Classical Monte Carlo Integration
[e]e]

(e]e}
00000

Computational Statistics
Lecture 8: Accept-Reject Methods

Raymond Bisdorff
University of Luxembourg

December 9, 2019

Accept-reject methods

o
0000
000
(o]e]

Classical Monte Carlo Integration
[e]e]

(e]e}
00000

Content of Lecture

1. Classical Monte Carlo Integration
MCI principles
[llustrative MCI application
MC integration in action

2. Accept-reject methods
Accept-reject principle
Applications
Ratio-Of-Uniforms Method

Accept-reject methods

o
0000
000
(o]e]

Classical Monte Carlo Integration

[1o}

Principles of Monte Carlo integration

The generic problem of Monte Carlo Integration (MCI) consists in
evaluating the following integral:

EWMhi/WMMW,)

S«

where S, denotes the set where the random variable X takes its value,
which is usually equal to the support of the density f. The principle of
MCI method for approximating Integral (*) is to generate a sample
(X1.Xa, ..., X,) from the density f and propose as an approximation for
E¢[h(X)] the empirical average h, as follows:

Fo= 23y ()

By the Strong Law of Large Numbers, h, converges indeed to E¢[h(X)].

Classical Monte Carlo Integration

oe

Monte Carlo Integration — continue

When h(X) has a finite expectation under f, the convergence
takes place at a speed O(+/n) and the asymptotic variance of the
approximation (**) is

var(h,) = }7/ (h(x)—Ef[h(X)])2f(x)dX,
X

which can be estimated from the sample (X;.X3, ..., X,,) through
1 s
Vy = ?Z[h(x) — ha.
j=1

Due to the CLT, for large n,

By — Ee[h(X)]

—~ N(0,1).
NG (0,1)

Classical Monte Carlo Integration

[1o}

MCI application

Example R session:

MCI of > h = function(x){
h(x) — + (cos(50%x) + sin(20*x))~2 }
X 2 > integrate(h,0,1)
<C05(5OX) + 5'”(20X)> 0.9652009 with lerror| < 1.9e-10
over the interval [0, 1] >n = 1074
may be achieved with a sam- ¢ ﬁx_f;r(l;;f @)
ple (Ul,..., Un) of 10% i.i.d > estint=cumsum(hx)/(1:n)
U(0,1) random variables. ?1?53132511]744
We approximate [h(x)dx > esterr=sqrt(cunsun
with h(U:)/n. & (hx-estint)~"2) / (1:n)"2)
Z (')/ > esterr[n]
[1] 0.01044141

MCI application — continue

The upper panel in the figure below shows the function h(x) over
the domain [0, 1]. The lower panel shows the running means with
bounds of 2x the estimated standard error depending on the
sample size n = 10%.

Example R session:

par (mfrow=c(2,1))

curve(h,0,1,xlab="h(x) =

[cos(50x)+sin(20x)]~2",ylab="", -]

1lwd=2,col="blue") - \\/\/\ /\/\
abline (h=0,1ty=3) ° ‘ ‘ : ‘
plot(estint, ° * . °° ° "

h(x) = [cos(50x)+sin(20x)]"2
xlab="Mean and error range",
type="1",1lwd=2, ,ylab="",
ylim=mean (hx)+

20*c (-esterr [n] ,esterr[n]))
lines(estint-2*esterr,col="gold",
1wd=2) : T . ; ')
0 2000 4000 6000 8000 10000
lines(estint+2*esterr,col="gold", Moan and omorrango
1lwd=2)

08 09 10 1.1

+ V+V4++4++VYVE+VY

Classical Monte Carlo Integration Accept-reject methods

0000

Simple MC integration in action
Examples

1. To approximate the integral (/.01 x*dx in the interval [0, 1] one may
use the following R code:
> U = runif (10°5)
> mean(U~4)

[1] 0.2008846

The exact answer naturally is [x3/5]8 =
1/5—0 = 0.2

2. To approximate the integral]25 sin(x)dx one may use the following
R code:

> U = runif (10”5, min=2, max = 5)

> mean(sin(U)) * (5-2)

[1] -0.6984924

The exact answer is [—cos(x)]3, with

> cos(2) - cos(5)
[1] -0.699809

Classical Monte Carlo Integration

0@000

multiple Monte Carlo integration

Let Ui, Us, ...,U, and V;, V5, ...,V, be two sets of independent
uniform distributed random variables on the interval [0, 1], and
suppose g(x,y) is now an integrable function of two variables x
and y, then the CLT states that

m 1y i, Vi = = = e X x
(Jim 2 (6w) =)a—e) = [[gley)onay

with probability 1.

Classical Monte Carlo Integration

0@000

multiple Monte Carlo integration

Let Ui, Us, ...,U, and V;, V5, ...,V, be two sets of independent
uniform distributed random variables on the interval [0, 1], and
suppose g(x,y) is now an integrable function of two variables x
and y, then the CLT states that

m 1y i, Vi = = = e X x
(Jim 2 (6w) =)a—e) = [[gley)onay

with probability 1.

. . b rd
So we can approximate the integral [[g(x, y)dxdy by
generating two sets of independent uniform numbers, computing
g(U;, V;) for each one, and taking the sampled average multiplied
by the respective integration intervals.

Classical Monte Carlo Integration Accept-reject methods
0o o

00 0000
00000 000

Example of MMC integration

Example

To approximate the integral f310 [17 sin(x — y)dxdy one may use
the following R code:

> U = runif (10°5,min=1,max=7)
>V = runif (10°5,min=3,max=10)

> mean(sin(U-V)) * (7-1) * (10-3)
[1] 0.07989664

Classical Monte Carlo Integration

[e]e]e] o}

Importance Sampling Principle

If the density of a random variable is f(x) then

E[@} = /+OO <@>g(x)dx = /+00 f(x)dx

g(x) —o 8(x) -

Hence we can approximate the last integral by taking the average
of a sample X; of ratios f(X;)/g(X;).

Example

If we are interested in tail probabilities like P(Z > 4.5) = [} f(z)dz if
Z ~ N(0,1), which is very small (3.4e-06), we may enhance the MCI
approach by using a smart instrumental density g(x) like the exponential
distribution truncated at 4.5:

—X

e
g(x) = W7

Classical Monte Carlo Integration

(e]e}
(e]e}
[e]e]ee] }

Accept-reject methods

o
0000
000
(o]e]

Example of importance sampling
In the example above, the importance sampling estimator of the tail

probability becomes:

*Z

g(

> pnorm(-4.5)

[1] 3.397673-06

> Nsim=10"3

> x = rexp(Nsim) + 4.5

> isest = cumsum(dnorm(x)/

+ dexp(x-4.5))/1:Nsim
> plot(isest,type="1")

> abline(a=pnorm(-4.5),b=0,

+ col="red")

n

o= XP/2+X;—4.5

ZW

£
g
3
H
g
i
o
b4

16-06 2e-06 3e-06

0e+00

Estimating rare event (tail) probability

SP——————

/-

— importance sampling
— P(Z>4.5) = 3.397673¢-06

T T T T T
200 400 600 800 1000

number of simulations

Classical Monte Carlo Integration
[e]e]

(e]e}
00000

Content of Lecture

2. Accept-reject methods
Accept-reject principle
Applications
Ratio-Of-Uniforms Method

Accept-reject methods

(]
0000
000
(o]e]

Accept-reject methods

0000

Accept-reject principle

Accept-reject Monte Carlo methods are the most powerful and
may simulate virtually any integral or density distribution.
We only need to know the target density function f up to a
multiplicative constant. We use a simpler instrumental density g
verifying the following two conditions:
(i) f and g have a compatible support [low, high], i.e. g(x) >0
when f(x) > 0 and x € [low, highl;
(i) There is a constant M with f(x)/g(x) < M for all
x € [low, high].
In this case, we proceed like this:
1. Generate independently Y ~ g and U ~ U(low, high).

2. If MY < f(U), we set X =Y.

Classical Monte Carlo Integration Accept-reject methods

(e]e}
(e]e}
00000

o
o] lele)
000
(o]e]

Generating a Beta random variable

The support of the beta density is the interval [0,1]. We suppose that
a>1and B > 1. The upper bound M of the acceptance domain is the
highest density observed for Beta(a, b). For a=3.4 and b = 7.4 we
notice that dbeta(3.4,7.4) < M = 3. With U ~ U(low = 0, high = 1),
and a uniform intrumental density Y ~ #/(0,1), we may generate the
beta random variable X ~ Beta(a = 3.4, b = 7.4), by accepting all pairs
(U,Y) where MY is strictly below the density of Beta(3.4,7.4):

Beta(3.4,7.4) by accept-refect method

> Nsim = 1074 .
> low = 0; high =

> U = runif (Nsim, low ,high) ¢
> Y = runif (Nsim) e
>a=3.4;b=7.4M=3 £l
> X = UIM*Y < dbeta(U,a,b)] .
> hist(X,freq=F,x1lim=c(0,1),ylim=c(0,3),)
+ main="Beta(3.4,7.4) 1
+ by accept-reject method") ER

Classical Monte Carlo Integration Accept-reject methods

(e]e} o

(e]e} ooeo

00000 000
(o]e]

Simulating a triangular density function

We may use as well this accept-reject method for simulating a random
number generator with a triangular density functionf(x) =1 — |1 — x| for
x taking values in the interval [0,2]. The intrumental density may be
uniform again. The triangular density being bounded by 1.0, we can set

M equal to 1:

Triangular number generator
> Nsim = 1074 BN
> low = 0 ; high = 2 N
> U = runif (Nsim,low,high) °
> Y = runif(Nsim) 3
>M=1 £
> X = UMY < 1-abs(1-U)]]
> hist(X,freq=F,x1lim=c(0,2) ,ylim=c(0,1), o
+ main="Triangular number generator")
> abline(0,1);abline(2,-1) g

Accept-reject methods

oooe

Accept-reject based generators - Exercises

Exercise

1. Accept-reject methods based generators do not deliver a fixed
number of random numbers. Update the method in order to
deliver a given number Nsim of instances.

2. Generalize the previous approach to implement a parametric
generator for triangular random numbers defined on the real
interval [m = 0, M = 10] with mode xmo = 4 and a
probability r = 0.6 to observe a value before or equal xp,, and
1—r =04 after it.

Classical Monte Carlo Integration Accept-reject methods
0o o
0o 0000
00000 000

Application: Simulate a truncated Gaussian

We want to simulate the standard normal Z ~ N(0,1) random variable
restricted to the domain [—1.5, +2].

As instrumental distribution we take the standard Z variable and we
accept only the observations z that are in the required range. We thus
obtain the following truncated Gaussian random variable Zt:

Histogram of Zt

Nsim = 1075
low = -1.5; high = 2 3
Z = rnorm(Nsim)

Zt = Z[(Z > low) & (Z < high)]
hist (Zt,freq=F,breaks=51, *y]

x1im=c(-3,3),col="red")

z = seq(-3,3,length=500) 51
> lines(z,dnorm(z),col="blue")

V V. V V VvV

A\

Classical Monte Carlo Integration Accept-reject methods
0o o
0o 0000
00000 0®0
00

Application: Monte Carlo 7 estimation

The area of the circle of radius r = 1 is wr?. The area of the square
containing this circle is (2r)? = 22 = 4. The ratio of the area of the circle
to the area of the square is:

2
r _ w = 0.7853982

N
~
N—r
N
N

x = runif (Nsim)

y = runif (Nsim)

plot (x,y)

rhox = x[(x"2+y~2)<1]

rhoy = y[(x"2+y~2)<1]

points(rhox,rhoy,col="red") "

ax = seq(0,1,0.01)

lines(ax, sqrt(l-ax~2),
1wd=3,col="blue")

4xlength(rhox)/length(x) : : ‘

[1] 4 x 0.786 = 3.144 Moo e

V + VV VVVVVYV

Classical Monte Carlo Integration Accept-reject methods

""" ooe

The Box-Muller accept-reject tranform

Recall the Box-Muller algorithm for the centered and reduced normal
Z ~ N(0,1) variable. It is based on the observation that, if U; and U,
are two independent and identically 2/(0, 1) distributed random variables,

then: X; = \/—2log(U1) cos(2mls), Xo = +/—2log(U1)sin(2mls), are

two independent and identically NV(0, 1) distributed random variables.

http://en.wikipedia.org/wk/Box-Muller_transform

Accept-reject methods

ocoe

The Box-Muller accept-reject tranform

Recall the Box-Muller algorithm for the centered and reduced normal

Z ~ N(0,1) variable. It is based on the observation that, if U; and U,
are two independent and identically 2/(0, 1) distributed random variables,
then: X; = \/—2log(U1) cos(2mls), Xo = +/—2log(U1)sin(2mls), are
two independent and identically NV(0, 1) distributed random variables.
Suppose we pick Vi and V5 instead as the ordinate and abcissa of a
uniform random point in the unit circle around the origin. Then the sum
of their squares R? = VZ + V2 is a uniform variable that can be used for
Ui, while the angle that the point (V4, V5) defines with respect to the V4
axis can serve as random angle 27 U;.

http://en.wikipedia.org/wk/Box-Muller_transform

Accept-reject methods

ocoe

The Box-Muller accept-reject tranform

Recall the Box-Muller algorithm for the centered and reduced normal

Z ~ N(0,1) variable. It is based on the observation that, if U; and U,
are two independent and identically 2/(0, 1) distributed random variables,
then: X; = \/—2log(U1) cos(2mls), Xo = +/—2log(U1)sin(2mls), are
two independent and identically NV(0, 1) distributed random variables.
Suppose we pick Vi and V5 instead as the ordinate and abcissa of a
uniform random point in the unit circle around the origin. Then the sum
of their squares R? = VZ + V2 is a uniform variable that can be used for
Ui, while the angle that the point (V4, V5) defines with respect to the V4
axis can serve as random angle 27 U;.

The cosine and sinus in the Box-Muller formula can now be written as
Vi/V/R? and V,/v/R2. This implementation can in fact be seen as a
kind of acept-reject method for computing trigonometric functions of a
uniform random angle.

(See Box-Muller transform)

http://en.wikipedia.org/wk/Box-Muller_transform

Classical Monte Carlo Integration Accept-reject methods

Ratio-Of-Uniforms Method

Virtually any random variable X can be simulated by the following
simple prescription:

1. Construct a region A in the (u, v) plane w
bounded by 0 < u < [p(v/u)]/2.

2. Choose a point P = (u, v) distributed
uniformly within this region A.

3. If P(u,v) € A, return v/u as a required
simulated random variable instance .

Accept-reject methods

Fast generation of Gaussian random variable

In case of a normal Z ~ N(0,1) random variable, the region A
becomes:
A={(u,v)]|v?< -4’ Inu}.

This region is entirely contained in the rectangle
R={0<u<1,—(2/e)"/? < v < (2/e)'/?} and the accept-reject
method is used to select the points P = (u, v) such that z = v/u
delivers the variable Z.

Exercise

In 1992, Joseph Leva has published a very fast and efficient Z variable generator based
on this approach (see his paper in the moodle resources).

1. Implement this algorithm in C++ (NR), in Python and in R,

2. Check the quality of the generator when compared with the standard Python
and R generators,

3. Compare the respective run times in C+4+, in Python and R for a sample of
100000 normal random numbers.

	Classical Monte Carlo Integration
	MCI principles
	Illustrative MCI application
	MC integration in action

	Accept-reject methods
	Accept-reject principle
	Applications
	Ratio-Of-Uniforms Method

