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A. Tutorials of the DIGRAPH3 Resources
HTML Version

The tutorials in this document describe the practical usage of our Digraph3 Python3
software resources in the field of Algorithmic Decision Theory and more specifically in
outranking based Multiple Criteria Decision Aid (MCDA). They mainly illustrate prac-
tical tools for a Master Course at the University of Luxembourg. The document contains
first a set of tutorials introducing the main objects available in the Digraph3 collection of
Python3 modules, like digraphs, outranking digraphs, performance tableaux and
voting profiles. Some of the tutorials are decision problem oriented and show how to
compute the potential winner(s) of an election, how to build a best choice recommen-
dation, or how to rate or linearly rank with multiple incommensurable performance
criteria. More graph theoretical tutorials follow. One on working with undirected
graphs, followed by tutorials on how to tackle big outranking digraphs. Finally, special
tutorials are devoted to perfect graphs, like split, interval and permutation graphs, and
to tree-graphs and forests.
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1 Working with digraphs and outranking digraphs

This first part of the tutorials introduces the Digraph3 software collection of Python
programming resources.

o Working with the Digraph3 software resources (page 2)
o Working with the digraphs module (page 10)

e Working with the outrankingDigraphs module (page 25)

1.1 Working with the Digraph3 software resources

e Purpose (page 3)

e Downloading of the Digraph3 resources (page 3)
e Starting a Python3 terminal session (page 3)

e Digraph object structure (page 4)

e Permanent storage (page 5)

e Inspecting a Digraph object (page 6)

e Special Digraph instances (page 9)




Purpose

The basic idea of the Digraph3 Python resources is to make easy python interactive
sessions or write short Python3 scripts for computing all kind of results from a bipolar-
valued digraph or graph. These include such features as maximal independent, maximal
dominant or absorbent choices, rankings, outrankings, linear ordering, etc. Most of the
available computing resources are meant to illustrate a Master Course on Algorithmic
Decision Theory given at the University of Luxembourg in the context of its Master in
Information and Computer Science (MICS).

The Python development of these computing resources offers the advantage of an easy to
write and maintain OOP source code as expected from a performing scripting language
without loosing on efficiency in execution times compared to compiled languages such as
C++ or Java.

Downloading of the Digraph3 resources

Using the Digraph3 modules is easy. You only need to have installed on your system the
Python (https://www.python.org/doc/) programming language of version 3.+ (readily
available under Linux and Mac OS).

Several download options (easiest under Linux or Mac OS-X) are given.

1. (Recommended) With a browser access, download and extract the latest distribution
zip archive from

https://github.com/rbisdorff/Digraph3 or, from
https://sourceforge.net/projects/digraph3
2. By using a git client either, cloning from github

...$ git clone https://github.com/rbisdorff/Digraph3

3. Or, from sourceforge.net

...$ git clone https://git.code.sf.net/p/digraph3/code Digraph3

Starting a Python3 terminal session

You may start an interactive Python3 terminal session in the Digraph8 directory.

$HOME/ . ../Digraph3$ python3

Python 3.10.0 (default, Oct 21 2021, 10:53:53)
[GCC 11.2.0] on linux Type '"help", "copyright",
"credits" or '"license' for more information.
>>>

For exploring the classes and methods provided by the Digraph3 modules (see the Refer-
ence manual) enter the Python3 commands following the session prompts marked with
>>> or ... . The lines without the prompt are console output from the Python3 inter-
preter.


https://www.python.org/doc/
https://github.com/rbisdorff/Digraph3
https://sourceforge.net/projects/digraph3
techDoc.html
techDoc.html
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Listing 1.1: Generating a random digraph instance

>>> from randomDigraphs import RandomDigraph
>>> dg = RandomDigraph(order=5,arcProbability=0.5,seed=101)

>>> dg

e Digraph instance description ------ *

Instance class : RandomDigraph

Instance name : randomDigraph

Digraph Order R

Digraph Size : 12

Valuation domain : [-1.00; 1.00]

Determinateness : 100.000

Attributes : [tactions', 'valuationdomain', 'relation',

'order', 'mame', 'gamma', 'notGamma',
'seed', 'arcProbability', ]

In Listing 1.1 we import, for instance, from the randomDigraphs module the
RandomDigraph class in order to generate a random digraph object dg of order 5 - number
of nodes called (decision) actions - and arc probability of 50%. We may directly inspect
the content of python object dg (Line 3).

Note

For convenience of redoing the computations, all python code-blocks show
in the upper right corner a specific copy button which allows to both
copy only code lines, i.e. lines starting with ‘>>>"or ‘...’ and stripping
the console prompts. The copied code lines may hence be right away
pasted into a Python console session. As of Python 3.13.0 is necessary
to switch in the python terminal console with the F3 function key into a
console “paste mode” which allows pasting blocks of code. Press F3 key
again to return to the regular prompt (see Python 3.13.0 Interactive Mode
documentation).

Digraph object structure
All Digraph objects contain at least the following attributes (see Listing 1.1 Lines 11-12):

0. A name attribute, holding usually the actual name of the stored instance that was
used to create the instance;

1. A ordered dictionary of digraph nodes called actions (decision alternatives) with
at least a ‘name’ attribute;

2. An order attribute containing the number of graph nodes (length of the actions
dictionary) automatically added by the object constructor;

3. A logical characteristic valuationdomain dictionary with three decimal entries:
the minimum (-1.0, means certainly false), the median (0.0, means missing infor-
mation) and the maximum characteristic value (41.0, means certainly true);
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4. A double dictionary called relation and indexed by an oriented pair of actions
(nodes) and carrying a decimal characteristic value in the range of the previous
valuation domain;

5. Its associated gamma attribute, a dictionary containing the direct successors, re-
spectively predecessors of each action, automatically added by the object construc-
tor;

6. Its associated notGamma attribute, a dictionary containing the actions that are
not direct successors respectively predecessors of each action, automatically added
by the object constructor.

Permanent storage

The save () method stores the digraph object dg in a file named ‘tutorialDigraph.py’,

>>> dg.save('tutorialDigraph')
*--- Saving digraph in file: <tutorialDigraph.py> ---*

with the following content

from decimal import Decimal
from collections import OrderedDict
actions = OrderedDict([

(tal', {'shortName': 'al', 'name': 'random decision action'}),
(ta2', {'shortName': 'a2', 'name': 'random decision action'}),
(ta3', {'shortName': 'a3', 'name': 'random decision action'}),
(tad', {'shortName': 'a4', 'name': 'random decision action'}),
(tab', {'shortName': 'ab', 'name': 'random decision action'}),
D

valuationdomain = {'min': Decimal('-1.0"),
'med': Decimal('0.0'),
'max': Decimal('1.0"),
'hasIntegerValuation': True, # repr. format
}
relation = {
'al': {'al':Decimal('-1.0"), 'a2':Decimal('-1.0"),
'a3':Decimal('1.0'), 'ad':Decimal('-1.0'),
'ab':Decimal('-1.0'),},

'a2': {'al':Decimal('1.0'), 'a2':Decimal('-1.0"),
'a3':Decimal('-1.0"), 'a4':Decimal('1.0'),
'ab':Decimal('1.0'),},

'a3': {'al':Decimal('1.0'), 'a2':Decimal('-1.0"),
'a3':Decimal('-1 0"),

"), 'a4':Decimal('1l.

'ab':Decimal('-1 )L},

'ad': {'al':Decimal('1.0'), 'a2':Decimal('1.0"),
'a3':Decimal('1.0'), 'ad':Decimal('-1.0'),
'ab':Decimal('-1.0'),},

'ab': {'al':Decimal('1.0'), 'a2':Decimal('1.0"),

.0
.0

(continues on next page)



(continued from previous page)

29 'a3':Decimal('1.0'), 'a4':Decimal('-1.0'),
30 'a5':Decimal('-1.0"),7},
31 }

Inspecting a Digraph object

We may reload (see Listing 1.2) the previously saved digraph object from the file named
‘tutorialDigraph.py’ with the Digraph class constructor and different show methods (see
Listing 1.2 below) reveal us that dg is a crisp, irreflezive and connected digraph of order
five.

Listing 1.2: Random crisp digraph example
1 >>> from digraphs import Digraph
» >>> dg = Digraph('tutorialDigraph')
3 >>> dg.showShort ()

4 R show short ---- - - -——-———-- *

5 Digraph : tutorialDigraph

¢ Actions : OrderedDict ([

7 (tal', {'shortName': 'al', 'name': 'random decision action'}),
8 (ta2', {'shortName': 'a2', 'name': 'random decision action'}),
9 ('a3', {'shortName': 'a3', 'name': 'random decision action'}),
10 (tad', {'shortName': 'a4', 'name': 'random decision action'}),
11 (*ab', {'shortName': 'ab', 'mame': 'random decision action'})
12 D

13 Valuation domain : {

14 'min': Decimal('-1.0"),

15 'max': Decimal('1.0'),

16 'med': Decimal('0.0'), 'hasIntegerValuation': True

17 }

18 >>> dg.showRelationTable ()

19 * ---- Relation Table -----

20 S | ‘tal' 'a2' 'a3' 'ad4' ‘'ab'

21 (R R T T

2 tal' | -1 -1 1 -1 -1

s 'a2' | 1 -1 -1 1 1

24 'a3' | 1 -1 -1 1 -1

25 tad' | 1 1 1 -1 -1

26 tab' | 1 1 1 -1 -1

27 Valuation domain: [-1;+1]
25 >>> dg.showComponents ()
29 *--- Connected Components ---%
30 1: ['al', 'a2', 'a3', 'a4', 'ab']
31 >>> dg.showNeighborhoods ()
s2  Neighborhoods:
33 Gamma
(continues on next page)
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'al': in =>
'a2': in =>
'a3d': in =>
'ad': in =>
'ab': in =>

Not Gamma
'al': in =>
'a2': in =>
'a3': in =>
'ad': in =>
'ab': in =>

{'a2',
{'ab’',
{ta1',
{'a2',
{'a2'},

set(),
L0zl 0
{'a2'},
{tatl',
{'al’,

(continued from previous page)
'ad', 'a3', 'ab'}, out => {'a3'}
'ad'}, out => {'al', 'ad', 'ab'}
'ad', 'ab'}, out => {'al', 'ad'}
'a3'}, out => {'al', 'a3', 'a2'}
out => {'al', 'a3', 'a2'}

out => {'a2', 'a4', 'ab'}
'a3'}, out => {'a3'}

out => {'a2', 'ab'}
'ab'}, out => {'ab'}

'ad', 'a3'}, out => {'ad'}

The exportGraphViz () method generates in the current working directory a ‘tutorialDi-
graph.dot’ file and a ‘tutorialdigraph.png’ picture of the tutorial digraph dg (see Fig.
1.1), if the graphviz (https://graphviz.org/) tools are installed on your system'.

>>> dg.exportGraphViz('tutorialDigraph')

*---- exporting a dot file do GraphViz tools --------- *

Exporting to tutorialDigraph.dot

dot -Grankdir=BT -Tpng tutorialDigraph.dot -o tutorialDigraph.png

Rubis Python Server (graphviz), B. Bisdorff, 2008

Fig. 1.1: The tutorial crisp digraph

Further methods are provided for inspecting this Digraph object dg , like the following
showStatistics() method.

Listing 1.3: Inspecting a Digraph object

>>> dg.showStatistics ()
general statistics ------------- *

(continues on next page)

! The exportGraphViz method is depending on drawing tools from graphviz (https://graphviz.org/).
On Linux Ubuntu or Debian you may try ‘sudo apt-get install graphviz’ to install them. There are ready
dmg installers for Mac OSX.


https://graphviz.org/
https://graphviz.org/

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

(continued from previous page)

for digraph : <tutorialDigraph.py>
order : 5 nodes
size : 12 arcs
# undetermined : 0 arcs
determinateness (%) : 100.0
arc density : 0.60
double arc density 0.40
single arc density 0.40
absence density : 0.20
strict single arc density: 0.40
strict absence density 0.20
# components 1
# strong components 1
transitivity degree (%) 60.0

: [0, 1, 2, 3, 4, 5]
outdegrees distribution : [0, 1, 1, 3, 0, 0]
indegrees distribution : [0, 1, 2, 1, 1, 0]
mean outdegree 1 2.40
mean indegree : 2.40

: [0, 1, 2, 3, 4, 5,6, 7,8, 9, 10]
symmetric degrees dist. : [0, O, O, O, 1, 4, 0, O, O, 0O, O]
mean symmetric degree : 4.80
outdegrees concentration index 0.1667
indegrees concentration index 0.2333
symdegrees concentration index 0.0333

: [0, 1, 2, 3, 4, 'inf']

neighbourhood depths distribution: [0, 1, 4, 0, 0, O]
mean neighbourhood depth : 1.80
digraph diameter 12
agglomeration distribution
al : 58.33
a2 : 33.33
a3 : 33.33
a4 : 50.00
ab : 50.00
agglomeration coefficient : 45.00

These show methods wusually rely upon corresponding compute meth-
ods, like the computeSize(), the computeDeterminateness() or the
computeTransitivityDegree() method (see Listing 1.3 Line 5,7,16).

>>> dg.computeSize ()

12
>>> dg.computeDeterminateness (InPercents=True)
Decimal('100.00')
>>> dg.computeTransitivityDegree (InPercents=True)
Decimal('60.00"')



Mind that show methods output their results in the Python console. We provide also
some showHTML methods which output their results in a system browser’s window.

>>> dg.showHTMLRelationMap(relationName='r(x,y)',rankingRule=None)

Relation Map
Ranking rule: Alphabetic

r(x,y) al a2 a3 a4 a5

a1l HEEEHE
a2 +[=[—+ +
a3 + ==+ =
ad + + + ==
a5 + + + /==

| Semantics
|T| certainly valid

|_| valid

|_| indeterminate

[-  invalid

.l{:ertainly invalid

Fig. 1.2: Browsing the relation map of the tutorial digraph

In Fig. 1.2 we find confirmed again that our random digraph instance dg, is indeed a
crisp, i.e. 100% determined digraph instance.

Special Digraph instances

Some constructors for universal digraph instances, like the CompleteDigraph, the
EmptyDigraph or the circular oriented GridDigraph constructor, are readily available
(see Fig. 1.3).

>>> from digraphs import GridDigraph

>>> grid = GridDigraph(n=5,m=5,hasMedianSplitOrientation=True)
>>> grid.exportGraphViz('tutorialGrid')

*---- exporting a dot file for GraphViz tools --------- *
Exporting to tutorialGrid.dot

dot -Grankdir=BT -Tpng TutorialGrid.dot -o tutorialGrid.png



Rubis Python Server (graphviz), R. Bisdonf, 2008

Fig. 1.3: The 5x5 grid graph median split oriented

Back to Content Table (page 1)

1.2 Working with the digraphs module

e Random digraphs (page 11)

e Graphviz drawings (page 13)

e Asymmetric and symmetric parts (page 13)
e Border and inner parts (page 15)

o Fusion by epistemic disjunction (page 17)

e Dual, converse and codual digraphs (page 18)
e Symmetric and transitive closures (page 19)

e Strong components (page 21)
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e CSV storage (page 21)

o Complete, empty and indeterminate digraphs (page 22)

e Historical notes (page 24)

Random digraphs

We are starting this tutorial with generating a uniformly random [-1.0; +1.0]-valued
digraph of order 7, denoted rdg and modelling, for instance, a binary relation (z S y)
defined on the set of nodes of rdg. For this purpose, the Digraph8 collection contains a
randomDigraphs module providing a specific RandomValuationDigraph constructor.

Listing 1.4: Random bipolar-valued digraph instance

>>> from randomDigraphs import RandomValuationDigraph
>>> rdg = RandomValuationDigraph(order=7)

>>> rdg.save('tutRandValDigraph')

>>> from digraphs import Digraph

>>> rdg = Digraph('tutRandValDigraph')

>>> rdg
oo Digraph instance description ------ *
Instance class : Digraph
Instance name : tutRandValDigraph
Digraph Order 3
Digraph Size 1 22
Valuation domain : [-1.00;1.00]
Determinateness (%) : 75.24
Attributes : ['name', 'actions', ‘'order',
'valuationdomain', 'relation',
'gamma', 'notGamma']

With the save() method (see Listing 1.4 Line 3) we may keep a backup version for
future use of rdg which will be stored in a file called tutRandValDigraph.py in the current
working directory. The generic Digraph class constructor may restore the rdg object
from the stored file (Line 4). We may easily inspect the content of rdg (Lines 5). The
digraph size 22 indicates the number of positively valued arcs. The valuation domain is
uniformly distributed in the interval [—1.0;1.0] and the mean absolute arc valuation is
(0.7524 x 2) — 1.0 = 0.5048 (Line 12) .

All Digraph objects contain at least the list of attributes shown here: a name (string),
a dictionary of actions (digraph nodes), an order (integer) attribute containing the
number of actions, a valuationdomain dictionary, a double dictionary relation repre-
senting the adjency table of the digraph relation, a gamma and a notGamma dictionary
containing the direct neighbourhood of each action.

As mentioned previously, the Digraph class provides some generic show... meth-
ods for exploring a given Digraph object, like the showShort(), showAll(),

11
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ionTable() and the showNeighborhoods () methods.

Listing 1.5: Example of random valuation digraph

>>> rdg.showAll ()

e show detail ---------—---- *
Digraph : tutRandValDigraph
¥---- Actions ----%
[P1, '2', '3, t4r '5' g, '7T']
*¥---- Characteristic valuation domain ----%*
{'med': Decimal('0.0'), 'hasIntegerValuation': False,
'min': Decimal('-1.0'), 'max': Decimal('1.0')}
¥ ---- Relation Table -----
r(xSy) | '1' 2! '3t 4 150 '6e' 'T!
_______ | = m e oo
1! | 0.00 -0.48 0.70 0.86 0.30 0.38 0.44
2! | -0.22 0.00 -0.38 0.50 0.80 -0.54 0.02
'8¢ | -0.42 0.08 0.00 0.70 -0.56 0.84 -1.00
4! | 0.44 -0.40 -0.62 0.00 0.04 0.66 0.76
'5! | 0.32 -0.48 -0.46 0.64 0.00 -0.22 -0.52
'6! | -0.84 0.00 -0.40 -0.96 -0.18 0.00 -0.22
' | 0.88 0.72 0.82 0.52 -0.84 0.04 0.00
*--- Connected Components ---x
1. ['1r, 2t '3', '4', '5' 6", '7T']
Neighborhoods:
Gamma :
'1': in => {'6', '7', '4'}, out => {'s5', '7', '6', '3', '4'}
'2': in => {'7', '3'}, out => {'6', '7', '4'}
'3': in => {'7', '1'}, out => {'6', '2', '4'}
'4': in => {'5', '7', *1*, '2'  '3'}, out => {'5', '7', '1', '6'}
'5': in => {'1', '2', '4'} out => {'1', '4'}
'6': in => {'7', '1', '3', '4'}, out => set()
'7': in => {'1', '2', '4'}, out => {'1', '2', '3', '4', '6'}
Not Gamma:
'1': in => {'6', '2', '3'}, out => {'2'}
'2': in => {'5', '1', '4'} out => {'1', '6', '3'}
'3': in => {'5', '6', '2', '4'}, out => {'5', '7', '1'}
'4': in => {'6'}, out => {'2', '3'}
'5': in => {'7', '6', '3'}, out => {'7', '6', '2', '3'}
'6': in => {'G', '2'}, out => {'5', '7', '1', '3', '4'}
'7': in => {'5', '6', '3'}, out => {'5'}
Warning

12

Mind that most Digraph class methods will ignore the reflexive links by considering
that they are indeterminate, i.e. the characteristic value r(x S x) for all action z is
set to the median, i.e. indeterminate value 0.0 in this case (see Listing 1.5 Lines 12-18




and [BIS-2004a]).

Graphviz drawings

We may even get a better insight into the Digraph object rdg by looking at a graphviz
(https://graphviz.org/) drawing"#&¢ " 1

>>> rdg.exportGraphViz('tutRandValDigraph')

*---- exporting a dot file for GraphViz tools --------- *

Exporting to tutRandValDigraph.dot

dot -Grankdir=BT -Tpng tutRandValDigraph.dot -o tutRandValDigraph.png

Rubis Python Server (graphviz), B. Bisdorff, 2008

Fig. 1.4: The tutorial random valuation digraph

Double links are drawn in bold black with an arrowhead at each end, whereas single
asymmetrical links are drawn in black with an arrowhead showing the direction of the
link. Notice the undetermined relational situation (r(652) = 0.00) observed between
nodes ‘6’ and ‘2’. The corresponding link is marked in gray with an open arrowhead in
the drawing (see Fig. 1.4).

Asymmetric and symmetric parts

We may now extract both the symmetric as well as the asymmetrical part of digraph dg
with the help of two corresponding constructors (see Fig. 1.5).

13
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>>> from digraphs import AsymmetricPartialDigraph,
SymmetricPartialDigraph

>>> asymDg = AsymmetricPartialDigraph(rdg)
>>> asymDg.exportGraphViz()

>>> gymDg = SymmetricPartialDigraph(rdg)
>>> symDg.exportGraphViz ()

Rubis Python Server (graphviz), R. Bisdorft, 2008 Rubis Python Server (graphviz), R. Bisdorff, 2008

Fig. 1.5: Asymmetric and symmetric part of the tutorial random valuation digraph

Note

The constructor of the partial objects asymDg and symDg puts to the indeterminate
characteristic value all not-asymmetrical, respectively not-symmetric links between
nodes (see Fig. 1.5).

Here below, for illustration the source code of the relation constructor of the
AsymmetricPartialDigraph class.

def _constructRelation(self):
actions = self.actions

Min = self.valuationdomain['min']
Max = self.valuationdomain['max']
Med = self.valuationdomain['med']

(continues on next page)
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(continued from previous page)
relationIn = self.relation
relationOut = {}
for a in actions:
relationOut[a] = {}
for b in actions:
if a !'= b:
if relationIn[a][b] >= Med and relationIn[b][a] <= Med:
relationOut[a] [b] relationIn[a] [b]
elif relationIn[a] [b] <= Med and relationIn[b][a] >=,

—Med:

relationOut [a] [b] relationIn[a] [b]
else:
relationOut[a] [b] = Med
else:
relationOut[a] [b] = Med

return relationOut

Border and inner parts

We may also extract the border -the part of a digraph induced by the union of its initial
and terminal prekernels (see tutorial Kernel-Tutorial-label)- as well as, the inner part
-the complement of the border- with the help of two corresponding class constructors:
GraphBorder and GraphInner (see Listing 1.6).

Let us illustrate these parts on a linear ordering obtained from the tutorial random
valuation digraph rdg with the NetFlows ranking rule (page 87) (see Listing 1.6 Line
2-3).

15



Listing 1.6: Border and inner part of a linear order

>>> from digraphs import GraphBorder, GraphInner
>>> from linearOrders import NetFlowsOrder
>>> nf = NetFlowsOrder(rdg)
>>> nf .netFlowsOrder
['e', '4', '5', '3, 2", 1", '7']
>>> bnf = GraphBorder (nf)
>>> bnf .exportGraphViz (worstChoice=['6"],bestChoice=['7"'])
>>> inf = GraphInner (nf)
>>> inf.exportGraphViz (worstChoice=['6"],bestChoice=['7"'])

Border Part Inner Part

6 6

Rubis Python Server (graphviz), R. Bisderff, 2008 Rubis Python Server (graphviz), B. Bisdorff, 2008

Fig. 1.6: Border and inner part of a linear order oriented by terminal and initial kernels

We may orient the graphviz drawings in Fig. 1.6 with the terminal node 6 (worstChoice
parameter) and initial node 7 (bestChoice parameter), see Listing 1.6 Lines 7 and 9).

Note

The constructor of the partial digraphs bnf and inf (see Listing 1.6 Lines 3 and 6)
puts to the indeterminate characteristic value all links not in the border, respectively
not in the inner part (see Fig. 1.7).
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Being much denser than a linear order, the actual inner part of our tutorial random
valuation digraph dg is reduced to a single arc between nodes 3 and 4 (see Fig. 1.7).

Rubis Python Server (graphviz), R. Bisdorff, 2008 Rubis Python Server (graphviz), R. Bisdorff, 2008

Fig. 1.7: Border and inner part of the tutorial random valuation digraph rdg

Indeed, a complete digraph on the limit has no inner part (privacy!) at all, whereas empty
and indeterminate digraphs admit both, an empty border and an empty inner part.

Fusion by epistemic disjunction

We may recover object rdg from both partial objects asymDg and symDg, or as well
from the border bg and the inner part g, with a bipolar fusion constructor, also called
epistemic disjunction, available via the FusionDigraph class (see Listing 1.4 Lines 12-
21).

Listing 1.7: Epistemic fusion of partial diagraphs

>>> from digraphs import FusionDigraph

>>> fusDg = FusionDigraph(asymDg,symDg,operator="o-max"')
>>> # fusDg = FustonDigraph(bg,ig,operator="'o-maz')

>>> fusDg.showRelationTable ()

¥ ---- Relation Table -----

r(xSy) | '1' 2! '3 4 150 6t 'T7T!
_______ | m o e o
1! | 0.00 -0.48 0.70 0.86 0.30 0.38 0.44
2! | -0.22 0.00 -0.38 0.50 0.80 -0.54 0.02
'8¢ | -0.42 0.08 0.00 0.70 -0.56 0.84 -1.00
4! | 0.44 -0.40 -0.62 0.00 0.04 0.66 0.76
B | 0.32 -0.48 -0.46 0.64 0.00 -0.22 -0.52
'6! | -0.84 0.00 -0.40 -0.96 -0.18 0.00 -0.22
7! | 0.88 0.72 0.82 0.52 -0.84 0.04 0.00
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The epistemic fusion (page 17) operator o-max (see Listing 1.7 Line 2) works as follows.
Let r and r’ characterise two bipolar-valued epistemic situations.

e o-max(r, r’ ) = max(r, r’ ) when both r and r’ are more or less valid or indeter-
minate;

e o-max(r, r’ ) = min(r, ' ) when both r and r’ are more or less invalid or indeter-
minate;

e o-max(r, r’ ) = indeterminale otherwise.

Dual, converse and codual digraphs

We may as readily compute the dual (negated relation'’), the converse (transposed
relation) and the codual (transposed and negated relation) of the digraph instance rdg.

>>> from digraphs import DualDigraph, ConverseDigraph, CoDualDigraph
>>> ddg = DualDigraph(rdg)
>>> ddg.showRelationTable ()

-r(zSy) | 't '2'  '3' 4' 5 g 7

________ | o mm
't ' | 0.00 0.48 -0.70 -0.86 -0.30 -0.38 -0.44
7t | 0.22 0.00 0.38 -0.50 0.80 0.54 -0.02
'3 | 0.42 0.08 0.00 -0.70 0.56 -0.84 1.00
ry | -0.44 0.40 0.62 0.00 -0.04 -0.66 -0.76
5 | -0.32 0.48 0.46 -0.64 0.00 0.22 0.52
'6" | 0.84 0.00 0.40 0.96 0.18 0.00 0.22
7t | 0.88 -0.72 -0.82 -0.52 0.84 -0.04 0.00

>>> cdg = ConverseDigraph(rdg)
>>> cdg.showRelationTable ()

* ---- Relation Table -----
elESe) | 40 @0 g 14r g0 agn o
________ | o o Do f o ____
"1 | 0.00 -0.22 -0.42 0.44 0.32 -0.84 0.88
'2" | -0.48 0.00 0.08 -0.40 -0.48 0.00 0.72
'8t | 0.70 -0.38 0.00 -0.62 -0.46 -0.40 0.82
4! | 0.86 0.50 0.70 0.00 0.64 -0.96 0.52
'5! | 0.30 0.80 -0.56 0.04 0.00 -0.18 -0.84
'6! | 0.38 -0.54 0.84 0.66 -0.22 0.00 0.04
'T! | 0.44 0.02 -1.00 0.76 -0.52 -0.22 0.00
>>> cddg = CoDualDigraph(rdg)
>>> cddg.showRelationTable()
* ---- Relation Table -----
r(ysx) | 't '2r 3" 4 gt T
________ | o o oD __
"1 | 0.00 0.22 0.42 -0.44 -0.32 0.84 -0.88

(continues on next page)

14 Not to be confused with the dual graph of a plane graph g that has a vertex for each face of g. Here
we mean the less than (strict converse) relation corresponding to a greater or equal relation, or the less
than or equal relation corresponding to a (strict) better than relation.
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Computing the

>>> ddg
>>> cdg

neqg

(-) or the

.48
.70
.86
.30
.38
.44

.00
.38
.50
.80
.b4
.02

.08
.00
.70
.56
.84
.00

.40
.62
.00
.04
.66
.76

0.52

O O O O O O

.00
.40
.96
.18
.00
.22

(continued from previous page)

.72
.82
.52
.84
.04
.00

dual, respectively the converse, may also be done with prefixing the
(7) operator. The codual of a Digraph object may,
hence, as well be computed with a composition (in either order) of both operations.

__invert

Listing 1.8: Computing the dual, the converse and the
codual of a digraph

-rdg
“rdg

# dual of rdg

# converse of rdg
>>> cddg = “(-rdg) # =

-("rdg) codual of rdg
>>> (-("rdg)) .showRelationTable ()

* ---- Relation Table
-r(ysx) | '1 2!
-------- |

1! | 0.00 0.22
2! | 0.48 0.00
18! | -0.70 0.38
4! | -0.86 -0.50
'5! | -0.30 -0.80
'6! | -0.38 0.54
T | -0.44 -0.02

Symmetric and transitive closures

.04
.66
.76

Symmetric and transitive closures, by default in-location constructors, are also available
(see Fig. 1.8). Note that it is a good idea, before going ahead with these in-site operations,
who irreversibly modify the original rdg object, to previously make a backup version of
rdg. The simplest storage method, always provided by the generic save (), writes out in
a named file the python content of the Digraph object in string representation.
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Listing 1.9: Symmetric and transitive in-site closures

>>> rdg.save('tutRandValDigraph')

>>> rdg.closeSymmetric(InSite=True)

>>> rdg.closeTransitive(InSite=True)

>>> rdg.exportGraphViz ('strongComponents')

Rubis Python Server (graphviz), RB. Bisdorff, 2008

Fig. 1.8: Symmetric and transitive in-site closures

The closeSymmetric() method (see Listing 1.9 Line 2), of complexity O(n?) where n
denotes the digraph’s order, changes, on the one hand, all single pairwise links it may
detect into double links by operating a disjunction of the pairwise relations. On the
other hand, the closeTransitive() method (see Listing 1.9 Line 3), implements the
Roy-Warshall transitive closure algorithm of complexity O(n?). ('7)

Note

The same closeTransitive() method with a Reverse = True flag may be readily
used for eliminating all transitive arcs from a transitive digraph instance. We make
usage of this feature when drawing Hasse diagrams of TransitiveDigraph objects.

7 Roy, B. Transitivité et connezité. C. R. Acad. Sci. Paris 249, 216-218, 1959. Warshall, S. A
Theorem on Boolean Matrices. J. ACM 9, 11-12, 1962.
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Strong components

As the original digraph rdg was connected (see above the result of the showShort () com-
mand), both the symmetric and the transitive closures operated together, will necessarily
produce a single strong component, i.e. a complete digraph. We may sometimes wish
to collapse all strong components in a given digraph and construct the so collapsed di-
graph. Using the StrongComponentsCollapsedDigraph constructor here will render a
single hyper-node gathering all the original nodes (see Line 7 below).

>>> from digraphs import StrongComponentsCollapsedDigraph
>>> sc = StrongComponentsCollapsedDigraph(dg)

>>> sc.showAll()

R show detail ----- *

Digraph : tutRandValDigraph_Scc

*---- Actions ----x

'Scc_1' | 0.00
short content
Scc_1 _7_1.2.6.5_3_4_
Neighborhoods:
Gamma
'frozenset({'7', '1', '2', '6', '5', '3', '4'})': in => set(), out =>,
~set()
Not Gamma :
'frozenset({'7', '1', '2', '6', '5', '3', '4'})': in => get(), out =>,
~set()

CSV storage

Sometimes it is required to exchange the graph valuation data in CSV format with a
statistical package like R (https://www.r-project.org/). For this purpose it is possible to
export the digraph data into a CSV file. The valuation domain is hereby normalized by
default to the range [-1,1] and the diagonal put by default to the minimal value -1.

>>> rdg = Digraph('tutRandValDigraph')

>>> rdg.saveCSV('tutRandValDigraph')

# content of file tutRandValDigraph.csv
g, 2 g ngn up g
"1",-1.0,0.48,-0.7,-0.86,-0.3,-0.38,-0.44
"2",0.22,-1.0,0.38,-0.5,-0.8,0.54,-0.02
"3",0.42,-0.08,-1.0,-0.7,0.56,-0.84,1.0
"4",-0.44,0.4,0.62,-1.0,-0.04,-0.66,-0.76
"5",-0.32,0.48,0.46,-0.64,-1.0,0.22,0.52
"6",0.84,0.0,0.4,0.96,0.18,-1.0,0.22
"r",-0.88,-0.72,-0.82,-0.52,0.84,-0.04,-1.0
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It is possible to reload a Digraph instance from its previously saved CSV file content.

>>> from digraphs import CSVDigraph

>>> rdgcsv =

CSVDigraph('tutRandValDigraph')
>>> rdgcsv.showRelationTable (ReflexiveTerms=False)

4 * ---- Relation Table -----
s r(xSy) | '1+  '2v '3r r4r 't T
6 ——————= | ==
7 1! I - -0.48 0.70 0.86 0.30 0.38 0.44
8 2! | -0.22 - -0.38 0.50 0.80 -0.54 0.02
9 '8t | -0.42 0.08 - 0.70 -0.56 0.84 -1.00
4! | 0.44 -0.40 -0.62 - 0.04 0.66 0.76
157 | 0.32 -0.48 -0.46 0.64 - -0.22 -0.52
'6! | -0.84 0.00 -0.40 -0.96 -0.18 - -0.22
e | 0.88 0.72 0.82 0.52 -0.84 0.04 -

13

It is as well possible to show a colored version of the valued relation table in a system
browser window tab (see Fig. 1.9).

1 >>> rdgcsv.showHTMLRelationTable (tableTitle="Tutorial random digraph")

Tutorial random digraph

W 1[2[3|4[5][6]7
10.00|-0.48 | 0.70( 0.86| 0.30| 0.38 | 0.44
-0.22| 0.00|-0.38| 0.50| 0.80|-0.54 | 0.02
-0.42| 0.08| 0.00| 0.70[-0.56 0.84|-1.00
1 0.44|-0.40 -0.62| 0.00| 0.04 | 0.66 0.76
10.32]-0.48|-0.46| 0.64| 0.00|-0.22|-0.52
-0.84| 0.00|-0.40|-0.96|-0.18| 0.00|-0.22
10.88|0.72 0.82| 0.52|-0.84 | 0.04| 0.00

r(x

N G| W] N =g

Fig. 1.9: The valued relation table shown in a browser window

Positive arcs are shown in green and negative arcs in red. Indeterminate -zero-valued-
links, like the reflexive diagonal ones or the link between node 6 and node 2, are shown
in gray.

Complete, empty and indeterminate digraphs

Let us finally mention some special universal classes of digraphs that are readily avail-
able in the digraphs module, like the CompleteDigraph, the EmptyDigraph and the
IndeterminateDigraph classes, which put all characteristic values respectively to the
mazimum, the minimum or the median indeterminate characteristic value.
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Listing 1.10: Complete, empty and indeterminate di-
graphs

>>> from digraphs import CompleteDigraph,EmptyDigraph,

—IndeterminateDigraph

>>> e = EmptyDigraph(order=5)
>>> e.showRelationTable()

set ()
set ()
set()
set ()
set ()

;"8
, '3'},
, '3'},
;1B
RN

out
out
out
out
out

set ()
set ()
set ()
set ()
set ()

* ---- Relation Table ---
S | 1 ‘2!
————— |
1! | -1.00 -1.00 -1.
'2! | -1.00 -1.00 -1.
'8’ | -1.00 -1.00 -1.
4! | -1.00 -1.00 -1.
15" | -1.00 -1.00 -1.
>>> e.showNeighborhoods ()
Neighborhoods:
Gamma
"1': in => set(), out =>
'2': in => set(), out =>
'6': in => set(), out =>
'3': in => set(), out =>
'4': in => set(), out =>
Not Gamma :
'1': in => {'2', '4', 'b!
129 dm = {040, 040 OFC
'6': in => {'1', '2', '4'
'3': in => {'1', '2', '4'
140 o digp = 040, 0190  0IFE
>>> i = IndeterminateDigraph()
* ---- Relation Table ---
S | 1! '2! '8!
—————— |
1! | 0.00 0.00 0.00
2! | 0.00 0.00 0.00
1" | 0.00 0.00 0.00
‘4! | 0.00 0.00 0.00
4ok | 0.00 0.00 0.00
>>> i.showNeighborhoods ()
Neighborhoods:
Gamma :
'1': in => set(), out =>
'2': in => set(), out =>
'5': in => set(), out =>
'3': in => set(), out =>
'4': in => set(), out =>
Not Gamma :
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(continues on next page)
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(continued from previous page)
"1': in => set(), out => set()
'2': in => set(), out => set()
'6': in => set(), out => set()
'3': in => set(), out => set()
'4': in => set(), out => set()

Note

Mind the subtle difference between the neighborhoods of an empty and the neighbor-
hoods of an indeterminate digraph instance. In the first kind, the neighborhoods
are known to be completely empty (see Listing 1.10 Lines 20-25) whereas, in the lat-
ter, nothing is known about the actual neighborhoods of the nodes (see Listing 1.10
Lines 43-48). These two cases illustrate why in the case of bipolar-valued digraphs,
we may need both a gamma and a notGamma attribute.

Historical notes

It was Denis Bouyssou who first suggested us end of the nineties, when we started to
work in Prolog on the computation of fuzzy digraph kernels with finite domain con-
straint solvers, that the 50% criteria significance majority is a very special value that
has to be carefully taken into account. The converging solution vectors of the fixpoint
kernel equations furthermore confirmed this special status of the 50% majority (see Com-
puting bipolar-valued kernel membership characteristic vectors). These early insights
led to the seminal articles on bipolar-valued epistemic logic where we introduced split
truth /falseness semantics for a multi-valued logical processing of fuzzy preference mod-
elling (|[BIS-2000] and [BIS-2004a]). The characteristic valuation domain remained how-
ever the classical fuzzy [0.0;1.0] valuation domain.

It is only in 2004, when we succeeded in assessing the stability of the outranking di-
graph when solely ordinal criteria significance weights are given, that it became clear and
evident for us that the characteristic valuation domain had to be shifted to a [-1.0;+1.0]-
valued domain (see Ordinal correlation equals bipolar-valued relational equivalence and
[BIS-2004b]). In this bipolar valuation, the 50% majority threshold corresponds now to
the median 0.0 value, characterising with the correct zero value an epistemic indetermi-
nateness -no knowledge- situation. Furthermore, identifying truth and falseness directly
by the sign of the characteristic value revealed itself to be very efficient not only from a
computational point of view, but also from scientific and semiotic perspectives. A positive
(resp. negative) characteristic value now attest a logically valid (resp. invalid) statement
and a negative affirmation now means a positive refutation and vice versa. Furthermore,
the median zero value gives way to efficiently handling partial objects -like the border
or the assymetric part of a digraph- and, even more important from a practical decision
making point of view, any missing data.

The bipolar [-1.0;+1.0]-valued characteristic domain opened so the way to important
new operations and concepts, like the disjunctive epistemic fusion operation seen before
that confers the outranking digraph a logically sound and epistemically correct definition
(|BIS-2013]). Kendall’s ordinal correlation index could be extended to a bipolar-valued
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relational equivalence index between digraphs (see Ordinal correlation equals bipolar-
valued relational equivalence and [BIS-2012]). Making usage of the bipolar-valued Gaus-
sian error function (erf) naturally led to defining a bipolar-valued likelihood function,
where a positive, resp. negative, value gives the likelihood of an affirmation, resp. a
refutation.

Back to Content Table (page 1)

1.3 Working with the outrankingDigraphs module

“The rule for the combination of independent concurrent arguments takes a
very simple form when expressed in terms of the intensity of belief ... It
is this: Take the sum of all the feelings of belief which would be produced
separately by all the arguments pro, subtract from that the similar sum for
arguments con, and the remainder is the feeling of belief which ought to have
the whole. This is a proceeding which men often resort to, under the name of
balancing reasons.”

—C.S. Peirce, The probability of induction (1878)

Outranking digraph model (page 25)

The bipolar-valued outranking digraph (page 28)

Pairwise comparisons (page 29)

Recoding the digraph valuation (page 30)

The strict outranking digraph (page 31)

Historical Notes (page 32)

Outranking digraph model

In this Digraph3 module, the BipolarQOutrankingDigraph class from the
outrankingDigraphs module provides our standard outranking digraph con-
structor. Such an instance represents a hybrid object of both, the PerformanceTableau
type and the QutrankingDigraph type. A given object consists hence in:

1. an ordered dictionary of decision actions describing the potential decision actions
or alternatives with ‘name’ and ‘comment’ attributes,

2. a possibly empty ordered dictionary of decision objectives with ‘name’ and ‘com-
ment attributes, describing the multiple preference dimensions involved in the de-
cision problem,

3. adictionary of performance criteria describing preferentially independent and non-
redundant decimal-valued functions used for measuring the performance of each
potential decision action with respect to a decision objective,
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4. a double dictionary evaluation gathering performance grades for each decision
action or alternative on each criterion function.

5. the digraph valuationdomain, a dictionary with three entries: the minimum (-1.0,
certainly outranked), the median (0.0, indeterminate) and the mazimum charac-
teristic value (+1.0, certainly outranking),

6. the outranking relation : a double dictionary defined on the Cartesian product of
the set of decision alternatives capturing the credibility of the pairwise outranking
situation computed on the basis of the performance differences observed between
couples of decision alternatives on the given family of criteria functions.

Let us construct, for instance, a random bipolar-valued outranking digraph with seven de-
cision actions denotes al, a2, ..., a7. We need therefore to first generate a corresponding
random performance tableaux (see below).

>>> from outrankingDigraphs import *
>>> pt = RandomPerformanceTableau(numberOfActions=7,

seed=100)

>>> pt

Kommmm oo PerformanceTableau instance description ------ *

Instance class : RandomPerformanceTableau

Seed : 100

Instance name : randomperftab

# Actions 27

# Criteria 27

NaN proportion (%) : 6.1

>>> pt.showActions ()
Ko show digraphs actions -------------—- *
key: al
name: action #1
comment : RandomPerformanceTableau() generated.
key: a2
name: action #2
comment : RandomPerformanceTableau() generated.
key: a7
name: action #7
comment : RandomPerformanceTableau() generated.

In this example we consider furthermore a family of seven equisignificant cardinal
criteria functions g1, ¢2, ..., g7, measuring the performance of each alternative on a
rational scale from 0.0 (worst) to 100.00 (best). In order to capture the grading pro-
cedure’s potential uncertainty and imprecision, each criterion function g1 to ¢7 admits
three performance discrimination thresholds of 2.5, 5.0 and 80 pts for warranting
respectively any indifference, preference or considerable performance difference situation.
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>>> pt.showCriteria()
*----  criteria ----- *
gl 'RandomPerformanceTableau() instance'
Scale = [0.0, 100.0]
Weight = 1.0
Threshold ind : 2.50 + 0.00x ; percentile: 4.76
Threshold pref : 5.00 + 0.00x ; percentile: 9.52
Threshold veto : 80.00 + 0.00x ; percentile: 95.24
g2 'RandomPerformanceTableau() instance'
Scale = [0.0, 100.0]
Weight = 1.0
Threshold ind : 2.50 + 0.00x ; percentile: 6.67
Threshold pref : 5.00 + 0.00x ; percentile: 6.67
Threshold veto : 80.00 + 0.00x ; percentile: 100.00

g7 'RandomPerformanceTableau() instance'
Scale = [0.0, 100.0]
Weight = 1.0
Threshold ind : 2.50 + 0.00x ; percentile: 0.00
Threshold pref : 5.00 + 0.00x ; percentile: 4.76
Threshold veto : 80.00 + 0.00x ; percentile: 100.00

On criteria function g (see Lines 6-8 above) we observe, for instance, about 5% of
indifference, about 90% of preference and about 5% of considerable performance
difference situations. The individual performance evaluation of all decision alternative
on each criterion are gathered in a performance tableau.

>>> pt.showPerformanceTableau(Transposed=True,ndigits=1)

*---- performance tableau ----- *

criteria | weights | 'al' 'a2' 'a3' ‘'a4' ‘'ab' ‘'a6' ‘'aT7'

_________ I
'gl! | 1 | 16.2 44.5 57.9 58.0 24.2 29.1 96.6
'g2! | 1 | 82.3 43.9 NA 35.8 29.1 34.8 62.2
'g3! | 1 | 44.2 19.1 27.7 41.5 22.4 21.5 56.9
'gd' | 1 | 46.4 16.2 21.5 51.2 77.0 39.4 32.1
'gh! | 1 | 47.7 14.8 79.7 67.5 NA 90.7 80.2
'g6' | 1 | 69.6 45.5 22.0 33.8 31.8 NA 48.8
'gr! | 1 | 82.9 41.7 12.8 21.9 75.7 15.4 6.0

It is noteworthy to mention the three missing data (NA) cases: action a3 is missing,
for instance, a grade on criterion g2 (see Line 6 above)
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The bipolar-valued outranking digraph
Given the previous random performance tableau pi¢, the BipolarQutrankingDigraph
constructor computes the corresponding bipolar-valued outranking digraph.
Listing 1.11: Example of random bipolar-valued outrank-
ing digraph
>>> odg = BipolarOutrankingDigraph(pt)

>>> odg
K e Object instance description ------ *
Instance class : BipolarOutrankingDigraph
Instance name : rel_randomperftab
# Actions 7
# Criteria 7
Size : 20
Determinateness (%) : 63.27
Valuation domain : [-1.00;1.00]
Attributes L
'name', 'actions',
'criteria', 'evaluation', 'NA',
'valuationdomain', 'relation',
'order', 'gamma', 'notGamma',
]

The resulting digraph contains 20 positive (valid) outranking realtions. And, the mean
majority criteria significance support of all the pairwise outranking situations is 63.3%
(see Listing 1.11 Lines 8-9). We may inspect the complete [-1.0,+1.0]-valued adjacency
table as follows.

>>> odg.showRelationTable ()

* --—-- Relation Table -----

r(x,y)| ‘'al' 'a2' 'a3' 'ad' 'ab' ‘a6’ a7’
______ | = oo oo
'al' +1.00 +0.71 +0.29 +0.29 +0.29 +0.29 +0.00

Ia4|
'ab’ -0.29 +0.00 +0.14 +0.00 +1.00 +0.29 -0.29
‘a6’ -0.29 +0.00 +0.14 -0.29 +0.14 +1.00 +0.00

'a7' | +0.00 +0.71 +0.57 +0.43 +0.29 +0.00 +1.00
Valuation domain: [-1.0; 1.0]

Considering the given performance tableau pt, the BipolarOutrankingDigraph class
constructor computes the characteristic value r(x,y) of a pairwise outranking rela-
tion “z = y” (see [BIS-2013], [ADT-L7]) in a default normalised valuation domain
[-1.0,4+1.0] with the median value 0.0 acting as indeterminate characteristic value. The
semantics of r(z,y) are the following.

1. When r(z,y) > 0.0, it is more True than False that z outranks y, i.e. alternative
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z is at least as well performing than alternative y on a weighted majority of criteria
and there is no considerable negative performance difference observed in disfavour
of z,

2. When r(x,y) < 0.0, it is more False than True that z outranks y, i.e. alternative z
is not at least as well performing on a weighted majority of criteria than alternative
y and there is no considerable positive performance difference observed in favour
of z,

3. When r(z,y) = 0.0, it is indeterminate whether z outranks y or not.

Pairwise comparisons

From above given semantics, we may consider (see Line 5 above) that al outranks a2
(r(ai,as) > 0.0), but not a7 (r(a,a7) = 0.0). In order to comprehend the characteristic
values shown in the relation table above, we may furthermore inspect the details of the
pairwise multiple criteria comparison between alternatives af and a2.

>>> odg.showPairwiseComparison('al','a2')

Lt pairwise comparison ----*

Comparing actions : (al, a2)

crit. wght. g(x) g(y) diff | ind  pref r()
gl 1.00 15.17 44.51 -29.34 | 2.50 5.00 -1.00
g2 1.00 82.29 43.90 +38.39 | 2.50 5.00 +1.00
g3 1.00 44.23 19.10 +25.13 | 2.50 5.00 +1.00
gé 1.00 46.37 16.22 +30.15 | 2.50 5.00 +1.00
gb 1.00 47.67 14.81 +32.86 | 2.50 5.00 +1.00
g6 1.00 69.62 45.49 +24.13 | 2.50 5.00 +1.00
gr 1.00 82.88 41.66 +41.22 | 2.50 5.00 +1.00

Valuation in range: -7.00 to +7.00; r(x,y): +5/7 = +0.71

The outranking characteristic value r(a; 7 as) represents the majority margin result-
ing from the difference between the weights of the criteria in favor and the weights of the
criteria in disfavor of the statement that alternative af is at least as well performing as
alternative a2. No considerable performance difference being observed above, no outrank-
ing polarisation is triggered in this pairwise comparison. Such a situation is, however,
observed for instance when we pairwise compare the performances of alternatives al and
a’.

>>> odg.showPairwiseComparison('al', 'a7')

Koo oo pairwise comparison ----*
Comparing actions : (al, a7)
crit. wght. g(x) g(y) diff | ind pref r() | v veto

gl 1.00 15.17 96.58 -81.41 | 2.50 5.00 -1.00 | 80.00 -1.00
g2 1.00 82.29 62.22 +20.07 | 2.50 5.00 +1.00 |
g3 1.00 44.23 56.90 -12.67 | 2.50 5.00 -1.00 |

(continues on next page)
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(continued from previous page)

gd 1.00 46.37 32.06 +14.31 | 2.50 5.00 +1.00 |
gb 1.00 47.67 80.16 -32.49 | 2.50 5.00 -1.00 |
g6 1.00 69.62 48.80 +20.82 | 2.50 5.00 +1.00 |
gr 1.00 82.88 6.05 +76.83 | 2.50 5.00 +1.00 |

Valuation in range: -7.00 to +7.00; r(x,y)= +1/7 => 0.0

This time, we observe a 57.1% majority of criteria significance [(1/7 + 1)/2 = 0.571] war-
ranting an as well as performing situation. Yet, we also observe a considerable negative
performance difference on criterion g7 (see first row in the relation table above). Both
contradictory facts trigger eventually an indeterminate outranking situation [BIS-2013].

Recoding the digraph valuation

All outranking digraphs, being of root type Digraph, inherit the methods available under
this latter class. The characteristic valuation domain of a digraph may, for instance, be
recoded with the recodeValutaion() method below to the integer range |-7,+7|, i.e.
plus or minus the global significance of the family of criteria considered in this example
instance.

>>> odg.recodeValuation(-7,+7)
>>> odg.valuationdomain['hasIntegerValuation'] = True
>>> Digraph.showRelationTable (odg,ReflexiveTerms=True)

¥ ---- Relation Table -----

r(x,y) | ‘'al' 'a2' 'a3' ‘'a4' 'ab' 'a6' ‘'aT'
_________ | = o o .
'al' | 0 +5 +2 +2 +2 +2 0
‘a2’ I -5 0 -1 =il +1 +2 -4
'ad' I -1 +2 0 -1 -1 0 -1
'ad' | 0 +1 +4 0 +2 +4 -3
'ab' | -1 0 +1 0 0 +2 -1
‘a6’ | -1 0 +1 -1 +1 0 0
‘a7 | 0 +5 +4 +3 +2 0 0

Valuation domain: [-7;+7]

Warning

Notice that the reflexive self comparison characteristic r(z, x) is set above by default
to the median indeterminate valuation value 0; the reflexive terms of binary relation
being generalr(x not geq y)ly ignored in most of the Digraph3 resources.
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The strict outranking digraph

Bipolar-valued outranking digraphs are strongly complete, i.e. complete from a rela-
tional as well as from an epistemic perspective:

r(z 7z y)+r(yzz)>0.0.

They furthermore verify the coduality principle: the converse (the inverse ~) of the
dual”®&¢ 1% 11 (the negation - ) correspond to their asymetric strict outranking part:

~(—rlyza) =~ (rlyZ ) = r(zzy).

From both properties follows straightway that codual —strict— outranking digraphs are
strongly asymmetric:

r(xzy) +r(y ) <00

See the advanced topic on characterizing bipolar-valued outranking digraphs, [BIS-2013],
[ADT-L7] .

We may visualize the codual outranking digraph cdodg with a graphviz drawing”2e¢ 7 !,
>>> cdodg = “(-odg) # == -("odg) == codual transform
>>> cdodg.exportGraphViz('codualOdg")

*---- exporting a dot file for GraphViz tools --------- *

Exporting to codualOdg.dot
dot -Grankdir=BT -Tpng codualOdg.dot -o codualOdg.png
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Digraph3 (graphviz), R. Bisdorff, 2020

Fig. 1.10: The strict (codual) outranking digraph

It becomes readily clear now from the picture above that both alternatives a! and a7 are
not outranked by any other alternatives. Hence, al and a7 appear as weak Condorcet
winners (page 124) and may be recommended as potential best decision actions in a
selection decision problem.

Many more tools for exploiting bipolar-valued outranking digraphs are available in the
Digraphd resources (see the technical documentation of the outrankingDigraphs module
and the perfTabs module).

Historical Notes

The seminal work on outranking digraphs goes back to the seventies and eighties when
Bernard Roy joined the just starting Uniwversity Paris-Dauphine and founded there the
Laboratoire d’Analyse et de Modélisation de Systémes pour I’Aide & la Décision (LAM-
SADE). The LAMSADE became the major site in the development of the outranking
approach to multiple-criteria decision aiding ([ROY-1991]).

The ongoing success of the original outranking concept stems from the fact that it is
rooted in a sound pragmatism. The multiple-criteria performance tableau, necessarily
associated with a given outranking digraph, is indeed convincingly objective and mean-
ingful (|[ROY-1993]). And, ideas from social choice theory gave initially the insight that
a pairwise voting mechanism a la Condorcet could provide an order-statistical tool for
aggregating a set of preference points of view into what Marc Barbut called the central
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Condorcet point of view (J[CON-1785] and [BAR-1980]); in fact the median of the multi-
ple preference points of view, at minimal absolute Kendall’s ordinal correlation distance
from all individual points of view (see Ordinal correlation equals bipolar-valued relational
equivalence).

Considering thus each performance criterion as a subset of unanimous voters and bal-
ancing the votes in favour against considerable counter-performances in disfavour gave
eventually rise to the concept of outranking situation, a distinctive feature of the Multiple-
Criteria Decision Aiding approach (|[ROY-1991]). A modern definition would be: an alter-
native z is said to outrank alternative y when — a significant majority of criteria confirm
that alternative z has to be considered as at least as well evaluated as an alternative y
(the concordance argument); and — no discordant criterion opens to significant doubt the
validity of the previous confirmation by revealing a considerable counter-performance of
alternative z compared to y (the discordance argument).

If the concordance argument was always well received, the discordance argument however,
very confused in the beginning ([ROY-1966]), could only be handled in an epistemically
correct and logically sound way by using a bipolar-valued epistemic logic (|[BIS-2013]).
The outranking situation had consequently to receive an explicit negative definition: An
alternative z is said to do not outrank an alternative y when — a significant majority of
criteria confirm that alternative z has to be considered as not at least as well evaluated
as alternative y; and — no discordant criterion opens to significant doubt the validity of
the previous confirmation by revealing a considerable better performance of alternative x
compared to .

Furthermore, the initial conjunctive aggregation of the concordance and discordance ar-
guments had to be replaced by a disjunctive epistemic fusion operation, polarising in a
logically sound and epistemically correct way the concordance with the discordance ar-
gument. This way, bipolar-valued outranking digraphs gained two very useful properties
from a measure theoretical perspective. They are strongly complete; incomparability sit-
uations are no longer attested by the absence of positive outranking relations, but instead
by epistemic indeterminateness. And, they verify the coduality principle: the negation of
the epistemic ‘at least as well evaluated as’ situation corresponds formally to the strict
converse epistemic ‘less well evaluated than’ situation.

Back to Content Table (page 1)

2 Evaluation and decision methods and tools

This is the methodological part of the tutorials.

e Computing a best choice recommendation (page 34)

e How to create a new performance tableau instance (page 51)

e (Generating random performance tableaur with the randPerfTabs module
(page 62)
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e Ranking with multiple incommensurable criteria (page 78)
e On partially ranking outranking digraphs (page 99)

e Rating into relative performance quantiles (page 106)

e Rating with learned performance quantile norms (page 112)

e Computing the winner of an election with the wvotingProfiles module
(page 124)

e On computing fair intergroup pairings (page 136)

e On computing fair intragroup pairings (page 166)

2.1 Computing a best choice recommendation

“The goal of our research was to design a resolution method ... that is easy
to put into practice, that requires as few and reliable hypotheses as possible,
and that meets the needs [of the decision maker| ...

—B. Roy et al. (1966)

This tutorial presents the RUBIS best choice recommender system [BIS-2008]. Our ap-
proach is illustrated with a best office location selection problem. We show how to explore
the given performance tableau and compute the corresponding bipolar-valued outranking
digraph. After introducing the pragmatic principles that gouvern the RUBIS recommeder
algorithm, we present some tools for computing a first choice recommendation.

e What office location to choose ? (page 35)

e The performance tableau (page 36)

e The outranking digraph (page 38)

o Designing a best choice recommender system (page 40)
e Computing the first choice recommendation (page 41)

e Partially ranking the outranking digraph (page 46)

e Notes (page 49)

See also

Lecture 7 notes from the MICS Algorithmic Decision Theory course: [ADT-L7].
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What office location to choose ?

A SME, specialized in printing and copy services, has to move into new offices, and its
CEO has gathered seven potential office locations (see Table 2.1).

Table 2.1: The potential new office locations

ID Name Address Comment

A Ave Avenue de la liberté High standing city center

B Bon  Bonnevoie Industrial environment

C  Ces Cessange Residential suburb location

D Dom Dommeldange Industrial suburb environment

E Bel Esch-Belval New and ambitious urbanization far from the city
F Fen Fentange Out in the countryside

G Gar  Avenue de la Gare  Main city shopping street

Three decision objectives are guiding the CEQ’s choice:
1. minimize the yearly costs induced by the moving,
2. maximize the future turnover of the SME,
3. mazimize the new working conditions.

The decision consequences to take into account for evaluating the potential new office
locations with respect to each of the three objectives are modelled by the following co-
herent family of criteria®.

Table 2.2: The coherent family of performance criteria

Objective ID Name Comment

Yearly costs C  Costs Annual rent, charges, and cleaning
Future turnover St Standing Image and presentation

Future turnover V  Visibility  Circulation of potential customers
Future turnover Pr Proximity Distance from town center
Working conditions W Space Working space

Working conditions Cf Comfort Quality of office equipment
Working conditions P  Parking Available parking facilities

26 A coherent family of performance criteria verifies: a) Ezhaustiveness: No argument acceptable to all
stakeholders can be put forward to justify a preference in favour of action z versus action y when z and
y have the same performance level on each of the criteria of the family; b) Cohesiveness: Stakeholders
unanimously recognize that action z must be preferred to action y whenever the performance level of
z is significantly better than that of z on one of the criteria of positive weight, performance levels of z
and y being the same on each of the other criteria; ¢) Nonredundancy: One of the above requirements is
violated if one of the criteria is left out from the family. Source: European Working Group “ Multicriteria
Aid for Decisions” Series 3, nol, Spring, 2000.
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The evaluation of the seven potential locations on each criterion are gathered in the
following performance tableau.

Table 2.3: Performance evaluations of the potential office

locations
Criterion weight A B C D E F G
Costs 45.0 35.0K€ 17.8K€ 6.7K€ 14.1K€ 348K€ 18.6K€ 12.0K€
Proximity 32.0 100 20 80 70 40 0 60
Visibility 26.0 60 80 70 50 60 0 100
Standing 23.0 100 10 0 30 90 70 20
Work. 10.0 75 30 0 55 100 0 50
space
Work. 6.0 0 100 10 30 60 80 50
comf.
Parking 3.0 90 30 100 90 70 0 80

Except the Costs criterion, all other criteria admit for grading a qualitative satisfaction
scale from 0% (worst) to 100% (best). We may thus notice in Table 2.3 that location
A (Ave) is the most expensive, but also 100% satisfying the Prozimity as well as the
Standing criterion. Whereas the locations C (Ces) is the cheapest one; providing however
no satisfaction at all on both the Standing and the Working Space criteria.

In Table 2.3 we may also see that the Costs criterion admits the highest significance
(45.0), followed by the Future turnover criteria (32.0 + 26.0 + 23.0 = 81.0), The Working
conditions criteria are the less significant (10.0 + 6.0, + 3.0 = 19.0). It follows that
the CEO considers mazimizing the future turnover the most important objective (81.0),
followed by the minizing yearly Costs objective (45.0), and less important, the mazimizing
working conditions objective (19.0).

Concerning yearly costs, we suppose that the CEO is indifferent up to a performance dif-
ference of 1000€, and he actually prefers a location if there is at least a positive difference
of 2500€. The grades observed on the six qualitative criteria (measured in percentages
of satisfaction) are very subjective and rather imprecise. The CEO is hence indifferent
up to a satisfaction difference of 10%, and he claims a significant preference when the
satisfaction difference is at least of 20%. Furthermore, a satisfaction difference of 80%
represents for him a considerably large performance difference, triggering an outranking
polarisation the case given (see |[BIS-2013]).

The performance tableau

A Python encoded performance tableau is available for downloading here officeChoice.py.
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We may inspect the performance tableau data with the computing resources provided by

the perfTabs module.

>>> from perfTabs import PerformanceTableau
>>> t = PerformanceTableau('officeChoice')

>>>
S PerformanceTableau instance description ------ *
Instance class : PerformanceTableau
Instance name : officeChoice
Actions 7
Objectives 3
Criteria 7
NaN proportion (%) : 0.0
Attributes : ['name', 'actions', 'objectives',
'criteria', 'weightPreorder',
'NA', 'evaluation']
>>> t.showPerformanceTableau()
*---- performance tableau ----- *
Criteria | 'C!' 'Cf! 'p! 'Pr' USSR v "W
Weights | 45.00 6.00 3.00 32.00 23.00 26.00 10.00
_________ | oo
'"Ave' | -35000.00 0.00 90.00 100.00 100.00 60.00 75.00
'Bon' | -17800.00 100.00 30.00 20.00 10.00 80.00 30.00
'Ces' | -6700.00 10.00 100.00 80.00 0.00 70.00 0.00
'Dom' | -14100.00 30.00 90.00 70.00 30.00 50.00 55.00
'Bel' | -34800.00 60.00 70.00 40.00 90.00 60.00 100.00
'Fen' | -18600.00 80.00 0.00 0.00 70.00 0.00 0.00
'Gar' | -12000.00 50.00 80.00 60.00 20.00 100.00 50.00

We thus recover all the input data. To measure the actual preference discrimination we

observe on each criterion, we may use the showCriteria() method.

>>> t.showCriteria(IntegerWeights=True)

¥---- criteria
C 'Costs'

Scale = (Decimal('0.00'), Decimal('50000.00'))

Weight = 45
Threshold ind :
Threshold pref
Cf 'Comfort'

1000.00 + 0.00x ; percentile:

9.5
: 2500.00 + 0.00x ; percentile: 14.3

Scale = (Decimal('0.00'), Decimal('100.00'))

Weight = 6

Threshold ind :
Threshold pref
Threshold veto

10.00 + 0.00x ; percentile:

9.5
: 20.00 + 0.00x ; percentile: 28.6
: 80.00 + 0.00x ; percentile: 90.5

On the Costs criterion, 9.5% of the performance differences are considered insignificant
and 14.3% below the preference discrimination threshold (lines 6-7). On the qualitative
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Working Comfort criterion, we observe again 9.5% of insignificant performance differ-
ences (line 11). Due to the imprecision in the subjective grading, we notice here 28.6%
of performance differences below the preference discrimination threshold (Line 12). Fur-
thermore, 100.0 - 90.5 = 9.5% of the performance differences are judged considerably
large (Line 13); 80% and more of satisfaction differences triggering in fact an outranking
polarisation. Same information is available for all the other criteria.

A colorful comparison of all the performances is shown on Fig. 2.1 by the heatmap
statistics, illustrating the respective quantile class of each performance. As the set of
potential alternatives is tiny, we choose here a classification into performance quintiles.

>>> t.showHTMLPerformanceHeatmap(colorLevels=5,
rankingRule=None)

Heatmap of Performance Tableau 'officeChoice'

lcriteria|] € | Pr | V | st | W | cf | P

lweights| +45.00 [+32.00(+26.00(+23.00|+10.00|+6.00 |+3.00
| Ave |-35000.00(100.00 60.00 [100.00 | 75.00 | 0.00 |90.00
| Bon [-17800.00| 20.00 | 80.00 | 10.00 || 30.00 |100.00/|30.00
| Ces [-6700.00 | 80.00 | 70.00 | 0.00 | 0.00 |10.00 [100.00
| Dom [-14100.00| 70.00 | 50.00 | 30.00 |55.00 |30.00 |[90.00
| Bel [-34800.00|40.00 | 60.00 | 90.00 [100.00 | 60.00 |70.00
| Fem |-18600.00| 0.00 | 0.00 | 70.00 | 0.00 [80.00 | 0.00
| Gar [-12000.00| 60.00 [100.00 | 20.00 || 50.00 |50.00 | 80.00

Color legend:
|quantile | 20.00% | 40.00% | 60.00% | 80.00% | 100.00%

Fig. 2.1: Unranked heatmap of the location choice performance tableau

Location A (Ave) shows extreme and contradictory performances: highest Costs and no
Working Comfort on one hand, and total satisfaction with respect to Standing, Proximity
and Parking facilities on the other hand. Similar, but opposite, situation is given for
location C' (Ces): unsatisfactory Working Space, no Standing and no Working Comfort
on the one hand, and lowest Costs, best Proximity and Parking facilities on the other
hand. Contrary to these contradictory alternatives, we observe two appealing compromise
decision alternatives: locations D (Dom) and G (Gar). Finally, location F' (Fen) is clearly
the less satisfactory alternative of all.

In view of Fig. 2.1, what is now the office location we may recommend to the CEO as
best choice 7
The outranking digraph

To help the CEO choosing the best office location, we are going to compute pairwise
outrankings (see [BIS-2013]) on the set of potential locations. For two locations z and y,
the situation “z outranks y”, denoted (x = y), is given when there is:
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1. a significant majority of criteria concordantly supporting that location z is at
least as well evaluated as location y, and

2. no considerable counter-performance observed on any discordant criterion.

The credibility of each pairwise outranking situation (see [BIS-2013]), denoted r(x 7 y),
is by default measured in a bipolar significance valuation [-1.00, 1.00], where positive
terms r(z 7 y) > 0.0 indicate a validated, and negative terms r(z 77 y) < 0.0 indicate
a non-validated outrankings; whereas the median value r(x 2Z y) = 0.0 represents an
indeterminate situation (see [BIS-2004a]).

For computing such a bipolar-valued outranking digraph from the given performance
tableau ¢, we use the BipolarOutrankingDigraph class constructor from the outrank-
ingDigraphs module. The showHTMLRelationTable method shows below the resulting
bipolar-valued adjacency matrix in a system browser window (see Fig. 2.2).

>>> from outrankingDigraphs import BipolarOutrankingDigraph
>>> g = BipolarOutrankingDigraph(t)
>>> g.showHTMLRelationTable ()

Valued Adjacency Matrix

rxSy)/A| B ([Cc |[D | E |[F| G
| A | - ||0.00|1.00|0.30|0.78(0.00| 0.00
| B [0.00] - [0.00[-0.56|0.00(1.00[-0.60
| € [0.00/0.00] - ||0.46]0.00(1.00]0.10
| D (0.10]0.56|0.02| - |0.46(1.00|0.25
| E 0.52]|0.00|0.00[-0.10] - |[1.00/-0.42
| F 0.00/-1.00[-1.00[-1.00[-1.00| - ||-1.00
| G 0.00|0.92[-0.10| 1.00| 0.54[1.00| -

Valuation domain: [-1.00; +1.00]

Fig. 2.2: The office choice outranking digraph

In Fig. 2.2 we may notice that Alternative D is positively outranking all other potential
office locations. D is hence a Condorcet winner. Yet, alternatives A (the most expensive)
and C (the cheapest) are not outranked by any other locations; they are in fact weak
Condorcet winners.

>>> g.computeCondorcetWinners ()
['D']

>>> g computeWeakCondorcetWinners ()
I: ' A ! ' C 1 ! D 1 :l

For two locations z and y, the situation “z strictly outranks y”, denoted (z 7 y), is given
when z outranks y and y does not outrank y. From theory, we know that outranking
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digraphs are strongly complete, i.e. for all z and y in X, r(z Z y) +r(y =7 =) > 0.0.
And they verify the coduality principle: r(x Z y) = r(y 7 x) (see On characterizing
bipolar-valued outranking digraphs and [BIS-2013]).

We may hence compute a strict outranking digraph ged with the codual transform, i.e.
the converse of the negation (see Line 1 below) of digraph ¢ (see tutorial on Working
with the outrankingDigraphs module (page 25)).

>>> ged = “(-g) # codual transform

>>> gcd

Hosoooe= Object instance description ------ *

Instance class : BipolarOutrankingDigraph

Instance name : converse-dual-rel_officeChoice

Actions 7

Criteria 7

Size : 10

Determinateness (%) : 71.43

Valuation domain : [-1.00;1.00]

Attributes : ['actions', 'ndigits', 'valuationdomain',
'objectives', 'criteria', 'evaluation',
'NA', 'order', 'gamma', 'notGamma',
'name', 'relation']

We observe in the resulting strict outranking digraph ged 10 valid strict outranking
situations (see Line 8) on which we are going to focus our search for a best choice recom-
mendation.

Designing a best choice recommender system

Solving a best-choice problem consists traditionally in finding the unique best decision
alternative. We adopt here instead a modern recommender system approach which
shows a non empty subset of decision alternatives which contains by construction the
potential best alternative(s).

The five pragmatic principles for computing such a best choice recommendation (BCR)
are the following

e P1: FElimination for well motivated reasons (external stability); each eliminated
alternative has to be strictly outranked by at least one alternative in the BCR.

e P2: Minimal size; the BCR must be as limited in cardinality as possible.

e P3: Efficient and informative (internal stability); The BCR must not contain a
self-contained sub-recommendation.

o P4: Effectively better; the BCR must not be ambiguous in the sense that it may
not be both a first choice as well as a last choice recommendation.

e P5: Maximally determined; the BCR is, of all potential best-choice recommenda-
tions, the most determined one in the sense of the epistemic characteristics of the
bipolar-valued outranking relation.
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Let X be the set of potential decision alternatives. Let Y be a non empty subset of X,
called a choice in the strict outranking digraph G(X,r(;)). We can now qualify a BCR
Y in following terms:

e Y iscalled strictly outranking (resp. outranked) when for all not selected alternative
z there exists an alternative y in X retained such that r(y 77 x) > 0.0 (resp.
r(x 7 y) > 0.0). Such a choice verifies the external stability (principle P1).

e Y is called weakly independent when for all z not equal y in Y we observe r(z 7
y) < 0.0. Such a choice verifies the internal stability (principle P3).

e Y is conjointly a strictly outranking (resp. outranked) and weakly independent
choice. Such a choice is called an initial (resp. terminal) prekernel (see the tutorial
on computing digraph kernels). The initial prekernel now verifies principles P1,
P2, P3 and P4.

e To finally verify principle P5, we recommend among all potential initial prekernels,
a *most determined® one, i.e. a strictly outranking and weakly independent choice
supported by the highest criteria significance. And in this most determined initial
prekernel we eventually retain the alternative(s) that are included with highest cri-
teria significance (see the tutorial on Computing bipolar-valued kernel membership
characteristic vectors).

Mind that a given strict outranking digraph may not always admit prekernels. This is
the case when the digraph contains chordless circuits of odd length. Luckily, our strict
outranking digraph ged here does not show any chordless outranking circuits; a fact we
can check with the showChordlessCircuits() method.

>>> gcd.showChordlessCircuits ()
No circuits observed in this digraph.

When observing chordless odd outranking circuits, we need to break them open with
the digraphs.BrokenCocsDigraph class at their weakest link, before enumerating the
prekernels.

We are ready now for building a first choice recommendation.

Computing the first choice recommendation

Following the previously stated pragmatic principles, potential first choice recommenda-
tions are determined by the inbitial prekernels —weakly independent and strictly outranking
choices— of the strict outranking digraph (see the tutorial on computing digraph kernels).
Any detected chordless odd outranking circuits are by default broken up (see [BIS-2008]).

Listing 2.1: Computing the first choice recommendation

>>> g .showFirstChoiceRecommendation(ChoiceVector=True)
* --- First and last choice recommendation(s) ---x
(in decreasing order of determinateness)
Credibility domain: [-1.00,1.00]
=== >> potential first choice(s)
(continues on next page)
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(continued from previous page)

* choice o [[PAY, °@°, °ID9]
independence : 0.00
dominance : 0.10
absorbency : 0.00
covering (%) : 41.67

determinateness (%) : 50.59
- characteristic vector = { 'D': 0.02, 'G': 0.00, 'C': 0.00,
"A': 0.00, 'F': -0.02, 'E': -0.02,

'B': -0.02, }
=== >> potential last choice(s)
* choice : ['AY, 'F']
independence : 0.00
dominance : -0.52
absorbency :1.00
covered (%) : 50.00

determinateness (%) : 50.00

- characteristic vector = { 'G': 0.00, 'F': 0.00, 'E': 0.00,
'D': 0.00, 'C': 0.00, 'B': 0.00,
"A': 0.00,

It is interesting to notice in Listing 2.1 (Line 6) that the first choice recommenda-
tion consists actually in the set of weak Condorcet winners: ‘A’, ‘C’ and ‘D’. In the
corresponding characteristic vector (see Lines 12-14), representing the bipolar credibility
degree with which each alternative may indeed be considered a first choice candidate (see
[BIS-2006a|, [BIS-2006b]), we find confirmed that alternative D is the only positively
validated one, whereas both extreme alternatives - A (the most expensive) and C' (the
cheapest) - stay in an indeterminate situation. They may be or not be potential first
choice candidates besides D. Notice furthermore that location G is not included in the
initial prekernel, yet, shows nevertheless an indeterminate situation with respect to being
or not being a potential first choice candidate. Alternatives B, E and F are negatively
included, i.e. positively excluded from this first choice recommendation. We may fur-
thermore notice in Line 16 that both alternatives A and F' are reported as potential
strict outranked choices, hence as potential last choice candidates . The ambiguous
first-ranked and last-ranked position of alternative A indicates its global incomparability
status as shown in Fig. 2.3.

>>> gcd.exportGraphViz (fileName='bestChoiceChoice"',
firstChoice=['C','D'],
. lastChoice=['F'])
*---- exporting a dot file for GraphViz tools --------- *
Exporting to bestOfficeChoice.dot
dot -Grankdir=BT -Tpng bestOfficeChoice.dot -o bestOfficeChoice.png

42



10

Ces Dom

Bel

Ave

Fen

Digraph3 (graphviz), R. Bisdorff, 2020

Fig. 2.3: Best office choice recommendation from strict outranking digraph

To comprehend the indeterminate situation of location G, let us now compare the
performances of alternatives D and G in a pairwise perspective (see below). With
the given preference discrimination thresholds, we notice that alternative G is actu-
ally certainly at least as good as alternative D: r(G = D) = +145/145 = +1.0 and
alternative D is also positively, but less credibly, at least as good as alternative G:
r(D 7z G) = +36/145 = +0.25 (see Line 14 below).

>>> g.showPairwiseComparison('G','D")

R ittt pairwise comparison ----*

Comparing actions : (G, D)

crit. wght. g(x) g(y) diff. | ind pref (G,D)/(D,G) .
-
(]

C 45.00 -12000.00 -14100.00 +2100.00 | 1000.00 2500.00 +45.00/+0.00

Cf 6.00 50.00 30.00 +20.00 | 10.00 20.00 +6.00/-6.00 |,
;l 3.00 80.00 90.00 -10.00 | 10.00 20.00 +3.00/+3.00
?l 32.00 60.00 70.00 -10.00 | 10.00 20.00 +32.00/+32.00,,
E‘l 23.00 20.00 30.00 -10.00 | 10.00 20.00 +23.00/+23.00,,

(continues on next page)
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e

vV 26.00 100.00 50.00 +50.00 | 10.00 20.00 +26.00/-26.00,
=

W 10.00 50.00 55.00 -5.00 | 10.00 20.00 +10.00/+10.00,
< |

(]

Valuation in range: [-145.00;+145.00]; global concordance: +145.00/+36.
00

Yet, we must as well notice that the cheapest alternative C' is in fact strictly outranking
alternative G: r(C' 7 G) = +15/145 > 0.0, and r(G 7 C') = —15/145 < 0.0 (see Line 14
below).

>>> g.showPairwiseComparison('C','G")

Koo o pairwise comparison ----*

Comparing actions : (C, G)/(G, C)

crit. wght. g(x) g(y) diff. | ind. pref. (C,6)/(G,C)
- |
(]

C 45.00 -6700.00 -12000.00 +5300.00 | 1000.00 2500.00 +45.00/-45.

cf 6.00 10.00 50.00 -40.00 | 10.00 20.00 -6.00/ +6.
~00 |
P 3.00 100.00 80.00 +20.00 | 10.00 20.00 +3.00/ -3.
00 |
Pr 32.00 80.00 60.00 +20.00 | 10.00 20.00 +32.00/-32.
00 |
St 23.00 0.00 20.00 -20.00 | 10.00 20.00 -23.00/+23.
00 |
v 26.00 70.00 100.00 -30.00 | 10.00 20.00 -26.00/+26.
00 |
W 10.00 0.00 50.00 -50.00 | 10.00 20.00 -10.00/+10.
00 |

Valuation in range: -145.00 to +145.00; global concordance: +15.00/-15.
-00

Following pragmatic principle P3 —the required internal stability stating that a BCR
should not contain a sub-recommendation— alternative G is hence dropped from our
first-ranked list of alternatives. Yet, the credibility level of this outranking situation is
not very high: 15/145 = 0.104 (55.2% significance majority). Considering a potential
imprecise knowledge of the different criteria significance weights, it appears opportune
to compute in Listing 2.2 below a 90% confident outranking digraph (see the advanced
topic on computing confident outrankings with uncertain criteria significance weights).
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Listing 2.2: Computing a 90% confident first choice rec-
ommendation

1 >>> cg = ConfidentBipolarOutrankingDigraph(t,confidence=90.0)

2 D> cg

Tl Soccooos Object instance description ------ *
4 Instance class : ConfidentBipolarOutrankingDigraph
5 Instance name : rel_officeChoice_CLT
6 Actions 7

7 Criteria 7

8 Size : 16

9 Uncertainty model : triangular(a=0,b=2w)
10 Likelihood domain : [-1.0;+1.0]

11 Confidence level : 0.80 (90.0%)

12 Confident credibility: > abs(0.104) (55.2%)
13 Determinateness (%) : 70.67

14 Valuation domain : [-1.00;1.00]

15 >>> cg.showFirstChoiceRecommendation()
16 >k 5k >k ok ok ok ok ok 3k ok ok >k ok >k ok ok ok ok ok k ok ok k

17 First choice recommendation(s) (BCR)

18 (in decreasing order of determinateness)
19 Credibility domain: [-1.00,1.00]

20 === >> potential first choice(s)

21 * choice : [*AY, 'C', 'D', 'G']
22 independence : 0.00

23 dominance : 0.42

24 absorbency : 0.00

25 covering (%) : 50.00

26 determinateness (%) : 50.00

27 - most credible action(s) = { }

28 === >> potential last choice(s)

29 * choice : ['AY, 'B', 'F']
30 independence : 0.00

31 dominance : 0.00

32 absorbency :1.00

33 covered (%) : 50.00

34 determinateness (%) : 50.00

35 - most credible action(s) = { }

The ConfidentBipolarQutrankingDigraph class constructor assumes here that the cri-
teria significance weights are in fact triangular random variates in the range 0 to 2 times
the given significance weights (Line 9). With this working hypothesis, we obtain a 90%
confident outranking digraph cg where three outranking situations with a credibility in
the range [-15/145; +15/145] are put to indeterminate (Line 8). The pairwise outranking
situations between location C' and location G are for instance not 90% confident and the
first choice recommendation now includes consequently this latter location as a further
potential best choice candidate (Line 21). Notice by the way that location ‘D’ is no more
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a Condorcet winner as the alternative is not 90% confidently outranking location C' (Line
27).

To get a further interesting insight in the overall outranking situation, we finally make
usage of the new PartialBachetRanking class imported from the transitiveDigraphs
module, for computing a partial ranking of all the potential office locations (see the
advanced topic on partially ranking strategies (page 99)).

Partially ranking the outranking digraph

In Listing 2.3 Line 2, we operate the epistemic disjunctive fusion (page 17) of the five
best correlated linear rankings obtained from 200 random Bachet rankings (see Lines
4-8). In the resulting transitive partial outranking relation, alternatives A, C, D as well
as G appear all ranked before B and F, whereas alternative I’ appears always last-ranked
(see Lines 11 and 14).

Listing 2.3: Partially ranking the location alternatives

>>> from transitiveDigraphs import PartialBachetRanking
>>> wbr = PartialBachetRanking(g,randomized=200,maxNbrOfRankings=5,
—seed=3)
>>> wbr.bachetRankings
[(0.816, ['G', 'D', 'A', 'C', 'B', 'E', 'F']),
(0.788, ['G', 'D', 'E', 'B', 'A', 'C', 'F']),
(0.778, ['A', 'D', 'C', 'G', 'E', 'B', 'F']),
(0.758, ['D', 'A', 'C', 'G', 'E', 'B', 'F']),
(0.756, ['G', 'C', 'D', 'A', 'E', 'B', 'F'])]
>>> wbr.showTransitiveDigraph()
Ranking by Choosing and Rejecting
1st ranked ['A', 'C', 'D', 'G']
2nd ranked ['B', 'E']
2nd last ranked ['B', 'E']
1st last ranked ['F']
>>> wbr.exportGraphViz ('officeChoiceRanking',ArrowHeads=True)
*---- exporting a dot file for GraphViz tools --------- *
Exporting to officeChoiceRanking.dot
dot -Grankdir=TB -Tpng officeChoiceRanking.dot -o officeChoiceRanking.

—~png
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Digraph3 (graphviz)
R. Bisdorff, 2020

Fig. 2.4: Partially ranking the outranking digraph

Fig. 2.4 makes hence again clearly apparent the important fact that the most expensive
location A and the cheapest location C, both, appear incomparable with all the other
alternatives except the last-ranked location F.

We may use the best, with the outranking digraph g correlated (4-0.816), Bachet ranking
[G’, ‘D, ‘A’ ‘C’, ‘B, ‘E’, ‘F’] for showing in Fig. 2.5 a from best to worst ranked
performance heatmap of all the potential office locations.

>>> t.showHTMLPerformanceHeatmap(actionsList=wbr.bachetRankings[0] [1],
Correlations=True)
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Heatmap of Performance Tableau 'officeChoice’

criteria| P Pr A Ct w St Cf
weights|| +3.00 [+32.00 |+26.00| +45.00 |[+10.00+23.00|+6.00
tau( |+052 || +0.52 || +0.43 | +0.31 |+0.14||-0.14 | -0.24
Gar | 80.00 |60.00 [100.00 -12000.00| 50.00 | 20.00 | 50.00
Dom || 90.00 | 70.00 | 50.00 [-14100.00/| 55.00 | 30.00 || 30.00

Ave [90.00 [100.00 60.00 [-35000.00 75.00 [100.00 [ 0:00
Ces [100.00(80.00 |70.00 [-6700.00 | 0.00 | 0.00 |10.00

Bon |30.00 |20.00 |80.00 -17800.00| 30.00 |10.00 [100.00
Bel | 70.00 |40.00 60.00 |-34800.00 100.00 | 90.00 | 60.00

Fen -18600.00 70.00 | 80.00
000 [000 (000 000

Color legend:

quantile [14129% | 28.57%] 42.86%  57.14%] 71.43% 85.71% 100,000

(*) tau: Ordinal (Kendall) correlation between

marginal criterion and global ranking relation

Outranking model: standard, Ranking rule: Bachet randomized
Ordinal (Kendall) correlation between

global ranking and global outranking relation: +0.816

Mean marginal correlation (a) : +0.277

Standard marginal correlation deviation (b) : +0.244

Ranking fairness (a) - (b) : +0.033

—

Fig. 2.5: The ranked performance heatmap of the potential office locations

In view of Fig. 2.5, office locations G' or D make up convincing best choice recommenda-
tions with an apparent slight advantage for location G. Notice that both alternatives A
and C, with their highly contrasted performance profiles, appear ranked in the midfield.
Indeed, as they don’t compare well, they may neither be first nor last ranked. This is why,
when such largely incomparable or extreme alternatives are observed, linear rankings may
fail to deliver adequate first-choice recommendations.

Our first choice recommendation appears finally depending essentially on the very impor-
tance the CEO is attaching to each one of the three decision objectives he is considering.
In the setting here, where he considers that mazimizing the future turnover is the most
important objective (81/145) followed by minimizing the Costs (45/145) and, less im-
portant, mazimizing the working conditions (19/145), compromise locations D as well as
G represent the potential best choices candidates. However, if Costs do not play much
a role, it would perhaps be better to choose the most advantageous location A; or if, on
the contrary, Costs do matter a lot, choosing the cheapest alternative C' could definitely
give a more convincing best choice.

It might be worth, as an exercise, to modify the criteria significance weights in the
‘officeChoice.py’ data file in such a way that

e all three decision objectives are considered equally tmportant, and
e all criteria under an objective are considered equi-significant.
What will become the best choice recommendation under this working hypothesis?

The next tutorial shows how to create or edit a performance tableau.
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See also

o Alice’s best choice: A selection case study (page 178)
e Lecture 7 notes from the MICS Algorithmic Decision Theory course: [ADT-L7].

Notes

Following a seminar presentation in 2005 at the LAMSADES! where the author pro-
moted the use of kernels of the outranking digraph as suitable candidates for delivering
best choice recommendations |BIS-2005], a critical discussion started about the method-
ological requirement for a convincing best choice recommendation to be internally stable
(pragmatic principle P3). Denis Bouyssou illustrated his doubts with the potential out-
ranking digraph shown in Fig. 2.6.

Digraph3 (graphviz), R. Bisdorff, 2020

Fig. 2.6: The internal stability of a best choice recommendation in question

His commentary was the following: The only initial kernel of this digraph is the choice
{a, d}. Yet, it is an ambiguous recommendation, as this choice is conjointly and initial
—outranking— and terminal —outranked— prekernel. If the instability of the best choice
recommendation is, however, not considered a problem then the choice {a, b} shows the
most convincing strict outranking quality and could be recommended in priority as best
choice candidates. Adding alternative d to the set of potential best choice candidates is
not convincing as there exists in the given digraph the node b, which is better evaluated
than d. The argument that the incomparability between ¢ and d should favour d as po-
tential best choice is interesting but another hypothesis could be that b perhaps outranks
a. In this latter case, it seams clear that the actual best choice recommendation should
be reduced to node b, unless one disposes of other information, like a performance tableau

61 Laboratoires d’Analyse et de Modélisation de Systémes d’Aide a la Décision, Université Paris-
Dauphine, UMR 7243 CNRS.
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and /or the actual computation method of the outranking situations. In any case, one has
to be very clear about the available information when judging a best choice procedure.

It became thereafter obvious for us all that both the lack of a specific performance tableau
as well as the lack of a precisely defined algorithm for computing valid outranking situa-
tions do not allow to judge if a given digraph does indeed model a potential outranking
relation. In our present bipolar-valued epistemic approach, a valid outranking digraph
instance, following from a given performance tableau and the disjunctive epistemic fusion
construction of the outranking relation, will necessarily verify the strong completeness
condition and the coduality principle. As a consequence, incomparability situations are
now modelled by epistemic indeterminateness not by the actual absence of a reciprocal
outranking relation.

The digraph put forward by Bouyssou in the October 2005 discussion is not strongly
complete —node a is not outranking node d and vice versa— and does hence not represent,
in our present sense, a valid outranking digraph instance. Yet, it may be a partial
tournament and as such it could be a strict outranking digraph, i.e. the asymmetric
part —the codual- of a valid outranking digraph. In this case, nodes a and d —the kernel
of the strict outranking digraph— would actually for sure outrank each other and, hence,
represent both indifferently the natural best choice candidates. However, in this not strict
outranking digraph, node a becomes also the unique Condorcet winner —outranking for
sure all other nodes— and gives hence the evident unique best choice recommendation.

Only after 2013, when the strong completeness and the coduality properties of the out-
ranking digraph were discovered, became it obvious that the initial prekernels of the strict
outranking digraph, coupled with the solution of the corresponding kernel equation sys-
tem, could in fact deliver convincing best choice recommendations (see [BIS-2013]). Yet,
D. Bouyssou and the critical audience of the 2005 seminar would be satisfied to see their
doubts somehow confirmed by the solution of the office location choice problem shown
previously. Indeed, the initial prekernel {A, C, D} of the corresponding strict outranking
digraph does not retain location G —as it is actually strictly outranked by location C' —
and proposes solely location D as credible best choice candidate. This latter location ap-
pears however certainly outranked by location G. Keeping location (' in an indeterminate
situation with being or not being a potential best choice candidate in the solution of the
corresponding kernel equation system shows that the resulting bipolar-valued choice vec-
tor may be an essential complement of information. Showing solely an initial prekernel
appears not necessarily sufficient for determining the actual best choice alternative(s).
Similarly, questioning the confidence of outranking situations showing, the case given,
weak positive credibilities, may result in a more convincing first-choice recommendation.

But it is the new Bachet partial ranking rule (page 99) that allows nowadays to compute
a partial transitive tournament, very close in a bipolar-valued ordinal correlation sense
to the actual transitive part of the given outranking digraph, that definitely supports our
prekernels based recommending approach. The unique initial and terminal prekernels of
such a transitive tournament, easily found via a topological sort algorithm, may indeed
deliver more effectively any convincing first and /or last choice recommendations.

Back to Content Table (page 1)
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2.2 How to create a new performance tableau instance

e Editing a template file (page 51)

e Editing the decision alternatives (page 53)

e FEditing the decision objectives (page 54)

e FEditing the family of performance criteria (page 55)
e FEditing the performance table (page 58)

o Inspecting the template outranking relation (page 59)

e Ranking the template peformance tableau (page 61)

In this tutorial we illustrate a way of creating a new PerformanceTableau instance by
editing a template with 5 decision alternatives, 3 decision objectives and 6 performance
criteria.

Editing a template file

For this purpose we provide the following perfTab Template.py file in the examples
directory of the Digraph3 resources.

Listing 2.4: PerformanceTableau object template

REBRRRBRRRR R RRBRRRRRER R RRRRRRRR R RBRRRRRER AR RRRR R
# Digraph3 documentation

# Template for creating a new PerformanceTableau instance
# (C) R. Bisdorff Mar 2021

# Digraph3/ezamples/perfTab_Template.py
REBRRRBHRERRRRBRRRRRRR R RRRRRRRR AR RRRRRRAR AR BERRR R RS
from decimal import Decimal

from collections import OrderedDict

#Hit
# edit the decision actions
# avoid spectal characters, like '_', '/' or ':',

# in action identifiers and short names
actions = OrderedDict([

(tal', {
"'shortName': 'actionl',
'name': 'decision alternative al',
‘comment': 'some specific features of this alternative',
b,
D
bR

(continues on next page)

51


_static/perfTab_Template.py

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

45

46

47

48
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65

66

67

68

(continued from previous page)

# edtt the decision objectives

# adjust the list of performance critertia

# and the total weight (sum of the critertia weights)
# per objective

objectives = OrderedDict ([

(‘obj1', {
'name': 'decision objective objl',
'comment': "some specific features of this objective",

'criteria': ['gl', 'g2']l,
'weight': Decimal('6'),
b,

D

T

# edtt the performance criteria

# adjust the objective reference

# Left Decimal of a threshold = constant part and

# right Decimal = proportional part of the threshold
criteria = OrderedDict([

('gl', {
'shortName': 'critl',
'name': "performance criteria 1",
'objective': 'objl',
'preferenceDirection': 'max',
'comment': 'measurement scale type and unit',

‘scale': (Decimal('0.0'), Decimal('100.0"),

‘thresholds': {'ind': (Decimal('2.50'), Decimal('0.0')),
'pref': (Decimal('5.00'), Decimal('0.0')),
'veto': (Decimal('60.00'), Decimal('0.0"))

X,
'weight': Decimal('3'),
b,
D
#HRAH

# default missing data symbol = -999
NA = Decimal('-999')
#enn#
# edit the performance evaluations
# criteria to be minimized take negative grades
evaluation = {
‘gl {
'al':Decimal("41.0"),
'a2':Decimal ("100.0"),

(continues on next page)
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(continued from previous page)

"a3':Decimal ("63.0"),
'ad':Decimal('23.0"),

'ab': NA,

I

# g2 t1s of ordinal type and scale 0-10
'g2': {

"al':Decimal ("4"),
'a2':Decimal ("10"),
'a3':Decimal("6"),
'ad':Decimal('2'),
'ab':Decimal('9'),

I

# 93 has preferenceDirection = 'min’
'g3': {

'al':Decimal("-52.2"),
'a2':NA,
"a3':Decimal ("-47.3"),
'ad':Decimal('-35.7"'),
'ab':Decimal('-68.00'),

I

}
RERRBRRRBHRARRARRRRRH

The template file, shown in Listing 2.4, contains first the instructions to import the re-
quired Decimal and OrderedDict classes (see Lines 7-8). Four main sections are following:
the potential decision actions, the decision objectives, the performance criteria, and
finally the performance evaluation.

Editing the decision alternatives

Decision alternatives are stored in attribute actions under the OrderedDict format (see
the OrderedDict (https://docs.python.org/3/library/collections.html) description in the
Python documentation).

Required attributes of each decision alternative, besides the object identifier, are: short-
Name, name and comment (see Lines 15-17). The shortName attribute is essentially
used when showing the performance tableau or the performance heatmap in a browser
view.

Note

Mind that graphviz drawings require digraph actions’ (nodes) identifier strings with-
out any special characters like  or /.

Decision actions descriptions are stored in the order of which they appear in the stored
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instance file. The OrderedDict object keeps this given order when iterating over the
decision alternatives.

The random performance tableau models presented in the previous tutorial use the actions
attribute for storing special features of the decision alternatives. The Cost-Benefit model,
for instance, uses a type attribute for distinguishing between advantageous, neutral and
cheap alternatives. The 3-Objectives model keeps a detailed record of the performance
profile per decision objective and the corresponding random generators per performance
criteria (see Lines 7- below).

>>> t = Random30bjectivesPerformanceTableau()
>>> t.actions

OrderedDict ([
('p01', {'shortName': 'pO1l',
'name': 'action pOl Eco”™ Soc- Env+',
'comment': 'random public policy',
'Eco': 'fair',
'Soc': 'weak',

'"Env': 'good',

‘profile': {'Eco':'fair’,
'Soc':'weak',
'Env':'good'}

'generators': {'ec01': ('triangular', 50.0, 0.5),
'so02': ('triangular', 30.0, 0.5),
'en03': ('triangular', 70.0, 0.5),

¥,

D)
The second section of the template file concerns the decision objectives.

Editing the decision objectives

The minimal required attributes (see Listing 2.4 Lines 27-33) of the ordered decision
objectives dictionary, besides the individual objective identifiers, are name, comment,
criteria (the list of significant performance criteria) and weight (the importance of the
decision objective). The latter attribute contains the sum of the significance weights of
the objective’s criteria list.

The objectives attribute is methodologically useful for specifying the performance crite-
ria significance in building decision recommendations. Mostly, we assume indeed that de-
cision objectives are all equally important and the performance criteria are equi-significant
per objective. This is, for instance, the default setting in the random 3-Objectives per-
formance tableau model.
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Listing 2.5: Example of decision objectives’ description

>>> t = Random30bjectivesPerformanceTableau()
>>> t.objectives

OrderedDict ([
('Eco',
{'name': 'Economical aspect',
'comment': 'Random30bjectivesPerformanceTableau generated',

'criteria': ['ecO1l', 'ec06', 'ec09'],
'weight': Decimal('48')}),

('Soc',
{'name': 'Societal aspect',
'comment': 'Random30bjectivesPerformanceTableau generated',

'criteria': ['so002', 'sol2'],
'weight': Decimal('48')}),

('Env',
{'name': 'Environmental aspect',
'comment': 'Random30bjectivesPerformanceTableau generated',

'criteria': ['en03', 'en04', 'enO5', 'en07',
'en08', 'enlO', 'enll', 'enl3'],
'weight': Decimal('48')})
D

The importance weight sums up to 48 for each one of the three example decision objectives
shown in Listing 2.5 (Lines 8,13 and 19), so that the significance of each one of the 3
economic criteria is set to 16, of both societal criteria is set to 24, and of each one of the
8 environmental criteria is set to 8.

Note

Mind that the objectives attribute is always present in a PerformanceTableau object
instance, even when empty. In this case, we consider that each performance criterion
canonically represents in fact its own decision objective. The criterion significance
equals in this case the corresponding decision objective’s importance weight.

The third section of the template file concerns now the performance criteria.

Editing the family of performance criteria

In order to assess how well each potential decision alternative is satisfying a given decision
objective, we need performance criteria, i.e. decimal-valued grading functions gathered
in an ordered criteria dictionary. The required attributes (see Listing 2.6), besides
the criteria identifiers, are the usual shortName, name and comment. Specific for a
criterion are furthermore the objective reference, the significance weight, the grading
scale (minimum and maximum performance values), the preferenceDirection (‘max’
or ‘min’) and the performance discrimination thresholds.
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Listing 2.6: Example of performance criteria description

criteria = OrderedDict([

('gl', {

'shortName': 'critl',

'name': "performance criteria 1",

'comment': 'measurement scale type and unit',

'objective': 'objl',

'weight': Decimal('3'),

'scale': (Decimal('0.0'), Decimal('100.0"),

'preferenceDirection': 'max',

"thresholds': {'ind': (Decimal('2.50'), Decimal('0.0')),
'pref': (Decimal('5.00'), Decimal('0.0')),
'veto': (Decimal('60.00'), Decimal('0.0"))

},
b,

D

In our bipolar-valued outranking approach, all performance criteria implement decimal-
valued grading functions, where preferences are either increasing or decreasing with mea-
sured performances.

Note

In order to model a coherent performance tableau, the decision criteria must satisfy
two methodological requirements:

1. Independance: FEach decision criterion implements a grading that is func-
tionally independent of the grading of the other decision criteria, i.e. the per-
formance measured on one of the criteria does not constrain the performance
measured on any other criterion.

2. Non redundancy: Each performance criterion is only significant for a single
decision objective.

In order to take into account any, usually unavoidable, imprecision of the performance
grading procedures, we may specify three performance discrimination thresholds: an
indifference (‘ind’), a preference (‘pref’) and a considerable performance differ-
ence (‘veto’) threshold (see Listing 2.6 Lines 10-12). The left decimal number of a
threshold description tuple indicates a constant part, whereas the right decimal number
indicates a proportional part.

On the template performance criterion g1, shown in Listing 2.6, we observe for instance
a grading scale from 0.0 to 100.0 with a constant indifference threshold of 2.5, a constant
preference threshold of 5.0, and a constant considerable performance difference threshold
of 60.0. The latter theshold will trigger, the case given, a polarisation of the outranking
statement [BIS-2013] .
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In a random Cost-Benefit performance tableau model we may obtain by default the
following content.

Listing 2.7: Example of cardinal Costs criterion

1 >>> tcb = RandomCBPerformanceTableau()
2 >>> tcb.showObjectives()

3 | Ko————o decision objectives ------- !
4 C: Costs
5 cl random cardinal cost criterion 6

6 Total weight: 6.00 (1 criteria)

9 >>> tcb.criteria
10 OrderedDict ([

11 (*c1', {'preferenceDirection': 'min',

12 'scaleType': 'cardinal',

13 'objective': 'C',

14 'shortName': 'cl',

15 'name': 'random cardinal cost criterion',

16 'scale': (0.0, 100.0),

17 'weight': Decimal('6'),

18 'randomMode': ['triangular', 50.0, 0.5],

19 'comment': 'Evaluation generator: triangular law ...',
20 "thresholds':

21 OrderedDict( [

22 ('ind', (Decimal('1.49'), Decimal('0'))),
23 ('pref', (Decimal('3.7'), Decimal('0'))),
24 ('veto', (Decimal('67.71'), Decimal('0')))
25 1D,

26 }

27

28 o« ..

29 D

Criterion c1 appears here (see Listing 2.7) to be a cardinal criterion to be minimized
and significant for the Costs (C) decision objective. We may use the showCriteria()
method for printing the corresponding performance discrimination thresholds.

1 >>> tcb.showCriteria(IntegerWeights=True)

z | *---- criteria ----- *

3 cl 'Costs/random cardinal cost criterion'

4 Scale = (0.0, 100.0)

5 Weight = 6

6 Threshold ind : 1.49 + 0.00x ; percentile: 5.13

7 Threshold pref : 3.70 + 0.00x ; percentile: 10.26
8 Threshold veto : 67.71 + 0.00x ; percentile: 96.15

The indifference threshold on this criterion amounts to a constant value of 1.49 (Line 6
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above). More or less 5% of the observed performance differences on this criterion appear
hence to be insignificant. Similarly, with a preference threshold of 3.70, about 90% of the
observed performance differences are preferentially significant (Line 7). Furthermore,
100.0 - 96.15 = 3.85% of the observed performance differences appear to be considerable
(Line 8) and will trigger a polarisation of the corresponding outranking statements.

After the performance criteria description, we are ready for recording the actual perfor-
mance table.

Editing the performance table

The individual grades of each decision alternative on each decision criterion are recorded
in a double criterion x action dictionary called evaluation (see Listing 2.8). As we may
encounter missing data cases, we previously define a missing data symbol NA which is
set here to a value disjoint from all the measurement scales, by default Decimal(‘-999’)
(Line 2).

Listing 2.8: Editing performance grades

#ommmm oo
NA = Decimal('-999"')
#ooeo
evaluation = {
‘gl {
'al':Decimal("41.0"),
'a2':Decimal ("100.0"),
'a3':Decimal("63.0"),
'a4d':Decimal ('23.0"),
'ab': NA, # missing data
s
# g3 has preferenceDirection = 'min’
'g3': {
'al':Decimal("-52.2"), # negative grades
'a2':NA,
'a3':Decimal ("-47.3"),
'ad':Decimal('-35.7"'),
'ab':Decimal('-68.00"'),
},
}

Notice in Listing 2.8 (Lines 16- ) that on a criterion with preferenceDirection = ‘min’ all
performance grades are recorded as negative values.

We may now inspect the eventually recorded complete template performance table.
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>>> from perfTabs import PerformanceTableau
>>> t = PerformanceTableau('perfTab_Template')

>>> t.showPerformanceTableau(ndigits=1)

*---- performance tableau -
Criteria | 'gl' ‘g2' !
Actions | 3 3

————————— |

tactionl' | 41.0 4.0 -5
‘action2' | 100.0 10.0
taction3' | 63.0 6.0 -4
tactiond' | 23.0 2.0
tactionb' | NA 9.0

———=%
g3' 'g4'
6 2
2.2 71.0
NA  89.0
7.3 55.4
5.7 83.5
8.0 10.0

We may furthermore compute the associated outranking digraph and check if we observe
any polarised outranking situtations.

>>> from outrankingDigraphs import BipolarOutrankingDigraph
>>> g = BipolarOutrankingDigraph(t)
>>> g.showPolarisations()
*---- Negative polarisations ----*
number of negative polarisations

1: r(a4 >= a2)
criterion: gl

Considerable performance difference :

= -0.

44

Veto discrimination threshold
Polarisation: r(a4 >= a2) =
*---- DPositive polarisations ----%
number of positive polarisations: 1
1: r(a2 >= a4) = 0.56

criterion: gl

1

-77.00
-60.00

-0.44 ==> -1.00

Considerable performance difference
Counter-veto threshold
Polarisation: r(a2 >= a4) = 0.56 ==> +1.00

2 77.00
: 60.00

Indeed, due to the considerable performance difference (77.00) oberved on performance
criterion ¢, alternative a2 for sure outranks alternative a4, respectively a4 for sure

does not outrank a2.

Inspecting the template outranking relation

Let us have a look at the outranking relation table.

Listing 2.9: The template outranking relation

>>> g.showRelationTable()

¥ ---- Relation Table

r | ‘'ai'
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'al' | +1.00 -0.44 -0.22 -0.11 +0.06
'a2' | +0.44 +1.00 +0.33 +1.00 +0.28
'a3' | +0.67 -0.33 +1.00 +0.00 +0.17
'ad' | +0.11 -1.00 +0.00 +1.00 +0.06
'ab' | -0.06 -0.06 -0.17 -0.06 +1.00

We may notice in the outranking relation table above (see Listing 2.9) that decision
alternative a2 positively outranks all the other four alternatives (Line 6). Similarly,
alternative aJ is positively outranked by all the other alternatives (see Line 9). We
may orient this way the graphviz drawing of the template outranking digraph.

>>> g exportGraphViz(fileName= 'template',
firstChoice =['a2'],
. lastChoice=['a5"'])
*---- exporting a dot file for GraphViz tools --------- *
Exporting to template.dot
dot -Grankdir=BT -Tpng template.dot -o template.png

action2

action3

actions
Digraph3 (graphviz), R. Bisdorff, 2020
Fig. 2.7: The template outranking digraph

In Fig. 2.7 we may notice that the template outranking digraph models in fact a par-
tial order on the five potential decision alternatives. Alternatives action3 (‘a3’ ) and
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action (‘ad’) appear actually incomparable. In Listing 2.9 their pairwise outranking
chracteritics show indeed the indeterminate value 0.00 (Lines 7-8). We may check their
pairwise comparison as follows.

>>> g.showPairwiseComparison('a3', 'as"')

R ittt pairwise comparison ----*
Comparing actions : (a3, a4)
crit. wght. g(x) g(y) diff | ind pref r(O |

gl 3.00 63.00 23.00 +40.00 | |
g2 3.00 6.00 2.00 +4.00 | 0. |
g3 6.00 -47.30 -35.70 -11.60 | 0.00 10.00 -6.00 |
g4 2.00 55.40 83.50 -28.10 | |
gb 2.00 63.50 37.50 +26.00 | |
g6 NA 54.90

Outranking characteristic value: r(a3 >= a4) = +0.00
Valuation in range: -18.00 to +18.00

The incomparability situation between ‘a3’ and ‘a4’ results here from a perfect balancing
of positive (+8) and negative (-8) criteria significance weights.

Ranking the template peformance tableau

We may eventually rank the five decision alternatives with a heatmap browser view
following the Copeland ranking rule which consistently reproduces the partial outranking
order shown in Fig. 2.7.

>>> g.showHTMLPerformanceHeatmap(ndigits=1,colorLevels=5,
Correlations=True,rankingRule="'Copeland’,
pageTitle='Heatmap of the template performance tableau')

Heatmap of the template performance tableau

criteria | crit4 | critl |crit3 | crit2 | crit6 |crit3
weights|+2.00|+3.00|+6.00[+3.00|+2.00|+2.00
| tau®™ |[+0.60+0.40[+0.35+0.20|+0.10| -0.60
laction2|| 89.0 [100.0 | | 10.0 | 75.0 | 30.7
action3| 55.4 | 63.0 [-47.3 | 6.0 | 63.5
actiond [ 83.5 | 23.0 [-35.7 | 2.0 [54.9 [37.5
laction1| 71.0 | 41.0 |-52.2 | 4.0 |22.5 [ 63.0
laction5|| 10.0 | |-68.0 | 9.0 [75.0 |88.0
Color legend:

\quantile | 20.00% | 40.00% | 60.00% | 80.00% | 100.00%\

(*) tau: Ordinal (Kendall) correlation between marginal criterion and global ranking relation
Outranking model: standard, Ranking rule: Copeland

Ordinal (Kendall) correlation between global ranking and global outranking relation: +1.000
Mean marginal correlation (a) : +0.228

Standard marginal correlation deviation (b) : +0.322

Ranking fairness (a) - (b) : -0.094
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Due to a 11 against 7 plurality tyranny effect, the Copeland ranking rule, essentially
based on crisp majority outranking counts, puts here alternative actiond (a5) last, despite
its excellent grades observed on criteria g2, g5 and g¢6. A slightly fairer ranking result
may be obtained with the NetFlows ranking rule.

>>> g . showHTMLPerformanceHeatmap(ndigits=1,colorLevels=5,
Correlations=True,rankingRule="'NetFlows',
pageTitle='Heatmap of the template performance tableau')

Heatmap of the template performance tableau

|criteria | crit2 | crit6 | critl | crit4 | crit3 | crit5
weights |+3.00(+2.00+3.00 +2.00|+6.00 +2.00
| tau®™ |+0.60|+0.50[+0.40|+0.20]-0.05 | -0.20

laction2| 10.0 | 75.0 |100.0| 89.0 | | 30.7
action3| 6.0 | 63.0 | 55.4 [-47.3 | 63.5
action5| 9.0 |75.0 10.0 |-68.0 | 88.0

laction4| 2.0 |54.9]/23.0 [83.5 |-35.7 | 375
laction1| 4.0 |22.5 |41.0 | 71.0 |-52.2 | 63.0
Color legend:

lquantile | 20.00% | 40.00% | 60.00% | 80.00% | 100.00%\

(*) tau: Ordinal (Kendall) correlation between marginal criterion and global ranking relation

Outranking model: standard, Ranking rule: NetFlows

Ordinal (Kendall) correlation between global ranking and global outranking relation: +0.920
Mean marginal correlation (a) : +0.206

Standard marginal correlation deviation (b) : +0.286

Ranking fairness (a) - (b) : -0.081

It might be opportune to furthermore study the robustness of the apparent outranking
situations when assuming only ordinal or uncertain criteria significance weights. If inter-
ested in mainly objectively unopposed (multipartisan) outranking situations, one might
also try the UnOpposedOutrankingDigraph constructor. (see the advanced topics of the
Digraph3 documentation).

Back to Content Table (page 1)

2.3 Generating random performance tableaux with the
randPerfTabs module

Introduction (page 63)

Random standard performance tableauzr (page 63)

Random Cost-Benefit performance tableauz (page 66)

Random three objectives performance tableauz (page 70)
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e Random academic performance tableaux (page 74)

e Random linearly ranked performance tableauzr (page 78)

Introduction

The randomPerfTabs module provides several constructors for generating random perfor-
mance tableaux models of different kind, mainly for the purpose of testing implemented
methods and tools presented and discussed in the Algorithmic Decision Theory course at
the University of Luxembourg. This tutorial concerns the most useful models.

The simplest model, called RandomPerformanceTableau, generates a set of n decision
actions, a set of m real-valued performance criteria, ranging by default from 0.0 to 100.0,
associated with default discrimination thresholds: 2.5 (ind.), 5.0 (pref.) and 60.0 (veto).
The generated performances are Beta(2.2) distributed on each measurement scale.

One of the most useful models, called RandomCBPerformanceTableau, proposes a
performance tableau involving two decision objectives, named Costs (to be minimized)
respectively Benefits (to be maximized); its purpose being to generate more or less con-
tradictory performances on these two, usually conflicting, objectives. Low costs will
randomly be coupled with low benefits, whereas high costs will randomly be coupled with
high benefits.

Many public policy decision problems involve three often conflicting decision objec-
tives taking into account economical, societal as well as environmental aspects. For
this type of performance tableau model, we provide a specific model, called Ran-
dom3ObjectivesPerformanceTableau.

Deciding which students, based on the grades obtained in a number of examinations,
validate or not their academic studies, is the common decision practice of universities
and academies. To thouroughly study these kind of decision problems, we provide
a corresponding performance tableau model, called RandomAcademicPerformanc-
eTableau, which gathers grades obtained by a given number of students in a given
number of weighted courses.

In order to study aggregation of election results (see the tutorial on Computing the win-
ner of an election with the votingProfiles module (page 124)) in the context of bipolar-
valued outranking digraphs, we provide furthermore a specific performance tableau model
called RandomRankPerformanceTableau which provides ranks (linearly ordered per-
formances without ties) of a given number of election candidates (decision actions) for a
given number of weighted voters (performance criteria).

Random standard performance tableaux

The RandomPerformanceTableau class, the simplest of the kind, specializes the generic
PerformanceTableau class, and takes the following parameters.

e numberOfActions := nbr of decision actions.

e numberOfCriteria := number performance criteria.
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e weightDistribution := ‘random’ (default) | ‘fixed’ | ‘equisignificant’:

If ‘random’, weights are uniformly selected randomly

from the given weight scale;

If ‘fixed’, the weightScale must provided a corresponding weights
distribution;

If ‘equisignificant’, all criterion weights are put to unity.

e weightScale := [Min,Max]| (default =(1,numberOfCriteria).
o IntegerWeights :— True (default) | False (normalized to proportions of 1.0).

e commonScale := [a,b]; common performance measuring scales (default =

0.0,100.0])

e commonThresholds := [(q0,q1),(p0,p1),(v0,v1)]; common indifference(q), prefer-
ence (p) and considerable performance difference discrimination thresholds. For
each threshold type z in {¢,p,v}, the float x0 value represents a constant percent-
age of the common scale and the float x1 value a proportional value of the actual
performance measure. Default values are [(2.5.0,0.0),(5.0,0.0),(60.0,0,0)].

e commonMode := common random distribution of random performance measure-
ments (default = (‘beta’,None,(2,2)) ):

(‘uniform’,None,None), uniformly distributed float values on the given
common scales’ range |Min,Max].

(‘normal’,*mu* *sigma*), truncated Gaussian distribution, by default
mu = (b-a)/2 and sigma = (b-a)/4.

(‘triangular’,*mode* *repartition®), generalized triangular distribution
with a probability repartition parameter specifying the probability mass
accumulated until the mode value. By default, mode = (b-a)/2 and
repartition — 0.5.

(‘beta’,None,(alpha,beta)), a beta generator with default alpha=2 and
beta—=2 parameters.

e valueDigits := <integer>, precision of performance measurements (2 decimal digits
by default).

e missingDataProbability := 0 <= float <= 1.0 ; probability of missing performance
evaluation on a criterion for an alternative (default 0.025).

e NA := <Decimal> (default = -999); missing data symbol.

Code example.

Listing 2.10: Generating a random performance tableau

>>> from randomPerfTabs import RandomPerformanceTableau
>>> t = RandomPerformanceTableau(numberOfActions=21,number0fCriteria=13,
—seed=100)
>>> t.actions
{'a01': {'comment': 'RandomPerformanceTableau() generated.',
(continues on next page)
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(continued from previous page)

'name': 'random decision action'},
'a02': { ... 3},

}
>>> t.criteria
{'g01': {'thresholds': {'ind' : (Decimal('10.0'), Decimal('0.0')),
'veto': (Decimal('80.0'), Decimal('0.0')),
'pref': (Decimal('20.0'), Decimal('0.0'))},
'scale': [0.0, 100.0],
'weight': Decimal('1l'),
'name': 'digraphs.RandomPerformanceTableau() instance',
'comment': 'Arguments: ; weightDistribution=random;
weightScale=(1, 1); commonMode=None'},
'go2': { ... },

3

>>> t.evaluation
{'g01': {'a01': Decimal('15.17"'),
'a02': Decimal('44.51'),
'a03': Decimal('-999'), # missing evaluation
},
+

>>> t.showHTMLPerformanceTableau()
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Performance table randomperftab

criteria| g01 | g02 | g03 | g04 | g05 | g06 | g07 | go8 | g09 | g10 g1l | g12 |g13
|weight 1.00 [1.00 [1.00 [1.00 [1.00 [1.00 [1.00 [1.00 [1.00 [1.00|1.00 [1.00 [1.00
| a01 |[15.17[46.37(82.88(41.14(59.94(41.19(58.68(44.73(22.1964.64 34.93[42.36(17.55
| a02 [44.51(16.2241.66]53.58(31.3965.22[71.96(57.84|78.08(77.37 8.30 [63.41|61.55
| a03 | [21.53(12.82|56.93(26.8048.03||54.35(62.42/[94.27(73.57|71.11/]21.81(56.90
| a04 |58.00(51.16|21.92(65.57|59.02//44.7737.4958.3980.79 [55.39 [46.44 [19.57 [39.22
| a05 |[24.22(77.01(75.74|83.87|40.85|| 8.55 [85.44|67.34|57.40(39.08 |64.83[29.37(96.39
| a06 [29.10(39.35(15.45(34.99(49.12[11.49(28.44 [52.89]64.24 [62.92|58.28(32.02(10.25
| a07 |96.58(32.066.05 [49.56| |66.0641.64/|13.08(38.31 [24.82/48.39(57.03/|42.91
| a08 [82.29(47.679.96 [79.43(29.4584.17(31.99(90.88(39.5850.78|61.88(44.40 48.26
| a09 [43.90(14.81(60.55[42.37|6.72 [56.14[34.20(51.54|21.79(79.13]|50.95(93.16(81.89
| al0 |38.75(79.70|27.88|42.39|71.88)66.09 58.3358.88)17.10 [44.25 [48.73[30.63 |52.73
| a11 |[35.84(67.48(38.81]33.75(26.87|64.10[71.9562.72 185.80(58.37[49.33]

| a12 |[29.12(13.97(67.45|38.6048.30/[11.87 |57.76(74.86 [26.57//48.80(43.57 | 7.68
|

|

|

|

|

|

|

|

al3 [34.79(90.72(38.93(57.38/64.14(97.86 [91.1643.8033.68/38.98|28.87 63.3660.03
ald [62.22(80.16(19.2662.34//60.96/24.72(73.63|71.21|56.43/|46.12[26.09 51.43|12.86
al> [44.23|69.62(94.95(34.95/63.46(52.97 98.84 78.7436.64/65.1222.46 55.52|68.79
al6 ||19.10(45.49(65.63|64.96(50.57 55.91|10.02(34.70(29.31|50.15|70.68|62.5771.09
al7 (27.73[22.03(48.00(79.38)23.35(74.0358.74/59.42(50.95/82.2749.20 [43.27||38.611
al8 [41.4633.83|7.97 [75.11/49.00(55.7064.99)38.4749.86/[17.45)28.08 35.21/|67.81
al9 ([22.41] 34.86(49.30(65.18/[39.84(81.16)| 55.99(66.55 55.38//43.08(29.72
a20 ([21.5269.98|71.8143.74/24.53(55.3952.6713.6766.80/57.46/70.81 | 5.41 [76.05
a21 [56.90(48.80(31.66/15.31//40.5758.14(70.19(67.2361.10/[31.04|60.7222.39(70.38

Fig. 2.8: Browser view on random performance tableau instance

Note

Missing (NA) evaluation are registered in a performance tableau by default as
Decimal(‘-999°) value (see Listing 2.10 Line 24). Best and worst performance on
each criterion are marked in light green, respectively in light red.

Random Cost-Benefit performance tableaux

We provide the RandomCBPerformanceTableau class for generating random Cost versus
Benefit organized performance tableaux following the directives below:

e We distinguish three types of decision actions: cheap, neutral and expensive ones
with an equal proportion of 1/3. We also distinguish two types of weighted cri-
teria: cost criteria to be minimized, and benefit criteria to be maximized; in the
proportions 1/3 respectively 2/3.

e Random performances on each type of criteria are drawn, either from an ordinal
scale [0;10], or from a cardinal scale |0.0;100.0], following a parametric triangular
law of mode: 30% performance for cheap, 50% for neutral, and 70% performance
for expensive decision actions, with constant probability repartition 0.5 on each side
of the respective mode.

66



1

2

e Cost criteria use mostly cardinal scales (3/4), whereas benefit criteria use mostly
ordinal scales (2/3).

e The sum of weights of the cost criteria by default equals the sum weights of the
benefit criteria: weighDistribution — ‘equiobjectives’.

e On cardinal criteria, both of cost or of benefit type, we observe following constant
preference discrimination quantiles: 5% indifferent situations, 90% strict preference
situations, and 5% considerable performance differences.

Parameters:

o If numberOfActions == None, a uniform random number between 10 and 31
of cheap, neutral or advantageous actions (equal 1/3 probability each type)
actions is instantiated

o If numberOfCriteria —= None, a uniform random number between 5 and 21
of cost or benefit criteria (1/3 respectively 2/3 probability) is instantiated

o weightDistribution = {‘equiobjectives’|'fixed’|'random’|’equisignificant’ (de-
fault = ‘equisignificant’) }

o default weightScale for ‘random’ weightDistribution is 1 - numberOfCriteria

o All cardinal criteria are evaluated with decimals between 0.0 and 100.0 whereas
ordinal criteria are evaluated with integers between 0 and 10.

e commonThresholds is obsolete. Preference discrimination is specified as per-
centiles of concerned performance differences (see below).

e commonPercentiles = {‘ind”:5, ‘pref’:10, [‘weakveto’:90,] ‘veto:95} are ex-
pressed in percents (reversed for vetoes) and only concern cardinal criteria.

e missingDataProbability := 0 <= float <= 1.0 ; probability of missing perfor-
mance evaluation on a criterion for an alternative (default 0.025).

e NA :— <Decimal> (default — -999); missing data symbol.

Warning

Minimal number of decision actions required is 3 !

Example Python session

Listing 2.11: Generating a random Cost-Benefit perfor-
mance tableau

>>> from randomPerfTabs import RandomCBPerformanceTableau
>>> t = RandomCBPerformanceTableau(
numberOfActions=7,
number0fCriteria=>5,
weightDistribution='equiobjectives',
commonPercentiles={'ind':0.05, 'pref':0.10, 'veto':0.95},
(continues on next page)
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seed=100)

>>> t.showActions ()

e sh
key: al
short n
name:
key: a2
short n
name:
key: a7
short n
name:

>>> t.show
k—--- Cr

ow decision action ---- - ——-—-—————- *

ame: al
random cheap decision action

ame: a2
random neutral decision action

ame: a7

random advantageous decision action
Criteria()
iteria ----- *

gl 'random ordinal benefit criterion'

Scale =
Weight

(0, 10)
=2

g2 'random cardinal cost criterion'

Scale =
Weight
Thresho
Thresho
Thresho

(0.0, 100.0)
=3
1d ind : 1.76 + 0.00x ; percentile:
1d pref : 2.16 + 0.00x ; percentile: 1
1d veto : 73.19 + 0.00x ; percentile: 9

(continued from previous page)

G~ O
N W O,

In the example above, we may notice the three types of decision actions (Listing 2.11
Lines 10-20), as well as the two types (Lines 22-32) of criteria with either an ordinal
or a cardinal performance measuring scale. In the latter case, by default about 5% of
the random performance differences will be below the indifference and 10% below the
preference discriminating threshold. About 5% will be considered as considerably
large. More statistics about the generated performances is available as follows.

>>> t.show

Instance
#Actions
#Criteria
Criterio
Criter
criter
mean e

Statistics()
Performance tableau summary statistics
name : randomCBperftab
7
: b
n name 1 gl
ion weight 22
ion scale : 0.00 - 10.00
valuation : 5.14

standard deviation : 2.64
maximal evaluation : 8.00
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(continued from previous page)

quantile Q3 (x_75) : 8.00

median evaluation

: 6.50

quantile Q1 (x_25) : 3.50

minimal evaluation : 1.00

mean absolute difference : 2.94

standard difference deviation : 3.74
Criterion name

Criterion weight
criterion scale
mean evaluation

1 g2

2 &
: -100.00 - 0.00
: -49.32

standard deviation : 27.59
maximal evaluation : 0.00
quantile Q3 (x_75) : -27.51

median evaluation : -35.98
quantile Q1 (x_25) : -54.02
minimal evaluation : -91.87
mean absolute difference : 28.72

standard difference deviation : 39.02

A (potentially ranked) colored heatmap with 5 color levels is also provided.

>>> t.showHTMLPerformanceHeatmap(colorLevels=5,rankingRule=None)

Heatmap of performance tableau

|criteria| g3 | g2 [g5 [ g4 [g1
weights| 3 | 3 [ 2 | 2 [ 2
| al [-33.99|-17.92(3.00|26.68 1.00
| a2 |77.77|-30.716.00 [66.35|8.00
| a3 |-69.84|-41.65|8.00(53.43|8.00
| a4 [16.99]-39.49[2.00(18.622.00
| a5 [-74.85|-91.87(7.00|83.096.00
| a6 [24.91|-32.47(9.0079.247.00
| a7 | -7.44|-91.11[7.00[48.22[4.00
Color legend:

\quantile | 0.20% | 0.40%| 0.60% | 0.80% | 1.00%|

Fig. 2.9: Unranked heatmap of a random Cost-Benefit performance tableau

Such a performance tableau may be stored and re-accessed as follows
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>>> t.save('temp')

PHoooos saving performance tableau in XMCDA 2.0 format --------—-——-—-- *
File: temp.py saved !

>>> from perfTabs import PerformanceTableau

>>> t = PerformanceTableau('temp')

If needed for instance in an R session, a CSV version of the performance tableau may be
created as follows.

>>> t.saveCSV('temp"')
* --- Storing performance tableau in CSV format in file temp.csv

...$ less temp.csv
"actions","gl","g2","g3", " "g4", "g5"
"al",1.00,-17.92,-33.99,26.68,3.00
"a2",8.00,-30.71,-77.77,66.35,6.00
"a3",8.00,-41.65,-69.84,53.43,8.00
"a4",2.00,-39.49,-16.99,18.62,2.00
"ab",6.00,-91.87,-74.85,83.09,7.00
"a6",7.00,-32.47,-24.91,79.24,9.00
"a7",4.00,-91.11,-7.44,48.22,7.00

Back to Content Table (page 1)

Random three objectives performance tableaux

We provide the Random30bjectivesPerformanceTableau class for generating random
performance tableaux concerning potential public policies evaluated with respect to three
preferential decision objectives taking respectively into account economical, societal as
well as environmental aspects.

Each public policy is qualified randomly as performing weak (-), fair (7) or good (+)
on each of the three objectives.

Generator directives are the following:
e numberOfActions = 20 (default),
e numberOfCriteria = 13 (default),
e weightDistribution = ‘equiobjectives’ (default) | ‘random’ | ‘equisignificant’,

e weightScale = (1,numberOfCriteria): only used when random criterion weights are
requested,

e integerWeights = True (default): False gives normalized rational weights,
e commonScale = (0.0,100.0),

e commonThresholds = [(5.0,0.0),(10.0,0.0),(60.0,0.0)]: Performance discrimination
thresholds may be set for ‘ind’, ‘pref” and ‘veto’,
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e commonMode = [‘triangular’,’variable’,0.5]: random number generators of various

other types (‘uniform’’beta’) are available,

e valueDigits = 2 (default): evaluations are encoded as Decimals,

e missingDataProbability = 0.05 (default): random insertion of missing values with

given probability,

e NA := <Decimal> (default = -999); missing data symbol.

e seced— None.

Note

coalition and action.

If the mode of the triangular distribution is set to ‘variable’, three modes at 0.3 (-),
0.5 (7), respectively 0.7 (+) of the common scale span are set at random for each

Warning

Minimal number of decision actions required is 3 !

Example Python session

Listing 2.12: Generating a random 3 Objectives perfor-
mance tableau

>>> from randomPerfTabs import Random30bjectivesPerformanceTableau

>>> t = Random30bjectivesPerformanceTableau(
numberOfActions=31,

number0fCriteria=13,

weightDistribution="'equiobjectives',

seed=120)

>>> t.showObjectives ()

Koo oo show objectives -------
Eco: Economical aspect
ec04 criterion of objective
ec0b criterion of objective
ec08 criterion of objective
ecll criterion of objective
Total weight: 80.00 (4 criteria)

Soc: Societal aspe
s006 criterion
8007 criterion
8009 criterion
s010 criterion
s013 criterion

ct
of
of
of
of
of

objective
objective
objective
objective
objective

Eco
Eco
Eco
Eco

Soc
Soc
Soc
Soc
Soc

20
20
20
20

16
16
16
16
16
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Total weight: 80.00 (5 criteria)
Env: Environmental aspect
en01 criterion of objective Env 20
en02 criterion of objective Env 20
en03 criterion of objective Env 20
enl2 criterion of objective Env 20
Total weight: 80.00 (4 criteria)

In Listing 2.12 above, we notice that 5 equisignificant criteria (g06, g07, g09, g10, g13)
evaluate for instance the performance of the public policies from a societal point of view
(Lines 16-22). 4 equisignificant criteria do the same from an economical (Lines 10-15),
respectively an environmental point of view (Lines 23-28). The equiobjectives directive
results hence in a balanced total weight (80.00) for each decision objective.

>>> t.showActions ()

key: pO1

name: random public policy Eco+ Soc- Env+

profile: {'Eco': 'good', 'Soc': 'weak', 'Env': 'good'}
key: p02
key: p26

name: random public policy Eco+ Soc+ Env-

profile: {'Eco': 'good', 'Soc': 'good', 'Env': 'weak'}
key: p30

name: random public policy Eco- Soc- Env-

profile: {'Eco': 'weak', 'Soc': 'weak', 'Env': 'weak'}

Variable triangular modes (0.3, 0.5 or 0.7 of the span of the measure scale) for each
objective result in different performance status for each public policy with respect to the
three objectives. Policy p01, for instance, will probably show good performances wrt the
economical and environmental aspects, and weak performances wrt the societal aspect.

For testing purposes we provide a special PartialPerformanceTableau class for extract-
ing a partial performance tableau from a given tableau instance. In the example
blow, we may construct the partial performance tableaux corresponding to each one of
the three decision objectives.

>>> from perfTabs import PartialPerformanceTableau
>>> teco = PartialPerformanceTableau(t,criteriaSubset=\
t.objectives['Eco']['criteria'])

>>> tsoc = PartialPerformanceTableau(t,criteriaSubset=\
t.objectives['Soc']['criteria'l])

>>> tenv = PartialPerformanceTableau(t,criteriaSubset=\

(continues on next page)
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(continued from previous page)

t.objectives['Env'] ['criteria'])

One may thus compute a partial bipolar-valued outranking digraph for each individual
objective.

>>> from outrankingDigraphs import BipolarQOutrankingDigraph

>>> geco = BipolarQOutrankingDigraph(teco)
>>> gsoc = BipolarQOutrankingDigraph(tsoc)
>>> genv = BipolarQutrankingDigraph(tenv)

The three partial digraphs: geco, gsoc and genv, hence model the preferences represented
in each one of the partial performance tableaux. And, we may aggregate these three
outranking digraphs with an epistemic fusion operator

>>> from digraphs import FusionLDigraph
>>> gfus = FusionLDigraph([geco,gsoc,genv])
>>> gfus.strongComponents ()
{frozenset({'p30'}),
frozenset({'p10', 'p03', 'p19', 'p08', 'p07', 'p04', 'p21', 'p20',
'p13', 'p23', 'plé', 'pl2', 'p24', 'p02', 'p31', 'p29',
'p05', 'p09', 'p28', 'p26', 'pi7', 'pl4', 'pld', 'p06',
'pO1', 'p27', 'pil', 'pl8', 'p22'}),
frozenset({'p26'})}
>>> from digraphs import StrongComponentsCollapsedDigraph
>>> scc = StrongComponentsCollapsedDigraph(gfus)
>>> scc.showActions ()
PHocoos show digraphs actions ----------————- *
key: frozenset({'p30'})
short name: Scc_1
name: _p30_
comment : collapsed strong component
key: frozenset({'p10', 'p03', 'pl9', 'p08', 'p07', 'p04', 'p21', 'p20',
-~ 'pl3!',
'p23', 'pl6', 'pl2', 'p24', 'p02', 'p31', 'p29', 'p05',
-~ 'p09', 'p28', 'p25',
'pl7', 'pl4', 'plb', 'pO6', 'pO1', 'p27', 'pll', 'pl8',

<~ 'p22'})

short name: Scc_2

name: _p10_p03_p19_p08_p07_p04_p21_p20_pl3_p23_pl6_pl2_p24_p02_
~p31_\

p29_p05_p09_p28_p25_p17_pl4_pl5_p06_p01_p27_pll_pl8_p22_
comment : collapsed strong component
key: frozenset({'p26'})
short name: Scc_3
name: _p26_
comment : collapsed strong component
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A graphviz drawing illustrates the apparent preferential links between the strong compo-
nents.

>>> scc.exportGraphViz('scFusionObjectives')

*---- exporting a dot file for GraphViz tools --------- *

Exporting to scFusionObjectives.dot

dot -Grankdir=BT -Tpng scFusionObjectives.dot -o scFusionObjectives.png

L7

Rubis FPython Server (graphviz), B. Bisdorff, 2008

Fig. 2.10: Strong components digraph

Public policy p26 (Eco+ Soc+ Env-) appears dominating the other policies, whereas
policy p30 (Eco- Soc- Env-) appears to be dominated by all the others.

Random academic performance tableaux

The

RandomAcademicPerformanceTableau class generates temporary performance

tableaux with random grades for a given number of students in different courses (see
Lecture 4: Grading, Algorithmic decision Theory Course http://hdl.handle.net/10993/
37933)

Parameters:

number of students,

number of courses,

weightDistribution := ‘equisignificant’ | ‘random’ (default)
weightScale := (1, 1 | numberOfCourses (default when random))
IntegerWeights := Boolean (True = default)

commonScale :— (0,20) (default)
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e ndigits := 0

e WithTypes := Boolean (False = default)

e commonMode := (‘triangular’,xm=14,r=0.25) (default)

e commonThresholds := {‘ind’:(0,0), ‘pref’:(1,0)} (default)
e missingDataProbability := 0.0 (default)

e NA := <Decimal> (default = -999); missing data symbol.

When parameter WithTypes is set to True, the students are randomly allocated to one
of the four categories: weak (1/6), fair (1/3), good (1/3), and excellent (1/3), in the
bracketed proportions. In a default 0-20 grading range, the random range of a weak
student is 0-10, of a fair student 4-16, of a good student 8-20, and of an excellent student
12-20. The random grading generator follows in this case a double triangular probablity
law with mode (zm) equal to the middle of the random range and median repartition (r
= 0.5) of probability each side of the mode.

Listing 2.13: Generating a random academic perfor-
mance tableau

>>> from randomPerfTabs import RandomAcademicPerformanceTableau
>>> t = RandomAcademicPerformanceTableau(
numberO0fStudents=11,
numberO0fCourses=7, missingDataProbability=0.03,
WithTypes=True, seed=100)

>>>
e PerformanceTableau instance description ------ *
Instance class : RandomAcademicPerformanceTableau
Seed : 100
Instance name : randstudPerf
# Actions ;11
# Criteria 7
Attributes : ['randomSeed', 'name', 'actions',
'criteria', 'evaluation', 'weightPreorder']
>>> t.showPerformanceTableau()
*---- performance tableau ----- *
Courses | 'ml' 'm2' 'm3' 'm4' 'mb' 'm6' 'm7'
ECTS | 2 1 3 4 1 1 B
_________ | = o m o
'sO1f" | 12 13 15 08 16 06 15
's02g' | 10 15 20 11 14 15 18
's03g"' | 14 12 19 11 15 13 11
's04f!' | 13 15 12 13 13 10 06
'sO5e' | 12 14 13 16 15 12 16
's06g' | 17 13 10 14 NA 15 13
's07e' | 12 12 12 18 NA 13 17
's08f!' | 14 12 09 13 13 15 12

(continues on next page)
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's09g"' | 19 14 15 13 09 13 16
's10g"' | 10 12 14 17 12 16 09
'siiw' | 10 10 NA 10 10 NA 08

>>> t.weightPreorder
[(['m2', 'm&6', 'm6'], ['m1'], ['m3'], ['m4'], ['m7']]

The example tableau, generated for instance above with missingDataProbability = 0.03,
WithTypes = True and seed = 100 (see Listing 2.13 Lines 2-5), results in a set of two
excellent (s05, s07), five good (s02, s03, 506, s09, s10), three fair (s01, s04, s08) and one
weak (s11) student performances. Notice that six students get a grade below the course
validating threshold 10 and we observe four missing grades (NA), two in course m& and
one in course m3 and course m6 (see Lines 21-31).

We may show a statistical summary of the students’ grades obtained in the heighest
weighted course, namely m7, followed by a performance heatmap browser view showing
a global ranking of the students’ performances from best to weakest.

Listing 2.14: Student performance summary statistics
per course

>>> t.showCourseStatistics('m7"')

o Summary performance statistics ------ *
Course name . gr
Course weight : b
# Students 3 1l

grading scale : 0.00 - 20.00
# missing evaluations : 0

mean evaluation : 12.82
standard deviation : 3.79
maximal evaluation : 18.00
quantile Q3 (x_75) : 16.25
median evaluation : 14.00
quantile Q1 (x_25) : 10.50
minimal evaluation : 6.00
mean absolute difference : 4.30

standard difference deviation : 5.35
>>> t.showHTMLPerformanceHeatmap (colorLevels=5,
pageTitle='Ranking the students')
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Ranking the students

[criteria| g7 | g4 | g3 [ gl | g2 [ g5 | g6
lweights |+5.00(+4.00(+3.00+2.00|+1.00|+1.00|+1.00
| s07e [17.00|18.00(12.0012.00/[12.00 | [13.00
| s02g [18.00(11.00(20.0010.00(15.00 14.00(15.00
| s09g [16.00(13.00(15.00(19.00(14.00 9.00 [13.00
| s05e [16.00(16.00(13.00(12.00(14.0015.00(12.00
| s06g [13.00(14.00(10.00 17.00/(13.00 | |15.00
| s03g [11.00(11.00(19.00(14.0012.00|15.00/[13.00
|
|
|
|

s10g | 9.00 [17.0014.00(10.00(12.00/[12.0016.00
s01f [15.00|8.00 [15.00(12.00(13.00[16.00 | 6.00
s08f [12.00(13.00|9.00 [14.00|12.00/{13.0015.00
s04f | 6.00 |13.00/(12.00(13.00 [15.00 |13.00[10.00
| s11w | 8.00 |10.00 110.00[10.00 10.00 |
Color legend:
lquantile | 20.00% | 40.00% | 60.00% | 80.00% | 100.00%|

Fig. 2.11: Ranking the students with a performance heatmap view

The ranking shown here in Fig. 2.11 is produced with the default NetFlows ranking
rule (page 87). With a mean marginal correlation of +0.361 (see Listing 2.15 Lines 17-
) associated with a low standard deviation (0.248), the result represents a rather fair
weighted consensus made between the individual courses’ marginal rankings.

Listing 2.15: Consensus quality of the students’s ranking

>>> from outrankingDigraphs import BipolarOutrankingDigraph
>>> g = BipolarOutrankingDigraph(t)
>>> t.showRankingConsensusQuality(g.computeNetFlowsRanking())
Consensus quality of ranking:

['sO7', 's02', 's09', 'sO5', 's06', 's03', 's10',

'sO1', 's08', 's04', 'si1']
criterion (weight): correlation

10
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m4 235)

m2 (0.059): +0.291
m3 (0.176): +0.200
ml (0.118): +0.109
mé (0.059): +0.091
m5 (0.059): +0.073
Summary :

Weighted mean marginal correlation (a): +0.361

(continues on next page)
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Standard deviation (b) : +0.248
Ranking fairness (a)-(b) : +0.113

Random linearly ranked performance tableaux

Finally, we provide the RandomRankPerformanceTableau class for generating multiple
criteria ranked performance tableaux, i.e. on each criterion, all decision action’s evalua-
tions appear linearly ordered without ties.

This type of random performance tableau is matching the RandomLinearVotingProfile
class provided by the votingProfiles module.

Parameters:

number of actions,
number of performance criteria,
weightDistribution := ‘equisignificant’ | ‘random’ (default, see above,)
weightScale := (1, 1 | numberOfCriteria (default when random)).
integerWeights := Boolean (True = default)
commonThresholds (default) := {

‘ind’:(0,0),

‘pref’:(1,0),

‘veto’:(numberOfActions,0)

} (default)

Back to Content Table (page 1)

2.4 Ranking with multiple incommensurable criteria

e The ranking problem (page 79)

e The Copeland ranking (page 82)

e The Bachet ranking (page 85)

e The NetFlows ranking (page 87)

e The valued Bachet ranking (page 88)

e Optimal Kemeny rankings (page 89)

e Optimal Slater rankings (page 94)

e Kohler’s ranking-by-choosing rule (page 96)

e Tideman’s ranked-pairs rule (page 98)
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The ranking problem

We need to rank without ties a set X of items (usually decision alternatives) that are
evaluated on multiple incommensurable performance criteria; yet, for which we may know
their pairwise bipolar-valued strict outranking characteristics, i.e. r(x 7 y) for all =, y
in X (see The strict outranking digraph (page 31) and [BIS-2013]).

Let us consider a didactic outranking digraph g generated from a random Cost-Benefit
performance tableau (page 66) concerning 9 decision alternatives evaluated on 13 per-
formance criteria. We may compute the corresponding strict outranking digraph with a
codual transform (page 18) as follows.

Listing 2.16: Random bipolar-valued strict outranking
relation characteristics

>>> from outrankingDigraphs import *
>>> t = RandomCBPerformanceTableau(numberOfActions=9,
number0fCriteria=13,seed=200)

>>> g = BipolarQOutrankingDigraph(t,Normalized=True)
>>> gecd = “(-g) # codual digraph

>>> gcd.showRelationTable (ReflexiveTerms=False)

* ---- Relation Table -----

r(>) | ‘'al' 'a2' 'a3' 'a4' ‘'ab' 'a6' ‘'a7' 'a8' 'a9'
_____ e 0 OO
‘al' | - 0.00 +0.10 -1.00 -0.13 -0.57 -0.23 +0.10 +0.00
'a2' | -1.00 - 0.00 +0.00 -0.37 -0.42 -0.28 -0.32 -0.12
'a3' | -0.10 0.00 - -0.17 -0.35 -0.30 -0.17 -0.17 +0.00
'ad' | 0.00 0.00 -0.42 - -0.40 -0.20 -0.60 -0.27 -0.30
'ab' | +0.13 +0.22 +0.10 +0.40 - +0.03 +0.40 -0.03 -0.07
'a6' | -0.07 -0.22 +0.20 +0.20 -0.37 - +0.10 -0.03 -0.07
'a7' | -0.20 +0.28 -0.03 -0.07 -0.40 -0.10 -  +0.27 +1.00
'a8' | -0.10 -0.02 -0.23 -0.13 -0.37 +0.03 -0.27 - +0.03
'a9' | 0.00 +0.12 -1.00 -0.13 -0.03 -0.03 -1.00 -0.03 -

Some ranking rules will work on the associated Condorcet Digraph, i.e. the corre-
sponding strict median cut polarised digraph.

Listing 2.17: Median cut polarised strict outranking re-
lation characteristics

>>> ccd = PolarisedOutrankingDigraph(gcd,
level=g.valuationdomain['med'],
. KeepValues=False,StrictCut=True)
>>> ccd.recodeValuation(ndigits=0)
>>> ccd.showRelationTable (ReflexiveTerms=False)
*--—— Relation Table -----
r(>)_med | 'al' 'a2' 'a3' 'a4' 'ab' 'a6' 'a7' 'a8' 'a9'

(continues on next page)
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Unfortunately, such crisp median-cut Condorcet digraphs, associated with a given strict
outranking digraph, present only exceptionally a linear ordering. Usually, pairwise ma-
jority comparisons do not even render a complete or, at least, a transitive partial order.
There may even frequently appear cyclic outranking situations (see the tutorial on linear

voting profiles (page 124)).

To estimate how difficult this ranking problem here may be, we may have a look at the

corresponding strict outranking digraph graphviz drawing (

>>> gcd.exportGraphViz('rankingTutorial')
*---- exporting a dot file for GraphViz tools

Exporting to rankingTutorial.dot

Page 7, 1).

dot -Grankdir=BT -Tpng rankingTutorial.dot -o rankingTutorial.png
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Fig. 2.12: The strict outranking digraph

The strict outranking relation 7 shown here is apparently not transitive: for instance,
alternative a8 outranks alternative a6 and alternative a6 outranks a4, however a8 does
not outrank a4 (see Fig. 2.12). We may compute the transitivity degree of the outranking
digraph, i.e. the ratio of the difference between the number of outranking arcs and the
number of transitive arcs over the difference of the number of arcs of the transitive closure
minus the transitive arcs of the digraph ged.

>>> gcd.computeTransitivityDegree (Comments=True)
Transitivity degree of graph <codual_rel_randomCBperftab>
#triples x>y>z: 78, #closed: 38, #open: 40
#closed/#triples = 0.487

With only 49% of the required transitive arcs, the strict outranking relation here is hence

very far from being transitive; a serious problem when a linear ordering of the decision
alternatives is looked for. Let us furthermore see if there are any cyclic outrankings.
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>>> gcd. computeChordlessCircuits ()
>>> gcd.showChordlessCircuits ()

1 circuit(s).

*---- Chordless circuits ----x%

1: ['a6', 'a7', 'a8'] , credibility : 0.033

There is one chordless circuit detected in the given strict outranking digraph ged, namely
a6 outranks a7, the latter outranks a8, and a8 outranks again a6 (see Fig. 2.12). Any po-
tential linear ordering of these three alternatives will, in fact, always contradict somehow
the given outranking relation.

Now, several heuristic ranking rules have been proposed for constructing a linear ordering
which is closest in some specific sense to a given outranking relation. The Digraph3
resources provide some of the most common of these ranking rules, like Copeland’s,
Kemeny’s, Slater’s, Kohler’s, Arrow-Raynaud’s or Tideman’s ranking rule. Recently,
new Bachet ranking rules have been added.

The Copeland ranking

Copeland’s rule, the most intuitive one as it balances the outdegrees —the number of
outranking situations— against the indegrees —the number of outranked situations, of
the median cut polarised strict outranking digraph ced. The rule computes for each
alternative z a score resulting from the sum of the differences between the polarised
strict outranking characteristics (2 7 y)so and the polarised strict outranked
characteristics r(y 7 x)so for all alternatives y different from z. The set of alternatives
is eventually ranked in decreasing order of these Copeland scores; ties, the case given,

being resolved by a lexicographical rule.

Listing 2.18: Computing a Copeland Ranking

>>> from linearOrders import CopelandRanking
>>> cop = CopelandRanking(gcd,Comments=True)
Copeland decreasing scores

ab : 12
al : 2
a6 : 2
a7’ : 2
a8 : 0
ad : -3
a9 : -3
a3 : -b
a2 : -7

Copeland Ranking:
['3.5', |a1|, '8.6', '8.7', 'a8', |a4|, '8.9', '8.3', '3.2']

Alternative a5 obtains here the best Copeland score (+12), followed by alternatives al,
a6 and a7 with same score (42); following the lexicographic rule, al is hence ranked
before a6 and a6 before a7. Same situation is observed for a4 and «9 with a score of -3
(see Listing 2.18 Lines 4-12 and 14).
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Copeland’s ranking rule appears in fact invariant under the codual transform (page 18)
and renders a same linear order indifferently from digraphs g or ged . The Copeland rule
is furthermore Condorcet consistent, i.e. when the strict outranking relation models
a transitive relation, this relation is preserved in the Copeland ranking result.

The Copeland ranking result (see Listing 2.18 Line 14) is rather correlated (+0.463) with
the given pairwise outranking relation in the ordinal Kendall sense (see Listing 2.19).

Listing 2.19: Checking the quality of the Copeland Rank-
ing

>>> corr = g.computeRankingCorrelation(cop.copelandRanking)
>>> g.showCorrelation(corr)

Correlation indexes:

Crisp ordinal correlation : +0.463

Valued equivalalence : +0.107

Epistemic determination : 0.230

With an epistemic determination level of 0.230, the extended Kendall tau index (see
[BIS-2012]) is in fact computed on 61.5% (100.0 x (1.0 + 0.23)/2) of the pairwise strict
outranking comparisons. Furthermore, the bipolar-valued relational equivalence charac-
teristics between the strict outranking relation and the Copeland ranking equals +0.107,
i.e. a majority of 55.35% of the criteria significance supports the relational equivalence
between the given strict outranking relation and the corresponding Copeland ranking””.

The Copeland scores deliver actually only a unique weak ranking, i.e. a ranking with
potential ties. This weak ranking may be constructed with the transitiveDigraphs.
WeakCopelandQOrder class.

Listing 2.20: Computing a weak Copeland ranking

>>> from transitiveDigraphs import WeakCopelandOrder
>>> wcop = WeakCopelandOrder(g)
>>> wcop.showRankingByChoosing()
Ranking by Choosing and Rejecting
1st ranked ['a5']
2nd ranked ['al', 'a6', 'a7']
3rd ranked ['a8']
3rd last ranked ['ad4', 'a9']
2nd last ranked ['a3'l]
1st last ranked ['a2']

We recover in Listing 2.20 Lines 6 and 8 above, the ranking with ties delivered by the
Copeland scores (see Listing 2.18). We may draw its corresponding Hasse diagram (see
Listing 2.21).

59 See the advanced topic on bipolar-valued relational equivalence between bipolar-valued digraphs.
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Listing 2.21: Drawing a weak Copeland ranking

>>> wcop.exportGraphViz (fileName="'weakCopelandRanking')
*---- exporting a dot file for GraphViz tools --------- *
Exporting to weakCopelandRanking.dot

subgraph { rank = same; ab5; }
subgraph { rank = same; al; a7; a6; }
subgraph { rank = same; a8; }

{
{
subgraph { rank = same; a4; a9}
subgraph { rank = same; a3; }
subgraph { rank = same; a2; }
dot -Grankdir=TB -Tpng weakCopelandRanking.dot\
-o weakCopelandRanking.png

O W N e O

TransitiveDigraphs module (graphviz)
R. Bisdorff, 2014

Fig. 2.13: A weak Copeland ranking

A valued version of the Copeland ranking-by-scoring rule is given by the new Bachet
ranking rule.
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The Bachet ranking

Bachet numbers —bipolar-valued {-1,0,4-1} base 3 encoded integers, provided by the
arithmetics.BachetNumber class and instantiated by the row vectors and the column
vectors —both without reflexive terms— of the strict outranking digraph’s polarised re-
lation table, model in fact per decision action respectively an outrankingness and a
negated outrankedness ranking fitness score similar to the previous Copeland ranking
scores (see the advanced topic on a new ranking rule based on bipolar-valued base 3
Bachet numbers ).

Now, Bachet numbers are formulated in a base 3 positional numeral system and the
integer values of the Bachet ranking scores may depend therefore on the actual order-
ing of the outranking digraph’s actions dictionary. The Bachet rule is however, like the
Copeland rule, invariant under the codual transform and Condorcet consistent, ie.
when the outranking digraph models a transitive relation, this relation will be preserved
by the Bachet ranking scores. Here, as we have seen above, the given digraph’s transitiv-
ity degree is only 0.487. To reduce therefore the dependency on the given initial ordering
of the actions dictionary, we compute below Bachet ranking results for 10 random per-
mutations and their reversed orderings of the actions keys (see Listing 2.22 Line 2) and
keep the one ranking that is best correlated with the given outranking digraph.

Listing 2.22: Computing a Bachet ranking

>>> from linearOrders import PolarisedBachetRanking

>>> ba = PolarisedBachetRanking(gcd,randomized=10,seed=28)
>>> ba.showScores ()

Bachet scores in descending order

action score
ab 5096.00
a6 3074.00
a7 1794 .00
a3 -71.00
ad -141.00
a8 -360.00
al -490.00
a2 -537.00
a9 -1135.00

>>> ba.bachetRanking

['ab', 'a6', 'a7', 'a3', 'ad', 'a8', 'al', 'a2', 'a9']
>>> corr = g.computeRankingCorrelation(ba.bachetRanking)
>>> g.showCorrelation(corr)

Correlation indexes:

Crisp ordinal correlation : +0.715

Epistemic determination : 0.230

Bipolar-valued equivalence : +0.165

In Listing 2.22 Line 20 above, we may observe that the Bachet scores lead eventually

to a ranking result that is better correlated with the given outranking relation than the
previous Copeland ranking (+0.715 versus +0.463).
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A heatmap view on the performance tableau illustrates the actual quality of this Bachet
ranking result.

>>> g.showHTMLPerformanceHeatmap (Correlations=True,
colorLevels=7,
actionsList=ba.bachetRanking)

Heatmap of Performance Tableau 'rel randomCBperftab’

[criteria| b09 | b04 |b01 | c01 |Db08 | b5 | b2 | b10 |b0O7 |03 | c02 D06 | c03

[weights|+3.00 +3.00 +3.00/|+10.00 +3.00+3.00+3.00/+3.00 |+3.00/[+3.00 +10.00 +3.00/+10.00

tau( |+0.58/+0.44|+0.43 | +0.31 [+0.29 +0.22|+0.18 +0.06 +0.03 [+0.00| -0.11 |-0.15 | -0.28
a5 |9.00 |8.00 14.90 | -3.00 59.61|3.00 [36.22|5.00 |6.00 |8.00 | -4.00 [63.82 -4.00
a6 [3.00 [2.00 [71.50 [ 200 [45.96 | 7.00 [44.52]3.00 [2.00 [2.00 [ 4.00 [53.21 -5.00

a7 800 [6.00 [7493 | -2.00 [28.97 [800) 5255  6.00 [8:00] 7.00 | -5.00 [74.93[ %500}

a3  [10.00[8.00 [74.88[-8.00 [74.155.00 [40.73[8.00 [8.00 [8.00 [ 6.00 [44.22[ -7.00

at [7.00 [3.00 [56.50[-8.00 7848 5.00 [67.86[8.00 [5.00 [3.00 [ -5.00 [86:83 500"

a8 [6.00 [8.00 [56.83 | -5.00 [51.26] 5.00 [32.86[8.00 [5.00 [8.00 %8101 [63.30 -3.00
100

al [3.00 [2.00 [34.86 [-2.00 [28.16 [2:00  [85.03 [1:00] [1:00] [ 2.00 | -5.00

a2z [3.00 [200 [33.38| -5.00 [82][6.00 2534 [6.00 [2.00 [-2:00 [68.26] -5.00

a9 [2.00 [0.00 [9.09 | -8.00 [46.35]3.00 [18.86[1.00 [7.00 [9.00 82.40/ -2.00
Color legend:

[quantite [#4:29%| 28.57%)| 42.86%] 57.14%| 71.43%] 85.71% | 100.00%|

(*) tau: Ordinal (Kendall) correlation between

marginal criterion and global ranking relation

Outranking model: standard, Ranking rule: Bachet, randomized=10
Ordinal (Kendall) correlation between

global ranking and global outranking relation: +0.715

Mean marginal correlation (a) : +0.090

Standard marginal correlation deviation (b) : +0.261

Ranking fairness (a) - (b) : -0.171

Fig. 2.14: Bachet rule ranked heatmap view on the performance records

In Fig. 2.14 we may notice that action a5, with all grades above the third 7-tile (>
42.86%), appears convincingly first-ranked. Similarly, with five grades in the lowest 7-
tiled class (< 14.29%), action a9 appears last-ranked. Most significant in this ranking
appear to be the Benefit criteria 609, b04 and b01 with a correlation > +0.40, whereas
Costs criteria c02 and c03 appear somehow in contradiction (-0.11 and -0.28) with the
proposed Bachet ranking. Action a7, with only three weak grades, is not first-ranked
because of the fact that on all three Costs criteria and on the Benefit criterion 08, i.e on
a majority (33/60) of criteria significance, action a7 is positively outranked by actions
a6 and ad. Notice also the highly contrasted performance record of action al with three
grades in the highest 7-tile (> 85.71%) and four grades in the lowest 7-tile (<14.29%).
A similar contrasted situation is given for action a8 with 7 grades in the two top 7-
tiles (>71.43%) and four grades in the two lowest 7-tiles (<28.57%). The mean marginal
correlation over all 13 criteria is positive (+0.09). The standard deviation of the marginal
correlations is however quite high (-+0.261) so that the ranking lacks apparently a bit of
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fairness (-0.171).

Let us now consider a similar ranking rule, but working directly on the bipolar-valued
outranking digraph.

The NetFlows ranking

A further valued version of the Copeland rule, called NetFlows rule, computes for each
alternative z a net flow score, i.e. the sum of the differences between the strict out-
ranking characteristics 7(x 77 y) and the strict outranked characteristics r(y 7, z)
for all pairs of alternatives where y is different from .

Listing 2.23: Computing a NetFlows ranking

>>> from linearOrders import NetFlowsRanking
>>> nf = NetFlowsRanking(gcd,Comments=True)

Net Flows

ab : 3.600
a7 : 2.800
a6 : 1.300
a3 : 0.033
al : -0.400
a8 : -0.567
a4 : -1.283
a9 : -2.600
a2 : -2.883

NetFlows Ranking:

['ab', 'a7', 'a6', 'a3', 'al', 'a8', 'a4', 'a9', 'a2']
>>> cop.copelandRanking

['ab', 'al', 'a6', 'a7', 'a8', 'ad', 'a9', 'a3', 'a2']

It is worthwhile noticing again that, similar to the Copeland and the Bachet ranking
rules seen before, the NetFlows ranking rule is also invariant under the codual transform
(page 18) and delivers again the same ranking result indifferently from digraphs g or ged
(see Listing 2.23 Line 14). Yet, the NetFlows ranking rule, working directly with the
bipolar characteristic values of the outranking relation is not necessarily Condorcet
consistent.

In our example here, the NetFlows scores deliver a ranking without ties which is rather
different from the one delivered by Copeland’s rule (see Listing 2.23 Line 16). It may
happen, however, that we obtain, as with the Copeland scores above, only a ranking
result with ties, which may then be resolved again by following a lexicographic rule.
In such cases, it is possible to construct again a weak ranking with the corresponding
WeakNetFlowsOrder class.

The NetFlows ranking result appears to be better correlated (+0.638) with the given

outranking relation than its crisp cousin, the Copeland ranking (see Listing 2.19 Lines
4-6).
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Listing 2.24: Checking the quality of the NetFlows Rank-
ing

>>> corr = gcd.computeOrdinalCorrelation(nf)

>>> gcd.showCorrelation(corr)

Correlation indexes:
Extended Kendall tau : +0.638
Epistemic determination : 0.230
Bipolar-valued equivalence : +0.147

Indeed, the extended Kendall tau index of +0.638 leads to a bipolar-valued relational
equivalence characteristics of +0.147, i.e. a majority of 57.35% of the criteria significance
supports the relational equivalence between the given outranking digraphs g or ged and
the corresponding NetFlows ranking. The lesser ranking performance of the previous
Copeland rule stems in this example here essentially from the weakness of the actual
Copeland ranking result and our subsequent arbitrary lexicographic resolution of the
many ties given by the Copeland scores (see Fig. 2.13).

The valued Bachet ranking

The polarised Bachet ranking rule only considers the crisp relational structure of the out-
ranking digraph, ignoring the actual credibility of the individual arcs. The linearOrders
module provides now also a ValuedBachetRanking rule taking into account, like the
NetFlows rule, the actual bipolar-valued characteristic determination of the outranking
situations. The Bachet numbers making up the ranking scores are therefore instantiated
from the rows and columns of the normalized relation instead of the polarised relation of
the outranking digraph.

Listing 2.25: Computing a valued Bachet ranking

>>> from linearOrders import ValuedBachetRanking

>>> bav = ValuedBachetRanking(gcd,randomized=100,seed=28)
>>> bav.showScores ()

Bachet scores in descending order

action score

ab 2179.36
a6 903.71

a7 599.92

a3 -375.05
a4 -513.49
al -741.73
a8 -1292.76
a2 -1998.61
a9 -4364.85

>>> bav.bachetRanking
['3.5' , 'a6! , 127! , 123! , 124! , 'al! , 128! , 192! , ragr]
>>> corr = g.computeRankingCorrelation(bav.bachetRanking)

>>> g.showCorrelation(corr)
(continues on next page)
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(continued from previous page)
Correlation indexes:
Crisp ordinal correlation : +0.739
Epistemic determination : 0.230
Bipolar-valued equivalence : +0.170

With the valued version of the Bachet ranking rule we recover a similar ranking as the
one obtained with the previous polarised version, only actions ‘a!’ and ‘a8’ are swapped.
Notice by the way in Listing 2.25 Line 2 that we are sampling here 100 random orderings
of the actions keys. This way we obtain a better correlated ranking result than with the
simple NetFlows rule (+739 vs +0.638). The valued Bachet ranking is like the polarised
Bachet rule invariant under the codual transform. However, like the NetFlows rule, the
valued version of the Bachet rule is not necessarily Condorcet consistent.

To appreciate now the actual ranking performances of the ranking-by-scoring rules seen
so far, it is useful to consider Kemeny’s and Slater’s optimal fitting ranking rules.

Optimal Kemeny rankings

A Kemeny ranking is a linear ranking without ties which is closest, in the sense of
the ordinal (Kendall) correlation index (see the advanced topic on the bipolar-valued
relational equivalence between bipolar-valued digraphs [BIS-2012|), to the given valued
outranking digraphs ¢ or ged. This rule is also invariant under the codual transform, yet,
not necessarily Condorcet consistent.

Listing 2.26: Computing a Kemeny ranking

>>> from linearOrders import KemenyRanking
>>> ke = KemenyRanking(gcd,orderLimit=9) # default orderlLimit is 7
>>> ke.showRanking ()
['ab', 'a6', 'a7', 'a3', 'a9', 'a4', 'al', 'a8', 'a2']
>>> corr = gcd.computeOrdinalCorrelation(ke)
>>> gcd.showCorrelation(corr)
Correlation indexes:
Extended Kendall tau : +0.779
Epistemic determination : 0.230
Bipolar-valued equivalence : +0.179

So, +0.779 represents the highest possible ordinal correlation any potential linear ranking
can achieve with the given pairwise outranking digraph (see Listing 2.26 Lines 7-10).

A Kemeny ranking may not be unique. In our example here, we obtain in fact two
Kemeny rankings with a same maximal correlation of +0.779 (see [BIS-2012]).
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Listing 2.27: Optimal Kemeny rankings

>>> ke.maximalRankings
[[|a5|’ ‘a6', ra7r, ra3r, ‘a8‘, |a9|’ ra4r, ’al’, |a2|:|’
[|a5|’ ‘a6‘, ra7r, ra3r, |a9|’ |a4|’ ’a1’, ’a8’, |a2|:|:|

We visualize the partial order defined by the epistemic fusion (page 17) of both optimal
Kemeny rankings by using the RankingsFusionDigraph class as follows.

Listing 2.28: Computing the epistemic fusion of all opti-
mal Kemeny rankings

>>> from transitiveDigraphs import RankingsFusionDigraph
>>> wke = RankingsFusionDigraph(ke,ke.maximalRankings)
>>> wke.exportGraphViz (fileName='tutorialKemeny')

*---- exporting a dot file for GraphViz tools --------- *
Exporting to tutorialKemeny.dot

0 subgraph { rank = same; a5; }
1 subgraph { rank = same; a6; }
2 subgraph { rank = same; a7; }
3 subgraph { rank = same; a3; }
4 subgraph { rank = same; a9; a8; }
5 subgraph { rank = same; a4; }
6 subgraph { rank = same; al; }
7 subgraph { rank = same; a2; }

dot -Grankdir=TB -Tpng tutorialKemeny.dot -o tutorialKemeny.png
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Fig. 2.15: Epistemic disjunctive fusion of optimal Kemeny rankings

It is interesting to notice in Fig. 2.15 and Listing 2.27, that both Kemeny rankings only
differ in their respective positioning of alternative a8; either before or after alternatives
a9, a4 and al.

To choose now a specific representative among all the potential rankings with
maximal ordinal correlation index, we will choose, with the help of the
showRankingConsensusQuality () method, the most consensual one.
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Listing 2.29: Computing Consensus Quality of Rankings

>>> g.showRankingConsensusQuality(ke.maximalRankings[0])
Consensus quality of ranking:
['ab',
criterion (weight): correlation

'a6',

|a7|’

'8.3', '8.8', |a9|’

b09
b04
b08
b01
c01
b03
b07
b05
c02
b10
b02
b06
c03

(0.
Summary :

.361
.333
.292
.264
.250
.222
.194
.167
.000
.000
.042
.097
.167

Weighted mean marginal correlation (a): +0.099
Standard deviation (b)
Ranking fairness (a)-(b)
>>> g.showRankingConsensusQuality(ke.maximalRankings[1])
Consensus quality of ranking:
['ab',
criterion (weight): correlation

'8.6',

|a7|’

Ia3| |a9l Ia4l

b09
b08
c01
b07
c02
b04
b03
b01
b05
b02
b06
c03
b10

(0.
Summary :

.306
.236
.194
.194
.167
.167
.167
.153
.056
.014
.042
111
111

: +0.177
: -0.079

Weighted mean marginal correlation (a): +0.099
Standard deviation (b)
Ranking fairness (a)-(b)
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Both Kemeny rankings show the same weighted mean marginal correlation (+0.099, see
Listing 2.29 Lines 19-22, 42-44) with all thirteen performance criteria. However, the
second ranking shows a slightly lower standard deviation (40.132 vs +0.177), resulting
in a slightly fairer ranking result (-0.033 vs -0.079).

When several rankings with maximal correlation index are given, the KemenyRanking
class constructor instantiates a most consensual one, i.e. a ranking with highest mean
marginal correlation and, in case of ties, with lowest weighted standard deviation. Here
we obtain ranking: [‘ab’, ‘a6’, ‘a7’, ‘a3’, ‘a9’, ‘ad’, ‘al’, ‘a8’ ‘a2’| (see Listing 2.26 Line
4).

A Monte Carlo experiment, comparing the correlation results obtained by the previous
ranking-by-scoring rules with the optimal Kemeny rule when ranking 100 random Cost-
Benefit performance tableaux of order 10, involving 13 performance criteria, confirms a

clear advantage of the polarised Bachet (randomized=100) rule against the Copeland and
the NetFlows rules (see Fig. 2.16 below).

Carrelation performance of the ranking-by-scoring rules

| ‘ +

optimal Kemeny

Bachet (randomized=100)

net flows

Correlation with given outranking digraph of order 10

Copeland

100 random Cost-Benefit performance tableaux, 10 actions, 13 criteria

Fig. 2.16: Performance comparison of three ranking-by-scoring rules

Mind however that this apparent better performance of the polarised Bachet ranking
rule is essentially due to computing the Bachet scores on 100 permutations and their
reverses of the polarised ouranking relation table and keeping the best correlated one. A
strategy which meets by the way the ranking strategy of the optimal Kemeny rule. This
performance advantage compared to the Copeland and the netFlows rules is hence also
limited to the ranking of small outranking digraphs of order < 20 (see the efficiency of
the Bachet ranking rule).

Let us now present the non-valued cousin of the optimal Kemeny rule.
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Optimal Slater rankings

The Slater ranking rule is identical to Kemeny’s but works, instead, on the median cut
polarised digraph. Slater’s ranking rule is also invariant under the codual transform and
delivers again indifferently on g or gcd the following results.

Listing 2.30: Computing a Slater ranking

>>> from linearOrders import SlaterRanking
>>> sl = SlaterRanking(gcd,orderLimit=9)
>>> sl.slaterRanking
['ab', 'a6', 'a4', 'al', 'a3', 'a7', 'a8', 'a9', 'a2']
>>> corr = gcd.computeOrderCorrelation(sl.slaterRanking)
>>> sl.showCorrelation(corr)
Correlation indexes:
Extended Kendall tau : +0.676
Epistemic determination : 0.230
Bipolar-valued equivalence : +0.156
>>> len(sl.maximalRankings)
7

We notice in Listing 2.30 Line 7 that the first Slater ranking is a rather good fit (+0.676),
slightly better apparently than the NetFlows ranking result (+638). However, there
are in fact 7 such potentially optimal Slater rankings (see Listing 2.30 Line 11). The
corresponding epistemic fusion (page 17) gives the following partial ordering.

Listing 2.31: Computing the epistemic disjunction of op-
timal Slater rankings

>>> slw = RankingsFusionDigraph(sl,sl.maximalRankings)
>>> glw.exportGraphViz(fileName='tutorialSlater')

*---- exporting a dot file for GraphViz tools --------- *
Exporting to tutorialSlater.dot

subgraph { rank = same; ab5; }

subgraph { rank = same; a6; }

subgraph { rank = same; a7; a4; }

subgraph { rank = same; al; }

subgraph { rank = same; a8; a3; 7}

subgraph { rank = same; a9; }

subgraph { rank = same; a2; }

dot -Grankdir=TB -Tpng tutorialSlater.dot -o tutorialSlater.png

O WN - O
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Fig. 2.17: Epistemic fusion of optimal Slater rankings

What precise ranking result should we hence adopt? With a complexity of O(n!) where
n is the order of the outranking digraph, Kemeny’s and Slater’s optimal ranking rules
are computationally difficult problems and effective ranking results are only computable
for small outranking digraphs (< 20 objects).

Efficient ranking-by-scoring heuristics, like the Copeland and the NetFlows rules with a
complexity of O(n?) are therefore needed in practice.

Let us finally present two popular ranking-by-choosing strategies.
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Kohler’s ranking-by-choosing rule
Kohler’s ranking-by-choosing rule can be formulated like this.
At step 7 (i goes from 1 to n) do the following:

1. Compute for each row of the bipolar-valued strict outranking relation table (see
Listing 2.16) the smallest value;

2. Select the row where this minimum is maximal. Ties are resolved in lexicographic
order;

3. Put the selected decision alternative at rank ¢;

4. Delete the corresponding row and column from the relation table and restart until
the table is empty.

Listing 2.32: Computing a Kohler ranking

>>> from linearOrders import KohlerRanking
>>> kocd = KohlerRanking(gcd)
>>> kocd.showRanking ()
['ab', 'a7', 'a6', 'a3', 'a9', 'a8', 'a4', 'al', 'a2']
>>> corr = gcd.computeOrdinalCorrelation(kocd)
>>> gcd.showCorrelation(corr)
Correlation indexes:
Extended Kendall tau : +0.747
Epistemic determination : 0.230
Bipolar-valued equivalence : +0.172

With this min-mazx lexicographic ranking-by-choosing strategy, we find a correlation re-
sult (+0.747) that is until now the nearest to an optimal Kemeny ranking (see Listing
2.27). Only two adjacent pairs: [a6, a7] and [a8, a9] are actually inverted here. Notice
that Kohler’s ranking rule, contrary to the previously mentioned rules, is not invariant
under the codual transform and requires to work on the strict outranking digraph ged for
a better correlation result.

>>> ko = KohlerRanking(g)

>>> corr = g.computeOrdinalCorrelation (ko)

>>> g.showCorrelation(corr)

Correlation indexes:
Crisp ordinal correlation : +0.483
Epistemic determination : 0.230
Bipolar-valued equivalence : +0.111

But Kohler’s ranking has a dual version, the prudent Arrow-Raynaud ordering-by-
choosing rule, where a corresponding maz-min strategy, when used on the non-strict
outranking digraph g, for ordering the from last to first produces a similar ranking result

(see [LAM-2009], [DIA-2010]).

Noticing that the NetFlows score of an alternative x represents in fact a bipolar-valued
characteristic of the assertion ‘alternative x is ranked first’, we may enhance Kohler’s
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or Arrow-Raynaud’s rules by replacing the min-maz, respectively the maz-min, strategy
with an iterated maximal, respectively its dual minimal, Netflows score selection.

For a ranking (resp. an ordering) result, at step ¢ (i goes from 1 to n) do the following:

1. Compute for each row of the bipolar-valued outranking relation table (see Listing
2.16) the corresponding net flow score (page 87) ;

2. Select the row where this score is maximal (resp. minimal); ties being resolved by
lexicographic order;

3. Put the corresponding decision alternative at rank (resp. order) i;

4. Delete the corresponding row and column from the relation table and restart until
the table is empty.

A first advantage is that the so modified Kohler’s and Arrow-Raynaud’s rules become
invariant under the codual transform. And we may get both the ranking-by-choosing
as well as the ordering-by-choosing results with the IteratedNetFlowsRanking class
constructor (see Listing 2.33 Lines 12-13).

Listing 2.33: Ordering-by-choosing with iterated minimal
NetFlows scores

>>> from linearOrders import IteratedNetFlowsRanking
>>> inf = IteratedNetFlowsRanking(g)

>>> inf
L Digraph instance description ------ *
Instance class : IteratedNetFlowsRanking
Instance name : rel_randomCBperftab_ranked
Digraph Order 2 ©
Digraph Size : 36
Valuation domain : [-1.00;1.00]
Determinateness (%) : 100.00
Attributes : ['valuedRanks', 'valuedOrdering',

'iteratedNetFlowsRanking',
'iteratedNetFlowsOrdering',

'name', 'actions', 'order',
'valuationdomain', 'relation',
'gamma', 'notGamma']

>>> inf.iteratedNetFlowsOrdering
['a2', 'a9', 'al', 'a4', 'a3', 'a8', 'a7', 'a6', 'ab']
>>> corr = g.computeOrderCorrelation(inf.iteratedNetFlowsOrdering)
>>> g.showCorrelation(corr)
Correlation indexes:
Crisp ordinal correlation : +0.751
Epistemic determination : 0.230
Bipolar-valued equivalence : +0.173
>>> inf.iteratedNetFlowsRanking
['ab', 'a7', 'a6', 'a3', 'a4', 'al', 'a8', 'a9', 'a2'l
>>> corr = g.computeRankingCorrelation(inf.iteratedNetFlowsRanking)
(continues on next page)
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(continued from previous page)
>>> g.showCorrelation(corr)
Correlation indexes:
Crisp ordinal correlation : +0.743
Epistemic determination : 0.230
Bipolar-valued equivalence : +0.171

The iterated NetFlows ranking and its dual, the iterated NetFlows ordering, do not
usually deliver both the same result (Listing 2.33 Lines 18 and 26). With our example
outranking digraph ¢ for instance, it is the ordering-by-choosing result that obtains a
slightly better correlation with the given outranking digraph ¢ (+0.751), a result that is
also slightly better than Kohler’s original result (+0.747, see Listing 2.32 Line 8).

With different ranking-by-choosing and ordering-by-choosing results, it may be useful to
fuse now, similar to what we have done before with Kemeny’s and Slaters’s optimal
rankings (see Listing 2.28 and Listing 2.31), both, the iterated NetFlows ranking and
ordering into a partial ranking. But we are hence back to the practical problem of what
linear ranking should we eventually retain ?

Let us finally mention another interesting ranking-by-choosing approach.

Tideman’s ranked-pairs rule

Tideman’s ranking-by-choosing heuristic, the RankedPairs rule, working best this time
on the non strict outranking digraph g, is based on a prudent incremental construction
of linear orders that avoids on the fly any cycling outrankings (see [LAM-2009]). The
ranking rule may be formulated as follows:

1. Rank the ordered pairs (x, y) of alternatives in decreasing order of r(z 22 y) +r(y Z
x);
2. Consider the pairs in that order (ties are resolved by a lexicographic rule):

e if the next pair does not create a circuit with the pairs already blocked, block
this pair;

e if the next pair creates a circuit with the already blocked pairs, skip it.

With our didactic outranking digraph ¢, we get the following result.

Listing 2.34: Computing a RankedPairs ranking

>>> from linearOrders import RankedPairsRanking
>>> rp = RankedPairsRanking(g)
>>> rp.showRanking ()
['ab', 'a6', 'a7', 'a3', 'a8', 'a9', 'a4', 'al', 'a2']

The RankedPairs ranking rule renders in our example here luckily one of the two optimal
Kemeny ranking, as we may verify below.
>>> ke.maximalRankings

[[|a5|, '8.6', '8.7', |a3|’ '8.8', '8.9', '8.4', |a1|’ |a2|],

(continues on next page)
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(continued from previous page)
['ab', 'a6', 'a7', 'a3', 'a9', 'a4', 'al', 'a8', 'a2']]
>>> corr = g.computeOrdinalCorrelation(rp)
>>> g.showCorrelation(corr)
Correlation indexes:
Extended Kendall tau : +0.779
Epistemic determination :0.230
Bipolar-valued equivalence : +0.179

Similar to Kohler’s rule, the RankedPairs rule has also a prudent dual version, the Dias-
Lamboray ordering-by-choosing rule, which produces, when working this time on the co-
dual strict outranking digraph ged, a similar ranking result (see [LAM-2009], [DIA-2010]).

Besides of not providing a unique linear ranking, the ranking-by-choosing rules, as well
as their dual ordering-by-choosing rules, are unfortunately not scalable to outranking
digraphs of larger orders (> 100). For such bigger outranking digraphs, with several
hundred or thousands of alternatives, only the Copeland and the NetFlows ranking-
by-scoring rules, with a polynomial complexity of O(n?), where n is the order of the
outranking digraph, remain in fact computationally tractable.

It is important finally to notice that for all outranking digraphs of small or larger orders
there does usually not exist a unique optimal linear ranking result when the correspond-
ing strict outranking digraph lacks transitivity and contains chordless cycles. In such a
case, it may be interesting to compute a ranking consensus from multiple plausible
linear rankings.

Back to Content Table (page 1)

2.5 On partially ranking outranking digraphs

114

Competing criteria will yield different rankings of alternatives, with some
shared elements and some divergent ones. The intersection —of the shared
elements of the rankings — of the diverse orderings generated by the different
priorities will yield a partial ordering that ranks some alternatives against
each other with great clarity and internal consistency, while failing altogether
to rank other pairs of alternatives.”

—A Sen, The Idea of Justice (2009)

e Computing a ranking consensus from several linear rankings (page 100)

e On partially ranking with the Bachet rules (page 102)

In this section, instead of computing linear rankings or orders, we illustrate two ranking
strategies for computing partial rankings —partially determined transitive asymetrical
relations— from a given outranking digraph.
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Computing a ranking consensus from several linear rankings

To compare for instance the four rankings we have previously obtained with ranking-by-
scoring strategies, it is worthwhile vizualizing the ranking consensus one may observe
between the Copeland, the NetFlows and both Bachet ranking results. To compute
such a ranking consensus we make usage in Listing 2.35 of the transitiveDigraphs.
RankingsFusionDigraph class (see Line 20).

Listing 2.35: Computing a rankings consensus

>>> from outrankingDigraphs import *
>>> t = RandomCBPerformanceTableau(numberOfActions=9,
number0fCriteria=13,seed=200)

>>> g = BipolarOutrankingDigraph(t,Normalized=True)

>>> from linear(Orders import *

>>> cop = CopelandOrder(g)

>>> ba = PolarisedBachetRanking(g,randomized=10,seed=28)

>>> nf = NetFlowsRanking(g)

>>> bav = ValuedBachetRanking(g,randomized=100,seed=28)

>>> rankings = [cop.copelandRanking,

ba.bachetRanking,

nf .netFlowsRanking,

S bav.bachetRanking]

>>> rankings
['ab', 'al', 'a6', 'a7', 'a8', 'a4', 'a9', 'a3', 'a2'l
['ab', 'a6', 'a7', 'a3', 'a4', 'a8', 'al', 'a2', 'a9'l
['ab', 'a7', 'a6', 'a3', 'al', 'a8', 'a4', 'a9', 'a2']
['ab', 'a6', 'a7', 'a3', 'ad', 'al', 'a8', 'a9', 'a2']

>>> from transitiveDigraphs import RankingsFusionDigraph

>>> rfdg = RankingsFusionDigraph(g,rankings)

>>> rfdg
K e Digraph instance description ------ *
Instance class : RankingsFusionDigraph
Instance name : rel_randomCBperftab_wk
Digraph Order P e
Digraph Size : 25
Valuation domain : [-1.00;1.00]
Determinateness (%) : 84.72
Attributes : ['name', 'actions', ... ,
'valuationdomain', 'relation', ... ,
'rankings', 'fusionOperator']

>>> rfdg.isTransitive()
True

By epistemic  disjunctive  fusion  (page 17) of the four rankings, the
RankingsFusionDigraph constructor computes a transitive asymmetric partial di-
graph (see Listing 2.35 Lines 32-33). Notice in Lines 15-18 the unstable ranks of
alternative al (rank 2,5,6 and 7) which induce contradictory ranking results leadind to
many incomparability situations. Ranking and ordering of partial relations do not give
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now the same result when such incomparabilities do appear.

The generic TransitiveDigraph class provides therefore a showTransitiveDigraph ()
method which recursively extracts conjointly first and last choices —initial and terminal
kernels— as shown in Listing 2.36 Lines 2-6 below.

Listing 2.36: Inspecting a partial ranking

>>> rfdg.showTransitiveDigraph()
Ranking by Choosing and Rejecting
1st ranked ['a5']
2nd ranked ['al', 'a6', 'a7']
2nd last ranked ['al', 'a3', 'ad4', 'a8'])
1st last ranked ['a2', 'a9'])

The nine alternatives are gathered into four levels. Mind that alternative al appears
actually on the 2nd first-ranked and on the 2nd last-ranked level (Lines 4 -5).

The drawing of partial rankings makes usage of a topological sort algorithm®’ (see Listing
2.37 Lines 4-7).

Listing 2.37: Inspecting a partial ranking

>>> rfdg.exportGraphViz('rankingsByScoringFusion')

*---- exporting a dot file for GraphViz tools --------- *
Exporting to rankingsByScoringFusion.dot

0 subgraph { rank = same; ab; }

1 subgraph { rank = same; a6; al; a7; }

2 subgraph { rank = same; a3; a8; a4; }

3 subgraph { rank = same; a2; a9; }
dot -Grankdir=TB -Tpng rankingsByScoringFusion.dot \

-0 rankingsByScoringFusion.png

Following an optimistic drawing perspective, alternative al is placed here on the 2nd
first-ranked level (Line 5).

60 Topological Sort Algorithm 2.4 from Algorithmic Graph heory and Perfect Graphs p.44 [GOL-2004].
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Digraph3 (graphviz)
R. Bisdorff, 2020

Fig. 2.18: Copeland, NetFlows and Bachet ranking consensus

Fig. 2.18 makes apparent a ranking consensus with the four levels of agreement where ac-
tion ad appears consistently first-ranked and actions a2 and a9, both, last-ranked. Notice
again the large incomparability of action a1, a consequence of its contrasted performance
record (see Fig. 2.14).

>>> g.showCorrelation(g.computeOrdinalCorrelation(rfdg))
Correlation indexes:

Crisp ordinal correlation : +0.847

Epistemic determination : 0.1567

Bipolar-valued equivalence : +0.133

The epistemic fusion of all four ranking-by-scoring results delivers here a convincing tran-
sitive partial ordering, highly correlated with the given outranking digraph ¢ (+0.847),
supported by a criteria significance majority of 56.7% (see Lines 3-5 above) .

A second strategy for constructing partial rankings makes usage of the randomized Bachet
ranking rule.

On partially ranking with the Bachet rules

As we have noticed before, the randomized polarised Bachet ranking rule produces mul-
tiple rankings of unequal correlation qualities, respecting all the transitive part of the
given outranking digraph. A subset of best correlated Bachet rankings represents now
a suitable sample for computing a convincing ranking consensus. This second strategy
is provided by the transitiveDigraphs.PartialBachetRanking class. To illustrate its
usefulness, let us reconsider the example outranking digraph ¢ of Listing 2.35.
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Listing 2.38: Partial polarised Bachet ranking digraph

>>> from outrankingDigraphs import *

>>> t = RandomCBPerformanceTableau(numberOfActions=9,

- number0fCriteria=13,seed=200)
>>> g = BipolarOutrankingDigraph(t,Normalized=True)
>>> from transitiveDigraphs import PartialBachetRanking

>>> wb = PartialBachetRanking(g,randomized=100,seed=1,maxNbrOfRankings=5)

>>> wb

K e Digraph instance description

Instance class
Instance name
Digraph Order ;G
Digraph Size 227
Valuation domain
Determinateness (%) : 87.50

[-1.00;1.00]

: PartialBachetRanking
: rel_randomCBperftab_wk

Attributes : ['name', 'actions', ‘'order', R
'valuationdomain', 'relation', ...,
'randomized', 'seed', 'bachetRankings',

'maxNbrOfRankings', 'Polarised’,
'partialBachetCorrelation']

>>> wb.bachetRankings
[(0.6824, ['ab', 'a6', 'a3',
(0.6523, ['ab', 'a6', 'ad',
(0.6482, ['ab', 'a6', 'ad',
(0.6442, ['ab', 'a6', 'ad',
(0.6382, ['ab', 'a6', 'al',

'ad', 'al', 'aT7’
'a7', 'al', 'a3'
'al', 'a7', 'a3'
'a3’, 'al', 'a7'
'a7', 'a3', 'ad'

la8|
Iagl
Iagl
lagl
la8|

'a9', 'a2'l),
Ta2! o tadil)
12! o tagtl)
'a8', 'a2'l),
'a2', 'a9'])]

In Listing 2.38 Line 6, we notice that we sample 100 Bachet rankings and keep the five best
correlated rankings for constructing the ranking consensus (see Lines 20-25). We may no-
tice that alternative a5 is always first-ranked and alternative a6 second-ranked. Whereas
alternatives a2, a8 and a9 make up the the tail group. The showTransitiveDigraph()
method confirms this partial ranking (see Listing 2.39 Lines 2-6 below and Fig. 2.19).

Listing 2.39: Partial polarised Bachet ranking result

>>> wb.showTransitiveDigraph ()

Ranking by Choosing and Rejecting

1st ranked ['a5']
2nd ranked ['a6']

2nd last ranked ['al', 'a3', 'ad',

1st last ranked ['a2', 'a8',

'a9'l)

'a7'l])

>>> wb.showCorrelation(wb.partialBachetCorrelation)

Correlation indexes:

Crisp ordinal correlation
Epistemic determination
Bipolar-valued equivalence :

: +0.806

0.179
+0.144

103

(continues on next page)



12

13

15

1

2

3

(continued from previous page)
>>> wb.exportGraphViz('weakBachetpol')
*---- exporting a dot file for GraphViz tools --------- *
Exporting to weakBachetpol.dot
dot -Grankdir=TB -Tpng weakBachetpol.dot -o weakBachetpol.png

Digraph3 (graphviz)
R. Bisdorff, 2020

Fig. 2.19: Polarised Bachet partial ranking result

The resulting partial ranking is highly correlated with the common determinated part
of the given outranking digraph ¢ (+0.806) leading to a relational equivalence with the
given outranking digraph g supported by a criteria significance majority of 57.2% (see
Lines 9-11 above).

We recover with the Bachet ranking rule a ranking consensus actually very similar to the
previous consensus obtained from of all four ranking-by-scoring results (see Fig. 2.18).

The PartialBachetRanking constructor uses by default the polarised version of the
Bachet ranking rule. Due to its Condorcet consistency property, the partial ranking
result obtained in Fig. 2.19 represents in fact a ranking consensus respecting the actual
transitive parts of the given outranking digraph (see the advanced topic dedicated to
the Bachet ranking rules).

The PartialBachetRanking now provides a “Polarised == False” flag allowing to use
instead the valued version of the Bachet ranking rule (see below Listing 2.40 Line 1).
The five best qualified Bachet rankings are shown in Lines 4-8.

Listing 2.40: Five best correlated valued Bachet ranking
results

>>> wbv = PartialBachetRanking(g,Polarised=False,
. randomized=100,seed=1,maxNbrOfRankings=5)
>>> wbv.bachetRankings

(continues on next page)
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[(0.6764, ['a6', 'ab', 'a7', 'ad4', 'al', 'a8', 'a3', 'a2', 'ag9'l),
(0.6583, ['ab', 'a6', ta7', 'al', 'a3', 'a8', 'a2', 'ad', 'a9'l),
(0.6543, ['ab', 'a6', 'al', 'ar', 'a3', 'a8', 'a2', 'ad4', 'a9'l]),
(0.6503, ['ab', 'a6', 'a7', 'a8', 'a3', 'a9', 'a2', 'ad', 'al'l),
(0.6462, ['ab', 'a6', 'al', ‘'a7', 'a8', 'a2', 'a3', 'ad', 'a9'l)]

Again we may notive that alternatives a5 and a6 are first-ranked and alternatives a2, a4
and a9 are last-ranked. It is worthwhile noticing in Lines 4-8 above that alternative af
appears in rank 3,4,5 and 9.

In Listing 2.41 Lines 3-6 we observe now a partial ranking taking into account not only
the polarised relational structure, but also the epistemic determination of the given
outranking digraph g. And the ordinal correlation with g, supported by a similar criteria
significance of 57%, gets even higher: +0.888 vs +0.806 (see Lines 9-11).

Listing 2.41: Valued partial ranking result

>>> wbv.showTransitiveDigraph ()
Ranking by Choosing and Rejecting
1st ranked ['ab', 'a6']
2nd ranked ['a7'],
2nd last ranked [''a3', 'a8'])
1st last ranked ['al', 'a2', 'a4', 'a9'l])
>>> wbv.showCorrelation(wbv.weakBachetCorrelation)
Correlation indexes:
Crisp ordinal correlation : +0.888
Epistemic determination : 0.157
Bipolar-valued equivalence : +0.139
>>> wbv.exportGraphViz('weakBachetval')
*---- exporting a dot file for GraphViz tools --------- *
Exporting to weakBachetval.dot
dot -Grankdir=TB -Tpng weakBachetval.dot -o weakBachetval.png

It is worthwhile noticing in Fig. 2.20 that alternative al appears indeed incomparable

to the other alternatives except alternatives a5 and a6, a fact already made previously
apparent with the partial polarised Bachet ranking shown in Fig. 2.18.
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Fig. 2.20: Valued Bachet partial ranking result

This way, the Bachet ranking rules deliver efficient tools for constructing convincing
partial rankings providing by the way a tool for computing potential first or last choice
recommendations, actually the initial and terminal prekernels of such partial transitive
digraphs. Mind however that the Bachet ranking rules can only handle small outranking
digraphs ( < 50 ). For larger ( > 50 ) or big ( > 1000 ) outranking digraphs it is
opportune to turn to order statistics and compute weak rankings —rankings with ties—
by sorting the multicriteria performance records into relative or absolute performance
quantile equivalence classes.

This order statistics based rating approach is presented in the following tutorials.

Back to Content Table (page 1)

2.6 Rating into relative performance quantiles

e Performance quantile sorting on a single criterion (page 107)

e Rating-by-sorting into relative multicriteria performance quantiles (page 108)

e Rating-by-ranking with relative quantile limits (page 111)

We apply order statistics for sorting a set X of n potential decision actions, evaluated on
m incommensurable performance criteria, into ¢ quantile equivalence classes, based on
pairwise outranking characteristics involving the quantile class limits observed on each
criterion. Thus we may implement a weak ordering algorithm of complexity O(nmg).
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Performance quantile sorting on a single criterion

A single criterion sorting category K is a (usually) lower-closed interval [my; My| on a real-
valued performance measurement scale, with m; < M. If z is a measured performance
on this scale, we may distinguish three sorting situations.

1. x < my and (x < My): The performance z is lower than category K.
2. x > my and x < Mj: The performance z belongs to category K.
3. x> my and x > Mj: The performance z is higher than category K.

As the relation < is the dual of > (), it will be sufficient to check that x > m;, as well
as x #? My are true for z to be considered a member of category K.

Upper-closed categories (in a more mathematical integration style) may as well be consid-
ered. In this case it is sufficient to check that m; 2 x as well as My > x are true for z to
be considered a member of category K. It is worthwhile noticing that a category K such
that my = M}, is hence always empty by definition. In order to be able to properly sort
over the complete range of values to be sorted, we will need to use a special, two-sided
closed last, respectively first, category.

Let K = K, ..., K, be a non trivial partition of the criterion’s performance measurement
scale into ¢ > 2 ordered categories K}, — i.e. lower-closed intervals [my; M| — such that
my, < My, My =myq for k=0, ..., ¢-1and M, =oco. And, let A = {ay,as,as,...} be
a finite set of not all equal performance measures observed on the scale in question.

Property: For all performance measure x € A there exists now a unique k such that
xr € K. If we assimilate, like in descriptive statistics, all the measures gathered in a
category K} to the central value of the category —i.e. (my + My)/2 — the sorting result
will hence define a weak order (complete preorder) on A.

Let @ = {Qo, @1, ..., Q,} denote the set of ¢ + 1 increasing order-statistical quantiles like
quartiles or deciles— we may compute from the ordered set A of performance measures
observed on a performance scale. If )y = min(X), we may, with the following intervals:

(Qo; 1, [Q1; Q2] - -, [Qq—1;00], hence define a set of ¢ lower-closed sorting categories.
And, in the case of upper-closed categories, if (), = max(X), we would obtain the intervals
| —00;Q1], |Q1; Q2] - -, |Qq—1;Qy]. The corresponding sorting of A will result, in both

cases, in a repartition of all measures z into the ¢ quantile categories K for k =1, ...,
q.

Example: Let A = { ay = 703, a5 = 945, ay; = 2035, a1 = 25947 aip = 3144,
g = 34487 19 — 34507 aiz = 3561, a4 = 3654, 19 — 4283, as = 50047 a9 =
59.85, a;7 = 61.35, a1 = 61.61, a3 = 76.91, ag = 91.39, a; = 91.79, a4 = 96.52,
ag = 96.56, asy = 98.42 } be a set of 20 increasing performance measures observed on a
given criterion. The lower-closed category limits we obtain with quartiles (¢ = 4) are:
Qo = 7.03 = ay, Q1 = 34.485, Q3 = 54.945 (median performance), and Q3 = 91.69. And
the sorting into these four categories defines on A a complete preorder with the following
four equivalence classes: K; = {az, aig, a11, a10, @15, @16}, Ko = {as, ag, a13, a14,a19}, K3 =
{as, as, ag, a17,a18}, and Ky = {a1, a4, as, as}.
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Rating-by-sorting into relative multicriteria performance quantiles

Let us now suppose that we are given a performance tableau with a set X of n decision
alternatives evaluated on a coherent family of m performance criteria associated with
the corresponding outranking relation - defined on X. We denote z; the performance of
alternative z observed on criterion j.

Suppose furthermore that we want to sort the decision alternatives into ¢ upper-closed
quantile equivalence classes. We therefore consider a series : k = k/q for k =0, ..., ¢
of g+1 equally spaced quantiles, like quartiles: 0, 0.25, 0.5, 0.75, 1; quintiles: 0, 0.2, 0.4,
0.6, 0.8, 1: or deciles: 0, 0.1, 0.2, ..., 0.9, 1, for instance.

The upper-closed g class corresponds to the m quantile intervals |g;(pr—1); q;(px)] ob-
served on each criterion j, where k = 2, ..., ¢, ¢;(p,) = maxx(x;), and the first class
gathers all performances below or equal to Q;(p1).

The lower-closed qy, class corresponds to the m quantile intervals [g;(px—1);¢;(px)| ob-
served on each criterion j, where k = 1, ..., ¢-1, ¢j(po) = minx(x;), and the last class
gathers all performances above or equal to Q;(p,—1)-

We call g-tiles a complete series of k = 1, ..., g upper-closed g, respectively lower-closed
dx, multiple criteria quantile classes.

Property: With the help of the bipolar-valued characteristic of the outranking relation
r(2Z) we may compute the bipolar-valued characteristic of the assertion: z belongs to
upper-closed g¢-tiles class q* class, resp. lower-closed class q, as follows.

r(r € ¢*) = min [ — r(q(pq,l) = x), r(q(pq) 9 :1:')]
r(r€ar) = min [r(z Z a(py1), —r(z Z alpy)]
The outranking relation - verifying the coduality principle, —r(q(pq_l) = x) =

T(q(pq_l) =< :U), resp. —7’(3: = dq(py) = r(x =< q(pq).

We may compute, for instance, a five-tiling of a given random performance tableau with
the help of the ratingDigraphs.RatingByRelativeQuantilesDigraph class.

Listing 2.42: Computing a quintiles rating result

>>> from randomPerfTabs import RandomPerformanceTableau

>>> t = RandomPerformanceTableau(numberOfActions=50,seed=5)

>>> from ratingDigraphs import RatingByRelativeQuantilesDigraph
>>> rqr = RatingByRelativeQuantilesDigraph(t,quantiles=5)

>>> rqr

e Object instance description ----------- *
Instance class : RatingByRelativeQuantilesDigraph
Instance name : relative_rating_randomperftab
Actions : bb
Criteria 2
Quantiles : 5
Lowerclosed : False
Rankingrule : NetFlows
Size . 1647

(continues on next page)
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15 Valuation domain : [-1.00;1.00]

16 Determinateness (%): 67.40

17 Attributes : ['name', 'actions', 'actionsOrig',

18 'criteria', 'evaluation', 'NA', 'runTimes',

19 'quantilesFrequencies', 'LowerClosed', 'categories',

20 'criteriaCategoryLimits', 'limitingQuantiles', 'profiles',
21 'profilelimits', 'order', 'nbrThreads', 'relation',

22 'valuationdomain', 'sorting', 'relativeCategoryContent',
23 'sortingRelation', 'rankingRule', 'rankingScores',

24 'rankingCorrelation', 'actionsRanking', 'ratingCategories']
25 Km e Constructor run times (in sec.) ------ *

26 Threads 1

27 Total time : 0.19248

28 Data input : 0.00710

29 Compute quantiles 0.00117

30 Compute outrankings : 0.17415

31 rating-by-sorting : 0.00074

32 rating-by-ranking : 0.00932

33 >>> rqr.showSorting()

s34  *--- Sorting results in descending order ---x*

35 10.80 - 1.00]: ['a22']
36 10.60 - 0.80]: ['a03', 'a07', 'al8', 'all', 'ald', 'al7',

37 'al9', 'a20', 'a29', 'a32', 'a33', 'a37',
38 'a39', 'a4l', 'a42', 'a49']

39 ]0.40 - 0.60]: ['a01', 'a02', 'al4', 'a0b', 'al6', 'al8',
40 'a09', 'alée', 'al7', 'al8', 'al9', 'a2l',
41 'a24', 'a27', 'a28', 'a30', 'a31', 'a35',
42 'a36', 'a40', 'a43', 'ad6', 'ad7r', 'a48',
43 'a49', 'ab0']

44 ]0.20 - 0.40]: ['a04', 'al0', 'al2', 'al3', 'alb', 'a23',
45 'a2b', 'a26', 'a34', 'a38', 'a43', 'a44d’',
16 'a45', 'a49']

47 ] < - 0.20]: ['a4d4']

Most of the decision actions (26) are gathered in the median quintile ]0.40 — 0.60] class,
whereas the highest quintile ]0.80 — 1.00] and the lowest quintile | < —0.20] classes gather
each one a unique decision alternative (a22, resp. a44) (see Listing 2.42 Lines XX-).

We may inspect as follows the details of the corresponding sorting characteristics.

Listing 2.43: Bipolar-valued sorting characteristics (ex-
tract)

1 >>> rqr.valuationdomain

>  {'min': Decimal('-1.0'), 'med': Decimal('0'),
3 'max': Decimal('1.0')}

1+ >>> rqr.showSortingCharacteristics()

(continues on next page)
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a22
a22
a22
a22
a22

ad4
ad4
ad4
ad4
ad4

a49
a49
a49
a49
a49

in q°k r(qg°k-1 < x) r(qg~k >= x) r(x in q°k)
in ]J< - 0.20] 1.00 -0.86 -0.86
in 10.20 - 0.40] 0.86 -0.71 -0.71
in 10.40 - 0.60] 0.71 -0.71 -0.71
in ]10.60 - 0.80] 0.71 -0.14 -0.14
in ]0.80 - 1.00] 0.14 1.00 0.14
in ]< - 0.20] 1.00 0.00 0.00
in 10.20 - 0.40] 0.00 0.57 0.00
in ]0.40 - 0.60] -0.57 0.86 -0.57
in ]0.60 - 0.80] -0.86 0.86 -0.86
in ]0.80 - 1.00] -0.86 0.86 -0.86
in ]J< - 0.20] 1.00 -0.43 -0.43
in 10.20 - 0.40] 0.43 0.00 0.00
in 10.40 - 0.60] 0.00 0.00 0.00
in 10.60 - 0.80] 0.00 0.57 0.00
in 10.80 - 1.00] -0.b7 0.86 -0.57

(continued from previous page)

Alternative a22 verifies indeed positively both sorting conditions only for the highest
quintile [0.80 — 1.00] class (see Listing 2.43 Lines 10). Whereas alternatives a44 and a49,
for instance, weakly verify both sorting conditions each one for two, resp. three, adjacent
quintile classes (see Lines 13-14 and 21-23).

Quantiles sorting results indeed always verify the following Properties.

1.

. Uniqueness: If r(z € %) # 0 for k = 1, ...

Coherence: Each object is sorted into a non-empty subset of adjacent g-tiles
classes. An alternative that would miss evaluations on all the criteria will be sorted
conjointly in all g-tiled classes.

, ¢, then performance z is sorted into
exactly one single g-tiled class.

Separability: Computing the sorting result for performance z is independent from
the computing of the other performances’ sorting results. This property gives access
to efficient parallel processing of class membership characteristics.

The ¢-tiles sorting result leaves us hence with more or less overlapping ordered quantile
equivalence classes. For constructing now a linearly ranked g-tiles partition of X | we
may apply three strategies:

1.

2.

3.

Average (default): In decreasing lexicographic order of the average of the lower
and upper quantile limits and the upper quantile class limit;

Optimistic: In decreasing lexicographic order of the upper and lower quantile class
limits;

Pessimistic: In decreasing lexicographic order of the lower and upper quantile
class limits;
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Listing 2.44: Weakly ranking the quintiles sorting result

>>> rqr.showRatingByQuantilesSorting(strategy="'average')

10.80-1.00] : ['a22']
]0.60-0.80] : ['a03',
'a32',
10.40-0.80] : ['a08',
10.20-0.80] : ['a49']
10.40-0.60] : ['a01',
'al8'
'a3l’
'a48'
10.20-0.60] : ['a04',
10.20-0.40] : ['al0',
'a26'
] < -0.40] : ['ad4d']

Following, for instance, the average ranking strategy, we find confirmed in the weak
ranking shown in Listing 2.44, that alternative a49 is indeed sorted into three adjacent
quintiles classes, namely ]0.20 — 0.80] (see Line 6) and precedes the ]0.40 — 0.60] class, of

2

2

b
!

2

a07', 'all', 'al4',
a33', 'a37', 'a39',

al7', 'al9']

a02', 'a05', 'a06',

'a21', 'a24', 'a2r',
'a3b', 'a36', 'a40',

'ab0']
a43']

al2', 'al3', 'alb',

'a34', 'a38', 'a4b']

same average of lower and upper limits.

Rating-by-ranking with relative quantile limits

The actions attribute of a RatingByRelativeQuantilesDigraph class instance contains,
besides the decision actions gathered from the given performance tableau (stored in the
actionsOrig attribute, also the quantile limits observed on all the criteria (stored in the
limitingquantiles attribute, see Listing 2.42 Line 20).

'a20"',
'ad4l',

'a09',
'a28',
'ad6',

'a23',

'a29',
‘ad2']

'alé',
'a30"',
'ad7',

'a2b',

Listing 2.45: The quintiling of the performance evalua-
tion data per criterion

>>> rqr.showCriteriaQuantileLimits ()
Quantile Class Limits (q = 5)

Upper-closed classes

crit. 0.20
gl il . 8B
g2 27.81
g3 25.10
g4 24 .61
gb 26.94
g6 23.94
g7 30.94

We may hence rank this extended actions attribute as follows with the NetFlows ranking

rule —default with the RatingByRelativeQuantilesDigraph class.
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Listing 2.46: Rating by ranking the quintiling of the per-
formance tableau

>>> rqr.computeNetFlowsRanking()

['5-M',
'a39"',
'ad6"',
'al3',
'al9',
'ad5"',
'al5',

'4-M',
'ad8',
'a02',
'a08"',
'a43"',
'al8',
'2-M',

'a22',
'a37',
'al7',
'a06',
'ad9',
'alé',
'alQ',

'ad2',
'a29',
'a32',
'a24',
'ab0',
'a36’',
'a26',

'a07', 'a33',
'a4l', 'all',
'3-M', 'al4d',
'ad7', 'a3l',
'a40', 'a28',
'a3b', 'a30',
'a04', 'a4d4d’',

>>> rqr.showRatingByQuantilesRanking()

]o.60 - 0.80] ['a22',

'a39'
'a27!

10.40 - 0.60] ['al4d’

'a24'
'a43'
'a2b'
'a30'

10.20 - 0.40] ['al0'

2

3

2

3

'ad2'
'a48'
'a0b'
'al2'
"ad7'
'ad49'
'adb'
'a23'
'a26'

b

2

'a07"',
'a37',
'ad6',
'a20',
'a31l',
'ab0',
'al8',
'a34d!',
'a04"',

rating by quantiles ranking result

'a33!',
'a29"',
'a02',
'al3!',
'a09!',
'ad0!',
'al6!',
'al5']
'ad4']

'a03"',
'a27',
'al2',
'a09',
'a38"',
'a23',
'1-M']

'a03'
‘a4l
'alv!
'a08'
‘a2l
'a28'
'a36'

'a01',
'a05',
'a20',
'a21',
'a2b',
'a34d',

As we are rating into upperclosed quintiles, we obtain from the ranking above an imme-
diate precise rating result. No performance record is rated in the lowest quintile ]0.00 -
0.20] and in the highest quintile |0.80 - 1.00] and 28 out of the 50 records are rated in the
midfiled, i.e. the median quintile ]0.40 - 0.60].

The rating-by-ranking delivers thus a precise quantiling of a given performance tableau.
One must however not forget that there does not exist a single optimal ranking rule, and
various ranking heuristics may render also various more or less diverging rating results.

Back to Content Table (page 1)

2.7 Rating with learned performance quantile norms

e Introduction (page 113)
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o Incremental learning of historical performance quantiles (page 113)

e Rating-by-ranking new performances with quantile norms (page 116)




Introduction

In this tutorial we address the problem of rating multiple criteria performances
of a set of potential decision alternatives with respect to empirical order statistics, i.e.
performance quantiles learned from historical performance data gathered from similar
decision alternatives observed in the past (see [CPSTAT-L5]).

To illustrate the decision problem we face, consider for a moment that, in a given decision
aid study, we observe, for instance in the Table below, the multi-criteria performances of
two potential decision alternatives, named a1001 and a1010, marked on 7 incommen-
surable preference criteria: 2 costs criteria ¢f and c¢2 (to minimize) and 5 benefits
criteria b1 to b5 (to maximize).

Criterion bl b2 b3 b4 b5 cl c2

weight 2 2 2 2 2 5 5
al001 370 22 61.0 31.0 -4 -40.0
al010 320 9 6 550 51.0 -4 -35.0

The performances on benefits criteria b1, b/ and b5 are measured on a cardinal scale
from 0.0 (worst) to 100.0 (best) whereas, the performances on the benefits criteria b2 and
b3 and on the cost criterion cI are measured on an ordinal scale from 0 (worst) to 10
(best), respectively -10 (worst) to 0 (best). The performances on the cost criterion c2
are again measured on a cardinal negative scale from -100.00 (worst) to 0.0 (best).

The importance (sum of weights) of the costs criteria is equal to the importance (sum
of weights) of the benefits criteria taken all together.

The non trivial decision problem we now face here, is to decide, how the multiple criteria
performances of a1001, respectively a1010, may be rated (excellent ? good 7, or fair 7;
perhaps even, weak 7 or very weak 7) in an order statistical sense, when compared
with all potential similar multi-criteria performances one has already encountered in the
past.

To solve this absolute rating decision problem, first, we need to estimate multi-criteria
performance quantiles from historical records.

Incremental learning of historical performance quantiles

Suppose that we see flying in random multiple criteria performances from a given model
of random performance tableau (see the randomPerfTabs module). The question we
address here is to estimate empirical performance quantiles on the basis of so far observed
performance vectors. For this task, we are inspired by [CHAM-2006] and [NR3-2007], who
present an efficient algorithm for incrementally updating a quantile-binned cumulative
distribution function (CDF) with newly observed CDFs.

The PerformanceQuantiles class implements such a performance quantiles estimation
based on a given performance tableau. Its main components are:

e Ordered objectives and a criteria dictionaries from a valid performance tableau
instance;
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e A list quantileFrequencies of quantile frequencies like quartiles [0.0, 0.25, 05,
0.75,1.0], quintiles [0.0, 0.2, 0.4, 0.6, 0.8, 1.0] or deciles [0.0, 0.1, 0.2, ... 1.0] for
instance;

e An ordered dictionary limitingQuantiles of so far estimated lower (default) or
upper quantile class limits for each frequency per criterion;

e An ordered dictionary historySizes for keeping track of the number of evaluations
seen so far per criterion. Missing data may make these sizes vary from criterion to
criterion.

Below, an example Python session concerning 900 decision alternatives randomly gen-
erated from a Cost-Benefit Performance tableau model from which are also drawn the
performances of alternatives a1001 and a1010 above.

Listing 2.47: Computing performance quantiles from a
given performance tableau

>>> from performanceQuantiles import PerformanceQuantiles

>>> from randomPerfTabs import RandomCBPerformanceTableau

>>> nbrActions=900

>>> nbrCrit = 7

>>> seed = 100

>>> tp = RandomCBPerformanceTableau(numberO0fActions=nbrActions,
number0fCriteria=nbrCrit,seed=seed)

>>> pq = PerformanceQuantiles(tp,
number0fBins = 'quartiles',
LowerClosed=True)

>>> Pqa

R Performance(Quantiles instance description ------ *
Instance class : PerformanceQuantiles

Instance name : 4-tiled_performances

# Objectives : 2

# Criteria 7

# Quantiles : 4

# History sizes : {'cl': 887, 'bl': 888, 'b2': 891, 'b3': 895,
'p4': 892, 'c2': 893, 'b5': 887}
Attributes : ['perfTabType', 'valueDigits', 'actionsTypeStatistics
'
'objectives', 'BigData', 'missingDataProbability’,
'criteria', 'LowerClosed', 'name',
'quantilesFrequencies', 'historySizes',

'limitingQuantiles', 'cdf']

The PerformanceQuantiles class parameter numberOfBins (see Listing 2.47 Line 10
above), choosing the wished number of quantile frequencies, may be either quartiles (4
bins), quintiles (5 bins), deciles (10 bins), dodeciles (20 bins) or any other integer
number of quantile bins. The quantile bins may be either lower closed (default) or
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Listing 2.48: Printing out the estimated quartile limits

>>> pq.showLimitingQuantiles (ByObjectives=True)

---- Historical performance quantiles ----- *

Costs

criteria | weights | '0.00' '0.25" '0.50' '0.75" '1.00'

_________ | = o m o o
‘el | 5 | -10 -7 -5 -3 0
'c2' | 5 | -96.37 -70.65 -50.10 -30.00 -1.43

Benefits

criteria | weights | '0.00' '0.25" '0.50' '0.75! '1.00'

_________ | = o m o o
'b1' | 2 | 1.99 29.82 49,44 70.73 99.83
'b2' | 2 | 0 3 5 7 10
'b3' | 2 | 0 3 5 7 10
'b4d' | 2 | 3.27 30.10 50.82 70.89 98.05
'b5' | 2 | 0.85 29.08 48.55 69.98 97.56

Both objectives are equi-important; the sum of weights (10) of the costs criteria balance
the sum of weights (10) of the benefits criteria (see Listing 2.48 column 2). The preference
direction of the costs criteria ¢/ and c2 is negative; the lesser the costs the better it
is, whereas all the benefits criteria b1 to b5 show positive preference directions, i.e. the
higher the benefits the better it is. The columns entitled ‘0.00’, resp. ‘1.00" show the
quartile QO0, resp. @4, i.e. the worst, resp. best performance observed so far on each
criterion. Column ‘0.50” shows the median (@2) performance observed on the criteria.

New decision alternatives with random multiple criteria performance vectors from the
same random performance tableau model may now be generated with ad hoc random
performance generators. We provide for experimental purpose, in the randomPerfTabs
module, three such generators: one for the standard RandomPerformanceTableau model,
one the for the two objectives RandomCBPerformanceTableau Cost-Benefit model, and
one for the Random30bjectivesPerformanceTableau model with three objectives con-
cerning respectively economic, environmental or social aspects.

Given a new Performance Tableau with 100 new decision alternatives, the so far estimated
historical quantile limits may be updated as follows:

Listing 2.49: Generating 100 new random decision alter-
natives of the same model

>>> from randomPerfTabs import RandomPerformanceGenerator
>>> rpg = RandomPerformanceGenerator (tp,seed=seed)

>>> newTab = rpg.randomPerformanceTableau(100)

>>> # Updating the quartile norms shown above

>>> pq.updateQuantiles(newTab,historySize=None)

Parameter historySize (see Listing 2.49 Line 5) of the updateQuantiles () method allows
to balance the new evaluations against the historical ones. With historySize =
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None (the default setting), the balance in the example above is 900/1000 (90%, weight
of historical data) against 100/1000 (10%, weight of the new incoming observations).
Putting historySize = 0, for instance, will ignore all historical data (0/100 against
100/100) and restart building the quantile estimation with solely the new incoming data.
The updated quantile limits may be shown in a browser view (see Fig. 2.21).

>>> # showing the updated quantile limits in a browser view
>>> pq.showHTMLLimitingQuantiles (Transposed=True)

Performance quantiles

Sampling sizes between 986 and 995.

criterion | 0.00 | 0.25 | 0.50 | 0.75 | 1.00|
| b1 || 1.99 |28.77(49.63|/75.27(99.83|
| b2 | 0.00 294 492 | 6.72 |10.00|
| b3 | 000|290 4.86 | 8.01 |10.00|
| b4 | 3.27 |35.91)58.5872.00(98.05|
|
|
|

b5 | 0.85 |32.84/48.09|/69.75/99.00|
cl |-10.00|-7.35| -5.39||-3.38 | 0.00 |
c2 |-96.37-72.22|-52.27||-33.99]-1.43|

Fig. 2.21: Showing the updated quartiles limits

Rating-by-ranking new performances with quantile norms

For absolute rating of a newly given set of decision alternatives with the help
of empirical performance quantiles estimated from historical data, we provide the
RatingByLearnedQuantilesDigraph class from the ratingDigraphs module. The rat-
ing result is computed by ranking the new performance records together with the learned
quantile limits. The constructor requires a valid PerformanceQuantiles instance.

Note

It is important to notice that the RatingByLearnedQuantilesDigraph class, con-
trary to the generic QutrankingDigraph class, does not only inherit from the generic
PerformanceTableau class, but also from the PerformanceQuantiles class. The ac-
tions in such a RatingByLearnedQuantilesDigraph instance do not contain only
the newly given decision alternatives, but also the historical quantile profiles obtained
from a given PerformanceQuantiles instance, i.e. estimated quantile bins’ perfor-
mance limits from historical performance data.

We reconsider the PerformanceQuantiles object instance pq as computed in the previous
section. Let newActions be a list of 10 new decision alternatives generated with the same
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random performance tableau model and including the two decision alternatives a1001

and a1010 mentioned at the beginning.

Listing 2.50: Computing an absolute rating of 10 new
decision alternatives

>>> from ratingDigraphs import\

oo c RatingByLearnedQuantilesDigraph

>>> newActions = rpg.randomActions(10)

>>> 1lqr = RatingByLearnedQuantilesDigraph(pq,newActions,
rankingRule='best')

>>> 1qr
oo Object instance description --------—--- *
Instance class : RatingByLearnedQuantilesDigraph
Instance name : learnedRatingDigraph
Actions : 14
Criteria 7
Quantiles : 4
Lowerclosed : True
Rankingrule : Copeland
Size : 93
Valuation domain : [-1.00;1.00]
Determinateness (%): 76.09
Attributes : ['runTimes', 'objectives', 'criteria',
'LowerClosed', 'quantilesFrequencies', 'criteriaCategoryLimits',
'limitingQuantiles', 'historySizes', 'cdf', 'NA', 'name',
'newActions', 'evaluation', 'actionsOrig', 'actions',
'categories', 'profiles', 'profilelimits', 'order',
'nbrThreads', 'relation', 'valuationdomain', 'sorting',
'relativeCategoryContent', 'sortingRelation', 'rankingRule',
'rankingCorrelation', 'rankingScores', 'actionsRanking',
'ratingCategories']
K m e Constructor run times (in sec.) ------ *
Threads o1
Total time : 0.03680
Data input : 0.00119
Compute quantiles 0.00014
Compute outrankings : 0.02771
rating-by-sorting : 0.00033
rating-by-ranking : 0.00742

Data input to the RatingByLearnedQuantilesDigraph class constructor (see Listing 2.50
Line 4) are a valid PerformanceQuantiles object pg and a compatible list newActions of

new decision alternatives generated from the same random origin.

Let us have a look at the digraph’s nodes, here called newActions.
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Listing 2.51: Performance tableau of the new incoming
decision alternatives

>>> 1qr.showPerformanceTableau(actionsSubset=1qr.newActions)
*---- performance tableau ----- *
criteria | al001 a1002 al003 a1004 al005 al1l006 al007 al008 a1009 al010

'b1' | 37.0 27.0 24.0 16.0 42.0 33.0 39.0 64.0 42.0 32.0
b2 | 2.0 5.0 80 3.0 3.0 3.0 6.0 5.0 4.0 9.0
'b3' | 2.0 4.0 2.0 1.0 6.0 3.0 2.0 6.0 6.0 6.0
'b4' | 61.0 54.0 74.0 25.0 28.0 20.0 20.0 49.0 44.0 55.0
'b5' | 31.0 63.0 61.0 48.0 30.0 39.0 16.0 96.0 57.0 51.0
'¢1* | -4.0 -6.0 -8.0 -5.0 -1.0 -5.0 -1.0 -6.0 -6.0 -4.0
'c2' | -40.0 -23.0 -37.0 -37.0 -24.0 -27.0 -73.0 -43.0 -94.0 -35.0

Among the 10 new incoming decision alternatives (see Listing 2.51), we recognize alter-
natives a1001 (see column 2) and al010 (see last column) we have mentioned in our
introduction.

The RatingByLearnedQuantilesDigraph class instance’s actions dictionary includes as
well the closed lower limits of the four quartile classes: m1 = [0.0- [, m2 = [0.25- [, m3
= [0.5- [, m4 = [0.75 - [. We find these limits in a profiles attribute (see Listing 2.52
below).

Listing 2.52: Showing the limiting profiles of the rating
quantiles

>>> 1qr.showPerformanceTableau(actionsSubset=1qr.profiles)

*---- Quartiles limit profiles ----- *

criteria | 'ml’ 'm2' 'm3' 'm4'

_________ | mm .
'b1' | 2.0 28.8 49.6 75.3
'p2' | 0.0 2.9 4.9 6.7
'p3' | 0.0 2.9 4.9 8.0
'b4' | 3.3 356.9 58.6 72.0
'b5' | 0.8 32.8 48.1 69.7
'c1* | -10.0 -7.4 -5.4 -3.4
'c2' | -96.4 -72.2 -52.3 -34.0

The main run time (see Listing 2.50 Lines 27-) is spent by the class constructor in
computing a bipolar-valued outranking relation on the extended actions set including
both the new alternatives as well as the quartile class limits. In case of large volumes, i.e.
many new decision alternatives and centile classes for instance, a multi-threading version
may be used when multiple processing cores are available (see the technical description
of the RatingByLearnedQuantilesDigraph class).

The actual rating procedure will rely on a complete ranking of the new decision alterna-
tives as well as the quantile class limits obtained from the corresponding bipolar-valued
outranking digraph. Two efficient and scalable ranking rules, the Copeland and its val-
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ued version, the Netflows rule may be used for this purpose. The rankingRule parame-
ter allows to choose one of both. With rankingRule="best’ (see Listing 2.52 Line 4) the
RatingByLearnedQuantilesDigraph constructor will choose the ranking rule that results
in the highest ordinal correlation with the given outranking relation (see [BIS-2012]).

In this rating example, the Copeland rule appears to be the more appropriate ranking
rule.

Listing 2.53: Copeland ranking of new alternatives and
historical quartile limits

>>> lqr.rankingRule
'Copeland'’
>>> 1qr.actionsRanking
['m4', 'al005', 'al010', 'al002', 'al008', 'al006', 'al001',
'a1003', 'm3', 'al007', 'al004', 'al009', 'm2', 'ml']
>>> 1qr.showCorrelation(lqr.rankingCorrelation)
Correlation indexes:
Crisp ordinal correlation : +0.945
Epistemic determination : 0.522
Bipolar-valued equivalence : +0.493

We achieve here (see Listing 2.53) a linear ranking without ties (from best to worst) of the
digraph’s actions set, i.e. including the new decision alternatives as well as the quartile
limits m1 to m4, which is very close in an ordinal sense (7 = 0.945) to the underlying
strict outranking relation.

The eventual rating procedure is based in this example on the lower quartile limits, such
that we may collect the quartile classes’ contents in increasing order of the quartiles.

>>> lqr.ratingCategories

OrderedDict ([

('‘m2', ['a1007','a1004','a1009']),

('m3', ['a1005','a1010','a1002','a1008"','a1006"','a1001"','a1003"'])
D

We notice above that no new decision alternatives are actually rated in the lowest [0.0-
0.25], respectively highest [0.75- | quartile classes. Indeed, the rating result is shown, in
descending order, as follows:

Listing 2.54: Showing a quantiles rating result

>>> 1qr.showRatingByQuantilesRanking ()
Gmmmsoman rating by quantiles ranking result ---------
[0.50 - 0.75[ ['a1005', 'al1010', 'al002', 'al008',
'al006', 'al001', 'al003']
[0.256 - 0.50[ ['a1004', 'a1007', 'al009']

The same result may more conveniently be consulted in a browser view via a specialised
rating heatmap format ( see showHTMLPerformanceHeatmap() method (see Fig. 2.22).
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1 >>> 1qr.showHTMLRatingHeatmap (
: [ pageTitle='Heatmap of Quartiles Rating',
3 ... Correlations=True,colorlLevels=5)

Heatmap of Quartiles Rating

Ranking rule: Copeland; Ranking correlation: 0.938

criteria| ¢2 | b3 | ¢1 | b4 | b1 | b2 | b5
weights] 5 | 2 | 5 | 2 | 2 | 2 | 2
| tau® |[+0.64 |+0.54|40.43|+0.37|+0.37|+0.35 |+0.34
[0.75 - |-30.00] 7.00 |[-3.00 |70.89]/70.73] 7.00 |[69.98|
a1005c|-24.00 | 6.00 |-1.00 [28.00[42.00 [ 3.00 [30.00
|a1010n|-35.00 | 6.00 |-4.00 [55.00(32.00 | 9.00 [51.00
'a1002c [-23.00 | 4.00 |-6.00 |54.00 [27.00 | 5.00 |63.00
|a1008n |-43.00 | 6.00 |-6.00 [49.00/64.00 | 5.00 [96.00
|a1006¢ [-27.00 | 3.00 |-5.00 [20.00(33.00 | 3.00 [39.00
|a1001c [-40.00 | 2.00 |-4.00 |61.00(37.00 | 2.00 [31.00
'a1003a [-37.00| 2.00 |-8.00 [74.0024.00 | 8.00 [61.00
| [0.50 - [-50.10| 5.00 | -5.00 ||50.82][49.44| 5.00 |48.55
'a1007c [-73.00| 2.00 |-1.00 [20.0039.00 | 6.00 [16.00
|a1004c¢|-37.00 | 1.00 |-5.00 [25.00/[16.00 | 3.00 |48.00
'a1009n [-94.00 | 6.00 |-6.00 [44.00/42.00 | 4.00 |57.00
[0.25 - |-70.65] 3.00 | -7.0030.10]29.82] 3.00 |29.08
[0.00 - ]-96.37][ 0.00 |-10.00] 3.27 || 1.99 || 0.00 | 0.85

Color legend:

/quantile | 20.00% | 40.00%| 60.00%| 80.00% | 100.00%

(*) tau: Ordinal (Kendall) correlation between
marginal criterion and global ranking relation.

Fig. 2.22: Heatmap of absolute quartiles ranking

Using furthermore a specialised version of the exportGraphViz () method allows drawing
the same rating result in a Hasse diagram format (see Fig. 2.23).

1 >>> 1qr.exportRatingByRankingGraphViz ('normedRatingDigraph')
> *¥---- exporting a dot file for GraphViz tools --------—- *

3 Exporting to normedRatingDigraph.dot

1 dot -Grankdir=TB -Tpng normedRatingDigraph.dot -o normedRatingDigraph.

S RUE
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R. Bisdorff, 2020

Fig. 2.23: Absolute quartiles rating digraph

We may now answer the absolute rating decision problem stated at the beginning.
Decision alternative a1001 and alternative a1010 (see below) are both rated into the
same quartile Q3 class (see Fig. 2.23), even if the Copeland ranking, obtained from the
underlying strict outranking digraph (see Fig. 2.22), suggests that alternative a1010 is
effectively better performing than alternative a1001.

Criterion bl b2 b3 b4 b5 cl c2

weight 2 2 2 2 2 5 5
al001 370 22 61.0 31.0 -4 -40.0
al010 320 9 6 550 51.0 -4 -35.0

A preciser rating result may indeed be achieved when using deciles instead of quartiles
for estimating the historical marginal cumulative distribution functions.

Listing 2.55: Absolute deciles rating result

1 >>> pql = PerformanceQuantiles(tp, number0OfBins = 'deciles',
2 L. LowerClosed=True)

(continues on next page)
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(continued from previous page)

>>> pql.updateQuantiles(newTab,historySize=None)

>>> 1qrl = RatingByLearnedQuantilesDigraph(pql,newActions,rankingRule=
< 'best')

>>> 1qrl.showRatingByQuantilesRanking()

ettt Deciles rating result ---------

[0.60 - 0.70[ ['a1005', 'al010', 'al1008', 'al002']
[0.50 - 0.60[ ['a1006', 'al001', 'a1003']

[0.40 - 0.50[ ['a1007', 'a1004']

[0.30 - 0.40[ ['a1009']

Compared with the quartiles rating result, we notice in Listing 2.55 that the seven al-
ternatives (a1001, a1002, a1003, a1005, a1006, a1008 and a1010), rated before into the
third quartile class [0.50-0.75], are now divided up: alternatives a1002, a1005, a1008 and
a1010 attain now the 7th decile class [0.60-0.70[, whereas alternatives a1001, a1003 and
a1006 attain only the 6th decile class [0.50-0.60[. Of the three @2 [0.25-0.50] rated alter-
natives (a1004, a1007 and a1009), alternatives a1004 and a1007 are now rated into the
5th decile class [0.40-0.50] and a1009 is lowest rated into the 4th decile class [0.30-0.40].

A browser view may again more conveniently illustrate this refined rating result (see Fig.
2.24).

>>> 1qrl.showHTMLRatingHeatmap (
pageTitle='Heatmap of the deciles rating',
colorLevels=5, Correlations=True)
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Heatmap of Deciles rating

Ranking rule: NetFlows; Ranking correlation: 0.960
|criteria| ¢2 |b3 | c1 | b1 | b5 |b2 | b4
weights| 5 [ 2 | 5 | 2 | 2 |2 | 2
| tau® | 0.67 [0.65| 0.58 | 0.57 | 0.53 [0.53| 0.48
| 10.90 - |[20.32||7.73| -2.53 |[86.83|82.16][7.66||82.04]
| 10.80 - |[[29.70|7.26] -3:35][79.30)(75.15][6.64|[74.66)|
[ 10.70 - ||-37.97|6.67| -4.14 |[70.95//60.20|(5.88||69.76)
|a1005c [-24.00(6.00 | -1.00 [42.00(30.00 (3.00[28.00
|a1010n [-35.00(6.00 | -4.00 (32.00|51.00(9.00 [55.00
|a1008n |-43.006.00 | -6.00 |64.00(96.00 (5.00 [49.00
|a1002c [-23.00(4.00 | -6.00 [27.0063.00 [5.00 [54.00
| [0.60 - ||-44.23]5.92| -5.04 |[60.56//56.01][5.37||62.23|
|a1006¢ [-27.00(3.00 | -5.00 (33.00(39.00/[3.00(20.00
|a1001c [-40.00(2.00 | -4.00 [37.00|31.00 [2.0061.00
|a1003a [-37.00(2.00 | -8.00 [24.00(61.00 [8.00|74.00
[10.50 - ||-52.22]4.64 -6.02 [[49.56(48.07|4.83||58.45]
|a1007c |-73.00(2.00|-1.00 (39.00(16.006.00 [20.00
|a1004c [-37.00(1.00 | -5.00 [16.00(48.00 3.00 [25.00
| 10.40 - || 60.50]3.84 -6.69 |39.61]|40.16][4.25]|49.82]
|a1009n [-94.00(6.00 | -6.00 [42.00(57.00 [4.00 [44.00
| 10.30 - ||-67.14]3.12| -7.32 |[30.85||34.33|[3.30]|40.89)
| 10.20 - ||-77.07|2.55| -7.94 |[23.84]|29.57][2.27/|30.45]
[ 10.10 - ||:83.04]1.99] -8.48 |16.64/|16.91|(1.58/24.78]
| 10.00 - |F96.57/|0.00/[10.00] 1.99 || 0.85 ||[0.00][ 3:27]
Color legend:

|quantile | 20.00% | 40.00% | 60.00% | 80.00% | 100.00%\

(*) tau: Ordinal (Kendall) correlation between
marginal criterion and global ranking relation.

Fig. 2.24: Heatmap of absolute deciles rating

In this deciles rating, decision alternatives a1001 and a1010 are now, as expected, rated
in the 6th decile (D6), respectively in the 7th decile (D7).

To avoid having to recompute performance deciles from historical data when wishing to
refine a rating result, it is useful, depending on the actual size of the historical data, to
initially compute performance quantiles with a relatively high number of bins, for instance
dodeciles or centiles. Tt is then possible to correctly interpolate quartiles or deciles for
instance, when constructing the rating digraph.
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Listing 2.56: From deciles interpolated quartiles rating
result

>>> 1qr2 = RatingByLearnedQuantilesDigraph(pql,newActions,
o quantiles='quartiles')
>>> 1qr2.showRatingByQuantilesRanking()
K Deciles rating result ---------
[0.50 - 0.75[ ['a1005', 'al1010', 'al002', 'al008',
'al006', 'al1001', 'al1003']
[0.26 - 0.50[ ['a1004', 'al007', 'a1009']

With the quantiles parameter (see Listing 2.56 Line 2), we may recover by interpolation
the same quartiles rating as obtained directly with historical performance quartiles (see
Listing 2.54). Mind that a correct interpolation of quantiles from a given cumulative
distribution function requires more or less uniform distributions of observations in each

bin.

More generally, in the case of industrial production monitoring problems, for instance,
where large volumes of historical performance data may be available, it may be of interest
to estimate even more precisely the marginal cumulative distribution functions, especially
when tail rating results, i.e. distinguishing very best, or very worst multiple criteria
performances, become a critical issue. Similarly, the historySize parameter may be used
for monitoring on the fly unstable random multiple criteria performance data.

Back to Content Table (page 1)

2.8 Computing the winner of an election with the votingProfiles
module

Linear voting profiles (page 124)

Computing the winner (page 126)
The Condorcet winner (page 127)

Cyclic social preferences (page 129)

On generating realistic random linear voting profiles (page 131)

Linear voting profiles

The votingProfiles module provides resources for handling election results [ADT-L2],
like the LinearVotingProfile class. We consider an election involving a finite set of
candidates and finite set of weighted voters, who express their voting preferences in a
complete linear ranking (without ties) of the candidates. The data is internally stored
in two ordered dictionaries, one for the voters and another one for the candidates. The
linear ballots are stored in a standard dictionary.
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candidates = OrderedDict([('al',...), (ta2',...), (‘a3', ...), ...}
voters = OrderedDict([('vl',{'weight':10}), ('v2',{'weight':3}), ...}
## each woter specifies a linearly ranked list of candidates

## from the best to the worst (without ties

linearBallot = {

'vi' : ['a2','a3','al', ...1,

'v2' ¢ ['al','a2','a3"', ...],

The module provides a RandomLinearVotingProfile class for generating random in-
stances of the LinearVotingProfile class. In an interactive Python session we may
obtain for the election of 3 candidates by 5 voters the following result.

Listing 2.57: Example of random linear voting profile

>>> from votingProfiles import RandomLinearVotingProfile

>>> v = RandomLinearVotingProfile (numberOfVoters=5,
number0fCandidates=3,
RandomWeights=True)

>>> v.candidates
OrderedDict([ ('al',{'name':'al}), ('a2',{'name':'a2'}),
('a3',{'name':'a3'}) 1)

>>> yv.voters

OrderedDict ([('vl',{'weight': 2}), ('v2':{'weight': 3}),
('v3',{'weight': 1}), ('v4':{'weight': 5}),
('v5',{'weight': 4})])

>>> v.linearBallot

{'vi': ['al', 'a2', 'a3',]
'v2': ['a3', 'a2', ‘tal',]
'v3': ['al', 'a3', 'a2',],
'vd': ['al', 'a3', 'a2',]
'vb6': ['a2', 'a3', ‘'al',]

Notice that in this random example, the five voters are weighted (see Listing 2.57 Lines
10-12). Their linear ballots can be viewed with the showLinearBallots() method.

>>> v.showLinearBallots()

voters (weight) candidates rankings
v1(2): ['a2', 'al', 'a3']
v2(3): ['a3', 'al', 'a2']
v3(1): ['al', 'a3', 'a2']
v4(5) : [ladt "Rt 'a39]
v5(4): ['a3', 'al', 'a2']

# voters: 15

Editing of the linear voting profile may be achieved by storing the data in a file, edit it,
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and reload it again.

>>> v.save(fileName="'tutorialLinearVotingProfilel')

*--- Saving linear profile in file: <tutoriallinearVotingProfilel.py> --
sk

>>> from votingProfiles import LinearVotingProfile

>>> v = LinearVotingProfile('tutorialLinearVotingProfilel')

Computing the winner

We may easily compute uni-nominal votes, i.e. how many times a candidate was ranked
first, and see who is consequently the simple majority winner(s) in this election.

>>> v.computeUninominalVotes ()
{'a2': 2, 'al': 6, 'a3': 7}

>>> v.computeSimpleMajorityWinner ()
['a3']

As we observe no absolute majority (8/15) of votes for any of the three candidate, we
may look for the instant runoff winner instead (see [ADT-L2]).
Listing 2.58: Example Instant Run Off Winner

>>> v.computeInstantRunoffWinner (Comments=True)
Half of the Votes = 7.50

==> stage = 1
remaining candidates ['al', 'a2', 'a3']
uninominal votes {'al': 6, 'a2': 2, 'a3': 7}
minimal number of votes = 2
maximal number of votes = 7
candidate to remove = a2
remaining candidates = ['al', 'a3']
==> stage = 2
remaining candidates ['al', 'a3']
uninominal votes {'al': 8, 'a3': 7}
minimal number of votes = 7

maximal number of votes 8
candidate al obtains an absolute majority
Instant run off winner: ['al'l]

In stage 1, no candidate obtains an absolute majority of votes. Candidate a2 obtains
the minimal number of votes (2/15) and is, hence, eliminated. In stage 2, candidate af
obtains an absolute majority of the votes (8/15) and is eventually elected (see Listing
2.58).

We may also follow the Chevalier de Borda’s advice and, after a rank analysis of the
linear ballots, compute the Borda score -the average rank- of each candidate and hence
determine the Borda winner(s).
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Listing 2.59: Example of Borda rank scores

>>> v.computeRankAnalysis ()

{r'a2': [2, 5, 8], 'al': [6, 9, 0], 'a3': [7, 1, 7]}

>>> v.computeBordaScores ()

OrderedDict ([
(*al', {'BordaScore': 24, 'averageBordaScore': 1.6}),
('a3', {'BordaScore': 30, 'averageBordaScore': 2.0}),
('a2', {'BordaScore': 36, 'averageBordaScore': 2.4}) 1)

>>> v.computeBordaWinners ()

['al']

Candidate al obtains the minimal Borda score, followed by candidate a3 and finally
candidate a2 (see Listing 2.59). The corresponding Borda rank analysis table may be
printed out with a corresponding show() command.

Listing 2.60: Rank analysis example

>>> v.showRankAnalysisTable ()

*---- Borda rank analysis tableau ----- *
candi- | alternative-to-rank | Borda
dates | 1 2 3 | score average
_______ | — o o
ral' | 6 9 0 | 24/15 1.60
'a3' | 7 1 7 | 30/15 2.00
'a2' | 2 5 8 | 36/15 2.40

In our randomly generated election results, we are lucky: The instant runoff winner and
the Borda winner both are candidate al (see Listing 2.58 and Listing 2.60). However, we
could also follow the Marquis de Condorcet’s advice, and compute the majority margins
obtained by voting for each individual pair of candidates.

The Condorcet winner

For instance, candidate al is ranked four times before and once behind candidate a2.
Hence the corresponding majority margin M(al,a2) is 4 - 1 = +3. These majority
margins define on the set of candidates what we call the majority margins digraph.
The MajorityMarginsDigraph class (a specialization of the Digraph class) is available
for handling such kind of digraphs.

Listing 2.61: Example of Majority Margins digraph

>>> from votingProfiles import MajorityMarginsDigraph
>>> cdg = MajorityMarginsDigraph(v,IntegerValuation=True)
>>> cdg

Hosoooos Digraph instance description ------ *
Instance class : MajorityMarginsDigraph
Instance name : rel_randomLinearVotingProfilel

(continues on next page)
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(continued from previous page)

Digraph Order : 3

Digraph Size : 3

Valuation domain : [-15.00;15.00]
Determinateness (%) : 64.44

Attributes : ['name', 'actions', 'voters',

'ballot', 'valuationdomain',
'relation', 'order',
'gamma', 'notGamma']

>>> cdg.showAll()

O show detail ------------- *

Digraph : rel_randLinearVotingProfilel
¥---- Actions ----%

[fal', 'a2', 'a3']

*---- Characteristic valuation domain ----%

{'max': Decimal('15.0'), 'med': Decimal('0'),
'min': Decimal('-15.0'), 'hasIntegerValuation': True}

* ---- majority margins -----
M(x,y) | ‘'al’ 'a2' ‘'ad'
__________ | m o oo

'al' I 0 11 1
'a2' | -11 0 -1
‘a3’ I -1 1 0

Valuation domain: [-15;+15]

Notice that in the case of linear voting profiles, majority margins always verify a zero
sum property: M(z,y) + M(y,z) = 0 for all candidates z and y (see Listing 2.61 Lines
26-28). This is not true in general for arbitrary voting profiles. The majority margins
digraph of linear voting profiles defines in fact a weak tournament and belongs, hence, to
the class of self-codual bipolar-valued digraphs ('?).

Now, a candidate z, showing a positive majority margin M(z,y), is beating candidate y
with an absolute majority in a pairwise voting. Hence, a candidate showing only positive
terms in her row in the majority margins digraph relation table, beats all other candidates
with absolute majority of votes. Condorcet recommends to declare this candidate (is
always unique, why?) the winner of the election. Here we are lucky, it is again candidate
al who is hence the Condorcet winner (see Listing 2.61 Line 26).

>>> cdg.computeCondorcetWinners ()
[fal']

By seeing the majority margins like a bipolar-valued characteristic function of a global
preference relation defined on the set of candidates, we may use all operational resources
of the generic Digraph class (see Working with the Digraph3 software resources (page 2)),

13 The class of self-codual bipolar-valued digraphs consists of all weakly asymmetric digraphs, i.e.
digraphs containing only asymmetrical and/or indeterminate links. Limit cases consists of, on the one
side, full tournaments with indeterminate reflexive links, and, on the other side, fully indeterminate
digraphs. In this class, the converse (inverse ~ ) operator is indeed identical to the dual (negation - )
one.
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and especially its exportGraphViz () method" " ! for visualizing an election result.

>>> cdg.exportGraphViz(fileName="'tutorialLinearBallots"')
*---- exporting a dot file for GraphViz tools --------- *
Exporting to tutoriallinearBallots.dot

dot -Grankdir=BT -Tpng tutoriallLinearBallots.dot -o

—tutoriallLinearBallots.png

Rubis Python Server (graphviz), R. Bisdorff, 2008

Fig. 2.25: Visualizing an election result

In Fig. 2.25 we notice that the majority margins digraph from our example linear voting
profile gives a linear order of the candidates: [‘al’, ‘a3’, ‘a2|, the same actually as given
by the Borda scores (see Listing 2.59). This is by far not given in general. Usually, when
aggregating linear ballots, there appear cyclic social preferences.

Cyclic social preferences
Let us consider for instance the following linear voting profile and construct the corre-

sponding majority margins digraph.

Listing 2.62: Example of cyclic social preferences

>>> v.showLinearBallots ()

voters (weight) candidates rankings

vi(1): [tal', 'a3', 'ab', 'a2', 'ad']
v2(1): [tal', 'a2', 'a4', 'a3', 'ab'l
v3(1): ['ab', 'a2', 'a4', 'a3', 'al']
va(1): ['a3', 'a4', 'al', 'ab', 'a2']
v5(1): ['ad', 'a2', 'a3', 'ab', 'al']
v6(1): ['a2', 'a4', 'ab', 'al', 'a3']
v7(1): [Vasit g b g i iiig i ia o]
v8(1): ['a2', 'a4', 'ab', 'al', 'a3']
v9(1): ["aB!, 'adt  ledll  Ogil o ggl

>>> cdg = MajorityMarginsDigraph(v)
(continues on next page)
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(continued from previous page)
>>> cdg.showRelationTable ()

¥ ---- Relation Table -----

S | ra1l’ 'a2' 'a3' 'ad' 'ab'
______ | m oo e e
tal' | = 0.11 -0.11 -0.56 -0.33
'a2' | -0.11 - 0.11 0.11 -0.11
'a3' | 0.11 -0.11 - -0.33 -0.11
'ad' | 0.56 -0.11 0.33 - 0.11
'ab' | 0.33 0.11 0.11 -0.11 -

Now, we cannot find any completely positive row in the relation table (see Listing 2.62
Lines 17 - ). No one of the five candidates is beating all the others with an absolute
majority of votes. There is no Condorcet winner anymore. In fact, when looking at a
graphviz drawing of this majority margins digraph, we may observe cyclic preferences,
like (af > a2 > a8 > al) for instance (see Fig. 2.26).

>>> cdg.exportGraphViz('cycles')

*---- exporting a dot file for GraphViz tools --------- *
Exporting to cycles.dot

dot -Grankdir=BT -Tpng cycles.dot -o cycles.png

Rubis Python Server (graphviz), B. Bisdorff, 2008

Fig. 2.26: Cyeclic social preferences

But, there may be many cycles appearing in a majority margins digraph, and, we may
detect and enumerate all minimal chordless circuits in a Digraph instance with the
computeChordlessCircuits () method.

>>> cdg.computeChordlessCircuits ()

[(['a2', 'a3', 'al'], frozenset({'a2', 'a3', 'al'})),
(['a2', 'a4', 'ab'], frozenset({'a2', 'ab', 'ad'})),
(['a2', 'ad', 'al'l, frozemnset({'a2', 'al', 'ad'}))]
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Condorcet ‘s approach for determining the winner of an election is hence not decisive in
all circumstances and we need to exploit more sophisticated approaches for finding the
winner of the election on the basis of the majority margins of the given linear ballots (see
the tutorial on ranking with multiple incommensurable criteria (page 78) and [BIS-2008]).

Many more tools for exploiting voting results are available like the browser heat map view
on voting profiles (see the technical documentation of the votingProfiles module).

Listing 2.63: Example linear voting heatmap

:linenos:

>>> v.showHTMLVotingHeatmap (rankingRule="'NetFlows',
Transposed=False)

Voting Heatmap

lcriteria| v5 | v3 | v8 | v7 | v6 | v | va [v2 | v1
'weights|-1.00 |-1.00 [-1.00 [-1.00] -1.00 |-1.00 |-1.00 |-1.00/-1.00
| tau® |+0.60/+0.60|+0.40 |+0.40/+0.40|+0.20|+0.00/-0.40/-0.80

| a2 | 1 | 3 2 2 2 3 | 2 | 3 B8
| a5 [ 2 [ 1 [ 3 1 [ 3 [ 1[4« B89 3
| a2 | 2 [ 2 [1 |8 1 SEN 2 | 2
| a3 | 3 [ 2 B8 3 B8 2 [ 1 [ 2] 2
| a1 [DENEEN 2 [ 2 [ 2 [ 2 | 3 [1 1

Color legend:
|quantile [14:20% | 28.57% | 42.86%| 57.14% | 71.43% | 85.71%| 100.00%\
(*) tau: Ordinal (Kendall) correlation between marginal criterion and global ranking relation

Ranking rule: NetFlows
Ordinal (Kendall) correlation between global ranking and global outranking relation: +0.778

Fig. 2.27: Visualizing a linear voting profile in a heatmap format

Notice that the importance weights of the voters are negative, which means that the
preference direction of the criteria (in this case the individual voters) is decreasing, i.e.
goes from lowest (best) rank to highest (worst) rank. Notice also, that the compromise
NetFlows ranking [a4,a5,a2,a1,a3], shown in this heatmap (see Fig. 2.27) results in an
optimal ordinal correlation index of +0.778 with the pairwise majority voting margins (see
the Adavanced topic on Ordinal Correlation equals Relational Equivalence and Ranking
with multiple incommensurable criteria (page 78)). The number of voters is usually much
larger than the number of candidates. In that case, it is better to generate a transposed
voters X candidates view (see Listing 2.63 Line 2)

On generating realistic random linear voting profiles

By default, the RandomLinearVotingProfile class generates random linear voting pro-
files where every candidates has the same uniform probabilities to be ranked at a certain
position by all the voters. For each voter’s random linear ballot is indeed generated via
a uniform shuffling of the list of candidates.
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In reality, political election data appear quite different. There will usually be different
favorite and marginal candidates for each political party. To simulate these aspects into
our random generator, we are using two random exponentially distributed polls of the
candidates and consider a bipartisan political landscape with a certain random balance
(default theoretical party repartition = 0.50) between the two sets of potential party
supporters (see LinearVotingProfile class). A certain theoretical proportion (default
= 0.1) will not support any party.

Let us generate such a linear voting profile for an election with 1000 voters and 15
candidates.

Listing 2.64: Generating a linear voting profile with ran-
dom polls

>>> from votingProfiles import RandomLinearVotingProfile

>>> 1lvp = RandomLinearVotingProfile(numberOfCandidates=15,
number0fVoters=1000,
WithPolls=True,
partyRepartition=0.5,
other=0.1,
seed=0.9189670954954139)

>>> 1vp

it VotingProfile instance description ------ *
Instance class : RandomLinearVotingProfile
Instance name : randLinearProfile

# Candidates : 15

# Voters : 1000

Attributes : ['name', 'seed', 'candidates',

'voters', 'RandomWeights',
'sumWeights', 'polll', 'poll2',
'bipartisan', 'linearBallot', 'ballot'l
>>> lvp.showRandomPolls ()
Random repartition of voters
Party_1 supporters : 460 (46.0%)
Party_2 supporters : 436 (43.6%)
Other voters : 104 (10.4%)
K e e Lt random polls -----—————---—-——-
Party_1(46.0%) | Party_2(43.6%)| expected

(continues on next page)
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(continued from previous page)

a08 : 04.75Y%
al0 : 04.66% al3 : 02.71% al2 : 03.71%
al4 : 04.42Y% al4 : 02.70% al4 : 03.21Y%

| al2 : 03.43% |
| |
| |
a05 : 04.01% | al5 : 00.86% | a09 : 03.10%
| |
| |
| |

als5 : 04.23%

a09 : 01.40% al0o : 00.447% al0o : 02.34%
a04 : 01.18% a05 : 00.29% a05 : 01.97%
a02 : 00.90% a02 : 00.21% a02 : 00.51%

In this example (see Listing 2.64 Lines 19-), we obtain 460 Party 1 supporters (46%)
436 Party 2 supporters (43.6%) and 104 other voters (10.4%). Favorite candidates of
Party 1 supporters, with more than 10%, appear to be a06 (19.91%), a07 (14.27%) and
a03 (10.02%). Whereas for Party 2 supporters, favorite candidates appear to be all
(22.94%), followed by a08 (15.65%), a04 (15.07%) and a06 (13.4%). Being first choice
for Party 1 supporters and fourth choice for Party 2 supporters, this candidate a06 is
a natural candidate for clearly winning this election game (see Listing 2.65).

Listing 2.65: The uninominal election winner

>>> 1lvp.computeSimpleMajorityWinner ()
['a06']

>>> 1vp.computeInstantRunoffWinner ()
['a06']

>>> 1vp.computeBordaWinners ()
['a06']

Is it also a Condorcet winner 7 To verify, we start by creating the corresponding majority
margins digraph cdg with the help of the MajorityMarginsDigraph class. The created
digraph instance contains 15 actions -the candidates- and 105 oriented arcs -the positive
majority margins- (see Listing 2.66 Lines 7-8).

Listing 2.66: A majority margins digraph constructed
from a linear voting profile

>>> from votingProfiles import MajorityMarginsDigraph
>>> cdg = MajorityMarginsDigraph(1lvp)

>>> cdg

K e Digraph instance description ------ *
Instance class : MajorityMarginsDigraph
Instance name : rel_randLinearProfile
Digraph Order : 15

Digraph Size : 104

Valuation domain : [-1000.00;1000.00]
Determinateness (%) : 67.08

Attributes : ['name', 'actions', 'voters',

'ballot', 'valuationdomain',
'relation', 'order',
'gamma', 'notGamma']
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We may visualize the resulting pairwise majority margins by showing the HTML formated
version of the cdg relation table in a browser view.

>>> cdg.showHTMLRelationTable(tableTitle='Pairwise majority margins',
relationName="'M(x>y) ')

Pairwise majority margins

M(x>y) a01[a02[a03 [a04 [a05 [a06 [a07 [a08 [a09 [a10 al1l[al12 [a13[al14[al5
[ a01 | - [768[-138]108[478[-436[-198[-140( 238[ 440 -268[ 148| 50[202[218
[ a02 [-768] - [-796[-484[-368-858|-828/-772|-546[-496 -800[-722-768[-696 -658
[ a03 [138[796] - [160]590/-286| -80] -8|372(522-158]280]210]360] 338
| a0a [-108[484|-160| - [ 184|-370|-180|-288| 160| 136 -420| 16| -62| 56| 30
[ a05 [-478[368[-590[-184| - [-730[-640[-472[-234[-116 -550[-442-522[-376-386
| a06 |436|858|286|370]730| - | 248|234 574|692 102|556 482|566 520
[ a07 [198[828] 80[180[640-248] - [ 0[358[602  -94]304]266]384]420
[ a08 [140[772] 8[288[472[234] 0] - [436]396-176]276]134] 298] 244
| a09 [-238|546|-372|-160] 234-574|-358|-436] - |116-594|-126-194| -90| -14
[ a10 [-440[496]-522[136]116/-692[-602-396-116] - -510[-310-442]-304]-266
| a11 |[268]800| 158]420]550-102| 94| 176[ 594|510 - | 388 268|474 292
[ a12 [-148[722-280] -16]442[-556[-304-276] 126[310-388] - [ -92[100]148
[ a13 | -50[768[-210] 62]522[-482]-266[-134| 194[442-268| 92| - [158[186
[ a14 [-202[696]-360] -56] 376/-566[-384-298] 90304 -474]-100[158] - | 68
[ a15 [-218[658]-338] -30[386/-520[-420 -244| 14]266[-292[148]-186] -68| -

Valuation domain: [-1000; +1000]

Fig. 2.28: Browsing the majority margins

In Fig. 2.28, light green cells contain the positive majority margins, whereas light red
cells contain the negative majority margins. A complete light green row reveals hence
a Condorcet winner, whereas a complete light green column reveals a Condorcet loser.
We recover again candidate a06 as Condorcet winner (), whereas the obvious Condorcet
loser is here candidate a02, the candidate with the lowest support in both parties (see
Listing 2.64 Line 40).

With a same bipolar -first ranked and last ranked candidate- selection procedure, we may
weakly rank the candidates (with possible ties) by iterating these first ranked and last
ranked choices among the remaining candidates (|BIS-1999]).

Listing 2.67: Ranking by iterating choosing the first and
last remaining candidates

>>> cdg.showRankingByChoosing ()
Error: You must first run
self.computeRankingByChoosing(CoDual=False(default) | True) !
>>> cdg.computeRankingByChoosing ()
>>> cdg.showRankingByChoosing ()

(continues on next page)

5 The concept of Condorcet winner -a generalization of absolute majority winners- proposed by Con-
dorcet in 1785, is an early historical example of initial digraph kernel (see the tutorial Kernel-Tutorial-
label).
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(continued from previous page)
Ranking by Choosing and Rejecting
1st first ranked ['a06']
2nd first ranked ['all']
3rd first ranked ['a07', 'a08']
4th first ranked ['a03']
5th first ranked ['a01']
6th first ranked ['al3']
7th first ranked ['a04']
7th last ranked ['al2']
6th last ranked ['al4']
5th last ranked ['al5']
4th last ranked ['a09']
3rd last ranked ['al0']
2nd last ranked ['a05']
1st last ranked ['a02']

Before showing the ranking-by-choosing result, we have to compute the iterated bipolar
selection procedure (see Listing 2.67 Line 2). The first selection concerns a06 (first) and
a02 (last), followed by a1 (first) opposed to a05 (last), and so on, until there remains
at iteration step 7 a last pair of candidates, namely [a04, a12] (see Lines 13-14).

Notice furthermore the first ranked candidates at iteration step 3 (see Listing 2.67 Line
9), namely the pair [a07, a08]. Both candidates represent indeed conjointly the first
ranked choice. We obtain here hence a weak ranking, i.e. a ranking with a tie.

Let us mention that the instant-run-off procedure, we used before (see Listing 2.65 Line
3), when operated with a Comments=True parameter setting, will deliver a more or less
similar reversed linear ordering-by-rejecting result, namely [a02, a10, a14, a05, a09, al3,
al2, als, a04, a01, a08, a03, a07, all, a06], ordered from the last to the first choice.

Remarkable about both these ranking-by-choosing or ordering-by-rejecting results is the
fact that the random voting behaviour, simulated here with the help of two discrete
random variables ('%), defined respectively by the two party polls, is rendering a ranking
that is more or less in accordance with the simulated balance of the polls: -Party 1
supporters : 460; Party 2 supporters: 436 (see Listing 2.64 Lines 26-40 third column).
Despite a random voting behaviour per voter, the given polls apparently show a wery
strong incidence on the eventual election result. In order to avoid any manipulation of
the election outcome, public media are therefore in some countries not allowed to publish
polls during the last weeks before a general election.

Note

Mind that the specific ranking-by-choosing procedure, we use here on the majority
margins digraph, operates the selection procedure by extracting at each step initial
and terminal kernels, i.e. NP-hard operational problems (see tutorial on computing

16 Discrete random variables with a given empirical probability law (here the polls) are provided in
the randomNumbers module by the DiscreteRandomVariable class.
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kernels and [BIS-1999]); A technique that does not allow in general to tackle voting
profiles with much more than 30 candidates. The tutorial on ranking (page 78)
provides more adequate and efficient techniques for ranking from pairwise majority
margins when a larger number of potential candidates is given.

Back to Content Table (page 1)

2.9 On computing fair intergroup pairings

e The fair intergroup pairing problem (page 136)

e Generating the set of potential mazimal matchings (page 138)

o Measuring the fitness of a matching from a personal perspective (page 139)
e Computing the fairest intergroup pairing (page 140)

e Fuair versus stable pairings (page 144)

e Relazing the requirement for complete linear voting profiles (page 157)

e Using Copeland scores for guiding the fairness enhancement (page 160)

e Starting the fairness enhancement from a best determined Copeland matching
(page 162)

The fair intergroup pairing problem

Fairness: impartial and just treatment or behaviour without favouritism or
discrimination

— Oxford Languages

A set of persons consists of two groups —group A and group B- of equal size k. For a
social happening, it is requested to build %k pairs of persons from each group.

In order to guide the matching decisions, each person of group A communicates her
pairing preferences with a linear ranking of the persons in group B and each person of
group B communicates her pairing preferences with a linear ranking of the persons in
group A.

The set of all potential matching decisions corresponds to the set of maximal matchings
of the complete bipartite graph formed by the two groups A and B. Its cardinality is
factorial k.

How to choose now in this possibly huge set the one maximal matching that makes a
fair balance of the given individual pairing preferences? To help make this decision we
will compute for all maximal matchings a fitness score consisting of their average ordinal
correlation index with the given marginal pairing preferences. Eventually we will choose
a maximal matching that results in the highest possible fitness score.
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Let us consider for instance a set of four persons divided into group A, {al, a2}, and
group B, {b1, b2}. Person al prefers as partner Person b2, and Person a2 prefers as
partner Person b1. Reciprocally, Person b1 prefers Person a2 over al and Person b2
finally prefers al over a2. There exist only two possible maximal matchings,

(1) al with b1 and a2 with b2, or
(2) al with b2 and a2 with b1.

Making the best matching decision in this setting here is trivial. Choosing matching (1)
will result in an ordinal correlation index of -1 for all four persons, whereas matching (2)
is in total ordinal concordance with everybody’s preferences and will result in an average
ordinal correlation index of +1.0.

Can we generalise this approach to larger groups and partially determined ordinal corre-
lation scores?

Reciprocal linear voting profiles

Let us consider two groups of size £ = 5. Individual pairing preferences of
the persons in group A and group B may be randomly generated with reciprocal
RandomLinearVotingProfile instances called [vA1 and lvB1 (see below).

>>> from votingProfiles import RandomLinearVotingProfile

>>> k =5

>>> 1vAl = RandomLinearVotingProfile(
number0fVoters=k,number0fCandidates=k,
votersIdPrefix='a',

. candidatesIdPrefix='b',seed=1)

>>> 1vAl.save('1vAl')

>>> 1vB1 = RandomLinearVotingProfile(
number0fVoters=k,number0fCandidates=k,
votersIdPrefix='b"',

o candidatesIdPrefix='a',seed=2)

>>> 1vB1.save('1vB1')

We may inspect the resulting stored pairing preferences for each person in group A and
each person in group B with the showLinearBallots() method®.

>>> from votingProfiles import LinearVotingProfile
>>> 1vAl = LinearVotingProfile('lvA1l')
>>> 1vA1l.showLinearBallots()

voters marginal

(weight) candidates rankings

al(1): ['b3', 'b4', 'b5', 'b1', 'b2']
a2(1): ['b3', 'b5', 'b4', 'b2', 'b1l']
a3(1): ['b4', 'b2', 'b1', 'D3', 'b5']
ad(1): ['b2', 'b4', 'bl', 'D5', 'b3']

(continues on next page)

49 The stored versions lwAz.py, lwBz.py, apAl.py and apB1.py of the examples of reciprocal randdom
voting profiles discussed in the intergroup pairing tutorial may be found in the examples directory of the
Digraph3 resources.
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(continued from previous page)
a5(1): ['bd', 'b2', 'B3', 'bl', 'b5']
>>> 1vB1 = LinearProfile('1vB1')
>>> 1vB1.showLinearBallots()

voters marginal

(weight) candidates rankings

b1(1): [Ya3l, ‘a2l igde igsil g
b2(1): [Ya5!, ‘&l ‘ol dgdl gl
b3(1): [Mag!, tadl ol TaEl la@l]
b4 (1) : ['a3', 'ad4', 'al', 'a2', 'ab'l]
b5(1): ['a3', 'ad4', 'al', 'a2', 'ab'l]

With these given individual pairing preferences, there does no more exist a quick trivial
matching solution to our pairing problem. Persons a! and a2 prefer indeed to be matched
to the same Person b3. Worse, Persons b1, b3, b/ and b5 all four want also to be preferably
matched to a same Person a3, but Person a8 apparently prefers as partner only Person

b.

How to find now a maximal matching that will fairly balance the individual pairing
preferences of both groups? To solve this decision problem, we first must generate the
potential decision actions, i.e. all potential maximal matchings between group A and
group B.

Generating the set of potential maximal matchings

The maximal matchings correspond in fact to the maximal independent sets of edges of
the complete bipartite graph linking group A to group B. To compute this set we will use
the CompleteBipartiteGraph class from the graphs module (see Lines 3-4 below).

>>> groupA = [p for p in 1lvAl.voters]

>>> groupB = [p for p in 1lvB1l.voters]

>>> from graphs import CompleteBipartiteGraph
>>> bpg = CompleteBipartiteGraph(groupA,groupB)

>>> bpg

L Graph instance description ------ *
Instance class : Graph
Instance name : bipartitegraph
Graph Order : 10
Graph Size : 25
Valuation domain : [-1.00; 1.00]
Attributes : ['name', 'vertices',

'verticesKeysA', 'verticesKeysB',
'order', 'valuationDomain',
'edges', 'size', 'gamma']

Now, the maximal matchings of the bipartte graph bpg correspond to the MISs of its line
graph lbpg. Therefore we use the LineGraph class from the graphs module.
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>>> from graphs import LineGraph
>>> 1bpg = LineGraph (bpg)

>>> 1bpg
oo Graph instance description ------ *
Instance class : LineGraph
Instance name : line-bipartite_completeGraph_graph
Graph Order 1 25
Graph Size : 100

>>> 1bpg . computeMIS(
>>> 1bpg.showMIS ()

*--- Maximal Independent Sets ---*
number of solutions: 120
cardinality distribution
card.: [0, 1, 2, 3, 4, 5, 6
freq.: [0, O, 0, O, O, 120, O,
stability number : 5
execution time: 0.01483 sec.
Results in self.misset

The set of maximal matchings between persons of groups A and B has cardinality factorial
5! = 120 (see Line 15 above) and is stored in attribute (bpg.misset. We may for instance
print the pairing corresponding to the first maximal matching.

>>> for m in lbpg.misset[0]:
pair = list(m)
pair.sort ()

print (pair)
[tal', 'b4']
(Va2 'Egt]
['a3', 'b5']
['ad', 'b2']
['ab', 'bl']

Each maximal matching delivers thus for each person a partially determined ranking. For
Person al, for instance, this matching ranks b4 before all the other persons from group
B and for Person b4, for instance, this matching ranks a1 before all other persons from
group A.

How to judge now the global pairing fitness of this matching?

Measuring the fitness of a matching from a personal perspective

Below we may reinspect the actual pairing preferences of each person.

>>> 1vAl.showLinearBallots()

voters marginal
(weight) candidates rankings
al(1): ['b3', 'b4', 'b5', 'bl', 'b2']

(continues on next page)
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a2(1): ['b3', 'b5', 'b4', 'b2', 'b1l']

a3(1): ['b4d', 'b2', 'b1l', 'bD3', 'b5']

a4 (1): ['b2', 'b4', 'bl', 'b5', 'b3']

ab(1): ['b4', 'b2', 'b3', 'b1l', 'b5']
>>> 1vB1.showLinearBallots ()

voters marginal

(weight candidates rankings

b1(1): [Mag!, ta2h  lgdll o OgEl o igd

b2(1): ['ab', 'a3', 'al', 'a4', 'a2']

b3(1): ['a3', 'a4', 'al', 'ab', 'a2']

b4(1): ['a3', 'ad', 'al', 'a2', 'ab']

b5(1): [Pag!, ladl gl g2l lgFl]

In the first matching shown in the previous Listing, Person a1 is for instance matched
with Person b4, which was her second choice. Whereas for Person b/ the match with
Person a1 is only her third choice.

For a given person, we may hence compute the ordinal correlation —the relative number
of correctly ranked persons minus the relative number of incorrectly ranked persons—
between the partial ranking defined by the given matching and the individual pairing
preferences, just ignoring the indeterminate comparisons.

For Person a1, for instance, the matching ranks 04 before all the other persons from group
B whereas a1’s individual preferences rank b/ second behind b3. We observe hence 3
correctly ranked persons —b5, b1 and 62— minus 1 incorrectly ranked person —b3— out of

four determined comparisons. The resulting ordinal correlation index amounts to (3-1)/4
= +0.5.

For Person b4, similarly, we count 2 correctly ranked persons —a2 and a5— and 2 incor-
rectly ranked persons —a? and a4— out of the four determined comparisons. The resulting
ordinal correlation amounts hence to (2-2)/4 = 0.0

For a given maximal matching we obtain thus 10 ordinal correlation indexes, one for each
person in both groups. And, we may now score the global fitness of a given matching
by computing the average over all the individual ordinal correlation indexes observed in
group A and group B.

Computing the fairest intergroup pairing

The pairings module provides the FairestInterGroupPairing class for solving, fol-
lowing this way, a given pairing problem of tiny order 5 (see below).

>>> from pairings import FairestInterGroupPairing
>>> fp = FairestInterGroupPairing(1lvAl,1vB1)

>>> fp

e FairPairing instance description ------ *
Instance class : FairestInterGroupPairing
Instance name : pairingProblem

Groups A and B size : b5
(continues on next page)
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(continued from previous page)
Attributes : ['name', 'order', 'vpA', 'vpB',
'pairings', 'matching’,
'vertices', 'valuationDomain',
'edges', 'gamma', 'runTimes']

The class takes as input two reciprocal VotingProfile objects describing the individ-
ual pairing preferences of the two groups A and B of persons. The class constructor
delivers the attributes shown above. vpA and vpB contain the pairing preferences. The
pairings attribute gathers all maximal matchings —the potential decision actions— or-
dered by decreasing average ordinal correlation with the individual pairing preferences,
whereas the matching attribute delivers directly the first-ranked maximal matching —pair-
ings[0[[0]— and may be consulted as shown in the Listing below. The resulting fp object
models in fact a BipartiteGraph object where the vertices correspond to the set of per-
sons in both groups and the bipartite edges model the fairest maximal matching. The
showFairestPairing() method prints out the fairest matching.

>>> fp.showFairestPairing(rank=1,
WithIndividualCorrelations=True)

Fairest pairing
Bzl Ojeseit]
['a2', 'b5']
['a3', 'bl']
[tad', 'b4']
['a5', 'b2']
groupA correlations:
'al': +1.000
'a2': +0.500
'a3': 0.000
'a4': +0.500
'ab': +0.500
group A average correlations (a) : 0.500
group A standard deviation : 0.354

groupB Correlations:

'b1': +1.000

'b2': +1.000

'pb3': 0.000

'b4': +0.500

'b5': -0.500
group B average correlations (b) : 0.400
group B standard deviation : 0.652
Average correlation : 0.450
Standard Deviation : 0.497

Unfairness |(a) - (b)| : 0.100
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Three persons —al, b1 and b2— get as partner their first choice (+1.0). Four persons —a2,
a4, a5 and bj— get their second choice (+0.5). Two persons —a8 and b3— get their third
choice (0.0). Person b5 gets only her fourth choice. Both group get very similar average
ordinal correlation results — +0.500 versus +0.400— resulting in a low unfairness score
(see last Line above)

In this problem we may observe a 2nd-ranked pairing, of same average correlation score
+0.450, but with both a larger standard deviation (0.55 versus 0.45) and a larger unfair-
ness score (0.300 versus 0.100).

>>> fp.showFairestPairing(rank=2,
WithIndividualCorrelations=True)

2nd-ranked pairing

[ral, 'b3']
['a2', 'b5']
['a3', 'b4']
['ad', 'b1']
['ab', 'b2']
group A correlations:
'al': +1.000
'a2': +0.500
'a3': +1.000
'ad': +0.000
'ab': +0.500
group A average correlations (a) : 0.600
group A standard deviation : 0.418

group B correlations:

'b1': +0.000

'b2': +1.000

'b3': +0.000

'b4': +1.000

'b5': -0.500
group B average correlations (b) : 0.300
group B standard deviation : 0.671
Average correlation : 0.450
Standard Deviation : 0.550

Unfairness |(a) - (b)| : 0.300

In this second-fairest pairing solution, four persons —al, a3, b2 and bj/— get their first
choice. Only two persons —a2 and a5 get their second choice, but three persons —a/,
b1 and b3— now only get their third choice. Person b5 gets unchanged her fourth choice.
Despite a same average correlation (+0.45), the distribution of the individual correlations
appears less balanced than in the previous solution, as confirmed by the higher standard
deviation. In the latter pairing, group A shows indeed an average correlation of +3.000/5
= +0.600, whereas group B obtains only an average correlation of 1.500/5 = 40.300.
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In the previous pairing, group A gets a lesser average correlation of +0.500. And, group
B obtains here a higher average correlation of 2.000/5 = +0.400. Which makes the first-
ranked pairing with same average ordinal correlation yet lower standard deviation, an
effectively fairer matching decision.

One may visualise a pairing result with the exportPairingGraphViz () method (see Fig.
2.29 below).

>>> fp.exportPairingGraphViz (fileName='fairPairing',
S matching=fp.matching)
dot -Tpng fairPairing.dot -o fairPairing.png

2
s
S
=
Q
=
=
w

Digraph3 (graphviz), R. Bisdorff, 2023
Fig. 2.29: Fairest intergroup pairing decision

A matching corresponds in fact to a certain permutation of the positional indexes of the
persons in group B. We may compute this permutation and construct the corresponding
permutation graph.

>>> permutation = fp.computePermutation(fp.matching)
>>> from graphs import PermutationGraph

>>> pg = PermutationGraph(permutation)

>>> pg

(continues on next page)
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L Graph instance description ------ *

Instance class : PermutationGraph

Instance name : matching-permutation

Graph Order : 5

Permutation : [3, 5, 1, 4, 2]

Graph Size : 6

Valuation domain : [-1.00; 1.00]

Attributes : ['name', 'vertices', 'order',
'permutation', 'valuationDomain',

'edges', 'size', 'gamma']
>>> pg.exportPermutationGraphViz (fileName='fairPairingPermutation')
*---— exporting a dot file for GraphViz tools ----—-—---- *
Exporting to farPairingPermutation.dot
neato -n -Tpng fairPairingPermutation.dot -o fairPairingPermutation.png

oYeYoJoXo
AN
ojoloJone

Digraph3 (graphviz), R. Bisdorff, 2022

Fig. 2.30: Fairest pairing’s coloured matching diagram

In Fig. 2.30 is shown the coloured matching diagram of the index permutation [3, 5, 1,
4, 2] modelled by the fairest pairing decision.

Mind that our FairestInterGroupPairing class does not provide an efficient algorithm
for computing fair pairings; far from it. Our class constructor’s complexity is in O(k!),
which makes the class totally unfit for solving any real pairing problem even of small
size. The class has solely the didactic purpose of giving a first insight into this important
and practically relevant decision problem. For efficiently solving this kind of pairing
decision problems it is usual professional practice to concentrate the set of potential
pairing decisions on stable matchings® .

Fair versus stable pairings

In classical economics, where the homo economicus is supposed to ignore any idea of
fairness and behave solely in exact accordance with his rational self-interest, a pairing
is only considered suitable when there appear no matching instabilities. A matching is
indeed called stable when there does not exist in the matching a couple of pairs such that
it may be interesting for both a paired person from group A and a paired person from
group B to abandon their given partners and form together a new pair. Let us consider
for instance the following situation,

45 See https://en.wikipedia.org /wiki/Gale%E2%80%93Shapley _algorithm
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Person a3 is paired with Person b1.
Person b4 is paired with Person a4.
Person a& would rather be with Person b/
Person b4 would rather be with Person a3

Computing such a stable matching may be done with the famous Gale-Shapley algorithm
(13 Fage 144,453 “available via the FairestGaleShapleyMatching class (see below Line 1).

>>> from pairings import FairestGaleShapleyMatching
>>> fgs = FairestGaleShapleyMatching(1vA1l,1vB1)
>>> fgs.showPairing(fgs.matching)

S e *
Pairing
el st
['a2', 'b5']
['a3', 'b4']
[‘ad', 'bl']
['ab', 'b2']

We have already seen this Gale-Shapley pairing solution. It is in fact the 2nd-ranked
fairest pairing, discussed in the previous section. Now, is the fact of being stable any
essential characteristic of a fair pairing solution?

In a Monte Carlo simulation of solving 1000 random pairing problems of order 5, we
obtain the following distribution of the actual fairness ranking indexes of the fairest
stable matching.

43 |GAL-1962]
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Index distribution of the fairest stable matching (1000 random problems of order 5))
0.6 T T T T

I relative fretl]uency —
1000 random pairing problems gammai0.25875,6.5547)
of order 5

0.5 | —

0.4 - b

0.3 |H —

Relative frequency

D i L i i i
0 5 10 15 20 25 30 35

Index position of fairest stable matching (0 is the best possible index)

Fig. 2.31: Distribution of the fairness rank of the fairest stable matching

In Fig. 2.31 we may notice that only in a bit more than 50% of the cases, the overall
fairest matching —of index 0 in the fp.pairings list— is indeed stable.

And the overall fairest matching in our example above is, for instance, not a stable
matching (see Lines 2-3 below).

>>> fp.isStableMatching(fp.matching,Comments=True)

K *
[tal’, 'b3']
['a2', 'b5']
['a3', 'bl']
['ad', 'b4d']
['ab', 'b2']

is unstable!
a3 b4 <-- bl: rank improvement 0 --> 2
b4 a3 <-- a4: rank improvement 0 --> 1

If we resolve its unstable pairs —[a8, b1| —> [a3, b4] , and |a4, b4| —> |a4, b1]- we recover
the previous Gale-Shapley solution, i.e the 2nd-fairest pairing solution (see above).
Unfairness of the Gale-Shapley solution

The Gale-Shapley algorithm is actually based on an asymmetric handling of the two
groups of persons by distinguishing a matches proposing group. In our implementation
here', it is group A. Now, the proposing group gets by the Gale-Shapley algorithm the

4 Qur implementation is based on John Lekberg’s blog. See https://johnlekberg.com/blog,
2020-08-22-stable-matching.html

146


https://johnlekberg.com/blog/2020-08-22-stable-matching.html
https://johnlekberg.com/blog/2020-08-22-stable-matching.html

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

best possible average group correlation, but of costs of the non-proposing group who gets
the worst possible average group correlation in any stable matching#&¢ 144 %5 We may
check as follows this unfair result on the previous Gale-Shapley solution.

>>> fgs.showMatchingFairness(fgs.matching,
WithIndividualCorrelations=True)

K o *
[tal', 'b3']
['a2', 'b5']
['a3', 'b4']
['ad', 'b1']
['ab', 'b2']

group A correlations:

*al': +1.000

'a2': +0.500

'a3': +1.000

'ad': +0.000

'ab': +0.500
group A average correlations (a) : 0.600
group A standard deviation : 0.418

group B correlations:

'b1': +0.000

'p2': +1.000

'b3': +0.000

'b4': +1.000

'b5': -0.500
group B average correlations (b) : 0.300
group B standard deviation : 0.671
Average correlation : 0.450
Standard Deviation : 0.550

Unfairness |[(a) - (b)| : 0.300

Four persons out of five from group A are matched to their first or second choices. When
reversing the order of the given linear voting profiles [vA1 and [vB1, we obtain a second
Gale-Shapley solution gs2 favouring this time the persons in group B.

>>> gs2 = fgs.computeGaleShapleyMatching(Reverse=True)
>>> fgs.showMatchingFairness(gs2,
WithIndividualCorrelations=True)

Hocsomommossssssosaaoaaaoaoooos *
[tal', 'b3']
[ta2', 'bl']
['a3', 'b4']
[tad', 'b5']
['ab', 'b2']

(continues on next page)
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group A correlations:

'al': +1.000
'a2': -1.000
'a3': +1.000
'a4': -0.500
'ab': +0.500

group A average correlations (a)
group A standard deviation

group B correlations:

'bl': +0.500
'b2': +1.000
'b3': +0.000
'b4': +1.000
'b5': +0.500

group B average correlations (b)
group B standard deviation
Average correlation : 0.400
Standard Deviation : 0.699
Unfairness [(a) - (b)| : 0.400

(continued from previous page)

In this reversed Gale-Shapley pairing solution, it is indeed the group B that appears now
better served. Yet, it is necessary to notice now, besides the even more unbalanced group
average correlations, the lower global average correlation (+0.400 compared to +0.450)
coupled with both an even higher standard deviation (0.699 compared to 0.550) and a
higher unfairness score (0.400 versus 0.300).

It may however also happen that both Gale-Shapley matchings, as well as the overall
fairest one, are a same unique fairest pairing solution. This is for instance the case when

considering the following example of reciprocal [vA2 and [vB2 profiles

>>> 1vA2 = LinearVotingProfiles('1vA2'")

>>> 1vA2.showLinearBallots()

voters marginal
(weight) candidates rankings
al(1l): ['b1l', 'b5', 'b2',
a2(1): ['b4', 'b3', 'b5',
a3(1): ['b3', 'b5', 'bl',
ad(1): ['b4', 'b2', 'b5',
ab(1): ['b&', 'b2', 'b3',

# voters: 5

'bd',
'b2',
'b2"',
'b3"',
'bd',

>>> 1vB2 = LinearVotingProfile('1vB2')

>>> 1vB2.showLinearBallots ()
voters marginal

(weight) candidates rankings
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b1(1): ['al', 'a2', 'ab', 'a3', 'a4d']
b2(1): ['a2', 'ab', 'al3', 'ad', 'al']
b3(1): ['a3', 'a4', 'al', 'ab', 'a2'l]
b4 (1) : ['ad', 'al', 'a2', 'a3', 'ab'l]
b5(1): ['a2', 'al', 'ab', 'a3', 'a4'l]

# voters: 5
>>> fp = FairestInterGroupPairing(1lvA2,1vB2,StableMatchings=True)
>>> fp.showMatchingFairness()

K e *
['al', 'b1']

['a2', 'b5']

['a3', 'b3']

[tad', 'b4']

['ab', 'b2']

group A average correlations (a) : 0.700
group A standard deviation : 0.447
group B average correlations (b) : 0.900
group B standard deviation : 0.224
Average correlation : 0.800

Standard Deviation : 0.350

Unfairness [(a) - (b)| : 0.200
>>> print('Index of stable matchings:'. fp.stableIndex)
Index of stable matchings: [0]

In this case, the individual pairing preferences lead easily to the overall fairest pairing
(see above). Indeed, three couples out of 5, namely [al, b1], [a3, b3| and [a4, b4], do
share their mutual first choices. For the remaining couples — [a2, b5] and [a5, b2]- the
fairest matching gives them their third and first, respectively their first and second choice.
Furthermore, their exists only one stable matching and it is actually the overall fairest
one. When setting the StableMatchings flag of the FairestInterGroupPairing class to
True, we get the stableIndex list with the actual index numbers of all stable maximal
matchings (see Lines 19 and 34-35).

But the contrary may also happen. Below we show individual pairing preferences —stored
in files lvA3.py and lvB3.py— for which the Gale-Shapley algorithm is not delivering a
satisfactory pairing solution”?&¢ 137 19,

>>> from votingProfiles import LinearVotingProfile

>>> 1vA3 = LinearVotingProfile('1vA3')

>>> 1vA3.showLinearBallots ()

voters marginal

(weight candidates rankings
al(1): ['b5', 'b6', 'b4', 'b3', 'b1l', 'b2']
a2(1): ['p6', 'bl', 'b4', 'b5', 'b3', 'b2']
a3(1): ['b6', 'b3', 'b4', 'b1l', 'b5', 'b2']
a4(1): ['b3', 'b4', 'b2', 'b6', 'b5', 'b1']
ab(1): ['b3', 'b4', 'b5', 'bl', 'b6', 'b2']

(continues on next page)
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-
-

a6(1): ['b3', 'b5', 'bl', 'b6', 'b4', 'b2']
12 # voters: 6

s >>> 1vB3 = LinearVotingProfile('1vB3')

4 >>> 1vB3.showLinearBallots ()

15 voters marginal

(weight candidates rankings

17 bi(1): ['a3', 'a4', 'a6', 'al', 'ab', 'a2']
18 b2(1): ['a6', 'a4', 'al', 'a3', 'ab', 'a2']
19 b3(1): ['a3', 'a2', 'a4', 'al', 'a6', 'ab']
20 b4(1): ['a4', 'a2', 'ab', 'a6', 'al', 'a3']
21 b5(1): ['ad4', 'a2', 'a3', 'a6', 'al', 'ab']
22 b6(1): ['a4', 'a3', 'al', 'ab', 'a6', 'a2']
23 # voters: 6

-

=

=
[=2]

The individual pairing preferences are very contradictory. For instance, Person’s a2 first
choice is b6 whereas Person b6 dislikes Person a2 most. Similar situation is given with
Persons a5 and b3.

In this pairing problem there does exist only one matching which is actually stable and
it is a very unfair pairing. Its fairness index is 140 (see Line 3-4 below).

1 >>> fp = FairestInterGroupPairing(1vA3,1vB3,
S StableMatchings=True)

3 >>> fp.stablelndex
« [140]

5 >>> gl = fp.computeGaleShapleyMatching()

6 >>> fp.showMatchingFairness(gl,

A WithIndividualCorrelations=True)

10 ['a2', 'b4']

n ['a3', 'b6']

12 ['a4', 'b3']

13 ['a5', 'b2']

14 ['a6', 'b5']

5 @ ————--

16 group A correlations:

17 'al': -0.600

18 'a2': +0.200

19 'a3': +1.000

20 'a4': +1.000

21 'ab': -1.000

22 'a6': +0.600

23 group A average correlation (a) : 0.200
24 group A standard deviation : 0.839
PHE

26 group B correlations:
(continues on next page)
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'p1': -0.200

'p2': -0.600

'p3': +0.200

'p4': +0.600

'p5': -0.200

'v6': +0.600
group B average correlation (b) : 0.067
group B standard deviation : 0.484
Average correlation : 0.133
Standard Deviation : 0.657

Unfairness |(a) - (b)| : 0.133

Indeed, both group correlations are very weak and show furthermore high standard devi-
ations. Five out of the twelve persons obtain a negative correlation with their respective
pairing preferences. Only two persons from group A —a& and a4 get their first choice,
whereas Person aJ is matched with her least preferred partner (see Lines 19-21). In group
B, no apparent attention is put on choosing interesting partners (see Lines 27-32).

The fairest matching looks definitely more convincing.

>>> fp.showMatchingFairness(fp.matching,
WithIndividualCorrelations=True)

. *
['al', 'b6']
['a2', 'b5']
['a3', 'b3']
['ad', 'b2']
['ab', 'b4']
['a6', 'bl']

group A correlations:

'al': +0.600

'a2': -0.200

'a3': +0.600

‘ad': +0.200

'ab': +0.600

'a6': +0.200
group A average correlation (a) : 0.333
group A standard deviation . 0.327

group B correlations:

'bl': +0.200
'b2': +0.600
'b3': +1.000
'b4': +0.200
'bb': +0.600

(continues on next page)
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'b6': +0.200
group B average correlation (b)
group B standard deviation
Average correlation : 0.400
Standard Deviation : 0.319
Unfairness [(a) - (b)| : 0.133

(continued from previous page)

Despite the very contradictory individual pairing preferences and a same unfairness score,
only one person, namely a2, obtains here a choice in negative correlation with her pref-
erences (see Line 13). The group correlations and standard deviations are furthermore

very similar (lines 18 and 28).

The fairest solution is however far from being stable. With three couples of pairs that
are potentially unstable, the first and stable unique Gale-Shapley matching is with its
fairness index 140 indeed far behind many fairer pairing solutions (see below).

>>> fp.isStableMatching(fp.matching
Unstable match: Pair(groupA='a4',
Pair(groupA='ab"',
a4 b2 <-- b4
b4 ab <-- a4
Unstable match: Pair(groupA='a2',
Pair(groupA='ab"',
a2 bb <-- b4
b4 a5 <-- a2
Unstable match: Pair(groupA='a3',
Pair(groupA='al"',
a3 b3 <-- b6
b6 al <-- a3

,Comments=True)

groupB='b2")
groupB="'b4"')
groupB="'b5")
groupB="'b4"')
groupB="'b3")
groupB="'b6")

How likely is it to obtain such an unfair Gale-Shapley matching? With our Monte Carlo
simulation of 1000 random pairing problems of order 5, we may empirically check the
likely fairness index of the fairest of both Gale-Shapley solutions.
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Fig. 2.32: Distribution of the fairness index of the fairest Gale-Shapley matching

In Fig. 2.32, we see that the fairest of both Gale-Shapley solutions will correspond to the
overall fairest pairing (index = 0) in about 36% out of the 1000 random cases. Yet, it is
indeed the complexity in O(k?) of the Gale-Shapley algorithm that makes it an interesting

Fairness index distribution for the best Gale-Shapley solution

T T T
1000 random pairing problems
of order 5

relativelfrequency —
gamma(0.4081,8.0837)

5 10 15

20

25 30 35

Fairness index (0 is the fairest)

alternative to our brute force approach in complexity O(k!).

It is worthwhile noticing furthermore that the number of stable matchings is in general
very small compared to the size of the huge set of potential maximal matchings as shown

in Fig. 2.33.
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Fig. 2.33: Distribution of the number of stable matchings

In the simulation of 1000 random pairing problems of order 5, we observe indeed never
more than seven stable matchings and the expected number of stable matchings is between
one and two out of 120. It could therefore be opportune to limit our potential set of
maximal matchings —the decisions actions— to solely stable matchings, as is currently the
usual professional solving approach in pairing problems of this kind. Even if we would
very likely miss the overall fairest pairing solution.

Dropping the stability requirement

Dropping however the stability requirement opens a second way of reducing the actual
complexity of the fair pairing problem. This way goes by trying to enhance the fairness of
a Gale-Shapley matching via a hill-climbing heuristic where we swap partners in couples
of pairs that mostly increase the average ordinal correlation and decrease the gap between
the groups’ correlations.

With this strategy we may hence expect to likely reach one of the fairest possible matching
solutions. In a Monte Carlo simulation of 1000 random pairing problems of order 6 we
may indeed notice in Fig. 2.34 that we reach in a very limited number of swaps —less
than 2 x k— a fairness index less than [3] in nearly 95% of the cases. The weakest fairness
index found is 16.
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Fig. 2.34: Distribution of the fairness index of enhanced Gale-Shapley solutions

In the following example of a pairing problem of order 6, we observe only one unique
stable matching with fairness index [12], in fact a very unfair Gale-Shapley matching
completely ignoring the individual pairing preferences of the persons in group B (see

Faimess index distribution for enhanced Gale-Shapley matchings

U.B C T T T T T T T T
1000 random pairing problems
of order 6
07 L Gum. freq.
index 0: 73.80%
0.6 L index 1: 89.10%
index 2: 94.90%
0.5 |
0.4 |
03 L
0.2 |
01 L
0 ! | ] 5 . M = | = 1 | .
2 4 6 8 10 12 14 16

Line 15 below).

Faimess index (0 is fairest)

>>> gs = FairestGaleShapleyMatching(lvA,1lvB,
. Comments=True)
Fairest Gale-Shapley matching
['8.1', |b3|:|
[|a2|’ |b5|:|
['8.3', |b4|:|
[|a4|’ 'bl']
[|a5|, |b6|:|
['8.6', |b2|:|
group A average correlation (a) : 0.867
group A standard deviation ¢ 0.327
group B average correlation (b) : 0.000
group B standard deviation : 0.704
Average correlation : 0.433

Standard Deviation
Unfairness

l(a) - (b)| : 0.867

155




10

11

12

13

14

15

16

17

18

19

20

21

23

24

25

26

28

Taking this Gale-Shapley solution —gs.matching— as initial starting point, we try to swapp
partners in couple of pairs in order to improve the average ordinal correlation with all the
individual pairing preferences and to reduce the gap between both groups. The pairings
module provides the FairnessEnhancedInterGroupMatching class for this purpose.

>>> from pairings import \
FairnessEnhancedInterGroupMatching

>>> egs = FairnessEnhancedInterGroupMatching(

o 1vA,1vB,initialMatching=gs.matching)

>>> egs.iterations

4

>>> egs.showMatchingFairness(egs.matching)

Fairness enhanced matching

['al', 'b3']
['a2', 'b2']
['a3', 'b4d']
[‘ad', 'b6']
['a5', 'b5']
['a6', 'bl']

group A average correlation (a) : 0.533
group A standard deviation : 0.468

group B average correlation (b) : 0.533

group B standard deviation : 0.641
Average correlation : 0.5633
Standard Deviation : 0.535

Unfairness |(a) - (b)| : 0.000
>>> fp = FairestInterGroupPairing(1lvA,1vB)
>>> fp.computeMatchingFairnessIndex(egs.matching)
0

With a slightly enhanced overall correlation (+0.533 versus +0.433), both groups obtain
after four swapping iterations the same group correlation of +0.533 (Unfairness score =
0.0, see Lines 17, 20 and 25 above). And, furthermore, the fairness enhancing procedure
attains the fairest possible pairing solution (see last Line).

Our hill-climbing fairness enhancing algorithm seams hence to be quite efficient. Consid-
ering that its complexity is about O(k?), we are effectively able to solve pairing problems
of realistic orders.

Do we really need to start the fairness enhancing strategy from a previously computed
Gale-Shapley solution? No, we may start from any initial matching. This opens the way
for taking into account more realistic versions of the individual pairing preferences than
complete reciprocal linear voting profiles.
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Relaxing the requirement for complete linear voting profiles
Partial individual pairing preferences

In the classical approach to the pairing decision problem, it is indeed required that
each person communicates a complete linearly ordered list of the potential partners.
[t seams more adequate to ask for only partially ordered lists of potential part-
ners. With the PartialLinearBallots flag and the lengthProbability parameter the
RandomLinearVotingProfile class provides a random generator for such a kind of indi-
vidual pairing preferences (see Lines 5-6 below).

>>> from votingProfiles import RandomLinearVotingProfile
>>> ypA = RandomLinearVotingProfile(
number0fVoters=7 ,number0fCandidates=7,
votersIdPrefix='a',candidatesIdPrefix='b"',
PartiallLinearBallots=True,
lengthProbability=0.5,

S seed=1)

>>> vpA.showLinearBallots ()
voters marginal
(weight candidates rankings
al(1): ['b4', 'D7', 'b6', 'b3', 'bl']
a2(1): ['b7', 'b5', 'b2', 'D6']
a3(1): ['bl']
ad(1): ['b2', 'b3', 'b5']
ab(1): ['b2', 'bl', 'b4']
a6(1): ['b6', 'D7', 'b2', 'b3']
a7(1): ['b7', 'b6', 'bl', 'b3', 'b5']

# voters: 7

With length probability of 0.5, we obtain here for the seven persons in group A the partial
lists shown above. Person a3, for instance, only likes to be paired with Person b1, whereas
Person a4 indicates three preferred partners in decreasing order of preference (see Lines
13-14 above).

We may generate similar reciprocal partial linear voting profiles for the seven persons in
group B.

>>> ypB = RandomLinearVotingProfile(
number0fVoters=7,number0fCandidates=7,
votersIdPrefix='b"',
candidatesIdPrefix='a',
PartiallLinearBallots=True,
lengthProbability=0.5,

o seed=2)

>>> vpB.showLinearBallots ()
voters marginal
(weight) candidates rankings
b1(1): ['a3', 'a4']

(continues on next page)
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(continued from previous page)

b2(1): ['a3', 'ad']

b3(1): ['a2', 'a6', 'a3', 'al']
b4 (1) : ['a2', 'a6', 'ad']
b5(1): ['a2', 'al', 'ab']

b6 (1) : ['a2', 'a7']

b7(1): ['a7', 'a2', 'al', 'a4']

# voters: 7

This time, Persons b1 and b2 indicate only two preferred pairing partners, namely both
times Person a8 before Person a/ (see Lines 11-12 above).

Yet, it may be even more effective to only ask for reciprocal approvals and disapprovals
of potential pairing partners.

Reciprocal bipolar approval voting profiles

Such random bipolar approval voting profiles may be generated with the
RandomBipolarApprovalVotingProfile class (see below).

>>> from votingProfiles import \

R RandomBipolarApprovalVotingProfile

>>>k =5

>>> apAl = RandomBipolarApprovalVotingProfile(
number0fVoters=k,
numberOfCandidates=k,
votersIdPrefix='a',
candidatesIdPrefix='b"',
approvalProbability=0.5,
disapprovalProbability=0.5,

S seed=None)

>>> apAl.save('apAl')

>>> apAl.showBipolarApprovals()

Bipolar approval ballots

al :

Approvals : ['bl', 'b5']
Disapprovals: ['b2']

a2 :

Approvals : ['b2']
Disapprovals: ['bl', 'b3', 'b4']
a3 :

Approvals : []

Disapprovals: ['b3', 'b5']

ad :

Approvals : ['bl', 'b5']
Disapprovals: ['b2', 'b3', 'b4']
ab :

Approvals : ['b2', 'b3']

(continues on next page)
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Disapprovals: ['bl', 'b5']
Bipolar approval ballots

The approvalProbability and disapprovalProbability parameters determine the expected
number of approved, respectively disapproved, potential pairing partners (see Lines 9-10).
Person a1, for instance, approves two persons —b1 and b5— and disapproves only Person
b2 (see Lines 17-18). Whereas Person a3 does not approve anybody from group B, yet,
disapproves b3 and b5

We may generate a similar random reciprocal bipolar approval voting profile for the
persons in group B.

>>> apBl = RandomBipolarApprovalVotingProfile(
numberOfVoters=k,
numberOfCandidates=k,
votersIdPrefix='b"',
candidatesIdPrefix="'a',
approvalProbability=0.5,
disapprovalProbability=0.5,

o seed=None)

>>> apBl.save('apB1l')

>>> apB1.showBipolarApprovals()

Bipolar approval ballots

bl :

Approvals : ['a2', 'a3']
Disapprovals: ['al', 'a4', 'ab']
b2 :

Approvals : ['al', 'a2']
Disapprovals: ['ad']

b3 :

Approvals : ['a5']
Disapprovals: ['a2', 'a3']
b4 :

Approvals : ['a2']
Disapprovals: ['a3', 'ab']
b5 :

Approvals : ['ad']

Disapprovals: ['al']

This time, Person b1 approves two persons —a2 and a5— and disapproves three persons
—al, a4, and a5— (see Lines 14-15 above).
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Using Copeland scores for guiding the fairness enhancement

The partial linear voting profiles as well as the bipolar approval profiles determine
for each person in both groups only a partial order on their potential pairing part-
ners. In order to enhance the fairness of any given maximal matching, we must there-
fore replace the rank information of the complete linear voting profiles, as used in
the Gale-Shapley algorithm, with the Copeland ranking scores obtained from the par-
tial pairwise comparisons of potential partners. For this purpose we reuse again the
FairnessEnhancedInterGroupMatching class, but without providing any initial match-
ing (see below!e¢ 137, 49 )

>>> from pairings import \

c FairnessEnhancedInterGroupMatching

>>> from votingProfiles import BipolarApprovalVotingProfile

>>> apAl = BipolarApprovalVotingProfile('apAl')

>>> apBl = BipolarApprovalVotingProfile('apB1')

>>> fem = FairnessEnhancedInterGroupMatching/(
apAl,apBl,initialMatching=None,
maxIterations=2%k,
Comments=False)

Il

>>> fem

B InterGroupPairing instance description ------ *

Instance class : FairnessEnhancedInterGroupMatching

Instance name : fairness-enhanced-matching

Group sizes : b

Graph Order : 10

Graph size : b

Partners swappings : 5

Attributes : ['runTimes', 'vpA', 'vpB',
'verticesKeysA', 'verticesKeysB', 'name',
'order', 'maxIterations', 'copelandScores',
'initialMatching', 'matching', 'iterations', 'history',
'maxCorr', 'stDev', 'groupAScores', 'groupBScores',
'vertices', 'valuationDomain', 'edges', 'size', 'gamma']

When no initial matching is given —initialMatching = None, which is the default setting—
two initial matchings —the left matching (ai, bi) and the right matching (ai, b-¢) for i
=1, ... k- are used for starting the fairness enhancing procedure (see Line 7). The
best solution of both is eventually retained. When the initialMatching parameter is set
to ‘random’, a random shuffling —with given seed— of the persons in group B preceeds
the construction of the right and left initial matchings. By default, the computation
is limited to 2 x k swappings of partners in order to master the potential occurrence
of cycling situations. This limit may be adjusted if necessary with the mazlterations
parameter (see Line 8). Such cycling swappings are furthermore controlled by the history
attribute (see Line 21). The fairness enhanced fem.matching solution determines in fact
a BipartiteGraph object (see last Line 23).

The actual pairing result obtained with the given bipolar approval ballots above is shown
with the showMatchingFairness() method (see the Listing below). The WithIndividu-
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alCorrelations flag allows to print out the inidividual pairing preference correlations for
all persons in both groups (see Line 2).

>>> fem.showMatchingFairness(
WithIndividualCorrelations=True)

K o *
[tal', 'b4']
['a2', 'b2']
['a3', 'b1']
['ad', 'b5']
['ab', 'b3']

group A correlations:

'al': -0.333

'a2': +1.000

'a3': +1.000

'ad': +1.000

'ab': +1.000
group A average correlation (a) : 0.733
group A standard deviation : 0.596

group B correlations:

'b1': +1.000

'b2': +1.000

'p3': +1.000

'b4': +0.333

'b5': +1.000
group B average correlation (b) : 0.867
group B standard deviation : 0.298
Average correlation : 0.800
Standard Deviation : 0.450

Unfairness |[(a) - (b)]| : 0.133

In group A and group B, all persons except al and b4 get an approved partner (see Lines
11 and 23). Yet, Persons al and b4 do not actually disapprove their respective match.
Hence, the resulting overall ordinal correlation is very high (40.800, see Line 28) and
both groups show quite similar marginal correlation values (+0.733 versus +0.867, see
Lines 16 and 25). The fairness enhanced matching we obtain in this case corresponds
actually to the very fairest among all potential maximal matchings (see Lines 2-3 below).

>>> from pairings import FairestInterGroupPairing
>>> fp = FairestInterGroupPairing(apAl,apB1)

>>> fp.computeMatchingFairnessIndex(fem.matching)
0

Mind however that our fairness enhancing algorithm does not guarantee to end always

in the very fairest potential maximal matching. In Fig. 2.35 is shown the result of a
Monte Carlo simulation of 1000 random intergroup pairing problems of order 6 envolving
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bipolar approval voting profiles with approval, resp. disapproval probalities of 50%, resp.
20%. The failure rate to obtain the fairest pairing solution amounts to 12.4% with an
average failure —optimal minus fairness enhanced average ordinal correlation— of -0.056
and a maximum failure of -0.292.

Optimal versus fairness enhanced average ordinal correlations
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Fig. 2.35: Optimal versus fairness enhanced ordinal correlations

The proportion of failures depends evidently on the difficulty and the order of the pairing
problem. We may however enhance the success rate of the fairness enhancing heuristic by
choosing, like a Gale-Shapley stable in the case of linear voting profiles, a best determined
Copeland ranking scores based initial matching.

Starting the fairness enhancement from a best determined Copeland matching

The partner swapping strategy relies on the Copeland ranking scores of a potential pairing
candidate for all persons in bothe groups. These scores are precomputed and stored in the
copelandScores attribute of the FairnessEnhancedInterGroupMatching object. When
we add, for a pair {ai, b5} both the Copeland ranking score of partner bj from the
perspective of Person ai to the corresponding Copeland ranking score of partner a: from
the perspective of Person bj to two times the observed minimal Copeland ranking score,
we obtain a weakly determined complete bipartite graph object.

>>> from pairings import BestCopelandInterGroupMatching
>>> bcop = BestCopelandInterGroupMatching(apAl,apB1)
>>> bcop.showEdgesCharacteristicValues ()

| Ibll Ib2l Ib3l Ib4l Ib5l
________ | oo o oo __

(continues on next page)
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'al' | +0.56 +0.44 +0.50
'a2' | +0.56 +0.94 +0.19
'a3' | +0.81 +0.56 +0.12
'ad' | +0.56 +0.12 +0.44
'ab' | +0.19 +0.62 +0.94
Valuation domain: [-1.00;1.00]
>>> bcop.showPairing ()
K o *
[tal', 'b4']
['a2', 'b2']
['a3', 'b1']
['ad', 'b5']
['ab', 'b3']

+0.50
+0.62
+0.44
+0.44
+0.31

+0.44
+0.62
+0.31
+0.94
+0.31

(continued from previous page)

By following a kind of ranked pairs rule, we may construct in this graph a best determined
bipartite maximal matching. The matches [a2, b2|, [a4, b5] and [a5, b3] show the highest
Copeland scores (+0.94, see Lines 7,9-10), followed by [a8, b1] (++0.81 Line 6). For Person

al, the best eventually available partner is b4 (-+050, line 6).

We are lucky here with the given example of reciprocal bipolar approval voting pro-
files apA1 and apB1 as we recover immediately the fairest enhanced matching obtained
previously. The best determined Copeland matching is hence very opportune to take as
initial start for the fairness enhancing procedure as it may similarly drastically reduce the
potential number of fairness enhancing partner swappings (see Lines 3 and last below).

>>> fecop = FairnessEnhancedInterGroupMatching(
apAl,apB1,
initialMatching="'bestCopeland"',

>>> fecop.showPairing ()

K e e *
[tal', 'b4']
['a2', 'b2']
['a3', 'bl']
['ad', 'b5']
['ab', 'b3']

>>> fecop.Iterations
0

Comments=False)

A Monte Carlo simulation with 1000 intergroup pairing problems of order 6 with ap-
proval and disapproval probabilities of 30% shows actually that both starting points
—initalMatching = None and initialMatching = ‘bestCopeland’- of the fairness enhanc-
ing heuristic may diverge positively and negatively in their respective best solutions.
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Influence of the starting matching on the fairness enhanced pairing solution
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Fig. 2.36: Influence of the starting point on the fainess enhanced pairing solution

Discuss Fig. 2.36 fem 78.18% success rate fecop 75.78% success rate

If we run the fairness enhancing heuristic from both the left and right initial matchings
as well as from the best determined Copeland matching and retain in fact the respective
fairest solution of these three, we obtain, as shown in Fig. 2.37, a success rate of 87.39%
for reaching the fairest possible pairing solution with an average failure of -0.036 and a
maximum failure of -0.150.
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Optimal versus best posible fainess enhanced solution
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Fig. 2.37: Optimal versus best fairness enhanced pairing solution

For intergroup pairing problems of higher order, it appears however that the best de-
termined Copeland matching gives in general a more efficient initial starting point for
the fairness enhancing heuristic than both the left and right initial ones. In a Monte
Carlo simulation with 1000 random bipolar approval pairing problems of order 50 and
approval-disapproval probabilities of 20%, we obtain the results shown below.

Variables Mean Median S.D. Min Max
Correlation +0.886 +0.888 0.018 +0.850 +0.923
Unfairness 0.053 0.044 0.037 0.000 0.144

Run time (sec.) 1.901  1.895  0.029 1.868  2.142

The median overall average correlation with the individual pairing preferences amounts
to +0.886 with a maximum at +0.923. The Unfairness statistic indicates the absolute
difference between the average correlations obtained in group A versus group B.

In order to study the potential difference in quality and fairness of the pairing solutions
obtained by starting the fairness enhancing procedure from both the left and right inital
matching, from the best determined Copeland matching as well as from the fairest Gale-
Shapley we ran a Monte Carlo simulation with 1000 random intergroup pairing problems
of order 20 and where the individual pairing preferences were given with complete linear
voting profiles (see Fig. 2.38).
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Comparing pairing guality and fairness obtained from different initial matchings
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Fig. 2.38: Comparing pairing results from different fairnesss enhancing start points

If the average ordinal correlations obtained with the three starting matchings are quite
similar —~means within 4+0.690 and +0.693— the differences between the average corre-
lations of group A and group B show a potential advantage for the left&right initial
matchings (mean unfairness: 0.065) versus the best Copeland (mean unfairness: 0.078)
and, even more versus the fairest Gale-Shapley matching (mean unfairness: 0.203, see
Fig. 2.38). The essential unfairness of stable Gale-Shapley matchings may in fact not
being corrected with our fairness enhancing procedure.

Back to Content Table (page 1)

2.10 On computing fair intragroup pairings

The fair intragroup pairing problem (page 167)

Generating random intragroup bipolar approval voting profiles (page 168)

The set of potential intragroup pairing decisions (page 168)

Computing the fairest intragroup pairing (page 169)
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The fair intragroup pairing problem

A very similar decision problem to the intergroup pairing one appears when, instead of
pairing two different sets of persons, we are asked to pair an even-sized set of persons by
fairly balancing again the individual pairing preferences of each person.

Let us consider a set of four persons {p1, p2, p3, p4} to be paired. We may propose three
potential pairing decisions :

(1) p1 with p2 and p3 with p/,

(2) p1 with p3 and p2 with p4, and

(3) p1 with p4 and p2 with p3.

The individual pairing preferences, expressed under the format of bipolar approval ballots,
are shown below:

Bipolar approval ballots

pl

Approvals : ['p3', 'p4']
Disapprovals: ['p2']

P2 :

Approvals ['p1']
Disapprovals: ['p3']

p3 :

Approvals : ['pl', 'p2', 'pd']
Disapprovals: []

pg :

Approvals : ['p2']

Disapprovals: ['pl', 'p3']

Person p1, for instance, approves as potential partner both Persons p3 and p4, but
disapproves Person p2 (see Lines 3-5). Person p& approves all potential partners, i.e.
disapproves none of them (see Lines 9-11).

Out of the three potential pairing decision, which is the one that most fairly balances the
given individual pairing preferences shown above? If we take decision (1), Person p1 will
be paired with a disapproved partner. If we take decision (3), Person p2 will be paired
with a disapproved partner. Only pairing decision (2) allocates no disapproved partner
to all the persons.

We will generalise this approach to larger groups of persons in a similar way as we do in
the intergroup pairing case.
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Generating random intragroup bipolar approval voting profiles

Let us consider a group of six persons. Individual intragroup pairing preferences may be
randomly generated with the RandomBipolarApprovalVotingProfile class by setting
the IntraGroup parameter to True (see Line 6 below)

>>> from votingProfiles import\

. RandomBipolarApprovalVotingProfile

>>> vpG = RandomBipolarApprovalVotingProfile(
numberOfVoters=6,
votersIdPrefix="'p"',
IntraGroup=True,
approvalProbability=0.5,
disapprovalProbability=0.2,

S seed=1)

>>> vpG.showBipolarApprovals ()

Bipolar approval ballots

pl

Approvals : ['p4', 'p5']
Disapprovals: []

P2 :

Approvals : ['p1'l]

Disapprovals: ['p5']

p3 :

Approvals  : []

Disapprovals: ['p2']

p2 :

Approvals ['pl', 'p2', 'p3'l]
Disapprovals: ['p5']

p5 :

Approvals ['pl', 'p2', 'p3', 'p6'l]
Disapprovals: ['p4']

pb :

Approvals : ['pl', 'p2', 'p3', 'p4'l

Disapprovals: []

With an approval probability of 50% and a disapproval probability of 20% we obtain the
bipolar approvals shown above. Person pI approves p/ and p5 and disapproves nobody
whereas Person p2 approves pl and disapproves p5 (see Lines 14-15 and 17-18). To
solve this intragroup pairing problem, we need to generate the set of potential matching
decisions.

The set of potential intragroup pairing decisions

In the intergroup pairing problem, the potential pairing decisions are given by the maxi-
mal independent sets of the line graph of the bipartite graph formed between two even-
sized groups of persons. Here the set of potential pairing decisions is given by the maximal
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independents sets —the perfect matchings*®— of the line graph of the complete graph ob-
tained from the given set of six persons (see below).

>>> persons = [p for p in vpG.voters]
>>> persons
['pl', 'p2', 'p3', 'p4', 'p5', 'p6'l
>>> from graphs import CompleteGraph, LineGraph
>>> cg = CompleteGraph(verticesKeys=persons)
>>> lcg = LineGraph(cg)
>>> lcg.computeMIS()
# result 1s stored into lcg.misset
>>> len(lcg.misset)
15
>>> lcg.misset [0]
frozenset ({frozenset({'p5', 'p2'}),
frozenset({'pl', 'p6'}),
frozenset({'p3', 'p4'HD})

In the intragroup case we observe 15 potential pairing decisions (see Line 10). For a set
of persons of size 2 x k, the number of potential intragroup pairing decisions is actually
given by the double factorial of odd numbers"’ .

Ix3xbhx..x(2xk—1) = (2x k-1

For the first pair we have indeed (2 x k) — 1 partner choices, for the second pair we have
(2 x k) — 3 partner choices, etc. This double factorial of odd numbers is far larger than
the simple k/ number of potential pairing decisions in a corresponding intergroup pairing
problem of order &.

In order to find now the fairest pairing among this potentially huge set of intragroup
pairing decisions, we will reuse the same strategy as for the intergroup case. For each
potential pairing solution, we are computing the average ordinal correlation between
each potential pairing solution and the individual pairing preferences. The fairest pairing
decision is eventually determined by the highest average coupled with the lowest standard
deviation of the individual ordinal correlation indexes.

Computing the fairest intragroup pairing

For a pairing problem of tiny order (2 x kK = 6) we may use the
FairestIntraGroupPairing class for computing in a brute force approach the fairest
possible pairing solution :

>>> from pairings import FairestIntraGroupPairing
>>> fp = FairestIntraGroupPairing(vpG)

>>> fp.nbrO0fMatchings

15

(continues on next page)

48 A perfect matching is a saturated matching, i.e. a maximal matching which leaves no vertice
unconnected.
47 Integer sequence http://oeis.org/A001147
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(continued from previous page)
>>> fp.showMatchingFairness ()
Matched pairs
{'pl' , rp4|}, {rp3| , |p5|}, {|p6| s |p2v}
Individual correlations:
'pl': +1.000, 'p2': +0.000, 'p3': +1.000
'p4': +1.000, 'p5': +1.000, 'p6': +1.000
Average correlation : +0.833
Unfairness (stdev) : 0.408

As expected, we observe with a problem of order 6 a set of 1 x 3 x 5 = 15 potential
pairings (see Line 4) and the fairest pairing solution —highest correlation (+0.833) with
given individual pairing preferences— is shown in Line 7 above. All persons, except p2
are paired with an approved partner and nobody is paired with a disapproved partner
(see Lines 10-11).

In the intergroup pairing case, an indicator of the actual fairness of a pairing solution is
given by the absolute difference between both group correlation values. In the intragroup
case here, an indicator of the fairness is given by the standard deviation of the individ-
ual correlations (see Line 14). The lower this standard deviation with a same overall
correlation result, the fairer appears to be in fact the pairing solution® .

The fp object models in fact a generic Graph object whose edges correspond to the
fairest possible pairing solution (see Lines 11-12). We may hence produce in Fig. 2.39 a
drawing of the fairest pairing solution by using the standard exportGraphViz () method
for undirected graphs.

>>> fp.exportGraphViz('fairestIntraGroupPairing')

*---- exporting a dot file for GraphViz tools --------- *

Exporting to fairestIntraGroupPairing.dot

fdp -Tpng fairestIntraGroupPairing.dot -o fairestIntraGroupPairing.png

50 The inter- and intragroup pairing solvers solely maximise the overall correlation with the individ-
ual pairing preferences. It may happen that a slightly lesser overall correlation result comes with a
considerable lower standard deviation. Is this pairing solution than fairer than the one with a higher
overall correlation? Asked more generally: is a society with highest global welfare but uneven wealth
distribution a fairer society than the one showing less global welfare but with a considerable less uneven
wealth distribution?
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Fig. 2.39: Fairest intragroup pairing solution

Unfortunately, this brute force approach to find the fairest possible pairing solution fails
in view of the explosive character of the double factorial of odd numbers. For a group of 20
persons, we observe indeed already more than 650 millions of potential pairing decisions.
Similar to the intergroup pairing case, we may use instead a kind of hill climbing heuristic
for computing a fair intragroup pairing solution.

Fairness enhancing of a given pairing decision

The FairnessEnhancedIntraGroupMatching class delivers such a solution. When no
initial matching is given (see Line 3 below), our hill climbing strategy will start, similar
to the intergroup pairing case, from two initial maximal matchings. The left one matches
Person pi with Person pi+1 for i in range 1 to 5 by step 3 (see Line 5-6) and the right
one matches Person pi with Person p-i for i in range 1 to 3 (see Line 8-9).

>>> from pairings import FairnessEnhancedIntraGroupMatching
>>> fem = FairnessEnhancedIntraGroupMatching(vpG,

o initialMatching=None,Comments=True)

===>>> Enhancing left initial matching

Initial left matching

[[|p1|, |p2|:|’ [|p3|’ |p4|], [|p5|’ 'p6']]

Fairness enhanced left matching

(['pl', 'p4'l, ['p3', 'pb'l, ['p2', 'p6']] , correlation: 0.833
===>>> Enhancing right initial matching

Initial right matching

[[|p1|’ 'p6'], [|p3|’ |p4|], [|p5|’ 1p21]:|

Fairness enhanced right matching

(['pl', 'p4'l, ['p3', 'pb'l, ['p6', 'p2']] , correlation: 0.833
===>>> Best fairness enhanced matching

Matched pairs

{'pl', rp4|}’ {rp2|, 'p6'}, {|p3|’ |p5|}

Average correlation: +0.833

The correlation enhancing search is similar to the one used for the intergroup heuristic.

For each couple of pairs [{pi, pj}, {pr, ps}| in the respective initial matchings we have in
the intragroup case in fact two partners swapping opportunities: (1) pj <-> ps or, (2)
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pj <-> pr. For both ways, we assess the expected individual correlation gains with the
differences of the Copeland scores induced by the potential swappings. And we eventually
proceed with a swapping of highest expected average correlation gain among all couple
of pairs.

In the case of the previous bipolar approval intragroup voting profile vpG, both starting
points for the hill climbing heuristic give the same solution, in fact the fairest possible
pairing solution we have already obtained with the brute force algorithm in the preceding
Section (see above).

To illustrate why starting from two initial matchings may be useful, we solve below a
random intragroup pairing problem of order 20 where we assume an approval probability
of 30% and a disapproval probability of 20% (see Line 3 below).

>>> yvpGl = RandomBipolarApprovalVotingProfile(
number0fVoters=20,votersIdPrefix="'p"',
IntraGroup=True,approvalProbability=0.3,
o disapprovalProbability=0.2,seed=1)
>>> feml = FairnessEnhancedIntraGroupMatching(vpG1,
.. initialMatching=None,Comments=True)
===>>> Enhancing left initial matching
Initial left matching
[['pO1', 'p02'], ['p03', 'p04'], ['p05', 'p06'], ['p07', 'p08'], ['p09',
< 'p10'],
['p11', 'p12']l, ['p13', 'pi14'l, ['pib', 'pil6'l, ['pl7', 'p18'], ['p19',
< 'p20'1]
Fairness enhanced left matching
[(['pO1', 'p02']l, ['p03', 'p04'], ['p05', 'p15'], ['p06', 'pil']l, ['p09',
- 'pi7'],
['pO7', 'p12']l, ['p13', 'pi14'l, ['p08', 'pi16'l, ['p20', 'p18'], ['p19',
< 'p10'1],
correlation: +0.785
===>>> Enhancing right initial matching
Initialright matching
[(['pO1', 'p20'], ['p03', 'p18'l, ['p05', 'p16'l, ['p07', 'p14'l, ['p09',
< 'p12'],
['p11', 'p10'l, ['p13', 'p08'], ['pib', 'p06'l, ['pl7', 'p04'], ['p19',
~ 'p02']]
Fairness enhanced right matching
[(['pO1', 'p19'], ['p03', 'p02'l, ['p05', 'p15'l, ['p07', 'p18'l, ['p09',
< 'pl7'],
['p14', 'p13']l, ['p10', 'p04'l, ['p08', 'pi12'], ['p20', 'pl6']l, ['p06',
- 'p11'1],
correlation: +0.851
===>>> Best fairness enhanced matching
Matched pairs
{'p01', 'p19'}, {'p03', 'p02'}, {'p05', 'p15'}, {'p06', 'pil'},
{'p07', 'p18'}, {'p08', 'p12'}, {'p09', 'p17'}, {'pl0', 'p04'},

(continues on next page)
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(continued from previous page)
{|p14|, |p13|}, {|p20|, |p16|}
Average correlation: +0.851

The hill climbing from the left initial matching attains an average ordinal correlation of
+0.785, whereas the one starting from the right initial matching improves this result to
an average ordinal correlation of +0.851 (see Lines 14 and 22).

We may below inspect with the showMatchingFairness () method the individual ordinal
correlation indexes obtained this way.

>>> feml.showMatchingFairness(WithIndividualCorrelations=True)
Matched pairs
{'po1', 'p19'}, {'p03', 'p02'}, {'p05', 'pi1b5'},
{'po6', 'p11'}, {'p07', 'p18'}, {'p08', 'pl2'},
{'p09', 'p17'}, {'p10', 'p04'}, {'pl4', 'pl13'},
{'p20', 'pl6'}
Individual correlations:
'pO1': +1.000, 'pO02': +1.000, 'p03': +1.000, 'pO4': -0.143, 'p0b': +1.
000,
'p06': +1.000, 'pO7': +0.500, 'p08': -0.333, 'p09': +1.000, 'pl0': +1.
-000,
'pi1': +1.000, 'pl2': +1.000, 'p13': +1.000, 'pl4': +1.000, 'plb': +1.
-000,
'pl6': +1.000, 'pl7': +1.000, 'p18': +1.000, 'pl9': +1.000, 'p20': +1.
000
Average correlation : +0.851
Standard Deviation : 0.390

Only three persons —p04, p07 and p08— are not matched with a mutually approved
partner (see Lines 9-10 above). Yet, they are all three actually matched with a partner
they neither approve nor disapprove but who in return approves them as partner(see
Lines 10, 19 and 27 below).

>>> vpGl.showBipolarApprovals ()
Bipolar approval ballots

po4 :

Approvals : ['p03', 'pl2', 'pl4', 'pl9']
Disapprovals: ['pl5', 'pl18', 'p20']

plo :

Approvals : ['p04', 'pl7', 'p20']

Disapprovals: ['p0i', 'p02', 'p05', 'p06', 'p07', 'p08',
rpogl’ 'pll', |p121, 'p16', 'p18']

(continues on next page)
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po7 :

(continued from previous page)

Approvals ['p11']

Disapprovals: ['pO1l', 'pl4', 'pl9']

pl2 :

Approvals ['pO6', 'p0O7', 'p08', 'pl0', 'pl6', 'pl9']
Disapprovals: ['pll', 'pl4']

po8 :

Approvals ['pO2', 'p05', 'p06', 'pld', 'pl6', 'pl9']
Disapprovals: ['pO1l', 'p13', 'pi15']

po5 :

Approvals ['p0O1', 'pO4', 'p06', 'p0O7', 'p08', 'pil', 'pls', 'pi6’,
~'p18']

Disapprovals: ['p13', 'p19']

As the size of the potential maximal matchings with a pairing problem of order 20 exceeds
650 million instances, computing the overall fairest pairing solution becomes intractable
and we are unable to check if we reached or not this optimal pairing solution. A Monte
Carlo simulation with 1000 random intragroup pairing problem of order 8, applying an
approval probability of 50% and a disapproval probability of 20%, shows however in Fig.
2.40 the apparent operational efficiency of our hill climbing heuristic, at least for small
orders.
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Optimal versus enhanced ordinal correlation
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Fig. 2.40: Quality of fairness enhanced intragroup pairing solutions of order 8

Only 43 failures to reach the optimal average correlation were counted among the 1000
computations (4.3%) with a maximal difference in between of +0.250.

A similar simulation with more constrained random intragroup pairing problems of order
10, applying an approval and disapproval probability of only 30%, gives a failure rate of
19.1% to attain the optimal fairest pairing solution (see Fig. 2.41).
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Fig. 2.41: Quality of fairness enhanced intragroup pairing solutions of order 10

Choosing, as in the intergroup pairing case, a more efficient initial matching for the
fairness enhancing procedure becomes essential. For this purpose we may rely again
on the best determined Copeland matching obtained with the pairwise Copeland scores
computed on the complete intragroup graph. When we add indeed, for a pair {pi, pj}
both the Copeland ranking score of partner pj from the perspective of Person pi to the
corresponding Copeland ranking score of partner pi from the perspective of Person pj
we may obtain a complete positively valued graph object. In this graph we can, with a
greedy ranked pairs rule, construct a best determined perfect matching which we may
use as efficient initial start for the fairness enhancing heuristic (see below).

>>> from pairings import BestCopelandIntraGroupMatching
>>> cop = BestCopelandIntraGroupMatching(vpG1)
>>> cop.showPairing(cop.matching)

Matched pairs

{'p02', 'p15'}, {'p04', 'p03'}, {'p08', 'p05'}, {'p09', 'p20'}

{'p11', 'p06'}, {'p12', 'pi6'}, {'p14', 'p13'}, {'p17', 'p10'}

{'p18', 'p07'}, {'p19', 'pO1'}

>>> fem2 = FairnessEnhancedIntraGroupMatching(vpGl,

.. initialMatching=cop.matching,Comments=True)

*---- Initial matching ----x*

[(['pO2', 'p15'], ['pO4', 'p03'], ['p08', 'p05'], ['p09', 'p20'],
['p11', 'pO6'], ['pl2', 'pl6'], ['pl4', 'p13'], ['pi7', 'pl0'],
['pi8', 'p07'], ['p19', 'p01']]

Enhancing iteration : 1

Enhancing iteration : 2

(continues on next page)
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===>>> Best fairness enhanced matching

Matched pairs

{'p02', 'p04'}, {'p08', 'p05'}, {'p09', 'p20'},
{'p11', 'p06'}, {'p12', 'pl16'}, {'pl4', 'pl3'},
{'p16', 'p03'}, {'p17', 'p10'}, {'p18', 'p07'},
{'p19', 'poi'}

Average correlation: +0.872

Total run time: 0.193 sec.

With the best determined Copeland matching we actually reach in two partner swappings
a fairer pairing solution (+0.872) than the fairest one obtained with the default left
and right initial matchings (+0.851). This is however not always the case. In order
to check this issue, we ran a Monte Carlo experiment with 1000 random intragroup
pairing problems of order 30 where approval and disapproval probabilities were set to
20%. Summary statistics of the results are shown in the Table below.

Variables Mean Median S.D. Min Max

Correlation +0.823 +0.825 0.044 +0.682 +0.948
Std deviation 0.361 0.362 0.051 0.186 0.575
Iterations 23.69 23.000 3.818 14.00 36.00
Run time 3.990 3.910 0.636 2.340 6.930

These statistics were obtained by trying both the left and right initial matchings as well
as the best determined Copeland matching as starting point for the fairness enhancing
procedure and keeping eventually the best average correlation result. The overall ordinal
correlation hence obtained is convincingly high with a mean of +0.823, coupled with
a reasonable mean standard deviation of 0.361 over the 30 personal correlations. Run
times depend essentially on the number of enhancing iterations. On average, about 24
partner swappings were sufficient for computing all three variants in less than 4 seconds.
In slightly more than two third only of the random pairing problems (69.4%), starting the
fairness enhancing procedure from the best determined Copeland matching leads indeed
to the best overall ordinal correlation with the individual pairing preferences.

When enhancing thus the fairness solely by starting from the best determined Copeland
matching, we may solve with the FairnessEnhancedIntraGroupMatching solver in on
average about 30 seconds an intragroup pairing problem of order 100 with random bipolar
approval voting profiles and approval and disapproval probabilities of 10%. The average
overall ordinal correlation we may obtain is about +0.800.

Mind however that the higher the order of the pairing problem, the more likely gets the
fact that we actually may miss the overall fairest pairing solution. Eventually, a good
expertise in metaheuristics is needed in order to effectively solve big intragroup pairing
problems (Avis aux amateurs).

Back to Content Table (page 1)
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3 Evaluation and decision case studies

This part of the tutorails presents three decision making case studies, followed by a set
of homework and exam questions.

Alice’s best choice: A selection case study (page 178)

The best academic Computer Science Depts: a ranking case study (page 194)

The best students, where do they study? A rating case study (page 216)

FEzercises (page 230)

3.1 Alice’s best choice: A selection case study'’

The decision problem (page 178)

The performance tableau (page 180)

Building a best choice recommendation (page 183)

Robustness analysis (page 190)

Alice D. ; 19 years old German student finishing her secondary studies
in Koln (Germany), desires to undertake foreign languages studies. She will probably
receive her “Abitur” with satisfactory and/or good marks and wants to start her further
studies thereafter.

She would not mind staying in Kdéln, yet is ready to move elsewhere if necessary. The
length of the higher studies do concern her, as she wants to earn her life as soon as
possible. Her parents however agree to financially support her study fees, as well as, her
living costs during her studies.

The decision problem

Alice has already identified 10 potential study programs.

19 This case study is inspired by a Multiple Criteria Decision Analysis case study published in Eisenfiihr
Fr., Langer Th., and Weber M., Fullstudien zu rationalem Entscheiden, Springer 2001, pp. 1-17.
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Table 3.1: Alice’s potential study programs

ID

Diploma

Institution

City

T-UD
T-FHK
T-FHM
I-FHK
T-USB
I-USB
T-UHB
I-UHB
S-HKK
C-HKK

Qualified translator (T
Qualified translator (T
Qualified translator (T

(

Qualified translator (T)
Graduate interpreter (
Qualified translator (T
Graduate interpreter (I
Specialized secretary (S)
Foreign correspondent

University (UD)

Higher Technical School (FHK)
Higher Technical School (FHM)
Higher Technical School (FHK)
University (USB)

University (USB)

University (UHB)

University (UHB)

Chamber of Commerce (HKK)

Chamber of Commerce (HKK)

Diisseldorf
Ko6ln
Miinchen
Koéln
Saarbriicken
Saarbriicken
Heidelberg
Heidelberg
Koéln

Kéln

In Table 3.1 we notice that Alice considers three Graduate Interpreter studies (8 or 9
Semesters), respectively in Kéln, in Saarbriicken or in Heidelberg; and five Qualified
translator studies (8 or 9 Semesters), respectively in Koln, in Diisseldorf, in Saarbriicken,
in Heidelberg or in Munich. She also considers two short (4 Semesters) study programs

at the Chamber of Commerce in Koln.

Four decision objectives of more or less equal importance are guiding Alice’s choice:

1. mazimize the attractiveness of the study place (GEO),

. mazimize the attractiveness of her further studies (LEA),

2
3. minimize her financial dependency on her parents (FIN),
4

. mazimize her professional perspectives (PRA).

The decision consequences Alice wishes to take into account for evaluating the potential
study programs with respect to each of the four objectives are modelled by the following

coherent family of criteria

Page 35, 26
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Table 3.2: Alice’s family of performance criteria

ID  Name Comment Objective Weight
DH Proximity Distance in km to her home (min) GEO 3
BC Big City  Number of inhabitants (max) GEO 3
AS  Studies Attractiveness of the studies (max) LEA 6
SF  Fees Annual study fees (min) FIN 2
LC Living Monthly living costs (min) FIN 2
SL  Length Length of the studies (min) FIN 2
AP Profession Attractiveness of the profession (max) PRA 2
Al Income Annual income after studying (max)  PRA 2
PR Prestige  Occupational prestige (max) PRA 2

Within each decision objective, the performance criteria are considered to be equisignifi-
cant. Hence, the four decision objectives show a same importance weight of 6 (see Table
3.2).

The performance tableau

The actual evaluations of Alice’s potential study programs are stored in a file named
AliceChoice.py of PerformanceTableau format?’.

Listing 3.1: Alice’s performance tableau

>>> from perfTabs import PerformanceTableau
>>> t = PerformanceTableau('AliceChoice')
>>> t.showObjectives ()
e decision objectives ------- "
GEO: Geographical aspect
DH Distance to parent's home 3
BC Number of inhabitants 3
Total weight: 6 (2 criteria)
LEA: Learning aspect
AS Attractiveness of the study program 6
Total weight: 6.00 (1 criteria)
FIN: Financial aspect
SF Annual registration fees 2
(continues on next page)

21 Alice’s performance tableau AliceChoice.py is available in the examples directory of the Digraph3
software collection.
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(continued from previous page)
LC Monthly living costs 2
SL Study time 2
Total weight: 6.00 (3 criteria)
PRA: Professional aspect

AP Attractiveness of the profession 2
AT Annual professional income after studying 2
OP Occupational Prestige 2

Total weight: 6.00 (3 criteria)

Details of the performance criteria may be consulted in a browser view (see Fig. 3.1
below).

>>> t.showHTMLCriteria()

AliceChoice: Family of Criteria

B . | Scale | Thresholds (ax + b)
# Identifyer Name Comment Weight P—
min | max [indifference|preference | veto
[] Annual professional -
1| Al |income after Professional aspect 2.00 | max | 0.00 | 50.00 [0.00x + 0.00| OV0X+
B measured in x / 1000 Euros 1.00
studying
Professional aspect
Attractiveness of  |subjectively measured on a 0.00x +
2 AP the profession three-level scale: 0 (weak), 1 2.00 max 0.00 2.00 |0.00x +0.00 1.00
(fair), 2 (good)
Attracti f Learning aspect subjectively 0.00x + 0.00
3| AS e e e oy [measured from 0 (weak) to | 6.00 | max | 0.00 | 10.00 |0.00x+0.00| “"OT S
¢ study program ) o (excellent) : :
Number of Geographical aspect: 0.05x +
F‘ BC inhabitants measured in x / 1000 3.00 max 0.00 2000.00}0.01x + 0.00 0.00
Distance to Geographical aspect . 0.00x +
E‘ DH parent's home measured in km 3.00 mn 0.00 1000.00}0.00x + 0.00 10.00
Monthly living Financial aspect measured . 0.00x +
E‘ LC costs in Euros 2.00 min 0.00 [1000.00|0.00x + 0.00 100.00
Occupational Professional aspect 0.00x +
F‘ or Prestige measured in SIOPS points 200 max 0.00 |100.00 0.00x + 0.00 10.00
Annual registration |Financial aspect measured . 0.00x +
E‘ SF  [ooe in Euros ‘ 2.00 ‘ min ‘400 00 ‘4000 00‘0 00x + 0.00 ‘ 100.00 ‘
. Financial aspect measured . 0.00x +
E‘ SL study time in number of semesters ‘ 2.00 ‘ min ‘ 0.00 ‘ 10.00 ‘0 00x + 0.00 ‘ 0.50 ‘

Fig. 3.1: Alice’s performance criteria

It is worthwhile noticing in Fig. 3.1 above that, on her subjective attractiveness scale of
the study programs (criterion AS), Alice considers a performance difference of 7 points
to be considerable and triggering, the case given, a polarisation of the outranking situa-
tion. Notice also the proportional indifference (1%) and preference (5%) discrimination

thresholds shown on criterion BC-number of inhabitants.

In the following heatmap view, we may now consult Alice’s performance evaluations.

>>> t.showHTMLPerformanceHeatmap (\
colorLevels=5,Correlations=True,ndigits=0)
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Heatmap of Performance Tableau 'AliceChoice’

|criteria| AS | AP | SF | OP | Al | DH | LC | BC | SL
[weights|+6.00 |+2.00|+2.00|+2.00/+2.00+3.00||+2.00 +3.00 +2.00
| tau®™ |+0.71(+0.64(+0.36|+0.36|+0.24|+0.03| -0.04 |-0.07 |-0.24
|I-FHK | 8 | 2 |[400| 62 |35 | 0 | 0 |1015| 8
|rrusB | 8 | 2 [400| 62 | 45 || -269-1000| 196 | 9
|TFHK | 5 | 1 |-400| 62 | 35 | 0 | 0 [1015| -8
|I-ueB | 8 | 2 |[-400| 62 | 45 ||-275|-1000| 140 | 9
| mUD | 5 | 1 |-400 | 62 | 45 | -41 |-1000( 567 | -9
|TusB | 5 | 1 |[-400 | 62 | 45 || -260|-1000| 196 | -9
ImFHM | 4 | 1 |[-400 | 62 | 35 |[-631 |-1000/1241 | 8
ITUHB | 5 | 1 |-400 | 62 | 45 |-275 -1000| 140 | -9
[CCcHKK| 2 | 0 |[4000| 44 [ 30 | 0 | 0 |1015| 4
|S-HKK| 1 | 0 [-4000| 44 | 30 | 0 | 0 [1015| 4
Color legend:

lquantile | 20.00% | 40.00% | 60.00% | 80.00% | 100.00%

(*) tau: Ordinal (Kendall) correlation between marginal criterion and global ranking relation
Ranking rule: NetFlows
Ordinal (Kendall) correlation between global ranking and global outranking relation: +0.692

Fig. 3.2: Heatmap of Alice’s performance tableau

Alice is subjectively evaluating the Attractiveness of the studies (criterion AS) on an
ordinal scale from 0 (weak) to 10 (excellent). Similarly, she is subjectively evaluating the
Attractiveness of the respective professions (criterion AP) on a three level ordinal scale
from 0 (weak), 1 (fair) to 2 (good). Considering the Occupational Prestige (criterion
OP), she looked up the SIOPS?. All the other evaluation data she found on the internet
(see Fig. 3.2).

Notice by the way that evaluations on performance criteria to be minimized, like Distance
to Home (criterion DH) or Study time (criterion SL), are registered as negative values,
so that smaller measures are, in this case, preferred to larger ones.

Her ten potential study programs are ordered with the NetFlows ranking rule applied to
the corresponding bipolar-valued outranking digraph®’. Graduate interpreter studies in
Koéln (I-FHK) or Saarbriicken (I-USB), followed by Qualified Translator studies in Koln
(T-FHK) appear to be Alice’s most preferred alternatives. The least attractive study
programs for her appear to be studies at the Chamber of Commerce of Koln (C-HKK,
S-HKK).

It is finally interesting to observe in Fig. 3.2 (third row) that the most significant perfor-
mance criteria, appear to be for Alice, on the one side, the Attractiveness of the study
program (criterion AS, tau = +0.72) followed by the Attractiveness of the future profes-
sion (criterion AP, tau = +0.62). On the other side, Study times (criterion SL, tau =

20 Ganzeboom H.B.G, Treiman D.J. “Internationally Comparable Measures of Occupational Status
for the 1988 International Standard Classification of Occupations”, Social Science Research 25, 201-239
(1996).

23 See the tutorial on ranking with multiple incommensurable criteria (page 78).
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-0.24), Big city (criterion BC, tau = -0.07) as well as Monthly living costs (criterion LC,
tau = -0.04) appear to be for her not so significant®’.
Building a best choice recommendation

Let us now have a look at the resulting pairwise outranking situations.

Listing 3.2: Alice’s outranking digraph

>>> from outrankingDigraphs import BipolarOutrankingDigraph
>>> dg = BipolarQutrankingDigraph(t)

>>> dg

L Object instance description ------ *
Instance class : BipolarOutrankingDigraph
Instance name : rel_AliceChoice

# Actions : 10

# Criteria : 9

Size 1 67

Determinateness (%) : 73.91

Valuation domain : [-1.00;1.00]

>>> dg.computeSymmetryDegree (Comments=True)
Symmetry degree of graph <rel_AliceChoice> : 0.49

From Alice’s performance tableau we obtain 67 positively validated pairwise outranking
situations in the digraph dg, supported by a 74% majority of criteria significance (see
Listing 3.2 Line 9-10).

Due to the poorly discriminating performance evaluations, nearly half of these outrank-
ing situations (see Line 13) are symmetric and reveal actually more or less indifference
situations between the potential study programs. This is well illustrated in the relation
map of the outranking digraph (see Fig. 3.3).

>>> dg.showHTMLRelationMap(
tableTitle="'0Outranking relation map',
rankingRule='Copeland')

27 See also the corresponding Advanced Topic in the Digraph3 documentation.
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Outranking relation map

Ranking rule: Copeland

r(x S y) I-FHK I-USB I-UHB T-FHK T-UD T-USB T-UHB T-FHM C-HKK S-HKK
I-FHK . . + . . +
I-USB - + : : : + : : +
I-UHB . . . . . + . . +
'I‘_FHK . . . .
TUD - : : - + +

TUSB - - : - : +

T-UHB = = .

T-FHM = = —

C-HKK - - - - - - - - +
S-HKK = = = - - - - - :

[ Semantics

[ vahd

[ [certainly invalid

Fig. 3.3: ‘Copeland’-ranked outranking relation map

We have mentioned that Alice considers a performance difference of 7 points on the At-

tractiveness of studies criterion AS to be considerable which triggers, the case given, a
potential polarisation of the outranking characteristics. In Fig. 3.3 above, these polari-
sations appear in the last column and last row. We may inspect the occurrence of such
polarisations as follows.

Listing 3.3: Polarised outranking situations

>>> dg.showPolarisations ()

*---- Negative polarisations ----*

number of negative polarisations : 3

1: r(S-HKK >= I-FHK) = -0.17

criterion: AS

Considerable performance difference : -7.00

Veto discrimination threshold : -7.00
Polarisation: r(S-HKK >= I-FHK) = -0.17 ==> -1.00
2: r(S-HKK >= I-USB) = -0.17

criterion: AS

Considerable performance difference : -7.00

Veto discrimination threshold : -7.00
Polarisation: r(S-HKK >= I-USB) = -0.17 ==> -1.00
3: r(S-HKK >= I-UHB) = -0.17

criterion: AS
(continues on next page)
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10

11

12

Considerable performance

Veto discrimination threshold
I-UHB) = -0.17 ==> -1.00
Positive polarisations ----x

Polarisation: r(S-HKK >=
Km — ——

difference : -7.00
: =-7.00

number of positive polarisations: 3

1: r(I-FHK >= S-HKK) = 0.
criterion: AS
Considerable performance
Counter-veto threshold
Polarisation: r(I-FHK >=
2: r(I-USB >= S-HKK) = 0.
criterion: AS
Considerable performance
Counter-veto threshold
Polarisation: r(I-USB >=
3: r(I-UHB >= S-HKK) = 0.
criterion: AS
Considerable performance
Counter-veto threshold
Polarisation: r(I-UHB >=

83

: 7.00

1 7.00
S-HKK) = 0.83 ==> +1.00
17

difference

: 7.00

1 7.00
S-HKK) = 0.17 ==> +1.00
17

difference

: 7.00
: 7.00
S-HKK) = 0.17 ==> +1.00

difference

(continued from previous page)

In Listing 3.3, we see that considerable performance differences concerning the Attractive-
ness of the studies (AS criterion) are indeed observed between the Specialised Secretary
study programm offered in Kéln and the Graduate Interpreter study programs offered
in Ko6ln, Saarbriicken and Heidelberg. They polarise, hence, three more or less invalid
outranking situations to certainly invalid (Lines 8, 13, 18) and corresponding three more
or less valid converse outranking situations to certainly valid ones (Lines 25, 30, 35).

We may furthermore notice in Fig. 3.3, that the four first-ranked study programs, I-
FHK, I-USB, I-UHB and T-FHK, are in fact Condorcet winners (see Listing 3.4 Line 2),
i.e. they are all four indifferent one of the other and they positively outrank all other
alternatives, a result confirmed below by our best choice recommendation (Line 8).

Listing 3.4: Alice’s best choice recommendation

>>> dg.computeCondorcetWinners ()
['I-FHK', 'I-UHB', 'I-USB', 'T-FHK']
>>> dg.showBestChoiceRecommendation()
Best choice recommendation(s) (BCR)

(in decreasing order of determinateness)
Credibility domain: [-1.00,1.00]

=== >> potential first choice(s)

choice ['I-FHK','I-UHB','I-USB','T-FHK']
independence : 0.17
dominance : 0.08
absorbency -0.83
covering (%) 1 62.50

(continues on next page)
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(continued from previous page)
determinateness (%) : 68.75
most credible action(s) = {'I-FHK': 0.75,'T-FHK': 0.17,
'I-USB': 0.17,'I-UHB': 0.17}
=== >> potential last choice(s)

choice : ['C-HKK', 'S-HKK']
independence : 0.50

dominance : -0.83

absorbency 0 0.17

covered (%) : 100.00

determinateness (%) : 58.33
most credible action(s) = {'S-HKK': 0.17,'C-HKK': 0.17}

Notice in Line 14 above that the most credible best choice among the four first-ranked
study programs eventually becomes the Graduate Interpreter study program at the Tech-
nical High School in Kéln supported by a (0.75 4+ 1)/2.0 = 87.5% (18/24) majority of
global criteria significance®*.

In the relation map, shown in Fig. 3.3 above, we finally see in the left corner that
the asymetric part of the outranking relation, i.e. the corresponding strict out-
ranking relation, is actually transitive (see Lines 3-6 in Listing 3.5). We can hence
make usage of the showTransitiveDigraph() method from the transitiveDigraphs.
TransitiveDigraph to illustrate our previous first choice recommendation.

Listing 3.5: The asymetrical outranking is transitive

>>> cdg = “(dg) # codual == strict outranking digraph
>>> cdg.computeTransitivityDegree (Comments=True)
Transitivity degree of digraph <converse-dual-rel_AliceChoice>:
#triples x>y>z: 14, #closed: 14, #open: O
(#closed/#triples) = 1.000
Decimal('1")
>>> from transitiveDigraphs import TransitiveDigraph
>>> TransitiveDigraph.showTransitiveDigraph(cdg)
Ranking by Choosing and Rejecting
1st ranked ['I-FHK', 'I-UHB', 'I-USB', 'T-FHK']
2nd ranked ['T-FHM', 'T-UD', 'T-UHB', 'T-USB']
2nd last ranked ['T-FHM', 'T-UD', 'T-UHB', 'T-USB'])
1st last ranked ['C-HKK', 'S-HKK'])
>>> TransitiveDigraph.exportGraphViz (cdg,
. 'strictOutranking')
*---- exporting a dot file for GraphViz tools --------- *
Exporting to strictOutranking.dot
0 subgraph { rank=same ; I_FHK; I_UHB; I_USB; T_FHK; }
1 subgraph { rank=same; T_UHB; T_USB; T_UD; T_FHM; }
2 subgraph { rank=same; S_HKK; C_HKK; }

(continues on next page)

24 See also the Advanced Topic about computing best choice membership characteristics in the Di-
graph3 documentation.
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(continued from previous page)

dot -Grankdir=TB -Tpng strictOutranking.dot -o strictOutranking.png

Digraph3 (graphviz)
R. Bisdorff, 2020

Fig. 3.4: The strict outranking relation

In Listing 3.5 and in Fig. 3.4 we find actually confirmed that all the Graduate Intergreter
studies come first, followed by the Qualified Translator studies. Last come the Kdln
Chamber of Commerce’s specialized studies. This confirms again the high significance
Alice attaches to the attractiveness of her further stdies and of her future profession (see
criteria AS and AP in Fig. 3.2).

Let us now, for instance, check the pairwise outranking situations observed between the
Graduate Interpreter studies in Kéln and the Graduate Interpreter studies in Saabricken
(see I-FHK and I-USB in Fig. 3.2).

>>> dg.showHTMLPairwiseOutrankings (' I-FHK', 'I-USB')

187



Pairwise Comparison

Comparing actions : (I-FHK,I-USB)

crit. wght.| g(x) | g(y) |diff | ind | pref |concorﬂﬁ|po]arisatinn
| AT [2.00 [35.00 |[+45.00 [10 [0.00 [1.00 |[-2.00

| AP 2.00 [2.00 [+2.00 [0 [0.00 [1.00 [[+2.00

|AS [6.00 [8.00 |+8.00 [0 [0.00 [1.00 |[+6.00

| BC [3.00 [1015.00/+196.00 819 [10.15(50.75 ||+3.00

|DH [3.00 [0.00 [-269.00 269 0.00 [10.00 [+3.00

| LC [2.00 [0.00 |-1000.00[1000(0.00 [100.00|+2.00

| OP [2.00 [62.00 |+62.00 [0 [0.00 [10.00 |[+2.00

| SF [2.00 [-400.00 -400.00 [0  [0.00 [100.00[+2.00

| SL [2.00 [8.00 [9.00 |1 J0.00 [0.50 [+2.00

Valuation in range: -24.00 to +24.00; global concordance: +20.00

Pairwise Comparison

Comparing actions : (I-USB,I-FHK)

lcrit. wght.| g(x) | g(y) | diff [ ind | pref |concordl;|pola1isatinn
| AT [2.00 [45.00 [[+35.00 [10 [[0.00 [[1.00 [+2.00

| AP 2.00 [2.00 [+2.00 [0  [0.00 [1.00 ([+2.00

|AS [6.00 [8.00 [+8.00 [0 |[0.00 [1.00 ([+6.00

| BC [3.00 [196.00 [+1015.00(-819 [10.15[50.75 [-3.00

|DH [3.00 [-269.00 |[+0.00 [-269 [0.00 [10.00 [-3.00

| LC [2.00 [-1000.00(+0.00 [-1000/[0.00 [100.00[-2.00

| OP [2.00 [62.00 [+62.00 [0  |[0.00 [10.00 [+2.00

| SF [2.00 [-400.00 [-400.00 [0  |[0.00 [100.00[+2.00

| SL [2.00 [9.00 |}-8.00 1 [o.00 [0.50 [}-2.00

Valuation in range: -24.00 to +24.00; global concordance: +4.00

Fig. 3.5: Comparing the first and second best-ranked study programs

The Kdln alternative is performing at least as well as the Saarbricken alternative on
all the performance criteria, except the Annual income (of significance 2/24). Conversely,
the Saarbricken alternative is clearly outperformed from the geographical (0/6) as well
as from the financial perspective (2/6) (see Fig. 3.1).

In a similar way, we may compute a partial ranking of all the potential study programs
with the help of the PartialBachetRankingDigraph class (see Listing 3.6 Line 2 below),
which computes a partial transitive ranking consensus (page 99) of the five best qual-
ified Bachet rankings. Such partial transitive digraphs may be shown by recursively
extracting initial and terminal kernels [BIS-1999).

Listing 3.6: Partial ranking from a Bachet rankings con-
sensus

>>> from transitiveDigraphs import PartialBachetRankingDigraph
>>> pbr = PartialBachetRanking(dg,randomized=100,maxNbr0fRankings=5,
(continues on next page)
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—seed=1)
>>> pbr.bachetRankings
[(+0.715,['I-FHK','I-USB','T-FHK','I-UHB','T-UD', 'T-USB'
~"','C-HKK','S-HKK']),

(+0.700,['I-FHK','I-USB','T-FHK','T-UD', 'T-USB','I-UHB'
—','C-HKK','S-HKK']),

(+0.698,['I-FHK','I-UHB','I-USB','T-FHK','T-UD', 'T-USB'
~','C-HKK','S-HKK']),

(+0.692,['I-FHK','I-USB','I-UHB','T-FHK','T-UD', 'T-USB'
—"','S-HKK','C-HKK']),

(+0.684,['I-FHK','I-USB','T-FHK','T-USB','I-UHB','T-UD',
~','C-HKK','S-HKK'1)]
>>> pbr.showTransitiveDigraph()

Ranking by Choosing and Rejecting

1st ranked ['I-FHK']

2nd ranked ['I-UHB', 'I-USB']
3rd ranked ['T-FHK']
4th ranked ['T-UD', 'T-USB']
4th last ranked ['T-UD', 'T-USB'])
3rd last ranked ['T-UHB'])
2nd last ranked ['T-FHM'])

1st last ranked ['C-HKK', 'S-HKK'])
>>> dg.showCorrelation(dg.computeOrdinalCorrelation(pbr))
Correlation indexes:

Crisp ordinal correlation : +0.799

Epistemic determination : 0.405

Bipolar-valued equivalence : +0.323

,'T-UHB'

,'T-UHB'

, ' T-UHB'

,'T-UHB'

'T-UHB'

, ' T-FHM

, ' T-FHM

, ' T-FHM

, ' T-FHM

, ' T-FHM

In Listing 3.6, we find confirmed that the Koln Interpreter studies appear always first-
ranked (Lines 4-8) and all the Interpreter studies are preferrred to the Translator studies
(Lines 11-12). The Kéln Translater studies are the preferred one of all the Translater
studies (Line 13). The Foreign Correspondent and the Specialised Secretary studies both
appear last-ranked (Line 18). Notice by the way the high ordinal correlations of each one
of the five Bachet rankings with the digraph dg (Lines 4-8). Their ranking consensus is
hence also highly correlated with the given outranking digraph dg (+0.80) and supported

by a criteria significance majority of 66% (Lines 21-23).

>>> pbr.exportGraphViz('AlliceBestChoice')
*---- exporting a dot file for GraphViz tools --------- *
Exporting to AlliceBestChoice.dot

dot -Grankdir=TB -Tpng AlliceBestChoice.dot -0 AlliceBestChoice.png
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Digraph3 (graphviz)
R. Bigdorff, 2020

Fig. 3.6: Partial ranking of the study programs

In Fig. 3.6 we find the corresponding drawing of the partial ranking of the ten further
study alternatives. We may notice there that the Heidelberg Interpreter studies do not
compare well with the studies in Saarbricken, Diisseldorf or Kéln.

Yet, how robust are our findings with respect to potential settings of the decision objec-
tives’ importance and the performance criteria significance ?

Robustness analysis

Alice considers her four decision objectives as being more or less equally important. Here
we have, however, allocated strictly equal importance weights with strictly equi-significant
criteria per objective. How robust is our previous best choice recommendation when, now,
we would consider the importance of the objectives and, hence, the significance of the
respective performance criteria to be more or less uncertain 7

To answer this question, we will consider the respective criteria significance weights wy
to be triangular random variables in the range 0 to 2wy with mode = wj. We may
compute a corresponding 90%-confident outranking digraph with the help of the
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ConfidentBipolarOutrankingDigraph constructor®.

Listing 3.7: The 90% confident outranking digraph

>>> from outrankingDigraphs import\

cac ConfidentBipolarOutrankingDigraph

>>> cdg = ConfidentBipolarQOutrankingDigraph(t,
distribution='triangular',confidence=90.0)

>>> cdg

L Object instance description ------ *
Instance class : ConfidentBipolarOutrankingDigraph
Instance name : rel_AliceChoice_CLT
# Actions : 10

# Criteria : 9

Size : 44

Valuation domain : [-1.00;1.00]
Uncertainty model : triangular(a=0,b=2w)
Likelihood domain : [-1.0;+1.0]
Confidence level : 90.0%

Confident credibility : > abs(0.167) (58.3%)
Determinateness (%) : 68.19

Of the original 67 valid outranking situations, we retain 44 outranking situations as being
90%-confident (see Listing 3.7 Line 11). The corresponding 90%-confident qualified
majority of criteria significance amounts to 14/24 = 58.3% (Line 15).

Concerning now a 90%-confident best choice recommendation, we are lucky (see Listing
3.8 below).

Listing 3.8: The 90% confident best choice recommenda-
tion

>>> cdg.computeCondorcetWinners ()
['I-FHK']
>>> cdg.showBestChoiceRecommendation ()
>k 5k >k ok ok ok ok ok k ok ok ok ok >k ok ok ok ok ok k ok ok ok
Best choice recommendation(s) (BCR)
(in decreasing order of determinateness)
Credibility domain: [-1.00,1.00]
=== >> potential first choice(s)

choice : ['I-FHK','I-UHB','I-USB',
'"T-FHK','T-FHM']

independence : 0.00

dominance 1 0.42

absorbency : 0.00

covering (%) : 20.00

determinateness (%) : 61.25
- most credible action(s) = { 'I-FHK': 0.75, }

22 See also the corresponding Advanced Topic in the Digraph3 documentation.
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The Graduate Interpreter studies in Koln remain indeed a 90%-confident Condorcet win-
ner (Line 2). Hence, the same study program also remains our 90%-confident most cred-
ible best choice supported by a continual 18/24 (87.5%) majority of the global criteria
significance (see Lines 9-10 and 16).

When previously comparing the two best-ranked study programs (see Fig. 3.5), we have
observed that I-FHK actually positively outranks /-USB on all four decision objectives.
When admitting equi-significant criteria significance weights per objective, this outrank-
ing situation is hence valid independently of the importance weights Alice may allocate
to each of her decision objectives.

We may compute these unopposed outranking situations®® with help of the
UnOpposedBipolarOutrankingDigraph constructor.

Listing 3.9: Computing the unopposed outranking situ-
ations

>>> from outrankingDigraphs import UnOpposedBipolarQOutrankingDigraph
>>> uop = UnOpposedBipolarQutrankingDigraph(t)

>>> uop
oo Object instance description ------ *
Instance class : UnOpposedBipolarOutrankingDigraph
Instance name : AliceChoice_unopposed_outrankings
# Actions : 10
# Criteria 3 €
Size : 28
Oppositeness (%) : 58.21
Determinateness (%) : 62.94
Valuation domain : [-1.00;1.00]
>>> uop.isTransitive ()
True

We keep 28 out the 67 standard outranking situations, which leads to an oppositeness
degree of (1.0 - 28/67) = 58.21% (Listing 3.9 Line 10). Remarkable furthermore is that
this unopposed outranking digraph wop is actually transitive, i.e. modelling a partial
ranking of the study programs (Line 14).

We may hence make use of the exportGraphViz() method of the TransitiveDigraph
class for drawing the corresponding partial ranking.

>>> from transitiveDigraphs import TransitiveDigraph
>>> TransitiveDigraph.exportGraphViz (uop,ArrowHeads=True,
. fileName='choice_unopposed')
*---- exporting a dot file for GraphViz tools --------- *
Exporting to choice_unopposed.dot
dot -Grankdir=TB -Tpng choice_unopposed.dot -o choice_unopposed.png

25 See also the corresponding Advanced Topic in the Digraph3 documentation.
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Fig. 3.7: Unopposed partial ranking of the potential study programs

Again, when equi-signficant performance criteria are assumed per decision objective, we
observe in Fig. 3.7 that I-FHK remains the stable best choice, independently of the actual
importance weights that Alice may wish to allocate to her four decision objectives.

In view of her performance tableau in Fig. 3.2, Graduate Interpreter studies at the Tech-
nical High School Kdln, thus, represent definitely Alice’s very best choice.

For further reading about the Best Choice methodology, one may consult in [BIS-2015]
the study of a real decision aid case about choosing a best poster in a scientific conference.

Back to Content Table (page 1)
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3.2 The best academic Computer Science Depts: a ranking case
study

e The THE performance tableau (page 194)

e Ranking with multiple incommensurable criteria of ordinal significance
(page 200)

e How to judge the quality of a ranking result? (page 208)

In this tutorial, we are studying a ranking decision problem based on published data from
the Times Higher Education (THE) World University Rankings 2016 by Computer Sci-
ence (CS) subject®®. Several hundred academic CS Departments, from all over the world,
were ranked that year following an overall numerical score based on the weighted average
of five performance criteria: Teaching (the learning environment, 30%), Research (vol-
ume, income and reputation, 30%), Citations (research influence, 27.5%), International
outlook (staff, students, and research, 7.5%), and Industry income (innovation, 5%).

To illustrate our Digraph3 programming resources, we shall first have a look into the
THE ranking data with short Python scripts. In a second Section, we shall relax the
commensurability hypothesis of the ranking criteria and show how to similarly rank with
multiple incommensurable performance criteria of ordinal significance. A third Section
is finally devoted to introduce quality measures for qualifying ranking results.

The THE performance tableau

For our tutorial purpose, an extract of the published THE University rankings 2016 by
computer science subject data, concerning the 75 first-ranked academic Institutions, is
stored in a file named the cs 2016.py of PerformanceTableau format®’.

Listing 3.10: The 2016 THE World University Ranking
by CS subject

>>> from perfTabs import PerformanceTableau
>>> t = PerformanceTableau('the_cs_2016")

>>> ¢
T PerformanceTableau instance description ------ *
Instance class : PerformanceTableau
Instance name : the_cs_2016
# Actions : 75
# Objectives : b
# Criteria 3 3
NaN proportion (%) : 0.0
Attributes : ['name', 'description', 'actiomns',

(continues on next page)

36 https://www.timeshighereducation.com/world-university-rankings /2017 /subject-ranking /
computer-science##!/page/0/length /25 /sort by /rank/sort order/asc/cols/scores

37 The performance tableau the_cs_2016.py is also available in the examples directory of the Di-
graph3 software collection.
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(continued from previous page)
'objectives', 'criteria',
'weightPreorder', 'NA', 'evaluation']

Potential decision actions, in our case here, are the 75 THE best-ranked CS Departments,
all of them located at world renowned Institutions, like California Institute of Technology,
Swiss Federal Institute of Technology Zurich, Technical University Minchen, University
of Ozford or the National University of Singapore (see Listing 3.11 below).

Instead of using prefigured Digraph3 show methods, readily available for inspecting
PerformanceTableau instances, we will illustrate below how to write small Python scripts
for printing out its content.

Listing 3.11: Printing the potential decision actions

>>> for x in t.actions:
print (' /s :\t/s (/s)' %\
(x,t.actions[x] ['name'],t.actions[x] ['comment']) )

albt: University of Alberta (CA)

anu: Australian National University (AU)

ariz: Arizona State University (US)

bju: Beijing University (CN)

bro: Brown University (US)

calt: California Institute of Technology (US)

cbu: Columbia University (US)

chku: Chinese University of Hong Kong (HK)

cihk: City University of Hong Kong (HK)

cir: University of California at Irvine (US)

cmel: Carnegie Mellon University (US)

cou: Cornell University (US)

csb: University of California at Santa Barbara (US)
csd: University 0f California at San Diego (US)

dut: Delft University of Technology (NL)

eind: Eindhoven University of Technology (NL)

ens: Superior Normal School at Paris (FR)

epfl: Swiss Federal Institute of Technology Lausanne (CH)
epfr: Polytechnic school of Paris (FR)

ethz: Swiss Federal Institute of Technology Zurich (CH)
frei: University of Freiburg (DE)

git: Georgia Institute of Technology (US)

glas: University of Glasgow (UK)

hels: University of Helsinki (FI)

hkpu: Hong Kong Polytechnic University (CN)

hkst: Hong Kong University of Science and Technology (HK)
hku: Hong Kong University (HK)

humb: Berlin Humboldt University (DE)

icl: Imperial College London (UK)

(continues on next page)
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indis:
itmo:
kcl:
kist:
kit:
kth:
kuj:
kul:
Ims:
man:
mep:
mel:
mil:
mit:
naji:
ntu:
ntw:
nyu:
oxf:
pud:
qut:
rcu:
rwth:
shJi:
sing:
sou:
stut:
tech:
tlavu:
tsu:
tub:
tud:
tum:
ucl:
ued:
uiu:
unlu:
unsw:
unt:
uta:
utj:
utw:
uwa:
wash:
wtu:
zhej:

(continued from previous page)

Indian Institute of Science (IN)
ITMO University (RU)
King's College London (UK)

Korea Advances Institute of Science and Technology (KR)

Karlsruhe Institute of Technology (DE)
KTH Royal Institute of Technology (SE)
Kyoto University (JP)

Catholic University Leuven (BE)
Lomonosov Moscow State University (RU)
University of Manchester (UK)

University of Maryland College Park (US)
University of Melbourne (AU)

Polytechnic University of Milan (IT)
Massachusetts Institute of Technology (US)
Nanjing University (CN)

Nanyang Technological University of Singapore (SG)

National Taiwan University (TW)

New York University (US)

University of Oxford (UK)

Purdue University (US)

Queensland University of Technology (AU)
Rice University (US)

RWTH Aachen University (DE)

Shanghai Jiao Tong University (CN)
National University of Singapore (SG)
University of Southhampton (UK)
University of Stuttgart (DE)

Technion - Israel Institute of Technology (IL)
Tel Aviv University (IR)

Tsinghua University (CN)

Technical University of Berlin (DE)
Technical University of Darmstadt (DE)
Technical University of Miinchen (DE)
College London (UK)

University
University
University
University
University
University
University
University
University
University
University

of
of
of
of
of
of
of
of
of
of

Edinburgh (UK)

Illinois at Urbana-Champagne (US)
Luxembourg (LU)

New South Wales (AU)

Toronto (CA)

Texas at Austin (US)

Tokyo (JP)

Twente (NL)

Waterloo (CA)

Washington (US)

Vienna University of Technology (AUS)
Zhejiang University (CN)
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The THE authors base their ranking decisions on five objectives.

>>> for obj in t.objectives:
print('/s: ( ),\n\t/s' \
% (obj,t.objectives[obj]['name'],
t.objectives[objl['weight'],
t.objectives[obj] ['comment'])

Teaching: Best learning environment (30.0%),
Reputation survey; Staff-to-student ration;
Doctorate-to-student ratio,
Doctorate-to-academic-staff ratio, Institutional income.
Research: Highest volume and repustation (30.0%),
Reputation survey; Research income; Research productivity
Citations: Highest research influence (27.5%),
Impact.
International outlook: Most internmational staff, students and research
~(7.5%),
Proportions of international students; of international staff;
international collaborations.
Industry income: Best knowledge transfer (5.0%),
Volume.

With a cumulated importance of 87% (see above), Teaching, Research and Citations rep-
resent clearly the major ranking objectives. International outlook and Industry income
are considered of minor importance (12.5%).

THE does, unfortunately, not publish the detail of their performance assessments for
grading CS Depts with respect to each one of the five ranking objectives®’. The THE
2016 ranking publication reveals solely a compound assessment on a single performance
criteria per ranking objective. The five retained performance criteria may be printed out
as follows.

>>> for g in t.criteria:
print(' /s :\t/s, ( ) A
% (g,t.criterialg] ['name'],t.criterialg]['comment'],
t.criterialgl['weight']) )

gtch: Teaching, The learning environment (30.0%)

gres: Research, Volume, income and reputation (30.0%)

gcit: Citations, Research influence (27.5%)

gint: International outlook, In staff, students and research (7.5
<h)

gind: Industry income, knowledge transfer (5.0%)

39 https://www.timeshighereducation.com/sites/default /files /styles/article785xauto /public/wur
graphic_ 1.jpg?itok=XS6NcZfL. gives some insight on the subject and significance of the actual
performance criteria used for grading along each ranking objective.
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The largest part (87.5%) of criteria significance is, hence canonically, allocated to the
major ranking criteria: Teaching (30%), Research (30%) and Citations (27.5%). The
small remaining part (12.5%) goes to International outlook (7.5%) and Industry income

(5%).

In order to render commensurable these performance criteria, the THE authors replace,
per criterion, the actual performance grade obtained by each University with the cor-
responding quantile observed in the cumulative distribution of the performance grades
obtained by all the surveyed institutions’’. The THE ranking is eventually determined
by an overall score per University which corresponds to the weighted average of these
five criteria quantiles (see Listing 3.12 below).

Listing 3.12: Computing the THE overall scores

>>> theScores = []
>>> for x in t.actions:
xscore = Decimal('0")
for g in t.criteria:
xscore += t.evaluation[g][x] *\
(t.criterialg] ['weight']/Decimal('100"))
theScores.append((xscore,x))

In Listing 3.13 Lines 15-16 below, we may thus notice that, in the 2016 edition of the
THE World Unwversity rankings by CS subject, the Swiss Federal Institute of Technology
Zirich is first-ranked with an overall score of 92.9; followed by the California Institute
of Technology (overall score: 92.4)%.

Listing 3.13: Printing the ranked performance table

>>> theScores.sort(reverse = True)
>>> print ('## Univ \tgtch gres gcit gint gind overall')
>>> print (' ——--— - Y
>>> 4 =1
>>> for it in theScores:

x = it[1]

xScore = it[0]

print (! c "% (i,x), end=' \t')

for g in t.criteria:

print (' " % (t.evaluation[g][x]),end=' ')
print (' ' % xScore)
i+=1

## Univ gtch gres gcit gint gind overall
1: ethz 89.2 97.3 97.1 93.6 64.1 92.9
2: calt 91.5 96.0 99.8 59.1 85.9 92.4

(continues on next page)

40 https://www.timeshighereducation.com /world-university-rankings /methodology-world-university-rankings-2016-20
38 The author’s own Computer Science Dept at the University of Lurembourg was ranked on position
63 with an overall score of 58.0.
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It is important to notice that a ranking by weighted average scores requires commensurable
ranking criteria of precise decimal significance and on wich a precise decimal performance
grading is given. It is very unlikely that the THE 2016 performance assessments indeed
verify these conditions. This tutorial shows how to relax these methodological require-
ments -precise commensurable criteria and numerical assessments- by following instead

an epistemic bipolar-valued logic based ranking methodology.

Ranking with multiple incommensurable criteria of ordinal significance

Let us, first, have a critical look at the THE performance criteria.

>>> t.showHTMLCriteria(Sorted=False)
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the cs 2016: Family of Criteria

# |Identifyer Name Comment Weight — - Sca]-e | _ Thresholds (ax + b)
direction min| max |indifference preference| veto

1| gtch [Teaching gg&iﬁiﬁeﬁ% 30.00 | max [0.00[100.00{0.00x + 2.50 O'g_(g%* 06%(?3;0+

2| gres [Research gg?ﬁ%&;ﬁfgﬁe 30.00 | max [0.00[100.00{0.00x + 2.50 O'g_(g%* 06%(?3;0+

3| gcit |[Citations ﬁ?ﬁ:ﬁﬁg 27.50 | max |0.00[100.00{0.00x + 2.50 O'g%?’ %%?gJ

4| ging |[Mternational JIn stafl students | ;50 | ymar10.00100.00(0.00x +2.50| 2% *

5/ ging [Rdusty Innovation 500 | max [0.00/100.00(0.00x +2.50| 2%+

Fig. 3.8: The THE ranking criteria

Considering a very likely imprecision of the performance grading procedure, followed by
some potential violation of uniform distributed quantile classes, we assume here that a
performance quantile difference of up to abs(2.5)% is insignificant, whereas a difference
of abs(5)% warrants a clearly better, resp. clearly less good, performance. With
quantiles 94%, resp. 87.3%, Ozford’s CS teaching environment, for instance, is thus
clearly better evaluated than that of the MIT (see Listing 3.12 Lines 27-28). We shall
furthermore assume that a considerable performance quantile difference of abs(60)%,
observed on the three major ranking criteria: Teaching, Research and Citations, will
trigger a veto, respectively a counter-veto against a pairwise outranking, respectively
a pairwise outranked situation [BIS-2013].

The effect of these performance discrimination thresholds on the preference modelling
may be inspected as follows.

Listing 3.14: Inspecting the performance discrimination

thresholds
>>> t.showCriteria()
¥---- criteria ----- *

gtch 'Teaching'
Scale = (Decimal('0.00'), Decimal('100.00'))
Weight = 0.300
Threshold ind : 2.50 + 0.00x ; percentile: 8.07
Threshold pref : 5.00 + 0.00x ; percentile: 15.75
Threshold veto : 60.00 + 0.00x ; percentile: 99.75
gres 'Research'
Scale = (Decimal('0.00'), Decimal('100.00'))
Weight = 0.300
Threshold ind : 2.50 + 0.00x ; percentile: 7.86
Threshold pref : 5.00 + 0.00x ; percentile: 16.14
Threshold veto : 60.00 + 0.00x ; percentile: 99.21
gcit 'Citations'
Scale = (Decimal('0.00'), Decimal('100.00'))
Weight = 0.275

(continues on next page)
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Threshold ind : 2.50 + 0.00x ; percentile: 11.82

Threshold pref : 5.00 + 0.00x ; percentile: 22.99

Threshold veto : 60.00 + 0.00x ; percentile: 100.00
gint 'International outlook!'

Scale = (Decimal('0.00'), Decimal('100.00'))

Weight = 0.075

Threshold ind : 2.50 + 0.00x ; percentile: 6.45

Threshold pref : 5.00 + 0.00x ; percentile: 11.75
gind 'Industry income'

Scale = (Decimal('0.00'), Decimal('100.00'))

Weight = 0.050

Threshold ind : 2.50 + 0.00x ; percentile: 11.82

Threshold pref : 5.00 + 0.00x ; percentile: 21.51

Between 6% and 12% of the observed quantile differences are, thus, considered to be
insignificant. Similarly, between 77% and 88% are considered to be significant. Less than
1% correspond to considerable quantile differences on both the Teaching and Research
criteria; actually triggering an epistemic polarisation effect [BIS-2013].

Beside the likely imprecise performance discrimination, the precise decimal significance
weights, as allocated by the THE authors to the five ranking criteria (see Fig. 3.8 Col-
umn Weight) are, as well, quite questionable. Significance weights may carry usually
hidden strategies for rendering the performance evaluations commensurable in view of a
numerical computation of the overall ranking scores. The eventual ranking result is thus
as much depending on the precise values of the given criteria significance weights as, vice
versa, the given precise significance weights are depending on the subjectively expected
and accepted ranking results’>. We will therefore drop such precise weights and, instead,
only require a corresponding criteria significance preorder: gtch = gres > gcit > gint >
gind. Teaching environment and Research volume and reputation are equally considered
most important, followed by Research influence. Than comes International outlook in
staff, students and research and, least important finally, Industry income and innovation.

Both these working hypotheses: performance discrimitation thresholds and solely ordinal
criteria significance, give us way to a ranking methodology based on robust pairwise
outranking situations [BIS-2004b]:

e We say that CS Dept z robustly outranks CS Dept y when z positively outranks
y with all significance weight vectors that are compatible with the significance
preorder: gtch = gres > gcit > gint > gind,;

e We say that CS Dept z is robustly outranked by CS Dept y when z is positively
outranked by y with all significance weight vectors that are compatible with the
significance preorder: gtch = gres > gcit > gint > gind,;

e Otherwise, CS Depts z and y are considered to be incomparable.

A corresponding digraph constructor is provided by the RobustOutrankingDigraph class.

42 In a social choice context, this potential double bind between voting profiles and election result,
corresponds to voting manipulation strategies.
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Listing 3.15: Computing the robust outranking digraph

>>> from outrankingDigraphs import RobustOutrankingDigraph
>>> rdg = RobustOutrankingDigraph(t)

>>> rdg

L Object instance description ------ *
Instance class : RobustOutrankingDigraph
Instance name : robust_the_cs_2016

# Actions : 75

# Criteria 2 B

Size : 2993

Determinateness (%) : 78.16

Valuation domain : [-1.00;1.00]

>>> rdg.computeIncomparabilityDegree (Comments=True)
Incomparability degree (%) of digraph <robust_the_cs_2016>:
#links x<->y y: 2775, #incomparable: 102, #comparable: 2673
(#incomparable/#links) = 0.037
>>> rdg.computeTransitivityDegree (Comments=True)
Transitivity degree of digraph <robust_the_cs_2016>:
#triples x>y>z: 405150, #closed: 218489, #open: 186661
(#closed/#triples) = 0.539
>>> rdg.computeSymmetryDegree (Comments=True)
Symmetry degree (%) of digraph <robust_the_cs_2016>:
#arcs x>y: 2673, #symmetric: 320, #asymmetric: 2353
(#symmetric/#arcs) = 0.12

In the resulting digraph instance rdg (see Listing 3.15 Line 8), we observe 2993 such ro-
bust pairwise outranking situations validated with a mean significance of 78% (Line
9). Unfortunately, in our case here, they do not deliver any complete linear ranking rela-
tion. The robust outranking digraph rdg contains in fact 102 incomparability situations
(3.7%, Line 13); nearly half of its transitive closure is missing (46.1%, Line 18) and 12% of
the positive outranking situations correspond in fact to symmetric indifference situations
(Line 22).

Worse even, the digraph rdg admits furthermore a high number of outranking circuits.

Listing 3.16: Inspecting outranking circuits

>>> rdg.computeChordlessCircuits ()

>>> rdg.showChordlessCircuits ()

¥---- Chordless circuits ----%

145 circuits.
1: ['albt', 'unlu', 'ariz', 'hels'] , credibility : 0.300
2 ['albt', 'tlavu', 'hels'] , credibility : 0.150
3: ['anu', 'man', 'itmo'] , credibility : 0.250
4 ['anu', 'zhej', 'rcu'l , credibility : 0.250

(continues on next page)
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(continued from previous page)
82: ['csb', 'epfr', 'rwth'] , credibility : 0.250
83: ['csb', 'epfr', 'pud', 'nyu'l] , credibility : 0.250
84: ['csd', 'kcl', 'kist'] , credibility : 0.250

142: ['kul', 'qut', 'mil'] , credibility : 0.250
143: ['lms', 'rcu', 'tech'] , credibility : 0.300
144: ['mil', 'stut', 'qut'l , credibility : 0.300
145: ['mil', 'stut', 'tud'] , credibility : 0.300

Among the 145 detected robust outranking circuits reported in Listing 3.16, we notice,
for instance, two outranking circuits of length 4 (see circuits #1 and #83). Let us explore
below the bipolar-valued robust outranking characteristics r(x 2Z y) of the first circuit.

Listing 3.17: Showing the relation table with stability
denotation

>>> rdg.showRelationTable(actionsSubset= ['albt','unlu','ariz', 'hels'],
Sorted=False)

* ——-- Relation Table -----
r/(stab)| ‘'albt' 'unlu' 'ariz' 'hels’
_____ | 2 o o m o
'albt' +1.00 +0.30 +0.00 +0.00

'unlu'’ +0.00 +1.00 +0.40 +0.00
'ariz' +0.00 -0.12 +1.00 +0.40

+1) (-2)  (+4) (+2)
'hels' +0.45 +0.00 -0.03 +1.00

|
|
I
0  (+4) (+2) (-1
|
|
|
I

Valuation domain: [-1.0; 1.0]

Stability denotation semantics:

+4|-4 : unanimous outranking | outranked situation;

+2[-2 : outranking | outranked situation validated
with all potential significance weights that are
compatible with the given significance preorder;

+1]-1 : validated outranking | outranked situation with
the given significance weights;

0 : indeterminate relational situation.

In Listing 3.17, we may notice that the robust outranking circuit [‘albt’, ‘unlu’, ‘ariz’,
‘hels’] will reappear with all potential criteria significance weight vectors that are com-
patible with given preorder: gtch = gres > gcit > gint > gind. Notice also the (+1]-1)
marked outranking situations, like the one between ‘albt’ and ‘ariz’. The statement that
“Arizona State University strictly outranks University of Alberta” is in fact valid with
the precise THE weight vector, but not with all potential weight vectors compatible with
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the given significance preorder. All these outranking situations are hence put into doubt
(r(z zZ y) = 0.00) and the corresponding CS Depts, like University of Alberta and Arizona
State University, become incomparable in a robust outranking sense.

Showing many incomparabilities and indifferences; not being transitive and containing
many robust outranking circuits; all these relational characteristics, make that no ranking
algorithm, applied to digraph rdg, does exist that would produce a unique optimal linear
ranking result. Methodologically, we are only left with ranking heuristics. In the previous
tutorial on ranking with multiple criteria (page 78) we have seen now several potential
heuristic ranking rules that may be applied to rank from a pairwise outranking digraph;
yet, delivering all potentially more or less diverging results. Considering the order of
digraph rdg (75) and the largely unequal THE criteria significance weights, we rather
opt, in this tutorial, for the NetFlows ranking rule (page 87)*'. Its complexity in O(n?)
is indeed quite tractable and, by avoiding potential tyranny of short majority effects,
the NetFlows rule specifically takes the ranking criteria significance into a more fairly
balanced account.

The NetFlows ranking result of the CS Depts may be computed explicitly as follows.

Listing 3.18: Computing the robust NetFlows ranking

>>> nfRanking = rdg.computeNetFlowsRanking()
>>> nfRanking

['ethz', 'calt', 'mit', ‘'oxf', ‘cmel', 'git', ‘'epfl',
'icl', 'cou', 'tum', ‘'wash', ‘'sing', 'hkst', 'ucl',
'uiu', ‘'unt', 'ued', ‘'ntu', 'mep', ‘'csd', ‘'cbu',
'uta', 'tsu', 'nyu', ‘'uwa', 'csb', 'kit', ‘'utj',
'bju', 'kecl', ‘'chku', 'kist', ‘'rwth', 'pud', ‘'epfr',
'hku', 'rcu', 'cir', ‘'dut', 'ens', 'ntw', ‘'anu',
"tub', 'mel', 'lms', 'bro', 'frei', 'wtu', 'tech',
'itmo', 'zhej', 'man', ‘'kuj’', 'kul', ‘'unsw', 'glas',
'utw', 'unlu', 'naji', 'sou', 'hkpu', 'qut', ‘humb',

'shJi', 'stut', 'tud', ‘'tlavu', 'cihk', 'albt', 'indis',
'ariz', 'kth', ‘'hels', 'eind', ‘'mil']

We actually obtain a very similar ranking result as the one obtained with the THE overall
scores. The same group of seven Depts: ethz, calt, mit, oxf, cmel, git and epfl, is top-
ranked. And a same group of Depts: tlavu, cihk, indis, ariz, kth, ‘hels, eind, and mil
appears at the end of the list.

We may print out the difference between the overall scores based THE ranking and
our NetFlows ranking with the following short Python script, where we make use of an
ordered Python dictionary with net flow scores, stored in the rdg.netFlowsRankingDict
attribute by the previous computation.

41 The reader might try other ranking rules, like Copeland’s, Kohler’s, Tideman’s rule or the iterated
versions of the NetFlows and Copeland’s rule. Mind that the latter ranking-by-choosing rules are more
complex.

205



Listing 3.19: Comparing the robust NetFlows ranking
with the THE ranking

>>>
>>>

# rdg.netFlowsRankingDict: ordered dictionary with net flow
# scores stored in rdg by the computeNetFlowsRanking() method
>>> # theScores = [(zScore_1,z_1), (zScore_2,z_2),... ]
>>> # 45 sorted in decreasing order of Tscores_1t
>>> print (\

' NetFlows ranking gtch gres gcit gint gind THE ranking')
>>> for i in range(75):

x = nfRanking[i]
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36

37

38

39

40

41

42

43

44

xScore =
thexScore

rdg.netFlowsRankingDict [x] ['netFlow']

,thex =

theScores[i]

print('/2d: /s (/.2f) ' % (i+l,x,xScore), end=' \t')
for g in rdg.criteria:

print('/.1f ' 7 (t.evaluation[g][x]),end=" ')
print(' /s (/.2f)"' % (thex,thexScore) )

NetFlows ranking gtch gres gcit gint gind THE ranking
1: ethz (116.95) 89.2 97.3 97.1 93.6 64.1 ethz (92.88)
2: calt (116.15) 91.5 96.0 99.8 59.1 85.9 calt (92.42)
3: mit (112.72) 87.3 95.4 99.4 73.9 87.5 oxf (92.20)

4: oxf (112.00) 94.0 92.0 98.8 93.6 44.3 mit (92.06)

5: cmel (101.60) 88.1 92.3 99.4 58.9 71.1 git (89.88)

6: git (93.40) 87.2 99.7 91.3 63.0 79.5 cmel (89.43)
7: epfl (90.88) 86.3 91.6 94.8 97.2 42.7 icl (89.00)

8: icl (90.62) 90.1 87.5 95.1 94.3 49.9 epfl (88.86)
9: cou (84.60) 81.6 94.1 99.7 55.7 45.7 tum (87.70)

10: tum (80.42) 87.6 95.1 87.9 52.9 95.1 sing (86.86)
11: wash (76.28) 84.4 88.7 99.3 57.4 41.2 cou (86.59)

12: sing (73.05) 89.9 91.3 83.0 95.3 50.6 ucl (86.05)

13: hkst (71.05) 74.3 92.0 96.2 84.4 55.8 wash (85.60)
14: ucl (66.78) 85.5 90.3 87.6 94.7 42.4 hkst (85.47)
15: uiu (64.80) 85.0 83.1 99.2 51.4 42.2 ntu (85.46)

16: unt (62.65) 79.9 84.4 99.6 77.6 38.4 ued (85.03)

17: ued (58.67) 86.7 85.3 89.7 95.0 38.8 unt (84.42)

18: ntu (57.88) 76.6 87.7 90.4 92.9 86.9 uiu (83.67)

19: mcp (54.08) 79.7 89.3 94.6 29.8 51.7 mcp (81.53)
20: csd (46.62) 75.2 81.6 99.8 39.7 59.8 cbu (81.25)
21: cbu (44.27) 81.2 78.5 94.7 66.9 45.7 tsu (80.91)
22: uta (43.27) 72.6 85.3 99.6 31.6 49.7 csd (80.45)
23: tsu (42.42) 88.1 90.2 76.7 27.1 85.9 uwa (80.02)
24: nyu (35.30) 71.1 77.4 99.4 78.0 39.8 nyu (79.72)
25: uwa (28.88) 75.3 82.6 91.3 72.9 41.5 uta (79.61)
26: csb (18.18) 656.6 70.9 94.8 72.9 74.9 kit (77.94)
27: kit (16.32) 73.8 85.5 84.4 41.3 76.8 bju (77.04)
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sou (-60.83)
hkpu (-62.05)
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csb (76.23)
rwth (76.06)
hku (75.41)
pud (75.17)
kist (74.94)
kcl (74.81)
chku (74.23)
epfr (73.71)
dut (73.44)
tub (73.25)
utj (72.92)
cir (72.50)
ntw (72.00)
anu (70.57)
rcu (69.79)
mel (69.67)
lms (68.38)
ens (68.35)
wtu (67.86)
tech (67.06)
bro (66.49)
man (66.33)
zhej (65.34)
frei (65.08)
unsw (63.65)
kuj (62.77)
sou (62.15)
shJi (61.35)
itmo (60.52)
kul (60.47)
glas (59.78)
utw (59.40)
stut (58.85)
naji (58.61)
tud (58.28)
unlu (58.04)
qut (57.99)
hkpu (57.69)
albt (57.63)
mil (57.47)
hels (57.40)
cihk (57.33)
tlavu (57.19)
indis (57.04)
ariz (56.79)
kth (56.36)

(continues on next page)
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74: eind (-82.85) 32.4 48.4 81.5 72.2 45.8 humb (55.34)
75: mil (-83.67) 46.4 64.3 69.2 44.1 38.5 eind (54.36)

The first inversion we observe in Listing 3.19 (Lines 20-21) concerns Ozford University
and the MIT, switching positions 3 and 4. Most inversions are similarly short and concern
only switching very close positions in either way. There are some slightly more important
inversions concerning, for instance, the Hong Kong University CS Dept, ranked into
position 30 in the THE ranking and here in the position 36 (Line 53). The opposite
situation may also happen; the Berlin Humboldt University CS Dept, occupying the 74th
position in the THE ranking, advances in the NetFlows ranking to position 63 (Line 80).

In our bipolar-valued epistemic framework, the NetFlows score of any CS Dept z (see
Listing 3.19) corresponds to the criteria significance support for the logical statement (z
is first-ranked). Formally

r(z is first-ranked) = 3 L r((zZy)+ (W Zx) = X, (e Zy)-—ryz

Using the robust outranking characteristics of digraph rdg, we may thus explicitly com-
pute, for instance, ETH Ziirich’s score, denoted nfr below.

>>> x = 'ethz'
>>> nfx = Decimal('0')
>>> for y in rdg.actions:
if x '= y:
nfx += (rdg.relation[x][y] - rdg.relation[y][x])

>>> print(x, nfx)
ethz 116.950

In Listing 3.19 (Line 18), we may now verify that ETH Zirich obtains indeed the highest
NetFlows score, and gives, hence the most credible first-ranked CS Dept of the 75
potential candidates.

How may we now convince the reader, that our pairwise outranking based ranking result
here appears more objective and trustworthy, than the classic value theory based THE
ranking by overall scores?

How to judge the quality of a ranking result?

In a multiple criteria based ranking problem, inspecting pairwise marginal performance
differences may give objectivity to global preferential statements. That a CS Dept z
convincingly outranks Dept y may thus conveniently be checked. The ETH Ziirich CS
Dept is, for instance, first ranked before Caltech’s Dept in both previous rankings. Lest
us check the preferential reasons.
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Listing 3.20: Comparing pairwise criteria performances

>>> rdg.showPairwiseOutrankings('ethz', 'calt')

R ettt pairwise comparisons ----

Valuation in range: -100.00 to +100.00

Comparing actions : (ethz, calt)

crit. wght. g(x) g(y) diff | ind  pref r() |
gcit 27.50 97.10 99.80 -2.70
gind 5.00 64.10 85.90 -21.80
gint 7.50 93.60 59.10 +34.50
gres 30.00 97.30 96.00 +1.30
gtch 30.00 89.20 91.50 -2.30

crit. wght. g(y) g(x) diff | ind  pref r() I
gcit  27.50 99.80 97.10 +2.70
gind 5.00 85.90 64.10 +21.80
gint 7.50 59.10 93.60 -34.50
gres 30.00 96.00 97.30 -1.30
gtch 30.00 91.50 89.20 +2.30

A significant positive performance difference (+34.50), concerning the International out-
look criterion (of 7,5% significance), may be observed in favour of the ETH Ziirich Dept
(Line 9 above). Similarly, a significant positive performance difference (+21.80), con-
cerning the Industry income criterion (of 5% significance), may be observed, this time, in
favour of the Caltech Dept. The former, larger positive, performance difference, observed
on a more significant criterion, gives so far a first convincing argument of 12.5% signifi-
cance for putting ETH Ziirich first, before Caltech. Yet, the slightly positive performance
difference (+2.70) between Caltech and ETH Ziirich on the Citations criterion (of 27.5%
significance) confirms an at least as good as situation in favour of the Caltech Dept.

The inverse negative performance difference (-2.70), however, is neither significant (<
-5.00), nor insignificant (> -2.50), and does hence neither confirm nor infirm a not
at least as good as situation in disfavour of ETH Zirich. We observe here a convincing
argument of 27.5% significance for putting Caltech first, before ETH Zirich.

Notice finally, that, on the Teaching and Research criteria of total significance 60%, both
Depts do, with performance differences < abs(2.50), one as well as the other. As these two
major performance criteria necessarily support together always the highest significance
with the imposed significance weight preorder: gich = gres > gcit > gint > gind, both
outranking situations get in fact globally confirmed at stability level +2 (see the advanced
topic on stable outrankings with multiple criteria of ordinal significance).

We may well illustrate all such stable outranking situations with a browser view of the
corresponding robust relation map using our NetFlows ranking.
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>>> rdg.showHTMLRelationMap(tableTitle='Robust Outranking Map',
rankingRule='NetFlows')
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Fig. 3.9: Relation map of the robust outranking relation

In Fig. 3.9, dark green, resp. light green marked positions show certainly, resp.
positively valid outranking situations, whereas dark red, resp. light red marked
positions show certainly, respectively positively valid outranked situations. In the left
upper corner we may verify that the five top-ranked Depts ([‘ethz’, ‘calt’, ‘oxf’, ‘mit’,
‘cmel’|) are indeed mutually outranking each other and thus are to be considered all
indifferent. They are even robust Condorcet winners, i.e positively outranking all other
Depts. We may by the way notice that no certainly valid outranking (dark green) and no
certainly valid outranked situations (dark red) appear below, resp. above the principal
diagonal; none of these are hence violated by our netFlows ranking.

The non reflexive white positions in the relation map, mark outranking or outranked
situations that are not robust with respect to the given significance weight preorder.
They are, hence, put into doubt and set to the indeterminate characteristic value 0.

By measuring the ordinal correlation with the underlying pairwise global and marginal
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robust outranking situations, the quality of the robust netFlows ranking result may be
formally evaluated?&¢ 183, 27,

Listing 3.21: Measuring the quality of the NetFlows rank-
ing result

>>> corrnf = rdg.computeRankingCorrelation(nfRanking)
>>> rdg.showCorrelation(corrnf)

Correlation indexes:

Crisp ordinal correlation : +0.901

Epistemic determination : 0.563

Bipolar-valued equivalence : +0.507

In Listing 3.21 (Line 4), we may notice that the NetFlows ranking result is indeed highly
ordinally correlated (++0.901, in Kendall’s index tau sense) with the pairwise global robust
outranking relation. Their bipolar-valued relational equivalence value (+0.51, Line 6)
indicates a more than 75% criteria significance support.

We may as well check how the netFlows ranking rule is actually balancing the five ranking
criteria.

>>> rdg.showRankingConsensusQuality(nfRanking)
Criterion (weight): correlation

gtch (0.300): +0.660

gres (0.300): +0.638

gcit (0.275): +0.370

gint (0.075): +0.155

gind (0.050): +0.101

Summary :

Weighted mean marginal correlation (a): +0.508
Standard deviation (b) : +0.187
Ranking fairness (a)-(Db) : +0.321

The correlations with the marginal performance criterion rankings are nearly respecting
the given significance weights preorder: gtch = gres > gcit > gint > gind (see above Lines
4-8). The mean marginal correlation is quite high (+0.51). Coupled with a low standard
deviation (0.187), we obtain a rather fairly balanced ranking result (Lines 10-12).

We may also inspect the mutual correlation indexes observed between the marginal cri-
terion robust outranking relations.

>>> rdg.showCriteriaCorrelationTable ()
Criteria ordinal correlation index
| gcit gind gint gres gtch

gcit | +1.00 -0.11  +0.24 +0.13 +0.17
gind | +1.00 -0.18 +0.15 +0.15
gint | +1.00 +0.04 -0.00

(continues on next page)
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(continued from previous page)

s gres | +1.00 +0.67
o gtch | +1.00

Slightly contradictory (-0.11) appear the Citations and Industrial income criteria (Line
5 Column 3). Due perhaps to potential confidentiality clauses, it seams not always pos-
sible to publish industrially relevant research results in highly ranked journals. However,
criteria Citations and International outlook show a slightly positive correlation (40.24,
Column 4), whereas the International outlook criterion shows no apparent correlation
with both the major Teaching and Research criteria. The latter are however highly
correlated (+0.67. Line 9 Column 6).

A Principal Component Analysis may well illustrate the previous findings.

>>> rdg.export3DplotOfCriteriaCorrelation(graphType="'png')
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Fig. 3.10: 3D PCA plot of the pairwise criteria correlation table

In Fig. 3.10 (factors 1 and 2 plot) we may notice, first, that more than 80% of the
total variance of the previous correlation table is explained by the apparent opposition
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between the marginal outrankings of criteria: Teaching, Research & Industry income on
the left side, and the marginal outrankings of criteria: Citations & international outlook
on the right side. Notice also in the left lower corner the nearly identical positions of
the marginal outrankings of the major Teaching & Research criteria. In the factors 2
and 3 plot, about 30% of the total variance is captured by the opposition between the
marginal outrankings of the Teaching & Research criteria and the marginal outrankings
of the Industrial income criterion. Finally, in the factors 1 and 3 plot, nearly 15% of the
total variance is explained by the opposition between the marginal outrankings of the
International outlook criterion and the marginal outrankings of the Citations criterion.

It may, finally, be interesting to assess, similarly, the ordinal correlation of the THE
overall scores based ranking with respect to our robust outranking situations.

Listing 3.22: Computing the ordinal quality of the THE
ranking

>>> # theScores = [(zScore_1,z_1), (zScore_2,z_2),... ]
>>> # 435 sorted in decreasing order of zscores
>>> theRanking = [item[1] for item in theScores]
>>> corrthe = rdg.computeRankingCorrelation(theRanking)
>>> rdg.showCorrelation(corrthe)

Correlation indexes:

Crisp ordinal correlation : +0.907

Epistemic determination : 0.563

Bipolar-valued equivalence : +0.511
>>> rdg.showRankingConsensusQuality(theRanking)
Criterion (weight): correlation

gtch (0.300): +0.683

gres (0.300): +0.670

gcit (0.275): +0.319

gint (0.075): +0.161

gind (0.050): +0.106

Summary:

Weighted mean marginal correlation (a): +0.511
Standard deviation (b) : +0.210
Ranking fairness (a)-(Db) : +0.302

The THE ranking result is similarly correlated (+0.907, Line 7) with the pairwise global
robust outranking relation. By its overall weighted scoring rule, the THE ranking induces
marginal criterion correlations that are naturally compatible with the given significance
weight preorder (Lines 13-17). Notice that the mean marginal correlation is of a similar
value (++0.51, Line 19) as the netFlows ranking’s. Yet, its standard deviation is higher,
which leads to a slightly less fair balancing of the three major ranking criteria.

To conclude, let us emphasize, that, without any commensurability hypothesis and by
taking, furthermore, into account, first, the always present more or less imprecision of any
performance grading and, secondly, solely ordinal criteria significance weights, we may
obtain here with our robust outranking approach a very similar ranking result with more
or less a same, when not better, preference modelling quality. A convincing heatmap
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view of the 25 first-ranked Institutions may be generated in the default system browser
with following command.

>>> rdg.showHTMLPerformanceHeatmap (
WithActionNames=True,
outrankingModel="'this"',
rankingRule='NetFlows',
ndigits=1,
Correlations=True,
fromIndex=0,toIndex=25)
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Heatmap of Performance Tableau 'robust_the cs 2016’

criteria gtch | gres | gcit | gint | gind

weights +30.00|+30.00+27.50+7.50|+5.00

tau) +0.66 || +0.64 | +0.37 |[+0.15|+0.10

Swiss Federal Institute of Technology Zirich (ethz) 97.1 64.1

59.1 || 85.9

5581 113

71.1
79.5
42.7
49.9
55.7 | 45.7

Califormia Institute of Technology (calt)
Massachusetts Institute of Technology (mit)
University of Oxford (oxf)

Carnegie Mellon University (cmel)

Georgia Institute of Technology (git)

Swiss Federal Institute of Technology Lausanne (epfl)
Imperial College London (icl)

Cornell University (cou)

58.9
63.0

| 86.3 | 91.6 | 94.8

[ 90.1 | 87.5 | 95.1
| 81.6 [941 [(99.7

Technical University of Munchen (tum) -- 87.9 || 52.9 -
University of Washington (wash) | 88.7 -| 57.4 412
National University of Singapore (sing) - 91.3 | 83.0 - 50.6
Hong Kong University of Science and Technology (hkst)| 74.3 - 96.2 | 84.4 | 55.8
University College London (ucl) 85.5 | 90.3 | 87.6 |[947[42.4
University of Illinois at Urbana-Champagne (uiu) 85.0 | 83.1 - 514
University of Toronto (unt) 79.9 | 844 -

University of Edinburgh (ued) 85.7 85.3

Nanyang Technological University of Singapore (ntu) 76.6 | 87.7

|Unjversity of Maryland College Park (mcp) | 79.7 | 89.3

University Of California at San Diego (csd) 75.2 81.6

Columbia University (cbu) 81.2 | 78.5

|Unjversity of Texas at Austin (uta) | 72.6 | 85.3

Tsinghua University (tsu) - 90.2

New York University (nyu) | 71.1 | 774

[University of Waterloo (uwa) | 75.3 | 82.6 | 91.3 |72.9 [415

Color legend:

quantile [14:28%][ 28.57% | 42.86% | 57.14% | 71.43% | 35.71%-\

(*) tau: Ordinal (Kendall) correlation between marginal criterion and global ranking relation
Outranking model: this, Ranking rule: NetFlows

Ordinal (Kendall) correlation between global ranking and global outranking relation: +0.901
Mean marginal correlation (a) : +0.308

Standard marginal correlation deviation (b) : +0.187

Ranking fairness (a) - (b) : +0.321

Fig. 3.11: Extract of a heatmap browser view on the NetFlows ranking result

As an exercise, the reader is invited to try out other robust outranking based ranking
heuristics. Notice also that we have not challenged in this tutorial the THE provided
criteria significance preorder. It would be very interesting to consider the five ranking
objectives as equally important and, consequently, consider the ranking criteria to be
equisignificant. Curious to see the ranking results under such settings.

Back to Content Table (page 1)
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3.3 The best students, where do they study? A rating case study

The performance tableau (page 216)

Rating-by-ranking with lower-closed quantile limits (page 220)

Inspecting the bipolar-valued outranking digraph (page 225)

Rating by quantiles sorting (page 226)

To conclude (page 230)

In 2004, the German magazine Der Spiegel, with the help of McKinsey € Company and
AOL, conducted an extensive online survey, assessing the apparent quality of German
University students®®. More than 80,000 students, by participating, were questioned on
their ‘Abitur’ and university exams’ marks, time of studies and age, grants, awards and
publications, I'T proficiency, linguistic skills, practical work experience, foreign mobility
and civil engagement. Each student received in return a quality score through a specific
weighing of the collected data which depended on the subject the student is mainly
studying.?.

The eventually published results by the Spiegel magazine concerned nearly 50,000 stu-
dents, enroled in one of fifteen popular academic subjects, like German Studies, Life
Sciences, Psychology, Law or CS. Publishing only those subject-University combinations,
where at least 18 students had correctly filled in the questionnaire, left 41 GGerman Uni-
versities where, for at least eight out of the fifteen subjects, an average enrolment quality
score could be determined®’.

Based on this published data*®, we would like to present and discuss in this tutorial, how
to rate the apparent global enrolment quality of these 41 higher education institutions
with the help of our Digraph8 software ressources.

The performance tableau

Published data of the 2004 Spiegel student survey is stored, for our evaluation purpose
here, in a file named studentenSpiegel04.py of PerformanceTableau format?”.

Listing 3.23: The 2004 Spiegel students survey data

>>> from perfTabs import PerformanceTableau

>>> t = PerformanceTableau('studentenSpiegel04')

>>> ¢

e PerformanceTableau instance description ------ *
Instance class : PerformanceTableau

(continues on next page)

28 Ref: Der Spiegel 48/2004 p.181, Url: https://www.spiegel.de/thema/studentenspiegel / .

29 The methology guiding the Spiegel survey may be consulted in German here . A copy may be
consulted in examples directory of the Digraph8 ressources.

32 The performance tableau studentenSpiegelO4.py is also available in the examples directory of
the Digraph3 software collection.
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_static/studentenSpiegel04.py
https://www.spiegel.de/thema/studentenspiegel/

10

11

12

14

(continued from previous page)

Instance name : studentenSpiegelO4

# Actions : 41 (Universities)

# Criteria : 15 (academic subjects)

NA proportion (%) : 27.3

Attributes : ['name', 'actions', 'objectives',
'criteria', 'weightPreorder',

'evaluation']
>>> t.showHTMLPerformanceHeatmap (ndigits=1,
rankingRule=None)
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Fig. 3.12: Average quality of enroled students per academic subject

In Fig. 3.12, the fifteen popular academic subjects are grouped into topical ‘Faculties’
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- Humanities; - Law, Economics & Management; - Life Sciences € Medicine; - Natural
Sciences € Mathematics; and - Technology. All fifteen subjects are considered equally
significant for our evaluation problem (see Row 2). The recorded average enrolment
quality scores appear coloured along a 7-tiling scheme per subject (see last Row).

We may by the way notice that TU Dresden is the only Institution showing enrolment
quality scores in all the fifteen academic subjects. Whereas, on the one side, TU Miinchen
and Kaiserslautern are only valuated in Sciences and Technology subjects. On the other
side, Mannheim, is only valuated in Humanities and Law, FEconomics & Management
studies. Most of the 41 Universities are not valuated in Engineering studies. We are,
hence, facing a large part (27.3%) of irreducible missing data (see Listing 3.23 Line 9 and
the advanced topic on coping with missing data).

Details of the enrolment quality criteria (the academic subjects) may be consulted in a
browser view (see Fig. 3.13 below).

>>> t.showHTMLCriteria()

# Identifyer Name Comment Weight Scale Thresholds (ax + b)
direction| min | max [indifference | preference veto
1 bio Life Sciences Life Sciences & Medicine 1.00 max |45.00(65.00(0.00x + 0.100.00x + 0.50
2| chem |Chemistry Natural Sciences & Mathematics | 1.00 max |45.00|65.00|0.00x + 0.10/|0.00x + 0.50
3 eco Economics Law, Economics & Management 1.00 max 45.00(65.00/(0.00x + 0.100.00x + 0.50
4 elec Electrical Engineering [Technoelogy 1.00 max |45.00(65.00|0.00x + 0.10/|0.00x + 0.50
5| germ |German Studies Humanities 1.00 max |45.00|65.00/(0.00x + 0.10(0.00x + 0.50
6 info |Computer Science Technology 1.00 max |45.00|65.00|0.00x + 0.10[0.00x + 0.50
7 law Law Studies Law, Economics & Management 1.00 max |35.00(65.00|0.00x + 0.10/|0.00x + 0.50
8 math |[Mathematics Natural Sciences & Mathaematics| 1.00 max |45.00(65.00|0.00x + 0.10/|0.00x + 0.50
9 mec |Mechanical Engineering [Technology 1.00 max |45.00(65.00|0.00x + 0.10/|0.00x + 0.50
10| med |Medicine Life Sciences & Medicine 1.00 max |45.00|65.00(0.00x + 0.10(0.00x + 0.50
11 mgt |Management Law, Economics & Management 1.00 max |40.00|80.00/|0.00x + 0.10[0.00x + 0.50
12| phys |[Physics Natural Sciences & Mathematics | 1.00 max |45.00(65.00|0.00x + 0.10/|0.00x + 0.50
13 pol Politology Humanities 1.00 max |50.00|70.00/|0.00x + 0.10(0.00x + 0.50
14 psy Psychology Humanities 1.00 max |50.00|70.00|0.00x + 0.10/|0.00x + 0.50
15 sSocC Sociology Humanities 1.00 max |45.00|65.00(0.00x + 0.10(0.00x + 0.50

Fig. 3.13: Details of the rating criteria

The evaluation of the individual quality score for a participating student actually depends
on his or her mainly enroled subject”#s¢ 216: 29 The apparent quality measurement scales
thus largely differ indeed from subject to subject (see Fig. 3.13), like Law Studies (35.0 -
65-0) and Politology (50.0 - 70.0). The recorded average enrolment quality scores, hence,
are in fact incommensurable between the subjects.

To take furthermore into account a potential and very likely imprecision of the individual
quality scores’ computation, we shall assume that, for all subjects, an average enrolment
quality score difference of 0.1 is insignificant, wheras a difference of 0.5 is sufficient to
positively attest a better enrolment quality.

The apparent ncommensurability and very likely imprecision of the recorded average
enrolment quality scores, renders meaningless any global averaging over the subjects per
University of the enrolment quality. We shall therefore, similarly to the methodological
approach of the Spiegel authors”#e¢ 21629 proceed with an order statistics based rating-
by-ranking approach (see tutorial on rating with learned quantile norms (page 112)).
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Rating-by-ranking with lower-closed quantile limits

The Spiegel authors opted indeed for a simple 3-tiling of the Universities per valuated aca-
demic subject, followed by an average Borda scores based global ranking!#6¢ 216: 29 Here,
our epistemic logic based outranking approach, allows us, with adequate choices
of indifference (0.1) and preference (0.5) discrimination thresholds, to estimate lower-
closed 9-tiles of the enrolment quality scores per subject and rank conjointly, with the
help of the Copeland ranking rule®* applied to a corresponding bipolar-valued outranking
digraph, the 41 Universities and the lower limits of the estimated 9-tiles limits.

We need therefore to, first, estimate, with the help of the PerformanceQuantiles con-
structor, the lowerclosed 9-tiling of the average enrolment quality scores per academic
subject.

Listing 3.24: Computing 9-tiles of the enrolment quality
scores per subject

>>> from performanceQuantiles import PerformanceQuantiles
>>> pq = PerformanceQuantiles(t,number0fBins=9,LowerClosed=True)

>>> Pa
R PerformanceQuantiles instance description ------ *
Instance class : PerformanceQuantiles
Instance name : 9-tiled_performances
# Criteria : 15
# Quantiles : 9 (LowerClosed)

# History sizes : {'germ': 39, 'pol': 34, 'psy': 34, 'soc': 32,
'law': 32, 'eco': 21, 'mgt': 34,
'bio': 34, 'med': 28,
'phys': 37, 'chem': 35, 'math': 27,
"info': 33, 'elec': 14, 'mec': 13, }

The history sizes, reported in Listing 3.24 above, indicate the number of Universities
valuated in each one of the popular fifteen subjects. German Studies, for instance, are
valuated for 39 out of 41 Universities, whereas Flectrical and Mechanical Engineering
are only valuated for 14, respectively 13 Institutions. None of the fifteen subjects are
valuated in all the 41 Universities®.

We may inspect the resulting 9-tiling limits in a browser view.

>>> pq.showHTMLLimitingQuantiles (Transposed=True,Sorted=False,
ndigits=1,title='9-tiled quality score limits')

34 See the tutorial on ranking with incommensurable performance criteria (page 78).
30 Tt would have been much more accurate to estimate such quantile limits from the individual qualitiy
scores of all the nearly 50,000 surveyed students. But this data was not public.
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9-tiled quality score limits

Sampling sizes between 13 and 39.

criterion 0.00|0.110.220.33//0.440.56|0.670.78|0.89|1.00
bio 45.049.9/|50.5|51.4||52.3|53.0||53.5|54.8||55.5||57.1
chem |45.0/|52.853.5/54.0/|54.4||55.6(56.4||57.1|57.8||58.8
eco |49.6/50.6(52.2/|53.3/|53.5|53.9(55.8||56.8(59.3||60.8
elec ||50.1|53.6/|54.254.4||55.9||56.1|57.3/|57.5||59.160.2
germ (45.0|51.5(52.4|53.5|54.1||55.1/|56.9||57.3|57.9||61.4
info ||45.0||52.5|54.6/|54.9|55.7|56.2/57.2/58.0/58.7|59.8
law |[39.141.6/|43.044.9||45.4|46.1|46.447.2/|48.5|51.1
math |51.6|54.9(56.6|57.0(57.959.4||60.5/|60.7||62.2|/63.1
mec |51.9||53.6|54.2|(54.4/|54.7|55.1/55.8/56.4/57.4/|57.8
med [45.0(49.0(49.2|49.6/50.2/|51.0||51.4/|52.3||54.0||60.1
mgt |47.5|50.7||52.252.8||53.5/|54.6(55.5|55.7||56.8|68.0
phys [53.9|56.9|58.9(59.7|60.0||60.7/|61.6|61.8 |62.3||62.8
pol 50.853.0|54.955.8/|56.7||57.6(|58.3||59.6(60.4||65.9
psy ||52.5/56.8||57.7/|58.3||58.6(|59.7(59.8/60.8/62.2|64.1
SocC 45.0/(50.5/|52.0||53.4|54.555.055.6/56.2/59.159.8

Fig. 3.14: 9-tiling quality score limits per academic subject

In Fig. 3.14, we see confirmed again the incommensurability between the subjects, we
noticed already in the apparent enrolment quality scoring , especially between Law Studies
(39.1 - 51.1) and Politology (50.5 - 65.9). Universities valuated in Law studies but not
in Politology, like the University of Bielefeld, would see their enrolment quality unfairly
weakened when simply averaging the enrolment quality scores over valuated subjects.

We add, now, these 9-tiling quality score limits to the enrolment quality records of
the 41 Universities and rank all these records conjointly together with the help of the
LearnedQuantilesRatingDigraph constructor and by using the Copeland ranking rule

(page 82).

>>> from sortingDigraphs import LearnedQuantilesRatingDigraph
>>> 1qr = LearnedQuantilesRatingDigraph(pq,t,
rankingRule='Copeland")

The resulting ranking of the 41 Universities including the lower-closed 9-tiling score limits
may be nicely illustrated with the help of a corresponding heatmap view (see Fig. 3.15).

>>> 1qr.showHTMLRatingHeatmap (colorLevels=7,Correlations=True,
ndigits=1,rankingRule='Copeland')
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The ordinal correlation (+0.967)* of the Copeland ranking with the underlying bipolar-
valued outranking digraph is very high (see Fig. 3.15 Row 1). Most correlated sub-
jects with this rating-by-ranking result appear to be German Studies (+0.51), Chemistry
(+0.48), Management (40.47) and Physics (+0.46). Both Electrical (+0.07) and Me-
chanical Engineering (+0.05) are the less correlated subjects (see Row 3).

From the actual ranking position of the lower 9-tiling limits, we may now immediately

deduce the 9-tile enrolment quality equivalence classes. No University reaches the highest
9-tile ([0.89 — [). In the lowest 9-tile ([0.00 — 0.11]) we find the University Duisburg. The
complete rating result may be easily printed out as follows.

Listing 3.25: Rating the Universities into enrolment qual-

ity 9-tiles
>>> 1qr.showQuantilesRating()
R Quantiles rating result ---------
[0.89 - 1.00] []
[0.78 - 0.89[ ['tum', 'frei', 'kons', 'leip', 'mu', 'hei']
[0.67 - 0.78[ ['stu', 'berh']
[0.56 - 0.67[ ['aug', 'mnh', 'tueb', 'mnst', 'jena',
'reg', 'saar']
[0.44 - 0.56[ ['wrzb', 'dres', 'ksl', 'marb', 'berf',
'chem', 'koel', ‘'erl', 'tri'l]

[0.33 - 0.44[ ['goet', 'main', 'bon', 'brem'l]

[0.22 - 0.33[ ['fran', 'ham', 'kiel', 'aach',
'bertu', 'brau', 'darm']

[0.11 - 0.22[ ['gie’, 'dsd', 'bie', 'boc', 'han']

[0.00 - 0.11[ ['duis']

Following Universities: T'U Miinchen, Freiburg, Konstanz, Leipzig, Minchen as well as
Heidelberg, appear best rated in the eigth 9-tile ([0.78 — 0.89][, see Listing 3.25 Line 4).
Lowest-rated in the first 9-tile, as mentioned before, appears University Duisburg (Line
14). Midfield, the fifth 9-tile ([0.44 — 0.56[), consists of the Universities Wiirzburg, TU
Dresden, Kaiserslautern, Marburg, FU Berlin, Chemnitz, Kéoln , Erlangen-Nirnberg and
Trier (Lines 8-9).

A corresponding graphviz drawing may well illustrate all these enrolment quality equiv-
alence classes.

>>> 1qr.exportRatingByRankingGraphViz(fileName='ratingResult',
.. graphSize='12,12")
*---- exporting a dot file for GraphViz tools --------- *
Exporting to ratingResult.dot
dot -Grankdir=TB -Tpdf dot -o ratingResult.png

35 See the advanced topic on the ordinal correlation of bipolar-valued digraphs.
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We have noticed in the tutorial on ranking with multiple criteria (page 78), that there is
not a single optimal rule for ranking from a given outranking digraph. The Copeland rule,
for instance, has the advantage of being Condorcet consistent, i.e. when the outranking
digraph models in fact a linear ranking, this ranking will necessarily be the result of the
Copeland rule. When this is not the case, and especially when the outranking digraph
shows many circuits, all potential ranking rules may give very divergent ranking results,
and hence also substantially divergent rating-by-ranking results.

How confident, hence, is our precise Copeland rating-by-ranking result? To investigate
this question, let us now inspect the outranking digraph on which we actually apply
the Copeland ranking rule.

Inspecting the bipolar-valued outranking digraph

We say that University z outranks (resp. is outranked by) University y in enrolment
quality when there exists a majority (resp. only a minority) of valuated subjects
showing an at least as good as average enrolment quality score.

To compute these outranking situations, we use the BipolarOutrankingDigraph con-
structor.

Listing 3.26: Inspecting the bipolar-valued outranking
digraph

>>> from outrankingDigraphs import BipolarOutrankingDigraph
>>> dg = BipolarOutrankingDigraph(t)

>>> dg

Koo Object instance description ------ *
Instance class : BipolarOutrankingDigraph
Instance name : rel_studentenSpiegelO4
# Actions : 41 (Universities)
# Criteria : 16 (subjects)
Size : 828 (outranking situations)
Determinateness (%) : 63.67
Valuation domain : [-1.00;1.00]

>>> dg.computeTransitivityDegree (Comments=True)

Transitivity degree of digraph <rel_studentenSpiegel04>:
#triples x>y>z: 57837, #closed: 30714, #open: 27123
(#closed/#triples) = 0.531

>>> dg.computeSymmetryDegree (Comments=True)

Symmetry degree of digraph <rel_studentenSpiegel04>:
#arcs x>y: 793, #symmetric: 35, #asymmetric: 758
#symmetric/#arcs = 0.044

The bipolar-valued outranking digraph dg (see Listing 3.23 Line 2), obtained with the
given performance tableau t, shows 828 positively validated pairwise outranking situations
(Line 9). Unfortunately, the transitivity of digraph dg is far from being satisfied: nearly
half of the transitive closure is missing (Line 15). Despite the rather large preference
discrimination threshold (0.5) we have assumed (see Fig. 3.13), there does not occur
many indifference situations (Line 19).
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We may furthermore check if there exists any cyclic outranking situations.

Listing 3.27: Enumerating chordless outranking circuits

>>> dg.computeChordlessCircuits ()

>>> dg.showChordlessCircuits ()
*---- Chordless circuits ----%
93 circuits.

1: ['aach', 'bie', 'darm', 'brau'] , credibility : 0.067
['aach', 'bertu', 'brau'] , credibility : 0.200
['aach', 'bertu', 'brem'] , credibility : 0.067
['aach', 'bertu', 'ham'] , credibility : 0.200
[taug', 'tri', 'marb']l , credibility : 0.067
['aug', 'jena', 'marb'] , credibility : 0.067
['aug', 'jena', 'koel'] , credibility : 0.067

~N O O W N

29: ['berh', 'kons', 'mu'] , credibility : 0.133

88: ['main', 'mnh', 'marb']l , credibility : 0.067
89: ['marb', 'saar', 'wrzb'] , credibility : 0.067
90: ['marb', 'saar', 'reg'l , credibility : 0.067
91: ['marb', 'saar', 'mnst'] , credibility : 0.133
92: ['marb', 'saar', 'tri'] , credibility : 0.067
93: ['mnh', 'mu', 'stu'l , credibility : 0.133

Here we observe indeed 93 such outranking circuits, like: Berlin Humboldt > Konstanz
> Miinchen > Berlin Humboldt supported by a (0.133 + 1.0)/2 = 56.7% majority of
subjects®! (see Listing 3.27 circuit 29 above). In the Copeland ranking result shown
in Fig. 3.15, these Universities appear positioned respectively at ranks 10, 4 and 6. In
the NetFlows ranking result they would appear respectively at ranks 10, 6 and 5, thus
inverting the positions of Konstanz and Miinchen. The occurrence in digraph dg of so
many outranking circuits makes thus doubtful any forced linear ranking, independently
of the specific ranking rule we might have applied.

To effectively check the quality of our Copeland rating-by-ranking result, we shall now
compute a direct sorting into 9-tiles of the enrolment quality scores, without using any
outranking digraph based ranking rule.

Rating by quantiles sorting

In our case here, the Universities represent the decision actions: where to study. We
say now that University z is sorted into the lower-closed 9-tile ¢ when the performance
record of z positively outranks the lower limit record of 9-tile ¢ and z does not
positively outrank the upper limit record of 9-tile q.

31 Converted by a +1.0 shift and a 0.5 * 100 scale transform from a bipolar-valued credibility of +0.07
in [-1.0, +1.0] to a majority (in %) support.
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Listing 3.28: Lower-closed 9-tiles sorting of the 41 Uni-
versities

>>> 1qr.showActionsSortingResult ()

Quantiles sorting result per decision action

[0.33 0.44[: aach with credibility: 0.13 = min(0.13,0.27)
[0.56 0.89[: aug with credibility: 0.13 = min(0.13,0.27)
[0.44 0.67[: berf with credibility: 0.13 = min(0.13,0.20)
[0.78 - 0.89[: berh with credibility: 0.13 = min(0.13,0.33)
[0.22 0.44[: bertu with credibility: 0.20 = min(0.33,0.20)
[0.11 0.22[: bie with credibility: 0.20 = min(0.33,0.20)
[0.22 0.33[: boc with credibility: 0.07 = min(0.07,0.07)
[0.44 0.56[: bon with credibility: 0.13 = min(0.20,0.13)
[0.33 0.44[: brau with credibility: 0.07 = min(0.07,0.27)
[0.33 0.44[: brem with credibility: 0.07 = min(0.07,0.07)
[0.44 0.56[: chem with credibility: 0.07 = min(0.13,0.07)
[0.22 0.56[: darm with credibility: 0.13 = min(0.13,0.13)
[0.56 0.67[: dres with credibility: 0.27 = min(0.27,0.47)
[0.22 0.33[: dsd with credibility: 0.07 = min(0.07,0.07)
[0.00 - 0.11[: duis with credibility: 0.33 = min(0.73,0.33)
[0.44 0.56[: erl with credibility: 0.13 = min(0.27,0.13)
[0.22 0.44[: fran with credibility: 0.13 = min(0.13,0.33)
[0.78 - <[: frei with credibility: 0.53 = min(0.53,1.00)
[0.22 0.33[: gie with credibility: 0.13 = min(0.13,0.20)
[0.33 - 0.44[: goet with credibility: 0.07 = min(0.47,0.07)
[0.22 0.33[: ham with credibility: 0.07 = min(0.33,0.07)
[0.11 0.22[: han with credibility: 0.20 = min(0.33,0.20)
[0.78 0.89[: hei with credibility: 0.13 = min(0.13,0.27)
[0.56 - 0.67[: jena with credibility: 0.07 = min(0.13,0.07)
[0.33 0.44[: kiel with credibility: 0.20 = min(0.20,0.47)
[0.44 0.56[: koel with credibility: 0.07 = min(0.27,0.07)
[0.78 <[: kons with credibility: 0.20 = min(0.20,1.00)
[0.56 0.89[: ksl with credibility: 0.13 = min(0.13,0.40)
[0.78 - 0.89[: leip with credibility: 0.07 = min(0.20,0.07)
[0.44 - 0.56[: main with credibility: 0.07 = min(0.07,0.13)
[0.56 0.67[: marb with credibility: 0.07 = min(0.07,0.07)
[0.56 0.89[: mnh with credibility: 0.20 = min(0.20,0.27)
[0.56 0.67[: mnst with credibility: 0.07 = min(0.20,0.07)
[0.78 0.89[: mu with credibility: 0.13 = min(0.13,0.47)
[0.56 0.67[: reg with credibility: 0.20 = min(0.20,0.27)
[0.56 - 0.78[: saar with credibility: 0.13 = min(0.13,0.20)
[0.78 0.89[: stu with credibility: 0.07 = min(0.13,0.07)
[0.44 0.56[: tri with credibility: 0.07 = min(0.13,0.07)
[0.67 - 0.78[: tueb with credibility: 0.13 = min(0.13,0.20)
[0.89 <[: tum with credibility: 0.13 = min(0.13,1.00)
[0.56 0.67[: wrzb with credibility: 0.07 = min(0.20,0.07)
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In the 9-tiles sorting result, shown in Listing 3.28, we notice for instance in Lines 3-4
that the RWTH Aachen is precisely rated into the 4th 9-tile ([0.33 — 0.44[), whereas
the University Augsburg is less precisely rated conjointly into the 6th, the 7th and the
8th 9-tile ([0.56 — 0.89[). In Line 42, TU Miinchen appears best rated into the unique
highest 9-tile ([0.89— < [). All three rating results are supported by a (0.07 + 1.0)/2
— 53.5% majority of valuated subjects”&¢ 226 3 With the support of a 76.5% majority
of valuated subjects (Line 20), the apparent most confident rating result is the one of
University Freiburg (see also Fig. 3.12 and Fig. 3.15).

We shall now lexicographically sort these individual rating results per University, by
average rated 9-tile limits and highest-rated upper 9-tile limit, into ordered, but not
necessarily disjoint, enrolment quality quantiles.

>>> 1qr.showHTMLQuantilesSorting(strategy="'average')

'quantile limits Ordering by average quantile class limits
[0.89-<[ [tum’]

[0.78-<[ ['frei’, kons']

[0.78-0.89[  |['berh', 'hei, 'leip', 'mu', 'stu']

‘[0.56—0.89[ ['aug', 'ksl', 'mnh']

[067-078]  ['tueb]

[056-0.78[  |['saar]

‘[O S56-0.67] ‘['dres‘, jena’, 'marb', 'mnst', 'reg', 'wrzb']
[044-067] |[berf]

\[0 44-0.56[ \['bon', 'chem’, 'erl', 'koel', 'main’, 'tri']

‘[0 22-0.56[ ['darm']

[033-044[  ['aach', 'brau', 'brem', 'goet’, 'kiel']

‘ [0.22-0.44] ‘['bertu' , 'fran']

‘[0.22—0.33[ ‘['boc', 'dsd', 'gie', 'Tham']

‘[0.1 1-0.22] ‘['bie', 'han']

[0.00-0.11[ |[duis] saren

Fig. 3.17: The ranked 9-tiles rating-by-sorting result

In Fig. 3.17 we may notice that the Universities: Augsburg, Kaiserslautern, Mannheim
and Tiibingen for instance, show in fact the same average rated 9-tiles score of 0.725;
yet, the rated upper 9-tile limit of Tuebingen is only 0.78, whereas the one of the other
Universities reaches 0.89. Hence, Tuebingen is ranked below Augsburg, Kaiserslautern
and Mannheim .

With a special graphviz drawing of the LearnedQuantilesRatingDigraph instance lgr,
we may, without requiring any specific ordering strategy, as well illustrate our 9-tiles
rating-by-sorting result.

>>> 1qr.exportRatingBySortingGraphViz(\
'nineTilingDrawing',graphSize='12,12")

(continues on next page)
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(continued from previous page)

*---- exporting a dot file for GraphViz tools --------- *
Exporting to nineTilingDrawing.dot
dot -Grankdir=TB -Tpng nineTilingDrawing.dot -o nineTilingDrawing.png
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R. Bisdorff, 2020

Fig. 3.18: Graphviz drawing of the 9-tiles sorting digraph

In Fig. 3.18 we actually see the skeleton (transitive closure removed) of a partial order,
where an oriented arc is drawn between Universities z and y when their 9-tiles sorting
results are disjoint and the one of z is higher rated than the one of y. The rating
for TU Miinchen (see Listing 3.28 Lines 45), for instance, is disjoint and higher rated
than the one of the Universities Freiburg and Konstanz (Lines 23, 32). And, both the
ratings of Feiburg and Konstanz are, however, not disjoint from the one, for instance, of
the Universty of Stuttgart (Line 42).

The partial ranking, shown in Fig. 3.18, is in fact independent of any ordering strategy:

229



- average, - optimistic or - pessimistic, of overlapping 9-tiles sorting results, and con-
firms that the same Universities as with the previous rating-by-ranking approach, namely
TU Miinchen, Freiburg, Konstanz, Stuttgart, Berlin Humboldt, Heidelberqg and Leipzig
appear top-rated. Similarly, the Universities of Duisburg, Bielefeld, Hanover, Bochum,
Giessen, Diisseldorf and Hamburg give the lowest-rated group. The midfield here is
again consisting of more or less the same Universities as the one observed in the previous
rating-by-ranking approach (see Fig. 3.16).

To conclude

In the end, both the Copeland rating-by-ranking, as well as the rating-by-sorting approach
give luckily, in our case study here, very similar results. The first approach, with its
forced linear ranking, determines on the one hand, precise enrolment quality equivalence
classes; a result, depending potentially a lot on the actually applied ranking rule. The
rating-by-sorting approach, on the other hand, only determines for each University a
less precise but prudent rating of its individual enrolment quality, furthermore supported
by a known majority of performance criteria significance; a somehow fairer and robuster
result, but, much less evident for easily comparing the apparent enrolment quality among
Universities. Contradictorily, or sparsely valuated Universities, for instance, will appear
trivially rated into a large midfield of adjacent 9-tiles.

Let us conclude by saying that we prefer this latter rating-by-sorting approach; perhaps
impreciser, due the case given, to missing and contradictory performance data; yet, well
grounded in a powerful bipolar-valued logical and espistemic framework (see the advanced
topics of the Digraph3 documentation).

Back to Content Table (page 1)

3.4 Exercises

We propose hereafter some decision problems which may serve as exercises and exam
questions in an Algorithmic Decision Theory Course. They cover selection, ranking and
rating decision problems. The exercises are marked as follows: § (warming up), §§ (home
work), §8§ (research work).

e Who will receive the best student award? (§) (page 231)

How to fairly rank movies (§) (page 231)

What is your best choice recommendation? (§) (page 232)
What is the best public policy? (§§) (page 234)
A fair diploma validation decision (§§§) (page 234)

Solutions should be supported both by computational Python code using the Digraph3
programming resources as well as by methodological and algorithmic arguments from the
Algorithmic Decision Theory Lectures.
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Who will receive the best student award? (§)
Data

Below in Table 3.3 you see the actual grades obtained by four students : Ariana (A),
Bruce (B), Clare (C) and Daniel (D) in five courses: C1, C2, C3, C4 and C5 weighted
by their respective ECTS points.

Table 3.3: Grades obtained by the students

Course Cl C2 C3 C4 b
ECTS 2 3 4 2 4

Ariana (A) 11 13 9 15 11
Bruce (B) 12 9 13 10 13
Clare (C) 8 11 14 12 14
Daniel (D) 15 10 12 8 13

The grades shown in Table 3.3 are given on an ordinal performance scale from 0 pts
(weakest) to 20 pts (highest). Assume that the grading admits a preference threshold of
1 points. No considerable performance differences are given. The more ECTS points,
the more importance a course takes in the curriculum of the students. An award is to be
granted to the best amongst these four students.

Questions
1. Edit a PerformanceTableau (page 51) instance with the data shown above.
2. Who would you nominate 7
3. Explain and motivate your selection algorithm.

4. Assume that the grading may actually admit an indifference threshold of 1 point
and a preference threshold of 2 points. How stable is your result with respect to
the actual preference discrimination power of the grading scale?

How to fairly rank movies (§)
Data

e File graffiti03.py contains a performance tableau about the rating of movies to be
seen in the city of Luxembourg, February 2003. Its content is shown in Fig. 3.19
below.

>>> from perfTabs import PerformanceTableau

>>> t = PerformanceTableau('graffiti03"')

>>> t.showHTMLPerformanceHeatmap (WithActionNames=True,
pageTitle='Graffiti Star wars',
rankingRule=None,colorLevels=5,
ndigits=0)
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_static/graffiti03.py

Graffiti Star wars

movies (id) \ critics jh vt ap as cf cn cs dr jt mk | mr | rr td
weights +2.00|+2.00|+1.00(+1.00|(+1.00/+1.00||+1.00(+1.00|+1.00||+1.00/(+1.00|+1.00||+1.00

Ah si j'étais riche (ah) 1 -1 1 1 1 3
A walk to remember (aw) | -1 | 1 2 | -1 | 1
Bend it like Beckham (bb) 2 1 2 1 2 2 3 2 2 3 2 3 1
Demonlover (dl) -1 -1 -1 -1 1 1 1 1
Gangs of New York (gny) 3 3 2 4 2 4 2 3 4 2 4 3
Ghost Ship (gs) 1 -1 1 1 1 A A il
El Hija de la Novia (hn) 2 1 3 3 2 2 2 3 2 2
Lantana (la) g g g 2 3 3 2 2 3 3 4 3 |
Lord of the Rings - The Two Towers (lor)| 3 2 2 3 3 3 4 4 1 2 2 2
The Magdalene Sisters (ma) 3 3 & 2 & & 3 2 2 g}
Mr. Deeds (md) 1 1 -1 -1 1 -1 -1 1
Mon Idole (mi) 1 1 -1 1 -1 2 | -1 2
the Slaton Sea (sa) 2 | | 2| 1 3 1
the santa Clause 2 (sc) | 1 1 -1 1 1 1
Sweet home Alabama (sha) -1 2 -1 1 1 2 2 2 1 1 1
Sweet Sixteen (ss) 3 3 3 3 3 4 2 3 3 3 3 1 3
24 heures de la vie d'une femme (vf) 1 1 1 1 1
Color legend:

[quantile [ 20.00%] 40.00% | 60.00%]| 80.00% 100.00%

Fig. 3.19: Graffiti magazine’s movie ratings from February 2003

The critic’s opinions are expressed on a 7-graded scale: -2 (two zeros, I hate), -1 (one
zero, I don’t like), 1 (one star, maybe), 2 (two stars, good), 3 (three stars, excellent),
4 (four stars, not to be missed), and 5 (five stares, a master piece). Notice the many
missing data (NA) when a critic had not seen the respective movie. Mind also that the
ratings of two movie critics (jh and vt) are given a higher significance weight.

Questions

1. The Graffiti magazine suggest a best rated movie with the help of an average number
of stars, ignoring the missing data and any significance weights of the critics. By
taking into account missing data and varying significance weights, how may one
find the best rated movie without computing any average rating scores ?

2. How would one rank these movies so as to at best respect the weighted rating
opinions of each movie critic ?

3. In what ranking position would appear a movie not seen by any movie critic ?
Confirm computationally the answer by adding such a fictive, not at all evaluated,
movie to the given performance tableau instance.

4. How robust are the preceeding results when the significance weights of the movie
critics are considered to be only ordinal grades ?
What is your best choice recommendation? (§)
Data’

A person, who wants to by a TV set, retains after a first selection, eight potential TV
models. To make up her choice these eight models were evaluated with respect to three

46 The data is taken from Ph. Vincke, Multicriteria Decision-Aid, John Wiley & Sons Ltd, Chichester
UK 1992, p.33-35.
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decision objectives of equal importance: - Costs of the set (to be minimized); - Picture
and Sound quality of the TV (to be maximized): - Maintenace contract quality of
the provider (to be maximized).

The Costs objective is assessed by the price of the TV set (criterion Pr to be minimized).
Picture quality (criterion Pq), Sound quality (criterion Sq) and Maintenace contract
quality (criterion Mq) are each assessed on a four-level qualitative performance scale: -1
(not good), 0 (average), 1 (good) and 2 (very good).

The actual evaluation data are gathered in Table 3.4 below.

Table 3.4: Performance evaluations of the potential TV
sets

Criteria Pr (€)
Significance 2

Model T1 ~ -1300
Model T2  -1200
Model T3  -1150
Model T4  -1000
Model T5  -950
Model T6  -950
Model T7  -900
Model T8  -900

Mq
2

Q0

O, ORFR NN =T

o)

OO R === NN~ W]
—_

The Price criterion Pr supports furthermore an indifference threshold of 25.00 € and a
preference threshold of 75.00 €. No considerable performance differences (veto thresh-
olds) are to be considered.

Questions

1. Edit a PerformanceTableau (page 51) instance with the data shown above and
illustrate its content by best showing objectives, criteria, decision alternatives and
performance table. If needed, write adequate python code.

What is the best TV set to recommend?
Mlustrate your best choice recommendation with an adequate graphviz drawing.

Explain and motivate your selection algorithm.

BN R

Assume that the qualitative criteria: Picture quality (Pq), Sound quality (Sq), and
Maintenace contract quality (Mq), are all three considered to be equi-significant and
that the significance of the Price criterion ( Pr) equals the significance of these three
quality criteria taken together. How stable is your best choice recommendation with
respect to changing these criteria significance weights?
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What is the best public policy? (§8§)
Data files

e File perfTab 1.py contains a 3 Objectives performance tableau (page 70) with 100

performance records concerning public policies evaluated with respect to an eco-
nomic, a societal and an environmental public decision objective.

e File historicalData 1.py contains a performance tableau of the same kind with 2000

historical performance records.

Questions

1.

[llustrate the content of the given perfTab_1.py performance tableau by best show-
ing objectives, criteria, decision alternatives and performance table. If needed, write
adequate python code.

Construct the corresponding bipolar-valued outranking digraph. How confident
and /or robust are the apparent outranking situations?

. What are apparently the 5 best-ranked decision alternatives in your decision prob-

lem from the different decision objectives point of views and from a global fair
compromise view? Justify your ranking approach from a methodological point of
view.

How would you rate your 100 public policies into relative deciles classes 7

Using the given historical records in historicalData 1.py, how would you rate your
100 public policies into absolute deciles classes 7 Explain the differencea you may
observe between the absolute and the previous relative rating result.

Select among your 100 potential policies a shortlist of up to 15 potential first policies,
all reaching an absolute performance quantile of at least 66.67%.

Based on the previous best policies shortlist (see Question 6), what is your eventual
best-choice recommendation? Is it perhaps an unopposed best choice by all three
objectives?

A fair diploma validation decision (§§§)

Data

Use the RandomAcademicPerformanceTableau constructor from the Digraph3 Python
resources for generating realistic random students performance tableaux concerning a
curriculum of nine ECTS weighted Courses. Assume that all the gradings are done on
an integer scale from 0 (weakest) to 20 (best). It is known that all grading procedures
are inevitably imprecise; therefore we will assume an indifference threshold of 1 point
and a preference theshold of 2 points. Thurthermore, a performance difference of more
than 12 points is considerable and will trigger an outranking polarisation. To validate
eventually their curriculum, the students are required to obtain more or less 10 points in
each course.

Questions
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_static/perfTab_1.py
_static/historicalData_1.py

1. Design and implement a fair diploma validation decision rule based on the grades
obtained in the nine Courses.

2. Run simulation tests with random students performance tableaux for validating
your design and implementation.

Back to Content Table (page 1)

4 Working with big outranking digraphs

This part introduces python resources for tackling large and big outranking digraphs.
First we introduce a sparse model of large outranking digraphs (order < 1000). In a
second section we show how to use multiprocessing resources for working with multiple
threads in parallel (order < 10000). Finally, we introduce multiprocessing C-versions
of the main Digraph3 modules for working with very big outranking digraphs (order >
10000).

e Sparse bipolar-valued outranking digraphs (page 235)
o Using Digraph3 multiprocessing resources (page 240)

e On ranking big outranking digraphs (page 243)

4.1 Sparse bipolar-valued outranking digraphs

o The sparse pre-ranked outranking digraph model (page 235)

e Ranking pre-ranked sparse outranking digraphs (page 239)

The RatinbByRelativeQuantilesDigraph constructor gives via the rating by relative
quantiles a linearly ordered decomposition of the corresponding bipolar-valued outranking
digraph (see Listing 2.44). This decomposition leads us to a new sparse pre-ranked
outranking digraph model.

The sparse pre-ranked outranking digraph model

We may notice that a given outranking digraph -the association of a set of decision
alternatives and an outranking relation- is, following the methodological requirements
of the outranking approach, necessarily associated with a corresponding performance
tableau. And, we may use this underlying performance tableau for linearly decomposing
the set of potential decision alternatives into ordered quantiles equivalence classes
by using the quantiles sorting technique seen in the previous Section.

In the coding example shown in Listing 4.1 below, we generate for instance, first (Lines
2-3), a simple performance tableau of 75 decision alternatives and, secondly (Lines 4),
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we construct the corresponding PreRankedOutrankingDigraph instance called prg. No-
tice by the way the BigData flag (Line 3) used here for generating a parsimoniously
commented performance tableau.

Listing 4.1: Computing a pre-ranked sparse outranking
digraph

>>> from randomPerfTabs import RandomPerformanceTableau

>>> tp = RandomPerformanceTableau(numberO0fActions=75,

>>> from sparseQutrankingDigraphs

>>> prg

BigData=True,seed=100)
import \
PreRankedOutrankingDigraph

= PreRankedOutrankingDigraph(tp,quantiles=5)
>>> prg
o Object instance description ------ *

Instance class
Instance name

: PreRankedOutrankingDigraph
: randomperftab_pr

# Actions . 75

# Criteria 7

Sorting by : 5-Tiling

Ordering strategy : average

# Components 9

Minimal order i1

Maximal order : 25

Average order : 8.3

fill rate : 20.432Y%

Attributes : ['actions', 'criteria', 'evaluation', 'NA', 'name',
'order', 'runTimes', 'dimension', 'sortingParameters',
'valuationdomain', 'profiles', 'categories', 'sorting',
'decomposition', 'nbrComponents', 'components',

'fillRate', 'minimalComponentSize', 'maximalComponentSize', ... ]

The ordering of the 5-tiling result is following the average lower and upper quintile
limits strategy (see previous section and Listing 4.1 Line 14). We obtain here 9 ordered
components of minimal order 1 and maximal order 25. The corresponding pre-ranked
decomposition may be visualized as follows.

Listing 4.2: The quantiles decomposition of a pre-ranked
outranking digraph

>>> prg.showDecomposition()
*--- quantiles decomposition in decreasing order---*
cl. 10.80-1.00] (5, 42, 43, 47]
c2. 10.60-1.00] [73]
c3. 10.60-0.80] (1, 4, 13, 14, 22, 32, 34, 35, 40,
41, 45, 61, 62, 65, 68, 70, 75]
[2, 54]
(3, 6, 7, 10, 15, 18, 19, 21, 23, 24,

(continues on next page)

c4. 10.40-0.80]
c5. 10.40-0.60]
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27, 30, 36, 37, 48, 51, 52, 56, 58,
63, 67, 69, 71, 72, 74]

c6. 10.20-0.60] : [8, 11, 25, 28, 64, 66]

c7. ]10.20-0.40] : [12, 16, 17, 20, 26, 31, 33, 38, 39,
44, 46, 49, 50, 53, 55]

c8. ] <-0.40]1 : [9, 29, 60]

c9. 1 <-0.20] : [67, 59]

The highest quintile class (|80%-100%]) contains decision alternatives 5, 42, 43 and 47.
Lowest quintile class (]-20%]|) gathers alternatives 57 and 59 (see Listing 4.2 Lines 3 and
15). We may inspect the resulting sparse outranking relation map as follows in a browser
view.

>>> prg. showHTMLRelationMap()

BE~2eB-fiBHEIBEEE S =-8%E

=EHKEESEYE-EHBEYE-2E-ERUERKE2REYSEY S

YE=EBEEESEEEREEEEENEREEERE?RD

Fig. 4.1: The relation map of a sparse outranking digraph
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In Fig. 4.1 we easily recognize the 9 linearly ordered quantile equivalence classes. Green
and light-green show positive outranking situations, whereas positive outranked situa-
tions are shown in red and light-red. Indeterminate situations appear in white. In each
one of the 9 quantile equivalence classes we recover in fact the corresponding bipolar-
valued outranking sub-relation, which leads to an actual fill-rate of 20.4% (see Listing
4.1 Line 20).

We may now check how faithful the sparse model represents the complete outranking
relation.

>>> from outrankingDigraphs import BipolarOutrankingDigraph
>>> g = BipolarOutrankingDigraph(tp)
>>> corr = prg.computeOrdinalCorrelation(g)
>>> g.showCorrelation(corr)
Correlation indexes:
Crisp ordinal correlation : +0.863
Epistemic determination : 0.3156
Bipolar-valued equivalence : +0.272

The ordinal correlation index between the standard and the sparse outranking relations is
quite high (40.863) and their bipolar-valued equivalence is supported by a mean criteria
significance majority of (1.0+0.272)/2 = 64%.

It is worthwhile noticing in Listing 4.1 Line 18 that sparse pre-ranked outranking digraphs
do not contain a relation attribute. The access to pairwise outranking characteristic
values is here provided via a corresponding relation() function.

def relation(self,x,y):
it
Dynamic construction of the global
outranking characteristic function r(z,y).

i

Min = self.valuationdomain['min']
Med = self.valuationdomain['med']
Max = self.valuationdomain['max']

if x == y:
return Med
cx = self.actions[x]['component']
cy = self.actions[y]['component']
if ¢cx == cy:
return self.components[cx]['subGraph'].relation[x] [y]
elif self.components[cx]['rank'] > self.components[cy]['rank']:
return Min
else:
return Max

All reflexive situations are set to the indeterminate value. When two decision alternatives
belong to a same component -quantile equivalence class- we access the relation attribute
of the corresponding outranking sub-digraph. Otherwise we just check the respective
ranks of the components.
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Ranking pre-ranked sparse outranking digraphs

Each one of these 9 ordered components may now be locally ranked by using a suitable
ranking rule. Best operational results, both in run times and quality, are more or less
equally given with the Copeland and the NetFlows rules. The eventually obtained linear
ordering (from the worst to best) is stored in a prg.boostedOrder attribute. A reversed
linear ranking (from the best to the worst) is stored in a prg.boostedRanking attribute.

Listing 4.3: Showing the component wise Copeland rank-
ing

>>> prg.boostedRanking
(43, 47, 42, 5, 73, 65, 68, 32, 62, 70, 35, 22, 75, 45, 1,
61, 41, 34, 4, 13, 40, 14, 2, 54, 63, 37, 56, 71, 69, 36,
19, 72, 15, 48, 6, 30, 74, 3, 21, 58, 52, 18, 7, 24, 27,
23, 67, 51, 10, 25, 11, 8, 64, 28, 66, 53, 12, 31, 39, 55,
20, 46, 49, 16, 44, 26, 38, 33, 17, 50, 29, 60, 9, 59, 57]

Alternative 43 appears first ranked, whereas alternative 57 is last ranked (see Listing
4.3 Line 2 and 6). The quality of this ranking result may be assessed by computing its
ordinal correlation with the standard outranking relation.

>>> corr = g.computeRankingCorrelation(prg.boostedRanking)
>>> g.showCorrelation(corr)

Correlation indexes:

Crisp ordinal correlation : +0.807

Epistemic determination : 0.3156

Bipolar-valued equivalence : +0.254

We may also verify below that the Copeland ranking obtained from the standard out-
ranking digraph is highly correlated (40.822) with the one obtained from the sparse
outranking digraph.

>>> from linearOrders import CopelandOrder

>>> cop = CopelandOrder(g)

>>> print (cop.computeRankingCorrelation(prg.boostedRanking))
{'correlation': 0.822, 'determination': 1.0}

Noticing the computational efficiency of the quantiles sorting construction, coupled with
the separability property of the quantile class membership characteristics computation,
we will make usage of the PreRankedOutrankingDigraph constructor in the cythonized
Digraphs modules (page 243) for HPC ranking big and even huge performance tableaux.

Back to Content Table (page 1)
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4.2 Using Digraph3 multiprocessing resources

e Computing with multiple threads in parallel (page 240)
e Using the mpQutrankingDigraphs module (page 241)

o Setting the Threading parameters (page 243)

Computing with multiple threads in parallel

Modern desktop and laptop computers usually provide a multithreaded CPU which allows
to run several threads in parallel®®. In the Digraph3 resources we offer this usage with
a Threading, a nbrCores or nbrOfCPUs and a startMethod parameter (see below Lines
7-8)

...$ python3

Python 3.11.6 (main, Oct 8 2023, 05:06:43) [GCC 13.2.0] on linux
>>> from randomPerfTabs import RandomPerformanceTableau

>>> t = RandomPerformanceTableau(numberOfActions=500,

. number0fCriteria=13,seed=1)

>>> from outrankingDigraphs import BipolarQutrankingDigraph

>>> g = BipolarQOutrankingDigraph(t,Threading=True,
nbrCores=10,startMethod="'spawn')

Hosoooee Object instance description ------ *

Instance class : BipolarOutrankingDigraph

Instance name : rel_randomperftab

Actions : 500

Criteria : 13

Size : 142091

Determinateness (%) : 62.08

Valuation domain : [-1.00;1.00]

Attributes : ['name', 'actions', 'ndigits', 'valuationdomain',
'criteria', 'methodData', 'evaluation', 'NA',
'order', 'runTimes',6 'startMethod', 'nbrThreads',
'relation', 'gamma', 'notGamma']

---- Constructor run times (in sec.) ----

Threads : 10

Start method . spawn

Total time 1 3.34283

Data input : 0.00941

(continues on next page)

53 When tackling matrix computations it may be possible to further accelerate the computations with a
potential GPU. The interested reader may find in the cuda directory in the Digraph3 resources an experi-
mental cudaDigraphs.py module which uses numpy and NVIDIA GPU resources for measuring the speed-
ing up of the element wise computation of the dual, converse and codual transforms and the fusion op-
eration for large (order >= 10000) cIntegerOurankingDigraphs.IntegerBipolarOutrankingDigraph
objects.
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(continued from previous page)

Compute relation : 3.20870
Gamma sets 2 0.12471

The same computation without threading takes about four times more total run time
(see above Line 25 and below Line 20).

>>> g = BipolarOutrankingDigraph(t,Threading=False,
nbrCores=10,startMethod="spawn',
WithConcordanceRelation=False,
WithVetoCounts=False)

Ko m Object instance description ------ *
Instance class : BipolarOutrankingDigraph
Instance name : rel_randomperftab
Actions : 500
Criteria : 13
Size : 142091
Determinateness (%) : 62.08
Valuation domain : [-1.00;1.00]
Attributes : ['name', 'actions', 'ndigits', 'valuationdomain
'
'criteria', 'methodData', 'evaluation', 'NA',
'order', 'runTimes', 'nbrThreads', 'startMethod
]
'relation', 'gamma', 'notGamma']
---- Constructor run times (in sec.) ----
Start method : None
Total time : 12.84823
Data input : 0.00941
Compute relation : 12.73070
Gamma sets : 0.10812

These run times were obtained on a common desktop computer equipped with an 11th
Gen Intel®) Core™ i5-11400 x 12 processor and 16.0 BG of CPU memory.

Using the mpOutrankingDigraphs module

A refactored and streamlined multiprocessing mpOutrankingDigraphs module for even
faster computing bipolar outranking digraphs with up to several hundreds or thousands
of decision actions has been recently added to the Digraph3 resources (see Line 21 below).

>>> from mpOutrankingDigraphs import MPBipolarOutrankingDigraph
>>> mpg = MPBipolarOutrankingDigraph(t,nbrCores=10,
Normalized=False,startMethod="'spawn')

>>> mpg
e Object instance description ------ *
Instance class : MPBipolar(OutrankingDigraph

(continues on next page)
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(continued from previous page)

Instance name : rel_sharedPerfTab

Actions : 500

Criteria : 13

Size : 142091

Determinateness (%) : 62.08

Valuation domain : [-13.00;13.00]

Attributes : ['name', 'actions', 'order', ‘'criteria',
'objectives', 'NA', 'evaluation', 'startMethod',

'nbrThreads', 'relation',
'largePerformanceDifferencesCount',
'valuationdomain', 'gamma', 'notGamma',
'runTimes']

---- Constructor run times (in sec.) ----

Threads : 10

Start method : 'spawn'
Total time : 1.41698
Data input : 0.00006
Compute relation : 1.27468
Gamma sets : 0.14207

Notice also in Line 16 above, that this computation provides the largePerformanceDiffer-

encesCount attribute containing the results of the considerable performance differences

counts. Setting parameter WithVetoCounts to True for the ’outrankingDigraphs.
BipolarQutrankingDigraph constructor provides the same attribute, but adds about
a second to the total run time of 13 seconds.

This attribute allows to print out the relation table with the considerable performance
differences counts decoration (see Line 1 below).

>>> mpg.showRelationTable (hasLPDDenotation=True,toIndex=5)
* ———- Relation Table -----
r/(lpd) | ‘'a001' 'a002' 'a003' 'a004' 'a005'

| +13.00 -1.00 +1.00 +3.00 -1.00

|  (+0,+0) (+0,+0) (+0,+0) (+0,+0) (+0,+0)

| +3.00 +13.00 +2.00 +13.00 +4.00

| (+0,+0) (+0,+0) (+0,+0) (+1,+0) (+0,+0)
'a003"' | +1.00 +3.00 +13.00 -1.00 +4.00

|  (+0,+0) (+0,+0) (+0,+0) (+0,+0) (+0,+0)

I

I

I

'a004 ' +2.00 -13.00  +4.00 +13.00  +0.00
(+0,+0)  (+0,-1) (+0,+0) (+0,+0) (+0,-1)
'a005' +4.00  +0.00 -3.00 +13.00 +13.00

|  (+0,+0) (+0,+0) (+0,+0) (+1,+0) (+0,+0)
Valuation domain: [-13.000; 13.000]

In Lines 7-8 above, we may for instance notice a considerably large positive performance
difference when comparing alternatives ‘a002’ and ‘a004” which results in a polarised for

certain valid outranking situation: r(age2 72 agos) = +13.00. The converse situation is

~Y
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observed in Lines 11-12 where we may notice the corresponding considerably large nega-
tive performance difference leading this time to a polarised for certain invalid outranking
situation: 7(agos 25 @ooz) = —13.00.

Setting the Threading parameters

Without specifying the number of cores (nbrCores=None) or the threading start
method (startMethod=None), the cpu_count() method from the multiprocessing
(https://docs.python.org/3/library /multiprocessing. html#module-multiprocessing)
module will be used to detect the number of available cores and the threading start
method will be set by default to spawn.

It is possible to use instead the forkserver or the more traditional Posix fork start method
(default on Linux)°*. Mind that the latter method, due to the very architecture of the
Python interpreter C code, cannot be safe against specific dead locks leading to hanging
or freezing applications and zombie processes.’!

When writing multiprocessing Digraph3 Python scripts not using the Posix fork
start method, it is furthermore essential to protect the main program code with a
__name__=='__main__’ test against recursive re-excution (see below).
from outrankingDigraphs import BipolarQOutrankingDigraph
from randomPerfTabs import RandomPerformanceTableau
# main program code
if __name__ == '__main__"':
t = RandomPerformanceTableau(number0fActions=1000,
number0fCriteria=13,seed=1)
g = BipolarOutrankingDigraph(t,
Threading=True,
nbrCores=10,
startMethod="'spawn',
Comments=True)

print(g)

Back to Content Table (page 1)

4.3 On ranking big outranking digraphs

e C-compiled Python modules (page 244)
e Big Data performance tableauz (page 244)

e C-implemented integer-valued outranking digraphs (page 246)

52 See the documentation of the multiprocessing (https://docs.python.org/3/library /multiprocessing.html#module-

multiprocessing) module
51 See https://britishgeologicalsurvey.github.io/science /python-forking-vs-spawn /
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e The sparse outranking digraph implementation (page 248)

e Ranking big sets of decision alternatives (page 252)

C-compiled Python modules

The Digraph3 collection provides cythonized®, i.e. C-compiled and optimised versions
of the main python modules for tackling multiple criteria decision problems facing very
large sets of decision alternatives ( > 10000 ). Such problems appear usually with a
combinatorial organisation of the potential decision alternatives, as is frequently the case
in bioinformatics for instance. If HPC facilities with nodes supporting numerous cores (>
20) and big RAM (> 50GB) are available, ranking up to several millions of alternatives
(see [BIS-2016]) becomes effectively tractable.

Five cythonized Digraph3 modules, prefixed with the letter ¢ and taking a pyz exten-
sion, are provided with their corresponding setup tools in the Digraph3/cython directory,
namely

e cRandPerfTabs.pyx

o cintegerOutrankingDigraphs.pyx

e cintegerSortingDigraphs.pyx

e cSparselnteger OutrankingDigraphs.pyx
o cQuantilesRankingDigraphs.pyx

Their automatic compilation and installation (... Digraph8$ make installPip), alongside
the standard Digraph3 python3 modules, requires the cython compiler® ( ... § pythons
m pip install cython wheel ) and a C compiler ( ... 3§ sudo apt install gec ). Local
inplace compilation and installation ( ... /Digraph3/cython$ make ) is provided with a
corresponding makefile in the “Digraph3/cython® directory.

Big Data performance tableaux

In order to efficiently type the C variables, the cRandPerfTabs module provides the usual
random performance tableau models, but, with integer action keys, float performance
evaluations, integer criteria weights and float discrimination thresholds. And, to limit
as much as possible memory occupation of class instances, all the usual verbose comments
are dropped from the description of the actions and criteria dictionaries.

>>> from cRandPerfTabs import cRandomPerformanceTableau
>>> t = cRandomPerformanceTableau(number0fActions=4,number0fCriteria=2)
>>> t

K PerformanceTableau instance description ------ *
Instance class : cRandomPerformanceTableau

Seed : None

Instance name : cRandomperftab

(continues on next page)

6 See https://cython.org,
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(continued from previous page)

# Actions : 4

# Criteria : 2

Attributes ['randomSeed', 'name', 'actions', 'criteria',
'evaluation', 'weightPreorder']

>>> t.actions
OrderedDict([(1, {'name': '#1'}), (2, {'name': '#2'}),
(3, {'name': '#3'}), (4, {'name': '#4'}) 1)
>>> t.criteria

OrderedDict ([
('gl', {'name': 'RandomPerformanceTableau() instance',
'comment': 'Arguments: ; weightDistribution=equisignificant;

weightScale=(1, 1); commonMode=None',
'thresholds': {'ind': (10.0, 0.0),
'pref': (20.0, 0.0),
'veto': (80.0, 0.0)},
'scale': (0.0, 100.0),

'weight': 1,
'preferenceDirection': 'max'}),
('g2', {'name': 'RandomPerformanceTableau() instance',
'comment': 'Arguments: ; weightDistribution=equisignificant;

weightScale=(1, 1); commonMode=None',
'thresholds': {'ind': (10.0, 0.0),
'pref': (20.0, 0.0),
'veto': (80.0, 0.0)},
'scale': (0.0, 100.0),
'weight': 1,
'preferenceDirection': 'max'})])
>>> t.evaluation
{'gl': {1: 35.17, 2: 56.4, 3: 1.94, 4: 5.51},
'g2': {1: 95.12, 2: 90.54, 3: 51.84, 4: 15.42}}
>>> t.showPerformanceTableau()

Criteria | 'gl' 'g2!

Actions | 1 1

_________ | oo
'#1' | 91.18  90.42
'#2' | 66.82 41.31
'#3' | 35.76 28.86
'#4' | 7.78 37.64

Conversions from the Big Data model to the standard model and vice versa are provided.

>>> t1 = t.convert2Standard()

>>> t1.convertWeight2Decimal ()

>>> t1.convertEvaluation2Decimal ()
>>> t1

(continues on next page)
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(continued from previous page)

Instance class : PerformanceTableau

Seed : None

Instance name : std_cRandomperftab

# Actions : 4

# Criteria 1 2

Attributes : ['name', 'actions', 'criteria', 'weightPreorder',
'evaluation', 'randomSeed']

C-implemented integer-valued outranking digraphs

The C compiled version of the bipolar-valued digraph models takes integer relation char-
acteristic values.

>>> from cRandPerfTabs import cRandomPerformanceTableau

>>> t = cRandomPerformanceTableau(numberOfActions=1000,
—number0fCriteria=2)

>>> from cIntegerOutrankingDigraphs import,
—IntegerBipolarOutrankingDigraph

>>> g = IntegerBipolarOutrankingDigraph(t,Threading=True,nbrCores=4)

>>> g

A Object instance description ------ *

Instance class : IntegerBipolarOutrankingDigraph

Instance name : rel_cRandomperftab

Actions : 1000

Criteria i 2

Size . 465024

Determinateness : 56.877

Valuation domain : {'min': -2, 'med': 0, 'max': 2,
'hasIntegerValuation': True}

Attributes : ['name', 'actions', 'criteria', 'totalWeight',
'valuationdomain', 'methodData', 'evaluation',
'order', 'runTimes', 'startMethod',
'nbrThreads', 'relation',
'gamma', 'notGamma']

---- Constructor run times (in sec.) ----

Threads 4

Start method : spawn

Total time : 1.19811

Data input : 0.00183

Compute relation : 0.91961

Gamma sets : 0.27664

On a classic intel-i5-11400x12 equipped PC, the IntegerBipolarOutrankingDigraph
constructor takes with four multiprocessing threads about one second for computing a
million pairwise outranking characteristic values. In a similar multiprocessing setting,
the standard BipolarQutrankingDigraph class constructor operates about four times
slower.
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>>> from outrankingDigraphs import BipolarQOutrankingDigraph
>>> t1 = t.convert2Standard()
>>> g1 = BipolarQOutrankingDigraph(tl,Threading=True,nbrCores=4)

>>> gl
*o oo Object instance description ------ *
Instance class : BipolarQOutrankingDigraph
Instance name : rel_std_cRandomperftab
Actions : 1000
Criteria D2
Size : 465024
Determinateness : 56.817

Valuation domain : {'min': Decimal('-1.0"'),
'med': Decimal('0.0'),
'max': Decimal('1.0'),
'precision': Decimal('0')}

---- Constructor run times (in sec.) ----

Threads 1 4

Start method : spawn
Total time : 3.81307
Data input : 0.00305
Compute relation : 3.41648
Gamma sets : 0.39353

By far, most of the run time is in each case needed for computing the individual pairwise
outranking characteristic values. Notice also below the memory occupations of both
outranking digraph instances.

>>> from digraphsTools import total_size
>>> total_size(g)

108662777

>>> total_size(gl)

113564067

>>> total_size(g.relation)/total_size(g)
0.34

>>> total_size(g.gamma)/total_size(g)
0.45

About 109MB for ¢ and 114MB for glI. The standard Decimal valued
BipolarQOutrankingDigraph instance g1 thus adds nearly 10% to the memory occu-
pation of the corresponding IntegerBipolarOutrankingDigraph ¢ instance (see Line 3
and 5 above). 3/4 of this memory occupation is due to the g.relation (34%) and the
g.gamma (45%) dictionaries. And these ratios quadratically grow with the digraph or-
der. To limit the object sizes for really big outranking digraphs, we need to abandon the
complete implementation of adjacency tables and gamma functions.
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The sparse outranking digraph implementation

The idea is to first decompose the complete outranking relation into an ordered collection
of equivalent quantile performance classes. Let us consider for this illustration a random
performance tableau with 100 decision alternatives evaluated on 7 criteria.

>>> from cRandPerfTabs import cRandomPerformanceTableau
>>> t = cRandomPerformanceTableau(numberOfActions=100,
number0fCriteria=7,seed=100)

We sort the 100 decision alternatives into overlapping quartile classes and rank with
respect to the average quantile limits

>>> from cSparselntegerOutrankingDigraphs import \
SparselntegerOutrankingDigraph

>>> sg = SparselntegerOutrankingDigraph(t,quantiles=4,

OptimalQuantileOrdering=False,

Threading=False)

oo Object instance description -----————----- *

Instance class : SparselntegerOutrankingDigraph

Instance name : cRandomperftab_mp

# Actions : 100

# Criteria 2 7

Sorting by : 4-Tiling

Ordering strategy : average

Ranking rule : Copeland

# Components : 6

Minimal order 1

Maximal order : 35

Average order : 16.7

fill rate 1 24.970%

Attributes : ['runTimes', 'name', 'actions', 'criteria',
'evaluation', 'order', 'dimension',
'sortingParameters', 'nbr0fCPUs',
'valuationdomain', 'profiles', 'categories',
'sorting', 'minimalComponentSize',
'decomposition', 'nbrComponents', 'nd',
'components', 'fillRate',
'maximalComponentSize', 'componentRankingRule',
'boostedRanking']

*---- Constructor run times (in sec.) ----

Total time : 0.02336

QuantilesSorting : 0.01150

Preordering : 0.00047

Decomposing : 0.01135

Ordering : 0.00001

We obtain in this example here a decomposition into 6 linearly ordered components with
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a maximal component size of 35 for component c¢3.

>>> sg.showDecomposition()
*--- quantiles decomposition in decreasing order---x
cl. ]10.756-1.00] : [3, 22, 24, 34, 41, 44, 50, 53, 56, 62, 93]
c2. ]0.50-1.00] : [7, 29, 43, 58, 63, 81, 96]
c3. ]0.50-0.75] : [1, 2, 5, 8, 10, 11, 20, 21, 25, 28, 30, 33,
35, 36, 45, 48, 57, 59, 61, 65, 66, 68, 70,
71, 73, 76, 82, 85, 89, 90, 91, 92, 94, 95, 97]
c4. 10.26-0.75] : [17, 19, 26, 27, 40, 46, 55, 64, 69, 87, 98, 100]
c6. 10.256-0.50] : [4, 6, 9, 12, 13, 14, 15, 16, 18, 23, 31, 32,
37, 38, 39, 42, 47, 49, 51, 52, 54, 60, 67, 72,
74, 75, 77, 78, 80, 86, 88, 99]
c6. 1<-0.25] : [79, 83, 84]

A restricted outranking relation is stored for each component with more than one al-
ternative. The resulting global relation map of the first ranked 75 alternatives looks as
follows.

>>> sg.showRelationMap(toIndex=75)
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Fig. 4.2: Sparse quartiles-sorting decomposed outranking relation (extract). Legend:
outranking for certain (T); outranked for certain (_L); more or less outranking (4); more
or less outranked (—); indeterminate ().
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With a fill rate of 25%, the memory occupation of this sparse outranking digraph sg
instance takes now only 769kB, compared to the 1.7MB required by a corresponding
standard IntegerBipolarOutrankingDigraph instance.

>>> print (' kB' 7 (total_size(sg)/1024) )
769kB

For sparse outranking digraphs, the adjacency table is implemented as a dynamic
relation() function instead of a double dictionary.

def relation(self, int x, int y):
mi
*Parameters*:
* x (int action key),
* y (int action key).
Dynamic construction of the global outranking
characteristic function *r(x S y)*.

cdef int Min, Med, Max, rx, ry

Min = self.valuationdomain['min']
Med = self.valuationdomain['med']
Max = self.valuationdomain['max']
if x == y:

return Med
else:

cx = self.actions[x]['component']
cy = self.actions[y]['component']
rx = self.components[cx]['rank']
ry = self.components[cyl['rank']
if rx == ry:
try:
rxpg = self.components[cx]['subGraph'].relation
return rxpg[x] [y]
except AttributeError:
componentRanking = self.components[cx]['componentRanking']
if componentRanking.index(x) < componentRanking.index(x):
return Max
else:
return Min
elif rx > ry:
return Min
else:
return Max
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Ranking big sets of decision alternatives

We may now rank the complete set of 100 decision alternatives by locally ranking with
the Copeland or the NetFlows rule, for instance, all these individual components.

>>> sg.boostedRanking
[22, 53, 3, 34, 56, 62, 24, 44, 50, 93, 41, 63, 29, 58,
96, 7, 43, 81, 91, 35, 25, 76, 66, 65, 8, 10, 1, 11, 61,
30, 48, 45, 68, 5, 89, 57, 59, 85, 82, 73, 33, 94, 70,
97, 20, 92, 71, 90, 95, 21, 28, 2, 36, 87, 40, 98, 46, 55,
100, 64, 17, 26, 27, 19, 69, 6, 38, 4, 37, 60, 31, 77, 78,
47, 99, 18, 12, 80, 54, 88, 39, 9, 72, 86, 42, 13, 23, 67,
62, 15, 32, 49, b1, 74, 16, 14, 75, 79, 83, 84]

When actually computing linear rankings of a set of alternatives, the local outranking re-
lations are of no practical usage, and we may furthermore reduce the memory occupation
of the resulting digraph by

1. refining the ordering of the quantile classes by taking into account how well an
alternative is outranking the lower limit of its quantile class, respectively the upper
limit of its quantile class is not outranking the alternative;

2. dropping the local outranking digraphs and keeping for each quantile class only a
locally ranked list of alternatives.

We provide therefore the cQuantilesRankingDigraph class.

>>> from cSparselntegerOutrankingDigraphs import \
. cQuantilesRankingDigraph
>>> qr = cQuantilesRankingDigraph(t,4)

>>> qr

e Object instance description ------------—-—- *
Instance class : cQuantilesRankingDigraph
Instance name : cRandomperftab_mp

# Actions : 100

# Criteria 3

Sorting by : 4-Tiling

Ordering strategy : optimal

Ranking rule : Copeland

# Components : 47

Minimal order 3 il

Maximal order : 10

Average order 2.1

fill rate : 2.566%

*---- Constructor run times (in sec.) ----%
Nbr of threads 3 dl

Total time : 0.03702

QuantilesSorting : 0.01785

Preordering : 0.00022

Decomposing : 0.01892

(continues on next page)
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(continued from previous page)

Ordering : 0.00000

Attributes : ['runTimes', 'name', 'actions', 'order',
'dimension', 'sortingParameters', 'nbrO0fCPUs',
'valuationdomain', 'profiles', 'categories',
'sorting', 'minimalComponentSize',
'decomposition', 'nbrComponents', 'nd',
"components', 'fillRate', 'maximalComponentSize',
'componentRankingRule', 'boostedRanking']

With this optimised quantile ordering strategy, we obtain now 47 performance equivalence
classes.

>>> qr.components
OrderedDict ([
('cOl', {'rank': 1,
'lowQtileLimit': ']J0.75"',
'highQtileLimit': '1.00]',
'componentRanking': [63]}),
('c02', {'rank': 2,
'lowQtileLimit': ']J0.75"',
'highQtileLimit': '1.00]"',
'componentRanking': [3, 23, 63, 50]}),
('c03', {'rank': 3,
'lowQtileLimit': ']0.75"',
'highQtileLimit': '1.00]"',
'componentRanking': [34, 44, 56, 24, 93, 411}),

(tc45', {'rank': 45,
'lowQtileLimit': ']0.25',
'highQtileLimit': '0.50]"',
'componentRanking': [49]}),
('c46', {'rank': 46,
'lowQtileLimit': ']0.25',
'highQtileLimit': '0.50]"',
'componentRanking': [62, 16, 8611}),
("ca7', {'rank': 47,
'lowQtileLimit': ']<',
'highQtileLimit': '0.25]"',
'componentRanking': [79, 83, 841})1)
>>> print (' kB' % (total_size(qr)/1024) )
208kB

We observe an even more considerably less voluminous memory occupation: 208kB com-

pared to the 769kB of the SparselntegerOutrankingDigraph instance. It is opportune,
however, to measure the loss of quality of the resulting Copeland ranking when working
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>>> from cIntegerOutrankingDigraphs import \
IntegerBipolarQutrankingDigraph
>>> ig = IntegerBipolarQutrankingDigraph(t)
>>> print ('Complete outranking : "\
% (ig.computeOrderCorrelation(ig.computeCopelandOrder())\
['correlation']))

Complete outranking : +0.7474
>>> print('Sparse 4-tiling : "\
% (ig.computeOrderCorrelation(\
list(reversed(sg.boostedRanking))) ['correlation']))

Sparse 4-tiling : +0.7172
>>> print ('Optimzed sparse 4-tiling: "\
% (ig.computeOrderCorrelation(\
list(reversed(qr.boostedRanking))) ['correlation']))

Optimzed sparse 4-tiling: +0.7051

The best ranking correlation with the pairwise outranking situations (+0.75) is naturally
given when we apply the Copeland rule to the complete outranking digraph. When
we apply the same rule to the sparse 4-tiled outranking digraph, we get a correlation
of 40.72, and when applying the Copeland rule to the optimised 4-tiled digraph, we
still obtain a correlation of +0.71. These results actually depend on the number of
quantiles we use as well as on the given model of random performance tableau. In case of
Random3ObjectivesPerformanceTableau instances, for instance, we would get in a similar
setting a complete outranking correlation of +0.86, a sparse 4-tiling correlation of +0.82,
and an optimzed sparse 4-tiling correlation of +0.81.

Back to Content Table (page 1)

5 HPC-Ranking of Big Sparse Outranking Digraphs

Following from the separability property of the ¢-tiles sorting of each action into each
g-tiles class, the g-sorting algorithm may be safely split into as much threads as are
multiple processing cores available in parallel. Furthermore, the ranking procedure being
local to each diagonal component, these procedures may as well be safely processed in
parallel threads on each component restricted outranking digraph. Below some examples
on different types of computers.

e On a common 2023 desktop computer (page 255)
e On the HPC platform of the University of Luzembourg (Spring 2018) (page 256)
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e On the MeluXina EuroHPC supercomputer (page 262)

5.1 On a common 2023 desktop computer

On a common 2023 Terra desktop computer®®, equipped with a 11th Gen Intel®) Core™
15-11400 x 12 processor, 64.0 GiB of CPU memory and 762.2 GiB storage space, working
under Ubuntu 23.10 we may rank a cRandom30bjectivesPerformanceTableau instance
of five hundred thousand multicriteria performance records in about 104 seconds with
about 48 seconds for the quantiles sorting step and 55 seconds for the local components
ranking step (see below Lines 42-).

../Digraph3/cython$ python3.12
Python 3.12.0 (main, Oct 4 2023, 06:27:34) [GCC 13.2.0] on linux
>>>

>>> from cRandPerfTabs import\
S cRandom30bjectivesPerformanceTableau as cR30bjPT
>>> pt = cR30bjPT(number0fActions=500000,
numberO0fCriteria=21,
weightDistribution='equiobjectives',
commonScale = (0.0,1000.0),
commonThresholds = [(1.5,0.0),(2.0,0.0),(75.0,0.0)1,
commonMode = ['beta','variable',None],
missingDataProbability=0.05,
S seed=16)
>>> import cSparselntegerOutrankingDigraphs as iBg
>>> qr = iBg.cQuantilesRankingDigraph(pt,quantiles=7,
quantilesOrderingStrategy='optimal',
minimalComponentSize=1,
componentRankingRule="'Copeland',
LowerClosed=False,
Threading=True,
tempDir='/tmp',
nbr0fCPUs=12)

o Object instance description ------—-———-—-—--- *
Instance class : cQuantilesRankingDigraph
Instance name : random30bjectivesPerfTab_mp
Actions : 500000
Criteria 3 2l
Sorting by : 7-Tiling
Ordering strategy : optimal
Ranking rule : Copeland
Components : 146579

(continues on next page)

56 https://www.wortmann.de/
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Minimal order 1

Maximal order 115

Average order : 3.4

fill rate : 0.002%

Attributes ['runTimes', 'name', 'actions', 'order',
'dimension', 'sortingParameters',
'nbrThreads', 'startMethod', 'valuationdomain',
'profiles', 'categories', 'sorting',
'minimalComponentSize', 'decomposition',
'nbrComponents', 'nd', 'components',
'fillRate', 'maximalComponentSize',
‘componentRankingRule', 'boostedRanking']

---- Constructor run times (in sec.) ----

Threads 12

StartMethod spawn

Total time : 104.48654

QuantilesSorting : 48.09243

Preordering : 1.26480

Decomposing : 55.12919

When ordering the 146579 components resulting from a 7-tiling sorting with the optimal
quantiles ordering strategy, the order of a local component is limited to a maximal size
of 115 actions which results in a total pairwise adjacency table fill rate of 0.002% (see
Lines 29-33).

5.2 On the HPC platform of the University of Luxembourg (Spring
2018)

Bigger performance tableaux may definitely be ranked with a larger cpu_ count(). We
were using therefore in 2018 the HPC Platform of the University of Luxembourg (https:
//hpc.unidu/). The following run times for very big quantiles ranking problems of several
millions of multicriteria performance records could be achieved both:

e on Iris -skylake nodes with 28 cores’, and
e on the 3TB -bigmem Gaia-183 node with 64 cores®,

by running the cythonized python modules in an Intel compiled virtual Python 3.6.5
environment |GCC Intel(R) 17.0.1 —enable-optimizations c++ gce 6.3 mode| on Debian
8 Linux.

7 See https://hpc.uni.lu/systems /iris,
8 See https://hpc.uni.lu/systems/gaia/
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=9 outranking relation | g fill nbr. | run
order | size rate cores | time
5000 | 25x10° | 4 | 0.005% | 28 | 05"
10000 | 1 x 108 4 |0.001% | 28 1"
100000 | 1x 10 | 5 | 0.002% | 28 | 10"
1000000 | 1x10' | 6 | 0.001% | 64 2'
3000000 | 9x 102 | 15| 0.004% | 64 | 13
6000000 | 36 x 10 | 15 | 0.002% | 64 | 41'

Fig. 5.1: HPC-UL Ranking Performance Records (Spring 2018)

Example python session on the HPC-UL Iris-126 -skylake node”2&¢ 256. 7

(myPy365ICC) [rbisdorff@iris-126 Test]$ python

Python 3.6.5 (default, May 9 2018, 09:54:28)

[GCC Intel(R) C++ gcc 6.3 mode] on linux

Type "help", '"copyright", "credits" or "license" for more information.
>>>

>>> from cRandPerfTabs import\
cRandom30bjectivesPerformanceTableau as cR30bjPT

>>> pt = cR30bjPT(number0fActions=1000000,
number0fCriteria=21,
weightDistribution='equiobjectives',
commonScale = (0.0,1000.0),
commonThresholds = [(2.5,0.0),(5.0,0.0),(75.0,0.0)],
commonMode = ['beta', 'variable',Nonel,
missingDataProbability=0.05,
seed=16)

>>> import cSparselntegerOutrankingDigraphs as iBg
>>> qr = iBg.cQuantilesRankingDigraph(pt,quantiles=10,
quantilesOrderingStrategy='optimal',
minimalComponentSize=1,
componentRankingRule="'NetFlows',
LowerClosed=False,
Threading=True,
tempDir='/tmp',
nbr0fCPUs=28)

>>> qr

L Object instance description ------------—-—- *
Instance class : cQuantilesRankingDigraph
Instance name : random30bjectivesPerfTab_mp

# Actions : 1000000

(continues on next page)
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# Criteria 21
Sorting by 10-Tiling
Ordering strategy : optimal
Ranking rule : NetFlows
# Components 1 233645
Minimal order 1

Maximal order : 163
Average order : 4.3

fill rate : 0.001%
*---- Constructor run times (in sec.) ----%
Nbr of threads : 28

Start method : fork
Total time : 177.02770
QuantilesSorting : 99.55377
Preordering : 5.17954
Decomposing : 72.29356

(continued from previous page)

On this 2x14c Intel Xeon Gold 6132 @ 2.6 GHz equipped HPC node with 132GB
RAMP?28¢ 296. 7 deciles sorting and locally ranking a million decision alternatives evalu-
ated on 21 incommensurable criteria, by balancing an economic, an environmental and
a societal decision objective, takes us about 3 minutes (see Lines 37-42 above); with
about 1.5 minutes for the deciles sorting and, a bit more than one minute, for the local
ranking of the local components.

The optimised deciles sorting leads to 233645 components (see Lines 32-36 above) with
a maximal order of 153. The fill rate of the adjacency table is reduced to 0.001%. Of
the potential trillion (10°12) pairwise outrankings, we effectively keep only 10 millions
(10°7). This high number of components results from the high number of involved
performance criteria (21), leading in fact to a very refined epistemic discrimination of
majority outranking margins.

A non-optimised deciles sorting would instead give at most 110 components with in-
evitably very big intractable local digraph orders. Proceeding with a more detailed quan-
tiles sorting, for reducing the induced decomposing run times, leads however quickly to
intractable quantiles sorting times. A good compromise is given when the quantiles sort-
ing and decomposing steps show somehow equivalent run times; as is the case in our two
example sessions: 15 versus 14 seconds and 99.6 versus 77.3 seconds (see Listing before
and Lines 41 and 43 above).

Let us inspect the 21 marginal performances of the five best-ranked alternatives listed
below.

>>> pt.showPerformanceTableau(
actionsSubset=qr.boostedRankingl[:5],
Transposed=True)

*---- performance tableau ----- *

criteria | weights | #773909 #668947 #567308 #578560 #426464

(continues on next page)
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I

'EcO1' | 42 | 969.81 844.71 917.00 NA 808.35
'So02' | 48 | NA 891.52  836.43 NA 899.22
'"En03' | 56 | 687.10 NA 503.38 873.90 NA

'So04' | 48 | 455.05 845.29 866.16 800.39 956.14
'"En05' | 56 | 809.60 846.87 939.46 851.83 950.51
'Ec06' | 42 | 919.62 802.45 717.39 832.44 974.63
'EcO7' | 42 | 889.01 722.09 606.11 902.28 574.08
'So08' | 48 | 862.19 699.38 907.34 571.18 943.34
'"En09' | 56 | 8b7.34 817.44 819.92 674.60 376.70
'Ec10' | 42 | NA 874 .86 NA 847.75 739.94
'"Enil' | 56 | NA 824.24  855.76 NA 953.77
'Ec12' | 42 | 802.18 871.06 488.76 841.41  599.17
'En13' | 56 | 827.73 839.70 864.48 720.31 877.23
'Sol4' | 48 | 943.31 580.69 827.45 815.18 461.04
'En15' | 56 | 794.57 801.44 924.29 938.70 863.72
'Eci6' | 42 | 581.15 599.87 949.84 367.34 859.70
'Sol7' | 48 | 881.556  856.056 NA 796.10  655.37
'Ec18' | 42 | 863.44  520.24 919.75 865.14 914.32
'So19' | 48 | NA NA NA 790.43  842.8b
'Ec20' | 42 | 582.52 831.93 820.92 881.68 864.81
'So21' | 48 | 880.87 NA 628.96 746.67  863.82

The given ranking problem involves 8 criteria assessing the economic performances, 7
criteria assessing the societal performances and 6 criteria assessing the environmental
performances of the decision alternatives. The sum of criteria significance weights (336)
is the same for all three decision objectives. The five best-ranked alternatives are, in
decreasing order: #773909, #668947, #567308, #578560 and #426464.

Their random performance evaluations were obviously drawn on all criteria with a good
(+) performance profile, i.e. a Beta(alpha = 5.8661, beta = 2.62203) law (see the tutorial
generating random performance tableaur (page 62)).

>>> for x in qr.boostedRankingl[:5]:
print(pt.actions[x] ['name'],
pt.actions[x]['profile'])

#773909 {'Eco': '+', 'Soc': '+', 'Env': '+'}
#668947 {'Eco': '+', 'Soc': '+', 'Env': '+'}
#567308 {'Eco': '+', 'Soc': '+', 'Env': '+'}
#578560 {'Eco': '+', 'Soc': '+', 'Env': '+'}
#426464 {'Eco': '+', 'Soc': '+', 'Env': '+'}

We consider now a partial performance tableau best10, consisting only, for instance, of the

ten best-ranked alternatives, with which we may compute a corresponding integer
outranking digraph valued in the range (-1008, +1008).
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>>> from cRandPerfTabs import cPartialPerformanceTableau
>>> bestl10 = cPartialPerformanceTableau(pt,qr.boostedRanking[:10])
>>> from cIntegerOutrankingDigraphs import *
>>> g = IntegerBipolarOutrankingDigraph(best10)
>>> g.valuationdomain

{'min': -1008, 'med': 0, 'max': 1008, 'hasIntegerValuation': True}
>>> g .showRelationTable (ReflexiveTerms=False)

* ---- Relation Table -----

r(x>y) | #773909 #668947 #567308 #578560 #426464 #298061 #155874
~#815552 #279729 #928564

#773909 | = +390 +90 +270 -50 +340 +220
—~+60 +116 +222

#668947 | +78 - +42 +250 -22 +218 +56
—+172 +74 +64

#567308 | +70 +418 = +180 +156 +174 +266
—~+78 +2566 +306

#578560 | -4 +78 +28 = -12 +100 -48
—+154 -110 -10

#426464 | +202 +258 +284 +138 = +416 +312
—~+382 +534 +278

#298061 | -48 +68 +172 +32 -42 = +b4
—+48 +248 +374

#155874 | +72 +378 +322 +174 +274 +466 -
—+212 +308 +418

#815552 | +78 +126 +272 +318 +54 +194 +172
- -14 +22

#279729 | +240 +230 -110 +290 +72 +140 +388
—~+62 - +250

#928564 | +22 +228 -14 +246 +36 +78 +56

—+110 +318 =

r(x>y) image range := [-1008;+1008]
>>> g.condorcetWinners ()

(155874, 426464, 567308]
>>> g.computeChordlessCircuits()

(]
>>> g computeTransitivityDegree ()
0.78

Three alternatives -#155874, #426464 and #567308- qualify as Condorcet winners, i.e.
they each positively outrank all the other nine alternatives. No chordless outranking
circuits are detected, yet the transitivity of the apparent outranking relation is not given.
And, no clear ranking alignment hence appears when inspecting the strict outranking
digraph (i.e. the codual 7(-g) of ¢) shown in Fig. 5.2.

>>> (7 (-g)) .exportGraphViz()
(continues on next page)
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(continued from previous page)
*---- exporting a dot file for GraphViz tools --------- *
Exporting to converse-dual_rel_best10.dot
dot -Tpng converse-dual_rel_bestl0.dot -o converse-dual_rel_bestl0.png

#298061

#155874

#668947 #578560 #567308

Rubis Python Server (graphviz), R. Bisdorff, 2008

Fig. 5.2: Validated strict outranking situations between the ten best-ranked alternatives

Restricted to these ten best-ranked alternatives, the Copeland, the NetFlows as well as
the Kemeny ranking rule will all rank alternative #426464 first and alternative #578560
last. Otherwise the three ranking rules produce in this case more or less different rankings.

>>> g.computeCopelandRanking()

(426464, 567308, 155874, 279729, 773909, 928564, 668947, 815552, 298061,
— 5785601
>>> g.computeNetFlowsRanking ()

(426464, 155874, 773909, 567308, 815552, 279729, 928564, 298061, 668947,
- 5785601
>>> from linear(Orders import KemenyOrder
>>> ke = KemenyOrder (g,orderLimit=10)
>>> ke.kemenyRanking

(426464, 773909, 155874, 815552, 567308, 298061, 928564, 279729, 668947,
- 5785601
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Note

It is therefore important to always keep in mind that, based on pairwise outranking
situations, there does not exist any unique optimal ranking; especially when
we face such big data problems. Changing the number of quantiles, the component
ranking rule, the optimised quantile ordering strategy, all this will indeed produce,
sometimes even substantially, diverse global ranking results.

5.3 On the MeluXina EuroHPC supercomputer™

Summer 2024, the author was granted the opportunity to use the large memory
HPC resources of the MeluXina EuroHPC supercomputer® (https://www.luxprovide.
lu/meluxina/). Computing nodes on this HPC platform offer a large RAM for partic-
ularly demanding workloads. Each node is composed of 2 AMD Rome CPUs (64 core
@ 2.6 GHz, 256HT cores total), has 4 TB of memory (4096 GB) and 1.92 TB of local
storage.

Following timings (see Table 5.1) could be achieved with a specially designed
cQuantilesRankingDigraphs module®” when ¢-tiling and ranking multiple incommen-
surable performance records of 21 criteria assessing three decision objectives, namely
economic, environmental and societal aspects ( see the tutorial (page 70) on generating
random three-objectives performance tableaux).

Table 5.1: EuroHPC MeluXina Ranking Performance
Records (Summer 2024)

digraph relation q nbrof g-tiling nbr of nbr of  tot.run

order size sorters time compon. rankers time
1000000  1x10°12 100 30” 251468 48 1°07”
2000000  4x10712 128 1’067 313870 64 2’437
3000000  9x10712 128 44”7 361401 64 4207
4000000  16x10°12 128 226”7 389459 128 5’56”
5000000  25x10712 128 3’057 411422 84 8’357

6000000  36x10712
7000000  49x10712
8000000  64x10712
9000000  81x10712
10000000 1x10°14

128 4057 439443 128 127117
128 4487 444444 128 15706”
192 5317 457180 220 15’337
192 6’027 469127 220 18°40”
220 6'46” 200475 240 2317

O =1 =1 =1 © =1 ~I =1 © =

One million records could be ranked with 100 sorting and 48 ranking multiprocessing

54 The kind support of the Faculty of Science Technology and Medecine of the University of Luzem-
bourg (https://www.uni.lu/fstm-en/) and of LUXPROVIDE (https://www.luxprovide.lu/) is gratefully
acknowledged.

5% The acquisition and operation of the EuroHPC supercomputer is funded jointly by the EuroHPC
Joint Undertaking, through the European Union’s Connecting Europe Facility and the Horizon 2020
research and innovation programme, as well as the Grand Duché du Luxembourg.

T The sources of the cythonized Digraph3 modules (with .pyz suffix) may be found in the cython
directory of the Digraph3 resources.
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threads in about 67 seconds. The quantiles sorting step is based on 7-tiling. Three
million records could be ranked with 128 sorters and 64 rankers in 4 min. and 20 sec.
and the quantiles sorting step is here again based on 7-tiling. With 128 sorters and 84
rankers, up to five million records could be 7-tiled and ranked in 8 min. and 35 sec.

Below is shown an example MeluXina session for ranking six million incommensurable
performance records assessing 3 decision objectives concerning economic, environmental
and societal aspects on 21 criteria®®. The Python 3.12.4 interpreter, compiled with GCC
8.5.0 RH and enabled optimizations, is running in a virtual environment on RH 8.5.0-
20 Linux. All the cythonized modules were compiled with Cython-3.0.10 in the same
environment,. ¢ 262, 57

(MyPy3124) [userRBOmel4005 Digraph3]$ python3

Python 3.12.4 (main, Jul 19 2024, 15:25:25)

[GCC 8.5.0 20210514 (Red Hat 8.5.0-20)] on linux

Type "help", '"copyright", "credits" or "license" for more information.
>>>

>>> from cRandPerfTabs import\
o cRandom30bjectivesPerformanceTableau as cR30bjPT
>>> pt = cR30bjPT (number0fActions=6000000,
number0fCriteria=21,
weightDistribution="'equiobjectives',
commonScale = (0.0,1000.0),
commonThresholds = [(1.5,0.0),(2.0,0.0),(75.0,0.0)]7,
commonMode = ['beta', 'variable',6Nonel,
missingDataProbability=0.05,
S seed=16)
>>> import cQuantilesRankingDigraphs as QRD
>>> qr = QRD.cQuantilesRankingDigraph(pt,quantiles=9,
quantilesOrderingStrategy='optimal',
minimalComponentSize=1,
componentRankingRule="'Copeland',
LowerClosed=False,
Threading=True,
nbr0fSorters=128,
nbrOfRankers=128,
tempDir="'/project/scratch/userRB',
Comments=False)

oo Object instance description -----————----- *
Instance class : cQuantilesRankingDigraph
Instance name : random30bjectivesPerfTab_mp
Actions : 6000000

Criteria : 21

Sorting by : 9-Tiling

(continues on next page)

58 See the tutorial (page 70) on generating random three-objectives performance tableaux.
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(continued from previous page)

Ordering strategy : optimal

Ranking rule : Copeland

Components : 439443

Minimal order i1

Maximal order 1 924

Average order : 13.7

fill rate : 0.001%

Attributes : ['runTimes', 'name', 'actions', 'order',
'dimension', 'sortingParameters', 'nbr0fSorters',
'startMethod', 'valuationdomain', 'profiles',
'categories', 'sorting', 'minimalComponentSize',
'decomposition', 'nbrComponents', 'nd’',
'nbrOfRankers', 'components', 'fillRate',
'maximalComponentSize', 'componentRankingRule',

'boostedRanking']
--—- Constructor run times (in sec.) ----

Sorting threads : 128
Ranking threads : 128
StartMethod : spawn
Total time : 730.49080
Data input : 104.95025
QuantilesSorting  : 245.87293
Preordering : 21.06959

Components ranking : 354.03710

With 128 sorting threads and 128 ranking threads, we need about 12 min., 4 min. for
the 9-tiling step and 7 min. for locally ranking each one of the 439443 components. The
fill-rate of the resulting sparse outranking digraph is 0.001%.

Back to Content Table (page 1)

6 Moving on to undirected graphs

This last part of the tutorials introduces Python resources for working with undirected
graphs.

Working with the graphs module (page 265)
Computing the non isomorphic MISs of the 12-cycle graph (page 277)

About split, interval and permutation graphs (page 282)

On tree graphs and graph forests (page 296)
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6.1 Working with the graphs module

Structure of a Graph object (page 265)

g-coloring of a graph (page 268)

MIS and clique enumeration (page 270)

Line graphs and mazimal matchings (page 271)

Grids and the Ising model (page 274)

Simulating Metropolis random walks (page 275)

Structure of a Graph object

In the graphs module, the root Graph class provides a generic simple graph model,
without loops and multiple links. A given object of this class consists in:

1. the graph vertices : a dictionary of vertices with ‘name’ and ‘shortName’ at-
tributes,

2. the graph valuationDomain , a dictionary with three entries: the minimum (-
1, means certainly no link), the median (0, means missing information) and the
maximum characteristic value (41, means certainly a link),

3. the graph edges : a dictionary with frozensets of pairs of vertices as entries carrying
a characteristic value in the range of the previous valuation domain,

4. and its associated gamma function : a dictionary containing the direct neighbors
of each vertex, automatically added by the object constructor.

See the technical documentation of the graphs module.

Example Python3 session

>>> from graphs import Graph
>>> g = Graph(numberOfVertices=7,edgeProbability=0.5)
>>> g.save(fileName="'tutorialGraph')

The saved Graph instance named ‘tutorialGraph.py’ is encoded in python3 as follows.

# Graph instance saved in Python format
vertices = {

'vli': {'shortName': 'vl', 'mame': 'random vertex'},
'v2': {'shortName': 'v2', 'mame': 'random vertex'},
'v3': {'shortName': 'v3', 'mame': 'random vertex'},
'vd': {'shortName': 'v4', 'mame': 'random vertex'},
'vb': {'shortName': 'v5', 'name': 'random vertex'},
'v6': {'shortName': 'v6', 'name': 'random vertex'},
'v7': {'shortName': 'v7', 'mame': 'random vertex'},

(continues on next page)
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}
valuationDomain
edges = {

frozenset(['v1l'
frozenset(['v1l'
frozenset(['v1l'
frozenset(['v1l'
frozenset(['v1l'
frozenset(['v1l'
frozenset (['v2'
frozenset (['v2'
frozenset (['v2'
frozenset (['v2'
frozenset(['v2'
frozenset (['v3'
frozenset (['v3'
frozenset (['v3'
frozenset(['v3'
frozenset(['v4'
frozenset(['v4'
frozenset (['v4'
frozenset (['vh'
frozenset(['v5'
frozenset(['v6'

+

The stored graph can be recalled and plotted with the generic exportGraphViz(

method as follows.

>>> g = Graph('tutorialGraph')

= {'min"':

,'v2'])
,'v3']D)
,'va'])
,'v5'])
,'v6'])
,'v7'])
,'v3'])
,'vd'])
,'v5'])
,'v6'])
,'vT'])
,'va'])
,'vh'])
,'v6'])
,'v7'])
,'v6'])
,'v6'])
,'v7'])
,'v6'])
,'v7'])
,'VvT'])

>>> g exportGraphViz ()

*---- exporting a dot file for GraphViz tools
Exporting to tutorialGraph.dot

-1,'med':0, 'max':1%}

(continued from previous page)

fdp -Tpng tutorialGraph.dot -o tutorialGraph.png
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Graphs Python module (graphviz), R. Bisdorff, 2011

Fig. 6.1: Tutorial graph instance

Properties, like the gamma function and vertex degrees and neighbourhood depths may
be shown with a graphs. Graph.showShort() method.

>>> g.showShort ()

*---- short description of the graph ----%

Name : 'tutorialGraph'

Vertices o [tvl', 'v2', 'v3', ‘'v4', 'vb5', 'v6', 'v7']
Valuation domain : {'min': -1, 'med': 0, 'max': 1}

Gamma function

vl -> ['v5']

v2 -> ['ve', 'v4', 'v3']

v3 -> ['v2']

vd -> ['vb5', 'v2', 'v7']
v6 -> ['vil', 'v6', 'vd']
ve -> ['v2', 'vb']

v7 -> ['v4']

degrees : [0, 1, 2, 3, 4, 5, 6]
distribution : [0, 3, 1, 3, 0, 0, O]

nbh depths : [0, 1, 2, 3, 4, 5, 6, 'inf.']
distribution : [0, O, 1, 4, 2, 0, 0, 0]

A Graph instance corresponds bijectively to a symmetric Digraph instance and we may
easily convert from one to the other with the graph2Digraph(), and vice versa with
the digraph2Graph() method. Thus, all resources of the Digraph class, suitable for
symmetric digraphs, become readily available, and vice versa.

>>> dg = g.graph2Digraph()
>>> dg.showRelationTable(ndigits=0,ReflexiveTerms=False)
* ---- Relation Table -----

S | ‘w1t 'v2' 'v3' ‘'v4' 'vb' 'v6' 'vT7'

(continues on next page)
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'vi' | = -1 -1 -1 1 -1 -1
'v2' | -1 - 1 1 -1 1 -1
'v3' | -1 1 - -1 -1 -1 -1
'v4' | -1 1 -1 - 1 -1 1
'vb' | 1 -1 -1 1 - 1 -1
'v6' | -1 1 -1 -1 1 - -1
'v7' | -1 -1 -1 1 -1 - -
>>> g1 = dg.digraph2Graph()
>>> g1.showShort ()

*---- short description of the graph ----%

Name 'tutorialGraph'

Vertices ['vi', 'v2', 'v3', 'v4d', 'v5', 'v6'
Valuation domain : {'med': O, 'min': -1, 'max': 1}
Gamma function

vl -> ['v5']

v2 -> ['v3', 'v6', 'v4']

v3 -> ['v2']

vd -> ['vb', 'v7', 'v2']

vb -> ['v6', 'vi', 'v4']

ve -> ['vb', 'v2']

v7 -> ['v4']

degrees [0, 1, 2, 3, 4, 5, 6]
distribution : [0, 3, 1, 3, 0, 0, O]

nbh depths (0, 1, 2, 3, 4, 5, 6, 'inf.']
distribution : [0, O, 1, 4, 2, 0, 0, 0]

g-coloring of a graph

, 'V7']

A 3-coloring of the tutorial graph g may for instance be computed and plotted with the
Q_Coloring class as follows.

>>> from graphs import Q_Coloring

>>> gc = Q_Coloring(g)
Running a Gibbs Sampler for 42 step !
The q-coloring with 3 colors is feasible !!

>>> qc.showConfiguration()
vb lightblue

v3 gold
v7 gold

v2 lightblue
v4 lightcoral

vl gold

v6 lightcoral

>>> qc.exportGraphViz('tutorial-3-coloring')

*---- exporting a dot file for GraphViz tools

Exporting to tutorial-3-coloring.dot
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fdp -Tpng tutorial-3-coloring.dot

(continued from previous page)

-0 tutorial-3-coloring.png

v3
' vl
v2
4
/ v
e
6 — 5 \

v/

Graphs Python module (graphviz), R. Bisdorff, 2014

Fig. 6.2: 3-Coloring of the tutorial graph

Actually, with the given tutorial graph instance, a 2-coloring is already feasible.

>>>

qc = Q_Coloring(g,colors=['gold', 'coral'])

Running a Gibbs Sampler for 42 step !
The gq-coloring with 2 colors is feasible !!

>>>
vb
v3
v7
v2
vé
vl
v6

qc.showConfiguration()
gold

coral

gold

gold

coral

coral

coral

>>> qc.exportGraphViz('tutorial-2-coloring')
Exporting to tutorial-2-coloring.dot
fdp -Tpng tutorial-2-coloring.dot -o tutorial-2-coloring.png
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Fig. 6.3: 2-coloring of the tutorial graph

MIS and clique enumeration

2-colorings define independent sets of vertices that are maximal in cardinality; for short
called a MIS. Computing such MISs in a given Graph instance may be achieved by the
showMIS () method.

>>> g = Graph('tutorialGraph')
>>> g.showMIS()
*--- Maximal Independent Sets ---*
['v2', 'vb', 'v7']
['v3', 'v6', 'v7']
['vi', 'v2', 'v7']
['vi', 'v3', 'v6', 'v7']
['vl', 'v3', 'v4d', 'v6']
number of solutions: 5
cardinality distribution
card.: [0, 1, 2, 3, 4, 5, 6, 7]
freq.: [0, O, O, 3, 2, 0, 0, O]
execution time: 0.00032 sec.
Results in self.misset
>>> g.misset
[frozenset({'v7', 'v2', 'vb'}),
frozenset({'v3', 'v7', 'v5'}),
frozenset({'vl', 'v2', 'v7'}),
frozenset({'vl', 'v6', 'v7', 'v3'}),
frozenset({'vl', 'v6', 'v4', 'v3'})]
A MIS in the dual of a graph instance g (its negation -¢"¢¢'% %) corresponds to a
maximal clique, i.e. a maximal complete subgraph in g. Maximal cliques may be directly
enumerated with the showCliques () method.
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>>> g.showCliques()

*--- Maximal Cliques ---x*
['v2', 'v3']
['vd', 'v7']
['v2', 'v4']
['vd', 'vb']
['vl', 'vb']
['v2', 'v6']
['vE', 'v6']

number of solutions: 7

cardinality distribution

card.: [0, 1, 2, 3, 4, 5, 6, 7]

freq.: [0, O, 7, O, O, O, 0, O]

execution time: 0.00049 sec.

Results in self.cliques

>>> g.cliques

[frozenset({'v2', 'v3'}), frozenset({'v4', 'v7'}),
frozenset({'v2', 'v4'}), frozenset({'v4', 'vb5'}),
frozenset({'vl', 'v5'}), frozenset({'v6', 'v2'}),
frozenset({'v6', 'v5'})]

Line graphs and maximal matchings

The module also provides a LineGraph constructor. A line graph represents the adja-
cencies between edges of the given graph instance. We may compute for instance the
line graph of the 5-cycle graph.

>>> from graphs import CycleGraph, LineGraph
>>> g = CycleGraph(order=5)

>>> g

e Graph instance description ------ *

Instance class : CycleGraph

Instance name : cycleGraph

Graph Order : 5

Graph Size : 5

Valuation domain : [-1.00; 1.00]

Attributes : ['name', 'order', 'vertices', 'valuationDomain',

'edges', 'size', 'gamma'l

>>> 1g = LineGraph(g)
>>> 1g

e Graph instance description ------ *

Instance class : LineGraph

Instance name : line-cycleGraph

Graph Order : 5

Graph Size : 5

Valuation domain : [-1.00; 1.00]

Attributes : ['name', 'graph', 'valuationDomain', 'vertices',

(continues on next page)
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'order', 'edges', 'size', 'gamma']
>>> 1g.showShort ()
*---- short description of the graph ----x
Name 'line-cycleGraph'
Vertices [frozenset ({'v1l',

~frozenset({'v2"',

Valuation domain :

~Decimal('1')}
Gamma function
frozenset({'vl"',
~'v5'H) ]
frozenset({'vl"',
~'v5'})]
frozenset({'v2',
~'vd' )]
frozenset({'v3',
'v5'})]
frozenset({'v4',

~'v6'})]

degrees . [o,
distribution : [O,
nbh depths : [0,
distribution : [0,

'v3'}),

frozenset ({'v3"',

'v2'}) ->

'vb'}) >

'v3'}) ->

'vd'}) ->

'v6'}) ->

{'min"':

[frozenset ({'v2'

[frozenset ({'v1'

[frozenset ({'v1'

[frozenset ({'v2'

[frozenset ({'v4'

3, 4]
0, 0]

3, 4,

'v2'}), frozenset({'vl',

'va'}), frozenset({'v4',

Decimal('-1'), 'med': Decimal('0'),

"inf. ']
0, 0, 0]

3

b

b

3

b

(continued from previous page)

'v3'}),
'v2'}),
'v2'}),
'v3'}),

'v3'}),

'v6'}), .

'v5'})]

'max':

frozenset({'vl"',
frozenset({'v4"',
frozenset ({'v3"',
frozenset({'v4"',

frozenset({'vl',

Iterated line graph constructions are usually expanding, except for chordless cycles, where
the same cycle is repeated, and for non-closed paths, where iterated line graphs progres-
sively reduce one by one the number of vertices and edges and become eventually an

empty graph.

Notice that the MISs in the line graph provide maximal matchings - mazimal sets of
independent edges - of the original graph.

>>> ¢8 = CycleGraph(order=8)
>>> 1c8 = LineGraph(c8)

>>> 1c¢8.showMIS()
k———

[frozenset({'v3',
~'1)]
[frozenset({'v2',
~'H1
[frozenset({'v8",
~'}1)]
[frozenset({'v8"',
~'})]
[frozenset ({'v7"',

~'1H]

'v4'}),
'v3'}),
'v7'}),
'v7'}),

'v6'}),

Maximal Independent Sets ---*

frozenset({'v5"',

frozenset ({'v5',

frozenset ({'v2',

frozenset ({'v2"',

frozenset ({'v3"',
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'v6'}), frozenset({'vl', 'v8
'v6'}), frozenset({'vl', 'v8
'v3'}), frozenset({'vb', 'v6
'v3'}), frozenset({'v4', 'vbh
'vd'}), frozenset({'vl', 'v8

(continues on next page)
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[frozenset({'v2', 'vl1'}), frozenset({'v8'

~'P]

[frozenset({'v2', 'vl'}), frozenset({'v7'

~'1H]

[frozenset({'v2', 'vl1'}), frozenset({'v7'

~'}]

[frozenset({'v7', 'v6'}), frozenset({'v2'

-'D,

frozenset({'v4', 'v5'})]
[frozenset({'v2', 'vl1'}), frozenset({'v8'

-'},

frozenset({'v5', 'v6'})]

number of solutions:

10

cardinality distribution

card.: [0, 1, 2, 3, 4, 5, 6, 7, 8]
freq.: [0, O, 0, 8, 2, 0, 0, 0, 0]
execution time: 0.00029 sec.

2

2

3

2

b

(continued from previous page)

'v7'}), frozenset({'v4'
'v6'}), frozenset({'v4'
'v6'}), frozenset({'v3'

'v3'}), frozenset({'vl'

'v7'}), frozenset({'v3'

3

3

3

3

3

'vb

'vb

'v4

'v8

The two last MISs of cardinality 4 (see Lines 13-16 above) give isomorphic perfect
maximum matchings of the 8-cycle graph. Every vertex of the cycle is adjacent to a
matching edge. Odd cycle graphs do not admit any perfect matching.

>>> maxMatching = c8.computeMaximumMatching()
>>> ¢8.exportGraphViz (fileName='maxMatchingcycleGraph',

*---- exporting a dot file

Exporting to maxMatchingcyleGraph.dot

Matching: {frozenset({'vl',
frozenset ({'v3"',

matching=maxMatching)
for GraphViz tools -----—-—--—- *

'v2'}), frozenset({'vb', 'v6'}),
'v4'}), frozenset({'v7', 'v8'}) }

circo -Tpng maxMatchingcyleGraph.dot -o maxMatchingcyleGraph.png
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Fig. 6.4: A perfect maximum matching of the 8-cycle graph

Grids and the Ising model

Special classes of graphs, like n x m rectangular or triangular grids (GridGraph and
IsingModel) are available in the graphs module. For instance, we may use a Gibbs
sampler again for simulating an Ising Model on such a grid.

>>> from graphs import GridGraph, IsingModel
>>> g = GridGraph(n=15,m=15)
>>> g.showShort ()

o show short ----------—--—-- *
Grid graph : grid-6-6

n : 6

m : 6

order : 36

>>> im = IsingModel(g,beta=0.3,nSim=100000,Debug=False)
Running a Gibbs Sampler for 100000 step !

>>> im.exportGraphViz(colors=['lightblue','lightcoral'])
*---- exporting a dot file for GraphViz tools --------- *
Exporting to grid-15-15-ising.dot

fdp -Tpng grid-15-15-ising.dot -o grid-15-15-ising.png
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Fig. 6.5: Ising model of the 15x15 grid graph

Simulating Metropolis random walks

Finally, we provide the MetropolisChain class, a specialization of the Graph class, for
implementing a generic Metropolis MCMC (Monte Carlo Markov Chain) sampler for
simulating random walks on a given graph following a given probability probs = {‘v1"

x, ‘v2’: y, ...} for visiting each vertex (see Lines 14-22).

>>> from graphs import MetropolisChain
>>> g = Graph(numberOfVertices=5,edgeProbability=0.5)
>>> g.showShort ()

*---- short description of the graph ----*

Name : 'randomGraph'

Vertices o ['vil', 'v2', 'v3', 'v4', 'vb']
Valuation domain : {'max': 1, 'med': O, 'min': -1}

Gamma function
vl -> ['v2', 'v3', 'v4']
v2 -> ['vl', 'v4']

(continues on next page)
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v3
v4
vb

>>>
>>>
>>>
>>>
>>>
>>>

(continued from previous page)
> ['v5', 'vi']
-> ['v2', 'vb', 'vi']
> [ [ V3 | , | V4 | :l

probs = {} # inttialize a potential stationary probability vector
n = g.order # for instance: probs[v_i] = n-i/Sum(l:n) for < in 1:n
1=0
verticesList = [x for x in g.vertices]
verticesList.sort()
for v in verticesList:

probslv]l = (n - i)/(nx(n+1)/2)

i+=1

The checkSampling() method (see Line 23) generates a random walk of nSim=30000
steps on the given graph and records by the way the observed relative frequency with
which each vertex is passed by.

>>>
>>>
>>>

vl
v2
v3
v4
vb

met = MetropolisChain(g,probs)
frequency = met.checkSampling(verticesList[0],nSim=30000)
for v in verticesList:

print (v,probs[v],frequencyl[v])

0.3333 0.3343
0.2666 0.2680
0.2 0.2030
0.1333 0.1311
0.0666 0.0635

In this example, the stationary transition probability distribution, shown by the
showTransitionMatrix () method above (see below), is quite adequately simulated.

>>> met.showTransitionMatrix ()

¥ ---- Transition Matrix -----
Pij | 'vi! 'v2'! 'v3' 'v4' 'vb!
_____ | m o o
'vi' | 0.23 0.33 0.30 0.13 0.00
'v2' | 0.42 0.42 0.00 0.17 0.00
'v3' | 0.50 0.00 0.33 0.00 0.17
'vd' | 0.33 0.33 0.00 0.08 0.25
'vb' | 0.00 0.00 0.50 0.50 0.00

For more technical information and more code examples, look into the technical docu-

mentation of the graphs module. For the readers interested in algorithmic applications
of Markov Chains we may recommend consulting O. Hiaggstrom’s 2002 book: [FMCAA].

Back to Content Table (page 1)
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6.2 Computing the non isomorphic MISs of the 12-cycle graph

Introduction (page 277)

Computing the mazimal independent sets (MISs) (page 278)

Computing the automorphism group (page 280)

Computing the isomorphic MISs (page 280)

Introduction

Due to the public success of our common 2008 publication with Jean-Luc Marichal
[I[SOMIS-08] , we present in this tutorial an example Python session for computing the
non isomorphic maximal independent sets (MISs) from the 12-cycle graph, i.e. a
CirculantDigraph class instance of order 12 and symmetric circulants 1 and -1.

>>> from digraphs import CirculantDigraph
>>> ¢12 = CirculantDigraph(order=12,circulants=[1,-1])
>>> ¢cl12 # 12-cycle digraph instance

Koo Digraph instance description ------ *

Instance class : CirculantDigraph

Instance name : cl2

Digraph Order : 12

Digraph Size : 24

Valuation domain : [-1.0, 1.0]

Determinateness : 100.000

Attributes : ['name', 'order', 'circulants', 'actions',
'valuationdomain', 'relation', 'gamma',

'notGamma ']

Such n-cycle graphs are also provided as undirected graph instances by the CycleGraph
class.

>>> from graphs import CycleGraph
>>> cgl2 = CycleGraph(order=12)

>>> cgl2

e Graph instance description ------ *

Instance class : CycleGraph

Instance name : cycleGraph

Graph Order : 12

Graph Size : 12

Valuation domain : [-1.0, 1.0]

Attributes : ['name', 'order', 'vertices', 'valuationDomain',

'edges', 'size', 'gamma'l
>>> cgl2.exportGraphViz('cgl2")
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Fig. 6.6: The 12-cycle graph

Computing the maximal independent sets (MISs)

A non isomorphic MIS corresponds in fact to a set of isomorphic MISs, i.e. an orbit of
MISs under the automorphism group of the 12-cycle graph. We are now first computing all
maximal independent sets that are detectable in the 12-cycle digraph with the showMIS ()
method.

>>> ¢12.showMIS(withListing=False)
*--- Maximal independent choices ---x*
number of solutions: 29
cardinality distribution
card.: [0, 1, 2, 3, 4, 5, 6,7, 8,9, 10, 11, 12]
freq.: [0, O, O, O, 3, 24, 2, 0, 0, 0, O, O, O]
Results in c12.misset

In the 12-cycle graph, we observe 29 labelled MISs: — 3 of cardinality 4, 24 of cardinality
5, and 2 of cardinality 6. In case of n-cycle graphs with n > 20, as the cardinality of the
MISs becomes big, it is preferable to use the shell perrinMIS command compiled from
C and installed® along with all the Digraphs3 python modules for computing the set of

3 The perrinMIS shell command may be installed system wide with the command .../Digraph3$
make installPerrin from the main Digraph3 directory. It is stored by default into </usr/local/
bin/>. This may be changed with the INSTALLDIR flag. The command .../Digraph3$ make
installPerrinUser installs it instead without sudo into the user’s private <$Home/.bin> directory.
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30

31
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33

34

35

MISs observed in the graph.

...$ echo 12 | /usr/local/bin/perrinMIS

# Generating MIS set of Cn with the
# Perrin sequence algorithm.

# Temporary files used.

# even wversus odd order optimised.
# RB December 2006

# Current revision Dec 2018

Input cycle order 7 <-- 12
mis 1 : 100100100100
mis 2 : 010010010010
mis 3 : 001001001001

mis 27 : 001001010101
mis 28 : 101010101010
mis 29 : 010101010101

Cardinalities:
0:0

1 :0

2 :0
3:0

4 . 3

5 : 24

6 : 2

7 : 0

8 :0

9 :0

10 : O

11 : 0

12 : 0
Total: 29

execution time: O sec. and 2 millisec.

o™ R W R ™

Reading in the result of the perrinMIS shell command, stored in a file called by default
‘curd.dat’, may be operated with the readPerrinMisset () method.

>>> ¢12.readPerrinMisset(file="'curd.dat')

>>> cl12.misset
{frozenset({'5', '7', '10', '1', '3'}),
frozenset({'9', '11', '5', '2' 'T'}),

frozenset({'7', '2', '4', '10', '12'}),
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(continued from previous page)

frozenset({'8', '4', '10', '1', '6'}),
frozenset({'11', '4', '1', '9', '6'}),
frozenset({'8', '2', '4', '10', '12', '6'})
}

Computing the automorphism group

For computing the corresponding non isomorphic MISs, we actually need the auto-
morphism group of the cl2-cycle graph. The Digraph class therefore provides the
automorphismGenerators() method which adds automorphism group generators to a
Digraph class instance with the help of the external shell dreadnaut command from the
nauty software package?.

>>> ¢12.automorphismGenerators ()

Permutations
qoa0g 04T, t@iy g0 0goy 0440 04ng 1Agr, IR0
'9', '6': '§', '7': '7', '8': '6', '9': '6', '10':
i Viglig Ui, A0y 1903
oty R0, D@y VAU VEig ABI, IATs UA9 IEVs 10,
GIg 989, Ty 9B, U@t Y, 0@ @Y, Jd@7g 157,
oqlilog SAY, 09RY: 081

>>> print('grpsize = ', c12.automorphismGroupSize)
grpsize = 24

The 12-cycle graph automorphism group is generated with both the permutations above
and has group size 24.

Computing the isomorphic MISs

The command showOrbits () renders now the labelled representatives of each of the four
orbits of isomorphic MISs observed in the 12-cycle graph (see Lines 7-10).

>>> ¢12.showOrbits(c12.misset,withListing=False)

*---- Global result ----

Number of MIS: 29

Number of orbits : 4

Labelled representatives and cardinality:
1: ['2','4','6','8','10','12'], 2

2: ['2','5','8','11'], 3

3: ['2','4','6','9','11'], 19

(continues on next page)

2 Dependency: The automorphismGenerators() method uses the shell dreadnaut command from the
nauty software package. See https://www3.cs.stonybrook.edu/~algorith /implement /nauty /implement.
shtml . On Mac OS there exist dimg installers and on Ubuntu Linux or Debian, one may easily install it
with ...$ sudo apt-get install nauty.
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(continued from previous page)
&z [V4°,040 070, 090, 044, 12
Symmetry vector
stabilizer size: [1, 2, 3, ..., 8
frequency : [0, 2, 0, ..., 1

The corresponding group stabilizers’ sizes and frequencies — orbit 1 with 6 symmetry
axes, orbit 2 with 4 symmetry axes, and orbits 3 and 4 both with one symmetry axis (see
Lines 12-13), are illustrated in the corresponding unlabelled graphs of Fig. 6.7 below.

Fig. 6.7: The symmetry axes of the four non isomorphic MISs of the 12-cycle graph

The non isomorphic MISs in the 12-cycle graph represent in fact all the ways one may
write the number 12 as the circular sum of ‘2’s and ‘3’s without distinguishing opposite
directions of writing. The first orbit corresponds to writing six times a ‘2’; the second
orbit corresponds to writing four times a ‘3’. The third and fourth orbit correspond to
writing two times a ‘3’ and three times a ‘2’. There are two non isomorphic ways to do
this latter circular sum. Either separating the ‘3’s by one and two ‘2’s, or by zero and
three ‘2’s (see Bisdorff & Marichal [[SOMIS-08] ).

Back to Content Table (page 1)
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6.3 About split, interval and permutation graphs

A multiply perfect graph (page 282)
Who is the liar ? (page 284)

Generating permutation graphs (page 287)

e Recognizing permutation graphs (page 290)

A multiply perfect graph
A graph g is called:

e Berge or perfect when ¢ and its dual -¢g both don’t contain any chordless odd
cycles of length greater than 3 (|[BER-1963|, |[CHU-2006]),

e Triangulated when ¢ does not contain any chordless cycle of length 4 and more.
Following Martin Golumbic (see [GOL-2004] p. 149), we call a given graph g :

e Comparability graph when ¢ is transitively orientable;

e Interval graph when g is triangulated and its dual -g is a comparabilily graph;

e Permutation graph when ¢ and its dual -¢g are both comparability graphs;

e Split graph when ¢ and its dual -g are both triangulated graphs.

All these four kinds of graphs are in fact perfect graphs. To illustrate these graph classes,
we generate from 8 intervals, randomly chosen in the default integer range [0,10], a
RandomIntervalIntersectionsGraph instance g (see Listing 6.1 Line 2 below).

Listing 6.1: A multiply perfect random interval intersec-
tion graph

>>> from graphs import RandomIntervallntersectionsGraph
>>> g = RandomIntervallntersectionsGraph(order=8,seed=100)

>>> g
S Graph instance description ------ *
Instance class : RandomIntervallntersectionsGraph
Instance name : randIntervalIntersections
Seed : 100
Graph Order : 8
Graph Size : 23
Valuation domain : [-1.0; 1.0]
Attributes : ['seed', 'mame', 'order', 'intervals',
'vertices', 'valuationDomain',
'edges', 'size', 'gamma']

>>> print(g.intervals)
[(2, 7, (2, 7), (5, 6), (6, 8, (1, 8), (1, 1), (4, 7, (0, 10)]
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With seed = 100, we obtain here an interval graph, in fact a perfect graph ¢, which is
conjointly a triangulated, a comparability, a split and a permutation graph (see Listing
6.2 Lines 6,10,14 ).

Listing 6.2: testing perfect graph categories

>>> g isPerfectGraph(Comments=True)

Graph randIntervallntersections is perfect !
>>> g.isIntervalGraph(Comments=True)

Graph 'randIntervallntersections' is triangulated.

Graph 'dual_randIntervallntersections' is transitively orientable.
=> Graph 'randIntervallntersections' is an interval graph.
>>> g.isSplitGraph(Comments=True)

Graph 'randIntervallntersections' is triangulated.

Graph 'dual_randIntervallntersections' is triangulated.

=> Graph 'randIntervallntersections' is a split graph.
>>> g isPermutationGraph(Comments=True)

Graph 'randIntervallntersections' is transitively orientable.
Graph 'dual_randIntervallntersections' is transitively orientable.
=> Graph 'randIntervallntersections' is a permutation graph.
>>> print (g.computePermutation())

['vE', 'v6', 'v4', 'v2', 'vi', 'v3', 'v7', 'v8']

['v8', 'v6', 'vi', 'v2', 'v3', 'v4', 'v7', 'v5']

(8, 2, 6, 5, 7, 4, 3, 1]
>>> g.exportGraphViz ('randomSplitGraph')

*---- exporting a dot file for GraphViz tools --------- *
Exporting to randomSplitGraph.dot

fdp -Tpng randomSplitGraph.dot -o randomSplitGraph.png

Graphs Python module (graphviz), R. Bisdorff, 2019

Fig. 6.8: A conjointly triangulated, comparability, interval, permutation and split graph
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In Fig. 6.8 we may readily recognize the essential characteristic of split graphs, namely
being always splitable into two disjoint sub-graphs: an independent choice {v6} and a
clique {v1, v2, v3, v4, v5, v7, v8}; which explains their name.

Notice however that the four properties:
1. g is a comparability graph;
2. g is a cocomparability graph, i.e. -g is a comparability graph;
3. ¢ is a triangulated graph;
4. g is a cotriangulated graph, i.e. -g is a comparability graph;

are independent of one another (see [GOL-2004] p. 275).

Who is the liar ?

Claude Berge’s famous mystery story (see [GOL-2004] p.20) may well illustrate the im-
portance of being an interval graph.

Suppose that the file ‘berge.py’'® contains the following Graph instance data:

vertices = {

'A': {'name': 'Abe', 'shortName': 'A'},

'B': {'name': 'Burt', 'shortName': 'B'},

'C': {'name': 'Charlotte', 'shortName': 'C'},
'D': {'name': 'Desmond', 'shortName': 'D'},
'E': {'name': 'Eddie', 'shortName': 'E'},
'I': {'name': 'Ida', 'shortName': 'I'},

+
valuationDomain = {'min':-1, 'med':0, 'max':1}
edges = {

frozenset(['A','B']) : 1,
frozenset(['A','C']) : -1,
frozenset(['A','D']) : 1,
frozenset(['A','E']) : 1,
frozenset(['A','I']) : -1,
frozenset(['B','C']) : -1,
frozenset(['B','D']) : -1,
frozenset(['B','E']) : 1
frozenset(['B','I']) : 1
frozenset(['C','D']) : 1,
frozenset(['C','E']) : 1
frozenset(['C','I']) 1
frozenset(['D','E']) : -
frozenset(['D','I']) : 1,
frozenset(['E','I']) 1
+

18 A Digraph3 graphs. Graph encoded file is available in the examples directory of the Digraph3 software
collection.
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Six professors (labeled A, B, C, D, E and I) had been to the library on the day that a
rare document was stolen. Each entered once, stayed for some time, and then left. If two
professors were in the library at the same time, then at least one of them saw the other.
Detectives questioned the professors and gathered the testimonies that A saw B and F;
Bsaw A and I; C saw D and I; D saw A and I; F saw B and I; and [ saw C and
E. This data is gathered in the previous file, where each positive edge {z,y} models the
testimony that, either z saw y, or y saw z.

>>> from graphs import Graph
>>> g = Graph('berge')
>>> g.showShort ()

*---- short description of the graph ----%

Name : 'berge'

Vertices : ['A', 'B', 'C', 'D', 'E', 'I']
Valuation domain : {'min': -1, 'med': 0, 'max': 1}

Gamma function

A ->['D', 'B', 'E']

B ->['E', 'I', 'A']

¢ ->['E', 'D', 'T']

D ->['C', 'I', 'A']

E-> ['C', 'B', 'I', 'A']
I->[cC, 'E', 'B', 'D']

>>> g.exportGraphViz('bergel')

*---- exporting a dot file for GraphViz tools --------- *
Exporting to bergel.dot

fdp -Tpng bergel.dot -o bergel.png

Graphs Python module (graphviz), R. Bisdorff, 2011

Fig. 6.9: Graph representation of the testimonies of the professors

From graph theory we know that time interval intersections graphs must in fact be inter-
val graphs, i.e. triangulated and co-comparative graphs. The testimonies graph should
therefore not contain any chordless cycle of four and more vertices. Now, the presence or
not of such chordless cycles in the testimonies graph may be checked as follows.
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>>> g.computeChordlessCycles ()

Chordless cycle certificate -->>> ['D', 'C', 'E', 'A', 'D']
Chordless cycle certificate -->>> ['D', 'I', 'E', 'A', 'D']
Chordless cycle certificate -->>> ['D', 'I', 'B', 'A', 'D']
[([IDI, ICI’ IEI’ IAI’ IDI]’ frozenset({lcl’ IDI’ IEI’ IAI}))’
(f'D', '1', 'E', 'A', 'D'], frozemset({'D', 'E', 'I', 'A'})),
([IDI’ 'I', 'B', IAI’ lDI:l’ frozenset({’D’, er’ III’ IAI}))]

We see three intersection cycles of length 4, which is impossible to occur on the linear
time line. Obviously one professor lied!

And it is D ; if we put to doubt his testimony that he saw A (see Line 1 below), we
obtain indeed a triangulated graph instance whose dual is a comparability graph.

>>> g.setEdgeValue( ('D','A"), 0)
>>> g.showShort ()

*---- short description of the graph ----%

Name : 'berge'

Vertices : [*A', 'B'Y, 'C', 'D', 'E', 'I']
Valuation domain : {'med': O, 'min': -1, 'max': 1}

Gamma function

A -> ['B', 'E']

B -> ['A', 'TI', 'E']

¢c->['T', 'E', 'D']

D->['T", 'C']

E->['A', 'T', 'B', 'C']

I->1([B', 'E', 'D', 'C']
>>> g.isIntervalGraph(Comments=True)

Graph 'berge' is triangulated.

Graph 'dual_berge' is transitively orientable.
=> Graph 'berge' is an interval graph.

>>> g exportGraphViz('berge2')

*---- exporting a dot file for GraphViz tools --------- *
Exporting to berge2.dot

fdp -Tpng berge2.dot -o berge2.png
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Graphs Python module (graphviz), R. Bisdorff, 2011
Fig. 6.10: The triangulated testimonies graph

Generating permutation graphs

A graph is called a permutation or inversion graph if there exists a permutation of
its list of vertices such that the graph is isomorphic to the inversions operated by the
permutation in this list (see [GOL-2004] Chapter 7, pp 157-170). This kind is also part
of the class of perfect graphs.

>>> from graphs import PermutationGraph
>>> g = PermutationGraph(permutation = [4, 3, 6, 1, 5, 2])
>>> g

L Graph instance description ------ *

Instance class : PermutationGraph

Instance name : permutationGraph

Graph Order : 6

Permutation : [4, 3, 6, 1, 5, 2]

Graph Size : 9

Valuation domain : [-1.00; 1.00]

Attributes : ['name', 'vertices', 'order', 'permutation',

'valuationDomain', 'edges', 'size', 'gamma']

>>> g.isPerfectGraph()

True
>>> g exportGraphViz ()

*---- exporting a dot file for GraphViz tools --------- *

Exporting to permutationGraph.dot
fdp -Tpng permutationGraph.dot -o permutationGraph.png
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Fig. 6.11: The default permutation graph
By using color sorting queues, the minimal vertex coloring for a permutation graph is

computable in O(nlog(n)) (see [GOL-2004]).

>>> g.computeMinimalVertexColoring(Comments=True)
vertex 1: lightcoral

vertex 2: lightcoral
vertex 3: lightblue
vertex 4: gold

vertex 5: lightblue

vertex 6: gold
>>> g.exportGraphViz(fileName='coloredPermutationGraph',
. WithVertexColoring=True)
*---- exporting a dot file for GraphViz tools --------- *
Exporting to coloredPermutationGraph.dot
fdp -Tpng coloredPermutationGraph.dot -o coloredPermutationGraph.png

1*‘"";'—..6\5
Py
3 —

Graphs Python module (graphviz), B. Bisdorff, 2019

Fig. 6.12: Minimal vertex coloring of the permutation graph

The correspondingly colored matching diagram of the nine inversions -the actual
edges of the permutation graph-, which are induced by the given permutation [4, 3, 6,
1, 5, 2], may as well be drawn with the graphviz neato layout and explicitly positioned
horizontal lists of vertices (see Iig. 6.13).
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>>> g exportPermutationGraphViz (WithEdgeColoring=True)

*---- exporting a dot file for GraphViz tools --------- *

Exporting to perm_permutationGraph.dot

neato -n -Tpng perm_permutationGraph.dot -o perm_permutationGraph.png

@@}ED@ O
@d@@ )

Graphs Python module {graphviz), B. Bisdorff, 2019

Fig. 6.13: Colored matching diagram of the permutation [4, 3, 6, 1, 5, 2]

As mentioned before, a permutation graph and its dual are transitively orientable. The
transitiveOrientation () method constructs from a given permutation graph a digraph
where each edge of the permutation graph is converted into an arc oriented in increasing
alphabetic order of the adjacent vertices’ keys (see [GOL-2004]). This orientation of the
edges of a permutation graph is always transitive and delivers a transitive ordering of the
vertices.

>>> dg = g.transitiveOrientation()

>>> dg

A Digraph instance description ------ *

Instance class : TransitiveDigraph

Instance name : oriented_permutationGraph

Digraph Order : 6

Digraph Size SO

Valuation domain : [-1.00; 1.00]

Determinateness : 100.000

Attributes : ['name', 'order', 'actions', 'valuationdomain',

'relation', 'gamma', 'notGamma', 'size']
>>> print('Transitivity degree: " % dg.computeTransitivityDegree() )

Transitivity degree: 1.000
>>> dg.exportGraphViz()

*---- exporting a dot file for GraphViz tools --------- *
Exporting to oriented_permutationGraph.dot

0 subgraph { rank = same; 1; 2; }

1 subgraph { rank = same; 5; 3; }

2 subgraph { rank = same; 4; 6; }

dot -Grankdir=TB -Tpng oriented_permutationGraph.dot -0 oriented_
—permutationGraph.png
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Fig. 6.14: Hasse diagram of the transitive orientation of the permutation graph

The dual of a permutation graph is again a permutation graph and as such also transi-
tively orientable.

>>> dgd = (-g).transitiveOrientation()
>>> print('Dual transitivity degree: VA
dgd.computeTransitivityDegree() )

Dual transitivity degree: 1.000

Recognizing permutation graphs

Now, a given graph ¢ is a permutation graph if and only if both ¢ and -g are
transitively orientable. This property gives a polynomial test procedure (in O(n?) due to
the transitivity check) for recognizing permutation graphs.

Let us consider, for instance, the following random graph of order 8 generated with an
edge probability of 40% and a random seed equal to 4335.

>>> from graphs import RandomGraph

>>> g = RandomGraph(order=8,edgeProbability=0.4,seed=4335)
>>> g

L Graph instance description ------ *

Instance class : RandomGraph

Instance name : randomGraph

Seed : 4335

Edge probability : 0.4

Graph Order : 8

Graph Size : 10

Valuation domain : [-1.00; 1.00]

Attributes : ['name', 'order', 'vertices', 'valuationDomain',

(continues on next page)
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'seed', 'edges', 'size',
'gamma', 'edgeProbability']

>>> g.isPerfectGraph()
True
>>> g.exportGraphViz ()

(continued from previous page)

Graphs Python module (graphviz), R. Bisdorff, 2015

Fig. 6.15: Random graph of order 8 generated with edge probability 0.4

If the random perfect graph instance g (see Fig. 6.15) is indeed a permutation graph,
g and its dual -g should be transitively orientable, i.e. comparability graphs (see
|GOL-2004]). With the isComparabilityGraph() test, we may easily check this fact.
This method proceeds indeed by trying to construct a transitive neighbourhood decom-
position of a given graph instance and, if successful, stores the resulting edge orientations
into a self.edgeOrientations attribute (see [GOL-2004] p.129-132).

>>> if g.isComparabilityGraph() :
print(g.edgeOrientations)

{C'v1*, 'vi'): 0, ('v1', 'v2'): 1, ('v2',
('v3', 'vi'): -1, ('vi', 'v4'): 1, ('v4',
(‘vb', 'vi'): 0, ('v1', 've'): 1, ('v6',
('v7', 'vi'): 0, ('v1', 'v8'): 1, ('v8',
('v2', 'v3'): 0, ('v3', 'v2'): 0, ('v2',
('v2', 'v5'): 0, ('vb', 'v2'): 0, ('v2',
('v2', 'v7'): 0, ('v7', 'v2'): 0, ('v2',
(‘v3', 'v3'): 0, ('v3', 'vd'): 0, ('v4',
(‘vb', 'v3'): 0, ('v3', 'v6'): 0, ('v6',
(‘v7', 'v3'): 0, ('v3', 'v8'): 0, ('v8',
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(continued from previous page)
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-1, ('v6', 'v6'): 0,
1, ('v8', 'v6'): -1,
-1, ('v8', 'v8'): 0}
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Fig. 6.16: Transitive neighbourhoods of the graph ¢

The resulting orientation of the edges of g (see Fig. 6.16) is indeed transitive. The same
procedure applied to the dual graph gd = -g gives a transitive orientation to the edges of

_g.

>>> gd = -g
>>> if gd.isComparabilityGraph() :
print(gd.edgeOrientations)

{C'v1*, 'vi'): 0, ('v1', 'v2'): 0, ('v2',
('v3', 'vi1'): 0, ('vi', 'vd'): 0, ('v4',
(‘vb', 'vi'): -1, ('vi', 'v6'): 0, ('v6',
('vr', 'vi'): -1, ('vi', 'v8'): 0, ('v8',
(‘v2', 'v3'): -2, ('v3', 'v2'): 2, ('v2',
('v2', 'vb5'): 1, ('vb', 'v2'): -1, ('v2',
('v2', 'v7'): 1, (v, 'v2'): -1, ('v2',
('v3', 'v3'): 0, ('v3', 'v4'): -3, ('v4',
(‘vb', 'v3'): -1, ('v3', 'v6'): 1, ('v6',
(‘vr', 'v3'): -1, ('v3', 'v8'): 1, ('v8',
(‘v4', 'vb5'): 1, ('vb', 'vda'): -1, ('v4',
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(
, (w7, t'vat): -1, ('v4', 'v8'): 1, ('v8', 'v4'): -1,

(‘vd', 'v7'): 1

('vb', 'vb'): 0, ('vb', 'v6'): 0, ('v6', 'vB'): 0, ('vb', 'v7'): O,
(‘vr', 'vb5'): 0, ('vb', 'v8'): 0, ('v8', 'vb5'): 0, ('v6', 'v6'): O,
(‘v6', 'v7'): 1, ('v7', 've'): -1, (‘ve', 'v8'): 0, ('v8', 'v6'): O,
('vr', 'v7'): 0, ('v7', 'v8'): 0, ('v8', 'v7'): 0, ('v8', 'v8'): 0}
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Fig. 6.17: Transitive neighbourhoods of the dual graph -g

It is worthwhile noticing that the orientation of ¢ is achieved with a single neighbourhood
decomposition, covering all the vertices. Whereas, the orientation of the dual -¢g needs a
decomposition into three subsequent neighbourhoods marked in black, red and blue (see
Fig. 6.17).

Let us recheck these facts by explicitly constructing transitively oriented digraph instances
with the computeTransitivelyOrientedDigraph() method.

>>> og = g.computeTransitivelyOrientedDigraph(PartiallyDetermined=True)
>>> print ('Transitivity degree: " % (og.transitivityDegree))
Transitivity degree: 1.000

>>> ogd = (-g).
—computeTransitivelyOrientedDigraph(PartiallyDetermined=True)

>>> print ('Transitivity degree: " 7 (ogd.transitivityDegree))
Transitivity degree: 1.000

The PartiallyDetermined="True flag (see Lines 1 and 4) is required here in order to orient
only the actual edges of the graphs. Relations between vertices not linked by an edge
will be put to the indeterminate characteristic value 0. This will allow us to compute,
later on, convenient disjunctive digraph fusions.

As both graphs are indeed transitively orientable (see Lines 3 and 6 above), we may
conclude that the given random graph ¢ is actually a permutation graph instance. Yet,
we still need to find now its corresponding permutation. We therefore implement a recipe
given by Martin Golumbic [GOL-2004] p.159.
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We will first fuse both og and ogd orientations above with an epistemic disjunction
(see the omax () operator), hence, the partially determined orientations requested above.

Listing 6.3: Fusing graph orientations

>>> from digraphs import FusionDigraph
>>> f1 = FusionDigraph(og,ogd,operator="'o-max")
>>> g1 = f1.computeCopelandRanking()
>>> print(sl)
['vb', 'v7', 'vi', 'v6', 'v8', 'v4', 'v3', 'v2']

We obtain by the Copeland ranking rule (see tutorial on ranking with incommensurable
criteria (page 78) and the computeCopelandRanking () method) a linear ordering of the
vertices (see Listing 6.3 Line 5 above).

We reverse now the orientation of the edges in og (see -og in Line 1 below) in order to
generate, again by disjunctive fusion, the inversions that are produced by the permutation
we are looking for. Computing again a ranking with the Copeland rule, will show the
correspondingly permuted list of vertices (see Line 4 below).

>>> f2 = FusionDigraph((-og),ogd,operator="'o-max")
>>> g2 = f2.computeCopelandRanking()
>>> print(s2)

['v8', 'v7', 'v6', 'vb5', 'v4', 'v3', 'v2', 'vi']

Vertex v8 is put from position 5 to position 1, vertex v7 is put from position 2 to position
2, vertex v6 from position 4 to position 3, ‘vertex v5 from position 1 to position 4, etc

We generate these position swaps for all vertices and obtain thus the required
permutation (see Line 5 below).

>>> permutation = [0 for j in range(g.order)]
>>> for j in range(g.order):
permutation[s2.index(s1[j]1)] = j+1

>>> print(permutation)
[5, 2: 4, 1: 6: 7: 8: 3]

It is worthwhile noticing by the way that transitive orientations of a given graph and its
dual are usually not unique and, so may also be the resulting permutations. However,
they all correspond to isomorphic graphs (see [GOL-2004]). In our case here, we observe
two different permutations and their reverses:

si: ['v1', 'v4', 'v3', 'v2', 'vb', 'v6', 'v7', 'v8']
s2: ['v4', 'v3', 'v2', 'v8', 'v6', 'vi', 'v7', 'vbh']
(s1 ->s82): [2, 3, 4, 8, 6, 1, 7, 5]
(s2 -> s1): [6, 1, 2, 3, 8, 5, 7, 4]

And:
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s3: ['v5', 'v7', 'vi', 'v6', 'v8', 'v4', 'v3', 'v2']
s4: ['v8', 'v7', 'v6', 'vb', 'v4', 'v3', 'v2', 'vi']
(s3 -> s4): [5, 2, 4, 1, 6, 7, 8, 3]
(s4 -> s3) = [4, 2,8, 3, 1, 5, 6, 7]

The computePermutation() method does directly operate all these steps: - computing
transitive orientations, - ranking their epistemic fusion and, - delivering a corresponding
permutation.

>>> g.computePermutation(Comments=True)

[‘vi', 'v2', 'v3', 'v4', 'vb', 'v6', 'v7', 'v8']
[‘v2', 'v3', 'v4', 'v8', 'v6', 'vi', 'v7', 'v5']
(2, 3, 4, 8, 6, 1, 7, 5]

We may finally check that, for instance, the two permutations |2, 3, 4, 8, 6, 1, 7, 5] and
4, 2, 8, 3, 1, 5, 6, 7] observed above, will correctly generate corresponding isomorphic
permutation graphs.

>>> gtesta = PermutationGraph(permutation=[2, 3, 4, 8, 6, 1, 7, 5])
>>> gtestb = PermutationGraph(permutation=[4, 2, 8, 3, 1, 5, 6, 7])
>>> gtesta.exportGraphViz('gtesta')
>>> gtestb.exportGraphViz('gtestb')

[2,3,4,8,6,1,7,5] [4,2,8,3,1,5,6,7]
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Graphs Python module (graphviz), R. Bisdorff, 2019 Graphs Python module (graphviz), R. Bisdorff, 2019

Fig. 6.18: Isomorphic permutation graphs

And, we recover indeed two isomorphic copies of the original random graph (compare
Fig. 6.18 with Fig. 6.15).

Back to Content Table (page 1)
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6.4 On tree graphs and graph forests

Generating random tree graphs (page 296)
e Recognizing tree graphs (page 299)

Spanning trees and forests (page 301)

Mazimum determined spanning forests (page 303)

Generating random tree graphs

Using the RandomTree class, we may, for instance, generate a random tree graph with 9
vertices.

>>> from graphs import RandomTree
>>> t = RandomTree(order=9,seed=100)

>>>

e Graph instance description ------ *

Instance class : RandomTree

Instance name : randomTree

Graph Order : 9

Graph Size : 8

Valuation domain : [-1.00; 1.00]

Attributes : ['name', 'order', 'vertices', 'valuationDomain',

'edges', 'prueferCode', 'size', 'gamma']
*---- RandomTree specific data ----*

Priifer code : ['v3', 'v8', 'v8', 'v3', 'v7', 'vé', 'v7']
>>> t.exportGraphViz ('tutRandomTree')

*---- exporting a dot file for GraphViz tools --------- *
Exporting to tutRandomTree.dot

neato -Tpng tutRandomTree.dot -o tutRandomTree.png
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Fig. 6.19: Random Tree instance of order 9

A tree graph of order n contains n-1 edges (see Line 8 and 9) and we may distinguish
vertices like v1, v2, v4, v5 or v9 of degree 1, called the leaves of the tree, and vertices
like v3, v6, v7 or v8 of degree 2 or more, called the nodes of the tree.

The structure of a tree of order n > 2 is entirely characterised by a corresponding Priifer
code -i.e. a list of vertices keys- of length n-2. See, for instance in Line 12 the code [‘v3’,
‘v8', ‘v8, ‘v3’, ‘v, ‘v6’, ‘v7’| corresponding to our sample tree graph t.

Each position of the code indicates the parent of the remaining leaf with the smallest
vertex label. Vertex v3 is thus the parent of v1 and we drop leaf v1, v8 is now the parent
of leaf v2 and we drop v2, vertex v§ is again the parent of leaf v/ and we drop v4, vertex
v3 is the parent of leaf v5 and we drop v5, v7 is now the parent of leaf v% and we may
drop v3, v6 becomes the parent of leaf v8 and we drop v8, v7 becomes now the parent
of leaf v6 and we may drop v6. The two eventually remaining vertices, v7 and v9, give
the last link in the reconstructed tree (see [BAR-1991]).

It is as well possible to first, generate a random Priifer code of length n-2 from a set of n
vertices and then, construct the corresponding tree of order n by reversing the procedure
illustrated above (see [BAR-1991]).

>>> vyerticesList = ['vl','v2','v3','vd','vb','v6','v7"']
>>> n = len(verticesList)
>>> import random

(continues on next page)
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>>> random.seed(101)
>>> code = []
>>> for k in range(n-2):
code . append( random.choice(verticesList) )

>>> print(code)

['V5', 'V7', 'V2', 'V5', 'V3']
>>> t = RandomTree(prueferCode=['v5', 'v7', 'v2', 'v5', 'v3'])
>>> t

e Graph instance description ------ *

Instance class : RandomTree

Instance name : randomTree

Graph Order 7

Graph Size : 6

Valuation domain : [-1.00; 1.00]

Attributes : ['name', 'order', 'vertices', 'valuationDomain',
'edges', 'prueferCode', 'size', 'gamma']

*---- RandomTree specific data ----*

Priifer code : ['vb', 'v7', 'v2', 'vb', 'v3']
>>> t.exportGraphViz ('tutPruefTree')

*---- exporting a dot file for GraphViz tools --------- *
Exporting to tutPruefTree.dot

neato -Tpng tutPruefTree.dot -o tutPruefTree.png

Graphs Python module (graphviz), R. Bisdorff, 2019

Fig. 6.20: Tree instance from a random Priifer code

Following from the bijection between a labelled tree and its Prifer code, we actually
know that there exist n"~2 different tree graphs with the same n vertices.

Given a genuine graph, how can we recognize that it is in fact a tree instance 7
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Recognizing tree graphs

Given a graph ¢ of order n and size s, the following 5 assertions A1, A2, A3 A4 and A5
are all equivalent (see [BAR-1991]):

o Al: gis a tree;

e A2: g is without (chordless) cycles and n = s+ 1;

e A3: ¢gis connected and n = s+ 1;

e A/: Any two vertices of g are always connected by a unique path;

e Ab5: g is connected and dropping any single edge will always disconnect g.

Assertion A3, for instance, gives a simple test for recognizing a tree graph. In case of
a lazy evaluation of the test in Line 3 below, it is opportune, from a computational
complexity perspective, to first, check the order and size of the graph, before checking its
potential connectedness.

>>> from graphs import RandomGraph
>>> g = RandomGraph(order=8,edgeProbability=0.3,seed=62)
>>> if g.order == (g.size +1) and g.isConnected():
print('The graph is a tree 7', True)
. else:
print('The graph is a tree 7',False)

The graph is a tree 7 True

The random graph of order 8 and edge probability 30%, generated with seed 62, is actually
a tree graph instance, as we may readily confirm from its graphviz drawing in Fig. 6.21
(see also the isTree() method for an implemented alternative test).

>>> g exportGraphViz('test62')

*---- exporting a dot file for GraphViz tools --------- *
Exporting to test62.dot

fdp -Tpng test62.dot -o test62.png
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Fig. 6.21: Recognizing a tree instance

Yet, we still have to recover its corresponding Priifer code. Therefore, we may use the
tree2Pruefer () method.

>>> from graphs import TreeGraph
>>> g.__class__ = TreeGraph

>>> g.tree2Pruefer ()

['ve', 'vi', 'v2', 'vi', 'v2', 'v5']

In Fig. 6.21 we also notice that vertex v2 is actually situated in the centre of the tree
with a neighborhood depth of 2. We may draw a correspondingly rooted and oriented
tree graph.

>>> g computeGraphCentres ()
{'v2': 2}
>>> g exportOrientedTreeGraphViz (fileName='rootedTree',
root='v2"')

—- exporting a dot file for GraphViz tools ——— Exporting to
rootedTree.dot dot -Grankdir=TB -Tpng rootedTree.dot -o root-
edTree.png
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Fig. 6.22: Drawing an oriented tree rooted at its centre

Let us now turn our attention toward a major application of tree graphs, namely spanning
trees and forests related to graph traversals.

Spanning trees and forests

With the RandomSpanningTree class we may generate, from a given connected graph g
instance, uniform random instances of a spanning tree by using Wilson’s algorithm
[WIL-1996]

Note

Wilson’s algorithm only works for connected graphs®.

>>> from graphs import RandomGraph, RandomSpanningTree
>>> g = RandomGraph(order=9,edgeProbability=0.4,seed=100)
>>> gpt = RandomSpanningTree(g)

>>> spt
e Graph instance description ------ *
Instance class : RandomSpanningTree
Instance name : randomGraph_randomSpanningTree
Graph Order : 9
Graph Size : 8
Valuation domain : [-1.00; 1.00]
Attributes : ['name','vertices', 'order', 'valuationDomain',
'edges', 'size','gamma', 'dfs', 'date’,
'dfsx', 'prueferCode']
(continues on next page)
4 Wilson’s algorithm uses loop-erased random walks. See https://en.wikipedia.org/wiki/

Loop-erased random walk .
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14 *---- RandomTree specific data ----*

15 Priifer code : ['v7', 'v9', 'vb', 'vi', 'v8', 'v4', 'v9']

16 >>> spt.exportGraphViz(fileName='randomSpanningTree',

7. WithSpanningTree=True)

18 *---- exporting a dot file for GraphViz tools --------- *

19 Exporting to randomSpanningTree.dot

20 [['Vl', |V5', 'V6', 'V5', 'Vl', |V8', 'V9', 'V3', |V9', 'V4',
21 'v7', 'v2', 'v7', 'v4', 'v9', 'v8', 'vi'l]

22 neato -Tpng randomSpanningTree.dot -o randomSpanningTree.png

Graphs Python module (graphviz), B. Bisdorff, 2019

Fig. 6.23: Random spanning tree

More general, and in case of a not connected graph, we may generate with the
RandomSpanningForest class a not necessarily uniform random instance of a spanning
forest -one or more random tree graphs- generated from a random depth first search
of the graph components’ traversals.

1 >>> g = RandomGraph(order=15, edgeProbability=0.1,seed=140)

> >>> g.computeComponents ()

s [{'vi2', 'vO1', 'v13'}, {'v02', 'v06'},

1 {'v08', 'v03', 'vO7'}, {'vib', 'vil', 'v1i0', 'v04', 'v05'},

5 {'v09', 'vi4'}]

¢ >>> fromgraphs import RandomSpanningForest

7 >>> gpf = RandomSpanningForest(g,seed=100)

s >>> spf.exportGraphViz(fileName="'spanningForest',WithSpanningTree=True)

9  *---- exporting a dot file for GraphViz tools --------- *

10 Exporting to spanningForest.dot

11 [['v03', 'vO7', 'v08', 'vO7', 'v03'],

12 ['vi3', 'vi2', 'vi13', 'vO1', 'v13'],

13 [‘v02', 'v06', 'v02'],

14 [‘vi5', 'vil', 'v04', 'vil', 'vis', 'v10', 'v05', 'v1i0', 'vib'],
(continues on next page)
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['v09', 'vid', 'v09']]
neato -Tpng spanningForest.dot -o spanningForest.png

Graphs Python module (graphviz), R. Bisdorff, 2019

Fig. 6.24: Random spanning forest instance

Maximum determined spanning forests

In case of valued graphs supporting weighted edges, we may finally construct a most
determined spanning tree (or forest if not connected) using Kruskal’s greedy minimum-
spanning-tree algorithm® on the dual valuation of the graph [[KRU-1956].

We consider, for instance, a randomly valued graph with five vertices and seven edges
bipolar-valued in [-1.0; 1.0].

>>> from graphs import RandomValuationGraph
>>> g = RandomValuationGraph(seed=2)
>>> print(g)

Koo Graph instance description ------ *

Instance class : RandomValuationGraph

Instance name : randomGraph

Graph Order : 5

Graph Size 7

Valuation domain : [-1.00; 1.00]

Attributes : ['name', 'order', 'vertices', 'valuationDomain',
'edges', 'size', 'gamma'l

To inspect the edges’ actual weights, we first transform the graph into a corresponding
digraph (see Line 1 below) and use the showRelationTable () method (see Line 2 below)

> Kruskal’s algorithm is a minimum-spanning-tree algorithm which finds an edge of the least possi-
ble weight that connects any two trees in the forest. See https://en.wikipedia.org/wiki/Kruskal%27s
algorithm .
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for printing its symmetric adjacency matrix.

>>> dg = g.graph2Digraph()
>>> dg.showRelationTable ()

* ---- Relation Table -----
S | 'vi1' 'v2! 'v3' 'v4' 'vh'

______ | oo
'vit | 0.00 0.91 0.90 -0.89 -0.83
'v2' | 0.91 0.00 0.67 0.47 0.34
'v3' | 0.90 0.67 0.00 -0.38 0.21
'v4' | -0.89 0.47 -0.38 0.00 0.21
'v6' | -0.83 0.34 0.21 0.21 0.00

Valuation domain: [-1.00;1.00]

To compute the most determined spanning tree or forest, we may use the

BestDeterminedSpanningForest class constructor.

>>> from graphs import BestDeterminedSpanningForest
>>> mt = BestDeterminedSpanningForest(g)
>>> print (mt)

A Graph instance description ------ *

Instance class : BestDeterminedSpanningForest

Instance name : randomGraph_randomSpanningForest

Graph Order : b

Graph Size : 4

Valuation domain : [-1.00; 1.00]

Attributes : ['name','vertices', 'order', 'valuationDomain',
'edges', 'size','gamma', 'dfs',
'date', 'averageTreeDetermination']

*---- best determined spanning tree specific data ----*

Depth first search path(s)
[['Vl', ty2', 'v4', 'y2!', 'y5' 'y2' ‘'y1' 6 'y3', 'vi'1]
Average determination(s) : [Decimal('0.655')]

The given graph is connected and, hence, admits a single spanning tree (see Fig. 6.25) of
maximum mean determination = (0.47 4 0.91 + 0.90 + 0.34)/4 = 0.655 (see Lines

9, 6 and 10 in the relation table above).

>>> mt.exportGraphViz (fileName='bestDeterminedspanningTree',
WithSpanningTree=True)
*---- exporting a dot file for GraphViz tools --------- *
Exporting to spanningTree.dot
[['V4:', 'VQ', lvll, 'V3', 'Vl', 'V2', 'V5', 'V2', 'V4':|:|
neato -Tpng bestDeterminedSpanningTree.dot -o
—bestDeterminedSpanningTree.png
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Fig. 6.25: Best determined spanning tree

One may easily verify that all other potential spanning trees, including instead the edges
{v8, v5} and/or {v4, v5} - will show a lower average determination.

Back to Content Table (page 1)
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