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Overview of analyses

1) Cohort overview

2) Neuroimaging data analysis (FDG and F-DOPA PET)

3) Metabolomics analysis (cross-sectional & longitudinal)

4) Machine learning analyses:

a) FDOPA PET

b) FDG PET

c) FDOPA PET + metabolomics

d) FDG PET + metabolomics

e) ROC curves
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Cohort overview

• 60 PD patients and 15 healthy age- and gender-matched controls

(University Hospitals Cologne, Giessen and Marburg; Prof. C. Eggers)

• Medication: PD patients had been 12 hours off levodopa and 72 

hours off dopamine agonists

.10124.6 ± 4.126.8 ± 4.7BMI

--2.3 ± 0.4H&Y stage

.0002.1 ± 2.625.1 ± 9.7UPDRS III

.83165.1 ± 8.465.7 ± 9.0Age

.1415 (8/7)60 (19/41)N (female/male)

P-valueControlsPD patients
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Analyses overview

• Metabolomics

- Gas chromatography coupled to mass spectrometry (GC-MS) 

- Determination of metabolomic profiles for blood plasma samples: 

• Baseline: entire cohort (60 patients and 15 controls) 

• Follow-up exam after 1 year: 18 patients

• Neuroimaging

Positron emission tomography (PET):

• 3,4-dihydroxy-6-18F-fluoro-L-phenyl-alanine (FDOPA)
44 patients and 14 controls

���� How does dopamine metabolism change?

• 2-[fluorine-18]fluoro-2-deoxy-D-glucose (FDG)

51 patients and 15 controls

���� How does glucose metabolism change?



4

PET imaging data pre-processing

• All pre-processing steps performed in SPM12 (Matlab)

• Co-registration of each subject’s averaged FDG and FDOPA 
images

• Centering on the
anterior commissure
and horizontal alignment

• Spatial normalization to Montreal Neurological Institute standard 
space (MNI152) performed using tracer-specific templates

• Spatial smoothing (Gaussian kernel, 5 mm FWHM)
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FDOPA PET analyses after global mean normalization

FDOPA PET: Significant changes in putamen/striatum (FDR < 0.05) 

SPM
(T-test)

R + FSL
(empirical
Bayes moder-
ated T-statistic)

Best FDR < 1E-3
(only 3 digits behind comma reported)

Best FDR < 1.18E-5
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FDG PET analyses after global mean normalization

FDG PET: Significant changes in lower midbrain (FDR < 0.05) 

SPM
(T-test)

R + FSL
(empirical
Bayes moder-
ated T-statistic)

Best FDR = 0.026
(FWE < 1E-3)

Best FDR = 0.009
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FDOPA PET – Visualization of significant clusters

Most significant voxel
clusters (eBayes,
FDR < 0.05):

FDOPA
FDG
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Partial Least Squares Discriminant Analysis

FDG PET FDOPA PET

control PD
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Metabolomics analyses (Baseline)

0.3710.0331.403Dodecanoic acid

0.3710.0301.256Hexadecanoic acid

0.1400.0061.324RI 1050 (unknown)

0.1400.0051.262Urea

0.0390.0011.270RI 1446 (unknown)

FDR
P-

value

Fold-

change
Metabolite

• 1 unknown metabolite (RI 1446) with higher abundance in PD
(FDR < 0.05)

• Urea = top-ranked known metabolite � marker of oxidative stress
(but FDR > 0.05, see box plot)
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Metabolomics analyses (Longitudinal: Visit 2 vs. Visit 1)

• Threonic and glycolic acid are top-ranked, but FDR > 0.05

• Most top-ranked metabolites tend to have higher abundance in PD

Threonic acid



11

Machine Learning (SVM) – ROC Curve Analyses

ROC curves (FDOPA)

Combine attributes from FDOPA and FDG PET data with metabolomics 
data for the same samples to create integrated machine learning models

ROC curves (FDG)
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Summary

• PET analyses: Significant changes in both FDOPA (putamen/striatum) and 

FDG (midbrain) analysis   

• Metabolomics analyses: Few significant changes; top-ranked metabolites 

tend to have associations with oxidative stress and mitochondrial dysfunction

• Integrated machine learning: Combination of standardized PET + 

metabolomics features tends to provide higher predictive performance than 

PET or metabolomics only
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