Software and its engineering → Software notations and
tools;
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1 INTRODUCTION
Modern software systems are typically designed following a model
in which the core of the system (e.g., SDK) is usually accessible
via an Application Programming Interface (API) that lists the set
of “entry points" to the system. While this model allows to easily
leverage the core of the system, any evolution of the API can lead to
compatibility issues which may inconvenience end-users. Android
is such a system where apps rely on framework APIs to access
Android stack functionalities on the device, ranging from inter-
application communication facilities [1, 2] to hardware interactions.
The Android framework, however, evolves rapidly, with about 300
releases shipped in a few years on tens of thousands of device
models [3]. Thus, although Android implements a mechanism for
enabling app developers to specify the API level on which their apps
should run, it is common to see reports of compatibility issues faced
by users when running apps: runtime crashes with error messages
often revealing that there is no such API methods or the behaviour
of such methods is not initially expected by developers [4–6].

In the Android ecosystem, developers have limited control on
the device where their apps will be run. With theminSdkVersion and
maxSdkVersion manifest parameters, developers can constrain the
Android versions, hence the API levels, that their apps are going to
support. Unfortunately, the practice of setting such attributes is not
yet clearly established in the development community. For example,
We have found that the minSdkVersion attribute is not taken into
account by 9 F-Droid apps [7] despite a strong recommendation in
Android documentation to app developers for setting this attribute
in all apps. Indeed, not applying the minimum API level or applying
with a wrong level (e.g., lower than the least needed level) can lead
to scenarios where backward compatibility issues will arise: some
APIs used in the app code are actually not available in some older
versions of Android, resulting in unfortunate crashes. When the
minSdkVersion attribute is not specified in an app, any Android
operating system would accept its installation since no runtime
compatibility issues can be foreseen at that time. In contrast, the
Android documentation does not recommend to set themaxSdkVer-
sion attribute. Yet, not setting the maximum API level may still lead
to latent forward compatibility issues as some used API methods
may be deprecated in newest versions of the platform. Actually, the
recommendation is due to the fact that, in order to support forward-
compatibility, Android maintainers simply hide (e.g., with@hide
annotation, making the method unavailable during compilation,
but reachable in the on-device stack) the API method instead of
completely removing it from the framework. As a result, it is no
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longer accessible from the developer’s point of view (because the
API is no longer in the public SDK) but still accessible at runtime
(because it is still available in the framework1). Unfortunately, as
demonstrated by Li et al. [8], hidden Android APIs are also subject
to removal or invasive changes due to the rapid evolution of An-
droid systems. Thus, the recommendation to Android developers
on forward compatibility may actually lead to more latent issues
when deprecated APIs no longer meet their usage contract.

From a market maintainer’s point of view, a proliferation of apps
with API compatibility issues can be detrimental in securing the
loyalty of a too-often inconvenienced user base. This is especially
harmful when the market is under competition with others (e.g., in
regions such as China where the official market is not predominant).
Thus, it could be a key asset for market maintainers to systemat-
ically analyze and identify app compatibility issues that could be
sent automatically to developers to ease and enforce the fixes.

A few works in the literature have investigated API compat-
ibility issues [9–12]. Most recently, Wei et al. have focused on
fragmentation-induced compatibility issues [9]. They have empir-
ically analyzed some issue reports to manually build a model
expressing common patterns of compatibility issues related to An-
droid fragmentation. The excerpt below shows the built model for
an example API: besides the signature of the flagged API method,
the module provides additional information in the issue report
where a relevant compatibility issue was filed.
1 "APISignature":"<android.view.View: void setAlpha(float)>",
2 "conditions": { "SDK":"11" },
3 "additionalInfo": "The API is introduced in API 11, [URL]"

Unfortunately, as explicitly acknowledged by the authors, their
FicFinder approach implies a labour-intensive process with practi-
cal limitations for manually identifying, extracting, and building
models for a large number of issue reports. In the current prototype,
the authors have managed to model only 20 API methods that may
cause compatibility issues: this coverage is very minimal given
that thousands of methods are relevant to the API compatibility
problem.

Our work, therefore, generalizes FicFinder to all API compati-
bility issues, aiming at being systematic in the mining of Android
framework versions to model the lifecycle of all API methods, and
being more thorough in the analysis of apps to detect potentially
problematic usages with reduced false positives. We expect our
approach to be used to (1) provide better user experience. When a
user downloads/installs an app, our approach can be applied before-
hand to check if the app is compatible with her/his device. Other-
wise, users would have wasted time and bandwidth to install an app
that cannot be properly used. (2) support market maintainers. With
our approach, market maintainers can have an overview on the
API ranges that their hosted apps support and thus can recommend
necessary updates that developers must perform for their apps or
even purge some problematic apps (e.g., incompatible to majority
devices) for avoiding bad user experiences. (3) identify potential
developer mistakes. As experimentally illustrated in the evaluation
section, app developers are likely to make mistakes on compatibil-
ity issues, especially when @TargetApi, @SuppressLint("NewApi")

1The public SDK and the framework code running on a device are different although
they are compiled from the same source code.

annotations are incorrectly used (i.e., modern IDEs are not capable
of highlighting such compatibility issues).

Overall, this paper reports on the following contributions:
• We provide an overview of Android API evolution to quantify
the extent of cases when compatibility issues may arise in the
Android ecosystem. We also showcase real-world examples of
API-related compatibility issues to qualify their impact during
app execution.

• We design and implement CiD, an approach for identifying com-
patibility issues directly from Android app bytecode (because
generally source code is difficult to obtain) based on a thorough
modelling of API lifecycle and a static analysis of APIs within
app code.

• We demonstrate the efficiency of CiD by i) detecting compatibil-
ity issues in real-world apps, ii) outperforming state-of-the-art
tools on benchmark apps and iii) producing issue reports that
are acknowledged and fixed by development teams. Developers
of seven open-source Android apps have confirmed the compati-
bility issues that we submitted to them (through issue reports).
The fix was immediately performed for two of the apps.

2 ANDROID API COMPATIBILITY ISSUES
2.1 Background on API Levels
Android implements a scheme based on API levels to manage app
compatibility across the variety of devices operated by a large
range of OS versions. As the Android operating system evolves,
each released version is associated with an API level representing
a unique identifier for a set of functionalities that are implemented.
Actually, the practice in the Android ecosystem is that each version
is referred to in several ways: its Android version number (e.g.,
Android 2.3.2), a code name (e.g., Nougat), or the associated API
level (e.g., API level 24) [13].

When programming apps using the Android Software Develop-
ment Kit (SDK), developers leverage API routines available in the
provided frameworks which are each associated with an Android
version, and thus targets each a specific API level. Although an
app may be developed and tested against a specific framework,
developers can leverage the API level identifier to indicate which
version of the platform they require [14]. Similarly, API level is
used to negotiate the installation of apps on user’s devices to miti-
gate compatibility issues. Typically, an app Manifest includes three
attributes for these specifications:
• minSdkVersion, i.e., the minimum API level on which the app
is designed to run. Google Play leverages this attribute to filter
out such devices that have a lower SDK platform version than
the declared value of minSdkVersion. In other words, users, who
have a device with a platform version lower than minSdkVersion,
will not even see this app on Google Play.

• targetSdkVersion: The most appropriate API level on which the
app is designed to run. If this attribute is not explicitly set, the
default value will be set to the value of minSdkVersion.

• maxSdkVersion: The maximum API level on which the app is
designed to run. As explicitly indicated in documentation [15],
in order to be forward-compatible (or backward-compatible from
the Android framework point of view), declaring this attribute is
not recommended by Google.
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2.2 Example Issues
Despite regular changes in its API, Android development team is
taking a few steps to ensure that, in general, forward and backward
compatibility issues can be avoided. Consider the illustration in
Figure 1.

System
API Level 19

System
API Level 21

System
API Level 22

Forward
Compatibility

Backward
Compatibility

targeted
sdk version

targeted
sdk version

app1 app2

Figure 1: Examples of Forward and Backward Compatibility.

• Forward Compatibility implies that a given app developed with
API level 19 as the target could be executed seamlessly on de-
vices running Android systems at API level 21 and potentially
above. It is officially advertised [16] to app developers that for-
ward compatibility is assured since almost all changes to the API
are additive. Android documentation has even recommended
developers to not set the maxSdkVersion.

• Backward Compatibility implies that a given app developed with
API level 22 as the target should be able to execute normally on
devices running Android systems at API level 21 and potentially
below. The Android developer documentation explicitly warns
that Android apps are not necessarily backward compatible [17].

2.2.1 Forward Compatibility Issues. On one hand, forward com-
patibility is important in the Android ecosystem since most Android
devices (notably smartphones) receive over-the-air updates, and
previously installed apps may fail to run properly when the system
API level changes. Although Android documentation emphasizes
that changes to the API do not generally threaten forward com-
patibility, we have come across several cases where API changes
for improving security or API robustness can create compatibility
issues. In the example of Listing 1, the Wikipedia app, listed in
the F-Droid repository, uses an API method which was removed
since API level 19. This app, however, is still supposed to run on
most recent versions of Android. This is possible as the concerned
API method is actually only removed from the public SDK. In real-
ity, the method remains available in the software stacks (i.e., the
framework) shipped with devices.

1 public abstract class SwipeableBottomDialog extends
DialogFragment {

2 public void setContentPeekHeight(int height) {
3 contentPeekHeight = height;
4 if (listView != null) {
5 //This API is removed after API level 19
6 listView.setSelectionFromTop(SPACE_VIEW_POS ,

-contentPeekHeight);
7 }}}

Listing 1: An Examples of Forward Compatibility Issue. The
Code Snippet is Extracted from a Real App named Wikipedia,
which is currently available in F-Droid.

This guarantee of availability of API methods in new versions
may however involve latent issues as there might be legitimate
reasons to remove an API. For example, as described in Listing 2, the
behaviour of an API may change in new releases, creating forward

compatibility issues. In this case, app code must be rewritten to
handle the newly thrown exception.

1 //(1) original definition
2 public final int getAssetInt () {
3 return mAsset;
4 }
5 //(2) removed from the public SDK
6 ci: f8f09a15a409f373f22aa475bb0defd264088e4f
7 Hide AssetInputStream.getAssetInt
8 //(3) added it back again to the public SDK
9 ci: b1bd1fe7fd9ed6b6e4518713ef5f5716a84d97e8
10 Revert "Hide AssetInputStream.getAssetInt."
11 //(4) change the API's behavior
12 ci: 2d19d202bdf6c16b8e01b73f3a742b2670bff907
13 Make getAssetInt throw unconditionally.
14 public final int getAssetInt () {
15 throw new UnsupportedOperationException ();
16 }

Listing 2: Evolution samples of API getAssetInt() of class
AssetInputStream.

We now enumerate cases where API changes actually involve
removals or invasive changes which, although they may not lead
to method availability errors, will maintain poor user experience
in terms of security, robustness or even unexpected behavior:
• In API level 23, Apache HTTP Client class was entirely replaced
by the HttpURLConnection class to improve performance, since
the latter reduces network usage (e.g., through transparent com-
pression and response caching) and minimizes energy consump-
tion.

• To provide users with greater data protection, starting from API
level 23, Android removes programmatic access to the device’s
local hardware identifier for apps using the Wi-Fi and Bluetooth
APIs: in recent versions, API methodsWifiInfo.getMacAddress()
and BluetoothAdapter.getAddress() now return the default con-
stant value of 02:00:00:00:00:00. This behavior change has trig-
gered a lot of stack overflow discussions [18].

• To facilitate multitasking, API level 21 implements new features
for concurrent documents and activities. In this context, the API
method ActivityManager.getRecentTasks() became problematic as
it could leak personal information about documents. Thus, this
API method had to be deprecated in public SDK, and modified in
on-device stack to return a small subset of data.

Even if Google claims that Android apps do not suffer from
forward compatibility issues, mainly because removed
APIs are still kept in the framework side as hidden APIs,
forward compatibility induced APIs are still encouraged
to be replaced because of security and performance con-
cerns. Furthermore, since hidden APIs are also subject to
remove or change, forward compatibility is also not fully
guaranteed in practice anyway.

2.2.2 Backward Compatibility Issues. On the other hand, with
the rapid evolution of Android frameworks, backward compatibility
is often notmet for new generation of apps on old devices. Generally,
in such scenarios, apps crash when the old system fails to locate
the called method. Listing 3 describes the case of a real-world
app, YASFA1 developed as a simple forms app [19], which uses
an API method only available starting at API level 11. On any older
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systems, which however are marked as compatible with the app
(by setting the minSdkVersion attribute), execution of this simple
app will terminate with a crash (i.e., lines 11-14).

1 public class FButton extends Button {
2 public boolean onTouchEvent(MotionEvent event) {
3 // setAlpha(float) is introduced at API level 11
4 if (event.getAction () == MotionEvent.ACTION_DOWN) {
5 ... ...
6 setAlpha (0.4f);
7 }else if (event.getAction () == MotionEvent.ACTION_UP) {
8 setAlpha (1);
9 }}}
10 //Crash with No Such Method Error
11 java.lang.NoSuchMethodError: com.yasfa.views.FButton.setAlpha
12 at com.yasfa.views.FButton.onTouchEvent(FButton.java :42)
13 ... ...
14 at dalvik.system.NativeStart.main(Native Method)

Listing 3: An Example of Backward Compatibility Issue. The
Code Snippet is Extracted from a Real App named YASFA1,
which is currently available in F-Droid. API setAlpha is defined
in class View from whom class Button (or FButton) extends.

As recommended by Google and shown in Listing 4, in order to
keep backward compatibility, developers should check at runtime
the supported API level of the running device (e.g., line 1) and then
decide whether or not to access the backward compatibility induced
APIs. Actually, as what we will show in our evaluation section, even
if developers know that they need to protect compatibility-induced
APIs, it is still not trivial for inexperienced developers to take care
of all the accessed problematic APIs, resulting in still compatibility
issues.

1 //App Paper -Wallet (Available in F-Droid)
2 // Example (1)
3 if (Build.VERSION.SDK_INT >= 23) {
4 // getColor () is introduced at level 23
5 return context.getColor(id);
6 } else {
7 return context.getResources ().getColor(id);
8 }
9 // Example (2)
10 if (Build.VERSION.SDK_INT >= 11 && clipboardListener != null) {
11 clipboardHelper. removeClipboardListener(clipboardListener);
12 }
13 public void removeClipboardListener(Runnable runnable) {
14 if (runnable != null && listeners.containsKey(runnable)) {
15 // removePrimaryClipChangedListener () is introduced at level

11
16 clipboard.removePrimaryClipChangedListener(

listeners.get(runnable));
17 }}
18 // Example (3)
19 AlarmManager am = null;
20 if (Build.VERSION.SDK_INT >= 19) {
21 am = (AlarmManager) getSystemService(Context.ALARM_SERVICE);
22 }
23 if (null != am) {
24 // isEncrypted () is introduced at API level 19
25 am.setExact(-1, -1, null);
26 }

Listing 4: Examples of Protecting the Access of Problematic
Android APIs.

Accessing backward compatibility induced APIs, without
proper protection, will simply result in app crashes, giving
poor experience to end-users.

2.3 Evolution of Android APIs
We further explicit the appearance of API compatibility issues by
studying the evolution of Android APIs.

2.3.1 Dataset Collection. To harvest all API versions we con-
sider the source code of the Android framework2. We extract all
public API methods, including the publicly accessible constructor
methods. At the moment, there are over 300 releases3 recorded on
the Android code base repository. Since, as previously discussed,
several releases can be associated to the same API level when the
accompanying changes (e.g., critical bug fixes) do not significantly
impact the API set, we focus on a single release per API level. In to-
tal, we have considered 24 releases for covering API levels 1 through
25 (level 20 remains for wearable devices only). We then build the
mapping between each API level and its associated public APIs.

2.3.2 Data Analysis. First, we compute the additions and re-
movals of APIs between consecutive API levels, from which we
observe that most changes to the public API are additive for intro-
ducing new functionality. Nevertheless, we note that in some evo-
lution (e.g., from API level 22 to API level 23), up to 6% (1921/30540)
of the API set has been removed.
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Figure 2: Life expectancy of public Android APIs. X-axis corre-
sponds to the number of API level generations before an API
method is removed from the code base. Y-axis presents the number
of APIs removed.

We then look into the statistics of changes beyond consecutive
releases by studying the life expectancy of public APIs within the
framework. An API method age is computed as the number of API
levels where the method is publicly accessible. Figure 2 shows that
most APIs indeed have always been available in the framework
since the beginning. However, a significant proportion of API meth-
ods stay available only at a few API levels. The use of such API
methods can thus lead to compatibility issues, either because they
are not yet available in the on-device Android stack, or because their
behaviour, which is either insecure or non robust, has warranted
their removal from the public API.

Finally, our investigation into the evolution of APIs has also high-
lighted the case of several APIs that are removed from and then
re-introduced again into the Android framework code. Such modi-
fication scenarios can cause latent compatibility issues as they are
often accompanied with significant changes in the API behaviour.
Table 1 describes examples of such APIs.

2Android framework code is open-sourced and is available at [3].
3A release is marked with a Git Tag on the Github repository.
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Table 1: Android APIs that are Added Back after Removed in an Old
Release.

API Introduced Removed Added Back
Gravity.getAbsoluteGravity 14 16 17

KeyEvent.getDeviceId 1 9 12
MotionEvent.getDeviceId 1 9 12

DatagramSocketImpl.getOption 1 5 6
DatagramSocketImpl.setOption 1 5 6

SocketImpl.getOption 1 9 14
SocketImpl.setOption 1 9 14

3 APPROACH
In view of the illustrative example issues provided above, to avoid
API compatibility issues, one should have sufficient knowledge on
the lifecycle of a given API. Then, after analysing the API call site
and the associated conditions for the call to occur, it is possible to
warn on potential issues. We contribute with a Compatibility Issue
Detector (CiD) approach, which not only aims at flagging potential
API compatibility issues but also at helping developers understand
better the identified compatibility issues. CiD performs static analy-
ses on both app and framework code to mine compatibility-related
issues.

Figure 3 depicts the three modules of CiD. The first module,
ALM, builds the API lifecycle model based on a mining of Android
framework revision history. In the second module, AUE, an analysis
is performed to locate and extract the usage schema of Android
APIs in an app. This module considers not only core app code
but also any to-be dynamically loaded code available in the app
package. Finally, the analysis keeps a summary of the conditions
under which the extracted APIs could be reached. Finally, the third
module, ACA, evaluates the output of ALM and AUE altogether
to flag any potential API compatibility-related issue. We provide
further details on the working process of these modules in the
remainder of this section.

ALM
API Lifecycle Modeling

AUE
API Usage Extraction

ACA
API Compatibility Analysis

Compatibility 
Issues 

Android
Framework

Android
App

CID

Figure 3: The working process of CiD.

3.1 API Lifecycle Modeling (ALM)
The goal of the ALM module is to produce a reliable and reusable
model that can be queried by and be integrated into any other
tool/approach where there is a need to query lifetime informa-
tion of a given Android API method. Let us consider the case
example of API method isDefaultNetworkActive() from class an-
droid.net.ConnectivityManager in the Android framework. By query-
ing ALM, one would quickly be informed that this API method has
been introduced with the release of API level 21 and is still present
in the latest release of Android. Building a complete and reliable
lifecycle of the API is however challenged by various programming
facilities:
• Inheritance. The first analysis challenge for ALM is related
to Java’s inheritance. In the framework code, a sub-class can

redefined API methods inherited from its super-class. Thus, when
this redefinedmethod is dropped out, ALM should keep track that
the API may still be available for this class since it is still implicitly
inherited from super-class with unchanged implementations.

• Generic type. Besides Java inheritance, which may complexify
the computation of an API’s lifetime, the existence of Generic
types can also impact the accuracy of API lifecycle modelling. As
an example, set() of class LinkedList (line 2 in Listing 5), is an
API that contains a generic type (E). A simple syntactic matching
between this collected signature with app code cannot readily
allow to find cases of usage (e.g., lines 3,4 in Listing 5).

• Varargs. Similar to API methods with generic types, some API
methods use varargs which will later challenge the detection of
their usage in Android apps. For instance, API remove(long...)
of class DownloadManager has a varargs parameter (line 6 in
Listing 5). The real usage of this API could be remove(long) or
remove(long,long) (lines 7,8 in Listing 5), and in any case will be
syntactically different from the method signature.

1 // Generic Programming
2 <java.util.LinkedList: E set(int ,E)>
3 <java.util.LinkedList: String set(int ,String)>
4 <java.util.LinkedList: String set(int ,Double)>
5 // Varargs
6 <android.app.DownloadManager: int remove(long ...)>
7 <android.app.DownloadManager: int remove(long)>
8 <android.app.DownloadManager: int remove(long ,long)>

Listing 5: Generic Type and Varargs Related APIs and Their
Example Instances.

Figure 4 illustrates the working process of ALM in three steps:

API Extraction API  Lifecycle 
Augmentation

API  Lifecycle
Summarization

Android
Framework

Android API 
Lifecycle Model

e.g., m1 --> [4, 18]

 

Figure 4: Workflow of the ALM module.

API extraction. We have collected all the public Android APIs
(including the publicly accessible constructor methods) from the
source code of the Android framework code base for 24 releases,
covering API levels from 1 (Oct. 2008) to 25 (Dec. 2016). The API
lifecycle modelling is then based on this history.

API information augmentation. To overcome the inaccura-
cies and misses that may unfold because of the challenges enu-
merated above (i.e., inheritance, generic type and varargs), ALM
includes an analysis step, which augments the collected API sig-
natures with information on the inheritance tree, the potential
concrete parameters and their associated types.

API lifecycle summarization. Finally, the API lifecycle is sum-
marized by differentiating every pair of API sets extracted for con-
tinuous API levels (e.g., API level x and x + 1). In this way, we can
accurately identify which APIs are introduced or removed in ver-
sion x + 1, and model the lifecycle of all Android APIs throughout
all versions. The yielded model can then be queried to establish
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for example that the lifetime of API hasTransientState() of class
android.view.View starts at API level 16 and ends at API level 25.

We remind the reader that the implementation of the ALM mod-
ule as well as its accompanying query interface is independent of the
implementation of CiD and is thus reusable for other approaches
and tools. The current implementation of CiD has actually pro-
vided a query interface for facilitating such reuse. Last but not the
least, the ALMmodule is implemented in a fully automated manner.
Hence, it can be automatically and regularly updated following the
updates of Android framework.

3.2 API Usage Extraction (AUE)
Given a third party developer app, CiD must first identify all API
methods that are leveraged in its code. To that end, we implement
the AUEmodule which extracts, from app bytecode, all the accessed
Android APIs, including such API methods that are called within to-
be dynamically loaded code. Figure 5 shows the working process of
AUE which is carried out in three steps: i) Locating additional code
(i.e., outside the main classes.dex code, ii) Building a conditional
call-graph (i.e., taking into account runtime checks of API levels),
and iii) Resolving API usage (i.e., collecting usage locations and
contexts of API methods).

Locating
Additional Code

Building
Conditional CG

Accessed Android 
API Set  

Android
App 

Resolving
API Usage

Figure 5: The working process of module AUE.

LocatingAdditionalCode. In addition to the primary app code,
which is assembled into classes.dex and located in the root directory
of a given app packaged file (i.e., apk), an Android app may also
include extra code that developers often hide in some separate
archive files packaged with the rest of items in the APK file. Such
additional code can then be loaded and executed at runtime via the
so-called dynamic code loading (DCL) mechanism. Since additional
code will also access Android APIs, a complete analysis should take
it into consideration in order to avoid missing compatibility issues
that may lead to runtime crashes.

With the AUE module, we focus on additional code that is stati-
cally available in APK file4. We reuse an existing heuristics-based
approach by Li et al. [20] to locate to-be-dynamically loaded code:
Given an app a, we unzip it and traverse all its embedded files, if
a given traversed file is an archive file (the file extension could
vary from dat, bin to db), we recursively look into it, to check if it
contains a dex file through its magic number (035). All retrieved
dex files (usually they also come as classes.dex) are then considered
for extracting APIs.

Building a Conditional Call Graph (CCG).Detecting the call
to an API method within app code does not necessarily warrant
4Some additional code may not be statically available as it is downloaded at runtime
from remote servers.

a check of this API lifetime to ensure that compatibility issues
may not arise. Indeed, developers often take steps, directly in the
code, to consolidate the access of actual calls on user’s devices
by checking dynamically the API levels as recommended in the
Android development guidelines. In other words, even if a given
Android app has accessed a problematic Android API, which may
induce API compatibility issues, we cannot report it as such without
checking if it is somehow protected by condition checkers.

The AUE module performs a backward data-flow analysis to
verify whether an API method is called under API level-related
conditions. In practice, the conditions for accessing an API may
not be identified in a straightforward manner. Some conditions
may be set well above in the call stack hierarchy or be set only for
constructing objects. Therefore, the backward data-flow analysis
must be inter-procedural and be aware of constructormethods
in order to avoid false positive results. Since the version check is
usually done with condition statements, the data-flow analysis also
needs to be path-sensitive.

To simplify the analysis process by AUE, we construct a special
call graph, which we refer to as a conditional call graph (CCG),
to support the inter-procedural, path-sensitive, constructor-aware
backward data-flow analysis. ACCG is defined as a tuple (V ,E,C, f ),
where V is a set of methods representing vertexes of the graph, E
is a set of directed edges connecting two methods (e.g., for edge
v1 → v2, v1 is the caller while v2 is the callee), C is a set of condi-
tions related to API level, and f : E → 2C is a function assigning
each edge a subset of conditions5. Given an edge e1 : v1 → v2,
f (e1) = {c1, c2}means that there are at least two different call paths
from method v1 to method v2 (one with condition c1 and the other
with condition c2). Figure 6 presents an example of CCG, which is
built by statically analysing the snippet code shown in Listing 4.

ClipboardManager
removePrimaryClipChangedListener()

[>= 11]

ClipboardHelper
removeClipboardListener()

MainActivity
onPause()

[ ]

Figure 6: Simplified Conditional Call Graph built by CiD for the
snippet code shown in Listing 4.

Resolving API Usage. Given the list of called API methods
and information on conditions that are applied to their call paths,
the AUE module can now accurately resolve the API usage. For
additionally identified dex files, we follow the same process to visit
all their statements in order to harvest all the referenced Android
APIs. So far, since we mainly focus on publicly accessible APIs (e.g.,
available in the Android SDK), we have not taken into account
reflective calls. For future work, we plan to integrate the reflection
analysis module of DroidRA [20] into this work so as to be also
aware of reflectively accessed APIs.

52C is the powerset of C , i.e., the set of all subsets of C (including the empty set and
C itself)
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3.3 API Compatibility Analysis (ACA)
Given an Android app, the output of ALM (based on analysis of
the framework) and the output of AUE (based on analysis of the
app bytecode), the ACA module matches lifecycle models with
information on the target API levels.

Each resolved API reported by AUE is queried against the API
lifecycle model interface which provides the lifetime of the API.
Then, ACA compares the lifetime of accessed APIs to the platform
constraints (cf., minSdkVersion) declared by developers in the app
manifest, and also with regards to the conditions under which they
are called as summarized by the conditional call graph built by
the AUE module. Let us take the snippet shown in Listing 4 again
as an example, although API removePrimaryClipChangedListener()
is introduced at level 11 and the declared minSdkVersion is less
than 11, thanks to the CCG, CiD knows that the API is accessed
with protections and therefore will not report it as a potential
compatibility issue. Based on this analysis, CiD can flag some API
usages as problematic and thus report them to the app developers
that their app may present some potential API-related compatibility
issues.

4 EVALUATION
In this work, we are interested in answering the following research
questions:
• RQ1: Is CiD effective in API compatibility issue detection? We
investigate the warnings of CiD on real-world apps to report on
potential false positives.

• RQ2: Are compatibility issues addressed by developers during app
updates?We investigate the output of CiD for consecutive ver-
sions of apps to quantify and qualify howAPI compatibility issues
have been fixed.

• RQ3: Can CiD provide useful information for app developers to
facilitate the diagnosis and repair of API compatibility issues?We
conduct a live study by filing bug reports to development teams
based on the warnings yielded by CiD on open-source apps.

• RQ4:How does CiD compare with existing tools? Finally, we build a
benchmark dataset of API-related compatibility issues in Android
apps taking into account different challenges for detecting them,
to evaluate the performance of CiD as well as the most recent
state-of-the-art, FicFinder [9].

4.1 RQ1: Issue Detection Effectiveness
To evaluate the effectiveness of CiD in detecting API compatibil-
ity issues, we run CiD on a dataset of open-source apps collected
from the F-Droid repository. We have considered for our experi-
ments the latest versions of 1,797 apps available in the dataset6.
Overall, CiD has reported a total of 21,002 forward and backward
compatibility issues for 891 apps. We also recorded, thanks to
the Conditional Call Graph built in the AUE module, 6,252 ad-
ditional cases where developers carefully protected APIs with con-
dition checks on the API level of the running device to avoid
compatibility issues. This check is generally performed against
the attribute Build.VERSION.SDK_INT. As marginal cases, we also
identified 163 apps which perform the API level checks with the

6Representing all the available apps on Dec. 2016.
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Figure 7: Distribution of the Number of Reported Compatibil-
ity Issues between F-Droid (open-sourced) and Google Play (close-
sourced) Apps. (F) Stands for forward compatibility issue warnings.
(B) Stands for Backward compatibility issue warnings

Build.VERSION.SDK attribute which is deprecated since API level
4. This is an interesting case where even the check condition code
added by developers presents itself forward compatibility issues.

Among the 21,002 unprotected issues reported, 11,247 are for-
ward compatibility warnings raised for 579 apps and 9,755 are back-
ward compatibility issues raised for 609 apps. Given the number of
warnings raised, and in the absence of third-party data or system
to validate such warnings, we resort to verify some of the reported
issues through executing the apps with manual interactions, e.g.,
observing crashes as in the following case studies:

Case Study: org.vi_server.red_screen. CiD reports a compat-
ibility issue for this app after detecting that it has accessed the
setSystemUiVisibility() API method without any runtime API level
check. CiD further details that (1) this API method is only available
from level 11 onwards and (2) it can be reached through the onCreate
method of component RedScreenActivity. Based on this information,
we are able to launch and explore the app for reaching the afore-
mentioned API and to expose the problem with an execution crash.
We then harvest the error messages through adb logcat command,
which confirms that this crash is due to API compatibility issue:

No such method error for
android.view.View.setSystemUiVisibility()7

Comparison between open and close sourced apps. Since
the AUE module of CiD works on bytecode of Android apps, we
are also capable of checking for compatibility issues on closed-
source apps from Google Play repositories. We focus on versions of
apps compiled in 2016, and randomly select 1,797 apps to compare
the distribution of API compatibility issues between open-source
and close-source apps. Figure 7 presents the distributions for both
datasets with and without normalizing based on app size. The
median value for F-Droid (F), Google Play (F), F-Droid (B) and
Google Play (B) are respectively 0, 1, 0, 14 issues per app, and 0, 1, 0,
6 issues per megabyte of app code. We have checked with the Mann-
Whitney-Wilcoxon (MWW) test [21] that the difference of median
values between F-Droid and Google Play is statistically significant
for both forward and backward compatibility issues: Close-source
apps have more compatibility issues than open-source apps.

RQ1: CiD is effective in detecting API compatibility issues.
Identified backward compatibility issues deserve more
attention from developers as they can lead to runtime
crashes.

7Note that this app does not crash on devices running latest platform versions. This
problem has been fixed immediately after we reported it to its developers.
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4.2 RQ2: Compatibility Fixes by Developers
Another means of assessing the warnings yielded by CiD is to
investigate the fixes performed by app developers in the history of
app updates. Since most developers do not consistently mention in
changelogs all fine-grained details on the changes performed, we
focus on verifying how and why CiD warnings are different from
one version to another. To that end, we leverage the AndroZoo [22]
dataset and build app version lineages for randomly selecting 2000
cases of updates. Each case is represented as a pair of apps (app1,
app2) sharing the same package name and signed with the same
developer certificate. In a given app lineage, app2 is the immediate
successor of app1: app2 has a higher8 version code than app1.

We run CiD on both apps of all 2,000 pairs involved in this study.
Because of exception raised during the static analysis (e.g., due to
timeout or known bugs of Soot) performed in the AUE module for
some apps, our investigation was eventually limited to 1,613 version
pairs. Among these pairs, the difference between the outputs of
CiD shows that 256 update cases have made changes that eliminate
API compatibility warnings. More concretely, a difference occurs
when, for a given API, CiD outputs a warning on app1 but not on
app2.

Compatibility issues are fixed either by removing/replacing the
API method or by inserting API level condition checks to prevent
any execution on devices where issues can arise. Table 2 further
summarizes the top five fixed APIs by removal/replacement or
condition checking for both forward and backward compatibility
issues. We observe that the top API methods whose usage are
being protected with condition checks are also the same that are
simply removed/replaced. We further note that a given API which
is problematic (in the sense that its usage may lead to compatibility
issues) is more likely to be removed/replaced than protected via
condition checks. This finding is in line with the expectation of
android maintainers: putting a condition check on the usage of an
API method does not fully take into account the security and/or
performance requirements that justify its deprecation.

Table 2: Top 5 Fixed APIs (via Removal/Replacement or Condition
Check Insertion) in Real-word Android Apps.

Removal Protection
API Life Counts API Life Counts

Forward Compatibility
Notification.setLatestEventInfo [1,22] 24 HttpEntityEnclosingRequestBase.setEntity [1,22] 10
HttpEntityEnclosingRequestBase.setEntity [1,22] 19 HttpResponse.getStatusLine [1,22] 8
BasicClientCookie.setDomain [1,22] 10 StatusLine.getStatusCode [1,22] 8
HttpEntity.getContent [1,8] 10 HttpEntity.getContent [1,22] 8
Array.newInstance [1,22] 10 Array.newInstance [1,8] 7

Backward Compatibility
View.setAlpha [11,25] 20 View.setAlpha [11,25] 12
ViewPropertyAnimator.setDuration [12,25] 14 ViewPropertyAnimator.setDuration [12,25] 11
ViewPropertyAnimator.alpha [12,25] 14 ViewPropertyAnimator.alpha [12,25] 11
View.animate [12,25] 13 View.animate [12,25] 10
Editor.apply [9,25] 12 View.setLayerType [11,25] 3

RQ2: During app updates, developers actually fix compati-
bility issues that CiD would have helped to flag. It should
be noted that the practice is more to remove/replace API
methods in app code rather than to protect their usage
with API level condition checks when they are deprecated.

8Generally, the versions are consecutive. However, since Androzoo may miss some
versions, sometimes the pair is not formed by strictly consecutive versions.

4.3 RQ3: Practical Usefulness of CiD
While warning on API usages that could be incompatible with some
on-device android stacks, CiD provides necessary information to
developers for quickly locating, debugging and eventually fixing
the reported issues. This includes information about the actual
lifetime of the reported API method in the framework, the call
chain to reach the flagged API usage, etc. To evaluate whether such
information is helpful in practice, we manually submit issue reports
to 56 F-Droid projects (one report per project based on the collected
warnings.) whose source code is publicly available on Github and
contains at least one API-related compatibility issue based on the
reports of CiD. Development teams have reacted on 20 out of 56
submitted issue reports9. We note that among the 20, six have been
systematically closed with a message indicating that “the project
is currently abandoned” or without any message that could help
assess the usefulness of the issue report. In another case, a close
message is formulated as “f-droid, won’t fix” suggesting that these
developers may feel overwhelmed by irrelevant messages from the
F-droid community. Nevertheless, seven of the issue reports are
acknowledged and confirmed by developers who have for example
tagged them as bugs (cf. details of apps in Table 3). Three of the
reports have initiated developer discussions but did not lead to a
final decision on fixes. We have noted that several of the bugs are
even fixed in a very short time, suggesting that the warnings and
details provided by our tool are indeed helpful for developers in
order to fix potential API compatibility issues.

After exchanging with developers, we have found that, in the
case of three apps, our tool has raised warnings that they consider as
false positives. Actually, in two of the cases, CiD is run on the latest
app version provided on F-Droid, which happens to be different
from the beta-version on Github. We have re-checked with CiD that
the version on Github does not present the API compatibility issue
raised previously. The other case of false positive is due to the use of
SDK attribute in condition checks: CiD does not consider it as valid
for API level condition checking as it is deprecated since API level
4. To limit related warnings to be treated as false positives, we have
updated CiD to take this attribute into account in the construction
of the conditional call graph.

Table 3: Experimental Results on the Usefulness of CiD.
App Name # Commits Dex Size Issue ID(s) Fix Commit

Rabbit Escape 1,785 1,872 K 478 -
ShareViaHttp 167 1,545 K 24 9ed54f

FRCAndroidWidget 285 320 K 32,33 fc0364
Nextcloud Notes 240 4,137 K 177 -
DragonGoApp 180 1,185 K 13 -
EnigmAndroid 54 1,792 K 9 -

Red Screen 6 4 K 2 31a560

RQ3: CiD can provide helpful information to developers for
quickly understanding, evaluating and eventually fixing
API compatibility issues that their apps may encounter.

9We aimed at reporting all identified compatibility issues. Unfortunately, we only
managed to successfully report 56 issues because our GitHub account was banned due
to spam suspicions.
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4.4 RQ4: Comparison with State-of-the-art
To the best of our knowledge, there is no state-of-the-art work that
specifically focuses on taming Android API compatibility issues.
FicFinder [9] is the closest work to ours on detecting compatibility
issues. We thus evaluate the performance of FicFinder and CiD
against two datasets for comparison purpose: 7 benchmark apps
that are developed internally within our team to cover the variety of
challenges mentioned in Section 3 and 1,797 real-world apps that
are collected from F-Droid. We remind the readers that the objective
of FicFinder is to solve Android fragmentation-induced compat-
ibilities issues that go beyond API compatibility issues by also
pinpointing other compatibility issues such as the device-specific
ones, which are however not the focus of our approach.

Benchmark Apps. Table 4 lists all the seven benchmark apps
and provides comparative results between FicFinder and CiD. Over-
all, CiD correctly resolves all the compatibility issueswhile FicFinder
analyzes correctly only two app cases: 1) Basic, where the issue-
induced API (i.e., setExact) is modeled by FicFinder and 2) Protec-
tion, where no issue is reported, which is expected as the issue-
induced API is accessed with protection. Except for these two cases,
FicFinder reports one false positive and 6 false negative results.
The false positive is reported because FicFinder does not consider
the case when constructor methods are involved in protecting the
access of APIs which is not available in all versions. The false nega-
tives are reported because the database of templates provided by
FicFinder at the moment is very small, and does not contain models
for the API methods used in these benchmark apps. It is also worth
to mention that FicFinder is not specifically designed for taming
API compatibility issues and its database is built through a sum-
mary of fixed compatibility issues, it is not systematic and thus
will likely miss some relevant APIs. Our API lifecycle modelling
(ALM) module can eventually be leveraged by FicFinder to enrich
its database and thus cover more compatibility cases in a systematic
and regular way.

Table 4: Comparison results of FicFinder and CiD on Benchmark
apps.

⋆ = correct warning, ⋆= false warning, = missed issue
App Relevant APIs FicFinder CiD
Basic AlarmManager.setExact ⋆ ⋆

Generic Type TreeMap.replace ⋆

Varargs KeyProtection.Builder.<init>
⋆ ⋆

KeyProtection.Builder.setBlockModes

Inheritance TransitionManager.go
⋆ ⋆

Activity.getContentTransitionManager
Forward AssetInputStream.getAssetInt ⋆

ConditionCheck AlarmManager.setExact
ConditionCheck2 AlarmManager.setExact ⋆

Real-World Apps. We focus on backward compatibility issues
as they are specifically considered by FicFinder. For the 1,797 F-
Droid apps, FicFinder reports in total 603 compatibility issues for
214 apps, while as discussed previously CiD reports 9,755 issues
for 609 apps. The median number of reported issues are 0 and 3
respectively by FicFinder and CiD. We confirmed with the MWW
test that this difference is statistically significant at a significance
level of 0.001. We further manually check the different cases of
mismatched results and find that all the backward compatibility
issues identified by FicFinder are also identified by CiD, except for

15 apps. In all the 15 apps, compatibility issues with a single API,
namely openDatabase() of class SQLiteDatabase, seems to be missed
out by CiD. Indeed, while FicFinder reports that openDatabase() is
introduced only from API level 11, the ALM module has modelled
its lifetime as starting since API level 1.We then refer to the Android
developer documentation [23] which confirms that openDatabase()
is indeed introduced since API level 1. These false positives by
FicFinder further highlight the limitations of building the approach
from manual inputs (in this case issue reports).

RQ4: CiD outperforms the state-of-the-art both on bench-
mark apps (where it shows its capability to take into ac-
count various challenges) and on real-world apps (where
it shows its capability to avoid false positives while sub-
suming all detection results of FicFinder).

5 DISCUSSION
5.1 Threats To Validity
First, to generate the Android API lifecycle model, we have focused
on a subset of Android releases. It is possible that we missed some
cases of API evolution between non-considered releases. However,
to alleviate this threat, we have considered a release in each API
level. As suggested by Android documentation, the API level is
incremented only when important changes are performed on the
API.

Second, our analysis in the API usage extraction may not be
very precise. Indeed, the conditional call graph (CCG) that we build
in this work is not context-sensitive. We have further made some
approximations to integrate constructor methods into the CCG,
attempting to be the most conservative so as not to miss potential
compatibility issues.

Third, our evaluation results presented in RQ2 could be threat-
ened by the fact that an API is removed/replaced during a consecu-
tive app update may not always be the case of compatibility fixes
(e.g., because of functionality dropping). Nevertheless, our evalua-
tion is conducted on a large set of apps, where a small number of
false alarms would not impact the final statistic results.

Fourth, for forward compatibility warnings, at the moment, CiD
is focused on identifying Android APIs that are removed from the
public SDK. The behaviour of such now-hidden APIs (i.e., same
signature but different implementation) may also evolve and con-
tradict with developer initial expectations. In future work, we plan
to take this research direction for further enhancing CiD.

Finally, several aspects of our assessment have involved manual
efforts, e.g., to check the reported results or to submit issue reports.
Thus, we cannot guarantee that no error was made as manual tasks
are subject to bias and mistakes. To mitigate this threat, we have
cross-validated our results and ensured consistency.

5.2 Lessons Learned
Our study on the use of minSdkVersion exposes a contradiction
in the behaviour of app developers who want to use interesting,
but potentially problematic APIs while targeting a large range of
devices. Thus, we have noted that most recent API methods, which
provide up-to-date and performant functionalities in higher API
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levels, are used in several apps where developers still keep a small
minSdkVersion value to increase the number of potential users,
including those using platforms with lower API levels. In other
words, for some developers, maximizing the number of targeted
users seems to be more important than the reliability of their apps.

This study also highlights a significant problem in enforcing
documentation recommendations. We have indeed found in a sam-
ple set of apps from the Google Play official markets that several
app developers do not set the minSdkVersion attribute although
it is recommended, while others set the maxSdkVersion attribute
although it is not recommended.

Overall, our investigations suggest that market maintainers
could benefit from tools such as CiD to restrict the propagation of
apps that could crash on users devices. Indeed, developers cannot
be trusted to follow recommendations, and market reputation10
can be at stake when thorough verifications are not enforced.

6 RELATEDWORK
The high fragmentation in the Android ecosystem (with a variety
of device brands running even more diverse platform versions)
is challenging developers for exhaustively testing their apps to
expose API compatibility issues. Recent studies have explored API
evolution as well as associated compatibility problems in several
aspects. We summarize important related work in this section.

API Evolution. API evolution is an important aspect of soft-
ware maintenance [24, 25]. Similar to our work, Li et al. [8] have
mined different releases of the Android framework to investigate
the evolution of Android APIs. They, however, are interested in
inaccessible (a.k.a, internal/hidden) Android APIs. In this work, we
focus on public APIs used by developers in their apps. Since some
public APIs may become inaccessible and cause compatibility issues
(with app crashes), some of our findings are also in line with those
reported by their work [8]. Furthermore, as revealed by Li et al. [26],
the fact that APIs leveraged by common and ad libraries are not
well updated may introduce security and maintenance problems to
the apps [27–29].

Linares-Vásquez et al. have shown that the evolution of Android
platforms could impact app ratings [30, 31]. In particular, they
have shown that more successful Android apps generally use less
change-prone APIs, which if used would likely to initiate stack
overflow discussions [32]. More questions and discussions could be
induced if the API’s behaviour is further changed (i.e., the method’s
body is massively modified). McDonnell et al. [33] have conducted
an investigation on the stability and adoption of Android APIs, in
which they demonstrate that Android is evolving fast at a rate of 115
API updates per month on average, while the average time taken
by developers to adopt new versions is much longer comparing to
the fast-evolving APIs.

API evolution in other platforms has also been extensively stud-
ied in the literature. For instance, Businge et al. have conducted
several empirical studies [34–36] on the utilization of unstable APIs
from the Eclipse platform. Hora et al. have also investigated how
developers react to API evolution for the Pharo system [37]. These
findings show that API evolution can have a large impact on a

10Particularly, in regions such as China where there is no hegemony of a single market.

software ecosystem in terms of client systems, methods, and devel-
opers. Overall, API evolution is quite common in big systems and
is a source of compatibility issues.

Compatibility Issues. Android fragmentation is a well docu-
mented source of various problems [38–43]. Liu et al. have found
that Android performance bugs could be detected only when testing
some specific devices and Android platforms [44], while Pathak et
al. have demonstrated that the recurrent Android OS updates have
caused a large fraction of user complaints about energy bugs [33].
In a 2012 usability study, Nayebi et al. have found that the different
resolutions of device displays challenge the design and implemen-
tation of Android apps, leading to serious compatibility issues [45].
Our work is complementary to these related works by focusing on
API-related compatibility issues.

The closest work to ours for addressing API-induced compatibil-
ity issues is FicFinder [9]. Wei. et al. have recently proposed this
tool for Android developers. Their work, however, differs from ours
in several ways: 1) The database (i.e., API-context pairs) leveraged
by FicFinder to flag compatibility issues is built through a manual
process, resulting in a small database which will likely lead to a
high rate of false negatives (i.e., missing real compatibility issues).
Our CiD approach is based on an API lifecycle model which is
built systematically and automatically by mining changes between
different updates of the Android framework base. 2) Our work fo-
cuses mainly on API compatibility issues, including both forward
and backward compatibility. FicFinder, by mining issue reports, is
modelling other device-specific issues.

7 CONCLUSION
We have contributed in this paper with CiD, an approach for au-
tomating the detection of API-related compatibility issues in An-
droid apps. Our approach builds mainly in three steps where we
first analyse the history of framework releases to model the lifecy-
cle of Android API methods. Then, we build a static analyser for
pinpointing app code locations where an API method is used with
no API level checking when it could be running on mismatched
platform versions. Last, we combine the outputs of the previous
two steps to flag potential compatibility issues. Our assessment
of CiD on both open source and close source apps shows that our
approach is effective in detecting compatibility issues. We further
show that CiD provides enough information to confirm the problem
to developers who could then quickly apply relevant fixes. Finally,
we demonstrate that CiD outperforms the recent state-of-the-art
approach for detecting API-related compatibility issues. Our future
work will mainly focus on forward compatibility issues to warn on
behaviour changes in API that are only hidden to support, to some
extent, forward compatibility for non-maintained apps.
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