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Overview of analyses

1) Cohort overview
2) Neuroimaging data analysis (FDG and F-DOPA PET)
3) Metabolomics analysis (cross-sectional & longitudinal)

4) Machine learning analyses:
a) FDOPA PET
b) FDG PET
c) FDOPA PET + metabolomics
d) FDG PET + metabolomics
e) ROC curves
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Cohort overview

* 60 PD patients and 15 healthy age- and gender-matched controls
(University Hospitals Cologne, Giessen and Marburg; Prof. C. Eggers)

* Medication: PD patients had been 12 hours off levodopa and 72
hours off dopamine agonists
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PD patients Controls P-value
N (female/male) 60 (19/41) 15 (8/7) 14
Age 65.7 £ 9.0 65.1 + 8.4 .831
UPDRS Il 25.1+£9.7 21+26 .000
H&Y stage 23104 - -
BMI 26.8 £4.7 246+4.1 101




Analyses overview

* Metabolomics
- Gas chromatography coupled to mass spectrometry (GC-MS)
- Determination of metabolomic profiles for blood plasma samples:

 Baseline: entire cohort (60 patients and 15 controls)
 Follow-up exam after 1 year: 18 patients

* Neuroimaging
Positron emission tomography (PET):

* 3,4-dihydroxy-6-18F-fluoro-L-phenyl-alanine (FDOPA)
44 patients and 14 controls
- How does dopamine metabolism change?

« 2-[fluorine-18]fluoro-2-deoxy-D-glucose (FDQG)
51 patients and 15 controls
- How does glucose metabolism change?
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PET imaging data pre-processing

« All pre-processing steps performed in SPM12 (Matlab)

« Co-registration of each subject’s averaged FDG and FDOPA
Images

» Centering on the f/\
anterior commissure @:ﬁﬁ\
and horizontal alignment L‘*QYK,}J

 Spatial normalization to Montreal Neurological Institute standard
space (MNI152) performed using tracer-specific templates

« Spatial smoothing (Gaussian kernel, 5 mm FWHM)
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FDOPA PET analyses after global mean normalization

FDOPA PET: Significant changes in putamen/striatum (FDR < 0.05)

. N
- SPM R+ FSL
J (T-test) (empirical
" Bayes moder-
ated T-statistic)
Best FDR < 1E-3 Best FDR < 1.18E-5

(only 3 digits behind comma reported)
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FDG PET analyses after global mean normalization

FDG PET: Significant changes in lower midbrain (FDR < 0.05)

SPM R+ FSL
: (T-test) (empirical
4 Bayes moder-
ated T-statistic)
Best FDR = 0.026 Best FDR = 0.009

(FWE < 1E-3)
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FDOPA PET Vlsuallzatlon of S|gn|f|cant clusters

Most significant voxel
clusters (eBayes,
FDR < 0.05):
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Partlal Least Squares Dlscrlmlnant AnaIyS|s
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Metabolomics analyses (Baseline)

1 unknown metabolite (Rl 1446) with higher abundance in PD
(FDR < 0.05)

 Urea = top-ranked known metabolite > marker of oxidative stress
(out FDR > 0.05, see box plot)
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Metabolomics analyses (Longitudinal: Visit 2 vs. Visit 1)

 Threonic and glycolic acid are top-ranked, but FDR > 0.05

» Most top-ranked metabolites tend to have higher abundance in PD

Metabolite FC P FDR
Threonic acid 1.353 0.001 0.059
Glycolic acid 1.258 0.002 0.059
Iminodiacetic acid 1.154  0.007 0.140
Glycerol 0.642 0.008 0.140
Succinic acid 1.161 0.029 0.317
Mannose 1.148 0.030 0.317
Glyceric acid 1.229 0.031 0.317
Citric acid 1.144  0.046 0.375
RI 1708 0.876 0.048 0.375
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Machine Learning (SVM) — ROC Curve Analyses

Combine attributes from FDOPA and FDG PET data with metabolomics
data for the same samples to create integrated machine learning models

ROC curves (FDOPA) ROC curves (FDG)
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Summary

« PET analyses: Significant changes in both FDOPA (putamen/striatum) and
FDG (midbrain) analysis

« Metabolomics analyses: Few significant changes; top-ranked metabolites
tend to have associations with oxidative stress and mitochondrial dysfunction

« Integrated machine learning: Combination of standardized PET +
metabolomics features tends to provide higher predictive performance than
PET or metabolomics only
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