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Quantum non-Markovianity is crucially related to the study of dynamical maps, which are usually
derived for initially factorized system-bath states. We demonstrate that linear response theory also provides
a way to derive dynamical maps but for initially correlated (and, in general, entangled) states. Importantly,
these maps are always time-translational invariant and allow for a much simpler quantification of non-
Markovianity compared to previous approaches. We apply our theory to the Caldeira-Leggett model, for
which our quantifier is valid beyond linear response and can be expressed analytically. We find that a
classical Brownian particle coupled to an Ohmic bath can already exhibit non-Markovian behavior, a
phenomenon related to the initial state preparation procedure. Furthermore, for a peaked spectral density,
we show that there is no monotonic relation between our quantifier and the system-bath coupling strength,
the sharpness of the peak or the resonance frequency in the bath.
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Introduction.—A central problem of nonequilibrium
statistical mechanics is to obtain a closed dynamical
description for some “relevant” degrees of freedom without
the need to explicitly model the remaining “irrelevant”
degrees of freedom. Within the theory of open quantum
systems, the complete system state ρSðtÞ is usually regarded
as relevant while the bath is traced out [1,2]. Using the
Nakajima-Zwanzig projection operator formalism, this can
be done in a formally exact way, but unfortunately, initial
system-bath correlations prevent the reduced dynamics
from being closed due to the appearance of an inhomo-
geneous term.
We here show that within linear response theory it is

possible (under certain conditions stated below) to obtain a
reduced dynamical description for a set of system observ-
ables even in the presence of an initially entangled system-
bath state. Our findings allow us to define a rigorous, yet very
simple, quantifier of non-Markovianity, which we can even
express analytically for theCaldeira-Leggettmodel—a result
which is very demanding to derive based on previous
approaches [3,4].
Linear response theory.—We consider the standard

system-bath setup and assume a global equilibrium state
ρSBðt0Þ ∼ e−βðHSþHIþHBÞ (where HS=I=B denotes the
system/interaction/bath part of the Hamiltonian) prior to
the “initial” time t0. We then suddenly perturb the system
part of the Hamiltonian such that

HSðtÞ ¼ HS −
X
i

aiδðt − t0ÞAi; ð1Þ

where the Ai are system observables and the ai ∈ R
(assumed to be sufficiently small) describe the respective
strengths of the delta-kick δðt − t0Þ. The purpose of the
delta-kick is to generate a local unitary transformation
U0 ¼ exp½ði=ℏÞPi aiAi� ⊗ 1B, which prepares the system
in a nonequilibrium state at t0. The initial state has then, to
linear order, expectation values

hAiðt0Þi ¼ hU†
0AiU0iβ ¼ hAiiβ þ

X
j

ðχþÞijaj: ð2Þ

Here, h…iβ denotes an expectation value with respect to the
global equilibrium state. Furthermore, we introduced the
skew-symmetric matrix ðχþÞij ¼ ði=ℏÞh½Ai; Aj�iβ, where
½A;B� denotes the commutator. We remark that the bath
state does not change during this preparation procedure,
and the system-bath correlations (as measured by the
mutual information) also remain the same.
In the following, we consider only centered observables

such that hAiiβ ¼ 0 without losing generality. The expect-
ation value of Ai at a later time t ≥ t0 is then connected to
the response function χijðtÞ≡ ði=ℏÞΘðtÞh½AiðtÞ; Aj�iβ via
the Kubo formula [5]. In matrix notation, we have

hAðtÞi ¼ χðt − t0Þa ¼ Gðt − t0ÞhAðt0Þi; ð3Þ

where we introduced the mean value propagator
GðtÞ≡ χðtÞχ−1þ , which is the central object of interest in
what follows. Note that limt↘0χðtÞ ¼ χþ. Equation (3)
amounts to our fundamental assumption in this paper as it is
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not guaranteed that the inverse of χþ exists (see the
Supplemental Material [6], which includes Ref. [7]). If it
exists, Eq. (3) describes a closed evolution equation for the
mean values of the set of observables Ai for all times t ≥ t0.
Two properties of GðtÞ are very important in the following.
First, GðtÞ is independent of the initial state as it does not
depend on any of the ai. Second, the propagator GðtÞ
depends only on the elapsed time, which follows from
the fact that the response function is expressed in terms
of time-translational invariant equilibrium correlation
functions (CFs).
Therefore, if the system behaves Markovian, the mean

value propagator must obey

GðtÞ ¼ Gðt − sÞGðsÞ for all s ∈ ½0; t�; ð4Þ

a condition which is also called divisibility. Equivalently,
this implies for the response functions

χðtÞ ¼ χðt − sÞχ−1þ χðsÞ: ð5Þ

Finally, for later use, we note that the response function
also determines the temporal behavior of the equilibrium
CFs due to the fluctuation dissipation theorem (FDT). Out
of the many possible forms of the FDT, we only need [5]

ℑ½χ̃iiðωÞ� ¼
1

2ℏ
ð1 − e−βℏωÞC̃iiðωÞ; ð6Þ

where, in general, Cijðt − t0Þ≡ hAiðtÞAjðt0Þiβ, which also
depends only on the time difference. Furthermore, we
introduced the Fourier transform f̃ðωÞ≡ R

∞
−∞ dteiωτfðτÞ.

Note that the FDT also fixes the real part of the response
function via the Kramers-Kronig relation.
Comparison with previous approaches.—Before pro-

ceeding, let us contrast our approach with the conventional
one. Arguably the common considered scenario in the theory
of open quantum systems starts with an initial product state
ρSðt0Þ ⊗ ρBðt0Þ [1–4] (for an exception, see [8]). This bears
the advantage that the inhomogeneous term in the Nakajima-
Zwanzig equation disappears, and the reduced dynamics of
the system is described by a completely positive and trace
preserving (CPTP) dynamical map

Φðt; t0ÞρSðt0Þ≡ trBfUρSðt0Þ ⊗ ρBðt0ÞU†g; ð7Þ

where U is a unitary evolution operator acting on the joint
system-bath state. Although it has been recently studied in
greater generality whether it is possible to relax the initial
product state assumption [9–12], the family of initially
entangled states considered above will, in general, not give
rise to a CPTP map. Therefore, there is no direct connection
between our approach and previous results, although we can
draw analogies.

Indeed, while Φðt; t0Þ as GðtÞ is independent of the
initial system state, the former does not propagate mean
values but the complete system state ρSðt0Þ to arbitrary later
times t ≥ t0. It is interesting to ask whether GðtÞ can be
extended to a dynamical map for the entire system density
matrix by looking at a complete set of system observables
fAig, whose expectation values are isomorphic to ρSðtÞ. In
the Supplemental Material [6], we demonstrate that this is
not possible because χþ in Eq. (3) becomes noninvertible.
Finally, to characterize non-Markovianity within the

standard approach based on Eq. (7), the concept of com-
pletely positive (CP) divisibility is important. ACP divisible
quantum stochastic process is characterized by a family
fΦðt2; t1Þjt2 ≥ t1 ≥ t0g of CPTP maps, which obeys

Φðt2; t0Þ ¼ Φðt2; t1ÞΦðt1; t0Þ for all t2 ≥ t1 ≥ t0; ð8Þ

analogous to the classical Chapman-Kolmogorov equation.
Consequently, if a process is CP divisible, then the evolution
of the density operator isMarkovian (although there seems to
be less agreement about the converse statement [3,4]). Based
on this concept or a related notion, various quantifiers of non-
Markovianity have been recently put forward [13–18], and
direct experimental evidence is also accumulating [19,20].
Unfortunately, evaluating non-Markovianity for time

evolutions generated by Eq. (7) is demanding as it requires,
e.g., optimization procedures, the inversion of dynamical
maps, or the integration over complicated disconnected
domains. In part, this problem is caused by the fact that
the CPTP map Φðt; t0Þ has a complicated time dependence:
Even if the unitary U in Eq. (7) is generated by a time-
independent Hamiltonian, the dynamical map is not time-
translational invariant; i.e., Φðt; t0Þ ≠ Φðt − t0Þ, in general.
This is in strong contrast to our result in the linear response
regime, whereGðtÞ always depends only on the elapsed time
and which allows us to check the simpler condition (4)
instead of Eq. (8).
Distance quantifier.—To introduce new quantifiers of

non-Markovianity within our approach, we need to quantify
the distance between two functions fðtÞ and gðtÞ. We use the
standard L2 scalar product hf; gi ¼

R∞
−∞ dtfðtÞg�ðtÞ and the

induced norm kfk ¼ ffiffiffiffiffiffiffiffiffiffiffiffihf; fip
, where it is tacitly assumed

that the integrals are converging.We then define the distance

Dðf; gÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

jhf; gij2
kfk2kgk2

s
: ð9Þ

By the Cauchy-Schwarz’ inequality, 0 ≤ Dðf; gÞ ≤ 1 and
Dðλf; λgÞ ¼ Dðf; gÞ for any λ ∈ C; i.e., the difference has
the favorable properties that it is positive, bounded, and
independent of any global scaling. By analogy with the
Euclidean scalar product,Dðf; gÞ ¼ j sinðϕÞj can be seen as
quantifying the “angle” ϕ between the two vectors fðtÞ and
gðtÞ. Most importantly for our applications, by Parseval’s
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theorem, we can deduce that Dðf; gÞ ¼ Dðf̃; g̃Þ, where the
right hand side is computed by using theL2 scalar product in
Fourier space, hf̃; g̃i ¼ R

∞
−∞½ðdωÞ=ð2πÞ�f̃ðωÞg̃�ðωÞ.

New quantifiers of non-Markovianity.—It is advanta-
geous to work in Fourier space in the following. Integrating
Eq. (5) over s from zero to t implies in Fourier space [6]

−i
d
dω

χ̃ðωÞ ¼ χ̃ðωÞχ−1þ χ̃ðωÞ: ð10Þ

Then, to measure violations of Eq. (10) as a consequence of
the (assumed) divisibility property, we propose the quanti-
fier [denoting χ̃0ðωÞ ¼ dχ̃ðωÞ=dω]

N ð1Þ
ij ≡D½−iχ̃0ij; (χ̃χ−1þ χ̃)ij�: ð11Þ

As a second quantifier of non-Markovianity, we also
check the validity of the regression theorem (RT) [21,22],
which allows us to relate the evolution of CFs to the
evolution of mean values. Within our setting, the
Markovian assumption enters here by using that Eq. (3)
holds for all initial states and that there exists a dynamical
map Φðt; t0Þ, which is independent of ρSðt0Þ. It is worth
emphasizing that the validity of the RT does not a priori
rely on an initial product state assumption or on the
property of CP divisibility. It merely signifies that it is
possible to find for any initial system state a map GðtÞ to
propagate the mean values and—in addition to what is

required to evaluate N ð1Þ
ij —a map Φðt; t0Þ to propagate

ρSðt0Þ (see the Supplemental Material [6] for more details).
Thus, if the RT holds,

CRTðt; t0Þ ¼ Gðt − t0ÞCðt0; t0Þ: ð12Þ

Here, we have added the superscript “RT” to emphasize
that this is the predicted CF assuming the validity of the RT.
Note that CRT

ij ðt; t0Þ≡ hAiðtÞAjðt0Þi denotes, in general,an
out-of-equilibrium CF, but we are only interested in
equilibrium CFs which we denote with a calligraphic C.
For them, we can deduce in Fourier space that [6]

C̃RTðωÞ ¼ χ̃ðωÞχ−1þ Cð0Þ − Cð0ÞTχ−1þ χ̃ðωÞ†: ð13Þ

We add that the behavior of CFs (often in relation with the
validity of the RT) has played an important role historically
to define a quantum Markov process [21–25] and was also
investigated in the recent debate about non-Markovianity
[26–28]. However, its use in the linear response regime has
not been noted before, although it is well known that all
quantum systems violate the RT in that regime [29].
Then, based on the comparison of the exact equilibrium

CFs [obtained from the FDT (6)] and their Markovian
prediction [obtained from the RT (13)], we propose

N ð2Þ
ij ≡D½C̃ij; C̃RTij �: ð14Þ

We here assume that the equilibrium covariance matrix
Cð0Þ is exactly known such that the prediction (13) uses the
correct initial value.
To conclude, the magnitude of both N ð1Þ

ij and N ð2Þ
ij

measures by howmuch we fail by naively assuming that the
process is Markovian. They can be computed without the
need to a priori derive any quantum master equation—only
the knowledge of the linear response functions or the
equilibrium CFs is required.
We now treat an important class of open system models

with Gaussian dynamics exactly, i.e., without any approxi-
mation about the temperature, the coupling strength, or the
spectral features of the bath. We also remark that for this
class our results are valid beyond linear response. Related
studies about non-Markovianity of Gaussian dynamics
based on different approaches and various approximations
can be found in Refs. [16,20,30–33].
Quantum Brownian motion.—We consider the standard

Caldeira-Leggett model with Hamiltonian (in suitable
mass-weighted coordinates)

H ¼ p2 þ ω2
0q

2

2
þ 1

2

X
k

�
p2
k þ ω2

k

�
qk −

ck
ω2
k

q
�

2
�
: ð15Þ

Here, q and p refer to the position and momentum of the
system with frequency ω0 > 0, whereas the bath oscillators
with frequencies ωk > 0 are specified with an additional
index k. Furthermore, ck denotes the coupling strength
between the system and the kth oscillator. Of central
importance is the spectral density (SD) JðωÞ≡
ðπ=2ÞPkðc2k=ωkÞδðω − ωkÞ. It characterizes the coupling
between system and bath, and it is assumed to be a
continuous function of ω in the limit of a large bath
fulfilling Jð0Þ ¼ 0 ¼ Jðω → ∞Þ. A great benefit of the
Brownian motion model is that almost all quantities of
interest are computable in closed form [34,35]; e.g., the
matrix of response functions reads (see the Supplemental
Material [6] for a derivation)

�
χ̃qqðωÞ χ̃qpðωÞ
χ̃pqðωÞ χ̃ppðωÞ

�
¼

�
1 iω

−iω ω2

�
χ̃qqðωÞ þ

�
0 0

0 1

�
;

χ̃qqðωÞ ¼
1

ω2
0 − ω2 − iωγ̃ðωÞ ; ð16Þ

where γ̃ðωÞ is the Fourier transform of the memory kernel
γðtÞ ¼ ΘðtÞð2=πÞ R∞

0 dωf½JðωÞ�=ωg cosðωtÞ. In view of
the general theory outlined above, our set of system
observables will be the position and momentum of the
system fA1; A2g ¼ fq; pg, and one easily verifies that χþ is
symplectic with ðχþÞpq ¼ 1 ¼ −ðχþÞqp. The delta-kick

now creates the unitary U0 ¼ eði=ℏÞðaqqþappÞ. This shifts
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the position and momentum operators U†
0qU0 ¼ q − ap

and U†
0pU0 ¼ pþ aq, thereby shifting the mean values

but leaving the covariances unchanged. Furthermore, the
equilibrium covariance matrix is diagonal with entries
Cqqð0Þ¼ðℏ=πÞR∞

0 dωcothðβℏω=2Þℑ½χ̃qqðωÞ� and Cppð0Þ¼
ðℏ=πÞR∞

0 dωω2cothðβℏω=2Þℑ½χ̃qqðωÞ�, and the equilib-
rium CFs are linked via

�
C̃qqðωÞ C̃qpðωÞ
C̃pqðωÞ C̃ppðωÞ

�
¼

�
1 iω

−iω ω2

�
C̃qqðωÞ: ð17Þ

We now have all quantities at hand to compute our
quantifiers. For the rest of the paper, we set t0 ¼ 0.

Classical Ohmic limit.—We consider the simplest case of
a classical particle (ℏ ¼ 0) coupled to an Ohmic
bath, which corresponds to a memory kernel of the
form γðtÞ ¼ DδðtÞ. This follows from a linear SD JðωÞ ¼
Dω in the limit of an infinitely high cutoff frequency.
The resulting Langevin equation for the system
reads (see Supplemental Material [6] for a detailed deri-
vation)

_qðtÞ ¼ pðtÞ − apδðtÞ;
_pðtÞ ¼ −ω2

0qðtÞ þ aqδðtÞ −D _qðtÞ þ ξðtÞ: ð18Þ

Here, the noise obeys ⟪ξðtÞ⟫ ¼ 0 and ⟪ξðtÞξðsÞ⟫ ¼
γðt − sÞ=β with the crucial requirement that ⟪…⟫ refers
to an average over an initial conditional equilibrium state of
the bath [35–38]

ρBð0Þ ∼ exp

�
−
β

2

X
k

�
p2
k þ ω2

k

�
qk −

ck
ω2
k

qð0−Þ
�

2
��

:

ð19Þ

Here, the position qð0−Þ of the Brownian particle prior to
the delta-kick is a random variable distributed according to
a Gaussian P½qð0−Þ� ∼ e−βω

2
0
qð0−Þ2=2 such that, shortly

before the unitary kick, the global system-bath state is in
equilibrium.
If we would not disturb the state, aq ¼ 0 and ap ¼ 0 and

Eq. (18) reduces to the standard Langevin equation.
However, the presence of the unitary kick results in an
initial system state described by a shifted Gaussian
P½qð0Þ� ∼ e−βω

2
0
½qð0Þ−aq�2=2 while the bath still resides in

the state (19). The fact that the bath has no time to adapt to a
new conditional equilibrium state causes non-Markovian

FIG. 1. Left: Plot ofN ð1Þ
qq (solid black),N ð1Þ

qp (dashed pink), and

N ð1Þ
pp (dashed-dotted purple) for an Ohmic SD over the dimen-

sionless coupling strength D=ω0 in logarithmic scale. Note that

N ð1Þ
qp ¼ N ð1Þ

pq . Right: Plot of N
ð2Þ
qq over the dimensionless inverse

temperature βω0 for various coupling strengths D in logarithmic
scale. It demonstrates that at strong coupling higher temperatures
can yield stronger non-Markovianity. We set ℏ≡ 1.

FIG. 2. We use the convention of Fig. 1 where a solid line refers toN ð1=2Þ
qq , a dashed line toN ð1=2Þ

qp , and a dashed-dotted line toN ð1=2Þ
pp , but

the color coding is different. Left: Plot (in logarithmic scale) over the dimensionless parameter Γ=ω0 at resonance (Ω ¼ ω0) for increasing
coupling strengthsD ¼ 0.02ω2

0 (black solid line), D ¼ 0.15ω2
0 (pink dashed-dotted line), andD ¼ 0.75ω2

0 (purple dashed line). Middle:
Plot over the dimensionless resonance frequency Ω=ω0 of the bath for increasing ðD;ΓÞ: D ¼ 0.05ω2

0, Γ ¼ 0.05ω0 (black solid line),
D ¼ 0.25ω2

0, Γ ¼ 0.25ω0 (pink dashed-dotted line), and D ¼ 1.1ω2
0, Γ ¼ 1.2ω0 (purple dashed line). Right: Plot over the dimensionless

inverse temperature βω0 in logarithmic scale forD ¼ 0.05ω2
0, Γ ¼ 0.05ω0,Ω ¼ ω0 (black solid line),D ¼ 0.75ω2

0, Γ ¼ 0.05ω0,Ω ¼ ω0

(pink dashed line) andD ¼ 0.75ω2
0, Γ ¼ 0.75ω0, Ω ¼ 1.15ω0 (purple dashed-dotted line). We set ℏ≡ 1. Furthermore, the black squares

indicates the parameters for which we provide additional plots of the time evolution of hpðtÞi in the Supplemental Material [6].
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behavior as we can rigorously show with our quantifier. For
instance, in view of Eq. (10), we find that

−iχ̃0 − χ̃χ−1þ χ̃ ¼ D
ðω2

0 − ω2 − iDωÞ2
�

1 iω

−iω ω2

�
; ð20Þ

which is clearly nonzero and only becomes negligible in the
weak coupling regime, see Fig. 1. The subtle importance of
the initial state preparation procedure for the validity of the
Langevin equation was already noted in Refs. [36–38], but
it had not been rigorously quantified.
We remark that it is a special property of the Caldeira-

Leggett model that the first moments do not depend on ℏ.
This changes for CFs, which depend on ℏ and the inverse
bath temperature, see Fig. 1 again.
Peaked SD.—Wenow turn to the case described by the SD,

JðωÞ ¼ D2Γω
ðω2 − Ω2Þ2 þ Γ2ω2

: ð21Þ

This corresponds to the SD felt by a system, which is coupled
with strengthD to another harmonic oscillator of frequencyΩ,
which is in turn coupled to an Ohmic bath with SD Γω [39].
Note that the parameter Γ controls the structure of the SD: a
small Γ corresponds to a sharp peak around the frequency Ω,
whereas a larger Γ smears out the peak resulting in an
increasingly flat SD. Furthermore, the real part of the
Fourier transformed memory kernel is ℜ½γ̃ðωÞ� ¼ JðωÞ=ω,
and the imaginary part becomes ℑ½γ̃ðωÞ� ¼ ðΓ2 þ ω2 −
Ω2ÞJðωÞ=ΓΩ2 [6].
In practical considerations, non-Markovian behavior is

often associated with a strong system-bath coupling and a
structured SD [2]. Thus, one would intuitively expect that
the degree of non-Markovianity increases for larger D and
smaller Γ and that it reaches a maximum if the system is on
resonance with the oscillator in the bath; i.e., if ω0 ≈Ω. As
Fig. 2 demonstrates, this intuition is not always correct. We
observe that there is no simple (i.e., monotonic) relation
between our quantifier of non-Markovianity and the
parameters D, Γ, and jω0 −Ωj. In fact, one could
ask whether this results from the particular definition (9)
and (11) which we have used and which always entails a
certain level of arbitrariness. Therefore, we have also
plotted the time evolution of the observable hpðtÞi (see
[6]), whose deviation from an exponentially damped
oscillation seems to be roughly in agreement with our
quantification scheme.
Summary.—This work shows that it is possible to

quantify non-Markovianity in the linear response regime
in a rigorous and straightforward manner. Since we can
only treat initially correlated states, our approach is rather
“orthogonal” to previous ones, but for many scenarios of
experimental interest, this might be indeed a more realistic
assumption. Furthermore, for the Caldeira-Leggett model,
our quantifier is valid beyond linear response and can be

expressed analytically in terms of an integral over known
functions. We have then shown that even a classical particle
coupled to an Ohmic bath can behave non-Markovian
depending on the initial state preparation procedure and
that one should not expect a simple relation between our
quantifier of non-Markovianity and parameters in the SD or
the temperature of the bath.
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