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We set up a rigorous thermodynamic description of reaction-diffusion systems driven out of equi-
librium by time-dependent space-distributed chemostats. Building on the assumption of local equi-
librium, nonequilibrium thermodynamic potentials are constructed exploiting the symmetries of the
chemical network topology. It is shown that the canonical (resp. semigrand canonical) nonequilib-
rium free energy works as a Lyapunov function in the relaxation to equilibrium of a closed (resp.
open) system and its variation provides the minimum amount of work needed to manipulate the
species concentrations. The theory is used to study analytically the Turing pattern formation in a
prototypical reaction-diffusion system, the one-dimensional Brusselator model, and to classify it as
a genuine thermodynamic nonequilibrium phase transition.
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Introduction—Reaction-diffusion systems (RDS) are
ubiquitous in nature. When nonlinear feedback effects
within the chemical reactions are locally destabilized by
diffusion, complex spatiotemporal phenomena emerge.
These latter, ranging from stationary Turing patterns
[1, 2] to travelling waves [3, 4], play a critical role in the
aggregation and structuring of hard matter [5] as well
as living systems [6]. In biology, striking examples are
embryogenesis determined by the pre-patterning of mor-
phogens [7, 8] and cellular rhythms regulated by calcium
waves [9, 10].

Nonequilibrium conditions, consisting in a continual
influx of chemicals and energy, are required to create and
maintain these dissipative structures. Since the original
work of Prigogine [11, 12], which made clear how order
can emerge spontaneously at the expense of continuous
dissipation, much work has been dedicated to better un-
derstanding the chaotic and nonequilibrium dynamics of
RDS [13]. Most of it has focused on searching for general
extremum principles, e.g. in selecting the relative stabil-
ity of competing patterns [14]. Nevertheless, a complete
framework is still lacking that models RDS as proper
thermodynamic systems, in contact with nonequilibrium
chemical reservoirs, subject to external work and entropy
changes. Such a theory is all the more necessary nowa-
days, when promising technological applications, such as
biomimetics [15, 16] and chemical computing [17], are en-
visaged that deliberately exploit the self-organized struc-
tures of RDS. In this respect, the work needed to manip-
ulate a Turing pattern and the efficiency with which in-
formation exchanges through travelling waves can occur
are thermodynamic questions of crucial importance.

In this Letter we present a rigorous thermodynamic
theory of RDS far from equilibrium. We take the view-
point of stochastic thermodynamics [18–20] and carry
over its systematic way to define thermodynamic quan-
tities (such as work and entropy), anchoring them to the
(herein deterministic) dynamics of the RDS. We supple-

ment this well established approach with a novel, yet piv-
otal element, which is the inclusion of the conservation
laws [22–24] of the underlying chemical network (CN) for
constructing nonequilibrium thermodynamic potentials.
Theory—The description of [21] is extended to CNs en-

dowed with a spacial structure. We consider a dilute ideal
mixture of chemical species σ that diffuse within a vessel
V 3 r with impermeable walls and undergo elementary
reactions ρ. The abundance of some species is possibly
controlled by the coupling with external chemostats (if
not, the system is called closed). Hence, the concentra-
tion Zσ(r, t) of internal and chemostatted species, re-
spectively denoted x and y, follows the reaction-diffusion
equations

∂tZσ = −∇ · Jσ +
∑
ρS
σ
ρ jρ + Iσ , (1)

with the Fick’s diffusion current Jσ = −Dσ∇Zσ vanish-
ing at the boundaries of V, and the chemostatted current
Iσ 6= 0 ∀y describing the rate at which the chemostatted
species enter the (open) system.

The stoichiometric matrix Sσρ = νσ−ρ − νσ+ρ, i.e. the
negative difference between the number of species σ in-
volved in the forward (+ρ) and backward (−ρ) reaction,
specifies the CN topology. Its left null vectors `λσ, i.e.∑
σ `

λ
σSσρ = 0, define the components Lλ =

∑
σ `

λ
σZσ,

which are the global conserved quantities of the closed
system: dt

∫
V drLλ = 0. For this reason `λσ are called

conservation laws. Physically, they identify parts of
molecules, called moieties, exchanged between species
[25]. When the system is opened by chemostatting, `λσ
differentiate into the `λu

σ ’s that are left null vectors of the
submatrix of internal species Sxρ , and the `λb

σ ’s that are
not, namely:∑

x`
λu
x Sxρ = 0 ,

∑
x`
λb
x Sxρ 6= 0 . (2)

Accordingly, the unbroken components Lλu =
∑
σ `

λu
σ Zσ

remain global conserved quantities of the system,
dt
∫
V drLλu

= 0, while the broken ones Lλb
=
∑
σ `

λb
σ Zσ
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change over time. In the following they will play a cen-
tral role in building the nonequilibrium thermodynamics
of the system.

The net reaction current jρ = j+ρ − j−ρ determines
the CN dynamics. By virtue of the mass-action kinet-
ics assumption [26], each reaction current is proportional
to the product of the reacting species concentrations,

j±ρ = k±ρ
∏
σ Z

νσ±ρ
σ . Thermodynamic equilibrium, char-

acterized by homogeneous concentrations Zeq
σ , is reached

when all external and reaction currents vanish identically,
jρ = Iσ = 0. It implies for the rate constants the local

detailed balance condition k+ρ/k−ρ =
∏
σ(Zeq

σ )S
σ
ρ . Such

relation is taken to be valid irrespective of the system’s
state. The CN instead may be in a global nonequilib-
rium state characterized by space-dependent concentra-
tions Zσ(r, t) as a result of inhomogeneous initial con-
ditions or because of non-vanishing external currents Iσ.
Yet, we assume it to be kept by the solvent in local ther-
mal equilibrium at a give temperature T . Therefore, the
species can be assigned thermodynamic state functions,
which have the known equilibrium form valid for dilute
ideal mixtures, but are function of the nonequilibrium
concentrations Zσ(r, t) [27, ch. 15].

A central role is played by the nonequilibrium chem-
ical potential µσ(r) = µ◦σ + lnZσ(r) (given in units of
temperature T times the gas constant R, as any other
quantity hereafter). It renders the local detailed balance
in the form k+ρ/k−ρ = exp(−∑σSσρµ◦σ), involving only
the difference between the energy of formation of reac-
tants and products. Moreover, its variation across space
and between species gives the local diffusion and reaction
affinity [26],

F σ(r) = −∇µσ(r) , fρ(r) = −∑σS
σ
ρµσ(r), (3)

which are the thermodynamic forces driving the system.
We introduce as nonequilibrium potential the

‘canonical’ Gibbs free energy of the system
G =

∫
V dr

∑
σ(µσZσ − Zσ) (given up to a con-

stant). It can be expressed in terms of the equilibrium
free energy Geq = G(Zeq

σ ) as

G = Geq + L(Zσ‖Zeq
σ ) (4)

introducing the relative entropy for non-normalized con-
centration distributions

L(Zσ‖Zeq
σ ) =

∫
V

dr
∑
σ

[
Zσ ln

Zσ
Zeq
σ
− (Zσ − Zeq

σ )

]
. (5)

Akin to the Kullback–Leibler divergence for probability
densities [28], (5) quantifies the dissimilarity between two
concentrations: being positive for all Zσ 6= Zeq

σ , it implies
that G is always larger than its equilibrium counterpart
Geq. Most importantly, it is minimized by the relaxation
dynamics of closed systems. This is showed evaluating
the time derivative of (4) with the aid of (1) and (3),

dtL = dtG = −Σ̇dff − Σ̇rct = −Σ̇ 6 0, (6)

Z (r )

Z (r )

r

r

Z̄

ϕ (r )

0 l

0 l

FIG. 1. Sketch of two patterns with equal relative entropy.
Any transformation φ(r) → φ′(r) = φ(r′) with |∂r/∂r′| = 1,
corresponding to a simple rearrangement of the local concen-
trations, leaves L(Z|Zeq) unchanged. This is rooted in the
lack of interactions between chemicals at the scale of RDS.

and recognizing the total entropy production rate (EPR)
Σ̇, split into its diffusion and reaction parts [26]:

Σ̇dff =

∫
V

dr
∑
σJσ · Fσ, Σ̇rct =

∫
V

dr
∑
ρjρfρ. (7)

The relative entropy (5) possesses some important phys-
ical features. First, in the absence of reactions it gives
the total entropy produced by the diffusive expansion
of concentrations. For example, consider nA and nB

moles of inert chemicals A and B initially placed in the
volume fractions VA and VB, respectively. They relax
to homogeneous concentrations with an entropy produc-
tion −L = nA log VA + nB log VB that is exactly the en-
tropy of mixing of the two species [29]. It is remarkable
that diffusive dissipation and mixing entropy are thus
fully described in a purely information theoretic fash-
ion, namely as a relative entropy between concentrations.
Second, the relative entropy between reacting concentra-
tions Zσ(r, t) = Z̄σ(t)φσ(r, t)V and arbitrary reference
homogeneous concentrations Zh

σ can be split into the
relative entropy between space-averaged concentrations
Z̄σ(t) =

∫
V drZσ(r, t)/V and equilibrium ones Zeq

σ , plus
the relative entropy of the normalized local modulations
φσ(r) around Z̄σ and the flat distribution 1/V:

L(Zσ‖Zh
σ) = L(Z̄σ‖Zh

σ) +
∑
σZ̄σL(φσ‖1/V). (8)

The positivity of relative entropy implies L(Zσ‖Zh
σ) >

L(Z̄σ‖Zh
σ), i.e. the free energy of a patterned system is

always larger than its homogeneous counterpart. Third,
different patterns may have the same relative entropy (see
Fig. 1) indicating that morphology and thermodynamics
need not be correlated [30].

Notice that the conservation laws of the CN are in-
strumental in the derivation of (4). Indeed, the equi-
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librium condition
∑
σSσρµeq

σ = 0 corresponding to null
reaction affinities, fρ = 0, implies that µeq

σ is a linear
combination of the conservation laws `λσ. This entails∫
V dr

∑
σ µ

eq
σ ∂tZσ = 0, which yields in turn the decom-

position (4) when time integrating along a relaxation dy-
namics leading from Zσ to Zeq

σ .
Moreover, the conservation laws are the passkey to con-

struct the correct nonequilibrium thermodynamic poten-
tial for open systems. For the latter, an additional term
appears when taking the time derivative of G due to the
external current in (1),

Ẇchem =

∫
V

dr
∑
σµσ(r)Iσ(r) , (9)

which defines the chemical work performed by the
chemostats. The second law (6) thus attains the new
form

Ẇchem − dtG = Σ̇ > 0, (10)

where the EPR Σ̇ is still given by the two contribu-
tions of Eq. (7). Consequently, G is no longer mini-
mized due to the break of conservations laws. Similarly to
equilibrium thermodynamics when passing from canon-
ical to grand canonical ensembles, one needs to trans-
form the free energy G subtracting the energetic con-
tributions of matter exchanged with the reservoirs [31].
This amounts to the moieties of the broken components

Myp =
∑
λb
`λb
yp

−1 ∫
drLλb

(r) entering those chemostats
yp that break all conservation laws, times the reference
values of their chemical potential µref

yp (which simplifies
to µyp for homogeneous chemostats). The so obtained
semigrand Gibbs free energy,

G = G−∑yp
µref
yp Myp , (11)

encodes CN-specific topological and spatial features
thanks to the freedom in the choice of yp and µref

yp . This
allows one to split the EPR

Ẇdriv + Ẇnc − dtG = Σ̇ , (12)

in terms of the driving and the nonconservative chemical
work rate, respectively,

Ẇdriv = −∑yp
dtµ

ref
yp Myp , Ẇnc =

∑
y

∫
V

drIyFy . (13)

The former results from time-dependent manipulations
of the reference chemostats yp, while the latter gives the
cost of sustaining chemical flows by means of the forces

Fy(r) = µy(r) − ∑yp
µref
yp

∑
λb
`λb
yp

−1
`λb
y measured with

respect to the reference chemical potentials µref
yp . Eq. (12)

is a major result of this Letter and can be verified by
direct substitution.

In absence of driving (dtµ
ref
yp =0) and nonconservative

forcing (Fy = 0) it simplifies to dtG = −Σ̇ 6 0, which
proves that the CN, despite being open, relaxes to equi-
librium by minimizing the free energy G. Moreover, for a
generic open CN, the decomposition of G corresponding
to (4), i.e. G − Geq = L(Zx‖Zeq

x ) > 0, and a time inte-
gral between two nonequilibrium states connected by an
arbitrary manipulation turn (12) into a nonequilibrium
Landauer principle [28] for RDS,

Wdriv +Wnc −∆Geq > ∆L(Zx‖Zeq
x ) . (14)

The latter states that the dissipative work spent to ma-
nipulate the CN is bounded by the variation in relative
entropy between the boundary states and their respective
equilibria attained by stopping the driving and zeroing
the forcing.
Turing pattern in the Brusselator model—As first pro-

posed by A. Turing in his seminal paper [32], RDS un-
dergo a spatial symmetry braking leading to a stationary
pattern when at least two chemical species react nonlin-
early and their diffusivities differ substantially. A mini-
mal system that captures these essential features is the
Brusselator model [33] in one spatial dimension. Here
the concentrations of two chemical species, an activator
ZX1

= x1(r, t) and an inhibitor ZX2
= x2(r, t), evolve in

time and space r ∈ [0, l] according to the RDS (1) for the
network depicted in Fig. 2, namely,

∂t

(
x1

x2

)
=

(
k1y1 − k−1x1 − k2y2x1 + k−2y3x2 + k3x

2
1x2 − k−3x

3
1 − k4x1 + k−4y4 +Dx1

∂2
rx1,

k2y2x1 − k−2y3x2 − k3x
2
1x2 + k−3x

3
1 +Dx2

∂2
rx2

)
︸ ︷︷ ︸

= J (x1, x2)

, (15)

The y1, y2, y3 and y4 are the homogeneous concentrations
of the chemostatted species and the diffusivities satisfy
the Turing condition Dx1 � Dx2 . Equation (15) ad-
mits a homogeneous stationary solution (xh

1 , x
h
2)T that

becomes unstable for y2 > yc
2, so that a sinusoidal pat-

tern with wavelength qc and amplitude proportional to
the (in general complex) function A(r, t) starts develop-
ing around the space-averaged concentrations x̄(t) [27]:(
x1(r, t)
x2(r, t)

)
=

(
x̄1(t)
x̄2(t)

)
+

(
1
ux2

)(
A(r, t)eiqcr + c.c.

)
. (16)
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FIG. 2. Nonequilibrium semigrand Gibbs free energy G for
the Brusselator model as a function of the chemical poten-
tial of the chemostatted species ZY2 , obtained by the analytic
stationary solution of the amplitude equation. To define G
we choose y1 and y2 as the reference chemostats breaking the
two components L1 = x1 + x2 + y1 + y4 and L2 = y2 + y3.
The dotted line represents the free energy G in the unstable
homogeneous system before the pattern growth. Symbols (?)
result from numerical integration of (15). Inset : the deriva-
tive ∂G/∂µY2 displays a discontinuity at yc

2 ' 2.66.

The critical values yc
2 and qc are determined by

the condition of marginal stability of the homogeneous
state: they are the smaller values for which the matrix
∂xJ (xh

1 , x
h
2) (evolving linearized perturbations) acquires

a zero eigenvalue, the corresponding eigenvector being
(1, ux2

)T. Near the onset of instability one can treat
ε = (y2 − yc

2)/yc
2 � 1 as a small parameter and carry

out a perturbation expansion in powers of ε. This leads
to the amplitude equation for A(r, t) [34],

τ∂tA = εA− α|A|2A+ ξ∂2
rA, (17)

which describes an exponential growth from an initial
small perturbation A(r, 0) ' 0 followed by a late-time
saturation due to the nonlinear terms in (15). Ampli-
tude equations provide a general quantitative description
of pattern formation in several systems near the onset of
instability [35], irrespective of the details of the under-
lying physical process that are subsumed into the effec-
tive coefficients τ , α, and ξ. Since (17) can be seen as
a gradient flow in a complex Ginzburg–Landau poten-
tial, pattern formation is usually considered a dynamical
phase transition [36]. Here, using an analytical approxi-
mate solution to (15) valid for ε � 1, we show that the
phenomenon is in fact a genuine thermodynamic phase
transition identified by the appearance of a kink singu-
larity at yc

2 in the nonequilibrium free energy G(y2). The
semigrand canonical free energy of Fig. 2 is calculated

2.6 2.7 2.8 2.9 3 3.1 3.2

−0.4

−0.2

0

0.2

0.4

0.6

y2

2.5 3

220

240

260

280

Σ̇

Σ̇dff

Σ̇
rct − Σ̇ h

FIG. 3. Analytical result for the EPR of reaction Σ̇rct

(dashed) and diffusion Σ̇dff (solid) in the stable stationary
state as function of the concentration y2. The EPR of the
(unstable for y2 > yc

2) homogeneous state Σ̇h is subtracted
from the former to show the effect of the pattern formation,
i.e. decreasing reaction dissipation at the expense of diffu-
sion dissipation. Inset: The total entropy production shows
no singularity at the phase transition. All results correspond
to the weakly reversible case k−ρ = 10−4 � k+ρ = 1, and
y3 = y4 = 10−4, y1 = 2, Dx1 = 1, Dx2 = 10.

taking the stationary stable solution corresponding to a
given value of y2, i.e. the homogenous one for y2 6 yc

2

and the patterned one for y2 > yc
2, namely(

xp
1(r)
xp

2(r)

)
∼
(

1
ux2

)√
ε

α
2 cos(qcr) (18)

The physical meaning of the kink at y2 = yc
2 is

best understood noticing that the quantity ∂G/∂µY2
=

Ẇdriv/dtµY2 is the driving work upon a quasi-static ma-
nipulation of the chemical potential µY2 . Interestingly,
the total EPR shows no singularity at the transition (cf.
Fig. 3): moving across yc

2 the EPR of reaction Σ̇rct de-
creases with respect to the homogeneous state value Σ̇h

while a non zero EPR of diffusion appears, their sum
being continuous.
Conclusion—We presented the nonequilibrium ther-

modynamics of RDS and exemplified the theory with
the application to the Brusselator model. We went be-
yond the conventional treatment of classical nonequi-
librium thermodynamics [37] in two respects: avoiding
to linearize the chemistry, i.e. to oversimplify reaction
affinities to currents times Onsager coefficients; explic-
itly building thermodynamic potentials that act as Lya-
punov functions in the relaxation to equilibrium, provide
minimum work principles, and reveal the existence of
nonequilibrium phase transitions. The framework paves
the way to study the energy cost of pattern manipula-
tion and information transmission in complex chemical
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systems [38–40].
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