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ABSTRACT

Naturally occurring and artificial bacterial communities play an import role in many biotechnologi-

cal processes. To elucidate bacterial interactions that are important for potential optimized biotech-

nological applications, high-throughput measurements of biomolecules, metagenomics, metratran-

scriptomics, metaproteomics, and meta-metabolomics provide a detailed snapshot of mixed micro-

bial consortia.

Integration of multiple layers of omics data allows to reconstruct structure and function of com-

plex microbial communities and is demonstrated for two different model systems. The first chapter

focuses on synthetic communities consisting of strains representing key species found in biomin-

ing operations and acid mine drainage and that are of economical interest for copper production. A

high-quality closed reference genome for L. ferriphilum was obtained by DNA sequencing and was

subsequently used to integrate functional omics data, i.e. transcriptomic and proteomic profiling.

The combination of genomics, genome annotation, and functional omics data allowed an in-depth

characterization of L. ferriphilum in culture medium and in the presence of the iron sulfide min-

eral chalcopyrite, an economically relevant copper ore. Subsequently, analyses were performed

for co-cultures of up to three organisms highlighting specific interaction mechanisms. The cul-

tures without L. ferriphilum showed higher copper solubilisation rates, as the highly efficient iron

oxidiser might raise the redox potential above the optimal range.

For in situ studies, reference-based analyses are of limited use, e.g. due to a lack in reference

genomes of culturable isolates. Hence, the second chapter focuses on an approach to study mixed

microbial communities independent of prior knowledge and available reference genomes. A time-

series of oleaginous floating sludge samples that spans over one and a half years was analysed by

integrating metagenomic, metatranscriptomic, metaproteomic, and meta-metabolomic data. This

allowed the reconstruction of population level genomes and the characterization of the niches of the

respective populations. The functional potential was assessed, as well as expression profiles over

time, yielding a detailed view on lifestyle strategies and the potential impact of abiotic factors.

Understanding the niche ecology of the predominant lipid accumulators in the system could lead

towards optimized biofuel production.
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INTRODUCTION
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Chapter 1 Mixed microbial communities

1.1 Mixed microbial communities

In recent years, studying microbial communities with new molecular methods has solidified the

view that microbial communities play integral roles in many parts of the Earth’s ecosystems, from

biogeochemical cycles [Rousk and Bengtson, 2014] to microbiomes associated with host organisms

such as humans [Greenhalgh et al., 2016]. While the more we are learning about these microbial

consortia, the more we come to realize that the diversity that we observe is only the tip of the

iceberg. Recent estimates suggest that there could be as many as 1011-1012 bacterial species on

earth of which only ca. 104 have been cultured [Locey and Lennon, 2016]. Additionally, microbial

communities often include archaea, fungi, viruses, and eukaryotes adding to the complexity.

The classical microbial approach of studying isolate cultures of individual species has improved

our understanding of how these organisms function and it is still a prerequisite for accurate char-

acterization of organismal physiology. Yet, classical methods fall short of characterising bacterial

communities as a whole and genome sequencing has revealed an unfathomed diversity in uncul-

tured microorganisms [Hug et al., 2016]. Many bacterial species are not readily culturable due to

lack of specific nutrients, growth factors or other inter-species communication [Vartoukian et al.,

2010], and also physical conditions such as hydraulics [Niederdorfer et al., 2016] or cell-to-surface

contact can be a requirement for culturability. While new methods have been developed for cultur-

ing microorganisms from complex mixtures [Vartoukian et al., 2010], methods to study microbial

communities in a holistic manner are required to understand emergent properties of microbial sys-

tems, i.e. properties that cannot be attributed solely to additive effects of the system’s components

[Konopka, 2009].

Microbial communities are shaped by their biotope and biotic interactions, such as competition for

resources, cross-feeding, or horizontal gene transfer [Konopka, 2009]. The notion of the environ-

ment as the primary shaping force for microbial communities has been formulated concisely in a

famous quote by the Dutch biologist Lourens Baas-Becking in the early 20th century: “Every-thing

is everywhere, but, the environment selects” [Baas-Becking, 1934], which can be seen as a precur-

sor for niche assembly theories [De Wit and Bouvier, 2006] that will be discussed in greater detail

subsequently (Section 1.1.1). Various mechanisms exist a for wide distribution of bacterial cells,

e.g. by attachment to aerosols [Joung et al., 2017]. Distribution and persistence across different

environments is also facilitated by the ability of many bacterial species to form spores, the ability

to resist extreme conditions in a dormant form. Furthermore, microorganisms exhibit diverse re-

sistance mechanisms that guarantees their survival in extreme conditions, e.g. metal rich, acidic

conditions [Dopson and Holmes, 2014]. As a result of the various mechanisms that evolved in

bacteria, they can be found in nearly all environments on earth.

The complexity or diversity, i.e. species richness and distribution, of an ecosystem’s microbiome

depends on the environmental conditions and nutrient availability (Table 1.1) [Torsvik, 2002]. Mi-
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Table 1.1: Species richness of microbial consortia across different environments. The numbers shown are based on
different methods for estimation or extrapolation. The definition of a taxa can vary, e.g. for 16S amplicon sequencing
it is defined as distinguishable based on 16S RNA gene sequence identity and depends on the selected identity cut-off
(Adapted from [Wilmes et al., 2015]).

DNA source Estimated number of taxa Basis for estimate Reference

Acid mine drainage biofilm 159 Total RNA sequencing [Goltsman et al., 2015]
Activated sludge >1000 16S amplicon sequencing [Zhang et al., 2012]
Ocean Water 160 various [Curtis et al., 2002]
Soil 6,300 various [Curtis et al., 2002]
Surface freshwater 20,000 various [Palmer, 1997]
Soil 50,000 16S amplicon sequencing [Roesch et al., 2007]
Soil 8,000,000 DNA reassociation [Gans et al., 2005]
Human saliva >5400 16S amplicon sequencing [Huse et al., 2012]
Human feces >21,000 16S amplicon sequencing [Huse et al., 2012]

crobial organisms can even be found in extreme environments, such as hypersaline lakes [Benlloch

et al., 2002], hot deserts [Makhalanyane et al., 2015], or permafrost soils [Hultman et al., 2015] and

also in highly acidic, metal rich environments. Communities in these extreme environments often

only consist of a limited number of species compared to other environments [Baker and Banfield,

2003; Denef et al., 2010]. Acidophile communities in acid mine drainage (AMD) ecosystems,

in which microorganisms mediate the oxidative solubilization of sulfide minerals, have been a

model system for applying and developing molecular methods early on [Tyson et al., 2004; Allen

and Banfield, 2005; Wilmes and Bond, 2009] also due to the limited number of species [Baker

and Banfield, 2003]. Determining ecological interactions of microbial communities in the AMD

ecosystem [Denef et al., 2010] is not only important for environmental considerations, but is also

of economical relevance (Section 2.2.1).

Communities found in sediments and soils typically exhibit high species richness [Torsvik, 2002]

(Table 1.1). Soil-borne microorganisms are of great importance e.g. for nutrient cycling. A re-

lated important field of study are interactions between plants and their associated microbiome, as

microorganisms form complex interactions with their plant hosts [Lakshmanan et al., 2014] that

influence plant health and productivity. Host-microbiome interactions also are crucial factor in

studies about the human microbiome, a field that has received increasing attention in the last years.

Here, especially the human gut microbiome has been shown to be implicated in several diseases,

e.g. type-2-diabetes [Qin et al., 2012] or inflammatory bowel disease [Morgan et al., 2012]. An

in-depth understanding of microbiomes enables us not only to potentially derive treatments benefi-

cial for health, but also provides the background for the optimization of biotechnological processes

(Section 1.2).
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1.1.1 Factors shaping microbial communities

The factors shaping mixed microbial communities can be quite complex and their elucidation is at

the centre of microbial ecology. In host-linked microbial communities, naturally the environment

provided by the host plays an important role in the formation and persistence of the microbiome.

However, active control mechanisms in host-microbiota interactions can also play an important

role in shaping the co-evolution of host and microorganisms [Foster et al., 2017]. In the human

gut, the microbiome could be shaped for example by immune regulation or by exposing specific

mucus layer glycans at the epithelium-interface favouring certain organisms [Schluter and Foster,

2012].

The notion that ecosystems are primarily shaped deterministically, by conditions and accessible re-

sources has found wide resonance in niche assembly theories. According to the niche definition by

Hutchinson, a species’ fundamental niche is defined by an n-dimensional hypervolume of ecologi-

cal parameters allowing the species to persist [Hutchinson, 1957]. As two species that are limited

by the same resource cannot coexist in an environment, they will utilize a reduced set of resources

in the presence of each other, the realised niche [Hutchinson, 1957] (Figure 1.1). In microbial

ecology the fundamental niche can be seen as reflected by the genomic complement, i.e. functional

potential of encoded genes, while the realised niche can be seen as the actually expressed gene

functions [Muller et al., 2018]. The fitness of a genotype can vary across the range of different

gradients of resources (Figure 1.1). A specialist population will have a narrower niche breadth

than a generalist, which is adapted to a wider range of resources, however this can occur at a cost

reflected in fitness trade-offs [Kassen, 2002].

The evolution of individual microbial genotypes can be tracked experimentally in response to a

resource gradient, e.g. for thermal adaptation [Bennett and Lenski, 1993] or exposure to light

[Kassen, 2002]. However, testing ecological concepts in in situ systems can be challenging due to

methodological constraints, as measuring fitness or resource usage of individual species is not triv-

ial. The co-existence and interactions of a multitude of different species and their (co)-evolution in

dynamic and spatially heterogeneous environments poses additional challenges. Molecular meth-

ods such as DNA sequencing (Section 1.3.1 ) can be utilized to determine the species present in a

mixed community and their abundance in the sample. Frequently, concepts of niche theory are then

applied implicitly in studies aiming to link environmental parameters to the community structure.

Integrating DNA, RNA, protein, and metabolite data (Section 1.3) can provide expanded infor-

mation on community functioning and can be applied for testing ecological concepts in microbial

consortia, for example, the concept of niche breadth and the activity of generalist and specialist

populations within a microbial community described by Muller et al. [2014a].

Contrasting deterministic niche theories, neutral theory [Hubbell, 2006] models have emerged that

model community structure by stochastic birth, death, and immigration events and have also widely

been applied for microbial communities [Sloan et al., 2006]. Microbial communities also are char-
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acterized by a considerable functional redundancy, i.e. the capability of distinct phylotypes to

perform the same ecological function [Prosser, 2012]. While functional redundancy has been seen

as a sign for co-existence between competitors in neutral processes, it has been suggested that func-

tionally similar microorganisms could differentiate ecologically in much more complex ways than

we are able to observe [Louca et al., 2018]. It has recently been shown that niche specialisation

can be reflected by species containing diverse isoforms of enzymes [Rubino et al., 2017] and it

was suggested that fine-tuned gene expression of isoforms could convey competitive advantages

in fluctuating resource availabilities to a generalist population [Muller et al., 2014a]. Furthermore,

it has been suggested that niche segregation takes place on a transcriptional level in the human

gut microbiome, as adaptations in gene expression could be linked to a reduction in functional

redundancy [Plichta et al., 2016].

Studies have suggested combining models for niche and stochastic effects to characterise species

abundance patterns [Ofiteru et al., 2010]. Niche effects can be seen as stabilizing processes that

cause intraspecies effects to be more negative than interspecies effects, slowing down growth of

abundant populations and thus limiting competitive exclusion [Adler et al., 2007]. As a conse-

quence, co-existence of two species is determined in balancing fitness inequalities and stabilizing

processes [Adler et al., 2007]. Unfortunately, quantifying stabilizing effects or fitness for micro-

bial organisms is a complex task. To elucidate how ecosystems shape and are shaped by microbial

communities, a framework has been suggested distinguishing between different levels of processes,

such as microbial membership, community properties, microbial processes, and ecosystem pro-

cesses [Hall et al., 2018]. Understanding the various processes involved in microbial systems is a

pre-requisite for targetted manipulations with the aim of boosting a desired community phenotype

(Section 1.2.2 and Section 3.2.2).
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Figure 1.1: Illustration of niche breadth. Visualisation of niche space for a community with 4 organisms along 2
resource gradients A and B. Niche breadth is indicated by circle size and while generalist only realize a smaller portion
of their fundamental niche, the realized niche of specialist (blue) could resemble their fundamental niche more closely
(from Muller et al. [2018]).
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1.2 Biotechnological processes driven by microbial communities

Historically processes driven by microbial activity have been used in early stages of human civiliza-

tion, as for example evidence of fermented beverages could be traced back as far as 9,000 years ago

[McGovern et al., 2004]. Similarly other fermented foods were also already produced in ancient

times. Most likely the microbial activity was used by chance and processes were refined through

experience. Systematic study of industrial fermentation processes began in the 19th century which

is considered the basis for many modern industrial biotechnological processes. Modern biotech-

nological processes, e.g. recombinant insulin production, or bulk chemical production, e.g. for

amino acid production, primarily use pure cultures as effective expression systems [Baeshen et al.,

2014]. However, many important processes in modern society such as wastewater treatment with

activated sludge (Section 3.2.1), anaerobic biogas production [Bremges et al., 2015], or biomining

(Section 2.2.1) are driven by microbial communities with many yet uncultivable organisms.

1.2.1 Bioprospecting

The vast diversity in microbial communities is also seen as a large untapped resource for discovery

of new enzymes or other bioactive compounds from various environments [Keller and Zengler,

2004]. The unique capabilities that microorganisms have evolved to survive in (extreme) envi-

ronments could provide means to facilitate or improve biotechnological processes. Frequently,

environments are selected and sampled based on their physico-chemical properties favouring evo-

lution of a characteristic phenotype, e.g. sampling of environments with high salinity to recover

halophilic organisms. Halophilic acidophiles, for example, are of great interest to carry out heap

bioleaching (Section 2.2.1) with seawater [Watling, 2016] instead of valuable freshwater in dry

regions in Chile. Not only is the discovery of specialised organisms commonly pursued, but also

individual enzymes can be of value in biotechnological processes. A famous example is the re-

covery of the heat-stable Taq-polymerase of the thermophile organism Thermus aquaticus [Chien

et al., 1976] commonly found in hot springs and the resulting application in DNA amplification

with polymerase-chain reaction (PCR) [Saiki et al., 1988].

While extreme environments are often targeted for the retrieval of potentially interesting organ-

isms, enzymes, or compounds, environments with a higher diversity of prokaryotes are frequently

targeted for the retrieval of antimicrobials. Several microorganisms, for example Streptomyces,

produce antibiotics likely conferring a competitive advantage in nutrient rich micro-environments

[Williams and Vickers, 1986]. As commonly culturable soil bacteria have historically been uti-

lized as a source for antimicrobial compounds, discovery of new compounds has been challenging

[Lewis, 2012]. New approaches for isolation and culturing [Nichols et al., 2010] have shown suc-

cesses, exemplified by the recent discovery of a novel candidate class of antibiotics not triggering

resistance development in gram-positive pathogens [Ling et al., 2015]. Also, culture-independent
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approaches have shown success for the discovery of previously unknown classes of antibiotics in

soil microbiomes [Hover et al., 2018]. Marine environments also represent important reservoirs of

antimicrobial peptides and other bioactive compounds [Reen et al., 2015].

Culture-dependent and -independent screening methods (Figure 1.2) have successfully been ap-

plied for the discovery of novel bioactive compounds or organisms with biotechnologically relevant

properties from various environments. Especially, sequencing-based methods play an important

role in accessing the yet uncultivable microbial diversity from mixed communities.
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Figure 1.2: Bioprospecting with culture-dependent and -independent methods. Overview of culture-dependent
(grey boxes) and culture-independent (metagenomics, blue boxes) screening workflows for bioprospecting of environ-
mental samples. Metagenomic approaches can either be targeted (green) or untargeted (red) (from Vester et al. [2015]).
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1.2.2 Towards understanding community interactions and interventions

As microbial communities play fundamental roles in biogeochemical cycles on Earth, elucidating

these processes is expected to enable human society to apply biological systems as solutions to

environmental needs and problems [Madsen, 2011] (Figure 1.3). Still, several challenges to obtain

a predictive understanding of microbial interactions within ecosystems remain, such as gaps in de-

coding microbial gene functions, as well as quantitative measurements across different spatial or

temporal scales [Blaser et al., 2016].

The interactions occurring between the constituent populations of microbial consortia can be char-

acterized in different ways, depending on the interaction. These interaction types include among

others cooperation, mutual benefits, or competition, for example, by exploiting shared resources,

or interfering directly by toxin production. Types of social interactions and their evolution in mi-

croorganisms have extensively been reviewed by Mitri and Foster [2013]. In defined co-cultures

these interactions can be studied in a targeted way [Grosskopf and Soyer, 2014]. Utilizing synthetic

microbial communities also has tremendous potential in biotechnological processes [Shong et al.,

2012]. Processes with mixed cultures could be optimized so that product yields could be increased.

This could be achieved, for example, by the combined production of several distinct products ef-

ficiently utilizing available substrates, by the conversion of toxic by-products, or conversion of

mixed and cheaper substrates by combining species with distinct pathways [Sabra et al., 2010].

Additionally microbial communities are considered to be more robust to external perturbations e.g.

contamination and could be handled under non-sterile conditions further reducing processing costs

[Sabra et al., 2010]. Ultimately engineered microbial consortia could be used as co-operative and

stable production systems [Cavaliere et al., 2017]. Designing optimal community composition can

be facilitated by computational modelling approaches (Section 4.5), e.g. as has been demonstrated

for biogas production [Koch et al., 2016].

Understanding interactions within artificial consortia might however not directly be transferable

to more complex natural systems. Here, an in-depth understanding of the underlying ecology is

required for rationally motivated interventions that could steer a community phenotype towards a

desired goal. One example where interventions in microbial communities are commonly pursued

can be found in host associated systems, such as the treatment of livestock with pre- and probiotics

to increase animal health and replace widespread antibiotics use [Uyeno et al., 2015]. Interven-

tions with probiotics have also shown positive effects when applied for gastrointestinal diseases in

humans, yet could be improved by knowledge of which strains best to use or optimization of the

dosage [Ritchie and Romanuk, 2012]. Also, the introduction of a foreign microbiome of a healthy

donor is applied for treatment, through faecal transplants [Gupta et al., 2016].

Overall, biotechnological processes depending on microbial consortia and microbiome interven-

tions are currently still constrained by the limited knowledge of the of the complex interactions and
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Figure 1.3: The potential societal impact of research on microbial consortia. A unified framework to move from
fundamental discoveries in microbial communities in different environments holds the potential to benefit society in
many areas from biotechnological applications to human health (from Blaser et al. [2016]).
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dynamics within these ecosystems. A detailed and predictive understanding of microbial systems

could potentially lead to improvements in many applications, e.g. in bioenergy or human health

(Figure 1.3) thus representing an important area of research.

1.3 Multi-omics measurements and integration of large-scale datasets

In recent years, so called “-omics techniques” have been developed and improved, allowing a de-

tailed characterisation of the building blocks of cellular systems. The term summarises the various

techniques for high-throughput measurements for generating biomolecular data sets, for exam-

ple genomic, transcriptomic, proteomic, or metabolomic data. While these approaches have been

developed and are primarily used for the study of isolates, they can also be applied for mixed

microbial communities with metaomics or environmental omics techniques. Metagenomic (MG)

sequencing refers to the sequencing of libraries generated from DNA extracted from the entire

microbial communities. Metatranscriptomic (MT) sequencing respectively means the sequenc-

ing of the RNA complement, mostly indirectly by sequencing reverse transcribed cDNA libraries.

Metaproteomic(s) (MP) refers to the study of the whole protein complement of microbial sys-

tems and meta-metabolomic(s) (referred to as metabolomics or MM) describes the analysis of the

metabolites in an environmental sample. Applied independently or in combination (multi-omics)

these techniques enable the study of mixed microbial communities in unprecedented detail and

have led to numerous advances in microbial systems ecology [Gutleben et al., 2018].

1.3.1 Metagenomics

With the advent of next-generation sequencing (NGS) techniques, DNA sequencing has seen a

tremendous decrease in cost. DNA is extracted and purified, fragmented into templates, which are

then amplified (second-generation sequencing techniques) or directly sequenced as single molecules

(third-generation methods), with specifics depending on the applied platform [Metzker, 2010]. The

different sequencing techniques vary in throughput, and error rates and types, as well as the length

of resulting sequencing reads [Scholz et al., 2012]. Second-generation sequencing methods often

generate reads with a length around 100 bp, while third-generation methods produce reads with

average length above 1 kbp, which allows resolution of extended repetitive genomic regions [Met-

zker, 2010; van Dijk et al., 2018].

As the DNA extracted from mixed microbial community samples depends on the presence and

the quantity of the present microbial populations, MG sequencing has become standard practice

to infer the community composition. Frequently, a targeted approach is applied in which a known

sequence, often a marker sequence,commonly the 16S ribosomal RNA (rRNA) gene for bacteria,

is amplified with primers prior to library preparation. The resulting sequencing reads are then pro-
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cessed and often grouped into operational taxonomic units (OTU) according to the sequence simi-

larity, reflecting a high-resolution taxonomic profile of the original bacterial populations [Hugerth

and Andersson, 2017].

In addition to the resolution of taxonomic composition, MG approaches can also be used to eluci-

date the functional potential of constituent microbial populations of a consortium. Even though

functional information can be extrapolated from the amplicon sequencing derived community

structure, this approach is dependent on prior knowledge in the availability of reference genomes

that is variable across different environments [Langille et al., 2013]. As a result it can only re-

capitulate the functional potential of already known strains, but not new functional potential of

similar, but genetically different strains. For environmental samples suitable reference genomes

are not always available [Langille et al., 2013], as even for well-studied system as the human gut

microbiome only 43 % of sequences could be associated to existing references [Sunagawa et al.,

2013].

Whole genome shotgun (WGS) sequencing, i.e. sequencing of the randomly fragmented whole

DNA complement, allows taxonomic and functional profiling either on individual read level or

on consensus level, i.e., after an assembly (Section 3.3.3) of the reads into longer contiguous se-

quences (contigs) [Scholz et al., 2012]. Reconstruction of whole genomes can be achieved by bin-

ning contigs derived from the same population based on characteristic genomic properties such as

GC-content, nucleotide signatures, or depth of coverage distributions (Section 3.3.6), an approach

that was pioneered in low-complexity AMD consortia allowing inferences of evolutionary origin

and metabolic traits of the constituent bacteria and archaea [Tyson et al., 2004]. Reconstructed

genomes, also referred to as metagenome-assembled genomes (MAGs), are often incomplete for

example due to unresolved repetitive regions or highly-similar genomic regions between different

populations. The quality of MAGs is generally assessed by assembly quality, completeness, and

contamination estimates [Bowers et al., 2017]. In general MAGs represent an average of a popula-

tion of cells [Zengler, 2009] and strain heterogeneity can be challenging to resolve [Imelfort et al.,

2014]. In recent years single cell genomics has become feasible and potentially allows character-

ization of individual genotypes [Stepanauskas, 2012]. Overall, MG sequencing enables a detailed

view of the microbial community structure and functional potential. However, it does not provide

information on the activity of identified functions.

1.3.2 Metatranscriptomics

As not all genes are constitutively expressed in a cell, metatranscriptomics allows the profiling

of community-wide gene expression patterns in a sample. Analogously to MG data, MT ap-

proaches have tremendously increased in their popularity in the verge of the NGS revolution. By

now microarray-based transcriptome profiling [Schena et al., 1995] has largely been replaced by

RNAseq due to the wider dynamic range, less bias and background noise, and the possibility to dis-
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cover novel transcripts or sequence variations [Wang et al., 2009]. RNA can directly be sequenced

or first be reverse-transcribed to cDNA, with the latter being the more common application in

metatranscriptomics. Profiling of messenger RNA (mRNA) usually implies a depletion of riboso-

mal RNA (rRNA), as mRNA makes up only a small fraction of the total RNA complement in a

cell [Petrova et al., 2017]. Depletion of rRNA can therefore be applied to microbial community

samples to massively increase the sequencing depth obtained for mRNA, but the removal rates can

vary between different organisms [Petrova et al., 2017]. On the other hand, deriving information

on community structure or population dynamics similarly to MG approaches can also be derived

from sequencing of rRNA [Goltsman et al., 2015].

MT approaches could show that the most abundant populations within a consortium are not neces-

sarily the most active populations. MT approaches have been applied to microbial consortia across

many different environments, such as a thermophilic biogas plant consortium [Maus et al., 2016],

the microbiome of the human intestinal tract [Plichta et al., 2016], or arctic peat soil communities

[Tveit et al., 2014], among many others. Similarly to MG reads, MT reads are commonly aligned

to a reference sequence and matching reads are quantified to characterise the expression e.g. of

an individual gene. Computational tools for the quantification of transcripts have recently been

reviewed by Conesa et al. [2016] and are described in further detail in Section 1.3.6. However,

tools for the de novo assembly of transcripts [Schulz et al., 2012] can also be applied to MT data

to reconstruct transcripts in the absence of reference genomes [Davids et al., 2016].

1.3.3 Metaproteomics

Metaproteomics, i.e. the measurement of all expressed proteins within an ecosystem, allows the

direct assessment of microbial enzymatic activity [Wilmes and Bond, 2004; Hettich et al., 2013].

Profiling the community proteome is commonly done by extraction of proteins from the sample fol-

lowed by tandem mass spectrometry. A separation of proteins and reduction of sample complexity

can be achieved by gel-based separation (e.g. 2D-PAGE) or directly by liquid chromatography

(LC). Proteins are cleaved to peptides, e.g. by trypsination. Following separation, mass spec-

trometry (MS) allows for the measurement of the mass to charge ratios of ionized peptides. An

additional MS step after fragmentation of the peptide ions can be used to identify the sequence of

amino acids of the original peptides based on the mass to charge ratio of their fragments. This ap-

proach is also referred to as shotgun proteomics analogously to WGS. Peptide mass fingerprinting

is followed by an protein identification step where identified peptide spectra can be compared to a

database of protein sequences. Spectral matches of peptides to the reference protein databases can

then be quantified and corrected for the set of reference proteomes [Penzlin et al., 2014]. However,

quantification can also be achieved by factoring in peptide peak intensities [Heyer et al., 2017].

In general, the quantification capability of shotgun proteomics approaches is not comparable to

that of targeted proteomics, or select-reaction monitoring methods, which however typically lack
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throughput to resolve complex metaproteomes [Heyer et al., 2017].

Applications of metaproteomics in different environments, such as activated sludge, AMD, marine

and freshwater systems, soil, and human gut have been reviewed by Wilmes et al. [2015]. These

ecosystems are characterized by a differences in the dynamic range of the protein complement,

however only around 1 % of the MP complement is resolvable [Wilmes et al., 2015]. A limitation

that has to be accounted for is strain heterogeneity that can prevent matching of peptides to protein

databases given amino-acid substitutions [Allen and Banfield, 2005]. This can be accounted for by

accurate and complete database generation by integrating other omics data types (Section 1.3.5).

Recent advances in proteomics are foreseen to solve several existing challenges for MP analyses

[Wilmes et al., 2015]. An example of a newly developed method with potential application in

metaproteomics is SWATH-MS in which a range of fragment ions is stored and used for peptide

identification, thus allowing high-throughput and accurate quantification [Gillet et al., 2012].

1.3.4 Metabolomics

Metabolomics reflect the actual phenotypic state in an environment, as chemical compounds are

the end products of microbial conversion reactions. Several considerations have to be made for the

measurement of metabolites from community samples. Ongoing metabolic processes have to be

quenched to avoid alterations of the metabolite profile after sampling for example by flash freez-

ing in liquid nitrogen [Roume, 2013]. This is especially important when volatile metabolites are

measured. Metabolites need then, to be isolated and purified from the sample using suitable sol-

vents. Subsequently, metabolites are derivatized, i.e. chemically modified to increase volatility,

depending on the measurement technique. Metabolites are separated e.g. by gas chromatography

(GC) or liquid-chromatography (LC) to reduce the complexity of the metabolite mixture and anal-

ysed by mass spectrometry (MS) approaches. The resulting mass spectra can then be analysed

and linked to databases of known spectra for identification and quantification [Hiller et al., 2009].

Due to its advantages in the methodology such as the high separation efficiency and measurement

reproducibility GC based approaches are preferentially used when profiling complex metabolite

mixtures without prior knowledge. LC based approaches do not require derivatization and are

often applied for the quantification of pre-identified metabolites.

Several challenges exist in the application of metabolomics to microbial community samples. The

number of metabolites that are measured in complex samples is high and frequently only a fraction

can be identified depending on the sampled environment [Tang, 2011]. Another challenge is con-

necting metabolite levels to microbial activity, as unlike with MG, MT, or MP data the measured

compounds cannot directly be linked to individual populations. This can be circumvented by la-

belling strategies, e.g. stable isotope probing, which allow inference of metabolic fluxes for specific

pathways [Abram, 2015; Srivastava et al., 2016]. However, in in situ analyses labelling strategies

cannot easily be applied, as samples have to be cultured for the duration of incubation with la-
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belled substrate which then allows tracing the incorporation of the respective isotopes [Abram,

2015; Eyice et al., 2015]

1.3.5 Considerations for integrating multi-omic datasets from microbiomes

An important consideration for the integration of different omic datasets is the co-extraction of

biomolecules from an undivided sample (Figure 1.4) allowing for meaningful data integration

[Roume, 2013] while reducing the effects of sample heterogeneity [Muller et al., 2013]. Sample

specific comprehensive lysis is a prerequisite for metaomics analyses, as the biases introduced by

variations in lysis efficiency for different species should be minimized given the unknown species

composition of a typical sample. However, the applied extraction procedure also needs to account

for the sample type as the matrix could also have effects on lysis efficiency and subsequently yields

of the purified biomolecules [Lever et al., 2015].

The combination of different omics techniques has several advantages for profiling complex micro-

bial communities and shortcomings of individual omic levels can be overcome by integration with

other datasets. Amplicon sequencing allows the profiling of community structure at a great depth

and the results can be used to estimate the required sequencing depth for a subsequent application

of WGS [Abram, 2015]. An advantage of WGS-MG data is the possibility to recover population-

level genomes thus to link predicted gene sequences to their population of origin and also to find

novel species- or strain specific genes not characterized in existing reference genomes. While MG

data cannot be used to measure activity levels it can therefore be applied to generate reference

sequences for functional omics approaches such as those using MT or MP data. For community

proteomics, database searches can be informed by MG data derived gene predictions [Wilmes and

Bond, 2009], also incorporating methods to account for genetic variants [Heintz-Buschart et al.,

2017].

MT and MP measurement techniques are characterized by different dynamic ranges, e.g. while

lowly abundant transcripts can still be detected, often only highly abundant proteins can be identi-

fied. Combining both MT and MP levels can lead to more complete and reliable profiles of activity.

Yet, even though most proteins are considered to have an intrinsic metabolic function [Schneider

et al., 2012], even protein levels are not necessarily a direct indication for metabolic function as en-

zymatic activity also depends on factors such as temperature, pH, or presence of specific co-factors.

Metabolomic data in turn can provide an overview of the microbial activity in an ecosystem, which

can be related to levels of gene expression or protein abundances [Wilmes et al., 2010b].

A crucial aspect in profiling activity is prior knowledge on the structure of genes and function of

encoded proteins reflected in the functional annotation of a genome. The assignment of functional

information to gene sequences derived from MG and MT data is a major bottleneck in analysis

workflows and remains inherently incomplete [De Filippo et al., 2012]. The lack of functional

annotation for many genes can however also may be addressed by the incorporation of MT and
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Figure 1.4: Biomolecular extraction from a single sample. After sampling, flash freezing, e.g. in liquid nitrogen,
quenches biological and physical processes, such as the conversion of metabolites or the degradation of RNA. An
important step in the extraction is the comprehensive lysis of bacterial cells after which the individual biomolecular
fractions can be isolated. The data generated either by mass spectrometry or sequencing techniques for the respective
biomolecules can then meaningfully be integrated (Courtesy of Linda Wampach and Anne Kaysen).

MP data for example by correcting open reading frame (ORF) annotation by mapping transcripts

to the genome sequence [Richardson and Watson, 2013]. Furthermore, transcript levels can also be

utilized to improve annotations of genomic context, e.g. operon structures [Fortino et al., 2014].

The activity in different environments or conditions can also be used to assess the potential function

of an individual gene. Exact functional annotation of enzymatic activity can be used to incorporate

metabolomic data linking gene activity to microbial processes.

Combining various heterogeneous omic datasets is also challenging as the different types biomolecules

are generated or processed at different time-scales. While the response to a change in the environ-

ment can be quick e.g. on the transcriptomic level, the translation of mRNA to proteins occurs

afterwards and a response in protein levels might be observed at a time-point where an increased

expression of the respective gene has already ceded. The different time-scales and the different

mechanisms of post-transcriptional or post-translational modifications, as well as variable degra-

dation rates of proteins or transcripts explain the perceived lack of correlation between MT and MP

levels [Siggins et al., 2012]. Metabolite conversions on the other hand can occur within seconds,

often resulting in higher variance between samples [Vemuri and Aristidou, 2005].

A limited number of integrated multi-omic studies has been performed so far, with a compre-

hensive overview listed in Narayanasamy [2017]. Among others, Heintz-Buschart et al. [2017]

highlighted in a MT, MG, MP study of familial type-1 diabetes that describing microbial function
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on different levels provides insights not achievable by individual omic analyses. Combining mul-

tiple omics datasets allows unprecedented insights in microbial activity in diverse ecosystems as

has been shown for different permafrost layers [Hultman et al., 2015]. Time-resolved multi-omics

approaches can provide a comprehensive picture of dynamics in microbial community functioning

while avoiding a priori assumptions [Muller et al., 2013, 2014a].

1.3.6 Computational methods for omics analyses

The generation of large-scale datasets is a common feature of all the previously described metaomics

techniques. A major bottleneck in multi-omics analyses is the computational analysis of these

datasets [Fondi and Liò, 2015]. Therefore, considerable efforts have been devoted to the develop-

ment of efficient bioinformatic methods for the processing of omics data.

For the analysis of sequencing data efficient alignment methods are of great importance to as-

sign sequencing reads to reference sequences and genomes. Through mapping reads to assembled

contigs, the latter can be grouped by their distributions of coverage [Albertsen et al., 2013]. Pre-

diction of the taxonomic origin of DNA sequences also depend on alignment methods and can be

performed directly on reads [Gerlach and Stoye, 2011] or on population-level genomes, e.g. by

assigning informative marker gene sequences [Wu et al., 2013; Albertsen et al., 2013] to exist-

ing databases. Taxonomic classification can also be achieved by hidden Markov model (HMM)

searches [Eddy, 2011] of these marker gene sets [Wu and Scott, 2012]. Single copy marker genes

can also be used to estimate the completeness and contamination levels of recovered genomes

[Parks et al., 2015]. For tracing the evolutionary relationships between different populations, ef-

ficient algorithms have been developed for large scale genomic comparisons [Ondov et al., 2015;

Brown and Irber, 2016]. For the quantification of MT data, alignment-based methods are also com-

monly used, which can be a time-consuming step and recently pseudo-alignment or alignment-free

heuristic methods have been developed for the quantification of RNAseq reads using kmer-based

hashing [Bray et al., 2016].

Another important consideration in computational tool development is reproducibility and automa-

tion. The development of automated workflows or computational pipelines can greatly facilitate

omics analyses and ensures reproducible results, e.g. for the extraction of genomes from MG data

[Karst et al., 2016] or for the processing and assembly of MT and MG reads [Narayanasamy et al.,

2016] (Figure 1.5). Computational pipelines can be complex and often include a plethora of dif-

ferent software tools. However, results can differ depending on software versions or computational

environments. Therefore, achieving reproducibility is a challenging task, especially for complex

pipelines. Maintenance and availability of software tools, as well as installation, given different

computational platforms and dependencies, can be challenging [Belmann et al., 2015]. Encap-

sulating these applications in closed environments or containers can provide a solution to greatly

enhance reproducibility [Belmann et al., 2015; Narayanasamy et al., 2016]. For the assessment
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of gene functions, computational predictions are commonly applied in automated pipelines [See-

mann, 2014], while recently also machine learning approaches are applied for functional annotation

[Farrell et al., 2018].
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Figure 1.5: The IMP pipeline workflow schematic. The integrated metaomics pipeline is a complex pipeline for
the co-assembly of MT and MG reads utilizing various computational tools (left bar) at different processing steps.
Cylinders represent input and output while rectangles represent processing steps. NLDR-GS: genomic signature non-
linear dimensionality reduction. Individual steps and data derived from or utilizing MG reads are labelled in blue, MT
reads in red, and steps combining MT and MG data are coloured in purple respectively. (from Narayanasamy et al.
[2016]).

20



Chapter 1 Objectives of this work

1.4 Objectives of this work

Biogeochemical cycles on a global scale as well as micro-environments are shaped by microbial

populations. Yet, methods to understand these complex ecosystems often remain at the level of

community structure. Moving to the level of expressed or active functions could accent a more fine-

grained picture of the interactions within microbial systems. However, the integration of hetero-

geneous large-scale datasets is challenging and methods have not been well established. Informed

manipulations of microbial ecosystems e.g. for the optimization of an underlying biotechnological

process will only be possible with an in-depth understanding of microbial systems ecology. In this

context, the work at hand highlights the benefits of multi-omics data integration. The aim was to

reconstruct microbial niches of distinct populations by detailing their genomic potential and ex-

pression of specific functions of relevance in a biotechnological context. Two model systems were

analysed to emphasize the different levels of information that can be obtained by multi-omic data

integration.

1.4.1 Genomics, transcriptomics, and proteomics of synthetic acidophile communi-
ties

Utilizing defined cultivable isolate strains offers the possibility to sequence complete genomes,

while also being able to test a specific hypothesis in a controlled setting. In Chapter 2 this is

demonstrated by the analysis of defined communities of acidophile bacteria in the context of bi-

oleaching of chalcopyrite, a copper mineral. The example of L. ferriphilum showcases the recovery

and characterisation of an isolate genomes allowing a complete and detailed characterisation of its

genomic potential. Changes in the lifestyle of the strain in the presence of the mineral could be

observed. Furthermore, the interactions between the different organisms were assessed in defined

co-cultures. To determine active processes in combinations exhibiting efficient copper solubiliza-

tion, transcriptomic data was integrated using reference genomes and incorporating extensive gene

annotations of iron- and sulfur-oxidative processes. Finally, a quorum sensing system detected in

L. ferriphilum and its role in biofilm formation and dispersal was characterized.

1.4.2 Integrated metaomics of an in situ time-series of wastewater sludge samples
for understanding microbial niche ecology

While synthetic consortia potentially allow a more detailed characterisation of functional traits and

responses in defined conditions, they might not necessarily be representative of naturally occurring

microbial communities. To characterise microbial function in an in situ scenario, a time-series of

lipid accumulating organisms from a wastewater treatment plant was analysed in Chapter 3. The

aim was to de novo reconstruct population-level genomes to track and characterise the microbial

populations over time. Through the use of multi-omics (MT, MG, MM, MP) data a detailed view
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on microbial niche ecology in this system was obtained. Distinct lifestyle strategies of populations

could be highlighted alongside shifting resource availability. The response to free long-chain fatty

acids (LCFAs) in the system was further assessed by incorporation of expression data from micro-

cosm experiments to measure the short-term response of the organisms. Potentially understanding

the complex interactions within the floating sludge system, could allow for targeted interventions

promoting a lipid accumulating phenotype in order to produce biofuel.
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2.1 Abstract

Heap bioleaching is a an industrial technique for recovering metals from ores by utilizing bacteria

that also are relevant in the context of acid mine drainage. For chalcopyrite, a copper iron sul-

fide mineral of economical interest, heap bioleaching is characterized by a lag-phase of reduced

leaching efficiency.

In this work, defined, low-complexity communities of acidophile organisms that are typically dom-

inant members of bioleaching communities were studied. These strains obtain energy by oxidising

iron and sulphur in the ore, solubilizing metal cations. A key step in this process is also the forma-

tion of biofilms on the mineral surface. To gain insights on iron- and sulfur oxidation pathways, as

well as biofilm formation, (meta)transcriptomic and (meta)proteomic data derived from axenic cul-

tures or mixed communities with up to three strains were analysed and supplemented with imaging

data and metal solubilization rates.

As high-quality reference genomes were only available for two other strains, the genome of the

typestrain of L. ferriphilum, a predominant iron oxidiser, was resequenced. Functional capabilities

of the strain and their expression in chemostat and bioleaching cultures were assessed in detail.

Surprisingly, analysis of mixed cultures revealed that most efficient release of copper was achieved

in cultures without L. ferriphilum present. In these cultures S. thermosulfidooxidans was the pri-

mary iron oxidiser, while these cultures did not exhibit elevated redox potentials. Additionally, a

quorum sensing system that was initially found to be expressed in L. ferriphilum and putatively

also in the other strains was analysed. A short effect, i.e., biofilm dispersal could be observed after

the addition of a signalling factor targetting the system.

The findings described here, especially those with regards to increased copper solubilization at low

redox potentials, could have implications towards chalcopyrite leaching and warrant additional

testing in a larger setting closer to the industrial application.

2.2 Background

2.2.1 Biomining

Bioleaching, or in more general terms biomining, refers to the mobilization of metal cations from

insoluble ores by exploiting microbial oxidation and complexation processes [Rohwerder et al.,

2003]. In recent years, there has been an increasing demand for metals while more and more

low-grade ores are being processed in mining operations. Furthermore, environmentally friendly

techniques should be developed, as the traditional roasting and smelting of metal ores is high in en-

ergy consumption and toxic compounds such as sulphur dioxide are released in the process [Azua-

Bustos and González-Silva, 2014]. Biomining is suggested to be low in initial operational invest-

ment costs and therefore suitable also for low grade ore processing [Azua-Bustos and González-
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Silva, 2014].

An important application of biomining is in copper bioleaching from sulphidic minerals which

accounted for 8% of primary copper production world-wide in 2010, but also estimated as high

as 20% [Schippers et al., 2011]. Mainly, copper bioleaching is carried out in engineered heaps

(Figure 2.1) in Chile [Schippers et al., 2011]. Commonly, sulphide minerals are leached in an

acidic environment, where the microbial populations catalyse the regeneration of ferric ions by

oxidation of ferrous ions and oxidation of reduced sulphur species while further acidifying the

environment. The same organisms and processes that drive biomining also occur in acid-mine

drainage (AMD) [Baker and Banfield, 2003; Valenzuela et al., 2006], acidic discharge rich in heavy

metals that is caused by mining activity when sulfide minerals are exposed to water and atmospheric

oxygen. While abiotic corrosion occurs as well, microbial activity plays a significant role in AMD

[Baker and Banfield, 2003]. As AMD is a serious environmental concern, confinement of the acidic

and metal enriched leachate is a necessity in heap leaching operations.

Bioleaching is also carried out in tanks [Coram and Rawlings, 2002] with the advantage of con-

trolled confined, controlled conditions. Aside from copper also nickel, cobalt, and zinc are com-

monly leached from sulphide ores [Rohwerder et al., 2003]. Additionally, oxidation of sulphide

minerals is applied before cyanide treatment in processes to recover silver or gold [Rohwerder

et al., 2003]. Another important application is in the recycling of metal-containing waste [Gabor

et al., 2018]. Furthermore, also reductive dissolution techniques exist [Johnson and du Plessis,

2014].
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Figure 2.1: Illustration of heap bioleaching. Simplified illustration of an engineered heap for bioleaching. Crushed
ore is piled onto a heap that is continuously irrigated with an acidic solution. The microbial communities can either
be naturally occurring or inoculated. As processes depend on oxygen levels the heap can be aerated. Flow-through or
leachate is enriched in metal cations and captured. (from Jerez [2011]).

2.2.2 Acidophile communities for bioleaching and model strains

Bioleaching of copper is of great economical importance (Section 2.2.1). Chalcopyrite (CuFeS2) is

the most abundant copper mineral in the world, however efficient chalcopyrite dissolution in low-

cost bioheaps is challenging under mesophilic and moderately thermophilic conditions [Watling,

2006]. It has been suggested that chalcopyrite bioleaching is impeded by the formation of a passiva-

tion layer on the chalcopyrite surface by sulfur compounds and iron sulphate precipitates [Watling,

2006], however the formation of a passivation layer is still a topic of debate [Khoshkhoo et al.,

2014]. In bioleaching applications for chalcopyrite a characteristic lag-time has been described

before metal solubilization rates increased [Riekkola-Vanhanen, 2013].

The dissolution of chalcopyrite and other metal sulfides is driven primarily by proton attack and

by oxidation by ferric ions with stepwise oxidation of sulfur compounds to sulfate [Rohwerder

et al., 2003]. While the process of ore dissolution is driven by ferric ion in an acidic milieu and

also occurs as an abiotic process, iron-oxidizing prokaryotes replenish the pool of ferric ions and

thus lead to increased dissolution rates [Baker and Banfield, 2003]. Sulfur oxidizing prokaryotes

maintain an acidic pH (Figure 2.2).

Biofilm formation on the chalcopyrite surface is a crucial step in the leaching process, as contact

of mineral-oxidizing microbes with metal sulfides may significantly increase dissolution kinetics.

This is at least partially due to glucuronic acid residues in the extracellular polymeric substances
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Figure 2.2: Summary equations for chalcopyrite dissolution. Chalcopyrite is dissolved by protons (1) and Ferric ions
(4). Microbial activity is important for replenishing the ferric ion pool by oxidation of ferrous ions (2) and by oxidizing
sulfur species while mainting an acidic pH (3) (adapted from Pradhan et al. [2008]).

(EPS) that accumulate the oxidative agent iron(III)-ions, as has been shown for Acidithiobacillus

ferrooxidans and Leptospirillum ferrooxidans [Rohwerder et al., 2003].

Three organisms commonly found in biomining or acid mine drainage environments [Baker and

Banfield, 2003; Watling, 2016] and are often applied as model organisms for studying bioleaching

were also of primary interest in this work (Section 2.3.1): Acidithiobacillus caldus, Leptospiril-

lum ferriphilum, and Sulfobacillus thermosulfidooxidans. A. caldus is a moderately thermophilic,

Gram-negative bacterium able to oxidise several sulphur compounds, such as tetrathionate, as well

as elemental sulfur [Hallberg and Lindstrom, 1994]. S. thermosulfidooxidans is a gram-positive,

moderately thermophilic organism known to be capable to oxidise ferrous iron and sulfur com-

pounds [Norris et al., 1996]. Contrary to the other two organisms, it is not an obligate autotroph,

but also hetero- or mixotrophic growth has been reported [Norris et al., 1996]. S. thermosulfi-

dooxidans has a broad metabolic potential and is able to carry out diverse pathways (extensively

characterised in Justice et al. [2014]).

L. ferriphilum plays a major role in acidic, metal-rich environments, where it represents one of the

most prevalent iron oxidizers [Baker and Banfield, 2003]. It is an obligate aerobe that is capable

of gaining energy only via ferrous iron (Fe2+) oxidation [Coram and Rawlings, 2002; Rohwerder

et al., 2003]. Although several Leptospirillum spp. have been identified and classified in four

different groups, current knowledge of how they obtain energy and nutrients for growth is limited.

In particular, mechanisms for nitrogen fixation have been under debate, as they has been described

in Leptospirillum group III [Tyson et al., 2005], but only in some members of group II [Zhang et al.,

2018]. Despite the perceived importance of L. ferriphilum, no complete genome sequence of the

type strain of this model species is available, limiting the possibilities to investigate the strategies

and adaptations that applies to survive and compete in its niche. Additionally, the understanding of

how members of the leptospirilli survive at acidic pH lags behind that of other acidophiles.

In natural bioleaching microbial consortia, chemolithoautotrophic organisms are prevalent due to

the limited accessibility of organic carbon [Baker and Banfield, 2003]. However, also interac-

tions between heterotroph and autotroph organisms are important in these communities [Baker and
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Banfield, 2003]. Increased leaching rates were observed in mixed cultures of acidophiles grown

on arsenopyrite [Dopson and Lindström, 1999]. A. caldus could potentially confer a benefit to

S.thermosulfidooxidans growth and leaching activity by oxidation of S0 compounds or by provid-

ing benefits for hetero- or mixotrophic growth of S.thermosulfidooxidans [Dopson and Lindström,

1999]. Mixed cultures including the three model organisms in bioreactors containing a copper

concentrate suggested that in a primary step sulfur oxidisers A. caldus and S.thermosulfidooxidans

increase acidity in early stages of the processes, while in later stages iron-oxidation of primar-

ily L. ferriphilum leads to increased metal solubilization [Hedrich et al., 2016]. However, as the

analysis was limited to measurements of abundances for the organisms, it could not detail specific

interactions.

2.2.3 Omics approaches to understand acidophiles

Microbial communities from AMD ecosystem have been of primary interest in the development

and application of metaomic approaches due to relatively the low complexity of these consor-

tia (Section 1.1). The recovery of population-level genomes from MG data was first described

from samples of an AMD biofilm and allowed characterisation of metabolic relationships between

the predominant Leptospirillum type II, to which also L. ferriphilum belongs, and the heterotroph

archeon Ferroplasma [Tyson et al., 2004]. Furthermore, pioneering work for metaproteomics ap-

proaches has been performed within the same system describing a novel cytochrome central to

iron oxidation [Ram et al., 2005]. Analyses based on FISH could resolve spatial and functional

organisation of AMD biofilms [Wilmes et al., 2009]. Additionally, correlation patterns between

the metabolome and the proteome allowed the characterisation of competition and niche breadth

for distinct populations in AMD biofilms [Wilmes et al., 2010a].

Omics techniques with isolates cultures of bioleaching bacteria have contributed to a better under-

standing of the energy metabolism (i.e. iron and/or sulphur oxidation pathways) as well as their

evolutionary relationships for example in A. caldus [Mangold et al., 2011]. Proteomics have elu-

cidated functions of A. ferrooxidans involved in biofilm formation on pyrite, highlighting the role

of carbon metabolism for enhanced EPS production and the role of yet unknown mechanisms in

biofilm formation. Furthermore comparison of sessile and planktonic cells revealed increased lev-

els of stress reponse related proteins in biofilm cells [Vera et al., 2013], an observation that has also

been made in natural communities [Ram et al., 2005], as well as for other bioleaching organisms

[Mangold et al., 2011]. Metal resistance systems in acidophiles have been characterised with omics

techniques, e.g., leading the elucidation of copper resistance mechanisms in A. ferrooxidans by up-

regulation of RND-type Cus systems and indicating a role of rusticyanin that is also involved in

iron oxidation [Almárcegui et al., 2014]. Metabolomics analyses have indicated novel polyamine-

synthesis pathways in acidophiles and their potential role in biofilm formation [Martinez et al.,

2015].
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2.2.4 The SysMetEx consortium project

Results highlighted in this chapter stem from the participation in a consortium project, Systems

Biology of Acidophile Biofilms for Efficient Metal Extraction (SysMetEx). The ERA-NET funded

project ran from March 2015 to July 2018 and involved 6 partners from acadaemia and indus-

try: Linneaus University (LNU, Sweden), University of Duisburg-Essen (UDE, Germany), TATAA

Biocenter (Sweden), Ruhr University Bochum (Germany), Università della Svizzera italiana (Switzer-

land), and the University of Luxembourg (UL, Luxembourg). In short, the aim of the project was

to improve chalcopyrite bioleaching by understanding dissolution processes and biofilm formation

in defined cultures, focusing on omics analyses, leaching kinetics, high-throughput imaging data,

and computational modelling. Culturing was performed at LNU with a focus on dissolution rates

and UDE for imaging analyses. Biomolecular extractions and omics analyses were performed at

UL. The work highlighted within this chapter focuses primarily on results that have been obtained

from omic analyses so far. However, analysis of the dataset, generated within the project, is still

ongoing.

2.3 Methods

2.3.1 Culturing of individual acidophiles and low-complexity communities

Three bacterial acidophile strains were utilized: L. ferriphilum DSM 14647 [Coram and Rawlings,

2002], S.thermosulfidooxidans DSM 9293 [Golovacheva and Karavaiko, 1978], and A. caldus DSM

8584 [Hallberg and Lindstrom, 1994]. These strains are the typestrains for their respective species.

Prior to the bioleaching experiments, cells were maintained in three separate continuous cultures so

that the cells were under the same growth state when all experiments were inoculated. The continu-

ous cultures were maintained at 38 °C with MAC medium [Mackintosh, 1978], and electron donor

were added in the form of 100 mM ferrous sulfate (L. ferriphilum) or 5 mM potassium tetrathionate

(S. thermosulfidooxidans and A. caldus). For the collection of samples for biomolecular extraction,

replicate 100-ml samples were taken from the chemostat cultures at least 3 days apart. To minimize

RNA degradation, samples were rapidly cooled by mixing with 1 volume of ice-cold sterile MAC

medium, and cells were immediately pelleted by centrifugation at 4 °C at 12,000 g for 15 min.

The cells were then washed in 40 mL fresh, ice-cold MAC medium before being centrifuged again.

Cell pellets were flash-frozen in liquid nitrogen, stored at -80 °C, and shipped on dry-ice.

Bioleaching experiments were conducted in quadruplets in 250 mL Erlenmeyer flasks with differ-

ent combinations of strains. 100 mL MAC medium was supplemented with 2 % (wt/vol) chalcopy-

rite concentrate and inoculated with combinations of 107 or 109 cells per mL of the three bacterial

strains, depending on the experiment. Cells were obtained by centrifugation from the continuous

cultures (12,500 g, 20 min). Cultures were incubated at 38 °C under slow shaking (120 rpm) for
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3, 7, or 14 days, depending on the experiment. Leaching cultures were separated into mineral-

attached and planktonic cell sub-populations by centrifugation and resulting samples were handled

as described above.

Metal sulfide dissolution was monitored by measurement of the concentration of iron(II) ions, total

iron ions, and total copper ions using the spectrophotometric phenanthroline and bicinchoninic acid

assays [Anwar et al., 2000], respectively. Precipitation of ferric salts was prevented by the addition

of sulfuric acid to maintain the pH in the range 1.6 to 1.8.

Chalcopyrite ore for the bioleaching experiments was provided by Boliden AB (Sweden) and orig-

inates from the Aitik copper mine (N 67° 4’ 24", E 20° 57’ 51"). The flotation concentrate used in

this study contained 29.5 % copper. The concentrate was sieved to obtain the size fraction between

50 and 100 µm and subsequently washed in three volumes of 0.1 M EDTA in 0.4 M NaOH for

10 min while stirring. Elemental sulfur was then removed from the surfaces by three iterations of

washing with one volume of acetone. Finally, the mineral was dried at 60 °C overnight and then

sterilized at 120 °C for 10 h under nitrogen atmosphere.

2.3.2 Imaging analyses and experiments with diffusible signalling factor addition

Experiments were performed as described in [Bellenberg et al. 2018 - Appendix C.4]. In brief,

diffusible signalling family (DSF) compounds (cis-11-methyl-2-dodecenoic acid, DSF) were ap-

plied at 5 µM on axenic and mixed leaching cultures (Section 2.3.1) for testing their effects on

cell growth and soluble substrate oxidation. To quantify the biofilm population attached to chal-

copyrite grains, mineral grain particle samples were withdrawn from bioleaching cultures using

a flame-sterilized spatula. Particles were incubated in 1 mL MAC medium (pH 1.8) and fixed

formaldehyde at room temperature for 1 h. Cells were further incubated for 10 min in 200 µL

of an aqueous solution of 0.01 % 4’,6-diamidine-2-phenylindole dihydrochloride (DAPI) in 2 %

formaldehyde. Prior to and after staining of attached cells, mineral grains were washed with PBS.

Automated image acquisition was performed by high-throughput epifluorescence microscopy. Cell

counting was carried out computationally by first converting the EFM images into gray-scale im-

ages and subsequent counting based on an computer vision technique. The mineral grain area was

quantified from corresponding bright-field images with background illumination. Estimation of the

chalcopyrite colonization in cells per gram was performed by multiplication of cell numbers of an

image set with the specific surface area.

2.3.3 Biomolecular extractions

Isolation of genomic DNA for genome sequencing of L. ferriphilum

Cells were grown in continuous culture (Section 2.3.1) to late log phase before harvesting by

centrifugation at 10,000 g for 10 min. DNA for sequencing was isolated by using the Genomic-tip
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100/G extraction kit (Qiagen) according to the manufacturer’s instructions, with the exception of

a customized purification step recommended by the sequencing facility. Briefly, eluted genomic

DNA was precipitated by the addition of isopropanol, immediately spooled by using a sterile pipette

tip, and transferred to a microcentrifuge tube containing 70 % (vol/vol) ethanol for 2 min. Spooled

DNA was then air dried, finally resuspended in 200 µL 0.1x Tris-EDTA (TE) buffer (pH 8), and

allowed to dissolve for 72 h at room temperature.

RNA, and protein extraction from continuous culture samples

RNA and protein fractions were isolated from the planktonic sub-populations from bioleaching

experiments. Cell pellets were subjected to biomolecular extractions based on a previously re-

ported protocol [Roume et al., 2013], omitting step for metabolite extraction. In short, cell pel-

lets were lysed by cryo-milling and bead beating followed by the spin column-based isolation of

biomolecules with the Qiagen Allprep kit. For isolated RNA, an on-column DNAse digestion step

was performed. Protein pellets obtained by precipitation were not dissolved in sample buffer but

shipped in dried state for subsequent processing and measurement. Quality control for the isolated

RNA (total RNA) fractions was performed on an Agilent bioanalyzer 2100. Samples were stored

at -80 °C, and shipped on dry-ice for subsequent measurement.

RNA, and protein extraction from bioleaching culture samples

Isolation of the RNA and protein fractions were performed using a protocol adapted from [Vera

et al., 2013]. Samples were washed with sulfuric acid (pH 2) and TE-buffer (pH 8). After removal

of remaining liquid, 8 mL of pre-heated (67 °C) extraction buffer (50 mM sodium acetate, 2 mM

EDTA, 2 %SDS, pH 5,5) was added. Samples were incubated in a water bath at 67 °C for 10

min, with vortexing for 10 seconds every minute. 8 mL of pre-heated acidic phenol (pH 4) was

then added and samples were incubated at 67 °C for an additional 10 min, with vortexing every

2 min. Samples were cooled down and centrifuged for 7 min at 12,000 g to separate the phases.

The aqueous phase was recovered for subsequent RNA isolation and the organic phase for protein

isolation. The aqueous phase was washed with 8 mL of chloroform followed by resting the samples

on ice for 10 minutes with occasional mixing intermittently. After centrifugation (7 min, 12,000 g)

and removal of the organic phase, 0.5 vol isopropanol and 0.5 vol 1.2 M sodium chloride, 0.8 M

sodium citrate solution were added for RNA precipitation for 1 h on ice. Following a centrifugation

for 15 min at 16,000 g the supernatant was discarded and the RNA pellets were resolubilized in

lysis buffer, pure ethanol, and water and purified with the RNAeasy kit (Qiagen) including on-

column DNAse digestion. The organic phase recoved from lysis was used for protein precipitation.

The samples were washed with 1 vol water at 67 °C and cooled on ice for 10 min. After addition of

1.5 vol cold acetone, samples were left at -20 °C overnight for precipitation. After acetone washing
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of the pellets, dried pellets were stored at -80 °C.

2.3.4 Nucleic acid sequencing

The obtained genomic DNA for L. ferriphilum was sent to the Science for Life Laboratory (SciL-

ifeLab, Stockholm, Sweden) and sequenced by using two Pacific Biosciences (PacBio) single

molecule real-time sequencing (SMRT) cells. Assembly was conducted with HGAP3 at the se-

quencing facility, including quiver for consensus corrections [Chin et al., 2013].

Ribosomal RNA was depleted from extracted total RNA samples with the Ribo-Zero rRNA Re-

moval Kit for bacteria (Illumina, USA), except for nine initial continuous culture samples. RNA

samples for were adjusted for equimolar concentrations prior to sequencing at SciLifeLab. Library

preparation was performed with the Illumina TruSeq Stranded total RNA kit. Paired-end sequenc-

ing was performed on an HiSeq2500 instrument.

2.3.5 Reference genomes and functional annotation

The reference genome and functional annotation for S. thermosulfidooxidans DSM 9293 were

obtained from the Joint-Genome Institute (JGI) Integrated Microbial Genomes (IMG) database

[Markowitz et al., 2014] (Accession: 2506210005), while the reference genome and annotations

for A. caldus DSM 8584 were obtained from NCBI Genbank [Clark et al., 2016] (Accession:

GCF_000175575.2).

For L. ferriphilum DSM 14647 a newly sequenced genome was obtained (Section 2.3.4). The

larger of two assembled contigs with overlapping ends could be circularized with Circlator

[Hunt et al., 2015]. The -fixstart option was applied to set the dnaA gene as the first gene. The

newly sequenced chromosomal contig was annotated with the Prokka v1.12-beta pipeline

[Seemann, 2014], which included Prodigal v2.6.3 [Hyatt et al., 2010] for the prediction

of protein-encoding sequences. Functional annotation of coding sequences (CDS) was supple-

mented with a custom genus database with protein sequences of related genomes downloaded

from the NCBI RefSeq database or the JGI Genomes Online Database (GOLD) [Mukherjee et al.,

2017], consisting of the following genomes: Leptospirillum sp. group IV UBA BS (GOLD ID:

Ga0053748), Leptospirillum sp. group II C75 (GOLD ID: Ga0039193), L. ferrooxidans C2-3 (Ref-

Seq Accession.: AP012342), L. ferriphilum ML-04 (RefSeq Accession: CP002919), L. ferriphilum

DSM 14647 (GOLD ID: Ga0059175), L. ferriphilum YSK (RefSeq Accession: CP007243).

Within Prokka predicted protein sequences were searched with blastp [Camacho et al., 2009]

against the genus database, and annotations of best-matching hits were transferred. In a following

step, the default databases in Prokka were searched and an e-value cutoff of 1e−9 was applied.

Additional functions annotations were transferred from in-house Hidden Markov Model (HMM)

databases, including KEGG ortholog groups (KOs), PFAM, TIGRFAM, UniProt-enzymes, and
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MetaCyc (additional details on the databases are described in Heintz-Buschart et al. [2017]). Fur-

thermore, the annotation tool Pannzer [Koskinen et al., 2015] was applied. Functional categories

were assigned based on the KO annotation (COG categories, KEGG pathways). Additionally,

genes were assigned functional categories by manual curation, factoring in all of the automatically

generated predictions and probability scores (Appendix A.1 and Appendix A.2).

2.3.6 Proteomic analyses for L. ferriphilum

Pre-treatment and measurement of protein samples is described in detail in [Christel et al., 2017].

Proteins were identified with Andromeda [Cox et al., 2011] and quantified with the label-free

quantification (LFQ)-algorithm embedded in MaxQuant version 1.5.3.175 [Cox et al.,

2014]. The FASTA protein database for identification was taken from the output of the func-

tional annotation of the L. ferriphilum chromosome assembly or from existing databases (Sec-
tion 2.3.5). After quantification, intensities from the LFQ normalization were filtered and com-

pared with Perseus v1.5.8.5 [Tyanova et al., 2016] removing rows with fewer than two

values under either condition (mineral or continuous). The two conditions were compared with a

two-sample Welch’s t-test.

2.3.7 Data analysis

A custom pipeline was developed using snakemake [Koster and Rahmann, 2012] for process-

ing and analysis of the transcriptome sequencing (RNA-seq) which involved the following steps.

Raw reads for RNA sequencing were preprocessed with Trimmomatic v0.36 [Bolger et al.,

2014]. TrueSeq3-PE adapter sequences were removed using the following parameters: seed

mismatch:2; palindrome clip:30; simple clip:10; leading:20; trailing:20;

sliding window: 1:3; minlen: 40; maxinfo: 40:0.5. Quality control of raw

and processed sequencing reads was performed with FASTQC. Preprocessed reads were mapped

onto a concatenation of the three reference genomes (Section 2.3.5) with Bowtie-2 v2.3.2

([Langmead and Salzberg, 2012]) using default parameters. Reads mapping to protein coding se-

quences were counted with the FeatureCounts, subread package v1.5.1 [Liao et al.,

2014] with the -s 2 parameter accounting for stranded reads. Read counts were then normalized

with DESeq2 v1.16.1 [Love et al., 2014], as well as separately convert to transcripts per mil-

lion (TPM). Normalization was performed distinctly for the three organisms in a method adapted

from Klingenberg and Meinicke [2017]. The pipeline used for the analysis of RNAseq analysis

for L. ferriphilum is available in the following repository: https://git-r3lab.uni.lu/

malte.herold/LF_omics_analysis.

The comparison between the previous draft genome of L. ferriphilumT [Cardenas et al., 2014] and

the newly sequenced genome was generated with circoletto ([Darzentas, 2010]), with default
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settings. The assessment of orthologue gene clusters in the different L. ferriphilum strains was

done with OrthoVenn [Wang et al., 2015]).

2.3.8 Data availability

Sequencing data has been deposited at the European Nucleotide Archive (ENA).

Raw DNA sequencing data and the assembled genome for L. ferriphilumT are available in Bio-

project PRJEB21703. The annotated chromosome sequence is available under ID: LT966316.1

https://www.ebi.ac.uk/ena/data/view/LT966316.

Raw RNA sequencing data is available under the following Bioproject IDs:

PRJEB21842, PRJEB27815, and PRJEB27534.

Processed data and links to raw data are available for L.ferriphilum in a structured format under

the following link: https://doi.org/10.15490/fairdomhub.1.investigation.

162.1.

2.4 Results

2.4.1 Sequencing and characterisation of the L. ferriphilumT isolate genome

While genome sequences were available for some strains belonging to the L. ferriphilum species,

no high-quality genome of the L. ferriphilum type-strain was available (Table 2.1).

To obtain a genome sequence as reference for omics data integration the genome was resequenced.

The sequencing and assembly of L. ferriphilumT DNA from isolate culture yielded two polished

contigs. Contig-1 spanned 2,569,357 bases with 574-fold depth-coverage, while contig-2 consisted

of 41,141 bases with 33-fold depth-coverage.

Overall, 2,541 gene feature were predicted for the newly sequenced genome of which 2,486 were

protein coding genes (Table 2.2). For 1,846 CDS, a functional annotation was transferred.

While contig-1 represented the circular chromosome of the organism (Section 2.3.5), initial as-

sumptions that contig-2 could represent a plasmid sequence were not confirmed, as no characteris-

tic plasmid genes could be detected. However, contig-2 could represents a putative phage sequence

as predictions with VIRSorter [Roux et al., 2015] indicated. Additionally, a region on contig-1

Table 2.1: Available reference genomes for L. ferriphilum. Overview of available reference genomes for different
strains of L. ferriphilum

Strain Reference NCBI RefSeq accession no. State of the genome No. of genes Genome size (Mbp) Coding density (%)

L. ferriphilumT [Cardenas et al., 2014] NZ_JPGK00000000.1 Draft 2,366 2.41 93.1
Sp-Cl [Issotta et al., 2016] NZ_LGSH00000000.1 Draft 2,419 2.48 91.7
YSK [Jiang et al., 2015] NZ_CP007243.1 Complete 2,273 2.33 90.1
ML-04 [Mi et al., 2011] NC_018649.1 Complete 2,475 2.41 90.3
DX [Zhang et al., 2017] NZ_MPOJ00000000.1 Draft 2,324 2.36 85.8
ZJ [Zhang et al., 2017] NZ_MPOK00000000.1 Draft 2,312 2.34 96.4
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Table 2.2: General genome statistics for the L. ferriphilumT genome. Counts of features where derived from the
functional annotation.

Attribute Value % of total

Genome size (bp) 2,569,357 100.00
DNA coding region (bp) 2,331,855 90.76
DNA G + C content (bp) 1,392,384 54.19
Total no. of genes 2.541 100
No. of protein-encoding genes 2.486 97.84
No. of RNA genes (rRNA/tRNA/tmRNA) 6/48/1 0.24/1.93/0.04
No. of CDSs with functional prediction 1.846 74.25
No. of CDSs with assigned COG category 1.969 79.20
No. of CRISPR repeats 1

with high similarity to contig-2 putatively could represent a prophage. Due to its low depth of

coverage and undetermined origin, contig-2 was excluded from the following analysis, as it also

could be a spurious contig originating from assembly errors.

The newly sequenced genome of L. ferriphilum DSM 14647 was compared to the previously avail-

able draft genome [Cardenas et al., 2014], revealing an additional 163,475 bp, thereby closing gaps

in the previous draft (Figure 2.3). The most prominent gap with around 100,000 bp most likely had

not been previously captured due to the presence of a clustered regularly interspaced short palin-

dromic repeat (CRISPR) stretch. Additional functionalities in the newly identified regions were

identified by inspecting the functional annotation (Section 2.3.5) and most prominently a cluster

of nif genes (Section 2.4.2) was detected in the stretch that was missing from the previous draft

genome ([Cardenas et al., 2014]). While a cluster of nif genes is not present in strains ML-04 and

DX and the previous draft genome of the type strain, it is also present in strains Sp-Cl, YSK, and

ZJ (see Table 2.1 for an overview of L. ferriphilum genomes). Recently, a more detailed compari-

son of L. ferriphilum strains has been published, suggesting that the nif cluster is absent in strains

ML-04 and DX due to gene loss [Zhang et al., 2018].

The genomes of these six L. ferriphilum strains, of which two are considered complete, were addi-

tionally used for comparison of orthologe protein sequencesTable 2.1. All six genomes show a high

degree of identity, with 1,769 orthologous gene clusters conserved in all six strains, with the newly

sequenced type strain exhibiting the largest number of unique gene clusters (Figure 2.4). Many

of the genes that are distinct for a particular strain seem to be related to insertions or deletions of

mobile elements.
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Figure 2.3: Comparison of the newly sequenced genome to the previous draft genome of the L. ferriphilum type-
strain. A comparison between the new assembly contig-1 (white, right-hand side) and the 18 contigs of the draft
genome [Cardenas et al., 2014] (grey, left-hand side). Coloured ribbons indicate ranked alignment scores (BLAST)
which primarily reflect sequence length here, due to the high alignment scores overall.
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Figure 2.4: Venn diagram of orthologous gene clusters across L. ferriphilum reference genomes. Shown are the
numbers of gene clusters that are shared between different strains (Table 2.2) or uniquely present. Typestrain refers to
the newly sequenced genome of L. ferriphilum DSM 14647.
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2.4.2 Detailed characterisation of functional capabilities of L. ferriphilumT

Expressed functions in Fe2+ containing medium versus chalcopyrite bioleaching cultures were as-

sessed by transcriptomic and proteomic analyses (Figure 2.5). A total of nine samples was anal-

ysed, 5 from continuous and 3 from bioleaching cultures (planktonic sub-population). Depending

on the quality of extracted biomolecules not all RNA or protein samples could be used for mea-

surements. While RNA was sequenced for 5 samples, proteomes were analysed for 8 samples

(Table 2.3). RNAseq reads were quantified by mapping to the newly sequenced genome (Sec-
tion 2.3.7), while for protein identification predicted protein coding sequences were used as search

database. The resulting values are stated as transcripts per million base pairs (TPM) for RNA and

LFQ-intensities for proteins, respectively (Section 2.3.6).

Overall, there was considerable overlap between the measured proteome and transcriptome (Fig-
ure 2.5), even though proteins could not be identified for all coding genes. Especially in the mineral

containing samples fewer proteins were identified (Table 2.1). For the general characterisation of

L. ferriphilum, omics data derived from the chemostat culture samples was used. A comparison

between expression levels in the two conditions is described in Section 2.4.3.

In the following specific functional categories are outlined in greater detail with the full list of

assigned genes available in file Appendix A.1. TPM and LFQ values listed for all genes along-

side the full annotations used for manual assignment of functional categories are available in file

Appendix A.2.

Table 2.3: Overview of proteomic and transcriptomic data for L. ferriphilumT Read counts refer to counts of reads
mapped to protein coding sequences of L. ferriphilumT.

Sample Culture type(s) Total no. of RNA-seq read count Median no. of RNA-seq counts No. of proteins identified No. of proteins with LFQ of > 0 Median LFQ

LNU-LXX9-Si00-CnA-P-B1 Continuous 1,034,434 181 NA NA NA
LNU-LXX9-Si00-CnA-P-B2 Continuous NA NA 1.698 1.241 160,595,000
LNU-LXX9-Si00-CnA-P-B3 Continuous NA NA 1.698 1.509 233,755,000
LNU-LXX9-Si00-CnA-P-B5 Continuous NA NA 1.698 1.4092 21,875,000
LNU-LXX9-Si00-CnA-P-B6 Continuous 1,284,834 219 1.698 1.412 212,595,000
LNU-LXX9-Si00-CnA-P-B7 Continuous 1,477,391 256 1.698 1.465 217,165,000
LNU-LXX9-Si00-14B-P Batch, mineral 10,967,703 1.937 763 432 3,135,800
LNU-LXX9-Si00-14C-P Batch, mineral 12,842,605 2.099 763 513 3,645,200
LNU-LXX9-Si00-14D-P Batch, mineral NA NA 763 609 3,722,500
aNA, not applicable
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Figure 2.5: Circular representation of the L. ferriphilumT genome. From the outside, the bands represent (i) the
genome sequence; (ii) protein-encoding sequences on the positive strand (red); (iii) CDSs on the negative strand (blue);
(iv) mean transcript expression (TPM), with a maximum of 2,000 TPM (blue indicates TPM values above the median,
and red indicates values below the median); (v) mean scaled protein LFQ intensities, with a maximum of 2,000 (green
indicates intensity above the median); and (vi) GC-Skew.
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Energy conservation

The energy needs of L. ferriphilumT are met exclusively by the oxidation of Fe2+ (Figure 2.7).

Analogous to the iron oxidation system reported previously for L. ferriphilum ML-04, electrons

from L. ferriphilumT Fe2+ oxidation are transferred to electron carriers [Bonnefoy and Holmes,

2012], which were present in the genome in the form of cytochrome c, cytochrome c551/552 , cy-

tochrome c553, and cytochrome c544. Thereafter, cytochrome cbb 3 oxidase can be used to directly

reduce oxygen as a terminal electron acceptor [Pitcher and Watmough, 2004]. Alternatively, elec-

trons can be used in reverse electron transport from cytochrome c to the quinone pool by the

cytochrome b/c1 complex. The resulting quinols can then be used to generate reducing power

in the form of NAD(P)H via the NADH-quinone oxidoreductase (nuoABCDEFHIJKLMN) or the

NAD(P)H-flavin reductase. Although their functionality is unknown, there are also three copies

of subunit 5 of NAD(P)H-quinone oxidoreductase (ndhF), with which quinols could be used to

produce NAD(P)H [Jünemann, 1997]. Finally, electrons from the quinol pool can be transferred

to oxygen by using the cytochrome bd complex [Jünemann, 1997], which was also described for

ML-04. Proton motive force generated by iron oxidation can be used for ATP generation by an

FoF1-type ATP synthase (atpABCDEFGH).

RNA transcript counts of the genes involved in energy conservation indicated a preference for

cytochrome c551/552 (639 ± 26 TPM) compared to other cytochromes. However, this difference

was not observed for the protein levels. While several genes of all cytochrome groups were only

marginally transcribed and translated, no clear trend in the usage of cytochromes as initial electron

carriers was apparent. Further electron transport was likely carried out via cbb 3 cytochromes to

oxygen to create a membrane potential for the production of ATP. Although proteins of the com-

peting reverse electron transport chain were expressed, with few exceptions, the pathway utilizing

cytochrome cbb 3 had higher transcript counts and protein concentrations than did the pathway

utilizing the cytochrome b/c1 complex and the following quinone pool oxidoreductases.
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Figure 2.6: Model of energy conservation in L. ferriphilum. Solid arrows represent metabolic reactions, while dashed
arrows indicate transport, the relocation of electrons or reaction products, and general regulative and metabolic interac-
tions.

Carbon dioxide and nitrogen fixation

A single copy of the large-chain subunit of ribulose bisphosphate carboxylase (RubisCO) was

encoded on the L. ferriphilumT genome as well as on the genomes of other L. ferriphilum strains.

However, all L. ferriphilum strains are suggested to fix carbon via the reductive tricarboxylic acid

(TCA) cycle [Hügler and Sievert, 2011], for which all necessary genes were present on the genome.

This was largely confirmed by transcript and proteome data, as gene products of the reductive

TCA cycle were expressed and translated to a high extent (Appendix A.2). Although RubisCO

(276 ± 14 TPM; LFQ 27, 738 ± 258) exhibited low transcript counts, its protein concentration

was comparable to the concentrations of proteins constituting the enzymes of the reductive TCA

cycle.

The nitrogen demand of L. ferriphilumT can be fulfilled by the fixation of elemental nitrogen by

the nitrogenase complex nifABDEHKNTUXZ [Hoffman et al., 2014] and accessory protein genes.

While having been reported for L. ferriphilum strains Sp-Cl and YSK, this gene cluster was not

found in the reported L. ferriphilumT draft genome [Cardenas et al., 2014] and likewise is lacking

in the complete genome sequence of L. ferriphilum ML-04 [Mi et al., 2011]. Regulatory capa-

bilities for the gene cluster are suggested to be fulfilled by a nif -specific regulatory protein in L.

ferriphilumT. Additionally, nitrogen can be taken up as nitrite by the nitrate/nitrite transporter nasA
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Figure 2.7: Model of carbon and nitrogen fixation in L. ferriphilumT.

and assimilated in the form of ammonia by the nitrite reductase nirBD [Bykov and Neese, 2015],

controlled by regulators of the NtrC and LysR families. RNA transcript analysis of nitrogenase

subunits revealed very low counts, and most of the corresponding proteins were also not detected

in the proteomic analysis.As the growth medium in this study was rich in ammonium, which can

be taken up by the highly expressed glutamine synthetase, this was not surprising and has been

reported for L. ferrooxidans [Moreno-Paz and Parro, 2006]. The highest transcript count within

the nitrogen fixation clusters was that for nifU (1,997 ± 268 TPM; LFQ 1,228 ± 58), which is

essential for the activation of the nitrogenase complex and is localized together with the cysteine

desulfurase gene nifS [Agar et al., 2000]. NifS showed the highest protein concentration (661 ± 68

TPM; LFQ; 4,267 ± 175) in the nitrogen fixation clusters despite intermediate transcript counts.

In combination with the high expression level of nifU, this could indicate an onset of nitrogenase

formation due to early-stage ammonium starvation, supported by the intermediate expression of

several nitrogen assimilation regulation proteins.

Quorum sensing and c-di-GMP

In Gram-negative bacteria, the regulation of genes encoding proteins for chemotaxis, motility,

EPS production, and biofilm formation is often controlled by intracellular levels of the messenger

molecule c-di-GMP [Hengge, 2009]. The presented genome sequence provides evidence for com-

plex c-di-GMP metabolism, as is common for many Gram-negative bacteria (Figure 2.8). Specif-
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ically, the L. ferriphilumT genome contains ten genes annotated as encoding putative diguanylate

cyclases, thirteen genes encoding both diguanylate cyclase- and c-di-GMP phosphodiesterase -

specific GGDEF and EAL protein domains, and two c-di-GMP-specific phosphodiesterases. Fur-

thermore, four genes encoding HD/HDc domain-containing proteins and three genes encoding

PilZ domain-containing c-di-GMP effector proteins were found. The latter genes were found in the

context of genes annotated as being related to functions such as cellulose and extracellular polysac-

charide biosynthesis and export. This suggests that c-di-GMP metabolism in L. ferriphilumT also

has an important function in the regulation of EPS production and biofilm formation. Several of

these genes were expressed at the RNA and protein levels, including a c-di-GMP-specific phospho-

diesterase class I-encoding gene, bifunctional diguanylate cyclase/c-di-GMP-specific phosphodi-

esterase -encoding genes, diguanylate cyclases, and a PilZ domain-containing protein.

Interestingly, the L. ferriphilumT genome contains a gene cluster harbouring an rpf diffusible sig-

nal factor quorum sensing system, which is composed of the diffusible signal factor synthase-

encoding gene rpfF, two genes encoding rpfC homologs annotated as genes encoding the Hpt

domain-containing protein and signal transduction kinase, and the respective two-component sys-

tem response regulator-encoding gene rpfG. In addition, further genes related to quorum sens-

ing signalling were identified, such as three luxR family transcriptional regulator protein-encoding

genes and another autoinducer binding domain-containing gene. The genes encoding the rpf quo-

rum sensing system were found to be expressed at enhanced levels, while the orphan LuxR protein-

encoding genes were found at very low RNA transcript or protein levels.
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Figure 2.8: Model of biofilm formation and quorum sensing in L. ferriphilumT.

2.4.3 Comparison of L. ferriphilumT continuous and bioleaching cultures

Bioleaching experiments using pure cultures of L. ferriphilumT achieved a significant dissolution

of chalcopyrite (see [Christel et al., 2017] and Figure 2.10). To investigate important features

and adaptation strategies of L. ferriphilumT, RNA transcripts and proteins were grouped based

on the functional categories established as described in Section 2.3.5. Comparison of continuous

versus mineral culture samples revealed unexpectedly few differences in expression and translation

patterns. In part, this is probably related to the controlled nature of the bioleaching experiments,

where, e.g., the initial pH was 1.8 and did not decrease below 1.7, such that pH homeostasis systems

seemed unaffected by the presence of chalcopyrite. Longer retention times and the presence of

sulfur oxidizers would cause the pH to drop significantly [Watling, 2006]. Despite the remarkable

tolerance of L. ferriphilumT to high proton concentrations [Kinnunen and Puhakka, 2005], this

would likely cause additional stress. Similarly, RNA transcript levels and protein concentrations

for genes related to nitrogen fixation were found to be stable under the two conditions, conceivably

as the culture medium contained large amounts of biologically available ammonium.

Among the differences observed between continuous and bioleaching cultures were decreased tran-

script counts related to ATP synthesis in the mineral samples along with bidirectional alterations of

protein concentrations in ATP synthesis (Figure 2.9) and of specific cytochromes and cytochrome

oxidases (Appendix A.2). This possibly indicated a shift of electron transport away from proton

motive force and ATP generation toward the production of reducing power in the form of NAD(P)H
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. However, this was not observable in NADH dehydrogenase RNA transcript counts. In contrast,

the protein concentration related to NADH production was decreased in the bioleaching experi-

ments (Figure 2.9). Additionally, RNA and protein analysis revealed slight reductions in the levels

of proteins involved in both above-mentioned carbon fixation pathways when cells were grown on

chalcopyrite (Figure 2.9). While the exact reasons for this are unknown, it could indicate a reduced

demand for organic carbon, possibly caused by overall slow growth along with a reallocation of

efforts for cell maintenance under stress conditions in mineral bioleaching cultures compared to

active growth in continuous cultures.

Growth on minerals naturally comes with a heightened exposure of cells to heavy metals. Overall,

transcript counts derived from metal resistance genes showed significantly increased levels during

growth in chalcopyrite bioleaching cultures, in particular a strong enhancement of counts mapping

to copper resistance systems (Figure 2.9 and Appendix A.2). Surprisingly, protein concentrations

appeared to be decreased. In-depth analysis revealed increased amounts of proteins belonging to

the cus copper efflux system, underlining the strong detrimental effects of copper ions on microbes

[Lemire et al., 2013]. Similar to the pH homeostasis response, as metal concentrations increase with

time in natural or industrial systems, further upregulation of these systems should be expected.

L. ferriphilumT was previously reported to rapidly attach to mineral surfaces [Noël et al., 2010],

and RNA transcript counts of both chemotaxis and motility systems were revealed to be heavily

enhanced during the bioleaching experiments. This was also observed for motility protein con-

centrations but not chemotaxis protein concentrations (Figure 2.9 and Appendix A.1). The tran-

scription and translation of c-di-GMP and EPS production remained at the same or lower levels in

mineral culture samples (Figure 2.9). However, this may be explained by the fact that sampling of

mineral-grown cells was conducted on the slowly agitated overlying medium and not the biofilm

on the mineral grains, where most of the biofilm regulation and EPS production are expected to

occur. In contrast, samples taken from the continuous culture were well mixed and likely contained

both planktonic and detached biofilm cells.
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Figure 2.9: Differential abundance of transcripts and proteins in L. ferriphilum. Overview of differential expres-
sion (log 2 -fold change) of RNA transcripts and protein concentrations between continuous culture and chalcopyrite-
containing bioleaching cultures. Data points represent single transcripts or protein signals. Circular symbols denote
statistically significant differences (P < 0.05), while diamonds indicate statistically insignificant data. Manually assigned
functional categories (Appendix A.1) are shown with some categories merged to aid comprehension:
nitrogen metabolism (ammonia and glutamate conversion to glutamine, nitrate/nitrite regulation, nitrite uptake and as-
similation to ammonia, and nitrogenase genes), metal resistance (resistance to arsenic, cadmium/cobalt/zinc, copper,
copper/silver, and mercury plus general metal tolerance), polysaccharides (cellulose production, extracellular polysac-
charide production and export, and lipopolysaccharide synthesis), c-di-GMP (c-di-GMP effector proteins, with the EAL
domain, proteins with the GGDEF domain, and proteins with both the EAL and GGDEF domains), and pH homeostasis
(proton-consuming reactions, proton transporters, and role of potassium in internal positive membrane potential).
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2.4.4 Efficient chalcopyrite leaching with favourable redox potential assessed in
mixed cultures

Bioleaching of chalcopyrite was tested with single, binary, and tertiary combinations of the three

model species (Section 2.3.1) plus uninoculated controls to investigate the effect of species com-

position on redox potential and copper release (Figure 2.10). To aid comprehension, these com-

binations will be abbreviated in the following using the initial letter of the included species, e.g.

‘ASL’ for the tertiary combination containing all species or ‘LS’ for the binary combination of L.

ferriphilum and S. thermosulfidooxidans etc.

As expected, the single species mobilized less copper than mixed species, but unexpectedly, the

tertiary combination ‘ALS’ was also outperformed by all binary combinations (Figure 2.10). This

indicated that, in contrast to the currently accepted paradigm of inoculation of bioleaching ap-

plications with a broad mixture of biomining organisms, a well-chosen and defined mixture of

microorganisms could benefit leaching efforts in the early stages of a bioleaching heap. Further-

more, the different combinations showed very distinct oxidation/reduction potential (ORP) profiles

that, based on the present iron oxidizer(s), fell into one of two groups. All combinations containing

L. ferriphilum had redox potentials between 650 and 680 mV compared to combinations in which

it was excluded (i.e. ‘AS’ and ‘S’, showing ORPs below 550 mV).

In an attempt to elucidate the biological background for the difference in redox potential, both iron-

oxidizing model species’ transcriptomic response towards each other was investigated (i.e. ‘ASL’

vs ‘AL’ for effect of S. thermosulfidooxidans on L. ferriphilum, and ‘ASL’ vs ‘AS’ for the vice versa

effect; Figure 2.11).

Emphasis was placed on gene products related to energy metabolism, iron-, and sulfur oxidation

Table 2.4). In bioleaching co-culture, L.ferriphilum remained largely unaffected by the presence of

S. thermosulfidooxidans. Over its entire genome (2,486 genes), only 36 genes showed significant

differential expression in response to S. thermosulfidooxidans’ presence. Among the 26 genes

attributed to iron oxidation and electron transport, only three cbb 3 -type cytochrome c oxidase

subunits (LFTS-01396, LFTS-02094, and LFTS-02276) exhibited significantly increased transcript

numbers in the presence of S. thermosulfidooxidans, all of which have log2-fold changes below 1.5

Table 2.4). No genes involved in iron oxidation or electron transport had significantly higher

numbers of RNA transcripts in the absence of S. thermosulfidooxidans.

In contrast, S. thermosulfidooxidans gene transcript numbers exhibited great variation depending

on presence of L. ferriphilum. Of its 3,805 identified genes, 828 showed significant differential

expression. Among the 83 selected genes involved in iron oxidation, electron transport, and sulfur

oxidation, 55 showed significantly greater or lower RNA transcript numbers Table 2.4). Large

variation was observed in genes related to iron oxidation. In contrast to, e.g., some members of the

genus Acidithiobacillus, Sulfobacilli genomes lack the common iron oxidation protein rusticyanin

[Guo et al., 2014]. Instead, Sulfobacilli are suggested to utilize sulfocyanin, which is also found
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Figure 2.10: Chalcopyrite bioleaching and redox potentials in different combinations Ratio of released iron:copper
versus redox potential during bioleaching of chalcopyrite concentrate with various combinations of the three model
species. The ratio was calculated by dividing the amounts of the two metals that were released between two consecutive
sampling points during the leaching experiment. The regression was calculated using to the LOESS method with 95 %
confidence interval marked by the shaded area. The dotted line denotes the onset of microbial iron oxidation indicated
by a redox potential above 400 mV. Abbreviations in the legend denote: A = A. caldus, L = L. ferriphilum, and S = S.
thermosulfidooxidans. (from Christel et al. [2018] - in review; Appendix C.3 ).

48



Chapter 2 Results

Table 2.4: Transcriptomic changes in iron and sulfur metabolism related genes. Excerpt showing significant
(|log2FC| ≥ 1.0, p ≤ 0.05) differential expression of S. thermosulfidooxidans genes related to iron and sulfur oxi-
dation as well as electron transport. Negative log2-fold changes indicate higher transcript in presence of L. ferriphilum
(ASL), positive changes upregulation in its absence (AS). Mean expression values are calculated from three independent
experiments (n=3). Abbreviations: std, standard deviation; log2FC, log2-fold change. (from Christel et al. 2018 - in
review; Appendix C.3)

Gene ID Product Deseq normalized expression log2FC
AS

mean
AS
std

ASL 
mean

ASL
std

Iron oxidation and electron transport chain
Sulth_0051 Cytochrome c assembly protein 1086 91 2412 150 -1.15
Sulth_0119 Cytochrome c class I 250 72 105 37 1.25
Sulth_0449 Heme/copper-type cytochrome/quinol oxidase, 

subunit 3
5850 537 919 85 2.67

Sulth_0450 Cytochrome c oxidase subunit I 15675 2453 2857 266 2.46
Sulth_0451 Cytochrome c oxidase subunit II 15243 1526 4700 545 1.70
Sulth_0453 Sulfocyanin (SoxE) 7722 884 623 112 3.63
Sulth_0488 Cytochrome c oxidase subunit I 17287 3212 533 106 5.02
Sulth_0489 Cytochrome c oxidase subunit II 12771 1543 405 58 4.98
Sulth_0494 Cytochrome d ubiquinol oxidase, subunit II 161 11 57 38 1.50
Sulth_0495 Cytochrome bd ubiquinol oxidase subunit I 355 102 39 10 3.17
Sulth_0840 Cytochrome c oxidase, cbb3-type, subunit III 557 173 81 30 2.78
Sulth_0843 Heme/copper-type cytochrome/quinol oxidase, 

subunit 3
154 20 24 6 2.67

Sulth_0844 Cytochrome c oxidase subunit I 431 29 35 14 3.62
Sulth_0845 Cytochrome c oxidase subunit II 228 4 30 6 2.93
Sulth_1456 Cytochrome c oxidase subunit II, periplasmic 

domain
86 11 43 8 1.01

Sulth_1490 Cytochrome c oxidase, cbb3-type, subunit III 76 22 22 6 1.79
Sulth_1513 Cytochrome c oxidase subunit II 15255 1578 4733 457 1.69
Sulth_1514 Cytochrome c oxidase subunit I 34803 3976 16822 1585 1.05
Sulth_1901 Cytochrome c biogenesis protein 442 46 999 136 -1.18
Sulth_1930 Cytochrome c oxidase subunit IV 408 92 4081 275 -3.32
Sulth_1931 Cytochrome c oxidase subunit III 507 64 4862 339 -3.26
Sulth_1932 Cytochrome c oxidase subunit I 1427 269 15277 462 -3.42
Sulth_1933 Cytochrome c oxidase subunit II 1764 452 17994 1718 -3.35
Sulth_2044 Cytochrome c class I 91 31 18 9 2.36
Sulth_2183 Cytochrome c biogenesis protein transmembrane 

region
291 108 816 311 -1.49

Sulth_2568 Cytochrome c-type biogenesis protein CcmE 123 36 47 3 1.37
Sulth_2572 Cytochrome c-type biogenesis protein CcmB 68 22 14 3 2.28
Sulth_2573 Cytochrome c assembly protein 114 15 12 7 3.33
Sulth_2730 Cytochrome b/b6 domain 819 19 238 110 1.78
Sulth_2731 Cytochrome b/b6 domain protein 2148 652 804 64 1.42
Sulth_2749 Sulfocyanin (SoxE) 9756 2642 1112 151 3.13

Sulfur metabolism

Sulth_0921 Pyrrolo-quinoline quinone repeat-containing 
protein, tetH

613 101 25972 7210 -5.41

Sulth_0946 FAD-dependent pyridine nucleotide-disulfide 
oxidoreductase, Sqr_1

207 45 75 11 1.46

Sulth_1024 Hypothetical protein 125 50 57 8 1.13
Sulth_1025 Heterodisulfide reductase, subunit C, hdrC 24 0 50 8 -1.08
Sulth_1433 Sulfate adenylyltransferase 369 88 1430 384 -1.95
Sulth_1435 Sulfate adenylyltransferase 252 31 1202 289 -2.26
Sulth_1627 Sulfur oxygenase/reductase, Sor 591 29 1340 319 -1.18
Sulth_1878 Rhodanese-like protein 176 36 381 49 -1.12
Sulth_2076 Rhodanese-like protein 203 23 416 37 -1.03
Sulth_2172 Rhodanese-like protein 3024 1076 12511 2067 -2.05
Sulth_2770 Heterodisulfide reductase, subunit C, hdrC 11592 2924 29882 1777 -1.37
Sulth_2771 Heterodisulfide reductase, subunit B, hdrB 13422 4935 28681 4989 -1.10
Sulth_2782 DsrE family protein 4123 1767 14140 4441 -1.78
Sulth_3251 Pyrrolo-quinolinequinone repeat-containing 

protein, tetH
163 5 1551 223 -3.25
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in the archaeal iron oxidizers of the genus Ferroplasma [Dopson, 2005]. In the presence of L. fer-

riphilum, S. thermosulfidooxidans showed strongly decreased transcript numbers attributed to two

of the five soxE genes coding for this protein (Sulth-0453 and Sulth-2749). Additionally, the vast

majority of identified cytochromes of all types exhibited decreased transcript counts, along with

corresponding biogenesis proteins and quinol oxidases (Table 2.4). The strong downregulation

of electron chain components that were likely linked to iron oxidation in S. thermosulfidooxidans

could be explained by the fact that in cultures containing both iron oxidizers, the concentration

of available ferrous iron was beyond the detection limit and likely too low for utilization by S.

thermosulfidooxidans. This may be attributed to L. ferriphilum being able to scavenge Fe2+ at con-

centrations far below S. thermosulfidooxidans’ capabilities and at large Fe3+ concentrations that

exceed its inhibition limits [Rawlings et al., 1999].

Contrary to this overall trend, one cluster of S. thermosulfidooxidans cytochrome c oxidase sub-

units I-IV showed strongly increased transcript counts in the presence of L. ferriphilum (Table 2.4;

Sulth1930-1933). In addition, two cytochrome c biogenesis proteins (Sulth-1901 and Sulth-2183)

and one cytochrome c assembly protein (Sulth-0051) exhibited similarly increased transcript num-

bers. A direct role of cytochromes in iron oxidation has been suggested in an acid mine drainage

biofilm and in L. ferrooxidans [Jeans et al., 2008; Blake and Griff, 2012]. Therefore, the strong

opposite regulation of cytochrome oxidases in S. thermosulfidooxidans raises the question of their

potential functional and/or structural differences. It could be possible that the oxidase exhibiting

increased transcript counts in the presence of L. ferriphilum indirectly facilitates a higher affinity

for ferrous iron, or has a lower sensitivity towards oxidative stress induced by accumulating fer-

ric ion. Together with the upregulation of biogenesis and assembly proteins, this could enable S.

thermosulfidooxidans to gain energy from ferrous ion in the presence of a stronger iron oxidizer.

Nevertheless, as only cytochromes and cytochrome oxidases that are upregulated in absence of L.

ferriphilum correlated with higher copper extraction, they may be of greater interest in the context

of this study and should be considered in more detail in the future.

Genes coding for known sulfur oxidation proteins exhibited directionally opposite changes in tran-

script numbers compared to iron oxidation systems. Conceivably, this was to ensure sufficient

supply of energy in a Fe2+ deficient environment and the vast majority of S. thermosulfidooxidans

genes related to sulfur metabolism had significantly higher RNA transcripts in the presence of L.

ferriphilum (Table 2.4). The highest of these log2-fold changes were recorded for two copies of

tetrathionate hydrolase gene tetH (Sulth-0921 and Sulth-3251) while a third copy (Sulth-1188) ex-

hibited moderately increased transcript counts in the absence of L. ferriphilum. TetH is responsible

for the hydrolysis of tetrathionate, an important intermediate in sulfide mineral dissolution. Fur-

thermore, thiosulfate can be oxidized by thiosulfate quinone oxidoreductase, encoded by a doxDA

homologue. The two encoded copies of this gene exhibited increased transcript counts when in co-

culture with L. ferriphilum, although the log2-fold changes were low (Sulth-1989 and Sulth-1691).
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Figure 2.11: Proposed model of S. thermosulfidooxidans transcript regulation of genes related to energy conser-
vation. Proposed model of S. thermosulfidooxidans transcript regulation of genes related to energy conservation, in
cultures with (lower part) or without L. ferriphilum (upper part). Iron oxidation systems and electron transport by cy-
tochromes have a greater number of RNA transcripts in the absence of the strong iron oxidizer L. ferriphilum. In its
presence, S. thermosulfidooxidans instead has higher transcript numbers for genes contributing to inorganic sulfur com-
pounds (ISC) oxidation plus one cytochrome c oxidase complex. Quinone pool and NAD(P)H generation are depicted
translucently for comprehension, but corresponding genes were not analysed here (from Christel et al. 2018 - in review;
Appendix C.3).
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Additional contributions to sulfur oxidation systems include sulfate adenylyltransferase which is

suggested to be involved in sulfite oxidation in A. ferrooxidans and S. thermosulfidooxidans strain

ST [Guo et al., 2014] and is likely to fulfil the same role in S. thermosulfidooxidansT. Similarly,

DsrE-family protein (Sulth-2782) has been reported to be associated to oxidative sulfite metabolism

[Dahl et al., 2005] and was also found to exhibit increased transcript numbers in presence of L.

ferriphilum (Table 2.4).

2.4.5 Biofilm dispersal signals in mixed cultures

As described previously iron- and sulfur-oxidation mechanisms play an important role in chalcopy-

rite bioleaching. However, also attachment to metal ores can be a crucial factor in the dissolution of

metal sulfides [Rohwerder et al., 2003]. To further elucidate interactions between the model strains

and their role in biofilm formation, quorum sensing (QS) systems and ci-di-GMP metabolism were

assessed. Specifically, the diffusible signalling factor (DSF) system found to be encoded by rpf

genes in L. ferriphilum Section 2.4.2 was of interest in this regard, as it was shown that DSF

signalling molecules directly act on the ci-di-GMP metabolism [Deng et al., 2012]. Signalling

molecules are sensed by the two-component system of the sensor kinase RpfC and the response

regulator RpfG that activate a c-di-GMP-hydrolyzing phosphodiesterases encoded by rpfR. Low

levels of c-di-GMP are typically associated with enhanced motility and decreased expression of

biofilm-related genes [Romling et al., 2013].

Genes likely encoding DSF family signal-specific two-component systems or response regulators,

suitable for DSF signal perception, were identified in the genomes of A. caldus, L. ferriphilum, and

S. thermosulfidooxidans (Table 2.5). However, homologues were only found for rpfR and rpfC (A.

calddus and additionally rpfG, but not for rpfF.

The genes of the DSF QS system were found to be expressed in transcriptome analyses of cells

grown in continuous cultures, as well as in chalcopyrite batch cultures (Figure 2.12). Expression

levels of L. ferriphilum strongly exceeded the average expression of gene transcripts of this species

in axenic and and especially in binary co-cultures with S. thermosulfidooxidans. The DSF synthase

LFTS-0514 was especially found to have elevated levels in the planktonic cell sub-opulations.

Interestingly, expression of the rpf genes in S. thermosulfidooxidans showed the opposite trend.

Overall, there is a slight trend for lower expression levels in the biofilm sub-population. However,

due to the low number of replicates of the biofilm samples this will have to be confirmed in the

future.

To further test the activity of the system a DSF signalling molecule was added to the cultures

and numbers of attached cells were assessed by high-throughput EFM microscopy in combination

with automated cell counting (Section 2.3.2). Biofilm dispersal was observed in cultures of L.

ferriphilum, S. thermosulfidooxidans, and their combination in mixed cultures when 5µM DSF

was added after 5 days of incubation (Figure 2.13). A similar effect was noted in mixed cultures of
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Table 2.5: Presence of DSF family quorum sensing system-encoding genes. Locus-tags of genes for three model
species that could be assigned to either rpfF, rpfR, rpfC, rpfG with blastp. (adapted from Bellenberg et al. [2018])

Species rpfF rpfR rpfC rpfG

A. caldus ACAty_RS14920, ACAty_RS14615, ACAty_RS02860 ACAty_RS07245, ACAty_RS04080
L. ferriphilum LFTS_00514 LFTS_00511 LFTS_00515, LFTS_00516 LFTS_00517
S. thermosulfidooxidans Sulth_1253, Sulth_1788, Sulth_2384 Sulth_1793 Sulth_2102

N: 3 N: 2 N: 4 N: 1 N: 3 N: 4N: 3 N: 2 N: 4 N: 1 N: 3 N: 4N: 3 N: 2 N: 4 N: 1 N: 3 N: 4N: 3 N: 2 N: 4 N: 1 N: 3 N: 4N: 3 N: 2 N: 4 N: 1 N: 3 N: 4N: 3 N: 2 N: 2 N: 1 N: 3 N: 2 N: 4N: 3 N: 2 N: 2 N: 1 N: 3 N: 2 N: 4N: 3 N: 2 N: 2 N: 1 N: 3 N: 2 N: 4N: 3 N: 2 N: 2 N: 1 N: 3 N: 2 N: 4N: 3 N: 2 N: 2 N: 1 N: 3 N: 2 N: 4N: 3 N: 2 N: 2 N: 1 N: 3 N: 2 N: 4N: 3 N: 2 N: 2 N: 1 N: 3 N: 2 N: 4N: 1 N: 3 N: 4 N: 2 N: 4 N: 3 N: 4N: 1 N: 3 N: 4 N: 2 N: 4 N: 3 N: 4N: 1 N: 3 N: 4 N: 2 N: 4 N: 3 N: 4N: 1 N: 3 N: 4 N: 2 N: 4 N: 3 N: 4N: 1 N: 3 N: 4 N: 2 N: 4 N: 3 N: 4
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Figure 2.12: Expression of DSF system genes in different conditions and combinations. DESeq2 normalized ex-
pression values for genes related to the DSF quorum sensing system in the three model organisms (mean values across
replicates). Error bars represent standard deviation across the number of biological replicates which is shown in the
top. Dashed lines indicate mean expression levels across all genes per individual organism. Abbreviations used for
the conditions (x-axis): A = A. caldus, L = L. ferriphilum, S = S. thermosulfidooxidans, Cn = continuous culture, P =
planktonic sub-population, M = mineral attached sub-population
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all three species, however no biofilm dispersal was observed in cultures of A. caldus ([Bellenberg

et al., 2018]). Biofilm dispersal effects were short-lived, and recolonization of the chalcopyrite

occurred in the batch experiment assays within 24 h after DSF addition. The addition of DSF to

mixed cultures of L. ferriphilum and S. thermosulfidooxidans caused a marked difference in the

development of the sessile cell population, which was similar to the one observed in pure cultures

of L. ferriphilum (Figure 2.13A).

The results highlight the effects of DSF family signal compounds in cultures of L. ferriphilum and

S. thermosulfidooxidansand suggest an important role of these signal compounds in colonization

of metal sulfides.
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Figure 2.13: DSF molecules and their effect on attached cells. DSF molecules stimulate biofilm dispersal in L.
ferriphilum and S. thermosulfidooxidans. (A to C) Axenic cultures of L. ferriphilum (A), S. thermosulfidooxidans (B),
and mixed cultures of L. ferriphilum and S. thermosulfidooxidans (C) were cultivated with 2 % chalcopyrite. DSF (5
µM) was added after 5 days of incubation (gray triangles), and the mineral-attached cell population was compared to
control experiments without DSF (white diamonds). Cells counts where determined by an automatic counting method
and high-throughout microscopic analysis. (from Bellenberg et al. [2018])
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2.5 Discussion and outlook

2.5.1 Functional omics provide an in-depth understanding of acidophile lifestyle in
defined conditions

The newly sequenced genome of L. ferriphilumT aided in the in-depth characterization of this or-

ganism’s metabolic potential and provided the possibility to interpret its expression and translation

behaviour in continuous and batch culture. PacBio long-read sequencing directly allowed the as-

sembly of a circular chromosome and revealed key features of the adaptation of L. ferriphilumT

to acidic, metal-rich environments, associated with sulfidic minerals, in the environment as well

as in industrial applications. Additionally, RNA transcript sequencing and protein identification

elucidated stressing factors during chalcopyrite biomining and shed light on resistance systems

deployed by L. ferriphilumT. The data described in Section 2.4.2 and Section 2.4.3 pose a valu-

able resource for future experiments investigating the role ofL. ferriphilumT in acid mine and rock

drainage as well as bioleaching processes.

However, the isolation of nucleic acids and proteins proved to be challenging, and only two RNA

extracts and three protein samples of mineral origins were of sufficient quality for differential

expression and translation analyses (Section 2.4.3 and Table 2.3). Extraction of RNA and proteins

from the biofilm sub-populations proved to be even more challenging, delayed data generation, and

were largely excluded here. Owing to the lower sensitivity and dynamic range of the Orbitrap Elite

instrument that was used for analysis of the bioleaching samples, fewer low-abundance proteins

were quantified in these samples than in the continuous-culture samples that were analysed with

an Q-Exactive HF mass spectrometer (Section 2.3.6). This manifested as an apparently higher

expression level of such gene products in continuous cultures that could not be correct for with

normalization.

During bioleaching of chalcopyrite concentrate in co-cultures, S. thermosulfidooxidans but not L.

ferriphilum maintained a low redox potential that is favorable for the extraction of copper. It

can be hypothesized that this was due to differences in affinity and/or effectivity of the species’

respective iron oxidation systems, as well as the attachment rate of the microorganisms to the

mineral grains. This finding could potentially contribute to overcoming passivation and improving

dissolution rates in large-scale chalcopyrite bioleaching. Expression of iron and sulphur oxidation

systems in S. thermosulfidooxidans were investigated during bioleaching experiments in presence

and absence of L. ferriphilum. Presence of the strong iron oxidizer induced greatly decreased

transcript counts attributed to iron oxidation and increased counts for sulphur oxidation. Analysis

of this data revealed gene products potentially responsible for the difference in oxidation/reduction

potential, which should be studied in this regard in the future.

While the notion of higher chalcopyrite dissolution rates at lower redox potentials by itself is not

new [Watling, 2006], the role that the tested organisms play in the this regard has not been de-
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scribed. The concept of controlling L. ferriphilum levels thus achieving higher solubilization rates

and lower redox potentials due to less efficient iron oxidation can be challenging to achieve in

systems open to the natural environment (Section 2.5.2). It would have to be seen if inoculation

strategies omitting efficient iron oxidisers could be sustainable.

The diffusible factor system detected in L. ferriphilum Section 2.4.2 might be an interesting target

for further studies elucidating if it can be applied as a biofilm dispersal agent. The presence and ex-

pression of DSF family genes in mixed cultures points to an important role in biofilm formation The

impact of DSF signal compounds was highlighted for L. ferriphilum and S. thermosulfidooxidans,

in mixed or axenic cultures, highlighting its role in biofilm formation. Potentially, inter-species

signalling could play a role in maintaining a competitive advantage if attachment sites on ore sur-

faces, and thus electron donors required for energy conservation, are inaccessible. From the initial

results described in Section 2.4.5, we can assume that a DSF-system is present and functional in

L. ferriphilum and S. thermosulfidooxidans and that signalling molecules cause a transient disper-

sal effect. If exploiting DSF signalling was a means to control L. ferriphilum growth and biofilm

formation this could have potential implications for biomining as well as AMD.

2.5.2 From defined conditions and consortia to in situ analyses

A key issue in translating findings from synthetic communities to improved biotechnological pro-

cesses is being able to assess the applicability of the results in real world systems. Fitness and

performance readouts for model organisms have been shown to vary substantially depending on

whether they occurred in a synthetic or natural community [Yu et al., 2016].

From the results presented in this chapter, the hypothesis can be formulated that chalcopyrite bi-

oleaching at low redox potentials, i.e., by weak iron oxidizers, would not be hampered by a lag-time

for metal release onset or by a passivation effect preventing efficient solubilization. However, con-

trolled conditions often do not reflect microbial activity in situ. For example controlled experiments

using chalcopyrite concentrates might not be directly transferable to the complex gradients and in-

teractions occurring in heap bioleaching [Watling, 2006]. The conditions within a bioleaching heap

can vary tremendously in terms of oxygen and carbon dioxide gradients, as well as for pH and tem-

perature [Pradhan et al., 2008]. Furthermore, the heterogeneity and impurity of the ore itself might

have a great impact as well.

A scenario for testing the aforementioned hypothesis could be using a pilot-scale heap with defined

inocula omitting efficient iron oxidisers, such as L. ferriphilum. However, it has to be seen if

L. ferriphilum or other efficient iron-oxidisers would not soon dominate in a system open to the

environment as they are ubiquitously found in bioleaching or AMD systems. To resolve spatial and

temporal scales and to capture microbial community dynamics in a natural ecosystem reference-

independent methods could potentially be applied.
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CHAPTER 3

IDENTIFYING AND CHARACTERIZING FUNDAMENTAL AND

REALIZED ECOLOGICAL NICHES OF MICROBIAL POPULATIONS

IN OLEAGINOUS FLOATING SLUDGE

This chapter is based on the following manuscripts in preparation:

• Herold et al. - Defining fundamental and realized microbial niches using integrated time-

resolved multi-omics

• Kleine-Borgmann et al. - Lipid accumulating bacteria from biological wastewater treatment

plants: from isolation to in situ population dynamics and activity
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3.1 Abstract

Contrary to an in vitro culture, establishing and maintaining a microbial community-based biotech-

nological processes with a desired phenotype can be challenging and is often attempted by tuning

environmental parameters. However, conditions that favour microbial populations contributing to

the desired community phenotype could be created by engineering niches. An in-depth under-

standing of niche ecology is therefore necessary to provide the basis for optimizing such biotech-

nological processes. Wastewater treatment with activated sludge is one of the most important

biotechnological applications, however several avenues are currently being explored to increase

sustainability in wastewater treatment operations. One aspect is the efficient accumulation of lipids

by microorganisms found in oleaginous floating sludge that could potentially be harnessed for bio-

fuel production. In this chapter, the use of multi-omics data to resolve ecological niches of distinct

de novo reconstructed populations in this system is highlighted.

To characterize niches of distinct microbial populations, multi-omic (DNA, RNA, protein, metabo-

lites) datasets from weekly samples of activated sludge floating islets over 14 months (long-term in

situ) were analysed, as well as controlled bioreactor experiments performed (short-term in vitro).

Using nucleic acid sequencing data, the community structure was determined and population-level

genomes were reconstructed for several populations of interest with regards to lipid accumula-

tion. Based on the populations’ functional potentials, four groups were defined reflecting distinct

types of fundamental niches. Realised niches were characterized over the time-series by linking

the MP and MT data to the reconstructed genomes. Abiotic factors, e.g., free fatty acid levels,

temperature, or amino acid levels were significantly associated with gene expression, particularly

in relation to genes involved in lipid metabolism, thus highlighting the importance of these factors

for future niche engineering. The results described in this chapter further deepen our understanding

of microbial niche ecology within a biotechnological process, with potential applications beyond

wastewater treatment.

3.2 Background

3.2.1 Wastewater treatment plant as model system for microbial ecology

Treatment of wastewater is an essential process in modern civilisation as it is vital for public

health and the environment. Biological wastewater treatment plants (BWWTPs) utilize the acti-

vated sludge process that was first described over a century ago [Ardern and Lockett, 1914]. In

the process, microorganisms remove pollutants such as excess carbon, phosphorous, or ammonium

from the wastewater. These compounds are assimilated in microbial biomass or are converted to

carbon dioxide, methane, or nitrogen gas. Energy requirements for the operation of BWWTPs are

substantial, e.g. they make up to 3 % of global electricity consumption for treatment of domestic
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wastewater alone and also 5 % of non-carbon dioxide greenhouse-gas emissions [Li et al., 2015].

The chemical energy contained in wastewater is high, however, in its current form, the process is

not used optimally, as only a fraction of the chemical energy may be recovered by microbial fuel

cells or anaerobic digestion of sludge [Sheik et al., 2014].

Even though the microbial processes in BWWTPs are vital for efficient operation, the microbial di-

versity in activated sludge has not been well captured by traditional culturing or microscopy-based

methods [Wagner and Loy, 2002]. BWWTPs have historically been used as model systems to study

microbial ecology and recently significant advances have been made with contemporary molecular

methods [Daims et al., 2006]. BWWTP functioning highly depends on the complex interplay of

the microbial populations, for example between nitrifiers, ammonia and nitrite oxidiers, and deni-

trifiers that respire nitrate, or interactions between phosphate and glycogen accumulating bacteria

[Wagner and Loy, 2002]. Especially nitrogen cycling in BWWTPs has been the focus of several

studies, leading to, e.g., the discovery of organisms capable of performing anaerobic ammonium

oxidation (anammox) [Mulder, 1995; Strous et al., 2006]. More recently, also the conversion of

ammonium to nitrate within a single organism (comammox) has been shown, challenging the prior

assumed division of labour between ammonia and nitrate oxidizing microorganisms in nitrification

[van Kessel et al., 2015; Daims et al., 2016].

While frequently findings are based on genetic analysis and in-depth characterization of enrich-

ment cultures, in situ methods to measure nutrient uptake have provided extensive advances in de-

termining resource usage. Microautoradiography has been used to show in situ metabolite uptake

[Nielsen et al., 2002] and has been applied in combination with fluorescent in situ hybridization

(FISH) approaches to be able to connect metabolite uptake to individual populations [Wagner and

Loy, 2002]. Additionally, uptake of labelled compounds can be quantified for individiual cells

with nano-scale secondary-ion mass spectrometry (nanoSIMS) in combination with FISH showing

phenotypic heterogeneity in populations in a stratified lake [Zimmermann et al., 2015], as well as

wastewater [Sheik et al., 2015].

Multiple studies have used gene-amplicon sequencing for community structure profiling within

BWWTPs, for example in relation to seasonal sludge bulking and nutrient removal [Xu et al.,

2018; Wang et al., 2016; Cydzik-Kwiatkowska and Zielińska, 2016]. In contrast, multi-omics have

been applied to characterize microbial functioning and niche ecology in floating sludge [Muller

et al., 2014a] or in the context of microbial fuel cells [Ishii et al., 2013].

Studying microbial communities in BWWTPs holds several advantages over other natural or natu-

rally occurring environments. Environmental parameters such as temperature, oxygen, or pH levels

in BWWTPs are routinely recorded and the environment is relatively homogeneous in relation to

defined physico-chemical boundaries [Narayanasamy et al., 2015]. The microbial communities

within activated sludge exhibit medium to high diversity often with few dominant populations and

as an intermediate between lower complexity environments, such as AMD, and highly complex
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environments, such as soil, important properties of both extremes can be assessed [Narayanasamy

et al., 2015]. The fact that the ecological interactions of mixed microbial communities in BWWTPs

have a profound impact on the biotechnological process, while at the same time, complex interac-

tions can be studied in a controlled and monitored system, makes it an ideal model system for the

study of microbial ecology.

3.2.2 Engineering microbial niches for efficient lipid accumulation

Filamentous bacteria are often related to bulking or foaming sludge problems in BWWTPs [Xu

et al., 2018], while individual filamentous types can be associated with low food-to-biomass (F/M)

ratios and shifts in nitrate and nitrite levels [Musvoto et al., 1999]. The capability to store com-

pounds such as polyphosphates [Martín et al., 2006], glycogen [Crocetti et al., 2002], polyhydrox-

yalkanoates (PHA) [Yang et al., 2011], or lipids [Muller et al., 2014b] gives these organisms a

competitive advantage in fluctuating and/or sparse nutrient conditions [Rossetti et al., 2005].

For lipid accumulation, this has been well described for Candidatus Microthrix parvicella (M. par-

vicella in the following text) [Nielsen et al., 2002] as it has been characterised as the often dominant

organism in floating sludge and capable of efficiently accumulating lipids (extensively reviewed in

Rossetti et al. [2005]). Particularly, growth of M. parvicella seems to benefit from low dissolved

oxygen concentrations and it is characterised as a microaerophile [Rossetti et al., 2005]. Addi-

tionally, in alternating anaerobic-aerobic nutrient-removal plants a competitive advantage might be

conferred to M. parvicella [Nielsen et al., 2002]. Under anaerobic conditions the storage of lipids

putatively predominates, while in the presence of higher levels of electron acceptors (i.e. oxygen or

nitrate) levels, stored lipids are metabolised for growth [McIlroy et al., 2013]. Thus M. parvicella

may be considered as a metabolic generalist being able to cope with a wide range of resource gra-

dients, which in turn has been linked to its genetic complement and the ability to fine-tune its gene

expression [Muller et al., 2014a], as well as phenotypic heterogeneity of sub populations [Sheik

et al., 2015].

The example of M. parvicella highlights the complexity of growth strategies that individual bac-

teria can pursue within a larger community and the dependence on environmental gradients, par-

ticularly oxygen. While M. parvicella is often a dominant population among lipid accumulators,

other genera exhibit lipid uptake including Aeromonas, Uruburuella, and Acinetobacter [Kleine-

Borgmann et al. - in preparation]. The metabolic capabilities of these and other lipid accumulating

organisms (LAOs), as well as potential interactions could be assessed by screening their genomic

potential [Muller et al., 2014b]. The possibility to delineate community interactions and strategies

of resource usage within microbial communities can potentially allow to controlling and steering

communities towards a desired phenotype. In the context of BWWTPs improved sustainability
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Figure 3.1: Conceptual schematic of niche engineering in a BWWTP. Scheme for the concept of a wastewater
biorefinery column, i.e., engineering the activated sludge tank in way so that accumulation products of the various
bacteria can be utilized as resources, considering the niches that the different populations occupy (from Sheik et al.
[2014]).

could be achieved by engineering niches to enrich for microbial storage compounds, e.g. PHA,

glycogen, lipids that could be the basis for products such as biofuels or bioplastics [Sheik et al.,

2014] (Figure 3.3). This could be realized by physical separation, e.g., by introducing resource

gradients or exploiting different settling properties [Sheik et al., 2014].

3.3 Methods

3.3.1 Recovery of isolate genomes

Floating activated sludge samples were collected from the surface of an anoxic tank in a commu-

nal wastewater treatment plant in Schifflange, Luxembourg, on October 12th 2011. 688 bacterial

strains were isolated on varying media, temperature and oxic conditions, to cover a wide range of

cultivation conditions. After describing colony morphology and cell shape, isolates were screened

for lipid accumulation using the fluorescence of the lipophilic stain Nile red as readout for intra-

cellular lipid droplets. Whole genome sequencing (Illumina) was performed on the 73 selected

nile-red positive isolates. The isolation, screening, and genome sequencing protocols are described

in Roume et al. [2015]. The sequencing data was preprocessed, assembled and annotated to pro-

duce draft genomes using the protocol described in Muller et al. [2017].
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3.3.2 Sampling, experimental setup, and biomolecular extractions

Time-dependent sampling for multi-omics data generation was carried out by collecting floating

sludge islets from the surface of the anoxic part of an activated sludge tank of the Schifflange

BWWTP as described previously [Muller et al., 2014a]. Overall, the time-resolved sampling in-

cluded two initial sampling dates (04.10.2011 and 25.01.2011) previously reported by Roume et al.

[2015] and Muller et al. [2014a], followed by a higher frequency sampling phase, as a time-series

from 23.03.2011 to 03.05.2012. During this period, 51 samples were collected in weekly intervals

(mean: 8 days; sd: 4 days), including three longer gaps without sampling due to the absence of

floating sludge islets: 08.07.2011 to 25.08.2011 (28 days), 12.10.2011 to 02.011.2011 (21 days),

and 29.11.2011 – 28.12.2011 (29 days).

At the time of sample collection, physico-chemical parameters, including conductivity, pH, oxygen-

levels, and temperature were measured in the anoxic tank (referred to as on-site measurements).

Additionally, measurements were recorded by the BWWTP operators for nitrate-, phosphate-,

ammonium-, dry-matter and dissolved oxygen-levels at the outflow of the activated sludge tank

as well as conductivity and pH at the inlet, and pH and temperature of the activated sludge tank

(referred to as operational measurements). Six missing values in the on-site measurements for

pH were imputed from the available measurements with the R-package imputeTS [Moritz and

Bartz-Beielstein, 2017] with the method stine.

Biomolecular fractions of DNA, RNA, proteins, and metabolites were obtained for each time-series

sample as described previously in Roume [2013]. In brief, extracellular metabolites were extracted

with chloroform and methanol-water, and separated into polar- and non-polar fractions. After lysis

by milling, intracellular metabolites were isolated in the same way, followed by sequential spin-

column-based purification of RNA, DNA, and proteins.

Additional experiments were carried out in bioreactors seeded with sludge samples. Short-term

time-series experiments were set up as described by Sheik et al. [2015] as “alternating aerobic-

anoxic phase experiment”. In short, sludge samples diluted with artificial wastewater were aliquoted

and treated to aerobic, anoxic, or alternating conditions after a 2h preconditioning period. After

the preconditioning (time-point 0h) octadecenoic acid was supplemented alongside additional nu-

trients. Samples for subsequent DNA and RNA extractions were taken at 1h, 5h, and 8h and

extracted according to the method in Roume [2013], resulting in twelve samples, i.e., three time-

points for four conditions (aerobic, anoxic, aerobically preconditioned and alternating, anoxically

preconditioned and alternating).

3.3.3 Nucleic acid sequencing, data preprocessing, and assembly

DNA and RNA biomolecular fractions for the 51 time-series samples and the two preliminary

samples were sequenced as described by Muller et al. (2014), resulting in MG and MT reads for
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53 samples. On average 2.8 x 107 MG reads and 3.3 x 107 MT reads were obtained per sample.

Large-scale integrated MG and MT data analyses were performed on all the samples using IMP

ver. 1.3 [Narayanasamy et al., 2016] (Figure 1.5). Illumina Truseq2 adapters were trimmed,

and the step for filtering reads of human origin was omitted for the preprocessing. The MEGAHIT

de novo assembler [Li et al., 2015] was selected for co-assembly of MG and MT data. All other

parameters of IMP were left at their default value (Figure 3.2).

Nonpareil2 [Rodriguez-R and Konstantinidis, 2014] was executed using the k-mer based option

on each time point by providing the IMP-preprocessed forward reads (R1) in FASTQ format as

input sampling one million reads and using default parameters.

DNA for 12 samples of the short-term experiments described above were sequenced on four lanes

of an Illumina Hiseq 2500 instrument with a fragment length of 250 bps as paired-end reads.

Isolated RNA was reverse transcribed to cDNA and sequenced on five lanes of an Illumina Hiseq

2500 instrument with 100 bp paired-end reads. Resulting MT and MG reads were preprocessed

with IMP [Narayanasamy et al., 2016]) as described above.

3.3.4 Meta-metabolomics

Four distinct measurements for the metabolite extracts were performed: i) non-polar extracellular

(SNP), ii) polar extracellular (SP), iii) non-polar intracellular (BNP), and iv) polar intracellular

(BP). Metabolite extracts were derivatized using a multi-purpose sampler (GERSTEL). Dried po-

lar samples were dissolved in 15 µl pyridine, containing 20 mg/mL methoxyamine hydrochloride

(Sigma-Aldrich), and incubated under shaking for 60 min at 40 °C. After adding 15 µl N-methyl-

N-trimethylsilyl-trifluoroacetamide (MSTFA; Macherey-Nagel), samples were incubated for addi-

tional 30 min at 40 °C under continuous shaking. Dried non-polar samples were dissolved in 30 µl

MSTFA and incubated under shaking for 60 min at 40 °C.

GC-MS analysis was performed by using an Agilent 7890A GC coupled to an Agilent 5975C inert

XL Mass Selective Detector (Agilent Technologies). A sample volume of 1 µL was injected into

a Split/Splitless inlet, operating in splitless mode (polar fraction “biomass and supernatant”) and

split mode (10:1, non-polar fraction “biomass”) at 270 °C. The gas chromatograph was equipped

with a 30 m (I.D. 250 µm, film 0.25 µm) DB-5MS capillary column (Agilent J & W GC Column).

Helium was used as carrier gas with a constant flow rate of 1.2 mL/min.

The GC oven temperature was held at 80 °C for 1 min and increased to 320 °C at 15 °C/min. Then,

the temperature was held for 8 min. The total run time was 25 min. The transfer line temperature

was set constantly to 280 °C. The mass selective detector (MSD) was operating under electron

ionization at 70 eV. The MS source was held at 230 °C and the quadrupole at 150 °C. Full scan

mass spectra were acquired from m/z 70 to 700.

All GC-MS chromatograms were processed using the MetaboliteDetector software [Hiller

et al., 2009]. The software package supports automatic deconvolution of all mass spectra. The
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following deconvolution settings were applied: Peak threshold: 6; Minimum peak height: 6; Bins

per scan: 10; Deconvolution width: 2 scans; No baseline adjustment; Minimum 15 peaks per

spectrum; No minimum required base peak intensity. Compounds were annotated by retention

time and mass spectrum using an in-house mass spectral library.

Metabolites detected in blanks at a mean intensity level of more than 75% of the mean level in

samples were removed as contaminants. Metabolites that were not detected in all pool samples

were also removed from subsequent analysis as well as metabolites not detected in at least 90% of

measured samples. Metabolite intensities were normalized in respect to pool samples to account

for instrument drift as described [Roume, 2013] dividing the intensity values by the mean of up to

two preceding and subsequent pools samples according to the measurement sequence. Metabolite

derivate names of identified metabolites were manually assigned to KEGG compound identifiers

and CHEBI IDs.

3.3.5 Metaproteomics

Protein samples of 51 time-series samples were measured as previously described [Muller et al.,

2014a] by LC-MS/MS.

The database searching process for all of the converted mass spectrometry mgf files utilized the

Graph2Pro pipeline [Tang et al., 2016], which integrated MG, MT, and MP data. In detail, for

each time point, Graph2Pep first predicted the peptides from one or more short edges in the

assembly graph of sequencing data. FragGeneScan [Rho et al., 2010] was employed to predict

the protein/peptides from contigs consisting of long edges. The combined set of tryptic peptides,

including those predicted from long edges and those extracted from one or more short edges in

the graph (by Graph2Pep), were used as the target database for peptide identification in the MP

data by using the MS-GF+ search engine [Kim and Pevzner, 2014]. Graph2Pro then further

predicted protein sequences from the graph of the MG/MT assembly, using identified peptides as

constraints. The MP data was searched against the database output from Graph2Pro to produce

final identification results.

MS-GF+ was used for peptide identification from a given protein sequence database using the fol-

lowing parameters: 1) instrument type: high-resolution LTQ; 2) precursor mass tolerance: 15ppm;

3) isotope error range: -1,2; 4) modifications: oxidation as variable and carboamidomethyl as fixed;

5) maximum charge: 7; and 6) minimum charge: 1. The false discovery rate (FDR) was estimated

by using a target-decoy search approach. For full-length proteins predicted from FragGeneScan

or Graph2Pro, the reverse protein sequences were used as decoy. For peptides predicted from

Graph2Pep, the decoy peptides were then generated by reversing the peptide sequences while pre-

serving the C-terminal residues (K/R).
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3.3.6 Binning

IMP-based co-assembled contigs from each time point were binned using a previously described

method [Heintz-Buschart et al., 2017; Kaysen et al., 2017], which is based on i) nucleotide sig-

natures, ii) contig-level average depth-of-coverage, and iii) essential gene calls of IMP-based co-

assembly contigs with length above 1kbp (Figure 3.2). Bins from each time point with a complete-

ness above 28% and contamination below 20%, i.e., labelled as “P”, “G”, “O” and “L” [Heintz-

Buschart et al., 2017], were retained for downstream selection of representative genomes. In order

to de-replicate the collection of high-quality bins from different time-points and obtain represen-

tative reconstructed genomes (ReGes) over-time, dRep [Olm et al., 2017] was applied with the

following parameters: i) completeness threshold of 0.6, ii) strain heterogeneity threshold of 101,

removing this threshold for selection iii) primary cluster nucleotide identity of 0.6, and iv) sec-

ondary cluster nucleotide identity of 0.965, while other parameters remained as default. In a fol-

lowing step, a subset of ReGes was selected based on CheckM [Parks et al., 2015] completeness

estimates, requiring at least 50 % in the difference of completeness and contamination estimates.

Isolate genomes that had been added to the dereplication process were discarded, due to not rep-

resenting de novo assembled bins and low coverage in the MG and MT data. High-quality ReGes

were subsequently used as references for integrating omics data.
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Figure 3.2: Assembly and automated binning workflow. IMP [Narayanasamy et al., 2016] was run on each sample of
the time-series, processing MT and MG short reads and performing de novo assembly of contigs. Pentamer nucleotide
frequencies were calculated and transformed to two-dimensional space [Laczny et al., 2015]. An automated clustering
method was applied and selected grouped contigs and refined the recovered genomic bins by assessing marker gene
content and coverage distributions [Heintz-Buschart et al., 2017].
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3.3.7 Genome annotation and taxonomic assignments

Assembled contigs were annotated with Prokka v1.11 [Seemann, 2014] including prediction

of CDS with prodigal v2.6 [Hyatt et al., 2010]. Predicted CDS were also searched with

an in-house HMM database of the KEGG ortholog groups (KO) with HMMer v1.12b (Eddy,

2011) as previously described in Heintz-Buschart et al. [2017]. All annotations and assigned prob-

ability scores were stored in a mongoDB database for storage and access [Heintz-Buschart et al.,

2017]. Reactions associated with predicted enzymes were added through combining EC-number-

to-KEGG-reaction (RN) links and KO-to-RN links. From the combined list of reactions, links to

KEGG compounds (CMPs) were inferred by linking gene identifiers to unique products or sub-

strates of putatively catalysed reactions.

Reconstructed genomic bins were analysed with AMPHORA2 [Wu and Scott, 2012] with a cus-

tomized version previously applied by Laczny et al. [2016]. Additionally, taxonomic classification

was performed with Sourmash 2.0.0a1 [Brown et al., 2016] lca-version with kmer-length:

21 and threshold: 4, with an existing database including approximately 87,000 microbial

genomes (downloaded on 2017-11-09 from https://osf.io/s3jx8/download).

AMPHORA2-based predictions for individual marker genes were combined by summation of the

associated assignment probabilities. If the summed probability scores for the highest-scoring tax-

onomic level constituted not more than 1/3 of the total probability scores, the assignment was dis-

carded as “low confidence assignment”. Taxonomic assignments of AMPHORA2 and sourmash-lca

were merged giving priority to predictions from sourmash-lca due to higher expected speci-

ficity and an updated database.

3.3.8 Analysis of functional potential

Annotated KOs for the individual ReGes were summarized in a binary matrix combining all ReGes:

0 indicated absence and 1 indicated presence of at least 1 gene annotated with the respective KO.

Pairwise binary Jaccard-distances between the ReGes based on their KO profiles were calculated

and projected in two-dimensional space by multi-dimensional scaling (MDS). Four clusters of

functional potential (FunCs) were selected by applying the k-means function (kmeans in R,

k=4) after inspection of the k-means clustering results for a range of centroids settings from one

to nine.

Enrichment of individual KOs in the assigned clusters by functional potential (FunCs) was tested

individually for every KO with Fisher’s exact test, comparing the number of bins with KO present

against the number of assignments in different groups and the number of all KOs within and outside

of the FunC assignment. Resulting p-values were adjusted by FDR correction.

To test the validity of the FunC assignment, pairwise correlations (cor function in R, method=

”pearson”) between relative abundances of the ReGes across time were computed. Correla-
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tion coefficients (ρ) were transformed to distances with the following formula: 1 − ((ρ + 1)/2).

Dispersion of the distances was assessed with betadisper function of the vegan package in R.

Association of the FunC assignment to the distances was tested with adonis of the vegan package

in R.

3.3.9 Analysis of gene expression levels

Preprocessed MG and MT paired- and single-end reads from all samples were mapped to the

genome sequences of the ReGes with bwa [Li and Durbin, 2009]. Reads mapping to CDS were ex-

tracted with featureCounts [Liao et al., 2014] for the long-term time-series and the short-term

experiments.

Counts mapped to individual genes were normalized to TPM counts within an individual ReGe

for comparison of relative expression levels with a single population [Klingenberg and Meinicke,

2017]. For the analysis of individual expression levels pathway assignments defined in McIlroy

et al. [2013] formed the basis for selecting genes based on matching gene name, product name, or

EC-number.

MG and MT depth of coverage were computed on gene and contig level by dividing the summed

depth per base by the length of the respective sequence.

For the long-term time-series MP data was analysed for 51 time-points. Identified peptides by the

Graph2Pro pipeline were assigned to the original prodigal-based predictions for coding protein

sequences of the ReGes with peptidematch [Chen et al., 2013].

3.3.10 Linking abiotic factors to population abundance and expression patterns

Relative abundances of ReGes were associated to abiotic factors by computing the correlation

(Spearman rank, cor.test function in R) between abundances and z-score transformed metabo-

lite intensities or physico-chemical parameter levels or concentrations.

Analogously to the profiles of potential functions, we generated binarized gene expression profiles

per time-point using the MT and MP data. MT and MG depth of coverage for individual genes

was normalized by dividing the gene-wise depth (MT or MG) by the total count of mapped reads

in the sample and multiplied by the mean of all mapped reads over all samples as a scaling factor.

Gene expression profiles were assessed by dividing gene MT depth by gene MG depth, where the

MG depth was set to 1 if it was below 1. If the resulting ratio was above 1 the gene was considered

expressed. Additionally, the profiles were augmented with MP data and a gene was considered

expressed if at least 2 peptides could be matched to its protein sequence for a given time-point.

For the resulting expression profiles based on MT/MG ratios and MP data binary Jaccard-distances

were computed. To assign potential driving factors, abiotic factor levels (z-score transformed levels

of physico-chemical parameters and metabolites) were used as input in the vegan function adonis
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to test whether the parameter explained the variance in the expression profile distances.
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3.4 Results

3.4.1 Reconstruction of representative genomes to determine the community struc-
ture over time

Individual foaming sludge islets were sampled in weekly intervals from 23.03.2011 to 03.05.2012.

We obtained and analysed the biomolecular fractions of DNA, RNA, proteins, and metabolites for

each time-series sample, as well as the operator-recorded abiotic parameters of at the sampling

dates (Section 3.3.2).

We recovered 73 genomes by sequential isolation and selection of lipid-accumulating populations.

Despite being able to recover high quality genomes (Appendix A.3) and several novel populations

and interesting pathways [Roume et al., 2015; Muller et al., 2017] obtaining a representative set

of genomes was not possible. This was mainly due to the general low abundance of these isolated

organisms within the in situ samples. Therefore, we proceeded to reconstruct genomes directly

from the MG and MT data.

In order to identify important players in the system we aimed to reconstruct population-level

genomes from the nucleotide sequencing data to later integrate other functional omics data. On

average a 2.84 × 107 (sd: 4.0 × 106 ) MG and 3.30 × 107 (sd: 5.4 × 106) MT read pairs per

sample were processed using IMP [Narayanasamy et al., 2016] resulting in an average 4.15 × 105

co-assembly assembled contigs per time-point [Narayanasamy, 2017]. A time point-wise bin-

ning procedure of the assembly contigs yielded a total of 1,364 metagenomic-assembled genomes

(MAGs) justifying an initial quality cut-off (Section 3.3.6). However, to link MAGs originating

from similar bacterial populations over the time-series, all MAGs were grouped based on genome

similarity resulting in 170 representative genomes (ReGes) (Appendix A.3).

After another filtering step using genome completeness estimates as well as taxonomic consistency

we obtained 92 ReGes. 14 of the previously completeness-filtered ReGe set of 92 were discarded

due to low confidence assignments at the phylum level, resulting in a reduced set of 78 ReGes.

ReGes reflect the highest quality genomic bins over time representing clusters at 97.5 % genome

similarity. Subsequently, MT and MG depth of coverage, and peptide assignments were associated

with contigs and predicted coding sequences (CDS) of the ReGes.

To determine community structure, the MG-depth of the reconstructed ReGes was analysed across

the time-series. The most abundant populations at the genus-level (Section 3.3.7) included Acine-

tobacter (Gammaproteobacteria), Albidiferax and Dechloromonas (Betaproteobacteria) of the Pro-

teobacteria phylum, as well as Intrasporangium and Candidatus Microthrix (referred to as Mi-

crothrix in the remaining text) of the Actinobacterial phylum, Haliscomenobacter and Chitinophaga

of the Sphingobacteriales, and Leptospira of the Spirochaetes phylum (Figure 3.3). Several of the

recovered ReGes belonged to filamentous taxa according to the MiDAS field guide database for

organisms in activated sludge [McIlroy et al., 2015], typically found in foaming sludge, such as the
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Figure 3.3: Relative abundance of reconstructed populations over time. Relative abundance of representative
genomes (ReGes) determined by metagenomic depth of coverage. Relative abundance of individual bins was grouped
based on genus-level taxonomic assignment. Genera below mean abundance of 2% were grouped (light grey), as well
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highly abundant Microthrix, and Haliscomenobacter, as well as the less abundant Gordonia, and

Anaerolinea.

The abundances of the individual organisms gradually changed with the seasons (Figure 3.4).

While the community structure remained relatively stable in the beginning of the time-series (Spring

2011: 21.03.2011 - 03.06.2011), a small shift occurred towards another grouped set of samples dur-

ing summer 2011 (09.06.2011 - 26.09.2011). In October 2011, community composition began to

shift, leading to a notable change of the community structure in late November 2011. This change

is marked by spikes in relative abundance of Leptospira (peak at 23.11.2011) and Acinetobacter

(peak at 29.11.2011) (Figure 3.3). In the following winter time-points, the community transitioned

back to a state more similar, yet separate, to the initial one, with increased dominance of Microthrix

(11.01.2012 - 03.05.2012). The observation of the shift in community structure in autumn, as well

as the trends in overall community structure are corroborated by the results of 16S rRNA gene

sequencing in a previous study of the same system showing an increase in Gammaproteobacte-

ria in autumn and an increase in Actinobacteria and Bacteroidetes in winter time-points [Muller

et al., 2014a]. While ReGes are not covered by all reads, matching all MG-reads to 16S rRNA

gene regions with the tool RiboTagger [Xie et al., 2016] showed similar trends (Figure B.1). Mi-

crothrix was the most dominant individual genus, but genera assigned to the Gammaproteobacteria

and Spirochaetes also dramatically increased in relative abundance in late November 2011, and

the overall community structure following a similar seasonal pattern (Figure B.2). This indicates

that the overall community structure and dynamics are reflected by the selected subset of ReGes,

even though a complete picture of the community is limited by sequencing depth. An assessment

with Nonpareil2 [Rodriguez-R and Konstantinidis, 2014] that estimates community coverage

based on redundant sequencing reads predicted an average of 42 % community coverage by MG

sequencing, likely resulting in the undersampling of rare taxa.
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Figure 3.4: Constrained ordination of population abundances. Ordination of species composition based on the Bray-
Curtis dissimilarity of relative abundances of individual ReGes constrained by selected abiotic factors (dark blue arrows
and labelled arrowheads). Points are coloured by month of sampling and point-shape reflects the year of sampling. Arrow
length indicates the environmental score of each factor. Thin black lines connecting the points visualizing the time-course
of sampling. Parameters measured during sampling are marked by "os." (on-site sampling), while parameters recorded
by the BWWTP operators are marked by "op.".
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3.4.2 Fundamental niche and resource associations

The community dynamics, i.e., changes in population structure over time, can partly be explained

by environmental parameters (Figure 3.4). Strong associations between the abundance profiles and

temperature were observed with summer samples also being characterized by higher phosphate lev-

els. Winter samples were characterized by higher oxygen and nitrate levels. Ammonium generally

did not show a strong impact on the community structure (Figure 3.4).

As the gene pool of a population generally determines the environmental gradient it can survive in

(Section 1.1.1), the functional potential of the individual populations represented by ReGes was

assessed. KEGG orthologue groups (KOs) were assigned to the predicted coding sequences (CDS)

as basis for comparison of the functional potential. Projecting pairwise Jaccard distances of KO

presence between the ReGes resulted in four larger groups (Figure 3.5). These functional potential-

based clusters (FunCs) indicate differences in terms of overall lifestyle and metabolic capabilities

of the ReGes, and serve as proxies for their respective fundamental niches.

The ReGes grouped into FunCs primarily according to their assigned taxonomy, with FunC-1 in-

cluding the Actinobacteria phylum, and FunC-2 is comprised primarily of Bacteroidetes (mainly

of class Sphingobacteriia). FunC-3 contained Gamma- and Betaproteobacteria, while FunC-4 con-

tained Spirochaetia as a sub-cluster, Deltaproteobacteria, singleton assignments, and unassigned

ReGes. The relationship between phylogenetic and metabolic distance has been shown previously

for reference genomes, especially for Actinobacteria and Bacteroidetes [Bauer et al., 2015].

To determine the functional capabilities separating the four groups, an enrichment analysis was

performed (one sided Fisher’s exact test, adjusted p-value <0.05, see Section 2.3). In total FunC-

1, FunC-3, and FunC-4 show a similar amount of KO assignments with 4,276, 4,177, and 4,129

respectively. Slightly less KOs were assigned to FunC-2 with 3,550 and fewest KOs are shared

between FunC-2 and the other groups. However, nearly half 1,857 KOs are shared among all the

FunCs (Figure 3.6).

FunC-1 showed enrichment for several KOs in starch and sucrose metabolism, as well as distinct

KOs involved in lipid metabolism, e.g., diacylglycerol O-acyltransferase [EC:2.3.1.20], short/branched

chain acyl-CoA dehydrogenase [EC:1.3.99.12], or glycerate 2-kinase [EC:2.7.1.165]. 10 of the

24 ReGes in FunC-1 had KO assignments for important enzymes in the ethylmalonyl-CoA path-

way (crotonyl-CoA reductase [EC:1.3.1.86]), enoyl ACP reductase [EC:1.3.1.9]). Similarly, for

12 ReGes aminobutyraldehyde deydrogenase [EC:1.2.1.19] and related KOs were only present in

FunC-1.

FunC-2 showed distinct KOs, especially for (amino)glycan degradation or glycosphingolipid metabolism

(hexosaminidase [EC:3.2.1.52], glucosamine kinase [EC:2.7.1.8], glucosylceramidase [EC:3.2.1.45]),

for amino acid synthesis (chorismate mutase [EC:5.4.99.5], anthranilate synthase component II

[EC:4.1.3.27]), as well as putrescine aminotransferase [EC:2.6.1.82]. Additionally, KOs related

to mevalonate metabolism and nitrous-oxide reductase [EC:1.7.2.4] were found to be enriched in
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Figure 3.5: Assignment of cluster according to functional potential.
a) Multidimensional scaling (MDS) of Jaccard-distances between profiles of KO presence/absence per representative
bin (ReGe). Each point represents a single ReGe with colors reflecting class-level taxonomic assignment. NA (grey)
represents ReGes without taxonomic assignment on class-level.
b) K-means clustering of the MDS coordinates with different number of centroids (x-axis) and corresponding number
of total within-cluster sum of squares (y-axis).
c) Ordination of a) with colors indicating k-means (centroids=4) cluster assignments.

this cluster. 14 of 23 ReGes in FunC-2 also showed KO assignments for heterodisulfide reductase

subunit C [EC:1.8.98.1] only present in this group.

FunC-3 was found to contain more KOs related to chemotaxis and motility, especially KOs re-

lated to twitching motility, glutathione synthase, and KOs belonging to the two-component system.

KOs involved in the pentose phosphate pathway (phosphomannomutase / phosphoglucomutase
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Figure 3.6: Upset plot of shared KEGG orthologue assignments per FunC. Overlap in KOs assigned uniquely to
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FunC, coloured according to FunC assignment. Bars (central panel) indicate the number of intersecting KOs between
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[EC:5.4.2.8 5.4.2.2] ribose 5-phosphate isomerase A [EC:5.3.1.6]) were present in many members

of FunC-3. Assignments in FunC-4 showed fewest enriched KO assignments. While some KOs

were found to be enriched in this group such as tyrosine aminotransferase [EC:2.6.1.5], nitrate re-

ductase, or KOs for flagellar assembly, these were only assigned to half of the members of FunC-4

at maximum.

Overall, many functions are shared between the different FunCs but distinct KOs were assigned to

subtypes of similar enzymes, e.g. for fructose-1,6-bisphosphatase (FunC-1: class type 2; FunC-2

mainly class 1; FunC-3: FBPase class 1/SBPase; FunC-4: FBPase class 2/SBPase). KOs related

to fatty acid degradation, such as acyl-CoA dehydrogenase [EC:1.3.8.7] and long-chain-acyl-CoA

dehydrogenase [EC:1.3.8.8] were mainly present in FunC-1 and FunC-3. While genes associ-

ated to general fatty acid metabolism and lipid synthesis such as long-chain acyl-CoA synthetase

[EC:6.2.1.3] were present in all FunCs.
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Figure 3.7: Relative abundance of ReGes related to FunC assignment. Relative abundance of ReGes estimated by
MG-depth, coloured by FunC assignment:
Reds: FunC-1, Blues: FunC-2, Greens: FunC-3, Purples:FunC-4

Interestingly, the aforementioned changes in relative abundance over time could be related to the

FunC assignment of the ReGes, as mainly ReGes within FunC-3 and FunC-4 showed an increase

in relative abundance in November 2011 (Figure 3.7). To confirm that population abundance is
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linked to FunC assignment, we computed pairwise correlations between the relative abundances

of the ReGes and transformed these to distances. While the dispersion of the distributions of

the distances was not significantly different, the distances can partly be attributed to the FunC

assignment (vegan adonis R2 = 0.12, P r > F = 0.002).

The environmental conditions, i.e., the resource space (see Section 1.1.1), is expected to shape

the community structure as environmental factors can explain biological variation across different

patches [Ramette and Tiedje, 2007]. However, to link resource parameters to individual popu-

lations in an in situ system is a complex task, for example as unlabelled metabolites cannot be

directly traced back to individual populations. In order to describe connections between individual

ReGes and resource parameters, physico-chemical parameters (Figure 3.8) and metabolite levels

were analysed for the time-series samples. Filtering of the non-targeted metabolite measurements

yielded intensities several derivates that could be reliably identified throughout the time-series, 56

for the polar (intra- and extracellular), 6 extracellular non-polar (SNP), and 17 for the intracellular

non-polar (BNP) measurement, respectively.

The measurements of the non-polar metabolites showed similar patterns within the extracellu-

lar and intracellular fraction. In the extracellular fraction, long-chain fatty acids (LCFAs) were

markedly increased in the November 2011 samples, especially unsaturated octadecadienoic and

octadecenoic acid (Figure B.5). A similar trend could be observed for polar metabolites such as

glycerol, glycerol-2-phosphate (Figure B.6) lactose, mannose, glucose (Figure B.7), putrescine,

and ethanolamine (Figure B.9). A notable exception were the identified amino acids. Here, the

intensities reached a maximum in March and April 2011 where nearly all amino acids showed a

reduction in intensity in the intracellular fraction in November 2011 (Figure B.8).

In order to link resource parameters to individual populations we computed Spearman rank corre-

lations between the time-courses of relative abundance and the z-score transformed levels of the

physico-chemical parameters, the metabolite intensities, as well as ratios between intra- and ex-

tracellular metabolites intensities to estimate uptake (Figure 3.9). Grouping ReGes according to

the correlation of their abundance to abiotic factors revealed a pattern of subgroups distinct from

the original FunC assignment (Figure B.3). Spirochaete ReGes grouped mainly with Gammapro-

teobacteria with their abundance positively correlated with intra- and extracellular long-chain fatty

acid (LCFA) and glycerol levels. Another mixed group notably containing Anaerolinae assigned

ReGes, Betaproteobacteria, and Sphingobacteriia were negatively correlated with individual LCFA

levels, but positively to LCFA ratios and showed a strong connection to temperature. A large group

of mainly FunC-1 and FunC-2 assigned ReGes exhibited positive correlations to amino acid levels

and ratios for sugar derivates, as well as for intra- or extracellular fructose, glucose, mannose, or

lactose levels.
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3.4.3 Characterizing realized niches by assessment of gene expression patterns

In a fluctuating resource space, a competitive advantage is conferred to microbial populations that

can adapt to the changing conditions. These adaptations are likely accompanied by changes in gene

expression patterns [Gifford et al., 2013]. To trace expression patterns of individual ReGes over

time, an index to characterize the activity of individual genes was defined. Genes were considered

expressed at a given time-point if the ratio MT-depth over MG-depth ratio was above 1 or if at least

two peptides in the MP-data could be assigned to the gene (Section 3.3.10). Using this activity

index Jaccard distances between the time-point specific binary gene activity profiles of each ReGe

were computed.

Subsequently, individual resource parameters (Section 3.4.2) were associated to expression-profile

distances to determine the influence on gene activity. In a comparison of 78 ReGes, individual

ReGes grouped similarly to abundance based correlations (Figure B.10).

While metabolite intensity ratios were less frequently found to be significantly associated, tem-

perature was determined as a significant factor for most ReGes, as well as Glycerol and Glycerol-

phosphate, LCFA levels, and carbohydrates. Overall, an association was often detected for resource

parameters that showed altered levels in the November 2011 time-points, which often coincided

with altered gene expression around these time-points (a visualization exemplary for a single ReGe

to abiotic factor association is shown in Figure 3.10). However, the effect size (R2) of the individ-

ually tested parameters remained relatively low.

Due to the frequent association of gene expression profiles with LCFA levels, the ratio of expressed

genes assigned to fatty acid degradation divided by all expressed genes per time-point were deter-

mined. The M. parvicella population’s (D51_G1.1.2) comparably high proportions decreased in

late November 2011 coinciding with a dramatic increase in free LCFAs (Figure B.5). Additionally,

Acinetobacter spp. and Leptospira spp. ReGes (D13_G1.3.2, D15_G4, and A01_O1.2.4) showed

increased proportions of fatty acid degradation related gene activity around these time-points (Fig-
ure B.4). This could indicate the preferred use of fatty acids for the FunC-3 and FunC-4 assigned

ReGes as an energy source during these time-points. Notably, a spike in the overall proportion of

active genes associated to fatty acid degradation in sample 2011-05-08 coincides with relatively

low levels of extracellular LCFAs (Figure B.5).

While associations of individual abiotic factors with gene expression profiles could indicate a re-

sponse of the population to particular resources, comparing expressed functions between all ReGes

indicates different lifestyle strategies. In order to compare expression profiles across different

ReGes, the concept of the gene-wise activity index was extended to KOs. Numbers of expressed

genes with the same KO assignment in each ReGe were summed per time-point. This allowed the

combination of ReGe and time-point specific KO profiles. Distances between these profiles based

on the respective KO activity were computed. While the overarching structure remained similar

to the comparison of functional repertoires, potentially due to the different number of shared KOs
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Different panels and colours highlight the FunC association of the ReGes. Point sizes reflect the average gene-wise
MT/MG depth ratios for a ReGe at a time-point.

(see Section 3.4.2), extensive overlap between the ReGe-specific KO activity profiles could be ob-

served (Figure 3.12). This means that even though some populations showed distinct functional

repertoires, similar functions are expressed at similar time-points.

Individual ReGes exhibited different levels of variation across their KO activity profiles over time,

as highlighted by tightly grouped or widely spread profiles (Figure 3.12). Additionally, a group-

ing according to average MT-depth/MG-depth across all genes could be observed with expression

profiles of FunC-1, FunC-3, and FunC-4 associated ReGes showing high average MT/MG ratios

throughout the time-series (Figure 3.12). The high expression ratios appear to be characteris-

tic traits of the respective organisms and also seem to be relatively robust against fluctuations in

population abundance. Overall, comparing expression patterns on a large scale confirmed the as-

sumption that gene expression and thus realized niche space seems to vary to different degrees

depending on the individual organisms which could be attributed to differences in niche breadth.
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3.4.4 Expression levels in the in situ time-series and short-term in vitro experiments

The weekly sampling scheme across the in situ time-series allowed for the characterisation of

long-term trends. To measure short-term responses, in vitro experiments were performed in which

sampled activated sludge was diluted, incubated, and treated to defined aerobic, anaerobic, or shift-

ing conditions alongside an influx of defined resources (Section 3.3.2). Samples were taken 0, 5,

and 8 hours after addition of octadecenoic acid, which showed high association to gene expres-

sion profiles(Section 3.4.3), as well as nutrients (phosphate and nitrate). MT and MG reads from

subsequent sequencing of the samples were mapped to the ReGes reconstructed from the in situ

time-series data. To track expression levels on a more general level, MT over MG ratios of se-

lected ReGes were compared in the defined conditions of the short-term experiments and to the

time-series. The ReGes showed distinct patterns of MT/MG ratios in the defined conditions (Fig-
ure 3.13). ReGes assigned to FunC-3 (A01_O1.2.4, D15_G1.18.2, D15_G4) showed a consistent

pattern, with relatively high and more variable MT/MG ratios in the time-series and increasing ac-

tivity levels in aerobic conditions and lowest in the anoxic conditions. Anaerolinae (D04_G2.5) and

Nitrospira (D04_G2.13) exhibited highest activity in the anoxic condition. D35_G2.23 assigned to

FunC-2 and the Sphingobacteriales order, as well as D37_G11, D51_G1.1.2 (FunC-1, Acidomicro-

biales order) showed low activity ratios throughout, slightly elevated in the aerobic conditions for

the Acidomicrobiales. Overall the MT/MG ratios remained in a comparable range in the short-term

experiments and the in situ time-series samples for individual ReGes.

To see how genes related to lipid metabolism are regulated MT, expression levels were tracked

and compared in the long-term time-series and the short-term experiments. The responses we

observed varied distinctly for the individual populations. In aerobic conditions genes related to

beta-oxidation, especially acyl-CoA dehydrogenases, were strongly upregulated in the Microthrix

(D51_G12̇) and to a lesser extent in closely related ReGe_D37_G11, as well as in D35_G2.23,

while the Acinetobacter-assigned ReGes (A01_O1.2.4, D15_G1.18.2) and Anaerolinae (D04_G2.5)

mostly showed rapid upregulation (0-5h) in all the conditions (Figure 3.14).

At the same time, genes related to triacylglycerol metabolism are mostly downregulated in aer-

obic and anaerobic conditions after the addition of the labelled octadecenoic acid (Figure 3.15).

Notably in D37_G11 upregulation in anaerobic conditions can be observed for diacylglycerol o-

acyltransferases. In the long-term time-series clear trends could not readily be identified as the

many genes with a function in lipid metabolism, especially for ReGes D04_G2.5, D13_G1.3.2,

D37_G11 D51_G1.1.2, highly fluctuated. Some patterns can be observed during the community

shift of November 2011, especially for D37_G11 all expression levels of lipid related genes are

strongly decreasing during these time-points.

In November 2011 a signal could also be observed in genes related to nitrogen metabolism. In

the Acinetobacter-related ReGes, as well as in Microthrix (D51_G1.1.2) and the related ReGe

D37_G11, and in the FunC-4 assigned Leptospira ReGe (D13_G1.3.2) ammonium transporters

86



Chapter 3 Results

0.0

2.5

5.0

7.5

A
01

_O
1.

2.
4

D
04

_G
2.

13

D
04

_G
2.

5

D
13

_G
1.

3.
2

D
15

_G
1.

18
.2

D
15

_G
4

D
35

_G
2.

23

D
37

_G
11

D
42

_G
1.

1.
2.

3

D
51

_G
1.

1.
2

ReGe

m
ea

n 
M

T/
M

G
 ra

tio
 p

er
 ti

m
e−

po
in

t

condition
Aerobic

Aerobic to Anoxic

Anoxic

Anoxic to Aerobic

Time-series

Figure 3.13: Ratios of metatranscriptomic and metagenomic depth of coverage in the defined short-term condi-
tions and the long-term time-series. Metatranscriptomic depth divided by metagenomic depth, MT/MG ratios for a
subset of ReGes and 5 different conditions, the long term time-series and the 4 varied aerobic conditions of the short-
term experiments. Mean ratios per sample are shown on the y-axis. Colours indicate condition with lightblue: aerobic;
darkblue: aerobic preconditioned, shifting; lightgreen: anoxic; darkgreen: anoxic preconditioned, shifting; brown: time-
series. Depth of coverage was normalized by dividing by the total read counts in a sample and multiplied by the number
of mean total read counts of all samples. To account for the influence of low MG depth, MG depths <1 were set to 1.

87



Chapter 3 Results

and glutamine synthetases are heavily upregulated during November 2011 and the following time-

points (Figure 3.16). In the short-term experiments the same genes are correspondingly upregu-

lated in the aerobic condition for the respective ReGes.
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Figure 3.14: ReGe expression levels for genes related to beta-oxidation. Expression levels as transcripts per mil-
lion (TPM) relative per ReGe. Genes associated to beta-oxidation (links inferred through gene or product-name and
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Figure 3.15: ReGe expression levels for genes related to triacylglycerol metabolism. Expression levels as transcripts
per million (TPM) relative per ReGe. Genes associated to triacylglycerol metabolism (links inferred through gene or
product-name and EC-number) are shown for the long-term time-series (left-hand side) and the short-term experimental
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product name.
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Figure 3.16: ReGe expression levels for genes related to nitrogen metabolism. Expression levels as transcripts
per million (TPM) relative per ReGe. Genes associated to glutamine, glutamate, or ammonium metabolism (links
inferred through gene or product-name and EC-number) are shown for the long-term time-series (left-hand side) and the
short-term experimental conditions (with conditions separated in different panels; right-hand side). Genes are coloured
according to modified product name.
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3.5 Discussion and outlook

The reconstruction of population-level genomes is a key consideration when integrating functional

omics data, i.e., MT, MP and MM, as it allows linking the semi-quantitative readouts to distinct

populations. The co-assembly approach of MT and MG data that has been pursued in this work

improves contiguity and data usage of the de novo assembly over single MG-based assemblies,

due to the fact that the addition of MT-assembled contigs faithfully incorporate transcribed regions

resulting in additional predictions of full length gene sequences [Narayanasamy et al., 2016]. High-

quality genomic bins were recovered from the in situ time-series samples, which yield a better

representation of the broad community dynamics compared to genomes obtained from isolates, as

these reflect rare taxa not present throughout the entire time-series.

The functional potential of the constituent populations of the community is encoded by their respec-

tive genetic complement. In this work, we utilized the functional annotation, in the form of KOs,

predicted from co-assembled contigs. The resulting FunCs represent types of similar fundamental

niches. The groups could be characterized by enriched individual KOs indicative of pathways or

functions, such as the ethylmalonyl-CoA pathway in FunC-1 or KOs related to motility in FunC-

3. Overall, the functional profiles are not as well distinguishable as expected and not classifiable

by characteristic metabolic traits. The fact that only few functional assignments are specific to a

FunC (Figure 3.6) may indicate a wide and/or shared range of substrates that could be utilized by

the individual populations. Interestingly, the populations increasing in their relative abundance in

autumn 2011 are related in their functional potential, belonging to FunC-3 and FunC-4, while the

populations decreasing in abundance generally belong to two other clusters of functional potential.

In order to delineate if fluctuating levels of available resources can be associated with the shift in

population abundances, the available resource space was estimated by utilizing extensive measure-

ments of physico-chemical parameters and untargeted metabolomics. Seasonal patterns in general

community profiles corresponded mainly to temperature and phosphate levels (Figure 3.4). Inter-

estingly, ammonium levels did not seem to have a substantial effect on shifts in community profiles.

Correlation of the levels of abiotic factors and individual abundance profiles revealed broader pat-

terns for ReGes that, on the hand, reflected FunC assignments, but on the other hand also revealed

a more fine-grained picture of potentially metabolically related groups. The differences in correla-

tions between metabolite level ratios (intra-/extracellular levels) compared to the individual levels

could be indicative of differences in processing of the respective resources, i.e., uptake or storage

(higher ratios). However, without the application of higher resolution methods, e.g., directly mea-

suring uptake of metabolites in a population-resolved way, the interpretation remains speculative.

Even though, it is not possible to delineate production and consumption of measured metabolites

directly, results indicate that temperature, glycerol, carbohydrates, and amino acids are important

factors in shaping population structures over time and could play a role in the observed community
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shift in autumn 2011. Different subsets of ReGes can be associated with these factors, for instance

a group consisting primarily of FunC-3, and FunC-4 assigned ReGes showed positive correlations

of abundances to LCFA levels and negative correlations to temperature.

ReGe-specific expression profiles were used to estimate shifts in their realized niches, as it has been

suggested that niche segregation in microbiota is achieved by transcriptional adaptations [Plichta

et al., 2016]. An activity index, even though reflecting a rather simplistic measure, could be used

to explore expression profiles over time, thereby integrating MT and MP data. Intra-ReGe compar-

isons of the resulting expression profiles over time revealed shifting patterns, to which individual

abiotic parameters could be associated. While the associated factors depend to a higher degree

on individual ReGes and to a lesser extend on the FunC assignment, similar parameters as before

exhibited the highest frequency of association, including LCFA levels. Overall, the effect size

with that individual parameters could explain variances across time-resolved expression profiles

was relatively low and only few metabolite ratios showed significant association. However, micro-

bial populations can respond to a multitude of changing resource parameters and combinations of

abiotic factors should be considered for future models.

Furthermore, a inter-ReGe comparison for profiles of expression functions per time-point revealed

general trends that could be related to different lifestyles. The degree of variance between ex-

pression profiles could point towards differences in niche breadth. Additionally, the trend that the

profiles of populations with high MT/MG ratios group suggests that these compete for resources by

constitutively high gene expression. This has been indicated to be a feature of metabolic special-

ists, while metabolic generalists can rely on fine-tuning of gene expression with lower expression

levels overall [Muller et al., 2014a]. MT and MG ratios have previously been utilized to assess

general activity of individual populations [Hultman et al., 2015]. The gene-wise average of these

ratios remains relatively stable for most bins throughout the time-series. For several ReGes, such

as several Gammaprotebacteria-assigned ReGes, the MT/MG ratios remain high throughout, while

for others such as M. parvicella, MT/MG ratios remain low in all time-points. This suggests that

MT/MG ratios could be characteristic traits of populations, varying within a certain range depend-

ing on the condition and resources. In the in vitro short-term experiments characteristic patterns in

MT/MG ratio response could be observed depending on the condition. It could be assumed that

populations activate metabolic pathways for processing the supplemented nutrients in favourable

conditions and thus shower higher expression levels. The fact that for some populations, MT/MG

ratios remained low in any of the defined conditions compared to the time-series suggests that the

supplemented nutrients did not fall in the spectrum of required resources for these populations. In

the MT readouts for the short-term experiments it can be observed that a ReGe assigned to Acineto-

bacter upregulates beta-oxidation related genes regardless of the aerobic condition, while a ReGe

assigned to M. parvicella primarily upregulates these genes in the aerobic condition, which is in

agreement with existing metabolic models for this organism [McIlroy et al., 2013].
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Extending the observations of lifestyle strategies of distinct populations points towards the follow-

ing putative scenario explaining the community shift in autumn 2011. Changes in the environment,

as can be observed in increased metabolite levels, decreasing temperatures, and slightly elevated

oxygen levels could reflect saturated resource conditions that favour specialist organisms with high

expression rates and higher growth rates. These organisms can outcompete the slow-growing gen-

eralist populations by quicker adaptation to the high availability of resources, resulting in a shift in

observed abundances. With competition among the initially successful populations and fluctuating

conditions in the long-term this advantage cannot be maintained triggering a return to a state of the

community reflecting the success of generalist species. Populations exhibiting high levels of gene

expression could face drawbacks in sparse nutrient condition due to high investment in unneeded

transcripts and proteins, while an organism with fine-tuned and overall lower expression levels

could benefit [Muller et al., 2014a].

Another factor potentially related to the community shift could be the limitation of nitrogen. Com-

pounds like ethanolamine or putrescine related to catabolism of amino acids are highly increased in

the late November 2011 time-points, coinciding with reduced intracellular amino acid levels. Cor-

respondingly, an upregulation of genes involved in nitrogen metabolism, e.g. nitrogen regulatory

proteins or glutamine synthetase, as well as ammonium transporters is observed. This could indi-

cate an increased requirement for nitrogen for the bacterial populations potentially associated to a

phase of higher growth rates. Measured ammonium levels do not exhibit fluctuations during this

period, however the levels measured in the aeration tank might not be reflective of the ammonium

levels in the floating sludge islands at the surface.

The balance between maintaining growth rates and the accumulation phenotype to maintain a com-

petitive advantage in the fluctuating environment is of great importance for potential downstream

biotechnological applications harnessing the accumulated lipids. As sparse nutrient conditions

seem to be favourable for LAOs, a spatial separation of organisms that pursue these different

lifestyle strategies along resource gradients could prevent unintended community perturbations

[Sheik et al., 2014]. While implementing these aspects will have to be addressed by engineering,

the methods presented in this work could provide the foundation for approaches to a required de-

lineation of niche ecology by omics data integration.

As a future perspective, a more accurate description of community dynamics and trophic relation-

ships shaping the system could be achieved by incorporation additional quantitative MM measure-

ments, ,i.e., the compounds for which potential associations were predicted could be measured by

targeted approaches or incorporation of labelled metabolites could be tracked. Future work will

have to confirm the seasonal effects observed in this work, by extending the time-series. Observed

results could be affirmed by incorporating biological replicates, however replicates and the extent

of the time-series and will have to be balanced due to the costs of extensive omics profiling. An-
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other important avenue, is considering additional operational parameters in the BWWTP, which

could cause perturbations with the microbial communities. E.g., sludge retention time was reduced

in August 2011 coinciding with changes in the measured phyisoc-chemical parameters, especially

for dry-weight and conductivity (Figure 3.8).

The results described here only reflect a small fraction of inferences that could be made by further

analysing the rich multi-omics dataset (Chapter 4). While in principle the WGS sequencing based

approach is also well suited for the assessment of genetic variation over time, the main interest

in this work was to characterize populations on a general functional and trophic level. Genetic

variation has also not been of a primary interest, as it was expected to be relatively low compared to

other systems and for the dominant organism M. parvicella slow growth rates, i.e., a doubling time

of around eight days, and highly clonal populations have previously been observed [Muller et al.,

2014a]. However, evolutionary aspects are of course also expected to shape the analysed microbial

community and genetic variation and strain-level analyses could be performed (Section 4.2.1).

Furthermore, the expression or transference of anti-microbial resistance within this system could

be assessed in future studies. On the one hand, anti-microbial resistance genes or toxin/antitoxin

systems are important factors in shaping community structure with various mechanisms [Riley and

Wertz, 2002; Harms et al., 2018], while on the other hand BWWTPs have been implied in the

spread and emergence of antibiotic resistance relevant to human health [Rizzo et al., 2013].

Additionally, community dynamics are also shaped by predator-prey relationships between bacte-

rial hosts and phages, for instance the success of a dominant population could be limited in a "kill

the winner"-scenario [Thingstad, 2000] that could also explain drastic shifts in a community as

was observed here. The rich multi-omics dataset described herein is ideally suited to characterize

the dynamics of the population-resolved CRISPR complement in relation to mobile elements and

phages [Martinez Arbas and Narayanasamy et al. - in preparation].
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Parts of this chapter are based on the following peer-reviewed publication:

• Emilie E.L. Muller, Karoline Faust, Stefanie Widder, Malte Herold, Susana Martinez Arbas,

Paul Wilmes (2018). Using metabolic networks to resolve ecological properties of microbiomes.

Current Opinion in Systems Biology 8: 73-80.

[Appendix C.6]
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4.1 General perspectives

Microbial communities are complex and dynamic systems shaped by environmental parameters

(Section 1.1). Recent high-throughput measurement techniques for characterising the biomolecu-

lar components of microbiomes hold the potential to assess their composition, functional potential,

and activity at an unprecedented level of detail (Section 1.3). Yet, the integration of the heteroge-

neous datasets that MG, MT, MP, and MM data represent, is a challenging task and requires devel-

opment of efficient bioinformatic approaches, especially in combination with time-series analysis

(Chapter 3).

Herein, two model systems were analysed with the aim of characterising microbial niches of dis-

tinct populations by detailing their genomic potential and expression of specific functions of rel-

evance in a biotechnological context. In Chapter 2 the metabolic capabilities of an isolate strain

were analysed by sequencing the complete genome and subsequent gene and function predictions.

Functional omics data (MT, MP) was used to characterise the lifestyle of the strain in culture

medium and growing on chalcopyrite. Furthermore, mixed cultures of other acidophiles were as-

sessed in the context of chalcopyrite bioleaching. The dataset analysed in Chapter 3 represents a

time-series of lipid accumulating organisms in wastewater. Relationships between different popu-

lations, their functional potential, and gene expression in association to shifting abiotic factor levels

was detailed by integrating multi-omic data.

In this work, emphasis was directed towards population-level analyses, i.e., the characterisation

of constituent members of microbial communities. Specifically, a pronounced difference between

the herein studied systems lies in their diversity. The bioleaching environment represents rather

extreme conditions and is thus associated with a lower diversity [Baker and Banfield, 2003] com-

pared to the BWWTP environment. Accordingly, while the analyses share many commonalities,

not least the integration of multi-omic data, the aim of obtaining an in-depth understanding of mi-

crobial niches was pursued from two different angles: a) reconstruction of a model system based

on known populations b) reconstruction of populations from an in situ system.

These approaches have also been described as bottom-up and top-down approaches [Zengler,

2009]. Naturally, they provide a different level of resolution on the biological mechanisms stud-

ied, and should ideally be applied in a complementary way to characterise microbial communities

[Zengler, 2009]. Using cultivable strains in defined settings allowed a detailed characterisation

of functional potential and expressed functions, which led to inferences that potentially could be

scaled up and tested in a setting closer the foreseen application of biomining (Section 2.5.2). On the

other hand, the patterns observed in large-scale analyses can determine broader functional profiles

of constituent populations in microbial communities. Due to the multitude of potential interac-

tions within complexer consortia, a more mechanistic understanding of metabolic processes can be

obtained by transferring environmental samples to defined conditions. These microcosm experi-
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ments resemble a bridge between top-down and bottom-up approaches. Here, community samples

are cultured in conditions resembling the in situ environment, usually for a certain period of time.

Similarly to the approach described in Section 3.4.4 this allows targeted perturbations of the sys-

tem e.g. by varying conditions, such as oxygen or temperature or addition of defined or labelled

nutrients.

Integrating data derived from different experimental setups or different temporal and spatial scales,

is a key challenge in defining a framework capable of predicting community phenotypes in complex

consortia. The ability to characterize microbial niches over time and in changing environmental

conditions will enable us to systematically define and alter the realised niches of constituent pop-

ulations in situ and manage community conferred traits, leading to exciting prospects for biotech-

nology [Muller et al., 2018].

4.2 Recovery of representative genomes for distinct populations

For in vitro experiments with synthetic microbial communities as described in Chapter 2, com-

monly reference genomes derived from isolate culture of the utilized strains are available from

databases such as NCBI GenBank [Clark et al., 2016] or the JGI IMG/M database [Markowitz

et al., 2014]. However, non-model organisms are typically underepresented or completely missing

from the reference databases. With a decrease in cost and improvements in DNA sequencing meth-

ods in recent years (Section 1.3.1) obtaining high-quality reference genome sequences from isolate

culture has become feasible, as was demonstrated in Section 2.4.1 for L. ferriphilum for which a

circular chromosomal contig of 2.5 Mbp could directly be assembled from third-generation se-

quencing reads. Furthermore, long-read sequencing methods have become a cost-efficient method

to assemble isolate microbial genomes with high accuracy [Liao et al., 2015] and can be extended

by methylation profiles [Wibberg et al., 2016; Fomenkov et al., 2017]. Assembly methods have to

be further refined for being applicable in MG sequencing, but have also been successfully utilized

to recover complete genomes from low-diversity microbial communities [Driscoll et al., 2017].

However, given the higher requirements in terms of quantity and quality of DNA [van Dijk et al.,

2018], they are often limited to cultured isolates.

An advantage of de novo assembly-based approaches in general is the possibility to discover pre-

viously uncharacterised organisms [Laczny et al., 2016; Tully et al., 2018; Delmont et al., 2018],

thus truly assessing microbial diversity [Keller and Zengler, 2004]. As demonstrated herein, this

allows the analysis of the respective organisms’ functional potential as well activity without the

requirement of a priori assumptions. However, MAGs derived from the environmental samples

are in general of lower quality in terms of completeness and contamination compared to genomes

derived from isolate sequencing. While several high-quality MAGs were recovered herein (Chap-
ter 3), various MAGs remained incomplete or potentially contaminated, requiring stringent filtering
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criteria.

Tracking populations over time posed an additional challenge for recovering representative MAGs.

Initial attempts with multiple sample binning that relied on abundance profiles [Nielsen et al.,

2014; Alneberg et al., 2014] were unable to resolve population-level genomes, as was expected

due to their requirement of independent samples which was not satisfied by the time-series dataset.

Linking MAGs from different time-points or connected samples, was demonstrated by connecting

MAGs through essential marker gene content [Wampach et al. 2018 - Appendix C.9] or through

genome-wide signature comparison [Olm et al., 2017] yielding representative genomes as shown

in Chapter 3.

4.2.1 Improving the reconstruction of population-level genomes

State-of-the-art assembly and binning strategies have shown to enhance MAG quality [Parks et al.,

2017]. Recently, an ensemble approach that combines several binning tools has shown to out-

perform the individual methods in terms of number, completeness, and contamination of MAGs

recovered from microbial communities of different environments and varying complexity [Sieber

et al., 2018]. This approach could be implemented in two settings, either by optimizing the quality

of bins derived from a single samples and/or by combining bin sets across multiple samples.

For the analysis presented in Chapter 3), more complete genomic reconstructions could allow

estimation of growth rates based on MG coverage [Brown et al., 2016]. As the results point towards

differences in growth strategies of distinct populations across different season, this could be an

important direction for future work. Additionally, combining isolate culture and MG/MT derived

genomes is expected to provide additional information, e.g., by using the isolate references for a

guided assembly to recover MAGs of lowly abundant taxa [Cepeda et al., 2017]. Additionally,

metabolic reconstructions obtained from MAGs can also be applied to identify required conditions

for isolate cultures [Pope et al., 2011].

Furthermore, time-series analysis could be augmented by assessing strain-level dynamics, e.g.,

by profiling strain-specific single nucleotide variants in combination with species-specific marker

genes [Truong et al., 2017]. Strain-level analyses would provide a more fine-grained picture, and

could highlight phenotypic differences due to intra-species genomic variation [Mallick et al., 2017].

An approach to track genomic variation, while maintaining an population-level association could

also be realized by pursuing a pangenome-based approach [Delmont and Eren, 2018] instead of

selecting representative MAGs from individual time-points (Chapter 3). However, strain-level

based analysis are typically restricted to genomic regions that are found within the species, i.e,

single nucleotide variants in shared genes [Truong et al., 2017]. Strains can differ also in the genes

or plasmids they contain, which remains largely unexplored to date.
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4.3 Genome annotation

Genome annotation is an important subsequent step to the recovery of population-level genomes

and is required to characterise the functional complement of the sequenced population. In gen-

eral, the position of genetic features, such as CDS, tRNAs, rRNAs or other coding and non-coding

regions of interest are determined within the genome sequence, commonly by automated compu-

tational tools. Reliable annotation, also of protein functions, is a prerequisite for any inferences on

functional repertoire and gene expression. While automatic tools can be applied for the accurate

annotation of large-scale datasets, computational predictions can also introduce erroneous anno-

tations, e.g., by propagation of misannotations from existing databases [Richardson and Watson,

2013]. In this work, multiple sources or databases were used to generate the respective functional

annotations. As the combination and weighting of multiple annotation sources poses unsolved

challenges, manual curation by experts is often required, yet only feasible for a limited num-

ber of genomes. As described in Section 2.3.5, results of multiple automated prediction tools

were utilized to manually augment existing annotations and infer protein functions and assign-

ments to functional categories or phenotypic traits. However, large-scale datasets (Chapter 3)

preclude comprehensive manual curation of functional annotations. Here, functional annotations

were weighted by probability of correct assignment and the best-scoring protein annotation was

selected (Section 3.3.7). The inference of functional categories and protein-to-reaction links was

based on the of union several annotations favouring sensitivity over specificity. Similarly, the char-

acterisation of the expression for specific gene functions was based on multiple annotated features

(Section 3.4.4).

Methods for consolidating annotations of multiple sources could be used to improve functional pre-

dictions [Cozzetto et al., 2013]. Furthermore, also the incorporation of omics data can be applied

to improve annotations (Section 1.3.5). Omic data aided driven approaches could could be incor-

porated to determine putatively false annotations. Or combined in an accessible framework omic

data could be used to visually inspect ambiguous cases, e.g. with divergent automated predictions.

4.4 Data management

Omics measurements and subsequent processing with bioinformatic tools and pipelines can gen-

erate massive amounts of data. Therefore, in addition to computationally efficient processing of

these datasets, strategies for data management are of key concern. Public databases for storage

and access of omics data have been established, such as the NCBI short read archive [Leinonen

et al., 2011] for sequencing data or the PRIDE repository for proteomics data [Jones, 2006]. These

however, are often not well suited for combining heterogeneous data types and frameworks for

more flexible solutions are required [Bauch et al., 2011]. Organism specific databases exist that
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offer warehousing and web-service for analysis Kalderimis et al. [2014]. In addition, platforms

for collaborative data management in systems biology projects have emerged [Wolstencroft et al.,

2017].

Specifically for omics data integration, data management is a key concern. Databases capable of

storing and associating data of different omic levels can greatly facilitate analyses. Non-relational

databases are suitable to store omics data associations to due their flexibility in data structures. In

this work, a database was constructed to link contigs to, e.g., gene associations and bin assign-

ments, as well as functional annotations for which it was primarily used in the analysis workflow

(Section 3.3.7). This approach could be extended by associating functional readouts, such as MT

read-counts or MP spectral counts per sample. A flexible database scheme could be a powerful tool

for omics data integration in time-series analyses and could be combined with existing platforms

that provide methods for statistical multi-omics analyses and visualisation such as anvio’o [Eren

et al., 2015] or mixOmics [Rohart et al., 2017].

4.5 Integration of omics data in community models

Building on a detailed characterisation of microbial communities with omic data, computational

modelling approaches are envisaged to provide a solution for disentangling the complex dynamics

in microbial systems and for obtaining a predictive understanding required for controlling commu-

nity phenotypes [Widder et al., 2016]. Yet, a missing link between empirical data and theoretical

models needs to be overcome and the integration of omic data in models is an area of great interest

[Widder et al., 2016].

Metabolic modelling methods can broadly be grouped into two different groups, stoichiometric ap-

proaches that model metabolism quantitatively [Bordbar et al., 2014] and topological or network-

based methods more suitable for qualitative modelling [Faust et al., 2011]. Stoichiometric models

can be based on metabolic reconstructions derived from genomic data, i.,e., gene-to-reaction re-

lationships and curated with data derived from physiological experiments [Feist et al., 2009] and

frameworks for modelling microbial communities have been developed [Khandelwal et al., 2013].

While the generation of comprehensive genome scale models requires manual curation [Thiele and

Palsson, 2010], which makes the application for complex communities challenging, recent efforts

to automate curation steps showed that reconstructing a large set of genome scale models can be

feasible [Magnúsdóttir et al., 2016]. Theoretical approaches have been used to elucidate ecolog-

ical interactions by potential exchanges of metabolites [Zelezniak et al., 2015]. Algorithms for

the integration of omic datasets for stoichiometric models exist for transcriptomics, proteomics,

or metabolics data. However, a framework for an integrated multi-omics driven approach is still

lacking.

Network-based approaches in microbial ecology have primarily focused on the integration popu-

101



Chapter 4 Integration of omics data in community models

lation abundances to formulate co-occurence networks Berry and Widder [2014]. These methods

are well established for characterising time dynamics in ecology [Faust and Raes, 2012]. Lim-

itations of these approaches include for example that the interaction strengths between different

species is often assumed to be constant [Faust and Raes, 2012]. Additionally, networks based on

co-expression data can be difficult to interpret, as observed correlations might arise from indirect

interactions. Similarly, network-based approaches can also be pursued by constructing models

directly from various omics data types. For example, co-expression networks can be generated

from proteomic or transcriptomic data [Manzoni et al., 2018]. Techniques to integrate networks

derived from transcriptomics and proteomics have been described [Walley et al., 2016] and could

be pursued in the context of microbial communities.

Both datasets described within this work, could be well suited to be applied for omics integration

in computational modelling approaches. The synthetic bioleaching communities could be used to

characterise metabolic interactions based on detailed metabolic reconstructions inferred from the

in-depth characterisation of functional potential. Also previous metabolic reconstructions could

be utilized as reference points, as a stoichiometric model for Leptospirillum ferroxidans has been

formulated [Merino et al., 2010]. Also, models for multiple bioleaching strains could be com-

bined, highlighting the interactions of hetero- and autotroph species [Merino et al., 2014]. Similar

approaches could be extended with functional omics data, as well as the physiological leaching

data for the system consisting of three organisms. However, also resolving interactions on a spa-

tial scale, i.e., on the biofilm level, is important in the system due to the relevance of attachment

in bioleaching [Rohwerder et al., 2003]. This could be achieved with particle-based modelling.

Classifying interactions between bioleaching organisms could also be realized by co-expression

analyses. Here, the reduced complexity of the system and the possibility to formulate data-driven

hypotheses on interactions from the omics data (Chapter 2) could be beneficial for validating

network-derived predictions.

It remains to be seen if stoichiometric modelling approaching could also be applied for the LAO

time-series data. The quality of the recovered population-level genomes could pose a challenge,

even if it could be improved (Section 4.2.1). However, also gapfilling methods that can be applied

on an individual and/or on a community level [Henry et al., 2016] could be tested. A comprehensive

set of reference genome scale models, as exists for the human gut [Magnúsdóttir et al., 2016], is

lacking for the wastewater system. Nonetheless, it would be interesting to see, if community scale

models can reproduce different life-style strategies inferred from the reconstruction of metabolic

niches. The different growth strategies of the individual populations could pose an additional chal-

lenge as some community modelling frameworks can only account for this in a well-defined system

[Gottstein et al., 2016]. Due to the temporal nature data, non-model organisms, and the complexity

of the system, topological or network-based approaches seem more feasible, at least at an initial

stage. Data-driven metabolic network reconstruction on the LAO system has been applied for de-
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tecting keystone genes at individual time-points [Roume et al., 2015] and it could be promising

exploring a similar concept in a time-resolved manner.

A critical consideration for multi-omics integration especially for computational modelling would

be the signal to noise ratio in the data. Strategies to classify and filter noise that have been described

for dynamic co-abundance models [Faust et al., 2018] could also allow to asses noise in multi-omic

data derived networks.

Future augmented community-level metabolic models need to account for trophic interactions,

changing environmental conditions, and spatial scales ideally by integrating dynamic community

models with genome-scale metabolic models [Muller et al., 2018].
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Appendix A.3

A.1 Additional file 2.1: L. ferriphilum genelists with functional cate-
gories

Lists of functional categories and gene functions to protein coding genes (Tables S1 - S8) The file

is available in the original publication [Appendix C.1] and the following link.

https://aem.asm.org/highwire/filestream/15501/field_highwire_adjunct_

files/0/zam003188291s1.pdf.

A.2 Additional file 2.2: L. ferriphilum combined omics data and ad-
ditional functional annotations

The file is available via the original publication [Appendix C.1] and available through the following

link:

https://doi.org/10.15490/fairdomhub.1.datafile.1807.5.

A.3 Additional File 3.1: Overview of recovered ReGes and isolates

An overview of recovered representative genomes and sequenced isolate genomes recovered from

oleaginous floating sludge. The file is available under the following link:

https://dropit.uni.lu/invitations?share=3414a4385a3912d3b729&dl=0
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Figure B.1: Relative abundance based on OTU-counts based on extracted ribotags (region v4) from the metagenomic
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Figure B.3: Correlations between ReGes (completeness-filtered set of 78 ReGes) relative abundance time-courses and
time-courses of pool and z-score normalized metabolite intensities (median of measurement replicates) and physico-
chemical parameter levels (Spearman rank correlation, cor.test in R). Red indicates a positive correlation coefficient,
respectively blue shows negative coefficients. Column annotation tracks indicate class- and phylum-level taxonomic
assignments and FunC assignments. Row annotation tracks show mean and sum of absolute correlation coefficients of
the respective parameter over all ReGe abundances.
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Fatty acid degradation ratio of active genes associated
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link) divided by all active genes per time-point. Columns show the values of the ratios for a subset of selected ReGes
(rows).

143



Appendix B.1

−2

−1

0

1

17
−

04
−

20
12

29
−

03
−

20
11

24
−

06
−

20
11

12
−

09
−

20
11

29
−

11
−

20
11

03
−

06
−

20
11

04
−

04
−

20
12

08
−

02
−

20
12

28
−

12
−

20
11

25
−

01
−

20
12

22
−

03
−

20
12

19
−

01
−

20
12

13
−

05
−

20
11

01
−

02
−

20
12

23
−

11
−

20
11

28
−

03
−

20
12

08
−

03
−

20
12

08
−

07
−

20
11

29
−

02
−

20
12

16
−

11
−

20
11

23
−

02
−

20
12

10
−

04
−

20
12

02
−

11
−

20
11

14
−

04
−

20
11

21
−

04
−

20
11

14
−

02
−

20
12

09
−

06
−

20
11

21
−

12
−

20
11

28
−

09
−

20
11

05
−

09
−

20
11

19
−

09
−

20
11

12
−

10
−

20
11

27
−

05
−

20
11

29
−

08
−

20
11

29
−

04
−

20
11

11
−

01
−

20
12

21
−

03
−

20
11

03
−

01
−

20
12

05
−

04
−

20
11

20
−

05
−

20
11

14
−

03
−

20
12

17
−

06
−

20
11

19
−

08
−

20
11

07
−

11
−

20
11

05
−

08
−

20
11

06
−

05
−

20
11

01
−

07
−

20
11

03
−

05
−

20
12

05
−

10
−

20
11

25
−

04
−

20
12

11
−

08
−

20
11

date

lo
g1

0(
m

ed
ia

n 
of

 m
ea

su
re

m
en

t r
ep

lic
at

es
)

type

extracellular

intracellular

metabolite

hexadecanoic acid

octadecadienoic acid

octadecanoic acid

octadecenoic acid

Figure B.5: Intensities of pool-normalized metabolite intensities over time. Points represent log10-scaled intensity
values (median of measurement replicates) with triangles for intracellular measurements and circles for extracellular
measurements. Dashed lines represent a loess smoothing of the intracellular metabolite intensities, while solid lines
show a loess smoothing of extracellular metabolite intensities. Smoothing lines over the whole set of grouped metabo-
lite intensities are shown. Only confidently identifiable metabolites present in the both measurements for intra- and
extracellular metabolites are shown and represent the most abundant derivate. Derivate names have been replaced with
associated CHEBI-nomenclature names.
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Figure B.6: Intensities of pool-normalized metabolite intensities over time. Points represent log10-scaled intensity
values (median of measurement replicates) with triangles for intracellular measurements and circles for extracellular
measurements. Dashed lines represent a loess smoothing of the intracellular metabolite intensities, while solid lines
show a loess smoothing of extracellular metabolite intensities. Smoothing lines over the whole set of grouped metabo-
lite intensities are shown. Only confidently identifiable metabolites present in the both measurements for intra- and
extracellular metabolites are shown and represent the most abundant derivate. Derivate names have been replaced with
associated CHEBI-nomenclature names.
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Figure B.7: Intensities of pool-normalized metabolite intensities over time. Points represent log10-scaled intensity
values (median of measurement replicates) with triangles for intracellular measurements and circles for extracellular
measurements. Dashed lines represent a loess smoothing of the intracellular metabolite intensities, while solid lines
show a loess smoothing of extracellular metabolite intensities. Smoothing lines over the whole set of grouped metabo-
lite intensities are shown. Only confidently identifiable metabolites present in the both measurements for intra- and
extracellular metabolites are shown and represent the most abundant derivate. Derivate names have been replaced with
associated CHEBI-nomenclature names.
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Figure B.8: Intensities of pool-normalized metabolite intensities over time. Points represent log10-scaled intensity
values (median of measurement replicates) with triangles for intracellular measurements and circles for extracellular
measurements. Dashed lines represent a loess smoothing of the intracellular metabolite intensities, while solid lines
show a loess smoothing of extracellular metabolite intensities. Smoothing lines over the whole set of grouped metabo-
lite intensities are shown. Only confidently identifiable metabolites present in the both measurements for intra- and
extracellular metabolites are shown and represent the most abundant derivate. Derivate names have been replaced with
associated CHEBI-nomenclature names.
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Figure B.9: Intensities of pool-normalized metabolite intensities over time. Points represent log10-scaled intensity
values (median of measurement replicates) with triangles for intracellular measurements and circles for extracellular
measurements. Dashed lines represent a loess smoothing of the intracellular metabolite intensities, while solid lines
show a loess smoothing of extracellular metabolite intensities. Smoothing lines over the whole set of grouped metabo-
lite intensities are shown. Only confidently identifiable metabolites present in the both measurements for intra- and
extracellular metabolites are shown and represent the most abundant derivate. Derivate names have been replaced with
associated CHEBI-nomenclature names.

148



Appendix B.1

D
15_G

4
D

04_L6
D

03_O
1.31.2

D
04_G

2.5
A

01_O
1.2.4

D
49_O

1
D

20_O
1.17

D
42_G

1.1.2.3
D

15_G
1.18.2

D
38_G

2.3
D

44_G
14

D
28_O

5
D

47_P
30

D
36_G

7
D

15_L1.3
D

05_G
3.4

D
13_G

1.3.2
D

08_P
1.44

D
05_L3.17

D
23_P

13
D

35_G
2.27

D
11_O

1.27.3
D

15_G
1.8

D
36_L1.15

D
51_L1.24

D
36_L1.41

D
43_G

6
D

15_O
1.7.1.2.1

D
36_L2.1.6.2

D
12_L1.3

D
20_G

1.24
D

30_P
23

D
13_L7

D
46_L2.48

D
28_L2.9

D
04_O

2.19
D

32_O
1.57

D
05_G

3.14.1
D

37_L8
D

30_O
2.4.2.2.2

D
51_G

9
D

24_L14
D

47_O
5

D
20_O

1.13
D

31_O
1.3.2

D
35_G

2.61
D

22_L1.5.4
D

04_G
2.13

D
11_O

1.7
D

22_G
1.42.2

D
35_G

2.16
D

51_G
1.1.2

D
37_G

1.25.1
D

44_O
1.1.2.2.1.2.7

D
16_O

2.2.1.1.14
D

19_G
1.34.1.1

D
47_G

1.71.2
D

26_L1.23
D

35_G
2.23

D
08_O

6
D

37_G
5

D
39_G

1.35
D

29_L5
D

33_L1.8.2
D

16_L3.1.1
D

29_O
1.25

D
20_P

23
D

37_G
11

D
08_G

1.16
D

41_O
4

D
30_G

5
D

49_G
15

D
39_O

1.57
D

42_G
14

D
27_L1.3.2

D
10_O

1.45
D

09_G
1.28

D
47_O

14

Glycerol_3_phosphoric_acid_4TMS_nonpolar_intracellular
Ratiop_Adenosine_4TMS
Ratiop_Inositol_6TMS
Ratiop_Alanine_2TMS
Ratiop_Malic_acid_3TMS
Ratiop_Proline_2TMS
Ratiop_Valine_2TMS
Ratiop_Glucose_1_1MeOX_5TMS
Ratiop_Uracil_2TMS
Ratiop_4_Aminobutanoic_acid_3TMS
Ratiop_Methionine_2TMS
Ratiop_Leucine_2TMS
Ratiop_Aspartic_acid_3TMS
Ratiop_Glycine_3TMS
Ratiop_Isoleucine_2TMS
Ratiop_Fructose_1_1MeOX_5TMS
Ratiop_Phenylalanine_2TMS
Rationp_Cholesterol_1TMS
Ratiop_Sucrose_8TMS
Rationp_Octadecanoic_acid_1TMS
Oxygen_manual_mg.L
Conductivity_manual_mS.cm
Fructose_1_1MeOX_5TMS_polar_extracellular
NH4_online_mg.L
Ratiop_Threonine_3TMS
Ratiop_Serine_3TMS
Ratiop_Putrescine_4TMS
Ratiop_Mannitol_6TMS
Ratiop_Glycerol_3TMS
Ratiop_Glycerol_3_phosphoric_acid_4TMS
Ratiop_Glycerol_2_phosphoric_acid_4TMS
Ratiop_Glyceric_acid_3TMS
Ratiop_Ethanolamine_3TMS
Ratiop_Glutamic_acid_3TMS
NO3_online_mg.L
Rationp_Hexadecanoic_acid_1TMS
Malonic_acid_2TMS_polar_extracellular
Fructose_1_1MeOX_5TMS_polar_intracellular
Thymine_2TMS_polar_intracellular
Ratiop_Lactose_1_xTMS
Ratiop_Succinic_acid_2TMS
Rationp_Octadecenoic_acid_1TMS
Ratiop_Thymine_2TMS
X4_Aminobutanoic_acid_3TMS_polar_intracellular
Isoleucine_2TMS_polar_intracellular
Methionine_2TMS_polar_intracellular
Leucine_2TMS_polar_intracellular
Uracil_2TMS_polar_intracellular
Glycine_3TMS_polar_intracellular
Melezitose_1_xTMS_polar_intracellular
Adenosine_4TMS_polar_intracellular
Proline_2TMS_polar_extracellular
Glyceric_acid_3TMS_polar_intracellular
Sucrose_8TMS_polar_extracellular
PO4_online_mg.L
X4_Aminobutanoic_acid_3TMS_polar_extracellular
Valine_2TMS_polar_extracellular
Lysine_3TMS_polar_extracellular
Aspartic_acid_3TMS_polar_extracellular
Leucine_2TMS_polar_extracellular
Lysine_4TMS_polar_extracellular
Melezitose_2_xTMS_polar_intracellular
Glyceric_acid_3TMS_polar_extracellular
Uracil_2TMS_polar_extracellular
Glutamic_acid_3TMS_polar_extracellular
Malic_acid_3TMS_polar_extracellular
Phenylalanine_2TMS_polar_extracellular
Thymine_2TMS_polar_extracellular
Alanine_2TMS_polar_extracellular
Isoleucine_2TMS_polar_extracellular
Serine_3TMS_polar_extracellular
Threonine_3TMS_polar_extracellular
Glycine_3TMS_polar_extracellular
Methionine_2TMS_polar_extracellular
Hexadecanoic_acid_1TMS_nonpolar_intracellular
Octadecanoic_acid_1TMS_nonpolar_intracellular
Glycerol_2_phosphoric_acid_4TMS_polar_intracellular
Glycerol_3_phosphoric_acid_4TMS_polar_intracellular
Glutamic_acid_3TMS_polar_intracellular
Phenylalanine_2TMS_polar_intracellular
Proline_2TMS_polar_intracellular
Serine_3TMS_polar_intracellular
Alanine_2TMS_polar_intracellular
Threonine_3TMS_polar_intracellular
Sucrose_8TMS_polar_intracellular
Ratiop_Mannose_1_1MeOX_5TMS
Aspartic_acid_3TMS_polar_intracellular
Valine_2TMS_polar_intracellular
Malic_acid_3TMS_polar_intracellular
Temp_Air
Temp_manual
Glycerol_3TMS_polar_extracellular
Octadecadienoic_acid_1TMS_nonpolar_intracellular
Octadecenoic_acid_1TMS_nonpolar_intracellular
Lactose_1_xTMS_polar_extracellular
Glucose_1_1MeOX_5TMS_polar_extracellular
Mannose_1_1MeOX_5TMS_polar_extracellular
Putrescine_4TMS_polar_extracellular
Putrescine_4TMS_polar_intracellular
Octadecadienoic_acid_1TMS_nonpolar_extracellular
Octadecanoic_acid_1TMS_nonpolar_extracellular
Mannitol_6TMS_polar_extracellular
Octadecenoic_acid_1TMS_nonpolar_extracellular
Glycerol_3TMS_polar_intracellular
Hexadecanoic_acid_1TMS_nonpolar_extracellular
Lactose_1_xTMS_polar_intracellular
Glucose_1_1MeOX_5TMS_polar_intracellular
Mannose_1_1MeOX_5TMS_polar_intracellular
Adenosine_4TMS_polar_extracellular
Glycerol_2_phosphoric_acid_4TMS_polar_extracellular
Glycerol_3_phosphoric_acid_4TMS_polar_extracellular

phylum
class
FunC

m
eans

sum
s

FunC
1
2
3
4

class
Acidimicrobiia
Actinobacteria
Anaerolineae
Betaproteobacteria
Deltaproteobacteria
Flavobacteriia
Gammaproteobacteria
Nitrospira
Sphingobacteriia
Spirochaetia
Verrucomicrobiae

phylum
Proteobacteria
Nitrospirae
Chloroflexi
Actinobacteria
Bacteroidetes
Acidobacteria
Spirochaetes
Verrucomicrobia
Candidatus Cloacimonetes

sums
5

0

means
0.06

0

0

0.05

0.1

0.15

0.2

Figure B.10: Correlations between ReGes (completeness-filtered set of 78 ReGes) relative abundance time-courses and
time-courses of pool and z-score normalized metabolite intensities (median of measurement replicates) and physico-
chemical parameter levels (Spearman rank correlation, cor.test in R). Red indicates a positive correlation coefficient,
respectively blue shows negative coefficients. Column annotation tracks indicate class- and phylum-level taxonomic
assignments and FunC assignments. Row annotation tracks show mean and sum of absolute correlation coefficients of
the respective parameter over all ReGe abundances.

149





APPENDIX C

ARTICLE MANUSCRIPTS

The appendix contains all manuscripts authored as a first author or co-author. Journal formatted

articles are provided for published manuscripts. Manuscripts currently under review are provided

as the submitted versions.

150





Appendix C.1

C.1 Multi-omics Reveals the Lifestyle of the Acidophilic, Mineral-
Oxidizing Model Species Leptospirillum ferriphilumT.

Stephan Christel†, Malte Herold†, Sören Bellenberg, Mohamed El Hajjami, Antoine Buetti-Dinh,

Igor Pivkin, Wolfgang Sand, Paul Wilmes, Ansgar Poetsch, Mark Dopson

2017

Applied and Environmental Microbiology 84: e02091-17

DOI: 10.1128/AEM.02091-17

Contributions of author include:

• Coordination

• Analytical research design

• Software development

• Data analysis and visualization

• Writing and revision of manuscript

†Co-first author

151



Multi-omics Reveals the Lifestyle of the Acidophilic, Mineral-
Oxidizing Model Species Leptospirillum ferriphilumT
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ABSTRACT Leptospirillum ferriphilum plays a major role in acidic, metal-rich environ-
ments, where it represents one of the most prevalent iron oxidizers. These milieus
include acid rock and mine drainage as well as biomining operations. Despite its
perceived importance, no complete genome sequence of the type strain of this
model species is available, limiting the possibilities to investigate the strategies and
adaptations that Leptospirillum ferriphilum DSM 14647T (here referred to as Leptospi-
rillum ferriphilumT) applies to survive and compete in its niche. This study presents a
complete, circular genome of Leptospirillum ferriphilumT obtained by PacBio single-
molecule real-time (SMRT) long-read sequencing for use as a high-quality reference.
Analysis of the functionally annotated genome, mRNA transcripts, and protein con-
centrations revealed a previously undiscovered nitrogenase cluster for atmospheric
nitrogen fixation and elucidated metabolic systems taking part in energy conserva-
tion, carbon fixation, pH homeostasis, heavy metal tolerance, the oxidative stress re-
sponse, chemotaxis and motility, quorum sensing, and biofilm formation. Addition-
ally, mRNA transcript counts and protein concentrations were compared between
cells grown in continuous culture using ferrous iron as the substrate and those
grown in bioleaching cultures containing chalcopyrite (CuFeS2). Adaptations of Lep-
tospirillum ferriphilumT to growth on chalcopyrite included the possibly enhanced
production of reducing power, reduced carbon dioxide fixation, as well as elevated
levels of RNA transcripts and proteins involved in heavy metal resistance, with spe-
cial emphasis on copper efflux systems. Finally, the expression and translation of
genes responsible for chemotaxis and motility were enhanced.

IMPORTANCE Leptospirillum ferriphilum is one of the most important iron oxidizers
in the context of acidic and metal-rich environments during moderately thermophilic
biomining. A high-quality circular genome of Leptospirillum ferriphilumT coupled with
functional omics data provides new insights into its metabolic properties, such as
the novel identification of genes for atmospheric nitrogen fixation, and represents
an essential step for further accurate proteomic and transcriptomic investigation of
this acidophile model species in the future. Additionally, light is shed on adaptation
strategies of Leptospirillum ferriphilumT for growth on the copper mineral chalcopy-
rite. These data can be applied to deepen our understanding and optimization of bi-
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oleaching and biooxidation, techniques that present sustainable and environmen-
tally friendly alternatives to many traditional methods for metal extraction.

KEYWORDS Leptospirillum, acidophile, biomining, genome, metabolism, omics,
proteome, transcriptome

The Leptospirillum genus comprises four described species of Gram-negative, chemo-
lithoautotrophic, and acidophilic bacteria: Leptospirillum ferrooxidans (group I) (1),

Leptospirillum rubarum (group II) (2), and Leptospirillum ferriphilum and “Leptospirillum
ferrodiazotrophum” (group III) (2, 3). In addition, community genomics has identified a
further candidate species, “Leptospirillum sp. group IV UBA BS” (2, 4). The original
description of the L. ferriphilum type strain gives a temperature optimum of 30°C to
37°C, although many isolated strains are defined as being moderately thermophilic
(reviewed in reference 5). Leptospirillum ferriphilum DSM 14647T (here referred to as
Leptospirillum ferriphilumT) is an obligate aerobe that is capable of gaining energy only
via ferrous iron (Fe2�) oxidation (3). Finally, it has a pH optimum of 1.4 to 1.8, which
requires the cells to maintain an internal, cytoplasmic pH close to neutral in the face of
an �104-fold proton gradient across the cytoplasmic membrane. As a result, acido-
philes have several pH homeostasis mechanisms, including primary (1°) and secondary
(2°) proton pumps, an inside positive membrane potential that hinders the influx of
protons, proton-consuming reactions, and a cytoplasmic buffering capacity (reviewed
in reference 6). Although several Leptospirillum spp. have been identified, current
knowledge of how they obtain energy and nutrients for growth is limited. In particular,
mechanisms for nitrogen fixation have been under debate. Additionally, the under-
standing of how members of the leptospirilli survive at acidic pH lags behind that of
other acidophiles, such as those from the Acidithiobacillus genus (reviewed in refer-
ences 5 and 7–9).

Leptospirillum spp. are often identified in sulfide mineral-containing environments,
where they catalyze the cleavage of the metal sulfide bond by oxidizing ferrous iron
(Fe2�) back to ferric iron (Fe3�) (10). The result of metal sulfide oxidation is an acidic
solution typically containing high metal concentrations (reviewed in references 11 and
12). This requires acidophiles to have multiple chemical and biological metal resistance
strategies, such as efflux pumps, metal sequestration methods, and the ability to reduce
metal uptake via the inside positive membrane potential (reviewed in references 12 and
13). A second consequence of high iron concentrations is the need to mitigate
oxidative stress (14), as acidophiles generate intracellular reactive oxygen species (ROS)
as well as being exposed to extracellular ROS sources generated by reactions between
water or molecular oxygen, dissolved metal ions, and/or surface-bound metal ions on
metal sulfides (15, 16). As mentioned above, knowledge of how the leptospirilli survive
high metal concentrations and ROS is limited.

The ability to catalyze mineral dissolution has been exploited in the industrial
process of “biomining” (reviewed in reference 17), where L. ferriphilum dominates
biooxidation tanks for the recovery of gold (3) and has been identified in bioleaching
heaps for the recovery of copper from chalcopyrite (CuFeS2) (e.g., see reference 18).
However, efficient chalcopyrite dissolution in low-cost bioheaps is challenging under
mesophilic and moderately thermophilic conditions (19). A critical stage in biomining
is cell attachment and biofilm formation on the ore surface (11). Consequently, under-
standing the genetic basis for cell attachment on metal sulfides may help in the design
of strategies to stimulate bioleaching rates, speed up the initiation of bioleaching
operations, and improve the persistence of active cells in heap bioleaching operations.

The identification of the genes responsible for biological processes in acidophiles
has been hindered until the very recent development of gene knockout systems (e.g.,
see reference 20), and these methods are still lacking for the leptospirilli. A method to
circumvent this limitation is the identification of gene homologs in genome sequences
and “metagenome-assembled genomes” (MAGs) that have been used to construct
models of individual acidophile strains (reviewed in reference 21) through to commu-
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nity interactions (22). Although several genomes and MAGs from L. ferriphilum strains
have been reported (Table 1), the fact that only a draft genome of the L. ferriphilum type
strain is available has hindered efforts to elucidate its metabolic properties and
evolutionary relationships with the other leptospirilli.

The present study provides the complete, closed genome of L. ferriphilumT that
allows metabolic insights and reveals evolutionary relationships to the leptospirilli and
other acidophiles. In addition, we have used RNA transcript sequencing and proteomics
to identify the genes used for growth on Fe2� and during biomining of chalcopyrite.

RESULTS AND DISCUSSION
General genome data. The sequencing and assembly of L. ferriphilumT DNA gave

two polished contiguous sequences (contigs) (Table 2; see also Report S1 in the
supplemental material). Contig 1 was 2,569,357 bases with a depth of coverage of
574-fold, while contig 2 was 41,141 bases with a depth of coverage of 33-fold. Contig
2 was predicted to be a putative phage with VIRSorter (23), and a region on contig 1
with high similarity to contig 2 putatively represents a prophage. Although further
analysis is required to determine its origin, contig 2 was excluded due to its low-depth
coverage and absence of typical plasmid genes. Circular contig 1 represents the closed
chromosome sequence of L. ferriphilumT (Fig. 1). A comparison with the previously
available draft genome (24) revealed an additional 163,475 bp, closing gaps in the
previous draft (Fig. S1). The most prominent gap with around 100,000 bp most likely
had not been previously captured due to the presence of a clustered regularly
interspaced short palindromic repeat (CRISPR) stretch (Report S2). Further functional-
ities in the additional sequences were identified, such as a cluster of nif genes.
Additional functional capabilities encoded in the L. ferriphilumT genome (Fig. 2) are
detailed below, while expressed functions in Fe2�-containing medium versus chalco-
pyrite bioleaching cultures were assessed by transcriptomic and proteomic analyses
(Table 3 and Fig. 3). The resulting values are given as transcripts per million base pairs
(TPM) for RNA and label-free quantification (LFQ) intensities (25) for proteins, respec-
tively.

Comparison with other Leptospirillum ferriphilum genomes. The genomes of six
L. ferriphilum strains are available (Table 1), two of which are considered complete. All
six genomes show a high degree of identity, with 1,769 orthologous gene clusters
conserved in all 6 strains (see Fig. S2 in the supplemental material). The type strain
exhibited the largest number of unique gene clusters, which is reflected in the

TABLE 1 Overview of previously available L. ferriphilum genomes

Strain Reference or source
NCBI RefSeq
accession no. State of the genome No. of genes Genome size (Mbp) Coding density (%)

L. ferriphilumT 24 NZ_JPGK00000000.1 Draft 2,366 2.41 93.1
Sp-Cl 89 NZ_LGSH00000000.1 Draft 2,419 2.48 91.7
YSK 86 NZ_CP007243.1 Complete 2,273 2.33 90.1
ML-04 90 NC_018649.1 Complete 2,475 2.41 90.3
DX 91 NZ_MPOJ00000000.1 Draft 2,324 2.36 85.8
ZJ 91 NZ_MPOK00000000.1 Draft 2,312 2.34 96.4

TABLE 2 General L. ferriphilumT genome statistics

Attribute Value % of total

Genome size (bp) 2,569,357 100.00
DNA coding region (bp) 2,331,855 90.76
DNA G�C content (bp) 1,392,384 54.19
Total no. of genes 2,541 100
No. of protein-encoding genes 2,486 97.84
No. of RNA genes (rRNA/tRNA/tmRNA) 6/48/1 0.24/1.93/0.04
No. of CDSs with functional prediction 1,846 74.25
No. of CDSs with assigned COG category 1,969 79.20
No. of CRISPR repeats 1
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outgrouping of the two type strain sequences in the phylogenetic tree (Fig. S2A). Many
of the genes that are distinct for a particular strain seem to be related to insertions or
deletions of mobile elements. A cluster of nif genes is harbored in the newly sequenced
type strain genome and in strains Sp-Cl, YSK, and ZJ. This gene cluster is not present in
strains ML-04 and DX and the previous draft of the type strain. The longer stretch (1.0
and 1.3 Mbp) surrounding the nif cluster is unique to the type strain, with large parts
being present only in the newly sequenced contig (data not shown).
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FIG 1 Circular representation (87) of the genome sequence of L. ferriphilumT (configuration in parts based on data in reference 88). From the outside, the bands
represent (i) the genome sequence; (ii) protein-encoding sequences on the positive strand (red); (iii) CDSs on the negative strand (blue); (iv) mean transcript
expression (TPM), with a maximum of 2,000 TPM (blue indicates TPM values above the median, and red indicates values below the median); (v) mean scaled
protein LFQ intensity, with a maximum of 2,000 (green indicates intensity above the median); and (vi) GC-Skew {as calculated by the equation [(C � G)/(C �
G)] � 100} in windows of 5,000 nucleotides (yellow indicates values above zero, and gray indicates values below zero).
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FIG 2 Model of the genomic potential observed in the L. ferriphilumT genome, focusing on functions relevant in acidic environments and its application
in biomining (see Tables S1 to S8 in the supplemental material). Solid arrows represent metabolic reactions, while dashed arrows indicate transport,
the relocation of electrons or reaction products, and general regulative and metabolic interactions.
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Energy conservation. As established above, the energy needs of L. ferriphilum are
met exclusively by the oxidation of Fe2� (Fig. 2; see also Table S1 in the supplemental
material). Analogous to the iron oxidation system reported previously for L. ferriphilum
ML-04, electrons from L. ferriphilumT Fe2� oxidation are transferred to electron carriers
(26), which were present on the genome in the form of cytochrome c, cytochrome
c551/552, cytochrome c553, and cytochrome c544. Thereafter, cytochrome cbb3 oxidase
can be used to directly reduce oxygen as a terminal electron acceptor (27). Alterna-
tively, electrons can be used in reverse electron transport from cytochrome c to the
quinone pool by the cytochrome b/c1 complex. The resulting quinols can then be used
to generate reducing power in the form of NAD(P)H via the NADH-quinone oxidoreduc-
tase (nuoABCDEFHIJKLMN) (Table S1) or the NAD(P)H-flavin reductase. Although their
functionality is unknown, there are also three copies of subunit 5 of NAD(P)H-quinone
oxidoreductase (ndhF), with which quinols could be used to produce NAD(P)H (28).
Finally, electrons from the quinol pool can be transferred to oxygen by using the
cytochrome bd complex (28), which was also described for ML-04. Proton motive force
generated by iron oxidation can be used for ATP generation by an FoF1-type ATP
synthase (atpABCDEFGH) (Table S1). RNA transcript counts of the genes involved in
energy conservation indicated a preference for cytochrome c551/552 (639 � 26 TPM).
However, this difference was not observed for the protein concentration. While several
genes of all cytochrome groups were only marginally transcribed and translated, no
clear trend in the usage of cytochromes as initial electron carriers was apparent (Data
Set S1). Further electron transport was likely carried out via cbb3 cytochromes to
oxygen to create a membrane potential for the production of ATP. Although proteins
of the competing reverse electron transport chain were expressed, with few exceptions,
the pathway utilizing cytochrome cbb3 had higher transcript counts and protein
concentrations than did the pathway utilizing the cytochrome b/c1 complex and the
following quinone pool oxidoreductases (Data Set S1).

Carbon dioxide fixation. A single copy of the large-chain subunit of ribulose
bisphosphate carboxylase (RubisCO) was encoded on the L. ferriphilumT genome as well
as on the genomes of other L. ferriphilum strains. However, all L. ferriphilum strains are
suggested to fix carbon via the reductive tricarboxylic acid (TCA) cycle (29), for which
all necessary genes were present on the genome (see Table S2 in the supplemental
material). This was largely confirmed by transcript and proteome data, as gene products
of the reductive TCA cycle were expressed and translated to a high extent (Data Set S1).
Although RubisCO (276 � 14 TPM; LFQ, 27,738 � 258) exhibited low transcript counts,
its protein concentration was comparable to the concentrations of proteins constitut-
ing the enzymes of the reductive TCA cycle. However, any role of RubisCO in L.
ferriphilumT is unknown.

Nitrogen fixation. The nitrogen demand of L. ferriphilumT can be fulfilled by the
fixation of elemental nitrogen by the nitrogenase complex nifABDEHKNTUXZ (30) and
accessory protein genes (see Table S2 in the supplemental material). While present in
L. ferrooxidans C2-3 (31) and L. ferriphilum strains Sp-Cl and YSK, this gene cluster was
not found in the reported L. ferriphilumT draft genome and likewise is lacking in the

TABLE 3 Overview of samples and corresponding transcriptomics and proteomics dataa

Sample Culture type(s)
Total no. of RNA-seq
read counts

Median no. of
RNA-seq counts

No. of proteins
identified

No. of proteins with
LFQ of >0

Median
LFQ

LNU-LXX9-Si00-CnA-P-B1 Continuous 1,034,434 181 NA NA NA
LNU-LXX9-Si00-CnA-P-B2 Continuous NA NA 1,698 1,241 160,595,000
LNU-LXX9-Si00-CnA-P-B3 Continuous NA NA 1,698 1,509 233,755,000
LNU-LXX9-Si00-CnA-P-B5 Continuous NA NA 1,698 1,409 221,875,000
LNU-LXX9-Si00-CnA-P-B6 Continuous 1,284,834 219 1,698 1,412 212,595,000
LNU-LXX9-Si00-CnA-P-B7 Continuous 1,477,391 256 1,698 1,465 217,165,000
LNU-LXX9-Si00-14B-P Batch, mineral 10,967,703 1,937 763 432 3,135,800
LNU-LXX9-Si00-14C-P Batch, mineral 12,842,605 2,099 763 513 3,645,200
LNU-LXX9-Si00-14D-P Batch, mineral NA NA 763 609 3,722,500
aNA, not applicable.
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complete genome sequence of L. ferriphilum ML-04. Regulatory capabilities for the
gene cluster are suggested to be fulfilled by a nif-specific regulatory protein in L.
ferriphilumT. Additionally, nitrogen can be taken up as nitrite by the nitrate/nitrite
transporter nasA and assimilated in the form of ammonia by the nitrite reductase nirBD
(32), controlled by regulators of the NtrC and LysR families. RNA transcript analysis of
nitrogenase subunits revealed negligible counts, and most of the corresponding pro-
teins were also not detected in the proteomic analysis (Data Set S1). As the growth
medium in this study was rich in ammonium, which can be taken up by the highly
expressed glutamine synthetase, this was not surprising and has been reported for L.
ferrooxidans (33). The highest transcript count within the nitrogen fixation clusters was
that for nifU (1,997 � 268 TPM; LFQ, 1,228 � 58), which is essential for the activation
of the nitrogenase complex and is localized together with the cysteine desulfurase
gene nifS (34). NifS showed the highest protein concentration (661 � 68 TPM; LFQ,
4,267 � 175) in the nitrogen fixation clusters despite intermediate transcript counts. In
combination with the high expression level of nifU, this could indicate an onset of
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nitrogenase formation due to early-stage ammonium starvation, supported by the
intermediate expression of several nitrogen assimilation regulation proteins (Data
Set S1).

pH homeostasis mechanisms. Acidophiles maintain a near-neutral cytoplasmic pH
by several methods, including proton efflux via 1° transport pumps in the electron
transport chain (35), and this is discussed in “Energy conservation,” above (see Table S3
in the supplemental material). A second method to maintain pH homeostasis is the
inside positive membrane potential that repels the influx of protons (reviewed in
reference 6). The internal positive membrane potential is suggested to be formed by K�

ions, and this is supported by K�-deficient medium inducing acid shock in Sulfolobus
acidocaldarius (36). The L. ferriphilumT genome has two copies of the kdpD-encoded
sensor protein along with the kdpABC-encoded K�-transporting system as well as two
voltage-gated potassium channel genes (kch and trkA). The Kdp system and the TrkA
voltage-gated potassium channel, but not the kch gene, were identified on the L.
ferriphilum ML-04 genome. In addition, the L. ferriphilumT genome has several 2° proton
pumps, such as cation/H� antiporters, and similar antiporter systems were also present
on the ML-04 genome. Protons can also be consumed in chemical reactions, such as
amino acid decarboxylases in both neutrophiles (37) and acidophiles (35). Three amino
acid decarboxylases were identified on the L. ferriphilumT genome, while only gluta-
mate and arginine decarboxylases were present on the L. ferriphilum ML-04 genome. A
further proton-consuming reaction encoded in the L. ferriphilumT genome is that of
carbonic anhydrase, which has been demonstrated to aid in pH homeostasis (38). A
fourth method of pH homeostasis is the production of spermidines that, among other
functions (e.g., see “Oxidative stress management,” below), reduce membrane perme-
ability to protons (39), and three genes related to spermidine production were present
on the L. ferriphilumT genome. Finally, members of the general stress response protect
against acid stress (40), including GroEL, ClpBC, Clp protease, and DnaK. Several of these
chaperones were previously identified on the L. ferriphilum ML-04 as well as the
Leptospirillum sp. group II strain CF-1 (41) genomes. With the exception of those with
additional functions, few of the predicted pH homeostasis genes or proteins had high
TPM values or protein levels, respectively (Data Set S1). For instance, the kdpABC
potassium-transporting genes had TPM values of �62 � 13 and LFQ values of �6 �

2, while the general stress proteins DnaK and GroEL had LFQ values of 6,149 � 153 and
68,468 � 6,961, respectively. This suggested that the growth pH of 1.4 did not impose
a high level of acid stress on L. ferriphilumT.

Metal resistance systems. L. ferriphilumT is often exposed to high metal concen-
trations, and the genome contains the arsRBC genes coding for the negative regulator,
the arsenite efflux pump, and arsenate reductase, respectively. These genes are present
in many acidophiles (reviewed in reference 13), such as L. ferriphilum ML-04 and L.
ferriphilum strain Fairview (42). Separate Cu2� and Cu� resistance systems were har-
bored on the L. ferriphilumT genome, including the copper resistance gene cop. This
gene can be divided into two functional groups: multicopper oxidases and P-type
ATPases used to export copper ions (43). The L. ferriphilumT cop gene aligned most
closely with sequences of species with confirmed ATPase cop activity (data not shown),
indicating a similar function in L. ferriphilumT. In addition, cut is present in the genome
for Cu� oxidase as well as the cusABCF Cu/Ag system. Cus-like metal resistance systems
are part of the Acidithiobacillus ferrivorans SS3 mobilome that is thought to reflect
selective pressure by the presence of heavy metals (44). A total of 13 open reading
frames (ORFs) were determined to encode the RND family Cd2�/Co2�/Zn2� CzcABCD
resistance complex and associated proteins that were also present on the L. ferriphilum
ML-04 genome (see Table S4 in the supplemental material). Finally, the mercury
resistance merRAC genes and a mercury transport protein were identified on the L.
ferriphilumT and L. ferriphilum ML-04 genomes. In continuous culture, L. ferriphilumT was
grown with only trace concentrations of metals required for cellular metabolism, and
consequently, their metal resistance systems were not highly expressed (Data Set S1).
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In several cases, low metal resistance TPM values were not reflected in concurrent
protein production, and this may be due to L. ferriphilumT maintaining a readiness to
protect cells against heavy metals. For instance, the expression of the arsR negative
regulator inhibits the expression of the arsenic resistance operon in many species,
including the acidophilic archaeon “Ferroplasma acidarmanus” Fer1 (45).

Oxidative stress management. Oxidative stress management is crucial for all
aerobic organisms. ROS are generated (i) intracellularly via molecular oxygen reactions
with metal ions (46); (ii) in the extracellular, acidic, and metal-rich environment of
aerobic mineral-oxidizing acidophiles (47); and (iii) on surfaces of metal sulfide minerals
(15, 16). Several genes associated with oxidative stress management and ROS degra-
dation were identified in the presented genome sequence (although homologs of
catalases and superoxide dismutases were not found [see Table S5 in the supplemental
material]). Among these genes, several peroxiredoxins were identified, including genes
encoding alkyl hydroperoxide reductase subunit C (ahpC), peroxiredoxins (ccmG and
dsbE), and a putative iron-dependent peroxidase (efeB). Several thioredoxins, a thiore-
doxin reductase (trxB), and glutaredoxins were also identified. Further genes encoding
proteins involved in peroxide degradation are those encoding rubrerythrin and the
periplasmic cytochrome c peroxidase (48). Furthermore, in the context of an ahpC gene
and the latter gene, a gene homologous to the transcriptional regulator perR was
found. Genes involved in the repair or degradation of oxidatively damaged proteins
were also identified. ROS degradation and oxidative stress management are also
complemented by protective mechanisms such as the production of antioxidants,
including spermidine, ectoine, and cobalamin (49, 50). The regulation of metal homeo-
stasis is also involved in the oxidative stress response, and the Fe3� uptake regulator
(Fur) family transcriptional regulator and peroxide stress response regulator proteins
were identified. Genes for these functions are highly expressed in transcriptomes and
proteomes of iron-grown cells (Data Set S1). Expression levels of ahpC and the genes
encoding further peroxiredoxins, thioredoxin, glutaredoxins, cytochrome c peroxidase,
and rubrerythrin were especially prominent (Data Set S1). Furthermore, it was also
suggested that biofilm formation plus diverse mechanisms of extracellular polysaccha-
ride production and secretion are also part of the L. ferriphilumT ROS defense strategy
in a manner similar to that of the Acidithiobacillus ferrooxidans type strain (51), which
may be especially relevant during growth on metal sulfide minerals such as chalcopy-
rite and pyrite.

Chemotaxis and motility. Among the mineral dissolution-catalyzing bacteria, Lep-

tospirillum spp. colonize metal sulfide surfaces more efficiently than do the Acidithio-
bacilli (52, 53), and they often comprise a substantial fraction of the community in acid
mine drainage streamer biofilms (54, 55). Attached cells on solid metal sulfides are
considered to enhance the oxidation of the mineral that serves as an energy source and
substratum for mineral-oxidizing bacteria (56, 57). The regulation of biofilm formation
involves chemotaxis and motility (see Table S6 in the supplemental material), intracel-
lular signaling via c-di-GMP and intercellular quorum sensing (Table S7), and the
production of extracellular polymeric substances (EPSs) (Table S8).

All genes involved in the assembly of a functional flagellar apparatus and its
controlling chemotaxis system were identified in the presented genome sequence
(Table S6). The L. ferriphilumT chemotaxis system is composed of seven methyl-
accepting chemotaxis proteins (MCPs) involved in sensing environmental signals. These
genes are scattered across the chromosome, except for LFTS_00227, which was found
in the context of the chemotaxis gene cluster. Of the MCPs, only LFTS_01731 was
significantly expressed at both the RNA and protein levels in iron-grown chemostat
cells. ORFs encoding the flagellar motor switch proteins FliN and FliM were found in
different regions on the chromosome. Except for the fliM gene, all genes relevant for a
functional flagellar motility system were found in two large gene clusters (Table S6). All
these genes were found at very low expression levels by using RNA transcript analysis,
and either the corresponding protein levels were low or proteins were not detected
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(Data Set S1), indicating that motility and chemotaxis are of no relevance in a well-
mixed, homogenous environment such as a chemostat reactor.

Quorum sensing and c-di-GMP. In Gram-negative bacteria, the regulation of genes
encoding proteins for chemotaxis, motility, EPS production, and biofilm formation is
often controlled by intracellular levels of the messenger molecule c-di-GMP (58). The
presented genome sequence provides evidence for complex c-di-GMP metabolism, as
is common for many Gram-negative bacteria, including acidophilic mineral-oxidizing
Acidithiobacillus spp. (59, 60). The L. ferriphilumT genome contains 10 genes annotated
as encoding putative diguanylate cyclases, 13 genes encoding both diguanylate
cyclase- and c-di-GMP phosphodiesterase-specific GGDEF and EAL protein domains,
and two c-di-GMP-specific phosphodiesterases (see Table S7 in the supplemental
material). Furthermore, four genes encoding HD/HDc domain-containing proteins and
three genes encoding PilZ domain-containing c-di-GMP effector proteins were found.
The latter genes were found in the context of genes annotated as being related to
functions such as cellulose and extracellular polysaccharide biosynthesis and export.
This suggests that c-di-GMP metabolism in L. ferriphilumT also has an important
function in the regulation of EPS production and biofilm formation. Several of these
genes were expressed at the RNA and protein levels, including a c-di-GMP-specific
phosphodiesterase class I-encoding gene, bifunctional diguanylate cyclase/c-di-
GMP-specific phosphodiesterase-encoding genes, diguanylate cyclases, and a PilZ
domain-containing protein.

Interestingly, the L. ferriphilumT genome contains a gene cluster harboring an rpf
diffusible signal factor quorum sensing system, which is composed of the diffusible
signal factor synthase-encoding gene rpfF, two genes encoding rpfC homologs anno-
tated as genes encoding the Hpt domain-containing protein and signal transduction
kinase, and the respective two-component system response regulator-encoding gene
rpfG. In addition, further genes related to quorum sensing signaling were identified,
such as three luxR family transcriptional regulator protein-encoding genes and another
autoinducer binding domain-containing gene. The genes encoding the rpf quorum
sensing system were found to be expressed at enhanced levels, while the orphan LuxR
protein-encoding genes were found at very low RNA transcript or protein levels (Data
Set S1).

Biofilm formation. A total of 103 genes were annotated with functions related to
sugar processing, polysaccharide biosynthesis, and export and may be involved in the
synthesis of polysaccharides as a constituent of EPSs (see Table S8 in the supplemental
material). Among these genes, 47 represent or were in the context of genes primarily
associated with lipopolysaccharide synthesis. Several of these genes were found to be
expressed in iron-grown chemostat cells (Data Set S1). Interestingly, two gene clusters
contain bacterial cellulose synthesis genes, and one of them also contains a gene
encoding a cellulase family 8 protein, suggesting that aside from a structural compo-
nent of EPSs and/or cell walls, cellulose may be used as an intracellular sugar storage
compound in L. ferriphilumT. Furthermore, a gene cluster highly similar to the Pseu-
domonas aeruginosa pel operon was found. This cluster is responsible for Pel polysac-
charide production as part of its EPS constituents. Further genes associated with
extracellular polysaccharide export and biosynthesis were found in a large cluster.
Among these ORFs, poly-�-1,6-N-acetyl-D-glucosamine (PGA) synthesis and export
protein-encoding genes were found directly next to a wza polysaccharide outer
membrane export protein-encoding gene plus further genes with functions asso-
ciated with polysaccharide assembly and export. In addition, 12 of the ORFs in this
cluster were determined to encode glycosyltransferases. However, the majority of these
genes were found at very low transcript levels, while the corresponding proteins were not
detected in the chemostat (Data Set S1). An exception to the low RNA transcript levels but
high protein levels was observed for a UTP-glucose-1-phosphate uridylyltransferase. The
rfbBAC genes were found in one gene cluster close to an algK homolog that is a recently
described outer membrane secretin that differs from canonical bacterial capsular polysac-
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charide secretion systems (61) and a wzzE polysaccharide chain length modulation protein.
Furthermore, ORFs were determined to encode undecaprenyl (UDP)-galactose-4-
epimerases, UDP-galactopyranose mutase, UDP-glucuronate-4-epimerase, and UDP-N-
acetyl-D-glucosamine dehydrogenase (wbpA).

Biomining lifestyle. Bioleaching experiments using pure cultures of L. ferriphilumT

achieved a significant dissolution of chalcopyrite (see Fig. S3 in the supplemental
material). The isolation of nucleic acids and proteins proved to be challenging, and only
two RNA extracts and three protein samples of mineral origins were of sufficient quality
for differential expression and translation analyses (Fig. 4 and Data Sets S2 and S3).
Owing to the lower sensitivity and dynamic range of the Orbitrap Elite instrument,
fewer low-abundance proteins were quantified in the bioleaching samples than in the
continuous-culture samples. This manifested as an apparently higher expression level
of such gene products in continuous cultures. Therefore, more studies will have to be
conducted to confirm the data presented below. To investigate important features and
adaptation strategies of L. ferriphilumT, RNA transcripts and proteins were grouped
based on the functional categories established as described above (Fig. 2 and 3).
Comparison of continuous versus mineral culture samples revealed unexpectedly few
differences in expression and translation patterns. In part, this is probably related to the
controlled nature of the bioleaching experiments, where, e.g., the initial pH was 1.8 and
did not decrease below 1.7 (data not shown), such that pH homeostasis systems
seemed unaffected by the presence of chalcopyrite. Longer retention times and the
presence of sulfur oxidizers would cause the pH to drop significantly (19, 62). Despite
the remarkable tolerance of L. ferriphilumT to high proton concentrations (63), this
would likely cause additional stress. Similarly, RNA transcript levels and protein con-
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centrations for genes related to nitrogen fixation were found to be stable under the
two conditions, conceivably as the culture medium contained large amounts of bio-
logically available ammonium.

Among the differences observed between continuous and bioleaching cultures
were decreased transcript counts related to ATP synthesis in the mineral samples along
with bidirectional alterations of protein concentrations in ATP synthesis (Fig. 4) and of
specific cytochromes and cytochrome oxidases (Data Set S1). This possibly indicated a
shift of electron transport away from proton motive force and ATP generation toward
the production of reducing power in the form of NAD(P)H (Fig. 2). However, this was
not observable in NADH dehydrogenase RNA transcript counts. In contrast, the protein
concentration related to NADH production was decreased in the bioleaching experi-
ments (Fig. 4). Additionally, RNA and protein analysis revealed slight reductions in the
levels of proteins involved in both above-mentioned carbon fixation pathways when
cells were grown on chalcopyrite (Fig. 4). While the exact reasons for this are unknown,
it could indicate a reduced demand for organic carbon, possibly caused by overall slow
growth along with a reallocation of efforts for cell maintenance under stress conditions
in mineral batch cultures compared to active growth in continuous cultures.

Growth on minerals naturally comes with a heightened exposure of cells to heavy
metals. Overall, transcript counts derived from metal resistance genes showed signifi-
cantly increased levels during growth in chalcopyrite bioleaching cultures, in particular
a strong enhancement of counts mapping to copper resistance systems (Fig. 4 and Data
Set S2). Surprisingly, protein concentrations appeared to be decreased, with two
exceptions. In-depth analysis revealed severely elevated amounts of proteins belonging
to the cus copper efflux system (Fig. 4 and Data Set S3), underlining the strong
detrimental effects of copper ions on microbes (64). Similar to the pH homeostasis
response, as metal concentrations increase with time in natural or industrial systems,
further upregulation of these systems should be expected.

Damage caused by heavy metal ions can often be mitigated by oxidative damage
repair systems (65). The majority of these genes were found to exhibit the same or even
fewer transcript counts and protein levels in mineral-grown cells (Fig. 4 and Data Set
S3). This was surprising, as they have been suggested to combat the heightened
oxidative damage caused by ROS produced at the mineral surface (15, 16). An expla-
nation for this behavior could be that the combined effect of high Fe3� concentrations
and excessive sparging with air in continuous culture induced more oxidative damage
than ROS produced on mineral surfaces.

L. ferriphilumT was previously reported to rapidly attach to mineral surfaces (52), and
RNA transcript counts of both chemotaxis and motility systems were revealed to be
heavily enhanced during the bioleaching experiments. This was also observed for
motility protein concentrations but not chemotaxis protein concentrations (Fig. 4 and
Data Set S2). The transcription and translation of c-di-GMP and EPS production re-
mained at the same or lower levels in mineral culture samples (Fig. 4). However, this
may be explained by the fact that sampling of mineral-grown cells was conducted on
the slowly agitated overlying medium and not the biofilm on the mineral grains, where
most of the biofilm regulation and EPS production are expected to occur (56, 66). In
contrast, samples taken from the continuous culture were well mixed and likely
contained both planktonic and detached biofilm cells.

Conclusions. The newly sequenced genome of L. ferriphilumT allows an in-depth
and complete characterization of this organism’s metabolic potential as well as its
expression and translation behaviors in continuous culture and batch bioleaching
experiments. PacBio single-molecule real-time (SMRT) long-read sequencing allowed
the assembly of a circular chromosome and revealed key features of the adaptation of
L. ferriphilumT to acidic, metal-rich environments associated with sulfidic minerals, in
the environment as well as in industrial applications. Additionally, RNA transcript
sequencing and protein identification elucidated stressing factors during chalcopyrite
biomining and shed light on resistance systems deployed by L. ferriphilumT. The data
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provided by this study pose a valuable resource for future experiments investigating
the role of L. ferriphilumT in acid mine and rock drainage as well as bioleaching
processes.

MATERIALS AND METHODS
Batch cell culture and DNA extraction. The Leptospirillum ferriphilum type strain (ATCC 49881 and

DSM 14647) was cultured aerobically at 37°C at pH 1.5 to 1.6 in MAC medium (67) containing 100 mM
sterile-filtered (0.2-�m filter) Fe2� as the electron donor. Cells were grown to late log phase before
harvesting at 10,000 � g for 10 min. DNA for sequencing was isolated by using the Genomic-tip 100/G
extraction kit (Qiagen) according to the manufacturer’s instructions, with the exception of a customized
purification step recommended by the sequencing facility. Briefly, eluted genomic DNA was precipitated
by the addition of isopropanol, immediately spooled by using a sterile pipette tip, and transferred to a
microcentrifuge tube containing 70% (vol/vol) ethanol for 2 min. Spooled DNA was then air dried, finally
resuspended in 200 �l 0.1� Tris-EDTA (TE) buffer (pH 8), and allowed to dissolve for 72 h at room
temperature.

Continuous cultivation, bioleaching experiments, and RNA and protein isolation. L. ferriphilumT

was grown in a substrate-limited, 1-liter-working-volume, continuous-culture vessel at 37°C. The electron
donor was provided in the form of MAC medium containing sterile-filtered 100 mM Fe2� (dilution rate
[D] � 0.3 liters/day). The pH of the medium was adjusted to pH 1.1 by the addition of sulfuric acid that
maintained a constant pH of 1.4 within the culture. For the collection of RNA and protein, replicate
100-ml samples were taken from the cultures at least 3 days apart. To minimize RNA degradation,
samples were rapidly cooled by mixing with 1 volume of ice-cold sterile MAC medium, and cells were
immediately pelleted by centrifugation at 4°C at 12,000 � g for 15 min. The cells were then washed in
40 ml fresh, ice-cold MAC medium before being centrifuged again. Finally, pellets were flash-frozen in
liquid nitrogen and stored at �80°C for the extraction step.

Additionally, L. ferriphilumT was cultured in four bioleaching flasks containing 100 ml MAC medium
(pH 1.8) supplemented with 2% (wt/vol) copper mineral chalcopyrite (CuFeS2) as the only energy source.
Mixtures for the bioleaching experiments were incubated for 14 days under slow shaking (120 rpm).
Seventy-five milliliters of the overlying medium was taken as a sample and processed as described above.

Cell pellets were subjected to biomolecular extractions based on a previously reported protocol (68),
skipping the metabolite extraction step. In short, cell pellets were lysed by cryo-milling and bead beating
followed by the column-based isolation of biomolecules with the Qiagen Allprep kit. Quality control was
performed with SDS-PAGE (protein) and measurements on an Agilent bioanalyzer (total RNA).

DNA sequencing and genomic analysis. The obtained genomic DNA was sent to the Science for
Life Laboratory (Stockholm, Sweden) and sequenced by using two PacBio SMRT cells. Assembly was
conducted with HGAP3 at the sequencing facility, including quiver for consensus corrections. The large
contig was circularized with Circlator (69) after inspection of dot plots produced with Gepard (70). The
�fixstart option was applied to set the dnaA gene as the first gene. Prokka v1.12-beta (71) was used for
genome annotation, which included Prodigal v2.6.3 (72) for the prediction of protein-encoding se-
quences. Functional annotation of coding sequences (CDSs) was performed with a custom genus
database of related genomes downloaded from the Integrated Microbial Genomes (IMG) system (73):
Leptospirillum sp. group IV UBA BS (GOLD identification Ga0053748 [https://gold.jgi.doe.gov/analysis
_projects?id�Ga0053748]), “Leptospirillum sp. group II C75” (GOLD identification Ga0039193 [https://
gold.jgi.doe.gov/analysis_projects?id�Ga0039193]), L. ferrooxidans C2-3 (NCBI RefSeq accession number
AP012342), L. ferriphilum ML-04 (NCBI RefSeq accession number CP002919), L. ferriphilum DSM 14647
(GOLD identification Ga0059175 [https://gold.jgi.doe.gov/analysis_projects?id�Ga0059175]), and L. fer-
riphilum YSK (NCBI RefSeq accession number CP007243). Protein sequences were searched (blastp) in
Prokka against this genus database, and annotations of best-matching hits were transferred with an E
value cutoff of 1e�9. Additionally, the standard databases in Prokka were searched. For additional
information, in-house hidden Markov model (HMM) databases were searched, including KEGG ortholo-
gous groups (KOs), PFAM, TIGRFAM, UniProt-enzymes, and MetaCyc (additional details are available in
reference 74). Furthermore, the annotation tool Pannzer (75) was applied. Additional annotations are
listed in Data Set S1 in the supplemental material. Functional categories were assigned based on the KO
annotation (COG, KEGG class). Additionally, genes were grouped into functional categories by manual
assignment.

RNA sequencing and transcript analysis. RNA samples were adjusted for equimolar concentrations
and sent to the Science for Life Laboratory (Stockholm, Sweden). Library preparation was performed with
the Illumina TruSeq Stranded total RNA kit. Paired-end sequencing was performed on one HiSeq2500
lane for a total of five L. ferriphilumT samples, three from continuous cultures and two successful extracts
from batch cultures with chalcopyrite. Batch culture samples were depleted of rRNA with the bacterial
Ribo-Zero rRNA removal kit (Illumina) prior to library preparation.

A custom pipeline was written in snakemake (76) for processing and analysis of the transcriptome
sequencing (RNA-seq) data (the source code is available at https://git-r3lab.uni.lu/malte.herold/LF_omics
_analysis). Raw reads for RNA sequencing were preprocessed with Trimmomatic v0.36 (77) with the file
TruSeq3-PE.fa for adapters. Preprocessed reads were mapped onto a concatenation of reference ge-
nomes of three acidophiles, including the newly assembled chromosome of L. ferriphilumT, with bowtie2
v2.3.2 with default settings. Read mappings to CDSs were counted with the software featureCounts from
subread package v1.5.2 (78), and the �s 2 option was used to include only reads on the correct strand.
Raw read counts were normalized to the gene length and the sum of total counted reads. Normalized
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counts were represented as transcripts per million base pairs (TPM). Raw counts for the CDS features of
continuous and batch culture samples were subjected to differential analysis with DeSeq2 v1.16.1 (79).

Proteomics and protein identification. Five separate protein extracts from a continuous culture
and three batch cultures were precipitated in acetone, dried, and then dissolved in 20 �l of 6 M urea–2
M thiourea by vortexing. The reduction of cysteine was done by incubation with 1 �l 1 M dithiothreitol
for 30 min at room temperature. Cysteines were alkylated with 1 �l 550 mM iodoacetamide for 20 min
in the dark. Proteins were then digested with lysyl endopeptidase (Wako) at a 1:100 protease/protein
ratio at room temperature for 3 h. Upon the dilution of urea to 2 M with 50 mM ammonium bicarbonate,
further digestion occurred with trypsin (sequencing grade; Promega) at a protease/protein ratio of 1:100
at room temperature for 12 h. Peptides were extracted from the gel pieces with acetonitrile, loaded onto
stop-and-go extraction (STAGE) tips for storage, and eluted from the tips shortly before mass spectrom-
etry (MS) analysis (80).

Mass spectrometry for continuous-culture samples was carried out by using an EASY-nLC 1000 liquid
chromatography (LC) system (Thermo Scientific) and a Q-Exactive HF mass spectrometer (Thermo
Scientific), as described previously (81). Mass spectra were recorded with Xcalibur software 3.1.66.10
(Thermo Scientific). Mass spectrometry for mineral culture samples was carried out by using a
nanoACQUITY gradient ultraperformance liquid chromatography (UPLC) pump system (Waters, Milford,
MA, USA) coupled to an LTQ Orbitrap Elite mass spectrometer (Thermo Fisher Scientific Inc., Waltham,
MA, USA). An UPLC HSS T3 M-class column (1.8 �m, 75 �m by 150 mm; Waters, Milford, MA, USA) and
an UPLC Symmetry C18 trapping column (5 �m, 180 �m by 20 mm; Waters, Milford, MA, USA) were used
for LC in combination with a PicoTip emitter (SilicaTip, 10-�m internal diameter [i.d.]; New Objective,
Woburn, MA, USA). For elution of the peptides, a linear gradient with increasing concentrations of buffer
B (0.1% formic acid in acetonitrile [ULC/MS grade]; Biosolve, Netherlands) from 1% to 95% within 166.5
min was applied, followed by a linear gradient from 1% acetonitrile within 13.5 min (1% buffer B from
0 to 10 min, 5% buffer B from 10 to 161 min, 40% buffer B from 161 to 161.5 min, 85% buffer B from 161.5
to 166.5 min, 95% buffer B from 166.5 to 167.1 min, and 1% buffer B from 167.1 to 180 min) at a flow
rate of 400 nl min�1 and a spray voltage of 1.5 to 1.8 kV. The column was reequilibrated with 2% buffer
B within 15 min. The analytical column oven was set to 55°C, and the heated desolvation capillary was
set to 275°C. The LTQ Orbitrap Elite instrument was operated by using instrument method files of
Xcalibur (Rev.2.1.0) in the positive-ion mode. The linear ion trap and Orbitrap instruments were operated
in parallel; i.e., during a full MS scan on the Orbitrap instrument in the range of 150 to 2,000 m/z at a
resolution of 60,000, tandem MS (MS/MS) spectra of the 10 most intense precursors, from the most
intense to the least intense, were detected in the ion trap. The relative collision energy for rapid
collision-induced dissociation (rCID) was set to 35%. Dynamic exclusion was enabled with a repeat count
of 1 and a 45-s exclusion duration window. Singly charged ions and ions of an unknown charge state
were rejected for MS/MS. Mass spectra were recorded with Xcalibur software 2.2 SP1.48 (Thermo
Scientific).

Proteins under both culture conditions were identified with Andromeda (82) and quantified with the
LFQ algorithm (25) embedded in MaxQuant version 1.5.3.175 (81). The FASTA protein database for
identification was taken from the output of the functional annotation of the chromosome and contained
2,486 entries. After quantification, intensities from the LFQ normalization were filtered and compared
with Perseus (v1.5.8.5) (83), removing rows with fewer than two values under either condition (mineral
or continuous). The two conditions were compared with two-sample Welch’s t test.

Data availability. DNA raw sequencing data and the resulting assembly are available under
BioProject accession number PRJEB21703 and Assembly accession number GCA_900198525.1. Raw reads
for transcriptome sequencing are available under BioProject accession number PRJEB21842. Links to raw
data repositories, processed data files, and repositories containing the respective computational work-
flows are available through the fairdomhub platform (84) in a structured format (see reference 85
[https://doi.org/10.15490/fairdomhub.1.investigation.162.1]).
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Abstract. The objectives of a recently funded European Union (ERASysApp) are to understand and 

provide solutions to the problem of the long lag period typically encountered in new mineral heap 

bioleaching operations of the copper containing mineral chalcopyrite. In practice, this lag phase can 

be up to three years and the long time period adds to the operating expenses of bioheaps for 

chalcopyrite dissolution. One of the major time determining factors in bioleaching heaps is 

suggested to be the speed of mineral colonization by the acidophilic microorganisms present. By 

applying confocal microscopy, metatranscriptomics, metaproteomics, bioinformatics, and computer 

modeling the study aims to investigate the processes leading up to, and influencing the attachment 

of three moderately thermophilic sulfur- and/or iron-oxidizing model species: Acidithiobacillus 

caldus, Leptospirillum ferriphilum, and Sulfobacillus thermosulfidooxidans. Stirred tank reactors 

containing chalcopyrite concentrate, inoculated with these species, allows investigation of the 

effects of various inoculation orders and proportions on the lag phase and rates of metal release. 

Meanwhile, confocal microscopy studies of cell attachment to chalcopyrite mineral particles, as 

well as metatranscriptomics and metaproteomics of the formed biofilms further increases the so far 

limited understanding of the attachment process and help develop a model thereof. By fulfilling the 

projects goal to decrease the length of the lag phase in chalcopyrite bioleaching operations it is 

hoped to increase their economic feasibility and thereby, raise industrial interest in bioleaching as a 

suitable technology to extract copper from chalcopyrite mineral. 

Introduction 

Presently there is an increase in the European demand for metals. Consequently, preferably 

environmentally friendly techniques must be developed to meet this demand. Despite the need to 

dig the ore and crush it for both ‘biomining’ and conventional metal extraction processes, 

biomining is suggested to partially uphold this criteria as it exploits acidophilic microorganisms for 

metal solubilisation from sulphide ores in tanks, heaps and dumps [1, 2]. Bioleaching of copper 

sulphide minerals such as chalcopyrite (CuFeS2; the largest copper resource in the world) is usually 

conducted in engineered heaps and accounts for approximately 15% of the present world copper 

production. In comparison with the traditional roasting and smelting processes used for metal 

extraction of sulphide ores, bioleaching reduces the release of toxic compounds, such as sulphur 

dioxide, associated with these techniques. The major role of microbial populations in biomining is 

to catalyse the regeneration of ferric iron from ferrous iron and generate protons by oxidation of 
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sulphuric acid species. Although heap bioleaching is a low cost method, it is a slow process that can 

take up to several years to achieve economic metal recoveries. 

One factor that strongly influences the economics of an industrial bioheap plant (Fig. 1) is the 

lag time between addition of acid to the top of the heap and metal recoveries. An example is a test 

heap constructed for metal recovery from a black schist in Talvivaara, Finland where nickel and 

zinc recoveries were >80% after 480 days while copper recovery from chalcopyrite did not proceed 

until after 500 days [3]. The duration of this lag time is suggested to be determined predominantly 

by the speed of microbial colonization of the mineral and the mineralogy of the ore. However, to 

date no optimisation has been achieved in terms of biofilm formation for enhanced bioleaching of 

industrially relevant metal sulphides. Microorganisms in biofilm communities thrive when attached 

to substrates by ‘extracellular polymeric substances’ (EPS). A fundamental question in microbial 

ecology is to understand the interaction(s) among the different species present in natural and/or 

industrial or engineered biofilm systems. This is especially the case in bioleaching, since 

successional processes, such as attachment of microbes to the mineral, play important roles in 

biofilm formation [4]. 

Consequently, fundamental knowledge on the mechanisms of biofilm formation is central for the 

design of heap inoculation strategies to increase the efficiency of ore processing, in particular by 

reducing the lag time between heap initiation and metal recovery.  

 

 
Figure 1. The top of a bioheap showing irrigation of the mineral (A) and copper precipitates formed 

as a result of chalcopyrite dissolution (B). 

Study of acidophile biofilm by ‘omics’ 

Examination of biofilm formation by “omics” and microscopy serve as a way to model the rate 

and influence of microbial species on the biofilm formation, as well as the time required for copper 

to be released from the mineral matrix. However, one of the issues of multi-species microbial 

biofilms is that they are inherently heterogeneous and community-wide networks are expected to be 

more than merely sums of their respective parts. In order to meaningfully integrate “omics” 

datasets, obtained biomolecular fractions have to be representative of the sampled microbial 

assemblages before high-resolution molecular analyses. For this reason, appropriate laboratory 

methods have been developed which allow the isolation of concomitant RNA and protein from 

single unique microbial community samples. The resulting ‘omics’ data fulfil the premise of 

standardised systematic measurements and can be meaningfully integrated. In particular, the RNA 

sequencing and protein data can be mapped onto the genomes of constituent community members 

with high accuracy which in turn, forms the basis for formulating community-wide multi-scale 

models. 

A second issue is that the application of ‘omics’ techniques for the investigation of acidophilic 

biofilms during bioleaching is highly limited. However, many studies have been carried out for 

other types of acidophile biofilms [5, 6]. Although metatranscriptomics and metaproteomics (i.e. 
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RNA transcript and protein complement analysis of microbial communities, respectively) is rapidly 

evolving, the field is still in its infancy and for many tasks no established, robust tools are available. 

In this study, some of the most important moderately thermophilic bioleaching bacteria on 

chalcopyrite surfaces, Acidithiobacillus caldus, Leptospirillum ferriphilum and Sulfobacillus 

thermosulfidooxidans are used to investigate the biofilm formation [7, 8]. Therefore, a unique 

feature of the experimental setup is the use of well-defined microbial communities of limited 

diversity and known cultivation conditions. Consequentially, despite the described challenges of 

acidophile ‘omics’ techniques, establishing and testing novel approaches for measuring and 

modelling a mixed-microorganism biofilm formation process is possible. In particular, the 

following analyses assist in meeting this goal: i. integrative analysis using microscopy and high 

throughput omics of temporal and spatial biofilm development on the species and molecular 

network level; ii. exploitation of large data sets for extensive bioinformatic analysis; and iii. 

processing of the resulting data for the formulation of multi-species biological network models 

(based on meta–omics data) alongside multi-species particle-based models (based on imaging data) 

to define the key factors affecting biofilm formation. 

Modelling of ‘omics’ data 

Modelling biological processes at the molecular level is usually based on idealised network 

models that represent interacting components in a simplified fashion. Efficient tools are available to 

deduce causal links between biological components from ‘omics’ experiments. This allows the 

assimilation of metatranscriptomic and metaproteomic data into network models which can 

subsequently be analysed with appropriate mathematical tools. Bayesian networks, regression and 

simulated annealing allow inference of network topology from quantitative, omics data [9]. 

Network analysis tools consist of a diversified set of methods such as bifurcation and sensitivity 

analysis which have a long tradition in engineering and more recently, have been applied to 

biology. These tools allow the identification of important control points and parameters for the 

studied system. Further, models describing cells at the molecular level can be integrated into 

particle-based methods and consequently account for the interactions between different cells, and 

allow the study of bacterial communities.  

Planned outcomes 

The models will valorise systems biology knowledge and will be used to predict and manipulate 

biofilm development to reduce the lag time between heap initiation and onset of copper 

solubilisation. These ‘improved’ biofilms will be iteratively evaluated to connect the model 

development with mineral oxidation rates, as well as their tolerance to changes in environmental 

conditions. Decisively, the project will transfer systems biology knowledge into an application by 

including end user companies actively carrying out biomining and other biotechnological 

applications. Thereby, we are maximising the industrial application of the data and hopefully make 

this environmentally friendly technique more attractive to mining companies. 

References 

[1] N. Pradhan, K.C. Nathsarma, K. Srinivasa Rao, L.B. Sukla, B.K. Mishra, Heap bioleaching of 

chalcopyrite: A review, Minerals Engineering 21 (2008) 355-365. 

[2]  H.R. Watling, The bioleaching of sulphide minerals with emphasis on copper sulphides – A 

review, Hydrometallurgy 84 (2006) 81-108. 

[3]  M. Riekkola-Vanhanen, Talvivaara mining company – From a project to a mine, Minerals 

Engineering 48 (2013) 2-9. 

314 Biotechnologies in Mining Industry and Environmental Engineering



[4]  P. Wilmes, J.P. Remis, M. Hwang, M. Auer, M.P. Thelen, J.F. Banfield, Natural acidophilic 

biofilm communities reflect distinct organismal and functional organization, ISME J 3 (2009) 

266-270.  

[5]  M. Vera, B. Krok, S. Bellenberg, W. Sand, A. Poetsch, Shotgun proteomics study of early 

biofilm formation process of Acidithiobacillus ferrooxidans ATCC 23270 on pyrite, 

Proteomics 13 (2013) 1133-1144. 

[6]  C. Baker-Austin, J. Potrykus, M. Wexler, P.L. Bond, M. Dopson, Biofilm development in the 

extremely acidophilic archaeon ‘Ferroplasma acidarmanus’ Fer1, Extremophiles 14 (2010) 

485-491. 

[7]  J.J. Plumb, N.J. McSweeney, P.D. Franzmann, Growth and activity of pure and mixed 

bioleaching strains on low grade chalcopyrite ore, Minerals Engineering 21 (2008) 93-99. 

[8]  M. Dopson, E.B. Lindstrom, Analysis of commuinity composition during moderately 

thermophilic bioleaching of pyrite, arsenical pyrite, and chalcopyrite, Microbial Ecology 48 

(2004) 19-28. 

[9]  D. Hurley, H. Araki, Y. Tamada, B. Dunmore, D. Sanders, S. Humphreys, M. Affara, S. Imoto, 

K. Yasuda, Y. Tomiyasu, K. Tashiro, C. Savoie, V. Cho, S. Smith, S. Kuhara, S. Miyano, D.S. 

Charnock-Jones, E.J. Crampin, C.G. Print, Gene network inference and visualization tools for 

biologists: application to new human transcriptome datasets, Nucleic Acids Res 40 (2012) 

2377-2398. 

 

Advanced Materials Research Vol. 1130 315



Appendix C.3

C.3 Weak Iron Oxidation by Sulfobacillus thermosulfidooxidans main-
tains a favorable redox potential for chalcopyrite bioleaching.

Stephan Christel, Malte Herold, Sören Bellenberg, Antoine Buetti-Dinh, Mohamed El Hajjami,

Igor Pivkin, Wolfgang Sand, Paul Wilmes, Ansgar Poetsch, and Mark Dopson

2018

Frontiers in Microbiology in review

Contributions of author include:

• Data analysis

• Writing and revision of manuscript

174



   

 

Weak Iron Oxidation by Sulfobacillus
thermosulfidooxidans Maintains a
Favorable Redox Potential for
Chalcopyrite Bioleaching

 
Stephan Christel1*, Malte Herold2, Soeren Bellenberg3, Antoine Buetti-Dinh4, 5, Mohamed El

Hajjami6, Igor Pivkin4, 5, Wolfgang Sand3, 7, 8, Paul Wilmes2, Ansgar Poetsch6, 9, Mark Dopson1

 

1Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Sweden, 2University

of Luxembourg, Luxembourg, 3Universität Duisburg-Essen, Germany, 4Università della Svizzera

italiana, Switzerland, 5Swiss Institute of Bioinformatics (SIB), Switzerland, 6Ruhr-Universität Bochum,

Germany, 7Donghua University, China, 8Freiberg University of Mining and Technology, Germany,
9Plymouth University, United Kingdom

  Submitted to Journal:

  Frontiers in Microbiology

  Specialty Section:

  Extreme Microbiology

  Article type:

  Original Research Article

  Manuscript ID:

  421883

  Received on:

  30 Aug 2018

  Frontiers website link:
  www.frontiersin.org

In review



   

  Conflict of interest statement

  The authors declare that the research was conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict of interest

   

  Author contribution statement

 
SC conducted the laboratory experiments. MH performed bioinformatic analysis of transcript data. SB provided microscopic
imaging. SC, SB, AB, ME, IP, WS, PW, AP, MD were involved in data analysis and biological interpretation of the results. SC drafted
the manuscript and all authors contributed to its preparation.

   

  Keywords

 
Redox control, Microbial, Chalcopyrite, Iron oxidation, bioleaching, Sulfobacillus, Leptospirillum

   

  Abstract

Word count: 274

 

Bioleaching is an emerging technology, describing the microbially assisted dissolution of sulfidic ores that provides a more
environmentally friendly alternative to many traditional metal extraction methods, such as roasting or smelting. Industrial
interest increases steadily and today, circa 15-20% of the world’s copper production can be traced back to this method. However,
bioleaching of the world’s most abundant copper mineral chalcopyrite suffers from low dissolution rates, often attributed to
passivating layers, which need to be overcome to use this technology to its full potential. To prevent these passivating layers from
forming, leaching needs to occur at a low oxidation/reduction potential (ORP), but chemical redox control in bioleaching heaps is
difficult and costly. As an alternative, selected weak iron-oxidizers could be employed that are incapable of scavenging exceedingly
low concentrations of iron and therefore, raise the ORP just above the onset of bioleaching, but not high enough to allow for the
occurrence of passivation. In this study, we report that microbial iron oxidation by Sulfobacillus thermosulfidooxidans meets these
specifications. Chalcopyrite concentrate bioleaching experiments with S. thermosulfidooxidans as the sole iron oxidizer exhibited
significantly lower redox potentials and higher release of copper compared to communities containing the strong iron oxidizer
Leptospirillum ferriphilum. Transcriptomic response to single and co-culture of these two iron oxidizers was studied and revealed
a greatly decreased number of mRNA transcripts ascribed to iron oxidation in S. thermosulfidooxidans when cultured in the
presence of L. ferriphilum. This allowed for the identification of genes potentially responsible for S. thermosulfidooxidans’ weaker
iron oxidation to be studied in the future, as well as underlined the need for mechanisms to control the microbial population in
bioleaching heaps.

   

  Ethics statements

  (Authors are required to state the ethical considerations of their study in the manuscript, including for cases
where the study was exempt from ethical approval procedures)

Does the study presented in the manuscript involve human or animal subjects: No

In review



  

Weak Iron Oxidation by Sulfobacillus thermosulfidooxidans Maintains 1 
a Favorable Redox Potential for Chalcopyrite Bioleaching 2 

Stephan Christel1*, Malte Herold2, Sören Bellenberg3, Antoine Buetti-Dinh4,5, Mohamed El 3 
Hajjami6, Igor V. Pivkin4,5, Wolfgang Sand3,7,8 , Paul Wilmes2, Ansgar Poetsch6,9, and Mark 4 
Dopson1 5 
1Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, 6 
Sweden 7 

2Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg 8 

3Aquatic Biotechnology, Universität Duisburg-Essen, Essen, Germany 9 

4Institute of Computational Science, Faculty of Informatics, Università della Svizzera Italiana, 10 
Lugano, Switzerland 11 

5Swiss Institute of Bioinformatics, Lausanne, Switzerland 12 

6Plant Biochemistry, Ruhr Universität Bochum, Germany 13 

7College of Environmental Science and Engineering, Donghua University, Shanghai, PR China 14 

8Mining Academy and Technical University Freiberg, Freiberg, Germany 15 

9School of Biomedical and Healthcare Sciences, Plymouth University, UK 16 

*Correspondence:  17 
Stephan Christel  18 
stephan.christel@lnu.se 19 

Keywords: redox control, microbial, bioleaching, chalcopyrite, iron oxidation, sulfobacillus, 20 
leptospirillum.  21 

In review



Microbial Redox Control for Bioleaching 

 
2 

This is a provisional file, not the final typeset article 

Abstract 22 

Bioleaching is an emerging technology, describing the microbially assisted dissolution of sulfidic 23 
ores that provides a more environmentally friendly alternative to many traditional metal extraction 24 
methods, such as roasting or smelting. Industrial interest increases steadily and today, circa 15-20% 25 
of the world’s copper production can be traced back to this method. However, bioleaching of the 26 
world’s most abundant copper mineral chalcopyrite suffers from low dissolution rates, often 27 
attributed to passivating layers, which need to be overcome to use this technology to its full potential. 28 
To prevent these passivating layers from forming, leaching needs to occur at a low 29 
oxidation/reduction potential (ORP), but chemical redox control in bioleaching heaps is difficult and 30 
costly. As an alternative, selected weak iron-oxidizers could be employed that are incapable of 31 
scavenging exceedingly low concentrations of iron and therefore, raise the ORP just above the onset 32 
of bioleaching, but not high enough to allow for the occurrence of passivation. In this study, we 33 
report that microbial iron oxidation by Sulfobacillus thermosulfidooxidans meets these specifications. 34 
Chalcopyrite concentrate bioleaching experiments with S. thermosulfidooxidans as the sole iron 35 
oxidizer exhibited significantly lower redox potentials and higher release of copper compared to 36 
communities containing the strong iron oxidizer Leptospirillum ferriphilum. Transcriptomic response 37 
to single and co-culture of these two iron oxidizers was studied and revealed a greatly decreased 38 
number of mRNA transcripts ascribed to iron oxidation in S. thermosulfidooxidans when cultured in 39 
the presence of L. ferriphilum. This allowed for the identification of genes potentially responsible for 40 
S. thermosulfidooxidans’ weaker iron oxidation to be studied in the future, as well as underlined the 41 
need for mechanisms to control the microbial population in bioleaching heaps. 42 

 43 

1 Introduction 44 

Biomining is a sustainable process for metal extraction from sulfidic ores that has been studied by 45 
researchers around the globe since its emergence in the early 1950s (Temple and Colmer, 1951; 46 
Bryner and Jameson, 1958). In the recent decades and with its industrial application in mind, 47 
understanding of this natural process has significantly improved (Rohwerder et al., 2003; Watling, 48 
2006; Vera et al., 2013; Jerez, 2017) and today, biomining is defined to be the microbial promoted 49 
oxidation of insoluble metal sulfides to acid soluble sulfates. In a technique termed bioleaching, this 50 
is undertaken to solubilize and recover metals of interest that form part of the metal sulfide mineral 51 
matrix. Ferrous iron (Fe2+)-oxidizing acidophilic microorganisms are responsible for the regeneration 52 
of the chemical oxidant ferric iron (Fe3+), which in turn attacks the sulfidic mineral, and breaks its 53 
covalent bonds. This releases ferrous iron plus any other contained metals and completes the catalytic 54 
cycle (Vera et al., 2013). While having initial economic disadvantages, mainly attributed to the long 55 
lag phase after construction of a bioleaching heap, biomining technologies are commonly considered 56 
more environmentally friendly than most conventional methods (Johnson, 2014). Today, increasing 57 
amounts of metals are extracted or processed by biomining technologies in many countries that 58 
include Chile, Australia, and South Africa, with the bioleaching of secondary copper sulfides 59 
accounting for an estimated 15-20% of the world wide copper production (Brierley and Brierley, 60 
2013). 61 

Bioleaching of primary copper minerals, such as the world’s most abundant copper mineral 62 
chalcopyrite (CuFeS2), remains challenging and suffers from slow dissolution rates. This is often 63 
attributed to the formation of passivation layers on the mineral surface (Cordoba et al., 2009; Wang 64 
et al., 2016), but it has also been argued that the semiconductor properties of chalcopyrite itself could 65 
be responsible (Crundwell, 2015). To date, extensive efforts to elucidate the exact nature of 66 

In review



Microbial Redox Control for Bioleaching 

 
3 

chalcopyrite passivation have not been successful (Khoshkhoo et al., 2014a; Khoshkhoo et al., 2017). 67 
Despite this, strategies have been discovered to diminish the passivating effect, including bioleaching 68 
at high temperatures and low redox potentials (Li et al., 2013; Panda et al., 2015). Due to their large 69 
concentrations, the oxidation/reduction potential in bioleaching systems is predominantly determined 70 
by the Fe3+/Fe2+ redox couple, whereby high concentrations of Fe3+ indicate high potentials. At low 71 
redox potentials and in the presence of millimolar concentrations of Fe2+ and Cu2+, chalcopyrite is 72 
suggested to be transformed into the secondary copper sulfide chalcocite (Cu2S) which is more 73 
readily oxidized by the Fe3+ provided by microbial action (Hiroyoshi et al., 2013). Methods to control 74 
the redox potential of the leaching solution include the addition of chemical reductants (Zhao et al., 75 
2017) or limitation of oxygen (Third et al., 2002). However, the technical realization of such methods 76 
in a large industrial bioheap with gradients of e.g. temperature, oxygen concentration, and substrates 77 
has not been accomplished. Many studies have investigated the optimal microbial consortia in 78 
bioleaching operations (Rawlings and Johnson, 2007), usually focusing on the need to efficiently 79 
oxidize Fe2+ that drives the redox potential above that optimal for chalcopyrite dissolution (Hiroyoshi 80 
et al., 2013). In contrast, little attention has been paid to the possibility of controlling the redox 81 
potential of a bioleaching system by influencing the ratio of ferric to ferrous iron via suitable iron-82 
oxidizing microbes (Masaki et al., 2018). 83 

A large range of acidophile microbes have the capability to oxidize Fe2+ to gain energy under 84 
acidic conditions (Hedrich et al., 2011) and are therefore applicable in biomining operations. Among 85 
those are members of the Acidithiobacillus, Acidimicrobium, Acidiferrobacter, Sulfobacillus, and 86 
Ferroplasma genera (reviewed in Quatrini and Johnson, 2016). In bioleaching systems, one of the 87 
most abundant iron oxidizers is the moderately thermophilic, autotroph Leptospirillum ferriphilum 88 
(Penev and Karamanev, 2010; Christel et al., 2017). This moderate thermophile solely derives its 89 
energy from the oxidation of ferrous iron (Coram and Rawlings, 2002) and is capable of doing so at 90 
very low Fe2+ ion concentrations and redox potentials as high as 700 mV vs. Ag/AgCl (Rawlings et 91 
al., 1999), giving it a significant advantage over other species. Another iron-oxidizer commonly 92 
found in acidic, sulfur rich environments is the moderately thermophilic Sulfobacillus 93 
thermosulfidooxidans (Karavaiko et al., 2005) that in contrast to L. ferriphilum, is unable to scavenge 94 
exceedingly scarce ferrous iron and is therefore considered a “weak” iron oxidizer in this study. In 95 
addition to Fe2+, S. thermosulfidooxidans is capable of oxidizing inorganic sulfur compounds (ISCs) 96 
and can utilize organic molecules to meet its carbon demands (Tsaplina et al., 2000). ISC oxidation is 97 
an important process in bioleaching heaps to remove excess sulfur compounds (Dopson and 98 
Lindstrom, 1999) and generate the necessary acidity, which is otherwise consumed by gangue 99 
minerals in low grade ores (Baldi et al., 1991). Often, this role is fulfilled by obligate ISC-oxidizing 100 
species, such as the mesophile Acidithiobacillus thiooxidans or moderately thermophile A. caldus 101 
(Hallberg and Lindstrom, 1994). 102 

In this study, we hypothesized that by inoculation of chalcopyrite ore with suitable iron-oxidizing 103 
bacteria the redox potential of the leachate in the initial phase of bioleaching experiments can be 104 
controlled. By these means, the redox potential can be maintained close to the optimum range. The 105 
initial rate of chalcopyrite dissolution is enhanced and thereby increases the amount of released 106 
copper. The applicability of this approach to industrial bioleaching operations is discussed.  107 
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2 Materials and Methods 108 

2.1 Mineral 109 

 Chalcopyrite was provided by Boliden AB (Sweden) and originates from the Aitik copper mine (N 110 
67° 4' 24", E 20° 57' 51"). The flotation concentrate used in this study contained 29.5 % copper 111 
(Supplementary File 1). For bioleaching experiments, the concentrate was sieved to obtain the size 112 
fraction between 50 and 100 µm and subsequently washed in three volumes of 0.1 M EDTA in 0.4 M 113 
NaOH for 10 min under stirring. Elemental sulfur was then removed from the surfaces by three 114 
iterations of washing with one volume of acetone. Finally, the mineral was dried at 60 °C overnight 115 
and then sterilized at 120 °C for 10 h under nitrogen. 116 

2.2 Bacterial strains and growth conditions 117 

Three bacterial acidophile species were used in this study, L. ferriphilum DSM 14647, S. 118 
thermosulfidooxidans DSM 9293, and A. caldus DSM 8584. Prior to the bioleaching experiments, 119 
cells were maintained in three separate continuous cultures so that the cells were under the same 120 
growth state when all experiments were inoculated. The continuous cultures were maintained at 121 
38 °C, fed with MAC medium (Mackintosh, 1978), and electron donor added in the form of 100 mM 122 
ferrous sulfate (L. ferriphilum) or 5 mM potassium tetrathionate (S. thermosulfidooxidans and A. 123 
caldus). The continuous culture vessels, all tubing, plus MAC medium were autoclaved while the 124 
ferrous sulfate and potassium tetrathionate were sterile filtered (0.2 µm pore size, cellulose acetate 125 
filter, PALL). 126 

2.3 Bioleaching experiments 127 

Bioleaching experiments were conducted in quadruplets in 250 mL Erlenmeyer flasks. 100 mL MAC 128 
medium was supplemented with 2% (wt/vol) chalcopyrite concentrate and inoculated with 129 
combinations of 107 cells per mL of the three bacterial species obtained by centrifugation from the 130 
continuous cultures (12 500 × g, 20 min) including three single, three binary, and one tertiary 131 
combination, plus one sterile control. Cultures were incubated at 38 ± 2 °C under slow shaking (120 132 
rpm) for 14 days after the redox potential reached 400 mV versus Ag/AgCl for the first time. 133 

Experiments were analyzed for pH (pHenomenal® 221, VWR), redox potential (Ag/AgCl with 3 M 134 
KCl; InLab® Redox-L, Mettler-Toledo), ferrous iron, total dissolved sulfur, elemental sulfur, as well 135 
as total iron and copper concentration in the leach liquor. Ferrous iron concentration was assessed by 136 
titration of its 1,10 phenanthroline complex (Walden et al., 1933; Dopson and Lindstrom, 1999). In 137 
short, 200 µL of bioleaching sample was centrifuged for 5 min at 16 000 × g. Supernatant was mixed 138 
with the same volume of 15 mM 1,10-phenantroline in 5 mM FeSO4, added to 1 mL of 1 M H2SO4 139 
and subsequently titrated from orange to blue with 1 mM CeSO4. Total soluble and elemental sulfur 140 
were measured by photospectrometric measurement of thiocyanate complexes obtained by cyanolysis 141 
(Kelly et al., 1969) from the supernatant and pellet of a bioleaching sample respectively. For total 142 
soluble sulfur, 500 µL sample were centrifuged for 5 min at 16 000 × g and the supernatant mixed 143 
with 100 µL 0.5 M NaCN. After 10 min of incubation at room temperature, 500 µL of phosphate 144 
buffer (pH 7.2) and 100 µl 50 mM CuSO4 was added, followed by 30 min of incubation at room 145 
temperature. Then, complexes were formed by addition of 400 µL 1.5 M FeNO3 in 4 M HClO4 and 146 
distilled H2O to a volume of 2 mL. The reaction was then measured at 460 nm against a calibration 147 
curve of thiocyanate treated in the same way. For measurement of elemental sulfur, the mineral pellet 148 
of the same sample was dissolved in 2 mL of absolute acetone. 200 µL of this solution was then 149 
processed as described in the total soluble sulfur analysis, except that no CuSO4 was added, and the 150 
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calibration curve consisted of elemental sulfur dissolved in acetone. Total metal concentration was 151 
obtained by adding 1.8 mL of 5 M HCl to 200 µL of unaltered bioleaching sample, followed by 152 
incubation at 65 °C for 30 min. Then, samples for both total and soluble metals were diluted in 0.1 M 153 
HCl appropriately for measurement by atomic absorption spectroscopy (AAS) using a Perkin Elmer 154 
AAnalyst 400. 155 

2.4 Extraction and analysis of nucleic acids 156 

After 14 days of active bioleaching time (defined by a redox potential above 400 mV vs. Ag/AgCl), 157 
experiments were sampled for nucleic acid extraction. The flasks were left to settle for 5 min before 158 
removing 75 mL supernatant to be immediately mixed with an equal volume of sterile, ice-cold MAC 159 
medium. Then, the sample was centrifuged at 12 500 × g for 20 minutes at 4 °C. The resulting cell 160 
pellet was washed twice by resuspending in 10 and 2 mL of sterile, ice-cold MAC, respectively and 161 
then frozen in liquid nitrogen. Cell pellets were subjected to biomolecular extractions according to a 162 
previously published method (Roume et al., 2013), skipping the metabolite extraction step. In short, 163 
cell pellets were lysed by cryo-milling and bead-beating followed by spin column based isolation of 164 
biomolecules with the Allprep kit (Qiagen, Belgium). Purified total RNA was stored at -80 ºC and 165 
shipped on dry ice. Ribosomal RNA was depleted with the Ribo-Zero rRNA Removal Kit for 166 
bacteria (Illumina, USA). rRNA-depleted RNA for nine samples was then sent to Science for Life 167 
Laboratory (Stockholm, Sweden) for sequencing.  168 

2.5 Sequence analysis 169 

Library preparation was performed with the Illumina TruSeq Stranded mRNA kit. Paired-end 170 
sequencing was performed on two HiSeq 2500 lanes resulting in on average 94 million reads per 171 
sample with length of 126bp and GC% of 54% (Supplementary Table 1). Raw reads were filtered 172 
with Trimmomatic v0.32 (Bolger et al., 2014), TrueSeq3-PE adapter sequences were removed using 173 
the following parameters: seed mismatch:2; palindrome clip:30; simple clip:10; leading:20; 174 
trailing:20; sliding window: 1:3; minlen: 40; maxinfo: 40:0.5. Filtered reads were mapped onto a 175 
concatenation of the three reference genomes (A. caldus DSM 8584: GCF_000175575.2; S. 176 
thermosulfidooxidans DSM 9293: GCF_900176145.1; L. ferriphilum DSM 14647: 177 
GCF_900198525.1) with Bowtie-2 v2.3.2 (Langmead and Salzberg, 2012) with default parameters. 178 
Reads mapping to protein coding sequences were counted with the FeatureCounts program of the 179 
subread package v1.5.1 (Liao et al., 2014) with the –s 2 parameter accounting for strandedness. Read 180 
counts were then normalized and compared per organism with a custom R-script using the DESeq2 181 
package v1.16.1 (Love et al., 2014) in R v3.4.4. Normalization was adapted from scripts provided in 182 
a previous publication (Klingenberg and Meinicke, 2017).  183 

2.6 Data availability 184 

Raw sequencing reads are available from ENA SRA under study accession PRJEB27534. Scripts 185 
used in the analysis of the sequencing data can be accessed under the following link: https://git-186 
r3lab.uni.lu/malte.herold/RNAseq_LF_ST_redox. Lists of genes relevant for analysis were generated 187 
by manual curation of the reference genome annotations and from previous publications (Janosch et 188 
al., 2015; Christel et al., 2017).  189 
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3 Results and Discussion 190 

3.1 Bioleaching of chalcopyrite concentrate 191 
Bioleaching of chalcopyrite was tested with single, binary, and tertiary combinations of the three 192 
model species (A. caldus, L. ferriphilum, and S. thermosulfidooxidans) plus uninoculated controls to 193 
investigate the effect of species composition on redox potential and copper release (Figure 1, 194 
Supplementary Figure 1). To aid comprehension, these combinations will be abbreviated using the 195 
initial letter of the included species (e.g. ‘ASL’ for the tertiary combination containing all species or 196 
‘LS’ for the binary combination of L. ferriphilum and S. thermosulfidooxidans etc.). 197 

Physical and chemical analysis (Figure 1, Supplementary Figure 1) of the uninoculated controls 198 
showed a redox potential of circa 310-330 mV (vs. Ag/AgCl) after stabilization, while the Fe2+ 199 
concentration steadily increased until plateauing at 5.7 ± 0.2 mM in later stages of the experiment 200 
(i.e. day 32, late stage data not shown). The abiotic leaching released a small amount of metal (4.2 ± 201 
0.3 mM Fe and 2.4 ± 0.3 mM Cu after 15 days) from the chalcopyrite by proton attack and/or a small 202 
concentration of Fe3+ present on the mineral or in the medium. The same behavior was observed in 203 
the experiment inoculated exclusively with A. caldus, where the redox potential remained at circa 204 
370 mV (i.e. well below the 400 mV perceived to mark the onset of bioleaching) until day 12 when 205 
likely environmental bacteria that survived the sterilization process on the mineral became active and 206 
commenced iron oxidation. Metal release was only marginally higher than from uninoculated 207 
controls, but showed a slight acceleration after the redox increase and reached 6.0 ± 0.7 mM Fe and 208 
4.4 ± 0.4 mM Cu after 14 days. As sulfur compounds released from the mineral matrix are debated to 209 
be involved in formation of passivating layers (Khoshkhoo et al., 2014a; b), it is of importance to 210 
note that experiments containing A. caldus exhibited examples of ISC degradation (Supplementary 211 
Figure 1). However, in the timeframe investigated during the leaching experiments, significant 212 
accumulation of soluble ISCs and elemental sulfur was also not observed in the combinations 213 
excluding A. caldus or in the sterile controls (Supplementary Figure 1). Experiments including 214 
inoculation with iron-oxidizing bacteria allowed for transformation of Fe2+ to Fe3+ and therefore the 215 
redox potential rose up to e.g. 682 ± 8 mV in the case of ‘L’. Accordingly, iron and copper release 216 
from all such experiments was significantly higher than from uninoculated controls and ‘A’; e.g. 217 
reaching the highest Fe concentration of 21.6 ± 1.7 mM in ‘L’ and highest copper concentration of 218 
14.2 ± 0.3 mM in ‘AS’ (Figure 1).  219 

As expected, the single species mobilized less copper than mixed species but unexpectedly, the 220 
tertiary combination ‘ALS’ was also outperformed by all binary combinations (Figure 1). This 221 
indicated that, in contrast to the currently accepted paradigm of inoculation of bioleaching 222 
applications with a broad mixture of biomining organisms, a well-chosen and defined mixture of 223 
microorganisms could benefit leaching efforts in the early stages of a bioleaching heap. Furthermore, 224 
the different combinations showed very distinct oxidation/reduction potential (ORP) profiles that, 225 
based on the present iron oxidizer(s), fell into one of two groups. All combinations containing L. 226 
ferriphilum had redox potentials between 650 and 680 mV compared to combinations in which it was 227 
excluded (i.e. ‘AS’ and ‘S’, showing ORPs below 550 mV). To confirm the lower redox potential in 228 
bioleaching cultures without L. ferriphilum, the ‘AS’ combination was repeated seven times with the 229 
redox potential reaching a maximum of 593 ± 15 mV (Figure 2A). Previous studies report that low 230 
redox potentials are favorable for chalcopyrite bioleaching (Third et al., 2002; Hiroyoshi et al., 2013). 231 
In accordance with that, in this study the redox potential of the leaching experiments correlated 232 
positively with the ratio of released iron/copper (Figure 2B). As dissolution of pure chalcopyrite is 233 
theoretically characterized by a 1:1 ratio of released iron to copper, this confirms the preferential 234 
oxidation of this copper mineral, or the transiently produced chalcocite, over associated copper-235 
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deficient minerals, such as pyrite, at low redox potentials. Our data independently confirms a study 236 
by Masaki et al. (2018), in which microbial redox control was also attempted, likewise by members 237 
of the Sulfobacilli, i.e. Sb. sibiricus and Sb. acidophilus. Using iron-oxidizing bacteria in bioleaching 238 
processes, which raise the ORP only minimally over the threshold for the onset of leaching is 239 
therefore possible and could benefit the performance of chalcopyrite bioleaching processes. Multiple 240 
reasons for the induction of different redox potentials by different species are conceivable. First and 241 
foremost, the effect could be explained by the effectivity and/or affinity of the respective species’ 242 
iron oxidation system. Species with a low affinity to ferrous iron, or inferior capability to oxidize it, 243 
should in theory maintain lower redox potentials. Additionally, high concentrations of Fe3+ ions are 244 
known to inhibit iron oxidation differently in different species (Rawlings et al., 1999), which could 245 
also contribute to this effect. However, fluorescence microscopy examination of chalcopyrite grains 246 
in our bioleaching experiments revealed another difference that could contribute to the observed 247 
effect. L. ferriphilum showed significantly higher rates of colonization of mineral grains compared to 248 
S. thermosulfidooxidans (Bellenberg et al., 2018; Supplementary Figure 2). Attachment to metal 249 
sulfides is considered important for bioleaching, since in the so called ‘contact mechanism’, mineral-250 
attached microbes concentrate Fe3+ in their EPS, effectively locally increasing the ORP at the 251 
microbe-mineral interface compared to the rest of the medium. Likewise, low levels of cell 252 
attachment on chalcopyrite mineral grains support the idea that a non-contact mechanism is likely 253 
observed for S. thermosulfidooxidans. Consequently, ferric ions diluted in the bulk medium maintain 254 
a more homogeneous redox environment. Unfortunately, Masaki et al. (2018) did not report on 255 
attachment rates and this hypothesis remains to be tested. 256 

Owing to its heterogeneity and complexity, control of both chemical and biological parameters in a 257 
bioleaching heap is challenging (Petersen, 2016). Biologically, a major cause of this challenge is that 258 
due to implied costs, the mineral cannot be sterilized, and environmental bacteria will be present and 259 
thrive in the heap, competing with the inoculated ‘strategic’ microorganisms. Procedures will have to 260 
be developed in order to fully exploit the potential of selected microorganisms, i.e. preventing 261 
undesired environmental bacteria from raising the redox potential above critical levels for 262 
chalcopyrite dissolution. Conceivably, the heap could be treated with compounds inhibiting their 263 
growth, while not impacting the strategic microorganisms. Another approach could be to 264 
continuously inoculate the heap with the strategic organisms through the irrigation system. This 265 
could also benefit the bioleaching in longer terms, as with the onset of the bioleaching activity the 266 
heap temperature rises (Petersen, 2016) and the strategically added microorganisms would have to be 267 
adapted to the different temperature zones. In future studies, efforts should therefore be made to 268 
identify species with both low Fe2+ scavenging capabilities and increasingly high optimal growth 269 
temperatures.  270 

In any case, manipulation of leachate, mineral, or other components of a bioleaching heap will 271 
naturally increase running costs. Further studies and ultimately large scale testing are needed to 272 
validate the viability of such approaches. 273 

3.2 Transcriptomic analysis of Fe2+ oxidation and electron transport 274 
In an attempt to elucidate the biological background for the difference in redox potential, both iron-275 
oxidizing model species’ transcriptomic response towards each other was investigated (i.e. ‘ASL’ vs 276 
‘AL’ for effect of S. thermosulfidooxidans on L. ferriphilum, and ‘ASL’ vs ‘AS’ for the vice versa 277 
effect; Figure 3). The entirety of the ecological interactions between the two species are beyond the 278 
scope of this study and instead, this section concentrates on gene products related to energy 279 
metabolism, iron-, and sulfur oxidation (Supplementary tables 1 and 2). In bioleaching co-culture, L. 280 
ferriphilum remained remarkably unaffected by the presence of S. thermosulfidooxidans. Over its 281 
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entire genome (2486 genes), only 36 genes showed significant differential expression in response to 282 
S. thermosulfidooxidans (p ≤0.05; data not shown). Among the 26 genes attributed to iron oxidation 283 
and electron transport, merely three cbb3-type cytochrome c oxidase subunits (LFTS_01396, _02094, 284 
and _02276) exhibited significantly increased transcript numbers in the presence of S. 285 
thermosulfidooxidans, all of which have log2-fold changes below 1.5 (Supplementary Table 2). No 286 
genes involved in iron oxidation or electron transport had significantly higher numbers of RNA 287 
transcripts in the absence of S. thermosulfidooxidans. 288 

In contrast, S. thermosulfidooxidans gene transcript numbers exhibited great variation depending on 289 
presence of L. ferriphilum. Of its 3805 identified genes, 828 showed significant differential 290 
expression. Among the 83 selected genes involved in iron oxidation, electron transport, and sulfur 291 
oxidation, 55 had significantly greater or lower RNA transcripts (Table 1, Supplementary Table 3). 292 
Large variation was observed in genes related to iron oxidation. In contrast to e.g. some members of 293 
the genus Acidithiobacillus, Sulfobacilli genomes lack the common iron oxidation protein rusticyanin 294 
(Guo et al., 2014). Instead, Sulfobacilli are suggested to utilize sulfocyanin, which is also found in 295 
the archaeal iron oxidizers of the genus Ferroplasma (Dopson et al., 2005). In the presence of L. 296 
ferriphilum, S. thermosulfidooxidans strongly decreased transcript numbers attributed to two of the 297 
five soxE genes coding for this protein (Sulth_0453 and _2749). Additionally, the vast majority of 298 
identified cytochromes of all types exhibited decreased transcript counts, along with corresponding 299 
biogenesis proteins and quinol oxidases (Table 1, Supplementary Table 3). The strong 300 
downregulation of electron chain components that were likely linked to iron oxidation in S. 301 
thermosulfidooxidans could be explained by the chemical data reported in the previous section. In 302 
cultures containing both iron oxidizers, the concentration of available ferrous iron was beyond the 303 
detection limit and likely too low for utilization by S. thermosulfidooxidans. This may be attributed 304 
to L. ferriphilum being able to scavenge Fe2+ at concentrations far below S. thermosulfidooxidans’ 305 
capabilities and at large Fe3+ concentrations that exceed its inhibition limits (Rawlings et al., 1999).  306 

Contrary to this overall trend, one cluster of S. thermosulfidooxidans cytochrome c oxidase subunits 307 
I-IV showed strongly increased transcript counts in the presence of L. ferriphilum (Table 1, 308 
Sulth_1930-1933). In addition, two cytochrome c biogenesis proteins (Sulth_1901 and _2183) and 309 
one cytochrome c assembly protein (Sulth_0051) exhibited similarly increased transcript numbers. A 310 
direct role of cytochromes in iron oxidation has been suggested in an acid mine drainage biofilm and 311 
in L. ferrooxidans (Jeans et al., 2008; Blake and Griff, 2012). Therefore, the strong opposite 312 
regulation of cytochrome oxidases in S. thermosulfidooxidans raises the question of their potential 313 
functional and/or structural differences. It could be possible that the oxidase exhibiting increased 314 
transcript counts in the presence of L. ferriphilum indirectly facilitates a higher affinity for Fe2+, or 315 
has a lower sensitivity towards oxidative stress induced by accumulating Fe3+. Together with the 316 
upregulation of biogenesis and assembly proteins, this could enable S. thermosulfidooxidans to at 317 
least gain some energy from Fe2+ in the presence of a stronger iron oxidizer. Alternatively, the 318 
cytochrome c oxidase complex upregulated in the presence of L. ferriphilum could be part of the 319 
strong upregulation of genes described in the following section, i.e. reducing oxygen in the final step 320 
of sulfur oxidation systems. Nevertheless, as only cytochromes and cytochrome oxidases that are 321 
upregulated in absence of L. ferriphilum correlated with higher copper extraction, they may be of 322 
greater interest in the context of this study and should be considered in more detail in the future.  323 

3.3 Transcriptomic analysis of ISC oxidation genes 324 
Genes coding for known sulfur oxidation proteins exhibited directionally opposite changes in 325 
transcript numbers compared to iron oxidation systems. Conceivably, this was to ensure sufficient 326 
supply of energy in a Fe2+ deficient environment and the vast majority of S. thermosulfidooxidans 327 
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genes related to sulfur metabolism had significantly higher RNA transcripts in the presence of L. 328 
ferriphilum (Table 1, Supplementary Table 3). The highest of these log2-fold changes were recorded 329 
for two copies of tetrathionate hydrolase gene tetH (Sulth_0921 and _3251) while a third copy 330 
(Sulth_1188) exhibited moderately increased transcript counts in the absence of L. ferriphilum. TetH 331 
is responsible for the hydrolysis of tetrathionate, an important intermediate in sulfide mineral 332 
dissolution. Additionally, thiosulfate can be oxidized by thiosulfate quinone oxidoreductase, encoded 333 
by a doxDA homologue. The two encoded copies of this gene exhibited increased transcript counts 334 
when in co-culture with L. ferriphilum, although the log2-fold changes were low (Sulth_1989 and 335 
_1691). A similar function is suggested for rhodanese-like proteins, which in humans are sulfur 336 
transferases involved in the detoxification of cyanide by transformation to thiocyanate in the liver 337 
(Nakajima, 2015). Proteins sharing their active domain are also suggested to play a role in microbial 338 
sulfur oxidation, in particular of thiosulfate (Valdes et al., 2008). In S. thermosulfidooxidans, seven 339 
genes coding for such proteins were present (Table 1, Supplementary Table 3) and four of them 340 
exhibited significantly increased transcript numbers in the presence of L. ferriphilum (Sulth_1878, 341 
_2076, _2172, and _3294). The product of their enzymatic reaction can be further oxidized by 342 
heterodisulfide reductase, which is encoded in S. thermosulfidooxidans by three sets of genes for its 343 
respective subunits HdrBC (Supplementary Table 3). Four Hdr subunit gene loci exhibited 344 
significant slightly increased transcript counts in presence of L. ferriphilum (Sulth_1025, _1026, 345 
_2770, and _2771). Elemental sulfur oxidation is also relevant in the context of sulfide mineral 346 
dissolution, and is conducted by the product of two copies of sulfur oxygenase/reductase gene sor 347 
(Janosch et al., 2015). While one copy was only minimally expressed in both conditions (Sulth_1798; 348 
indicating a possibly defunct gene), the second exhibited greater transcript numbers (Sulth_1627) and 349 
appeared to be enhanced by L. ferriphilum.  350 

Additional contributions to sulfur oxidation systems include sulfate adenylyltransferase which is 351 
suggested to be involved in sulfite oxidation in A. ferrooxidans and S. thermosulfidooxidans strain ST 352 
(Guo et al., 2014) and is likely to fulfill the same role in S. thermosulfidooxidansT. Similarly, DsrE-353 
family protein (Sulth_2782) has been reported to be associated to oxidative sulfite metabolism (Dahl 354 
et al., 2005) and was also found to exhibit increased transcript numbers in presence of L. ferriphilum 355 
(Table 1).  356 

In the absence of L. ferriphilum, only a few genes related to sulfur oxidation were significantly 357 
enhanced. Of note in this regard is one of three present copies of sulfide quinone reductase gene sqr1 358 
(Sulth_0946), which is responsible for the oxidation of sulfide to elemental sulfur a hypothetical 359 
protein within the hdr gene cluster (Sulth_1024), as well as the upper mentioned copy of tetH 360 
(Sulth_1188). 361 

 362 

4 Conclusions 363 

During bioleaching of chalcopyrite concentrate, S. thermosulfidooxidans but not L. ferriphilum 364 
maintained a low redox potential that is favorable for the extraction of copper. We hypothesize that 365 
this was due to differences in affinity and/or effectivity of the species’ respective iron oxidation 366 
systems, as well as the attachment rate of the microorganisms to the mineral grains. This finding 367 
could potentially contribute to overcoming passivation and improving dissolution rates in large-scale 368 
chalcopyrite bioleaching. Expression of iron and sulfur oxidation systems in S. thermosulfidooxidans 369 
were investigated during bioleaching experiments in presence and absence of L. ferriphilum. 370 
Presence of the strong iron oxidizer induced greatly decreased transcript counts attributed to iron 371 
oxidation and increased counts for sulfur oxidation. Analysis of this data revealed genes products 372 
potentially responsible for the difference in ORP, which should be studied in this regard in the future. 373 
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Additionally, this study underlines the importance of developing methods to control microbial 374 
populations in a bioleaching heap in order to exploit desired properties of selected microorganisms. 375 
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Tables 556 

Table 1 Excerpt of Supplementary Table 1 showing significant (|log2FC|≥1.0, p≤0.05) differential 557 
expression of S. thermosulfidooxidans genes related to iron and sulfur oxidation as well as electron 558 
transport. Negative log2-fold changes indicate higher transcript in presence of L. ferriphilum (ASL), 559 
positive changes upregulation in its absence (AS). Mean expression values are calculated from three 560 
independent experiments (n=3). Abbreviations: std, standard deviation; log2FC, log2-fold change. 561 

 562 

Gene ID Product Deseq normalized expression log2FC 
  AS 

mean 
AS 
std 

ASL 
mean 

ASL 
std 

 

Iron oxidation and electron transport chain     
Sulth_0051 Cytochrome c assembly protein 1086 91 2412 150 -1.15 
Sulth_0119 Cytochrome c class I 250 72 105 37 1.25 
Sulth_0449 Heme/copper-type cytochrome/quinol oxidase, 

subunit 3 
5850 537 919 85 2.67 

Sulth_0450 Cytochrome c oxidase subunit I 15675 2453 2857 266 2.46 
Sulth_0451 Cytochrome c oxidase subunit II 15243 1526 4700 545 1.70 
Sulth_0453 Sulfocyanin (SoxE) 7722 884 623 112 3.63 
Sulth_0488 Cytochrome c oxidase subunit I 17287 3212 533 106 5.02 
Sulth_0489 Cytochrome c oxidase subunit II 12771 1543 405 58 4.98 
Sulth_0494 Cytochrome d ubiquinol oxidase, subunit II 161 11 57 38 1.50 
Sulth_0495 Cytochrome bd ubiquinol oxidase subunit I 355 102 39 10 3.17 
Sulth_0840 Cytochrome c oxidase, cbb3-type, subunit III 557 173 81 30 2.78 
Sulth_0843 Heme/copper-type cytochrome/quinol oxidase, 

subunit 3 
154 20 24 6 2.67 

Sulth_0844 Cytochrome c oxidase subunit I 431 29 35 14 3.62 
Sulth_0845 Cytochrome c oxidase subunit II 228 4 30 6 2.93 
Sulth_1456 Cytochrome c oxidase subunit II, periplasmic 

domain 
86 11 43 8 1.01 

Sulth_1490 Cytochrome c oxidase, cbb3-type, subunit III 76 22 22 6 1.79 
Sulth_1513 Cytochrome c oxidase subunit II 15255 1578 4733 457 1.69 
Sulth_1514 Cytochrome c oxidase subunit I 34803 3976 16822 1585 1.05 
Sulth_1901 Cytochrome c biogenesis protein 442 46 999 136 -1.18 
Sulth_1930 Cytochrome c oxidase subunit IV 408 92 4081 275 -3.32 
Sulth_1931 Cytochrome c oxidase subunit III 507 64 4862 339 -3.26 
Sulth_1932 Cytochrome c oxidase subunit I 1427 269 15277 462 -3.42 
Sulth_1933 Cytochrome c oxidase subunit II 1764 452 17994 1718 -3.35 
Sulth_2044 Cytochrome c class I 91 31 18 9 2.36 
Sulth_2183 Cytochrome c biogenesis protein transmembrane 

region 
291 108 816 311 -1.49 

Sulth_2568 Cytochrome c-type biogenesis protein CcmE 123 36 47 3 1.37 
Sulth_2572 Cytochrome c-type biogenesis protein CcmB 68 22 14 3 2.28 
Sulth_2573 Cytochrome c assembly protein 114 15 12 7 3.33 
Sulth_2730 Cytochrome b/b6 domain 819 19 238 110 1.78 
Sulth_2731 Cytochrome b/b6 domain protein 2148 652 804 64 1.42 
Sulth_2749 Sulfocyanin (SoxE) 9756 2642 1112 151 3.13 
     
Sulfur metabolism     
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Sulth_0921 Pyrrolo-quinoline quinone repeat-containing 
protein, tetH 

613 101 25972 7210 -5.41 

Sulth_0946 FAD-dependent pyridine nucleotide-disulfide 
oxidoreductase, Sqr_1 

207 45 75 11 1.46 

Sulth_1024 Hypothetical protein 125 50 57 8 1.13 
Sulth_1025 Heterodisulfide reductase, subunit C, hdrC 24 0 50 8 -1.08 
Sulth_1433 Sulfate adenylyltransferase 369 88 1430 384 -1.95 
Sulth_1435 Sulfate adenylyltransferase 252 31 1202 289 -2.26 
Sulth_1627 Sulfur oxygenase/reductase, Sor 591 29 1340 319 -1.18 
Sulth_1878 Rhodanese-like protein 176 36 381 49 -1.12 
Sulth_2076 Rhodanese-like protein 203 23 416 37 -1.03 
Sulth_2172 Rhodanese-like protein 3024 1076 12511 2067 -2.05 
Sulth_2770 Heterodisulfide reductase, subunit C, hdrC 11592 2924 29882 1777 -1.37 
Sulth_2771 Heterodisulfide reductase, subunit B, hdrB 13422 4935 28681 4989 -1.10 
Sulth_2782 DsrE family protein 4123 1767 14140 4441 -1.78 
Sulth_3251 Pyrrolo-quinolinequinone repeat-containing 

protein, tetH 
163 5 1551 223 -3.25 

  563 
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Figures 564 

 565 

 566 

Figure 1. Bioleaching of chalcopyrite concentrate with single species, binary, and tertiary 567 
combinations of the three studied model species, plus unioculated control. The panels show redox 568 
potential (A), dissolved Fe2+ (B), and total released copper and iron (C and D, respectively). Data 569 
points represent means ± standard deviations (n = 4). Abbreviations in the legend denote: A = A. 570 
caldus, L = L. ferriphilum, and S = S. thermosulfidooxidans. 571 
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 572 

Figure 2. Panel A shows redox potentials remaining below 600 mV during seven independent 573 
experiments containing only S. thermosulfidooxidans for microbial iron oxidation. Data points 574 
represent means ± standard deviations (n = 4). Panel B illustrates the correlation of the ratio of 575 
released iron:copper versus redox potential during bioleaching of chalcopyrite concentrate with 576 
various combinations of the three model species. The ratio was calculated by dividing the amounts of 577 
the two metals that were released between two consecutive sampling points during the leaching 578 
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experiment. The regression was calculated using to the LOESS method with 95% confidence interval 579 
marked by the shaded area. The dotted line denotes the onset of microbial iron oxidation indicated by 580 
a redox potential above 400 mV. Abbreviations in the legend denote: A = A. caldus, L = L. 581 
ferriphilum, and S = S. thermosulfidooxidans.  582 
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 584 

 585 

Figure 3 Proposed model of S. thermosulfidooxidans transcript regulation of genes related to energy 586 
generation. Iron oxidation systems and electron transport by cytochromes has a greater number of 587 
RNA transcripts in the absence of the strong iron oxidizer L. ferriphilum. In its presence, S. 588 
thermosulfidooxidans instead has higher transcript numbers for genes contributing to ISC oxidation 589 
plus one cytochrome c oxidase complex. Quinone pool and NAD(P)H generation are depicted 590 
translucently for comprehension, but corresponding genes were not analyzed in this study. Solid 591 
arrows represent metabolic reactions while dashed arrows indicate the relocation of electrons. 592 

 593 

In review



Figure 1.TIF

In review



Figure 2.TIF

In review



Figure 3.TIF

In review



Appendix C.4

C.4 Automated microscopical analysis of metal sulfide colonization
by acidophilic microorganisms.

Sören Bellenberg†, Antoine Buetti-Dinh†, Vanni Galli, Olga Ilie, Malte Herold, Stephan Christel,

Mariia boretska, Igor Pivkin, Paul Wilmes, Wolfgang Sand, Mario Vera, Mark Dopson

2018

Applied and Environmental Microbiology 84: e01835.

DOI: 10.1128/AEM.01835-18

Contributions of author include:

• Data analysis

• Writing and revision of manuscript

†Co-first author

200



Automated Microscopic Analysis of Metal Sulfide Colonization
by Acidophilic Microorganisms

Sören Bellenberg,a Antoine Buetti-Dinh,b,c Vanni Galli,d Olga Ilie,b,c Malte Herold,e Stephan Christel,f Mariia Boretska,a

Igor V. Pivkin,b,c Paul Wilmes,e Wolfgang Sand,a,g,h Mario Vera,i Mark Dopsonf

aFakultät für Chemie, Biofilm Centre, Universität Duisburg-Essen, Essen, Germany
bInstitute of Computational Science, Faculty of Informatics, Università della Svizzera Italiana, Lugano,
Switzerland

cSwiss Institute of Bioinformatics, Lausanne, Switzerland
dInstitute for Information Systems and Networking, University of Applied Sciences of Southern Switzerland,
Manno, Switzerland

eLuxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
fCentre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
gDonghua University, Shanghai, People's Republic of China
hTechnische Universität Bergakademie Freiberg, Freiberg, Germany
iInstitute for Biological and Medical Engineering, Schools of Engineering, Medicine & Biological Sciences,
Department of Hydraulic & Environmental Engineering, Pontificia Universidad Católica de Chile, Santiago,
Chile

ABSTRACT Industrial biomining processes are currently focused on metal sul-
fides and their dissolution, which is catalyzed by acidophilic iron(II)- and/or
sulfur-oxidizing microorganisms. Cell attachment on metal sulfides is important
for this process. Biofilm formation is necessary for seeding and persistence of the
active microbial community in industrial biomining heaps and tank reactors, and
it enhances metal release. In this study, we used a method for direct quantifica-
tion of the mineral-attached cell population on pyrite or chalcopyrite particles in
bioleaching experiments by coupling high-throughput, automated epifluores-
cence microscopy imaging of mineral particles with algorithms for image analysis
and cell quantification, thus avoiding human bias in cell counting. The method was
validated by quantifying cell attachment on pyrite and chalcopyrite surfaces with ax-
enic cultures of Acidithiobacillus caldus, Leptospirillum ferriphilum, and Sulfobacillus
thermosulfidooxidans. The method confirmed the high affinity of L. ferriphilum cells
to colonize pyrite and chalcopyrite surfaces and indicated that biofilm dispersal oc-
curs in mature pyrite batch cultures of this species. Deep neural networks were also
applied to analyze biofilms of different microbial consortia. Recent analysis of the L.
ferriphilum genome revealed the presence of a diffusible soluble factor (DSF) family
quorum sensing system. The respective signal compounds are known as biofilm dis-
persal agents. Biofilm dispersal was confirmed to occur in batch cultures of L. fer-
riphilum and S. thermosulfidooxidans upon the addition of DSF family signal com-
pounds.

IMPORTANCE The presented method for the assessment of mineral colonization al-
lows accurate relative comparisons of the microbial colonization of metal sulfide
concentrate particles in a time-resolved manner. Quantitative assessment of the min-
eral colonization development is important for the compilation of improved mathe-
matical models for metal sulfide dissolution. In addition, deep-learning algorithms
proved that axenic or mixed cultures of the three species exhibited characteristic
biofilm patterns and predicted the biofilm species composition. The method may be
extended to the assessment of microbial colonization on other solid particles and
may serve in the optimization of bioleaching processes in laboratory scale experi-
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ments with industrially relevant metal sulfide concentrates. Furthermore, the method
was used to demonstrate that DSF quorum sensing signals directly influence coloni-
zation and dissolution of metal sulfides by mineral-oxidizing bacteria, such as L. fer-
riphilum and S. thermosulfidooxidans.

KEYWORDS bioleaching, biofilm formation, biofilm dispersal, image analysis,
microbe-mineral interaction, quorum sensing, diffusible soluble factor, biofilms,
fluorescent image analysis, microbe-mineral interactions

The dissolution of metal sulfides is a chemical process catalyzed by the microbial
oxidation of iron(II) ions and inorganic sulfur compounds (ISCs). It leads to the

generation of acidic, sulfate, and heavy-metal laden acid mine drainage (AMD) waters.
Mineral-attached microorganisms are crucial for the mineral breakdown (1) and are
industrially exploited for the recovery of valuable metals from sulfide ores in biomining
processes (2, 3). Although the mechanism of metal sulfide oxidation is an indirect
chemical process (4, 5), contact of mineral-oxidizing microbes with metal sulfides may
significantly increase dissolution kinetics. This is at least partially due to glucuronic acid
residues in the extracellular polymeric substances (EPS) of Acidithiobacillus ferrooxidans
and Leptospirillum ferrooxidans that accumulate the oxidative agent iron(III) ions (6, 7).
The presence of biofilms is especially important for the persistence of active bioleach-
ing microorganisms in commercial heap bioleaching operations (2, 8, 9). In addition,
mineral-attached cells are particularly important for initiation of the metal sulfide
dissolution. For instance, at dissolved iron ion concentrations of �200 mg/liter, mineral-
attached cells of iron(II)- and ISC-oxidizing Acidithiobacillus ferrooxidans or Acidithioba-
cillus ferrivorans on pyrite surfaces are exclusively responsible for catalyzing its disso-
lution (10). Consequently, cell attachment to metal sulfides has been extensively
studied (10–16). We compare metal sulfide colonization by the ISC oxidizer Acidithio-
bacillus caldus, the iron(II) oxidizer Leptospirillum ferriphilum, and the ISC- and iron(II)-
oxidizing species Sulfobacillus thermosulfidooxidans.

Several methods for the assessment of mineral-attached cells on pyrite or chalco-
pyrite have been developed. Indirect microscopic cell counts rely on the decrease of
planktonic cells during the initial contact with metal sulfides. However, this method
cannot assess the temporal development of the mineral-attached cell population for
prolonged cultivation periods. Other methods involve a cell detachment step, although
quantitative separation of cells from the mineral is not possible and is prone to biases
due to the release of fine mineral particles when samples are rigorously mixed. Molecular
methods and microcalorimetry are alternative options for quantification and characteriza-
tion of cells on mineral surfaces and were compared in a recent study (17). Quantitative
PCR assays are currently the most reliable and common method for absolute quanti-
fication of attached cells in a species-specific manner, although DNA extraction from
mineral samples has specific biases, such as differential susceptibility of different cell
types to cell lysis, as well as interferences of iron ions with the remaining nucleic acids.
In addition, intact cells have been found on chalcopyrite and pyrite mineral grains after
aggressive chemical extraction methods, such as hot cell lysis and phenol treatment
(see Fig. S1 in the supplemental material) (18). Epifluorescence microscopy (EFM) can
be used to study the number of attached cells, as well as the structure of the biofilm
(19). However, model systems that employ polished mineral coupons are not compa-
rable with fine-ground mineral particles. Microbial metal sulfide colonization is gener-
ally heterogeneous, as particles devoid of bacterial colonization coexist with well-
colonized surfaces. This requires the analysis of a sufficiently large number of particles
to take into account random variation in mineral grain colonization.

In addition to quantitative information on mineral colonization, biofilm structures
can also be investigated by using computational methods. Deep neural networks are
the algorithms underlying “deep learning,” a method broadly used in areas of computer
vision, for instance, to analyze and classify images. Popular examples are object
recognition with smartphones and self-driving cars. Several tools exist for processing
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microscopy images and extracting relevant biological features that include cell or
nucleus counting and eukaryotic phenotype analysis. These tools are based on open-
source (R, EBImage [20]; and Java, ImageJ [21, 22]) or proprietary (MatLab, CellProfiler
[23] and CellClassifier [24]) programming languages. The automated image analysis
allows processing of many images with large numbers of mineral grains to be analyzed,
reducing time for replication and therefore allowing testing and comparisons of
multiple experimental conditions in a relative manner.

Automated image analyses could provide insights into aspects of biofilm develop-
ment that are not yet fully understood. As such, the temporal dynamics of mineral
colonization in acidophilic bacteria are largely unknown. However, it is known that the
initial colonization of metal sulfide surfaces by A. ferrooxidans, A. ferrivorans, L. ferrooxi-
dans, and Acidiferrobacter sp. strain SPIII/3 is influenced by quorum sensing (QS) signal
compounds, such as N-acyl-homoserine lactones (25, 26). Those compounds are not
produced by the three strains used in this study. However, genes encoding a diffusible
soluble factor (DSF) QS system have recently been described for the L. ferriphilumT (27).
DSF family QS signal compounds synchronize virulence and biofilm dispersal in Xan-
thomonas campestris (cis-11-methyl-dodecenoic acid, termed DSF) and Burkholderia
cenocepacia (cis-2-dodecenoic acid, termed BDSF). These compounds are also known to
disperse biofilms. Pronounced interspecies biofilm dispersal effects are associated with
DSF family signaling (28, 29). DSF QS systems are encoded by the rpfCFGR genes in
those species where RpfF is the signaling compound synthase, while the corresponding
two-component signal recognition system consists of the sensor kinase RpfC and the
response regulator RpfG, which act directly on cyclic diguanylate (c-di-GMP) metabo-
lism. In addition, the DSF signal receptor proteins homologous to the RpfR protein are
known to become active c-di-GMP-hydrolyzing phosphodiesterases upon binding of
DSF family signals. Lowered levels of c-di-GMP are typically associated with enhanced
motility and decreased expression of biofilm-related genes (30).

In this study, we used a motorized EFM for automated image acquisition (Fig. 1)
coupled to automated image analysis using algorithms that allowed quantification of
mineral-attached cells (Fig. 2). In addition, we used deep neural network algorithms for
classification of images based on species-specific biofilm patterns in samples with low
microbial diversity. This methodology provides the possibility to assess directly micro-
bial mineral colonization laboratory bioleaching assays of metal sulfide concentrate
ores. We demonstrate that the method is suitable to follow the temporal development
of biofilms in model cultures of A. caldus, L. ferriphilum, and S. thermosulfidooxidans in
chalcopyrite and pyrite bioleaching assays. Furthermore, biofilm dispersal upon the
addition of DSF molecules to biofilms formed by L. ferriphilum and S. thermosulfidooxi-
dans is suggested to occur.

RESULTS
Automated image analysis for monitoring biofilm on mineral grains. Specimens

with mineral grains for microscopy were prepared in a manner to achieve images with
a minimum mineral coverage of 70%. For the assessment of the mineral grain coloni-
zation, images were grouped into four arbitrarily chosen equally large groups of one,
two, nine, 18, 36, or 72 images. This was done in order to average the naturally
nonhomogeneous mineral colonization in single microscopy images over a more
representative mineral surface area in multiple images. The variation of the amount of
images per group showed that the coefficient of variation of the mean values of each
of the four groups decreased in a linear manner from 25% � 10% to 8% � 2.5% when
two images per group (eight images in total) or 18 images per group (72 images in
total) were considered from the same biological sample (Fig. 3).

Mineral colonization data of every sample of mineral grains were derived from
analysis of at least 36 images, corresponding to a coefficient of variation not larger than
16% � 8%. For a hypothetical average mineral coverage of 75% of each image, this
consideration corresponded to an analyzed top-view mineral surface area of 4.6 mm2.
This can be deduced to be the minimum mineral surface area that should be analyzed for
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colonization assessment of pyrite or chalcopyrite concentrate particles in the size range of
50 to 100 �m in order to achieve a coefficient of variation not larger than 16% � 8%. Figure
3 shows that a higher accuracy of the method was achieved with more analyzed images,
as the coefficient of variation fell below 10% with �80 analyzed images per sample.

L. ferriphilum efficiently colonizes pyrite and chalcopyrite surfaces. Axenic
cultures of A. caldus, L. ferriphilum, and S. thermosulfidooxidans were compared regard-
ing their ability to colonize pyrite and chalcopyrite (Fig. 4). The inocula were not
previously adapted by growth on pyrite or chalcopyrite or to the presence of copper
ions. L. ferriphilum significantly outperformed A. caldus and S. thermosulfidooxidans in its
capacity to attach on the minerals and was estimated to have 1.5 � 10�9 � 6.2 � 10�7

or 1.2 � 10�9 � 5.0 � 10�7 cells · g�1 in chalcopyrite or pyrite cultures, respectively,
averaging the highest levels of mineral colonization on days 14 and 21. The corre-
sponding values for A. caldus and S. thermosulfidooxidans were 4.4 � 10�8 � 7.3 �

10�7 or 4.8 � 10�8 � 10�8 and 3.1 � 10�8 � 4.8 � 10�7 or 3.1 � 10�8 � 4.5 � 10�7

cells · g�1 in chalcopyrite or pyrite cultures, respectively. Student’s t tests showed that
the difference is statistically significant (P � 10�4) between groups made of coloniza-
tion data from 72 individual images (36 images from day 14 and 36 images from day
21 samples) of each of the mineral cultures of L. ferriphilum, A. caldus, and S. thermo-
sulfidooxidans. In addition, L. ferriphilum was most effective in dissolution of pyrite or
chalcopyrite in axenic batch experiments. This was reflected by the release of iron and
for chalcopyrite copper ions (Fig. 5). In the case of chalcopyrite cultures, this difference
was also represented by the development of the total cell numbers (Fig. 4A). For the
pyrite cultures, S. thermosulfidooxidans showed the highest total cell numbers, likely
due to its ability to utilize ISCs and iron(II) ions (31). On the one hand, ISCs are not used
by the obligate iron(II) oxidizer L. ferriphilum, and due to its inability to oxidize iron(II)

FIG 1 Experimental setup for automated imaging and mounting of mineral grain samples. (A) Ten-well
diagnostic glass slides were used for spotting mineral samples in mounting medium. (B) Stack images
were recorded using a motorized epifluorescence microscope, for calculation of extended depth of focus
image projections. (C) Determination of the mineral grain area (left) and cell counting (right) is illustrated.
Detected cell counts are indicated by a yellow circle for generation of a report file.
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ions, A. caldus was unable to grow on pyrite. A. caldus and S. thermosulfidooxidans
formed a lesser but detectable biofilm on both minerals (Fig. 4B). However, the initial
colonization of chalcopyrite by cells of S. thermosulfidooxidans was significantly lower
than that by A. caldus (Fig. 4B1).

In general, the development of the mineral-attached cell fractions in axenic cultures
of all three strains clearly showed mineral-dependent differences. In chalcopyrite
cultures, an initial peak of 45 to 78% attached cells was followed by a rapid decline
within the first 10 days of cultivation to a level of 25 to 40% for all strains (Fig. 4C1).
Interestingly, this peak in the percentage fraction of mineral-attached cells was the

FIG 2 Illustration of the Python image analysis algorithm for quantification of attached cells on mineral grains.

FIG 3 Development of the coefficient of variation with the amount of analyzed images. The coefficient
of variation was calculated using mean values of mineral colonization data. Colonization data of the
individual images were randomly binned into four arbitrarily chosen groups. The group size was varied
from colonization values derived from 1, 2, 9, 18, 36, or 72 images from a data set of 300 images from
the same mineral sample condition (mixed culture of A. caldus and S. thermosulfidooxidans after 12 days
of cultivation on chalcopyrite). The colonized mineral stems from a biological triplicate experiment. The
coefficient of variation among the groups was calculated repetitively with randomized selection of the
colonization data 25 times in order to calculate the standard deviation of the coefficient of variation.
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result of the initial mineral colonization, followed by growth of the planktonic cell
population rather than detachment of biofilm cells. This finding is supported by the fact
that the amount of mineral-attached cells did not decrease significantly during the
respective time period (Fig. 4B1). Also, the total cell numbers per assay kept rising
steadily from 109 cells to at least 5 � 10�9 cells during the duration of the experiment
for cultures of all three strains (Fig. 4A1). In the case of pyrite, the initial peak in the
fraction of attached cells was less pronounced.

The fraction of attached L. ferriphilum cells in chalcopyrite cultures remained stable
at 25 to 35% after the first 5 days of incubation, even though the amount of mineral-
attached cells increased from 8.3 � 10�8 � 8.1 � 10�7 on day seven to 1.6 � 10�9 �

7.2 � 10�7 cells · g�1 chalcopyrite on day 21. A. caldus and S. thermosulfidooxidans
showed a different behavior, as after the first 10 days of incubation, the amount of

FIG 4 L. ferriphilum efficiently colonizes chalcopyrite and pyrite surfaces. (A to C) The temporal develop-
ment of total cell numbers (A), mineral-attached cell per gram of metal sulfide mineral (B), and the fraction
of the mineral-attached cell population of the total cell population (C) were compared in 150-ml cultures
of axenic cultures of A. caldus (white diamonds), L. ferriphilum (black triangles), or S. thermosulfidooxidans
(gray circles) containing 2% chalcopyrite grains (1) or 2% pyrite grains (2) of 50- to 100-�m grain size.
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attached cells decreased slightly to 4.4 � 10�8 � 1.2 � 10�8 and 2.4 � 10�8 � 3.3 �

10�7 cells · g�1 on day 21, respectively. During this time, their percent fractions of
attached cells gradually decreased to circa 10% (Fig. 4C1).

In the case of pyrite bioleaching, the fraction of mineral-attached cells in cultures of
L. ferriphilum averaged over the time from day five until the end of the experiment on
day 21 (Fig. 4C2) was �40 to 60% enhanced in comparison to the levels observed in
chalcopyrite assays (25 to 35%). A similar observation was made for A. caldus (60 to 70%
attached cells in pyrite assays compared to circa 10 to 30% in chalcopyrite assays), while
S. thermosulfidooxidans showed the lowest pyrite colonization efficiency with a fraction
of 20 to 30% attached cells (10 to 30% in chalcopyrite assays).

Deep neural networks can identify characteristic biofilm patterns on chalco-
pyrite in axenic and mixed cultures. Deep neural networks trained on 600 micros-
copy images per experimental category were used to test their performance in recog-
nizing cell attachment patterns on chalcopyrite grains. Samples from cultures with
different inoculum compositions of A. caldus (A), L. ferriphilum (L), and S. thermosulfi-
dooxidans (S) were used as pure or mixed cultures, resulting in the following categories:
A, L, S, AS, LS, and ASL. These categories represent the biofilms formed on chalcopyrite
grains after 5 days of incubation. A set of 100 test images per category not included in
the training set were used to test the ability of the deep neural network to assign test
images to one of the training set categories. Under the restrictions that only low-
species-abundance samples are considered and individual training sets are available for

FIG 5 Dissolution of pyrite or chalcopyrite indicates microbial growth in bioleaching assays. Axenic
cultures of A. caldus (A, white diamonds), L. ferriphilum (L, black triangles), and S. thermosulfidooxidans (S,
gray circles) were cultivated with pyrite (1) or chalcopyrite (2 and 3), as described. The development of
the total iron and copper ion concentrations is shown.
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each of the three species in axenic and mixed cultures, the technique allows the
prediction of the microbial species present within a mixed-species biofilm on chalco-
pyrite samples (Table 1).

Expression of the DSF family quorum sensing system in L. ferriphilum. A DSF
synthase was found encoded in the L. ferriphilum genome (Table 2) (27). Genes likely
encoding DSF family signal-specific two-component systems or response regulators,
suitable for DSF signal perception, were identified in the genomes of A. caldus, L.
ferriphilum, and S. thermosulfidooxidans (Table 2). The genes of the L. ferriphilum DSF QS
system were found to be expressed in transcriptome analyses of cells grown in
continuous cultures, as well as in chalcopyrite batch cultures. The DSF synthase
LFTS_0514 was especially found to have high expression levels in the planktonic cell
subpopulations. Those levels strongly exceeded the average expression of gene tran-
scripts of this species in axenic, but also in mixed, cultures with S. thermosulfidooxidans
(Fig. S2).

DSF and BDSF signal compounds inhibit iron(II) oxidation and chalcopyrite
dissolution. A strong inhibitory effect on the metabolic activity of bioleaching bacteria
was observed after the external addition of DSF or BDSF. These compounds prevented
oxidation of the soluble substrates iron(II) ions and tetrathionate (Fig. S3) or the
insoluble substrate chalcopyrite during a cultivation period of 32 days (Fig. S4), when
5 �M DSF or BDSF signal molecules were added simultaneously with the inoculum into
cultures of L. ferriphilum and S. thermosulfidooxidans (Table 3). No effect of DSF or BDSF
addition on soluble substrate oxidation was observed in tetrathionate cultures of A.
caldus, while growth with chalcopyrite and its dissolution were inhibited by the
addition of 5 �M DSF (Table 3).

Computational image analysis detects biofilm dispersal upon addition of DSF
family signaling compounds. Biofilm dispersal was observed in cultures of L. ferriphi-
lum, S. thermosulfidooxidans, and their combination in mixed cultures when 5 �M DSF
was added after 5 days of incubation (Fig. 6). A similar effect was noted in mixed
cultures of all three species (Fig. S5). In contrast, no biofilm dispersal was observed in

TABLE 1 Deep learning prediction of species composition of mineral-attached cell
populations

Actual class

Probability (%) by predicted classa

A L S AS LS ALS

A 96 0 3 1 0 0
L 0 94 0 1 0 5
S 2 0 93 3 0 2
AS 0 1 2 78 14 5
LS 1 0 0 11 84 4
ALS 0 0 3 0 1 96
aProbabilities (%) were assigned by the deep learning analysis for the similarity of the 100 test set images to
the convolutional neural network (CNN) class prediction. CNNs were trained with 600 images from five-day-
old mineral cultures with different inoculum compositions of A. caldus (A), L. ferriphilum (L), and S.
thermosulfidooxidans (S) that were used as pure or mixed cultures, resulting in the following categories: A,
L, S, AS, LS, and ASL.

TABLE 2 Presence of DSF family QS system-encoding genes in A. caldus, L. ferriphilum, and S. thermosulfidooxidans genomes identified
using BLASTPa

Species (reference and/or accession no.)

DSF quorum sensing system genes

rpfF rpfR rpfC rpfG

Acidithiobacillus caldusT (59)
(GCA_000175575.2)

ACAty_RS14920, ACAty_RS14615,
ACAty_RS02860

ACAty_RS07245, ACAty_RS04080

Leptospirillum ferriphilumT (27)
(GCA_900198525.1)

LFTS_00514 LFTS_00511 LFTS_00515, LFTS_00516 LFTS_00517

Sulfobacillus thermosulfidooxidansT

(GCA_900176145.1)
Sulth_1253, Sulth_1788,

Sulth_2384
Sulth_1793 Sulth_2102

aE value (�10�30) (48).
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cultures of A. caldus (Fig. S5). However, biofilm dispersal effects were short-lived, and
recolonization of the chalcopyrite occurred in the batch experiment assays within 24 h
after DSF addition. The addition of DSF to mixed cultures of L. ferriphilum and S.
thermosulfidooxidans (Fig. 6C) caused a marked difference in the development of the
sessile cell population, which was similar to the one observed in pure cultures of L.
ferriphilum (Fig. 6A). Deep-learning analysis of this mixed-species biofilm under the

TABLE 3 Inhibitory effect of 5 �M DSF or BDSF addition on oxidation of soluble and
insoluble energy sources in cultures of A. caldus, L. ferriphilum, and S. thermosulfidooxidans

Energy source (reference figure)

Inhibition by speciesa

A. caldus L. ferriphilum S. thermosulfidooxidans

Soluble [tetrathionate/iron(II) ions]
(Fig. S3)

� � �

Insoluble (chalcopyrite) (Fig. S4) � � �

a�, no biological oxidation of soluble substrates occurred within 32 days of incubation; chalcopyrite
dissolution in assays with DSF or BDSF were significantly lower than in the control assays without DSF or
BDSF addition; �, no inhibition, and substrate oxidation similar to assays without DSF or BDSF addition.
Tetrathionate was used for A. caldus, iron(II) ions were used for L. ferriphilum, and tetrathionate or iron(II)
ions were used for S. thermosulfidooxidans. Fig. S3 and S4 substantiate the summary represented by the
indicators (�) shown here by providing quantitative measurements of iron(II) ions, pH values, and
planktonic cell counts [Fig. S3, soluble energy sources of iron(II)ions or tetrathionate] and total copper ions
(Fig. S4, insoluble energy source of chalcopyrite).

FIG 6 DSF molecules stimulate biofilm dispersal in L. ferriphilum and S. thermosulfidooxidans. (A to C)
Axenic cultures of L. ferriphilum (A), S. thermosulfidooxidans (B), and mixed cultures of L. ferriphilum and
S. thermosulfidooxidans (C) were cultivated with 2% chalcopyrite. DSF (5 �M) was added after 5 days of
incubation (gray triangles), and the mineral-attached cell population was compared to control experi-
ments without DSF (white diamonds).
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influence of the DSF molecule (Table 4) confirmed a relatively high similarity with the
biofilm pattern of axenic L. ferriphilum cultures (33%) and the one of mixed cultures of
L. ferriphilum and S. thermosulfidooxidans (38%). However, DSF molecules had no
influence on the biofilm pattern classification in all the other mixed or axenic cultures.
In general, biofilm patterns on chalcopyrite grains after 12 days of incubation matched
well to the true species composition in axenic or mixed cultures and are therefore
similar to those observed in the training set images from day five of the experiment
(Table 4).

DISCUSSION

The presented method allows the direct assessment of the relative amount of
mineral-attached bacterial cells in laboratory bioleaching cultures. It avoids laborious
biochemical or molecular biology sample pretreatment procedures, such as nucleic acid
extraction, and their biases. The method has its main strength in performing relative
comparisons rather than accurate absolute quantification of the amounts of attached
cells and was tested for mineral concentrates as a proof of concept. However, we
propose that the method is extendable, with some specific ad hoc parameterization for
the analysis of other industrially relevant concentrates and low-grade ore preparations.
These requirements include, but are not restricted to, the mineral particle size of the ore
sample, which has to be sufficiently small and homogenous for enabling the visible
deliberation of metal sulfide phases and gangue mineral phases using standard mi-
croscopy equipment. Adapted image analysis algorithms may have to include manual
or automated differentiation of mineral phases and exclusion of gangue and autofluo-
rescent mineral phases. Consequently, we suggest that it will be possible to employ
similar techniques for assessment of the microbial colonization of metal sulfides in
complex and low-grade mineral samples.

For the species-specific attachment behavior on metal sulfides, similar findings have
been published (32–34), supporting the validity of our approach. The reliable, relative,
and quantitative evaluation of biofilm populations is an innovative and powerful
avenue for industrial and academic efforts to improve biomining operations and devise
inoculation strategies of bioleaching operations.

L. ferriphilum cells have a high capacity to form biofilms on chalcopyrite and pyrite
ores, and our method proved this directly in time-series studies (Fig. 4). In contrast, A.
caldus cells that are unable to oxidize pyrite exhibited a low affinity to its surface in
short-duration studies (13, 33), which are based on an indirect assessment of the
attached cells by counting planktonic cell numbers and following their decline during
initial contact with metal sulfides. However, the ostensibly high affinity of this ISC-
oxidizing strain to pyrite surfaces in longer-duration axenic culture experiments pre-
sented here (Fig. 4C2) may be explained since biofilm formation is a common microbial
starvation survival strategy (35). S. thermosulfidooxidans showed fewer attached cells
than A. caldus within the first week of cultivation in chalcopyrite cultures (Fig. 4B1), and
this may explain difficulties encountered in RNA and protein extraction from biofilm
cells of chalcopyrite cultures of this species. It may indicate that the attached S.

TABLE 4 Deep-learning classification of biofilm patterns on chalcopyrite after 12 days of
incubation and addition of 5 �M DSF

Actual class

Predicted class (� DSF/control)a

A L S AS LS ALS

A 89/89 6/0 3/3 NA NA 8/3
L 6/3 86/92 3/0 NA 6/NA 3/3
S 6/3 0/3 83/89 NA 6/NA 6/6
LS 10/8 33/3 4/0 11/NA 38/83 4/6
ALS 3/3 3/3 6/3 NA NA/3 89/89
aProbabilities (%) were assigned by the deep-learning analysis for the similarity of 36 images to the CNN
class prediction. CNNs were trained with 600 images from five-day-old mineral cultures with different
inoculum compositions of A. caldus (A), L. ferriphilum (L), and S. thermosulfidooxidans (S) that were used as
pure or mixed cultures, resulting in the following categories: A, L, S, AS, LS, and ASL. NA, not analyzed.
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thermosulfidooxidans population on chalcopyrite did not multiply. The poor initial
attachment of S. thermosulfidooxidans alongside the slow increase of the number of
attached A. caldus cells on chalcopyrite compared to pyrite grains (Fig. 4B1 and B2) is
possibly related to the physiological effect of inhibitory levels of copper ions. Those
reached concentrations of approximately 100 mg/liter after 5 days of incubation in
cultures of S. thermosulfidooxidans (Fig. 5), and even lower copper concentrations are
known to inhibit biofilm formation by iron-oxidizing acidithiobacilli (10). This is sup-
ported by the characteristic difference in the development of the fraction of biofilm
cells in chalcopyrite (Fig. 4C1) and pyrite (Fig. 4C2) cultures.

The strong decrease in the mineral-attached cell population in L. ferriphilum pyrite
cultures measured on day 21 (Fig. 4B2) may indicate a pronounced biofilm dispersal
event, since A. caldus and S. thermosulfidooxidans cells exhibited a slower and more
gradual decrease in attached cells than did L. ferriphilum. This dispersal may be related
to multiple factors, including the toxicity of exudates, a lowered pH, and enhanced
ionic strength that are known limiting and inhibitory factors for pyrite colonization (10,
19). However, an additional explanation for the dispersal may involve a QS-related
effect. Christel and coworkers (27) revealed the presence of a DSF family QS system in
L. ferriphilum. Even though DSF family signaling compounds of this species are not
chemically identified, bioinformatic analyses suggest a possible function of these signal
molecules in AMD and bioleaching microbial communities (Table 2). The high relative
expression levels of the DSF synthase (LFTS_0514) support this suggestion (Fig. S2).
Fatty acids were identified in extracts of pyrite cultures of L. ferriphilum and several
other leptospirilli (36). Unknown compounds in those extracts inhibited iron oxidation
in several acidophilic iron oxidizers, including S. thermosulfidooxidans and A. ferrooxi-
dansT (36). A similar observation was made in this study with DSF family signal
compounds from Xanthomonas campestris (cis-11-methyl-dodecenoic acid, DSF) and B.
cenocepacia (cis-2-dodecenoic acid [BDSF]) in S. thermosulfidooxidans and L. ferriphilum
(Table 3 and Fig. S3 and S4). Furthermore, DSF family molecules are known biofilm
dispersal agents with pronounced interspecies effects (28, 29, 37, 38). Consequently, it
is not surprising that these compounds also caused biofilm dispersal in L. ferriphilum
and S. thermosulfidooxidans (Fig. 6 and S4). Even though the biofilm dispersal effects
were of short duration under batch culture conditions, the implications of this obser-
vation are of great importance under environmental conditions. Here, biofilm dispersal
may be ensued by a succession in attachment by other microorganisms and detach-
ment of bioleaching microorganisms may impact the performance of heap or stirred-
tank bioleaching reactors. Furthermore, if DSF molecules are produced by mineral-
oxidizing bacteria, cell-cell signaling mechanisms exerting strong inhibitory and
presumably also biofilm dispersal effects on competing species may provide strategies
to manipulate leaching activities in target strains.

Deep learning was used to classify biofilm images from experimental conditions that
were not represented in the training image sets. Based on the visual features learned
during the training, the deep learning correctly inferred the bacterial composition of
the biofilms composed of combinations of the three species used in this study. The
high accuracy achieved in classification of biofilm images after training with convolu-
tional neural networks (CNNs) with a reduced number of images, compared to recent
successful deep-learning applications (39–41), demonstrates that deep learning repre-
sents a valid imaging-based method for the analysis of low-diversity mixed-biofilm
populations (Table 1). In combination with molecular validation, we anticipate that this
method may be extended as an alternative to classical molecular methods for specific
applications with characteristic and low-species-abundance microbial consortia.

Deep learning applied to images from chalcopyrite grains from mixed cultures of L.
ferriphilum and S. thermosulfidooxidans after the addition of 5 �M DSF molecules
suggested an intermediate situation between biofilms from axenic L. ferriphilum cul-
tures (probability, 33%) and mixed L. ferriphilum and S. thermosulfidooxidans cultures
(38%, Table 1). Further indications suggested a dominance of L. ferriphilum cells in those
cultures after the addition of DSF. Phase-contrast microscopy indicated mainly small,
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curved, motile, and rod-shaped cells characteristic of L. ferriphilum in the planktonic cell
population on day 12 of this experiment. Furthermore, a similar increase in the amount
of biofilm cells, as shown in Fig. 6C, was observed in axenic cultures of L. ferriphilum
with or without the addition of DSF molecules (Fig. 6A). Taken together, these results
suggest that DSF molecules facilitated and accelerated L. ferriphilum to dominate the
mixed culture with S. thermosulfidooxidans. The presence of DSF family QS genes in
both species (Table 2) suggests that a complex signal molecule interaction of L.
ferriphilum and S. thermosulfidooxidans may exist in mixed cultures. In general, com-
petition for dissolved iron(II) ions and attachment sites on metal sulfides may be
directly mediated by the DSF signal compounds, which trigger degradation of the
second messenger c-di-GMP (42, 43). Low levels of c-di-GMP are primarily associated
with upregulation of bacterial motility genes and downregulation of genes related to
bacterial biofilm formation and exopolysaccharide (EPS) production (30, 44). However,
the mechanism that explains the inhibition of iron(II) oxidation by DSF family signaling
compounds is not yet understood. Likewise, it remains to be demonstrated if inhibition
of iron(II) oxidation in L. ferriphilum is valid also for the DSF family compounds that are
hypothesized to be produced by L. ferriphilum.

Conclusion. The presented study is a proof of concept for a direct method for relative
quantification of attached cells on metal sulfides using automated image acquisition and
analysis. The results highlight the effects of DSF family signal compounds in cultures of L.
ferriphilum and S. thermosulfidooxidans and suggest an important role of these signal
compounds in colonization of metal sulfides, microbial interactions, and niche defense
among chemolithotrophic mineral-oxidizing bacteria that compete for electron donors
originating from interfacial processes that determine metal sulfide dissolution.

MATERIALS AND METHODS
Microorganisms, cultivation media, and mineral cultures. The type strains Acidithiobacillus caldus

DSM 8584 (45), Leptospirillum ferriphilum DSM 14647 (46), and Sulfobacillus thermosulfidooxidans DSM
9293 (31) were cultured with Mackintosh basal salt medium (MAC) (47). The medium was autoclaved at
121°C for 20 min. Cells were grown with soluble electron donors for inoculation of mineral cultures. This
approach is a realistic scenario for the production of industrial bioleaching inoculum cells. In the case of
L. ferriphilum, 4 g/liter iron(II) ions (provided as FeSO4·7H2O) was used. Precipitation of ferric salts was
prevented by the addition of sulfuric acid to maintain the pH in the range 1.6 to 1.8. A. caldus and S.
thermosulfidooxidans precultures were grown using 0.9 g/liter potassium tetrathionate (K2S4O6), and for
S. thermosulfidooxidans, the medium was amended with 0.02% yeast extract (YE) and 0.1 g/liter iron(II)
ions. Cells were harvested by centrifugation at 11,270 � g for 10 min and washed with 100 ml MAC
medium. Subsequently, cells were inoculated at an initial cell density of 107 cells/ml to mineral cultures
in 300-ml Erlenmeyer flasks with 150 ml MAC medium and 2% (wt/vol) pyrite or chalcopyrite grains (50-
to 100-�m grain size). Equal proportions of cells of each species were used in mixed cultures. All strains
were cultivated on a rotary shaker at 37°C and 150 rpm. For transcriptomic analyses, L. ferriphilum was
additionally grown in continuous cultures, as described previously (27). Nucleic acid and protein
extractions from free-swimming planktonic cells from batch mineral cultures, mineral-attached cells, and
continuous-culture iron(II)-grown planktonic cells were done using a hot phenol protocol, as previously
described (18, 27). Basic local alignment search tool (BLASTP) (48) was used to identify homologous
proteins of known DSF family QS systems in the genome sequences of the three species.

For testing the effects of DSF family signal compounds, cis-11-methyl-dodecenoic acid (DSF; CAS 677354-
23-3; Sigma) or cis-2-dodecenoic acid (BDSF; CAS 55928-65-9; Sigma) was used. A. caldus, L. ferriphilum, and
S. thermosulfidooxidans were grown as described above, with the exception that YE was omitted in S.
thermosulfidooxidans cultures. DSF family signal compounds were applied at 5 �M for testing their effects on
cell growth and soluble substrate oxidation. Growth was evaluated by monitoring the planktonic cell number
using a Thoma counting chamber and a phase-contrast microscope, spectrophotometric measurement of
iron(II) ions (49), and following the development of pH for the tetrathionate cultures. DSF was also spiked into
chalcopyrite cultures at a concentration of 5 �M for testing their effects on metal sulfide colonization and
oxidation in axenic and mixed cultures of A. caldus, L. ferriphilum, and S. thermosulfidooxidans. Metal sulfide
dissolution was monitored by measurement of the concentration of iron(II) ions, total iron ions, and total
copper ions using the spectrophotometric phenanthroline and bicinchoninic acid assays, respectively (49, 50).
All experiments were done in triplicate.

Mineral preparation. Pure mineral samples were used in this study. Museum-grade pyrite grains
(Navajun, Spain) used in leaching and attachment assays were from cube crystals crushed with a disc
swing-mill (HSM 100M; Herzog). Chalcopyrite grains were obtained from a flotation concentrate provided
by Boliden AB (Sweden). Mineral grains were wet sieved (Retsch, Germany) in order to use the particle
fraction between 50 and 100 �m. Pyrite grains were boiled for 30 min in approximately 10 volumes of
6 M HCl, washed with deionized water until the pH was neutral, and stirred twice in approximately 5
volumes of acetone for 30 min in order to remove soluble sulfur compounds (51). Chalcopyrite grains
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were washed twice for 30 min in 10 volumes of washing solution (0.1 M EDTA, 0.4 M NaOH), followed
by treatment with acetone, as described for pyrite grains. For sterilization of mineral preparations,
aliquots were sealed under a nitrogen atmosphere and incubated for 10 h at 125°C.

Microscopy sample preparation. Mineral grain particle samples were withdrawn from mineral
cultures (�25 mg) using a flame-sterilized spatula. These particles were incubated in 1 ml MAC medium
(pH 1.8) with 4% formaldehyde at room temperature for 1 h for fixation of mineral-attached cells,
followed by two washing steps with water and subsequently with 1 ml phosphate-buffered saline (PBS).
Samples were stored at �20°C in 50% ethanol in PBS. Mineral particles were incubated for 10 min in 200
�l of an aqueous solution of 0.01% 4=,6-diamidine-2=-phenylindole dihydrochloride (DAPI) in 2% form-
aldehyde. Prior to and after staining of attached cells, mineral grains were washed with 1 ml PBS. Finally,
mineral particles were mounted on 10-well diagnostic glass slides (10-well, 6.7 mm; Thermo Scientific)
using a glycerol-based mounting medium (CitiFluor AF2) and 22- by 50-mm cover glasses (Fig. 1A).

High-throughput epifluorescence microscopy. Automated image acquisition was performed as
illustrated in Fig. 1A and B using an AxioImager M2m (Zeiss) fluorescence microscope equipped with a
motorized microscopy stage (IM SCAN 130 � 85, DC 1 mm; Märzhäuser Wetzlar) and a AxioCam MRm camera.
Image acquisition used a Zeiss filter set 09 for DAPI-stained samples or bright-field mode with background
illumination for visualization of the localization of opaque mineral grains and transparent regions between.
Images were recorded using a Zeiss Plan-Neofluar 20�/0.50 objective. Images were recorded as stack images
with 2-�m step size, covering the entire maximum grain depth of 100 �m (50 layers). The extended-focus
module of the Zen 2 software (blue edition, 2011; Carl Zeiss GmbH) was used to calculate projection images
using the Wavelet option. Projections were exported as JPEG files. At least 36 images were analyzed for
assessment of the amount of mineral-attached cells for every mineral sample and time point.

Image analysis. (i) Cell counting and mineral grain area determination. Cell counting was carried
out computationally as illustrated in Fig. 2 by first converting the EFM images into gray-scale images and
subsequently using the “Determinant of the Hessian” method (“blob_doh” function of Python’s scikit-image
package) with the following parameters: min_sigma 	 0.34, max_sigma 	 1, num_sigma 	 2, threshold 	
2 � 10�5, overlap 	 0.1, log_scale 	 false. The parameters were adjusted such that the analysis was accurate
for a set of test images. A full description of the parameters is found on the “Determinant of the Hessian”
Python scikit-image package. The analysis was subsequently applied to the entire image set. The mineral grain
area was quantified from corresponding bright-field images with background illumination that were con-
verted into gray-scale images and by setting a threshold in the color distribution using Otsu’s method
(“threshold_otsu” function of Python’s scikit-image package assuming a bimodal pixel distribution in color
intensity [nbins 	 2]).

(ii) Calculation of mineral colonization and total cell numbers. The evaluation of the method’s
statistical accuracy depended on the number of images considered. Cell counts were related to the
two-dimensional mineral grain area depicted in microscopy images and expressed as cells per mm�2.
After manual removal of extreme values, representing the top and bottom deciles of images with
extremely low or high cell counts, metal sulfide colonization values [cells per mm�2] of at least 36 images
were normalized for the representation of 100% mineral grain area (i.e., the true percentage mineral area
of each image and the corresponding cell count value were extrapolated to a theoretical image with
100% mineral coverage). Then, the values were randomly sorted using Microsoft Excel’s random function
and grouped in four arbitrarily chosen classes in order to calculate the mean of each class. These four
classes can be understood as four sets of equal mineral areas used for averaging of the naturally
nonhomogeneous mineral colonization over a larger area than that represented in a single microscopy
image. The mean of the four mean values from each group and its coefficient of variation were
calculated. For estimation of the metal sulfide colonization in cells per gram, the values in cells per mm�2

were multiplied with the specific surface area in mm2 · g�1 of the mineral preparations (4.2 � 104 and
4.8 � 104 mm2 · g�1) for the used pyrite and chalcopyrite concentrates, as determined by gas adsorption
according to the BET (Brunauer Emmet and Taylor) theory. In order to take into account the fact that the
mineral grains were viewed only from the top, the resulting values were doubled in order to account for
the unobserved bottom side, while no correction factor was used for extrapolation from two-dimensional
areas to the true three-dimensional mineral objects. Total cell numbers were estimated by calculation
from direct counts of planktonic cells using phase-contrast microscopy with a Thoma chamber in cells
per milliliter multiplied by the medium volume in milliliters plus the estimated amount of mineral-
attached cells, which were determined using the image analysis method presented in this study in cells
per gram multiplied by the mass of mineral in the bacterial culture in grams.

Deep learning. CNNs are a class of neural networks used in applications known as deep learning. They
have shown high efficacy in areas of computer vision, such as image recognition and classification (52–54).
The open-source program CAFFE was used to perform the deep-learning analysis (55). CNNs were used to
perform deep-learning analysis of EFM images, where �600 images were used for model training and 100
images for model testing. In order to train our CNNs, images from mineral cultures with different inoculum
compositions of A. caldus (A), L. ferriphilum (L), and S. thermosulfidooxidans (S) were used as pure or mixed
cultures, resulting in the following categories: A, L, S, AS, LS, and ASL. These categories represent the biofilms
formed on chalcopyrite grains after 5 days of incubation. Then, a network model for the CAFFE framework was
defined and used along with the classified data to train the CNNs. Finally, the neural network analysis was
validated by processing 100 images of each test category that were not used during the neural network
training phase. It was also used to classify 36 images per species composition in chalcopyrite cultures after 12
days of incubation with or without addition of 5 �M DSF on day five.

RNA isolation, sequencing, and data analysis. Leaching cultures were separated into mineral-
attached and planktonic cell subpopulations. RNA was extracted from continuous culture samples and
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planktonic fractions according to Christel et al. (27), while RNA from mineral-attached cells was obtained
as described previously (18). The RNA was purified with the RNeasy kit (Qiagen), including DNase
treatment. RNA with sufficient quality was sequenced as described previously (27). Suitable RNA samples
from chalcopyrite cultures of axenic L. ferriphilum (2 samples of mineral-attached cell subpopulation),
mixed cultures of L. ferriphilum and S. thermosulfidooxidans (2 samples from the attached cell population
and 4 samples from the planktonic cell subpopulation) were obtained. However, the success rate using
this protocol was below 50% for chalcopyrite culture mineral samples. Raw reads for those samples are
available under the accession no. PRJEB27815. Previously sequenced samples [3 L. ferriphilum continuous
iron(II) culture samples and 2 samples from planktonic cells from chalcopyrite cultures] can be accessed
under the accession no. PRJEB21842. Transcriptomic data were processed as described previously (27).
In short, the resulting sequencing reads were mapped to the L. ferriphilum (27) reference genome with
bowtie2 (56) after a quality filtering step. The resulting read counts for annotated coding sequences were
normalized with DESeq2 (57) using a method introduced by Klingenberg and Meinicke (58).

Accession number(s). Raw reads for the RNA samples are available under the accession no.
PRJEB27815.
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IMP: a pipeline for reproducible reference-
independent integrated metagenomic and
metatranscriptomic analyses
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Abstract

Existing workflows for the analysis of multi-omic microbiome datasets are lab-specific and often result in sub-optimal
data usage. Here we present IMP, a reproducible and modular pipeline for the integrated and reference-independent
analysis of coupled metagenomic and metatranscriptomic data. IMP incorporates robust read preprocessing, iterative
co-assembly, analyses of microbial community structure and function, automated binning, as well as genomic
signature-based visualizations. The IMP-based data integration strategy enhances data usage, output volume,
and output quality as demonstrated using relevant use-cases. Finally, IMP is encapsulated within a user-friendly
implementation using Python and Docker. IMP is available at http://r3lab.uni.lu/web/imp/ (MIT license).

Keywords: Multi-omics data integration, Metagenomics, Metatranscriptomics, Microbial ecology, Microbiome,
Reproducibility

Background
Microbial communities are ubiquitous in nature and
govern important processes related to human health and
biotechnology [1, 2]. A significant fraction of naturally
occurring microorganisms elude detection and investiga-
tion using classic microbiological methods due to their
unculturability under standard laboratory conditions [3].
The issue of unculturability is largely circumvented
through the direct application of high-resolution and
high-throughput molecular measurements to samples
collected in situ [4–6]. In particular, the application of
high-throughput next-generation sequencing (NGS) of
DNA extracted from microbial consortia yields metage-
nomic (MG) data which allow the study of microbial
communities from the perspective of community struc-
ture and functional potential [4–6]. Beyond metage-
nomics, there is also a clear need to obtain functional
readouts in the form of other omics data. The sequen-
cing of reverse transcribed RNA (cDNA) yields

metatranscriptomic (MT) data, which provides informa-
tion about gene expression and therefore allows a more
faithful assessment of community function [4–6]. Al-
though both MG and MT data allow unprecedented in-
sights into microbial consortia, the integration of such
multi-omic data is necessary to more conclusively link
genetic potential to actual phenotype in situ [4, 6]. Given
the characteristics of microbial communities and the
resulting omic data types, specialized workflows are re-
quired. For example, the common practice of subsamp-
ling collected samples prior to dedicated biomolecular
extractions of DNA, RNA, etc. has been shown to inflate
variation, thereby hampering the subsequent integration
of the individual omic datasets [7, 8]. For this purpose,
specialized wet-lab methods which allow the extraction
of concomitant DNA, RNA, proteins, and metabolites
from single, unique samples were developed to ensure
that the generated data could be directly compared
across the individual omic levels [7, 8]. Although stan-
dardized and reproducible wet-lab methods have been
developed for integrated omics of microbial communi-
ties, corresponding bioinformatic analysis workflows
have yet to be formalized.
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Bioinformatic analysis methods for MG and MT NGS
data can be broadly classified into reference-dependent or
reference-independent (de novo) methods [5]. Reference-
dependent methods are based on the alignment/mapping
of sequencing reads onto isolate genomes, gene catalogs,
or existing MG data. A major drawback of such methods
is the large number of sequencing reads from uncultured
species and/or divergent strains which are discarded dur-
ing data analysis, thereby resulting in the loss of poten-
tially useful information. For example, based on analyses
of MG data from the human gut microbiome (arguably
the best characterized microbial community in terms of
culture-derived isolate genomes), approximately 43% of
the data are typically not mappable to the available isolate
genomes [9]. Conversely, reference-independent meth-
odologies, such as approaches based on de novo assem-
blies, enable the retrieval of the actual genomes and/or
potentially novel genes present in samples, thereby
allowing more of the data to be mapped and exploited
for analysis [4, 5, 10]. Furthermore, it has been demon-
strated that the assembly of sequencing reads into lon-
ger contiguous sequences (contigs) greatly improves the
taxonomic assignments and prediction of genes as
opposed to their direct identification from short se-
quencing reads [11, 12]. Finally, de novo MG assem-
blies may be further leveraged by binning the data to
resolve and retrieve population-level genomes, includ-
ing those from hitherto undescribed taxa [13–21].
Given the advantages of reference-independent

methods, a wide array of MG-specific assemblers such as
IDBA-UD [22] and MEGAHIT [23] have been developed.
Most MT data analyses involve reference-based [24–26]
or MG-dependent analysis workflows [27–29]. A com-
parative study by Celaj et al. [12] demonstrated that
reference-independent approaches for MT data analyses
are also applicable using either specialized MT assemblers
(e.g., IDBA-MT [12, 30]), MG assemblers (e.g., IDBA-UD
[22, 30, 31] and MetaVelvet [12, 32]) or single-species
transcriptome assemblers (e.g., Trinity [12, 33]). In all
cases, the available assemblers are able to handle the un-
even sequencing depths of MG and MT data. Although
dedicated assembly methods have been developed for MG
and MT data, formalized pipelines allowing the integrated
use of both data types are not available yet.
Automated bioinformatic pipelines have so far been

mainly developed for MG data. These include
MOCAT [34] and MetAMOS [10], which incorporate
the entire process of MG data analysis, ranging from
preprocessing of sequencing reads, de novo assembly,
and post-assembly analysis (read alignment, taxo-
nomic classification, gene annotation, etc.). MOCAT
has been used in large-scale studies such as those
within the MetaHIT Consortium [35, 36], while MetA-
MOS is a flexible pipeline which allows customizable

workflows [10]. Both pipelines use SOAPdenovo [37]
as the default de novo assembler, performing single-
length kmer-based assemblies which usually result in
fragmented (low contiguity) assemblies with low gene
coverage values [38].
Multi-omic analyses have already provided new insights

into microbial community structure and function in various
ecosystems. These include studies of the human gut micro-
biome [28, 39], aquatic microbial communities from the
Amazon river [27], soil microbial communities [40, 41],
production-scale biogas plants [29], hydrothermal vents
[42], and microbial communities from biological wastewa-
ter treatment plants [43, 44]. These studies employed differ-
ing ways for analyzing the data, including reference-based
approaches [27, 28, 42], MG assembly-based approaches
[29, 40], MT assembly-based approaches [42], and inte-
grated analyses of the meta-omic data [39, 42–44].
Although these studies clearly demonstrate the power
of multi-omic analyses by providing deep insights into
community structure and function, standardized and
reproducible computational workflows for integrating
and analyzing the multi-omic data have so far been un-
available. Importantly, such approaches are, however,
required to compare results between different studies
and systems of study.
Due to the absence of established tools/workflows to

handle multi-omic datasets, most of the aforementioned
studies utilized non-standardized, ad hoc analyses,
mostly consisting of custom workflows, thereby creating
a challenge in reproducing the analyses [10, 45–47].
Given that the lack of reproducible bioinformatic work-
flows is not limited to those used for the multi-omic
analysis of microbial consortia [10, 45–47], several ap-
proaches have recently been developed with the explicit
aim of enhancing software reproducibility. These include
a wide range of tools for constructing bioinformatic
workflows [48–50] as well as containerizing bioinfor-
matic tools/pipelines using Docker [29, 46–48].
Here, we present IMP, the Integrated Meta-omic

Pipeline, the first open source de novo assembly-based
pipeline which performs standardized, automated, flex-
ible, and reproducible large-scale integrated analysis of
combined multi-omic (MG and MT) datasets. IMP in-
corporates robust read preprocessing, iterative co-
assembly of metagenomic and metatranscriptomic data,
analyses of microbial community structure and function,
automated binning, as well as genomic signature-based vi-
sualizations. We demonstrate the functionalities of IMP
by presenting the results obtained on an exemplary data
set. IMP was evaluated using datasets from ten different
microbial communities derived from three distinct
environments as well as a simulated mock microbial com-
munity dataset. We compare the assembly and data inte-
gration measures of IMP against standard MG analysis
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strategies (reference-based and reference-independent) to
demonstrate that IMP vastly improves overall data usage.
Additionally, we benchmark our assembly procedure
against available MG analysis pipelines to show that IMP
consistently produces high-quality assemblies across all
the processed datasets. Finally, we describe a number of
particular use cases which highlight biological applications
of the IMP workflow.

Results
Overview of the IMP implementation and workflow
IMP leverages Docker for reproducibility and deploy-
ment. The interfacing with Docker is facilitated through
a user-friendly Python wrapper script (see the “Details of
the IMP implementation and workflow” section). As
such, Python and Docker are the only prerequisites for
the pipeline, enabling an easy installation and execution
process. Workflow implementation and automation is
achieved using Snakemake [49, 51]. The IMP workflow
can be broadly divided into five major parts: i) prepro-
cessing, ii) assembly, iii) automated binning, iv) analysis,
and v) reporting (Fig. 1).
The preprocessing and filtering of sequencing reads is

essential for the removal of low quality bases/reads, and
potentially unwanted sequences, prior to assembly and
analysis. The input to IMP consists of MG and MT (the
latter preferably depleted of ribosomal RNA prior to se-
quencing) paired-end reads in FASTQ format (section
“Input data”). MG and MT reads are preprocessed inde-
pendently of each other. This involves an initial quality
control step (Fig. 1 and section “Trimming and quality
filtering”) [52] followed by an optional screening for
host/contaminant sequences, whereby the default
screening is performed against the human genome while
other host genome/contaminant sequences may also be
used (Fig. 1 and section “Screening host or contaminant
sequences”). In silico rRNA sequence depletion is exclu-
sively applied to MT data (Fig. 1 and section “Ribosomal
RNA filtering”).
The customized assembly procedure of IMP starts with

an initial assembly of preprocessed MT reads to generate
an initial set of MT contigs (Additional file 1: Figure S1).
MT reads unmappable to the initial set of MT contigs
undergo a second round of assembly. The process of as-
sembling unused reads, i.e., MG or MT reads unmappable
to the previously assembled contigs, is henceforth referred
to as “iterative assembly”. The assembly of MT reads is
performed, first as transcribed regions are covered much
more deeply and evenly in MT data. The resulting MT-
based contigs represent high-quality scaffolds for the
subsequent co-assembly with MG data, overall leading to
enhanced assemblies [43]. Therefore, the combined set of
MT contigs from the initial and iterative MT assemblies
are used to enhance the subsequent assembly with the

MG data. MT data are assembled using the MEGAHIT de
novo assembler using the appropriate option to prevent
the merging of bubbles within the de Bruijn assembly
graph [23, 36]. Subsequently, all preprocessed MT and
MG reads, together with the generated MT contigs, are
used as input to perform a first co-assembly, producing a
first set of co-assembled contigs. The MG and MT reads
unmappable to this first set of co-assembled contigs then
undergo an additional iterative co-assembly step. IMP
implements two assembler options for the de novo co-
assembly step, namely IDBA-UD or MEGAHIT. The con-
tigs resulting from the co-assembly procedure undergo a
subsequent assembly refinement step by a contig-level as-
sembly using the cap3 [53] de novo assembler. This aligns
highly similar contigs against each other, thus reducing
overall redundancy by collapsing shorter contigs into
longer contigs and/or improving contiguity by extending
contigs via overlapping contig ends (Additional file 1:
Figure S1). This step produces the final set of contigs. Pre-
processed MG and MT reads are then mapped back
against the final contig set and the resulting alignment in-
formation is used in the various downstream analysis pro-
cedures (Fig. 1). In summary, IMP employs four measures
for the de novo assembly of preprocessed MG and MT
reads, including: i) iterative assemblies of unmappable
reads, ii) use of MT contigs to scaffold the downstream
assembly of MG data, iii) co-assembly of MG and MT
data, and iv) assembly refinement by contig-level as-
sembly. The entire de novo assembly procedure of IMP
is henceforth referred to as the “IMP-based iterative
co-assembly” (Additional file 1: Figure S1).
Contigs from the IMP-based iterative co-assembly

undergo quality assessment as well as taxonomic annota-
tion [54] followed by gene prediction and functional anno-
tation [55] (Fig. 1 and section “Annotation and assembly
quality assessment”). MaxBin 2.0 [20], an automated bin-
ning procedure (Fig. 1 and section “Automated binning”)
which performs automated binning on assemblies pro-
duced from single datasets, was chosen as the de facto
binning procedure in IMP. Experimental designs involving
single coupled MG and MT datasets are currently the
norm. However, IMP’s flexibility does not forego the im-
plementation of multi-sample binning algorithms such as
CONCOCT [16], MetaBAT [18], and canopy clustering
[15] as experimental designs evolve in the future.
Non-linear dimensionality reduction of the contigs’

genomic signatures (Fig. 1 and section “Non-linear di-
mensionality reduction of genomic signatures”) is per-
formed using the Barnes-Hut Stochastic Neighborhood
Embedding (BH-SNE) algorithm allowing visualization
of the data as two-dimensional scatter plots (henceforth
referred to as VizBin maps [13, 56]). Further analysis
steps include, but are not limited to, calculations of the
contig- and gene-level depths of coverage (section
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“Depth of coverage”) as well as the calling of genomic
variants (variant calling is performed using two distinct
variant callers; section “Variant calling”). The informa-
tion from these analyses are condensed and integrated
into the generated VizBin maps to produce augmented
visualizations (sections “Visualization and reporting”).
These visualizations and various summaries of the out-
put are compiled into a HTML report (examples of the
HTML reports available via Zenodo [57]).

Exemplary output of IMP (using the default IDBA-UD
assembler) based on a human fecal microbiome dataset
is summarized in Fig. 2. The IMP output includes taxo-
nomic (Fig. 2a) and functional (Fig. 2b, c) overviews.
The representation of gene abundances at the MG and
MT levels enables comparison of potential (Fig. 2b) and
actual expression (Fig 2c) for specific functional gene
categories (see Krona charts within HTML S1 [57]). IMP
provides augmented VizBin maps [13, 56], including, for

Fig. 1 Schematic overview of the IMP pipeline. Cylinders represent input and output while rectangles represent processes. Arrows indicate the flow
between input, processes, and output. MG— Metagenomic data, MT— Metatranscriptomic data, rRNA— ribosomal RNA, NLDR-GS— genomic
signature non-linear dimensionality reduction. Processes, input, and output specific to MG and MT data are labeled in blue and red, respectively.
Processes and output that involve usage of both MG and MT data are represented in purple. A detailed illustration of the “iterative
co-assembly” is available in Additional file 1: Figure S1
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Fig. 2 (See legend on next page.)
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example, variant densities (Fig. 2d) as well as MT to MG
depth of coverage ratios (Fig. 2e). These visualizations
may aid users in highlighting subsets of contigs based on
certain characteristics of interest, i.e., population hetero-
geneity/homogeneity, low/high transcriptional activity,
etc. Although an automated binning method [20] is in-
corporated within IMP (Fig. 2f ), the output is also com-
patible with and may be exported to other manual/
interactive binning tools such as VizBin [56] and Anvi’o
[17] for additional manual curation. Please refer to the
HTML reports for additional examples [57].
The modular design (section “Automation and modu-

larity”) and open source nature of IMP allow for
customization of the pipeline to suit specific user-
defined analysis requirements (section “Customization
and further development”). As an additional feature,
IMP also allows single-omic MG or MT analyses (sec-
tion “Details of the IMP implementation and work-
flow”). Detailed parameters for the processes implemented
in IMP are described in the section “Details of the IMP
implementation and workflow” and examples of detailed
workflow schematics are provided within the HTML
reports [57].

Assessment and benchmarking
IMP was applied to ten published coupled MG and MT
datasets, derived from three types of microbial systems,
including five human fecal microbiome samples (HF1,
HF2, HF3, HF4, HF5) [28], four wastewater sludge micro-
bial communities (WW1, WW2, WW3, WW4) [43, 44],
and one microbial community from a production-scale
biogas (BG) plant [29]. In addition, a simulated mock
(SM) community dataset based on 73 bacterial genomes
[12], comprising both MG and MT data was generated to
serve as a means for ground truth-based assessment of
IMP (details in section “Coupled metagenomic and meta-
transcriptomic datasets”). The SM dataset was devised
given the absence of a standardized benchmarking dataset
for coupled MG and MT data (this does solely exist for
MG data as part of the CAMI initiative (http://www.cami-
challenge.org)).
Analysis with IMP was carried out with the two avail-

able de novo assembler options for the co-assembly step
(Fig. 1; Additional file 1: Figure S1), namely the default
IDBA-UD assembler [22] (hereafter referred to as IMP)
and the optional MEGAHIT assembler [23] (henceforth

referred to as IMP-megahit). IMP was quantitatively
assessed based on resource requirement and analytical
capabilities. The analytical capabilities of IMP were eval-
uated based on data usage, output volume, and output
quality. Accordingly, we assessed the advantages of the
iterative assembly procedure as well as the overall data
integration strategy.

Resource requirement and runtimes
IMP is an extensive pipeline that utilizes both MG and
MT data within a reference-independent (assembly-
based) analysis framework which renders it resource-
and time-intensive. Therefore, we aimed to assess the
required computational resource and runtimes of IMP.
All IMP-based runs on all datasets were performed on

eight compute cores with 32 GB RAM per core and
1024 GB of total memory (section “Computational plat-
forms”). IMP runtimes ranged from approximately 23 h
(HF1) to 234 h (BG) and the IMP-megahit runtimes
ranged from approximately 21 h (HF1) up to 281 h (BG).
IMP was also executed on the Amazon cloud computing
(AWS) infrastructure, using the HF1 dataset on a machine
with 16 cores (section “Computational platforms”)
whereby the run lasted approximately 13 h (refer to
Additional file 1: Note S1 for more details). The analysis
of IMP resulted in an increase in additional data of around
1.2–3.6 times the original input (Additional file 2: Table
S1). Therefore, users should account for the disc space for
both the final output and intermediate (temporary) files
generated during an IMP run. Detailed runtimes and data
generated for all the processed data sets are reported in
Additional file 2: Table S1.
We further evaluated the effect of increasing resources

using a small scale test dataset (section “Test dataset for
runtime assessment”). The tests demonstrated that re-
duced runtimes are possible by allocating more threads
to IMP-megahit (Additional file 2: Table S2). However,
no apparent speed-up is achieved beyond allocation of
eight threads, suggesting that this would be the optimal
number of threads for this particular test dataset. Con-
trastingly, no speed-up was observed with additional
memory allocation (Additional file 2: Table S3). Apart
from the resources, runtime may also be affected by the
input size, the underlying complexity of the dataset and/
or behavior of individual tools within IMP.

(See figure on previous page.)
Fig. 2 Example output from the IMP analysis of a human microbiome dataset (HF1). a Taxonomic overview based on the alignment of contigs
to the most closely related genomes present in the NCBI genome database (see also HTML report S1 [57]). a, b Abundances of predicted genes
(based on average depths of coverage) of various KEGG Ontology categories represented both at the MG (b) and MT (c) levels (see also Krona
charts within HTML report S1). d–f Augmented VizBin maps of contigs ≥1 kb, representing contig-level MG variant densities (d), contig-level ratios
of MT to MG average depth of coverage (e), and bins generated by the automated binning procedure (f). Please refer to the HTML reports [57]
for additional examples
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Data usage: iterative assembly
De novo assemblies of MG data alone usually result in a
large fraction of reads that are unmappable to the assem-
bled contigs and therefore remain unused, thereby leading
to suboptimal data usage [43, 58–60]. Previous studies
have assembled sets of unmappable reads iteratively to
successfully obtain additional contigs, leading to an overall
increase in the number of predicted genes, which in turn
results in improved data usage [43, 58–60]. Therefore,
IMP uses an iterative assembly strategy to maximize NGS
read usage. In order to evaluate the best iterative assembly
approach for application within the IMP-based iterative
co-assembly strategy, we attempted to determine the
opportune number of assembly iterations in relation to
assembly quality metrics and computational resources/
runtimes.
The evaluation of the iterative assembly strategy was

applied to MG and MT datasets. For both omic data
types, it involved an “initial assembly” which is defined
as the de novo assembly of all preprocessed reads.
Additional iterations of assembly were then conducted
using the reads that remained unmappable to the gener-
ated set of contigs (see section “Iterative single-omic as-
semblies” for details and parameters). The evaluation of
the iterative assembly procedure was carried out based
on the gain of additional contigs, cumulative contig
length (bp), numbers of genes, and numbers of reads
mappable to contigs. Table 1 shows the evaluation results
of four representative data sets and Additional file 2:

Table S4 shows the detailed results of the application of
the approach to 11 datasets. In all the datasets evaluated,
all iterations (1 to 3) after the initial assembly lead to an
increase in total length of the assembly and numbers of
mappable reads (Table 1; Additional file 2: Table S4).
However, there was a notable decline in the number of
additional contigs and predicted genes beyond the first it-
eration. Specifically, the first iteration of the MG assembly
yielded up to 1.6% additional predicted genes while the
equivalent on the MT data yielded up to 9% additional
predicted genes (Additional file 2: Table S4). Considering
the small increase (<1%) in the number of additional con-
tigs and predicted genes beyond the first assembly iter-
ation on one hand and the extended runtimes required to
perform additional assembly iterations on the other
hand, a generalized single iteration assembly approach
was retained and implemented within the IMP-based it-
erative co-assembly (Fig. 1; Additional file 1: Figure S1).
This approach aims to maximize data usage without dras-
tically extending runtimes.
Despite being developed specifically for the analysis of

coupled MG and MT datasets, the iterative assembly
can also be used for single omic datasets. To assess
IMP’s performance on MG datasets, it was applied to
the simulated MG datasets from the CAMI challenge
(http://www.cami-challenge.org) and the results are
shown in Additional file 1: Figure S2. IMP-based MG as-
sembly using the MEGAHIT assembler on the CAMI
dataset outperforms well-established MG pipelines such

Table 1 Statistics of iterative assemblies performed on MG and MT datasets

MG iterative assembly MT iterative assembly

Dataset Iteration Number of
contigs
(≥1 kb)

Cumulative length
of assembled
contigs (bp)

Number of
predicted
genes

Number of
mapped reads

Number of
contigs (all)

Cumulative length
of assembled
contigs (bp)

Number of
predicted
genes

Number of
mapped
reads

SM Initial assembly 29063 182673343 186939 18977716 13436 8994518 13946 822718

1 16 483336 329 9515 1286 502535 1272 16038

2 6 213094 126 3425 48 18460 49 656

3 1 86711 47 1536 0 0 0 0

HF1 Initial assembly 27028 145938650 154760 20715368 40989 45300233 66249 17525586

1 15 966872 274 39839 2471 969614 2238 329400

2 −1 26822 5 1276 26 10315 24 45642

3 0 4855 0 172 3 1640 6 54788

WW1 Initial assembly 14815 77059275 81060 6513708 45118 22525759 49859 8423603

1 28 3146390 1136 73511 2115 723904 1589 529441

2 2 175634 114 4031 250 82048 201 13335

3 1 30032 16 572 31 10280 18 65866

BG Initial assembly 105282 545494441 593688 109949931 47628 27493690 60566 3754432

1 417 10998269 3902 456821 3956 1397409 3061 130131

2 5 335313 219 21647 717 250223 754 12766

3 7 79022 20 2511 24 9060 22 5827

Results for all datasets available in Additional file 2: Table S2
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as MOCAT in all measures. In addition, IMP-based it-
erative assemblies also exhibit comparable performance
to the gold standard assembly with regards to contigs
≥1 kb and number of predicted genes (http://www.cami-
challenge.org). Detailed results of the CAMI assemblies
are available in Additional file 2: Table S5. However, as
no MT and/or coupled MG and MT datasets so far exist
for the CAMI challenge, the full capabilities of IMP
could not be assessed in relation to this initiative.

Data usage: multi-omic iterative co-assembly
In order to assess the advantages of integrated multi-omic
co-assemblies of MG and MT data, IMP-based iterative co-

assemblies (IMP and IMP-megahit) were compared against
MG-only-based assemblies which include single-omic itera-
tive MG assemblies generated using IMP (referred to as
IMP_MG) and standard MG assemblies by MOCAT (here-
after referred to as MOCAT_MG) and MetAMOS (here-
after referred to as MetAMOS_MG). Furthermore, the
available reads from the human fecal microbiome dataset
(preprocessed with IMP) were mapped to the MetaHIT
Integrated Gene Catalog (IGC) reference database [35] to
compare the data usage of the different assembly proce-
dures against a reference-dependent approach.
IMP-based iterative co-assemblies consistently re-

cruited larger fractions of properly paired MG (Fig. 3a)
and/or MT (Fig. 3b) reads compared to single-omic

a

c

b

d

Fig. 3 Assessment of data usage and output generated from co-assemblies compared to single-omic assemblies. Heat maps show (a) fractions of
properly mapped MG read pairs, (b) fractions of properly mapped MT read pairs, (c) numbers of contigs ≥1 kb, and (d) numbers of unique predicted
genes. IMP and IMP-megahit represent integrated multi-omic MG and MT iterative co-assemblies while IMP_MG, MOCAT_MG, and MetAMOS_MG
represent single-omic MG assemblies. All numbers were row Z-score normalized for visualization. Detailed results available in Additional file 2: Table S5
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assemblies. The resulting assemblies also produced
larger numbers of contigs ≥1 kb (Fig. 3c), predicted non-
redundant unique genes (Fig. 3d), and, even more im-
portant, complete genes as predicted with start and stop
codon by Prodigal [61] (Additional file 2: Table S5).
Using the reference genomes from the SM data as
ground truth, IMP-based iterative co-assemblies resulted
in up to 25.7% additional recovery of the reference ge-
nomes compared to the single-omic MG assemblies
(Additional file 2: Table S5).
IMP-based iterative co-assemblies of the human fecal

microbiome datasets (HF1–5) allowed recruitment of
comparable fractions of properly paired MG reads and an
overall larger fraction of properly paired MT reads com-
pared to those mapping to the IGC reference database
(Table 2). The total fraction (union) of MG or MT reads
mapping to either IMP-based iterative co-assemblies and/
or the IGC reference database was higher than 90%, thus
demonstrating that the IMP-based iterative co-assemblies
allow at least 10% of additional data to be mapped when
using these assemblies in addition to the IGC reference
database. In summary, the complementary use of de novo
co-assembly of MG and MT datasets in combination with
iterative assemblies enhances overall MG and MT data
usage and thereby significantly increases the yield of
useable information, especially when combined with com-
prehensive reference catalogs such as the IGC reference
database.

Assembly quality: multi-omic iterative co-assembly
In order to compare the quality of the IMP-based itera-
tive co-assembly procedure to simple co-assemblies, we
compared the IMP-based iterative co-assemblies against
co-assemblies generated using MetAMOS [10] (hence-
forth referred to as MetAMOS_MGMT) and MOCAT
[34] (henceforth referred to as MOCAT_MGMT).

Although MetAMOS and MOCAT were developed for
MG data analysis, we extended their use for obtaining
MG and MT co-assemblies by including both MG and
MT read libraries as input (section “Execution of pipe-
lines”). The assemblies were assessed based on con-
tiguity (N50 length), data usage (MG and MT reads
mapped), and output volume (number of contigs above
1 kb and number of genes; Additional file 2: Table S5).
Only the SM dataset allowed for ground truth-based
assessment by means of aligning the generated de novo
assembly contigs to the original 73 bacterial genomes
used to simulate the data set (section “Simulated
coupled metagenomic and metatranscriptomic dataset”)
[12, 54]. This allowed the comparison of two additional
quality metrics, i.e., the recovered genome fraction and
the composite performance metric (CPM) proposed by
Deng et al. [62].
Assessments based on real datasets demonstrate

comparable performance between IMP and IMP-
megahit while both outperform MetAMOS_MGMT
and MOCAT_MGMT in all measures (Fig. 4a–c). The
ground truth assessment using the SM dataset shows
that IMP-based iterative co-assemblies are effective in
recovering the largest fraction of the original reference ge-
nomes while achieving a higher CPM score compared to
co-assemblies from the other pipelines. Misassembled
(chimeric) contigs are a legitimate concern within exten-
sive de novo assembly procedures such as the IMP-based
iterative co-assembly. It has been previously demonstrated
that highly contiguous assemblies (represented by high
N50 lengths) tend to contain higher absolute numbers of
misassembled contigs compared to highly fragmented as-
semblies, thereby misrepresenting the actual quality of
assemblies [38, 62, 63]. Therefore, the CPM score was de-
vised as it represents a normalized measure reflecting both
contiguity and accuracy for a given assembly [62]. Based
on the CPM score, both IMP and IMP-megahit yield as-
semblies that balance high contiguity with accuracy and
thereby outperform the other methods (Fig. 4c, d). In
summary, cumulative measures of numbers of contigs
≥1 kb, N50 lengths, numbers of unique genes, recovered
genome fractions (%), and CPM scores (the latter two
were only calculated for the SM dataset), as well as the
mean fractions (%) of mappable MG and MT reads, show
that the IMP-based iterative co-assemblies (IMP and
IMP-megahit) clearly outperform all other available
methods (Fig. 4e; Additional file 2: Table S5).

Use-cases of integrated metagenomic and
metatranscriptomic analyses in IMP
The integration of MG and MT data provides unique
opportunities for uncovering community- or population-
specific traits, which cannot be resolved from MG or
MT data alone. Here we provide two examples of

Table 2 Mapping statistics for human microbiome samples

Reference Average MG pairs
mapping (%)

Average MT pairs
mapping (%)

IGC 70.91 53.57

IMP 70.25 86.21

IMP-megahit 70.62 83.33

IMP_MG 68.08 58.54

MetAMOS_MG 57.31 37.34

MOCAT_MG 36.73 36.68

IMP + IGC 92.66 95.77

IMP-megahit + IGC 92.80 93.24

Average fractions (%) of properly paired reads from the human microbiome
datasets (HF1–5) mapping to various references, including IMP-based iterative
co-assemblies (IMP and IMP-megahit) and single-omic co-assemblies (IMP_MG,
MetAMOS_MG, and MOCAT_MG) as well as the IGC reference database. IMP +
IGC and IMP-megahit + IGC reports the total number of properly paired reads
mapping to IMP-based iterative co-assemblies and/or the IGC reference
database. Refer to Additional file 2: Table S3 for detailed information
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insights gained through the direct inspection of results
provided by IMP.

Tailored preprocessing and filtering of MG and MT data
The preprocessing of the datasets HF1–5 included filter-
ing of human-derived sequences, while the same step
was not necessary for the non-human-derived datasets,
WW1–4 and BG. MT data analyzed within this article
included RNA extracts which were not subjected to wet-
lab rRNA depletion, i.e., BG [29], and samples which
were treated with wet-lab rRNA removal kits (namely
HF1–5 [28] and WW1–4 [43]). Overall, the removal of
rRNA pairs from the MT data showed a large variation,
ranging from as low as 0.51% (HF5) to 60.91% (BG),
demonstrating that wet-lab methods vary in terms of

effectiveness and highlighting the need for such MT-
specific filtering procedures (Additional file 1: Note S2;
Additional file 2: Table S6).

Identification of RNA viruses
To identify differences in the information content of
MG and MT complements, the contigs generated using
IMP were inspected with respect to coverage by MG
and MT reads (Additional file 2: Table S7). In two exem-
plary datasets HF1 and WW1, a small fraction of the
contigs resulted exclusively from MT data (Additional
file 2: Table S7). Longer contigs (≥1 kb) composed exclu-
sively of MT reads and annotated with known viral/bac-
teriophage genes were retained for further inspection
(Table 3; complete list contigs in Additional file 2: Table S8

a d

eb

c

Fig. 4 Assessment of the IMP-based iterative co-assemblies in comparison to MOCAT- and MetAMOS-based co-assemblies. Radar charts summarizing
the characteristics of the co-assemblies generated using IMP, MetAMOS, and MOCAT pipelines on: a human fecal microbiome, b wastewater sludge
community, c biogas reactor, d simulated mock community. IMP co-assemblies were performed with two de novo assembler options, IDBA_UD and
MEGAHIT, whereas MetAMOS and MOCAT were executed using default settings. Assessment metrics within the radar charts include number of contigs
≥1 kb, N50 length (contiguity, cutoff 500 bp), number of predicted genes (unique), and fraction of properly mapped MG and MT read pairs. N50
statistics are reported using a 500-bp cutoff. Additional ground truth assessments for simulated mock dataset included recovered genome
fractions (%) and the composite performance metric (CPM) score with a cutoff of 500 bp [62]. e Summary radar chart reflecting the cumulative
measures and mean fraction of properly mapped MG and MT read pairs from all analyzed 11 datasets while incorporating ground truth-based
measures from the simulated mock dataset. Higher values within the radar charts (furthest from center) represent better performance. Detailed
information on the assembly assessments is available in Additional file 2: Table S5
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and S9). A subsequent sequence similarity search against
the NCBI NR nucleotide database [64] of these candidate
contigs revealed that the longer contigs represent almost
complete genomes of RNA viruses (Additional file 2: Table
S10 and S11). This demonstrates that the incorporation of
MT data and their contrasting to the MG data allow the
identification and recovery of nearly complete RNA viral
genomes, thereby allowing their detailed future study in a
range of microbial ecosystems.

Identification of populations with apparent high
transcriptional activity
To further demonstrate the unique analytical capabilities
of IMP, we aimed to identify microbial populations with
a high transcriptional activity in the HF1 human fecal
microbiome sample. Average depth of coverage at the
contig- and gene-level is a common measure used to
evaluate the abundance of microbial populations within
communities [14, 16, 43]. The IMP-based integrative
analysis of MG and MT data further extends this meas-
ure by calculation of average MT to MG depth of cover-
age ratios, which provide information on transcriptional
activity and which can be visualized using augmented
VizBin maps [56].
In our example, one particular cluster of contigs within

the augmented VizBin maps exhibited high MT to MG
depth of coverage ratios (Additional file 1: Figure S3). The
subset of contigs within this cluster aligned to the genome
of the Escherichia coli P12B strain (henceforth referred to
as E. coli). For comparison, we also identified a subset,
which was highly abundant at the MG level (lower MT
to MG ratio), which aligned to the genome of Collin-
sella intestinalis DSM 13280 strain (henceforth referred

to as C. intestinalis). Based on these observations, we
highlighted the subsets of these contigs in an aug-
mented VizBin map (Fig. 5a). The C. intestinalis and E.
coli subsets are mainly represented by clear peripheral
clusters which exhibit consistent intra-cluster MT to
MG depth of coverage ratios (Fig. 5a). The subsets were
manually inspected in terms of their distribution of
average MG and MT depths of coverage and were com-
pared against the corresponding distributions for all
contigs. The MG-based average depths of coverage of
the contigs from the entire community exhibited a bell-
shape like distribution, with a clear peak (Fig. 5b). In
contrast, MT depths of coverage exhibited more spread,
with a relatively low mean (compared to MG distribution)
and no clear peak (Fig. 5b). The C. intestinalis subset dis-
plays similar distributions to that of the entire community,
whereas the E. coli subset clearly exhibits unusually high
MT-based and low MG-based depths of coverage (Fig. 5b).
Further inspection of the individual omic datasets revealed
that the E. coli subset was not covered by the MG contigs,
while approximately 80% of the E. coli genome was
recoverable from a single-omic MT assembly (Fig. 5c). In
contrast, the C. intestinalis subset demonstrated genomic
recovery in all co-assemblies (IMP, IMP-megahit,
MOCAT_MGMT, MetAMOS_MGMT) and the single-
omic MG assemblies (IMP_MG, MOCAT_MG, MetA-
MOS_MG; Fig. 5c).
As noted by the authors of the original study by

Franzosa et al. [28], the cDNA conversion protocol used
to produce the MT data is known to introduce approxi-
mately 1–2% of E. coli genomic DNA into the cDNA as
contamination which is then reflected in the MT data.
According to our analyses, 0.12% of MG reads and

Table 3 Contigs with a likely viral/bacteriophage origin/function reconstructed from the metatranscriptomic data

Sample Contig ID* Contig length Average contig depth
of coverage

Gene product Average gene depth
of coverage

HF1 Contig_34 6468 20927 Virus coat protein (TMV like) 30668

Viral movement protein (MP) 26043

RNA-dependent RNA polymerase 22578

Viral methyltransferase 18817

Contig_13948 2074 46 RNA-dependent RNA polymerase 41

Viral movement protein (MP) 56

WW2 Contig_6405 4062 46 Tombusvirus p33 43

Viral RNA-dependent RNA polymerase 42

Viral coat protein (S domain) 36

Contig_7409 3217 21 Viral RNA-dependent RNA polymerase 18

Viral coat protein (S domain) 21

Contig_7872 2955 77 Hypothetical protein 112

Phage maturation protein 103

*Contigs of ≥1 kb and average depth of coverage ≥20 were selected
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1.95% of MT reads derived from this sample could be
mapped onto the E. coli contigs, which is consistent with
the numbers quoted by Franzosa et al. [28].
Consistent recovery of the E. coli genome was also ob-

served across all other assemblies of the human fecal
microbiome datasets (HF2–5) which included their
respective MT data (Additional file 1: Figure S4;
Additional file 2: Table S12). The integrative analyses of
MG and MT data within IMP enables users to efficiently

highlight notable cases such as this and to further inves-
tigate inconsistencies and/or interesting characteristics
within these multi-omic datasets.

Discussion
The microbiome analysis workflow of IMP is unique in
that it allows the integrated analysis of MG and MT
data. To the best of our knowledge, IMP represents the
only pipeline that spans the preprocessing of NGS reads

a

b

c

Fig. 5 Metagenomic and metatranscriptomic data integration of a human fecal microbiome. a Augmented VizBin map highlighting contig
subsets with sequences that are most similar to Escherichia coli P12b and Collinsella intestinalis DSM 13280 genomes. b Beanplots representing
the densities of metagenomic (MG) and metatranscriptomic (MT) average contig-level depth of coverage for the entire microbial community and
two subsets (population-level genomes) of interest. The dotted lines represent the mean. c Recovered portion of genomes of the aforementioned
taxa based on different single-omic assemblies and multi-omic co-assemblies (Additional file 2: Table S5)
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to the binning of the assembled contigs, in addition to
being the first automated pipeline for reproducible
reference-independent metagenomic and metatranscrip-
tomic data analysis. Although existing pipelines such as
MetAMOS or MOCAT may be applied to perform co-
assemblies of MG and MT data [44], these tools do not
include specific steps for the two data types in their pre-
and post-assembly procedures, which is important given
the disparate nature of these datasets. The use of Docker
promotes reproducibility and sharing, thereby allowing re-
searchers to precisely replicate the IMP workflow with
relative ease and with minimal impact on overall perform-
ance of the employed bioinformatic tools [29, 46–48]. Fur-
thermore, static websites will be created and associated
with every new version of IMP (Docker image), such that
users will be able to download and launch specific ver-
sions of the pipeline to reproduce the work of others.
Thereby, IMP enables standardized comparative studies
between datasets from different labs, studies, and environ-
ments. The open source nature of IMP encourages a
community-driven effort to contribute to and further im-
prove the pipeline. Snakemake allows the seamless inte-
gration of Python code and shell (bash) commands and
the use of make scripting style, which are arguably some
of the most widely used bioinformatic scripting languages.
Snakemake also supports parallel processing and the abil-
ity to interoperate with various tools and/or web services
[49, 51]. Thus, users will be able to customize and en-
hance the features of the IMP according to their analysis
requirements with minimal training/learning.
Quality control of NGS data prior to de novo assem-

blies has been shown to increase the quality of down-
stream assembly and analyses (predicted genes) [63]. In
addition to standard preprocessing procedures (i.e., re-
moval of low quality reads, trimming of adapter se-
quences and removal), IMP incorporates additional
tailored and customizable filtering procedures which ac-
count for the different sample and/or omic data types.
For instance, the removal of host-derived sequences in
the context of human microbiomes is required for pro-
tecting the privacy of study subjects. The MT-specific in
silico rRNA removal procedure yielded varying fractions
of rRNA reads between the different MT datasets des-
pite the previous depletion of rRNA (section “Tailored
preprocessing and filtering of MG and MT data”), indi-
cating that improvements in wet-lab protocols are ne-
cessary. Given that rRNA sequences are known to be
highly similar, they are removed in IMP in order to miti-
gate any possible misassemblies resulting from such
reads and/or regions [65, 66]. In summary, IMP is de-
signed to perform stringent and standardized prepro-
cessing of MG and MT data in a data-specific way,
thereby enabling efficient data usage and resulting in
high-quality output.

It is common practice that MG and MT reads are
mapped against a reference (e.g., genes, genomes, and/or
MG assemblies) [28, 29, 40] prior to subsequent data in-
terpretation. However, these standard practices lead to
suboptimal usage of the original data. IMP enhances
overall data usage through its specifically tailored itera-
tive co-assembly procedure, which involves four mea-
sures to achieve better data usage and yield overall
larger volumes of output (i.e., a larger number of contigs
≥1 kb and predicted unique and complete genes).
First, the iterative assembly procedure leads to in-

creases in data usage and output volume in each add-
itional iterative assembly step (section “Data usage:
iterative assembly”). The exclusion of mappable reads
in each iteration of the assembly serves as a means of
partitioning the data, thereby reducing the complexity
of the data and overall, resulting in a higher cumula-
tive volume of output [60, 63, 67].
Second, the initial assembly of MT-based contigs en-

hances the overall assembly, as transcribed regions are
covered much more deeply and evenly in MT data,
resulting in better assemblies for these regions [43]. The
MT-based contigs represent high-quality scaffolds for
the subsequent co-assembly with MG data.
Third, the co-assembly of MG and MT data allows the

integration of these two data types while resulting in a
larger number of contigs and predicted complete genes
against which, in turn, a substantially higher fraction of
reads can be mapped (section “Data usage: multi-omic
iterative co-assembly”). Furthermore, the analyses of the
human fecal microbiome datasets (HF1–5) demonstrate
that the numbers of MG reads mapping to the IMP-
based iterative co-assemblies for each sample are
comparable to the numbers of reads mapping to the
comprehensive IGC reference database (Table 2). Previ-
ously, only fractions of 74–81% of metagenomic reads
mapping to the IGC have been reported [35]. However,
such numbers have yet to be reported for MT data, in
which case we observe lower mapping rates to the IGC
reference database (35.5–70.5%) compared to IMP-based
assemblies (Additional file 2: Table S3). This may be at-
tributed to the fact that the IGC reference database was
generated from MG-based assemblies only, thus creating
a bias [35]. Moreover, an excess of 90% of MG and MT
reads from the human fecal datasets (HF1–5) are
mappable to either the IGC reference database and/or
IMP-based iterative co-assemblies, emphasizing that a
combined reference-based and IMP-based integrated-
omics approach vastly improves data usage (Table 2).
Although large fractions of MG and/or MT reads can be
mapped to the IGC, a significant advantage of using a de
novo reference-independent approach lies within the fact
that reads can be linked to genes within their respective
genomic context and microbial populations of origin.
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Exploiting the maximal amount of information is espe-
cially relevant for microbial communities with small
sample sizes and which lack comprehensive references
such as the IGC reference database.
Fourth, the assembly refinement step via a contig-level

assembly with cap3 improves the quality of the assemblies
by reducing redundancy and increasing contiguity by col-
lapsing and merging contigs (section “Assembly quality:
multi-omic iterative co-assembly”). Consequently, our re-
sults support the described notion that the sequential use
of multi-kmer-based de Bruijn graph assemblers, such as
IDBA-UD and MEGAHIT, with overlap-layout-consensus
assemblers, such as cap3, result in improved MG assem-
blies [38, 62] but importantly also extend this to MG and
MTco-assemblies.
When compared to commonly used assembly strat-

egies, the IMP-based iterative co-assemblies consisted of
a larger output volume while maintaining a relatively
high quality of the generated contigs. High-quality as-
semblies yield higher quality taxonomic information and
gene annotations while longer contigs (≥1 kb) are a pre-
requisite for unsupervised population-level genome re-
construction [14, 19, 56] and subsequent multi-omics
data integration [39, 43, 44]. Throughout all the different
comparative analyses which we performed, IMP per-
formed more consistently across all the different datasets
when compared to existing methods, thereby emphasiz-
ing the overall stability and broad range of applicability
of the method (section “Assembly quality: multi-omic it-
erative co-assembly”).
Integrated analyses of MG and MT data with IMP pro-

vide the opportunity for analyses that are not possible
based on MG data alone, such as the detection of RNA vi-
ruses (section “Identification of RNA viruses”) and the
identification of transcriptionally active populations (sec-
tion “Identification of populations with apparent high
transcriptional activity”). The predicted/annotated genes
may be used for further analyses and integration of add-
itional omic datasets, most notably metaproteomic data
[39, 43, 44]. Furthermore, the higher number of complete
genes improves the downstream functional analysis, be-
cause the read counts per gene will be much more accur-
ate when having full length transcript sequences and will
increase the probability to identify peptides. More specific-
ally, the large number of predicted genes may enhance the
usage of generated metaproteomic data, allowing more
peptides, and thus proteins, to be identified.

Conclusions
IMP represents the first self-contained and standardized
pipeline developed to leverage the advantages associated
with integrating MG and MT data for large-scale ana-
lyses of microbial community structure and function in
situ [4, 6]. IMP performs all the necessary large-scale

bioinformatic analyses, including preprocessing, assembly,
binning (automated), and analyses within an automated,
reproducible, and user-friendly pipeline. In addition, we
demonstrate that IMP vastly enhances data usage to pro-
duce high-volume and high-quality output. Finally, the
combination of open development and reproducibility
should promote the general paradigm of reproducible re-
search within the microbiome research community.

Methods
The details of the IMP workflow, implementation, and
customizability are described in further detail. We also
describe the additional analyses carried out for assess-
ment and benchmarking of IMP.

Details of the IMP implementation and workflow
A Python (v3) wrapper script was implemented for user-
friendly execution of IMP via the command line. The
full list of dependencies, parameters (see below), and
documentation is available on the IMP website (http://
r3lab.uni.lu/web/imp/doc.html). Although IMP was de-
signed specifically for integrated analysis of MG and MT
data, it can also be used for single MG or MT analyses
as an additional functionality.

Reproducibility
IMP is implemented around a Docker container that
runs the Ubuntu 14.04 operating system, with all rele-
vant dependencies. Five mounting points are defined for
the Docker container with the -v option: i) input direc-
tory, ii) output directory, iii) database directory, iv) code
directory, and v) configuration file directory. Environ-
ment variables are defined using the -e parameter, in-
cluding: i) paired MG data, ii) paired MT data, and iii)
configuration file. The latest IMP Docker image will be
downloaded and installed automatically upon launching
the command, but users may also launch specific ver-
sions based on tags or use modified/customized versions
of their local code base (documentation at http://r3lab.
uni.lu/web/imp/doc.html).

Automation and modularity
Automation of the workflow is achieved using Snake-
make 3.4.2 [49, 51], a Python-based make language
implemented specifically for building reproducible bio-
informatic workflows and pipelines. Snakemake is inher-
ently modular and thus allows various features to be
implemented within IMP, including the options of i) exe-
cuting specific/selected steps within the pipeline, ii)
check-pointing, i.e., resuming analysis from a point of
possible interruption/termination, iii) analysis of single-
omic datasets (MG or MT). For more details regarding
the functionalities of IMP, please refer to the documen-
tation of IMP (http://r3lab.uni.lu/web/imp/doc.html).
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Input data
The input to IMP includes MG and/or MT FASTQ paired
files, i.e., pairs-1 and pairs-2 are in individual files. The
required arguments for the IMP wrapper script are metage-
nomic paired-end reads (“-m” options) and/or metatran-
scriptomic paired-end reads (“-t” option) with the specified
output folder (“-o” option). Users may customize the com-
mand with the options and flags described in the documen-
tation (http://r3lab.uni.lu/web/imp/doc.html) and in the
“Customization and further development” section.

Trimming and quality filtering
Trimmomatic 0.32 [52] is used to perform trimming and
quality filtering of MG and MT Illumina paired-end
reads, using the following parameters: ILLUMINACLIP:
TruSeq3-PE.fa:2:30:10; LEADING:20; TRAILING:20;
SLIDINGWINDOW:1:3; MAXINFO:40:0.5; MINLEN:40.
The parameters may be tuned via the command line or
within the IMP config file. The output from this step in-
cludes retained paired-end and single-end reads (mate
discarded), which are all used for downstream processes.
These parameters are configurable in the IMP config file
(section “Customization and further development”)

Ribosomal RNA filtering
SortMeRNA 2.0 [68] is used for filtering rRNA from the
MT data. The process is applied on FASTQ files for both
paired- and single-end reads generated from the trimming
and quality filtering step. Paired-end FASTQ files are in-
terleaved prior to running SortMeRNA. If one of the
mates within the paired-end read is classified as an rRNA
sequence, then the entire pair is filtered out. After running
SortMeRNA, the interleaved paired-end output is split
into two separate paired-end FASTQ files. The filtered se-
quences (without rRNA reads) are used for the down-
stream processes. All available databases provided within
SortMeRNA are used for filtering and the maximum
memory usage parameter is set to 4 GB (option: “-m
4000”), which can be adjusted in the IMP config file (sec-
tion “Customization and further development”).

Read mapping
The read mapping procedure is performed using the
bwa mem aligner [69] with settings: “ -v 1” (verbose output
level), “-M” (Picard compatibility) introducing an auto-
mated samtools header using the “-R” option [69]. Paired-
and single-end reads are mapped separately and the
resulting alignments are merged (using samtools merge
[70]). The output is written as a binary aligment map
(BAM) file. Read mapping is performed at various steps in
the workflow, including: i) screening for host or contamin-
ant sequences (section “Screening host or contaminant
sequences”), ii) recruitment of unmapped reads within the
IMP-based iterative co-assembly (section “Extracting

unmapped reads”), and iii) mapping of preprocessed
MG and MT reads to the final contigs. The memory
usage is configurable in the IMP config file (section
“Customization and further development”).

Extracting unmapped reads
The extraction of unmapped reads (paired- and single-
end) begins by mapping reads to a given reference
sequence (section “Read mapping”). The resulting BAM
file is used as input for the extraction of unmapped
reads. A set of paired-end reads are considered unmap-
pable if both or either one of the mates do not map to
the given reference. The unmapped reads are converted
from BAM to FASTQ format using samtools [70] and
BEDtools 2.17.0—bamToFastq utility [71]. Similarly, un-
mapped single-end reads are also extracted from the
alignment information.

Screening host or contaminant sequences
By default, the host/contaminant sequence screening is
performed by mapping both paired- and single-end reads
(section “Read mapping”) onto the human genome ver-
sion 38 (http://www.ncbi.nlm.nih.gov/projects/genome/
assembly/grc/), followed by extraction of unmapped reads
(section “Extracting unmapped reads”). Within the IMP
command line, users are provided with the option of i) ex-
cluding this procedure with the “--no-filtering” flag, ii)
using other sequence(s) for screening by providing the
FASTA file (or URL) using “--screen” option, or iii) speci-
fying it in the configuration file (section “Customization
and further development”).

Parameters of the IMP-based iterative co-assembly
The IMP-based iterative co-assembly implements MEGA-
HIT 1.0.3 [23] as the MT assembler while IDBA-UD 1.1.1
[22] is used as the default co-assembler (MG and MT),
with MEGAHIT [23] as an alternative option for the co-
assembler (specified by the “-a” option of the IMP com-
mand line). All de novo assemblies are performed on
kmers ranging from 25-mers to 99-mers, with an incre-
mental step of four. Accordingly, the command line
parameters for IDBA-UD are “--mink 25 --maxk 99 --step
4 - -similar 0.98 - -pre-correction” [22]. Similarly, the
command line parameters for MEGAHIT are “--k-min 25
- -k-max 99 - -k-step 4”, except for the MT assemblies
which are performed with an additional “--no-bubble” op-
tion to prevent merging of bubbles within the assembly
graph [23]. Furthermore, contigs generated from the MT
assembly are used as “long read” input within the “-l” flag
of IDBA-UD or “-r” flag of MEGAHIT [22, 23]. Kmer
ranges for the IDBA-UD and MEGAHIT can be adjusted/
specified in the configuration file (section “Customization
and further development”). Cap3 is used to reduce the re-
dundancy and improve contiguity of the assemblies using
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a minimum alignment identity of 98% (“-p 0.98”) with a
minimum overlap of 100 bases (“-o 100”), which are ad-
justable in the configuration file (section “Customization
and further development”). Finally, the extraction of reads
that are unmappable to the initial MT assembly and initial
co-assembly is described in the “Extracting unmapped
reads” section.

Annotation and assembly quality assessment
Prokka 1.11 [55] with the “- -metagenome” setting is used
to perform functional annotation. The default BLAST and
HMM databases of Prokka are used for the functional an-
notation. Custom databases may be provided by the user
(refer to the “Databases” and “Customization and further
development” sections for details).
MetaQUAST 3.1 [54] is used to perform taxonomic an-

notation of contigs with the maximum number of down-
loadable reference genomes set to 20 (“--max-ref-number
20”). In addition, MetaQUAST provides various assembly
statistics. The maximum number of downloadable refer-
ence genomes can be changed in the IMP config file (see
“Customization and further development” for details).

Depth of coverage
Contig- and gene-wise depth of coverage values are calcu-
lated (per base) using BEDtools 2.17.0 [71] and aggregated
(by average) using awk, adapted from the CONCOCT
code [16] (script: map-bowtie2-markduplicates.sh; https://
github.com/BinPro/CONCOCT) and is non-configurable.

Variant calling
The variant calling procedure is performed using Sam-
tools 0.1.19 [70] (mpileup tool) and Platypus 0.8.1 [72],
each using their respective default settings and which
are non-configurable. The input is the merged paired-
and single-end read alignment (BAM) against the final
assembly FASTA file (section “Read mapping”). The out-
put files from both the methods are indexed using tabix
and compressed using gzip. No filtering is applied to the
variant calls, so that users may access all the information
and filter it according to their requirements. The output
from samtools mpileup is used for the augmented
VizBin visualization.

Non-linear dimensionality reduction of genomic signatures
VizBin [56] performs non-linear dimensionality reduction
of genomic signatures onto contigs ≥1 kb, using default
settings, to obtain two-dimensional embeddings. Parame-
ters can be modified in the IMP config file (section
“Customization and further development”).

Automated binning
Automated binning of the assembled contigs is per-
formed using MaxBin 2.0. Default setting are applied

and paired-end reads are provided as input for abun-
dance estimation [20]. The sequence length cutoff is set
to be same as VizBin (section “Non-linear dimensionality
reduction of genomic signatures”) and is customizable
using the config file (section “Customization and further
development”).

Visualization and reporting
IMP compiles the multiple summaries and visualizations
into a HTML report [57]. FASTQC [73] is used to
visualize the quality and quantity of reads before and after
preprocessing. MetaQUAST [54] is used to report assem-
bly quality and taxonomic associations of contigs. A
custom script is used to generate KEGG-based [74] func-
tional Krona plots by running KronaTools [75] (script:
genes.to.kronaTable.py, GitHub URL: https://github.com/
EnvGen/metagenomics-workshop). Additionally, VizBin
output (two-dimensional embeddings) is integrated with
the information derived from the IMP analyses, using a
custom R script for analysis and visualization of the
augmented maps. The R workspace image is saved such
that users are able to access it for further analyses. All
the steps executed within an IMP run, including pa-
rameters and runtimes, are summarized in the form of
a workflow diagram and a log-file. The visualization
script is not configurable.

Output
The output generated by IMP includes a multitude of
large files. Paired- and single-end FASTQ files of prepro-
cessed MG and MT reads are provided such that the
user may employ them for additional downstream ana-
lyses. The output of the IMP-based iterative co-assembly
consists of a FASTA file, while the alignments/mapping
of MG and MT preprocessed reads to the final co-
assembly are also provided as BAM files, such that users
may use these for further processing. Predicted genes
and their respective annotations are provided in the vari-
ous formats produced by Prokka [55]. Assembly quality
statistics and taxonomic annotations of contigs are pro-
vided as per the output of MetaQUAST [54]. Two-
dimensional embeddings from the NLDR-GS are pro-
vided such that they can be exported to and further cu-
rated using VizBin [56]. Additionally, abundance and
expression information is represented by contig- and
gene-level average depth of coverage values. MG and
MT genomic variant information (VCF format), includ-
ing both SNPs and INDELs (insertions and deletions), is
also provided. The results of the automated binning
using MaxBin 2.0 [20] are provided in a folder which
contains the default output from the program (i.e., fasta
files of bins and summary files).
The HTML reports [57], e.g., HTML S1 and S2, com-

pile various summaries and visualizations, including, i)
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augmented VizBin maps, ii) MG- and MT-level func-
tional Krona charts [75], iii) detailed schematics of the
steps carried out within the IMP run, iv) list of parame-
ters and commands, and v) additional reports (FASTQC
report [73], MetaQUAST report [54]). Please refer to the
documentation of IMP for a detailed list and description
of the output (http://r3lab.uni.lu/web/imp/doc.html).

Databases
The IMP database folder (db) contains required data-
bases required for IMP analysis. The folder contains the
following subfolders and files with their specific content:

i. adapters folder — sequencing adapter sequences.
Default version contains all sequences provided
by Trimmomatic version 0.32 [52]

ii. cm, genus, hmm, and kingdom folders — contains
databases provided by Prokka 1.11 [55]. Additional
databases may be added into the corresponding
folders as per the instructions in the Prokka
documentation (https://github.com/tseemann/
prokka#databases)

iii. sortmerna folder — contains all the databases
provided in SortMeRNA 2.0 [68]. Additional
databases may be added into the corresponding
folders as per the instructions in the SortMeRNA
documentation (http://bioinfo.lifl.fr/RNA/sortmerna/
code/SortMeRNA-user-manual-v2.0.pdf)

iv. ec2pathways.txt — enzyme commission (EC) number
mapping of amino acid sequences to pathways

v. pathways2hierarchy.txt — pathway hierarchies used
to generated for KEGG-based functional Krona
plot (section “Visualization and reporting”)

Customization and further development
Additional advanced parameters can be specified via the
IMP command line, including specifying a custom config-
uration file (“-c” option) and/or specifying a custom data-
base folders (“-d” option). Threads (“- -threads”) and
memory allocation (“--memcore” and “- -memtotal”) can be
adjusted via the command line and the configuration file.
The IMP launcher script provides a flag (“- -enter”) to
launch the Docker container interactively and the option to
specify the path to the customized source code folder (“-s”
option). These commands are provided for development
and testing purposes (described on the IMP website and
documentation: http://r3lab.uni.lu/web/imp/doc.html). Fur-
ther customization is possible using a custom configuration
file (JSON format). The customizable options within the
JSON file are specified in individual subsections within the
“Details of the IMP implementation and workflow” section.
Finally, the open source implementation of IMP allows
users to customize the Docker image and source code of
IMP according to their requirements.

Iterative single-omic assemblies
In order to determine the opportune number of itera-
tions within the IMP-based iterative co-assembly strat-
egy an initial assembly was performed using IMP
preprocessed MG reads with IDBA-UD [22]. Cap3 [53]
was used to further collapse the contigs and reduce the
redundancy of the assembly. This initial assembly was
followed by a total of three assembly iterations, whereby
each iteration was made up of four separate steps: i) ex-
traction of reads unmappable to the previous assembly
(using the procedure described in the “Extracting un-
mapped reads” section), ii) assembly of unmapped reads
using IDBA-UD [22], iii) merging/collapsing the contigs
from the previous assembly using cap3 [53], and iv) evalu-
ation of the merged assembly using MetaQUAST [54].
The assembly was evaluated in terms of the per-iteration
increase in mappable reads, assembly length, numbers of
contigs ≥1 kb, and numbers of unique genes.
Similar iterative assemblies were also performed for

MT data using MEGAHIT [23], except CD-HIT-EST
[76] was used to collapse the contigs at ≥95% identity
(“-c 0.95”) while MetaGeneMark [77] was used to pre-
dict genes. The parameters and settings of the other pro-
grams were the same as those defined in the “Details of
the IMP implementation and workflow” section.
The aforementioned procedures were applied to all the

datasets analyzed within this article. The merged contig
sets (non-redundant) from the first iteration of both the
MG and MT iterative assemblies were selected to repre-
sent the IMP single-omics assemblies (IMP_MG and
IMP_MT) and were compared against co-assemblies.

Execution of pipelines
MetAMOS v1.5rc3 was executed using default settings.
MG data were provided as input for single-omic assem-
blies (MetAMOS_MG) while MG and MT data were
provided as input for multi-omic co-assemblies (MetA-
MOS_MGMT). All computations using MetAMOS were
set to use eight computing cores (“-p 8”).
MOCAT v1.3 (MOCAT.pl) was executed using de-

fault settings. Paired-end MG data were provided as in-
put for single-omic assemblies (MOCAT_MG) while
paired-end MG and MT data were provided as input
for multi-omic co-assemblies (MOCAT_MGMT). All
computations using MOCAT were set to use eight
computing cores (“-cpus 8”). Paired-end reads were first
preprocessed using the read_trim_filter step of MOCAT
(“-rtf”). For the human fecal microbiome datasets (HF1–5),
the preprocessed paired- and single-end reads were add-
itionally screened for human genome-derived sequences
(“-s hg19”). The resulting reads were afterwards assembled
with default parameters (“-gp assembly -r hg19”) using
SOAPdenovo.
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IMP v1.4 was executed for each dataset using different
assemblers for the co-assembly step: i) default setting
using IDBA-UD, and ii) MEGAHIT (“-a megahit”). Add-
itionally, the analysis of human fecal microbiome data-
sets (HF1–5) included the preprocessing step of filtering
human genome sequences, which was omitted for the
wastewater sludge datasets (WW1–4) and the biogas
(BG) reactor dataset. Illumina TruSeq2 adapter trimming
was used for wastewater dataset preprocessing since the
information was available. Computation was performed
using eight computing cores (“- -threads 8”), 32 GB
memory per core (“--memcore 32”) and total memory of
256 GB (“- -memtotal 256 GB”). The customized param-
eters were specified in the IMP configuration file (exact
configurations listed in the HTML reports [57]). The
analysis of the CAMI datasets were carried using the
MEGAHIT assembler option (“-a megahit”), while the
other options remained as default settings.
In addition, IMP was also used on a small scale dataset

to evaluate performance of increasing the number of
threads from 1 to 32 and recording the runtime (“time”
command). IMP was launched on the AWS cloud com-
puting platform running the MEGAHIT as the assembler
(“-a megahit”) with 16 threads (“- -threads 16”) and
122 GB of memory (“--memtotal 122”).

Data usage assessment
Preprocessed paired-end and single-end MG and MT
reads from IMP were mapped (section Read mapping)
onto the IMP-based iterative co-assemblies and IMP_MG
assembly. Similarly, preprocessed paired-end and single-
end MG and MT reads from MOCAT were mapped onto
the MOCAT co-assembly (MOCAT_MGMT) and the
MOCAT single-omic MG assembly (MOCAT_MG).
MetAMOS does not retain single-end reads; therefore,
preprocessed MG and MT paired-end reads from MetA-
MOS were mapped onto the MetAMOS co-assembly
(MetAMOS_MGMT) and MetAMOS single-omic MG
assembly (MetAMOS_MG).
Preprocessed MG and MT reads from the human fecal

datasets (HF1–5) were mapped using the same parameters
described in the “Read mapping” section to the IGC refer-
ence database [35] for evaluation of a reference-based ap-
proach. Alignment files of MG and MT reads mapping to
the IMP-based iterative co-assemblies and the aforemen-
tioned alignments to the IGC reference database were
used to report the fractions of properly paired reads
mapping in either IMP-based iterative co-assembly, IGC
reference database, or both. These fractions were then
averaged across all the human fecal datasets (HF1–5).

Assembly assessment and comparison
Assemblies were assessed and compared using Meta-
QUAST by providing contigs (FASTA format) from all

different (single- and multi-omic) assemblies of the same
dataset as input [54]. The gene calling function (“-f”) was
utilized to obtain the number of genes which were
predicted from the various assemblies. An additional par-
ameter within MetaQUAST was used for ground truth
assessment of the simulated mock (SM) community assem-
blies by providing the list of 73 FASTA format reference ge-
nomes (“-R”). The CPM measure was computed based on
the information derived from the results of MetaQUAST
[54]. In order to be consistent with the reported values (i.e.,
N50 length), the CPM measures reported within this article
are based on alignments of 500 bp and above, unlike the
1-kb cutoff used in the original work [62]. Prodigal was
also used for gene prediction to obtain the number of
complete and incomplete genes [61].

Analysis of contigs assembled from MT data
A list of contigs with no MG depth of coverage together
with additional information on these contigs (contig
length, annotation, MT depth of coverage) was retrieved
using the R workspace image, which is provided as part
IMP output (sections “Visualization and reporting” and
“Output”). The sequences of these contigs were ex-
tracted and subjected to a BLAST search on NCBI to de-
termine their potential origin. Furthermore, contigs with
length ≥1 kb, average depth of coverage ≥20 bases, and
containing genes encoding known virus/bacteriophage
functions were extracted.

Analysis of subsets of contigs
Subsets of contigs within the HF1 dataset were identified
by visual inspection of augmented VizBin maps gener-
ated by IMP. Specifically, detailed inspection of contig-
level MT to MG depth of coverage ratios was carried
out using the R workspace provided as part of IMP out-
put (sections “Visualization and reporting” and “Out-
put”). The alignment information of contigs to isolate
genomes provided by MetaQUAST [54] was used to
highlight subsets of contigs aligning to genomes of the
Escherichia coli P12B strain (E. coli) and Collinsella
intestinalis DSM 13280 (C. intestinalis).
An additional reference-based analysis of MetaQUAST

[54] was carried out for all the human fecal microbiome
assemblies (HF1–5) by providing the genomes of E. coli
P12B and C. intestinalis DSM 13280 as reference (flag:
“-R”) to assess the recovery fraction of the aforemen-
tioned genomes within the different assemblies.

Computational platforms
IMP and MetAMOS were executed on a Dell R820 ma-
chine with 32 Intel(R) Xeon(R) CPU E5-4640 @ 2.40GHz
physical computing cores (64 virtual), 1024 TB of DDR3
RAM (32 GB per core) with Debian 7 Wheezy as the op-
erating system. MOCAT, IMP single-omic assemblies, and
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additional analyses were performed on the Gaia cluster of
the University of Luxembourg HPC platform [78].
IMP was executed on the Amazon Web Services

(AWS) cloud computing platform using EC2 R3 type
(memory optimized) model r3.4xlarge instance with 16
compute cores, 122 GB memory, and 320 GB of storage
space running a virtual Amazon Machine Image (AMI)
Ubuntu v16.04 operating system.

Additional files

Additional file 1: Supplementary figures and notes. Figures S1–S3 and
Notes S1–S2. Detailed figure legends available within file. (PDF 1047 kb)

Additional file 2: Supplementary tables. Tables S1–S12. Detailed table
legends available within file. (XLSX 4350 kb)
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Abstract
The systematic collection, integration and modelling of high-
throughput molecular data (multi-omics) allows the detailed
characterisation of microbiomes in situ. Through metabolic trait
inference, metabolic network reconstruction and modelling, we
are now able to define ecological interactions based on
metabolic exchanges, identify keystone genes, functions and
species, and resolve ecological niches of constituent microbial
populations. The resulting knowledge provides detailed infor-
mation on ecosystem functioning. However, as microbial
communities are dynamic in nature the field needs to move
towards the integration of time- and space-resolved multi-omic
data along with detailed environmental information to fully
harness the power of community- and population-level meta-
bolic network modelling. Such approaches will be fundamental
for future targeted management strategies with wide-ranging
applications in biotechnology and biomedicine.
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Microbial systems ecology
Microbial communities (microbiomes) are involved in all
biogeochemical cycles by contributing functions which
may be common to most ecosystems (underlined words
are defined in Box 1), e.g. nitrogen fixation, or by being
first-line to very specific ecosystem services, e.g. the
degradation of particular xenobiotics. Although the global
relevance ofmicrobial activities for ecosystem functioning
is now widely accepted, methods to study the ecology of
the tremendous richness of the microbial realm are rela-
tively recent. In order to model, predict and understand

the behaviour of microbial constituents in their native
environments, Microbial Systems Ecology heavily relies
on high-throughput, high-fidelity and high-resolution
measurements of microbial consortia (Figure 1A) as well
as the integration of the resulting data [1]. Thereby, Mi-
crobial SystemsEcology relies on specialisedwet- anddry-
lab approaches to achieve coherent assessments of mi-
crobial community structure and function in situ [1e5]. In
addition to the valuable insights on community structure
and functional potential (metagenomics), expressed
functions (metatranscriptomics and metaproteomics)

and metabolic activity (metabolomics), the integration of
the individual omic levels (Figure 1B) allows compre-
hensive resolution of the emergent properties of ecosys-
tems [1,6]. Furthermore, integrative approaches can
significantly reduce the current limitations associated
with single omics by enhancing the interpretability of data
[1], allowing for example to obtain improved genome re-
constructions fromconstituentpopulations [7] and to link
the expression of phenotype-associated microbial func-
tions to distinct taxa [8].

Natural microbial communities are comprised of con-
stituent, interacting populations. Therefore, to move
from descriptive, comparative or statistical studies to
ecological inferences [9], in Microbial Systems Ecology,
microbial communities must be seen as networks of
networks: communitymembers (populations), consisting
of collections of interwovenmolecular networks, form the
interacting units of higher-order ecological systems.
Although different types of molecular networks exist
(e.g. gene regulatory networks, co-occurrence networks,
etc.), we particularly focus our review on metabolic

network reconstruction and related modelling ap-
proaches as applied to microbial communities in view of
resolving specific properties underpinning ecosystem
functioning. We also present our opinion on how
harnessing this ecological knowledge will facilitate
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targeted manipulations of microbial communities in the
future. More specifically, space- and time-resolved inte-
grated multi-omic datasets will allow us to define and
subsequently alter the realised niches of constituent
populations for the management of communitye
conferred traits.

Using metabolic networks to obtain
meaningful ecological insights
Reconstruction, analysis and modelling of metabolic
networks
Community-level metabolic modelling approaches are
classified according to the unit being modelled (entire
community, guilds, species or strains, seeFigure 1B andC)
[10] and the level of detail. Metabolic modelling ap-
proachesmay be divided into i) stoichiometric approaches
that model the metabolism quantitatively [11], and ii)
topological (network-based) approaches, which are more
suitable for qualitative metabolic modelling [12].

In any case, a prerequisite to metabolic modelling is
metabolic network reconstruction, i.e. the assembly of a

metabolic map for the unit of interest. A number of
automatic pipelines generate metabolic reconstructions
directly from the genome [13e15] or metagenome [16],
which can subsequently serve as the starting point for
manual curation [17]. Alternatively, a selected subset of
pathways relevant in a particular environment can be
targeted for metabolic reconstruction [18]. Two major
challenges for metabolic reconstruction are i) the large

number of genes without functional annotation, which
can be partially overcome using gap filling methods [19],
and ii) the association of genes to reactions. Semi-
curated metabolic models are collected in repositories
such as AGORA [20].

Once a metabolic network reconstruction has been ob-
tained, the community’s metabolism can be analysed
qualitatively or quantitatively. For instance, a topological
analysis can serve to identify specific metabolic pathways
of interest or to extract the active part of a community’s

metabolism from metatranscriptomic [21], meta-
proteomic or (meta-)metabolomic data (Figure 1B). A
widespread quantitative metabolic modelling approach is
flux balance analysis (FBA), which calculates the
metabolite flow through reactions such that a particular
objective function, e.g. biomass production, is maximised
[11]. While topological metabolic models can integrate
omics data via node or edge weights, stoichiometric
models can take them into account for instance by
modifying flux distributions [22]. FBA, which was origi-
nally developed for single species, was recently extended

to multiple species [23,24]. However, these approaches
only provide a static picture of the community. Dynamic
community-level metabolic modelling, which describes
the change of species abundances and metabolite con-
centrations over time, currently is an active field of
development [25,26].

In the following paragraphs, we will discuss some ap-
plications of metabolic modelling in more detail, namely
the prediction of ecological interactions, identification
of keystone species and functions as well as metabolic
niche inference.

Metabolic interactions
Metabolic models can be exploited to predict ecological
interactions between species viametabolic cross-feeding,
for instance in the case of mutualistic growth on the toxic
end-products of other species, or when two species
compete for the same nutrients (Figure 1C and D).
Importantly, the extracellular environment, which can be
characterised by metabolomics and physicochemical
measurements, needs to be taken into account when
predicting interactions, since not all potential in-
teractions will be actually realised particularly in
nutrient-rich environments [27]. A number of stoichio-

metric interaction prediction approaches compare growth
rates computed in the presence or the absence of

Box 1. Glossary

- Ecosystem: ecological self-supporting unit constituted of an
environment (the biotope) and the living organisms inhabiting it
(the biocoenosis). Despite flows of materials, organisms and
energy occurring across the boundary of individual units, the two
components of an ecosystem interact more strongly between
each other than with the neighbouring units.

- Ecosystem functioning: all activities, processes and properties
driving biogeochemical activities and leading to the relative
ecological stability of an ecosystem.

- Ecological niche (Hutchinson): the hypervolume comprised of n
dimensions representing the environmental conditions and re-
sources gradients enabling a species to persist. This definition led to
the subsequent description of the fundamental niche (the maximal
usable space) and the realised niche (the actual used space).

- Ecological interactions (or biological interactions or symbiosis):
long-term relationship between individuals of different species
including mutualism (win–win), commensalism (win–neutral),
parasitism/predation (win– lose) and amensalism (lose–neutral).
Metabolic interactions represent a subset of these relationships
when the interaction is mediated through one or multiple metab-
olite(s), as opposed to non-metabolic relationships.

- Metabolic models: in silico description of the metabolic potential of
a biological unit (e.g. community, guild, species), often repre-
sented as a bipartite directed network consisting of metabolites
and reactions/enzymes/genes [12]. While topological metabolic
models represent a qualitative view of metabolism, stoichiometric
metabolic models require the specification of each reaction’s
stoichiometry in a stoichiometric matrix, which forms the basis for
quantitative metabolic modelling.

- Microbial Systems Ecology: the holistic study of microbial com-
munities using systems biology approaches.

- Systematic measurement: “the standardised, reproducible, and
simultaneous measurement of multiple features from a single
sample. Resulting datasets are fully integrable and relate system-
wide behaviours” [1].
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an interaction partner [28e30] or under different envi-
ronmental condition [31] to determine the interaction
type. Here, COMETS [26] also takes into account the
impact of spatial structure on cross-feeding.

In contrast to analyses based on stoichiometric model-
ling, topology-based interaction prediction [32e34] first
involves the inference of seed metabolites for a given

microbial population, which include all metabolites that
cannot be produced by the network itself [35]. It then
assesses whether some of these seeds can be produced by
the metabolic network of another species, which in turn
allows quantification of the potential for commensalism
or mutualism. The metabolic interaction potential mea-
sures themaximum number of essential nutrients that an
organism can obtain by interacting with its community
[34]. Furthermore, the competitive potential between
two species can be determined by computing the overlap
between their seed metabolites [36].

An alternative topological approach finds genome seg-
ments thatmaximise the number of consecutive enzyme-
coding genes. The enzymes in turn catalyse metabolic
transformations which are complementary across species
[37]. Metabolic pathway complementarity or overlap can
also be exploited to screen metagenomic data for in-
teractions. This form of topological analysis has for
instance been applied to explore metabolic strategies in
human gut microbiota [38].

Recent work has involved the use ofmulti-omics to refine
or validate model predictions in different environmental
conditions [39e42]. Beyond interactions mediated
through exchange or competition formetabolites, trophic
interactions such as phage predation can also be inferred
using omic data (see Box 2 for an example of non-
metabolic interactions). Similarly, additional ecological
insights such as keystone roles of some species can be
inferred when metabolic networks are combined with
other layers of knowledge such as co-occurrence of genes/
transcripts/proteins/metabolites or to regression- and
rule-based network analysis [43].

Keystone functions, genes and species
Ecological keystone species are commonly understood as
species that have a pronounced impact on their envi-
ronment independent of their abundance, i.e. they have
a disproportionate deleterious effect on the community
upon their removal [44,45]. This concept reflects the
dependencies within a community governed by

interactions among its members and is clearly context-
dependent: the importance of any organism for stabilis-
ing the community is conferred by the particular group.
Thus being a keystone species is not a Boolean trait, but
it is rather a continuous property that emerges in the
context of community function and different selection
pressures. In order to predict which organism is a func-
tional keystone species, the topological properties of

networks derived from metabolic models that represent
the community-wide organisation of microbial in-
teractions may be used (Figure 1E) in synergy with co-
occurrence networks [46,47]. Measures such as degree,
clustering coefficient and closeness centrality reflect the
scale of the embeddedness of the constituting organisms
(nodes) in the microbial community ranging from direct
ecological partners to local and global neighbourhoods,

respectively [46].

Different categories of keystone species have been pro-
posed including ecosystem engineer (or modifier)
keystone species (Figure 1E), trophic (prey or predator)
keystone species or resource provider keystone species
[48]. In any case, keystone species confer keystone
functionalities to the ecosystem [49]. For example, the
degradation of dietary fibres in the human gut is the
result of a community-driven effort. However, the pivotal
step is the breakdown of the complex resistant starches

like amylopectin and amylose by primary degraders,
which release simple sugar molecules to be fermented by
the rest of themicrobial consortium.Ruminococcus bromii is
a keystone species in this context [50]. The organism
possesses a highly specific cluster of keystone genes
essential for efficient amylolysis [51].

Keystone metabolic genes are predicted to be highly
expressed despite typically low gene copy numbers
(reflecting the typical relatively low abundance of
keystone species) and to catalyse key biochemical

transformations (enzymes represent “load points” in the
community-wide metabolic networks [52]). Therefore,
a framework has been developed for the identification of
such genes in reconstructed community-wide metabolic
networks [49]. High relative gene expression (extracted
from metatranscriptomic and/or metaproteomic data
relative to gene abundance information derived from the
corresponding metagenomic data) as well as specific
network topological features (low relative degree and
high betweenness centrality) are taken into account for
the identification of such keystone genes which,
through genomic linkage to reconstructed population-

level genomes, can be linked to specific constituent
populations which represent keystone species [49].
This approach has highlighted ammonia monooxygenase
as a keystone gene in a biological wastewater treatment
plant which is contributed to the community function
by a specific keystone strain of Nitrosomonas spp [49].
Community-wide reconstructed metabolic networks are
thereby particularly informative for the identification of
keystone traits conferred by specific keystone species.

Microbial niche ecology
Even though it has been shown that clusters in a co-
occurrence network based on 16S rRNA sequencing
data reflect overlapping ecological niche preferences
and common habitats of populations [53], the inference
of niches of distinct bacterial populations in microbial
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Figure 1

Identification of keystone
species and functions

From metabolic models to ecological insights. (A) Following carefully adapted wet-lab procedures and systematic measurements of the purified bio-
molecules, (B) metabolic modelling (here resolved to the community level) by stepwise integration and modelling of the metagenomic (blue), meta-
transcriptomic (green), metaproteomic (red) and (meta-)metabolomic (pink) data, allows to detect, for example, parts of the metabolic network that are
inactive (dotted line circle) at the sample collection. (C) Metabolic modelling (here resolved to the species level), often represented as a directed network
consisting of metabolites (nodes) and reactions (edges), can be a starting point to determine (D) an ecological interaction network (nodes = species;
edges = interactions). Although some non-metabolic interactions, such as commensalism by niche engineering (e.g. the green organism is a biofilm
founder, allowing a secondary colonisation by the yellow microbe) or predation (see Box 2) cannot be predicted from inferred metabolic networks, other
complimentary analyses, such as co-occurrence networks, will allow to predict such behaviour. (E) Topological analysis of metabolic, interaction and co-
occurrence networks allow the detection of metabolic keystone species (highlighted in green; bacterial species) and trophic keystone species (highlighted
in blue; phage). (F) The use of population-resolved metagenomic data to describe the fundamental niche is extended by the use of functional omic data to
characterise the realised niche of different species. From this information, predictions can be made for example in relation to the fitness gradients of
constituent populations.
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communities remains a challenging task, due to the
inherent complexity of trophic interactions and fluctu-
ating environmental conditions. In that sense, inte-
grated multi-omic approaches have been shown to be
useful for studying microbial niche ecology. State-of-
the-art binning approaches [54], or ensemble methods
[55], allow near complete reconstruction of population-
level genomes from assembled sequencing reads. By
applying the traditional concepts of niche ecology by
Hutchinson, the genomic functional potential of a mi-
crobial population reflects its fundamental niche

[56,57]. Conversely, metatranscriptomic or meta-
proteomic data can be used to infer a population’s
realised niche at the time of sampling [57], while intra-
and extracellular metabolomic data allows inferences
regarding resource usage and the overall resource space
available, respectively [57] (Figure 1F). Previous studies
have relied on gene expression patterns to assess life-
style strategies (generalists versus specialists) and the
metabolic niche breadth of distinct populations [57,58].
Computational approaches that automatically predict
phenotypic traits of reconstructed genomes [59] are an

important resource for the in-depth characterisation of
niche occupation. In this context, metabolic models can
provide a detailed picture on growth conditions, such as
available carbon or nitrogen sources and models have
indeed been used to predict medium requirements
reflecting niche breadths [60].

Apart from resource availability and usage, niche breadth
also reflects tolerance ranges to physico-chemical vari-
ables, such as pH, temperature or dissolved oxygen,
which are generally available only for cultured isolates.

Currently, a popular approach involves the linking of
inferred organismal abundances to environmental con-
ditions, which can be challenging due to the composi-
tional nature of rRNA amplicon sequencing data.
Leveraging integrated multi-omic data and metabolic
models may in turn provide a detailed mechanistic un-
derstanding of the adaptation to environmental factors

for single organismal groups, as demonstrated for pH-
dependent metabolic adaptations of Enterococcus faecalis
[61].

Harnessing the power of data integration in
Microbial Systems Ecology
The integration, contextualisation and analysis of multi-
omic data using metabolic network approaches (in syn-
ergy with other network approaches) offer many exciting
opportunities in the context of Microbial Systems
Ecology, a few of which are highlighted above. While
such tools are commonly used in systems biology [62],
their utilisation in (microbial) ecology is still limited.

In order to move beyond associations and hypotheses
derived from integrated multi-omic data, model pre-
dictions will have to be tested using combinations of
detailed field and/or laboratory experiments [1,5,63], as
described for example in Ref. [64]. A discovery-driven
planning approach, wherein systematic measurements,
data integration, model generation, hypothesis testing
and new ecological hypotheses follow each other itera-
tively, should culminate in predictive models [1]. Thus,
system-wide data has to be collected in a manner

consistent with the subsequent integration and model-
ling to continuously improve the community models;
ultimately we aim for models which allow the systematic
and knowledge-guided control of different microbial
community functions and/or structures. In this context,
keystones functions, genes and species represent primary
targets for community management, because of their
disproportionate effect on ecosystem functioning. For
example, lipid accumulating organisms present in
wastewater treatment plants are an abundant source of
lipids which may be directly converted into biodiesel
[65], but as the community phenotype shows seasonal

fluctuations, economical interest remains limited. Bio-
stimulation of endogenous keystone specie(s) or targeted
activation of keystone gene(s) would help tune the
community towards the desired phenotype robustly
around the year [63]. Conversely, a targeted removal of
keystone functions may provoke a collapse of the com-
munity. In this context, the keystone concept was suc-
cessfully used for the prediction of drug targets that
control the pathological lung microbiome of persons with
cystic fibrosis [66].

In the future, by determining the respective ecological
niches of the constituent populations, we will be able to
move beyond ‘basic’ ecological classifications of lifestyle
strategy for microbes such as generalists and specialists
towardsmore specific classifications such as theUniversal
Adaptive Strategy Theory (UAST) describing trade-offs
between ruderal, stress tolerant and competitor behav-
iours [67]. This will further enable us to determine the
metabolic basis of colonisation/immigration, successional
stages and the community response to perturbations. In

Box 2. Causal inference of non-metabolic interactions (i.e.
phage-host interactions from metagenomic data)

Phages are the most abundant and diverse entities in any environ-
ment, greatly influencing microbial community structure and dy-
namics through affecting the prokaryotic (host) metabolism [68,69],
modulating nutrient cycles, and driving long-term host evolution [70].
The unculturability of the vast majority of host and phage strains can
be circumvented by integrating meta-omic data [71,72]. Accordingly,
computational methods have been developed to identify phages
[73,74] and predict links to their putative hosts [75].
In addition, time-resolved datasets enable the inference of phage-
host dynamics [76,77], which will result in improved knowledge
and, thereby, the formulation of potential phage treatment strategies
for biomedical and biotechnological applications [78].
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order to establish such concepts, the field needs to move
towards the integration of time- and space-resolved
multi-omic data to unravel the functional dynamics of
complex microbial communities. In our opinion, the
elucidation of networks requires such longitudinal data
and corresponding time-series analyses to model the
populations’ interplay as well as to highlight which parts
of these networks are active under specific conditions.

Hence, future augmented community-level metabolic
models need to account for trophic interactions and
changing environmental conditions, ideally by integrating
dynamic community models with genome-scale meta-
bolic models. Therefore, within the framework of Mi-
crobial Systems Ecology, we will in the future be able to
systematically define and alter the realised niches of
constituent populations in situ and manage communitye
conferred traits, leading to exciting prospects for
biotechnology and biomedicine.
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Identification, Recovery, and
Refinement of Hitherto Undescribed
Population-Level Genomes from the
Human Gastrointestinal Tract
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Linking taxonomic identity and functional potential at the population-level is important
for the study of mixed microbial communities and is greatly facilitated by the availability
of microbial reference genomes. While the culture-independent recovery of population-
level genomes from environmental samples using the binning of metagenomic
data has expanded available reference genome catalogs, several microbial lineages
remain underrepresented. Here, we present two reference-independent approaches
for the identification, recovery, and refinement of hitherto undescribed population-
level genomes. The first approach is aimed at genome recovery of varied taxa and
involves multi-sample automated binning using CANOPY CLUSTERING complemented
by visualization and human-augmented binning using VIZBIN post hoc. The second
approach is particularly well-suited for the study of specific taxa and employs VIZBIN

de novo. Using these approaches, we reconstructed a total of six population-level
genomes of distinct and divergent representatives of the Alphaproteobacteria class,
the Mollicutes class, the Clostridiales order, and the Melainabacteria class from human
gastrointestinal tract-derived metagenomic data. Our results demonstrate that, while
automated binning approaches provide great potential for large-scale studies of mixed
microbial communities, these approaches should be complemented with informative
visualizations because expert-driven inspection and refinements are critical for the
recovery of high-quality population-level genomes.

Keywords: metagenome, binning, genome recovery, refinement, reference genomes

INTRODUCTION

Substantial efforts have recently been undertaken for the in-depth structural and functional
characterization of human-derived microbiota from various body sites (Qin et al., 2010;
Huttenhower et al., 2012; Methé et al., 2012). These efforts largely involve the use of microbial
isolate genome sequences (Lagier et al., 2012; Rajilić-Stojanović and de Vos, 2014) or population-
level genomes recovered following the “binning” of metagenomic data (Di Rienzi et al., 2013;
Sharon et al., 2013; Alneberg et al., 2014; Nielsen et al., 2014). Importantly, the term “population-
level genome“ indicates that the genomic complements recovered from metagenomic data will
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typically be derived from a mixture (population) of closely related
microorganisms in which individuals are not expected to be
clonal (Kunin et al., 2008), thus resulting in composite genomic
reconstructions. Obtaining population-level genome resolution,
e.g., at the genus- or species-levels, allows linkage of taxonomic
identity and function at the level of individual populations (Dick
et al., 2009; Albertsen et al., 2013; Muller et al., 2014).

Unsupervised binning approaches, as opposed to their
supervised counterparts, are independent of prior information
and exploit data-inherent characteristics, e.g., genomic signatures
based on oligonucleotide frequencies and/or sequence abundance
information (Dick et al., 2009; Albertsen et al., 2013; Alneberg
et al., 2014; Laczny et al., 2014; Nielsen et al., 2014; Wu
et al., 2014; Kang et al., 2015). These reference-independent
binning approaches may further be subdivided into automated
approaches (Nielsen et al., 2014; Wu et al., 2014), e.g., CANOPY
CLUSTERING, and user-driven approaches (Dick et al., 2009;
Laczny et al., 2014, 2015), e.g., VIZBIN. For the former, minimal,
if any, input by a human user is needed, whereas for the latter
a low-dimensional representation, typically in two dimensions,
allows for human input in the cluster definition process. The
automated CANOPY CLUSTERING employs sequence abundance
covariation across a set of multiple samples and has been
used for the large-scale recovery of population-level genomes
from the human gastrointestinal tract (GIT; Nielsen et al.,
2014). In the user-driven VIZBIN, bins are represented as two-
dimensional sequence cluster structures and resolved using
human pattern recognition capabilities (Laczny et al., 2014,
2015). While the automation of the clustering process typically
leads to an increased throughput in the recovery of population-
level genomes from metagenomic data, suboptimal clusters might
be created and should be manually refined (Laczny et al.,
2015).

Despite previous efforts to further expand reference genome
catalogs, individual microbial lineages might have been missed
even in deeply studied environments such as the human GIT.
Unsupervised binning approaches are particularly pertinent for
the recovery of genomes derived from members of hitherto
undescribed microbial lineages due to their independence of
prior information, especially if no closely related representatives
have yet been recovered. An example of such a novel lineage
discovered following the binning of metagenomic data are
the Melainabacteria which occur in environmental as well as
human-derived samples (Di Rienzi et al., 2013; Soo et al.,
2014). While this lineage was reported in earlier 16S rRNA
gene-based studies of the human GIT (Ley et al., 2005), sets
of complete or partial population-level genomes were only
recently recovered from metagenomic data derived from human
and koala fecal samples (Di Rienzi et al., 2013; Soo et al.,
2014). The Melainabacteria-lineage was originally proposed as
a sister-phylum to the Cyanobacteria (Di Rienzi et al., 2013)
but Soo et al. (2014) subsequently suggested that it represents
a non-photosynthetic class within the Cyanobacteria phylum
instead.

Here, we present two approaches for the identification,
recovery, and refinement of hitherto undescribed population-
level genomes without the need for a priori knowledge in the form

of reference genomes. These approaches involving automated
binning using CANOPY CLUSTERING and/or visualization and
human-augmented binning using VIZBIN were applied to human
GIT-derived metagenomic data from a multiplex family study
of type 1 diabetes mellitus (MuSt). VIZBIN was first applied
post hoc (automatically generated clusters were inspected and
manually refined using VIZBIN) and using this approach one
automatically identified cluster was found to be a mixture
of at least three distinct organisms. Second, given the recent
discovery of the Melainabacteria class, VIZBIN was used to
explore whether genomic complements of further, hitherto
undescribed representatives could be recovered by the de novo
application of VIZBIN, i.e., without prior automated clustering.
Overall, a total of six almost complete or partial population-
level genomes from the Alphaproteobacteria class, the Mollicutes
class, the Clostridiales order, and the Melainabacteria class were
recovered thereby extending existing reference genome catalogs.
The reconstructed, high-quality population-level genomes will
be valuable for the successful interpretation of additional multi-
omic data from the human GIT. Moreover, we would expect our
approach to be applicable for the reconstruction of high-quality
population-level genomes from metagenomic data derived from
other, less well-characterized environments.

MATERIALS AND METHODS

Sample Collection, Processing, and
Metagenomic Sequencing
Study Context
The multiplex family study of type 1 diabetes mellitus is
a Luxembourg-based, observational study of selected family
groups of two or three generations in which there are multiple
incidents of type 1 diabetes mellitus (T1DM). Fecal samples
were collected at different time points from patients with T1DM
and healthy family members. A total of 55 fecal samples were
collected from 10 patients with T1DM and 10 healthy family
members. The generated metagenomic data is used herein for
the identification and recovery of hitherto undescribed microbial
population-level genomes, independent of disease burden. The
study was approved by the Comité d’Ethique de Recherche
(CNER; Reference: 201110/05) and the National Commission for
Data Protection in Luxembourg. Written informed consent was
obtained from all subjects enrolled in the study.

Stool Sampling
Fecal samples were self-collected and immediately frozen on dry
ice at three time points (if bowel movement permitted on day of
scheduled sampling) at intervals between 4 and 8 weeks.

Extraction of DNA from Fecal Samples
DNA was extracted from frozen subsamples of 150 mg after pre-
treatment of the weighed subsamples with 1.5 ml RNAlater ICE
(Life Technologies) at −20◦C over night. The faeces-RNAlater
ICE mixtures were homogenized by bead-beating (Roume et al.,
2013). Differential centrifugation and extraction using All-In-
One kit (Norgen Biotek) were performed according to Roume
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et al. (2013). DNA fractions were further supplemented with
DNA extracted from 200 mg subsamples using the MOBIO
Power Soil Kit according to the manufacturer’s instructions.

Library Preparation and Sequencing
Libraries with an insert size of 350 base pair (bp) were
constructed from metagenomic DNA following fragmentation by
sonification (Covaris), end-repair, adenylation, adapter ligation,
and amplification of adapter-ligated DNA fragments using
appropriate enzymes (Enzymatics). Library amplification and
cluster generation were performed using TruSeq PE Cluster Kit
V3–cBot–HS (Illumina). The resulting flow cells were sequenced
on a HiSeq2000 system (Illumina) generating 101 bp paired-end
reads. Sequencing was performed by BGI (Hong Kong, China).

Preprocessing of the Metagenomic Data
The per-sample metagenomic paired-end sequencing data in
FASTQ format was processed using the MOCAT trimming and
quality filtering step (MOCAT.pl -rtf) and the parameters used
were as follows: readtrimfilter_length_cutoff = 40 readtrim-
filter_qual_cutoff = 20 readtrimfilter_use_sanger_scale = yes
readtrimfilter_trim_5_prime = yes readtrimfilter_use_precalc
_5prime_trimming= no (Kultima et al., 2012). The preprocessed
reads were then mapped onto the human reference genome
(hg19) using the MOCAT screening step (MOCAT.pl -s hg19)
and using the following parameters: screen_length_cutoff = 30
screen_percent_cutoff = 90 screen_soap_seed_length = 30
screen_soap_max_mm = 10 screen_soap_cmd = −M 4
screen_save_format= sam and SOAPALIGNER v2.21 (Li R. et al.,
2009). The preprocessing resulted in two sets of reads in FASTQ
format (human and non-human) consisting each of paired-
end and single-end reads. The human reads were discarded.
A schematic overview of the individual steps is provided in
Supplementary Figure S1.

Assembly of the Metagenomic Data
The preprocessed, non-human, paired-end reads of each sample
were assembled separately using IDBA-UD (Peng et al., 2012).
More specifically, the reads were converted from FASTQ to
FASTA format using the FQ2FA script (fq2fa --merge --filter)
provided by IDBA-UD. Subsequently, IDBA-UD was applied
using its pre-error-correction step for read error correction
(idba_ud --pre_correction). The resulting contigs were extended
using the paired-end and single-end reads not used by IDBA-
UD using the VELVET assembly tool (Zerbino and Birney,
2008). First, paired-end reads were mapped onto the previously
assembled contigs using SOAP (-r 2 -M 4 -l 30 -v 10 -p 8
-u unmapped.fa) and “unmapped” reads were identified. Then,
the unused single-end reads (IDBA-UD only supports paired-
end reads) were combined with the unmapped reads, and cd-
hit-dup from the CD-HIT software suite was used to remove
duplicate reads (Fu et al., 2012). The IDBA-UD-based contigs
were provided as long-read input to VELVET v1.2.07 with the
following parameters for velveth: -long contig.fa, for velvetg:
-conserveLong yes, and over a range of k-mer sizes (27, 31,
35, 39, 43, 47, 51, 55, 59, 63). The resulting contigs from the
assemblies using different k-mer sizes and the IDBA-UD-based

initial set of contigs were pooled and clustered using cd-hit-est
(parameter: -c 0.99) to remove redundancy. MINIMUS2 (AMOS
genome assembly software suite v3.1) was used to join and extend
the clustered contigs based on the detection of sequence overlaps
(Treangen et al., 2011). Gene prediction was performed on the
final set of contigs using PRODIGAL v2.60 (parameter: -p meta;
Hyatt et al., 2012). A schematic overview of the individual steps
is provided in Supplementary Figure S1.

Automated Clustering Using CANOPY
CLUSTERING
Genes from the individual assemblies were pooled and genes
with a sequence length <100 nt were discarded. The remaining
genes were made non-redundant by applying cd-hit-est (Li and
Godzik, 2006; Fu et al., 2012) to collapse sequences with 95%
sequence identity over 90% of the shorter sequence (-c 0.95 -aS
0.9). BOWTIE2 v2.0.2 was used to map the preprocessed reads for
the individual samples to the gene catalog. The resulting SAM
files were sorted using SAMTOOLS v0.1.19 and converted to BAM
format. BEDTOOLS v2.18.1 genomeCoverageBed and AWK were
used to compute the per-sample fold-coverage for each catalog-
gene. Genes with a fold-coverage <2× in all of the 55 samples
were discarded to reduce the data amount and to limit the
runtime on the University of Luxembourg’s High Performance
Computing platform. Put differently, a gene was preserved if
its fold-coverage was ≥2× in at least one of the 55 samples.
CANOPY CLUSTERING was run with the following parameters:
--max_canopy_dist 0.1 --max_close_dist 0.4 --max_merge_dist
0.1 --min_step_dist 0.005 --stop_fraction 1 and 30 threads (-n
30). Following the original definition, the resulting co-abundance
gene groups (CAGs) are referred to as metagenomic species
(MGS) if they contained at least 700 genes (Nielsen et al., 2014).

Completeness and Contamination
Estimation of Population-Level Genomes
A set of 107 genes found in single copy in 95% of sequenced
bacterial genomes (essential genes) was used to assess the degrees
of completeness and contamination of individual population-
level genomes (Dupont et al., 2012). Peptide sequences of the in
silico predicted genes were screened against the hidden Markov
models (HMMs) of the essential genes1 (Albertsen et al., 2013)
using HMMER v3.1b1 hmmsearch with parameters: --cut_tc –
notextw (Eddy, 2007). High quality population-level genomes are
characterized by high levels of completeness (high fraction of
essential genes recovered) and low levels of contamination (low
number of duplicated essential genes).

Taxonomic Characterization
Complementary approaches for the taxonomic characterization
of the bins were used. These included two approaches based
on protein-coding genes [PHYLOPHLAN (Segata et al., 2013)
and AMPHORA2 (Wu and Scott, 2012)] and a whole genome-
based approach [BLAST (Altschul et al., 1990, 1997; Zhang et al.,

1https://github.com/MadsAlbertsen/multi-metagenome/blob/master/R.data.gen
eration/essential.hmm
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2000; Wheeler et al., 2007) + MEGAN (Huson et al., 2007)].
For individual genomic complements, PHYLOPHLAN provides
a consensus taxonomic classification, whereas AMPHORA2
returns taxonomic classifications for each gene separately out of
a set of phylogenetic marker genes. While the whole genome-
based approach queries a continuously updated database at the
NCBI and may thus potentially be more specific, the two protein-
coding gene-based approaches are more robust with respect
to the taxonomic characterization of organisms without closely
related representatives in a database.

PHYLOPHLAN

The translated peptide sequences for each gene (see sections
“Assembly of the Metagenomic Data” and “Automated
Clustering Using CANOPY CLUSTERING”) were prepared
for PHYLOPHLAN by ensuring unique peptide sequence
identifiers and removing the asterisk symbol (if present) at the
ends of the sequences. PHYLOPHLAN’s impute option (-t) was
used for taxonomic assignment of individual populations and 12
threads were used (--nproc 12).

AMPHORA2
The default parameters of AMPHORA2 were used.

BLAST + MEGAN
Online BLAST searches were carried out on the “Nucleotide
collection (nr/nt)” database. “Uncultured/environmental sample
sequences” were excluded and “bacteria (taxid:2)” was specified
as “Organism.” The “Max target sequences” were set to 10.
All other parameters were left at their default values. The
results were downloaded and imported into MEGAN using the
lowest common ancestor (LCA)-option to obtain per-sequence
taxonomic classifications.

Whole Genome-Based Comparisons
The online average nucleotide identity (ANI) calculator2 was used
for determining the ANI values between genomic complements
(Goris et al., 2007). Genome pairs with ANI values >95% were
considered to belong to the same species (Goris et al., 2007).

Cyanobacteria-Like Sequence Groups
Identification of Marker Genes
AMPHORA2 (Wu and Scott, 2012) was used to identify and
to taxonomically classify phylogenetic marker genes among
the genes encoded by the de novo assembled contigs of the
55 MuSt metagenomic datasets (see section “Assembly of the
Metagenomic Data”). All genes annotated to belong to the
Cyanobacteria phylum with an associated confidence value≥75%
were retained. The DNA-directed RNA polymerase subunit
beta (rpoB) genes were selected for further analyses, as they
represented the largest set of marker genes annotated as
cyanobacterial. Incomplete rpoB gene predictions, i.e., those
lacking a start or a stop codon according to the gene prediction,
were discarded. The remaining rpoB genes were then clustered
according to sequence similarity using cd-hit-est at 95% sequence

2http://enve-omics.ce.gatech.edu/ani/

identity over 50% of the shorter sequences (-c 0.95 -aS 0.5; Li and
Godzik, 2006; Fu et al., 2012). The resulting sequence clusters are
referred to as “Cyanobacteria-like sequence groups (CLSGs)” and
the respective representative genes as “CLSG marker genes.”

Coverage Computation
The preprocessed reads of each sample were individually mapped
to the CLSG genes using BOWTIE2 v2.0.2. The resulting SAM
files were sorted using SAMTOOLS v0.1.19 and converted to
BAM format (Li H. et al., 2009). Per-CLSG gene fold-coverages
for each sample were computed using BEDTOOLS v2.23.0
genomeCoverageBed (Quinlan and Hall, 2010) and AWK.

Construction of Phylogenetic Trees
Using rpoB
The rpoB gene was used for the construction of phylogenetic
trees as it represents an alternative to the ribosomal rRNA genes
for phylogenetic analyses (Case et al., 2007; Bondoso et al.,
2013). For the MGS (see section “Automated Clustering Using
CANOPY CLUSTERING”), the NCBI’s MOLE-BLAST webservice3

was used which includes a database search to retrieve the
most closely related sequences, thus accounting for the varied
MGS taxa, i.e., of diverse phylogenetic origin. In contrast, for
the CLSG genomes (see section “Cyanobacteria-Like Sequence
Groups”), melainabacterial rpoB genes were manually extracted
from published melainabacterial genomes.

MGS
The NCBI’s MOLE-BLAST webservice3 was used to query
the rpoB gene sequences encoded by the VIZBIN-refined
MGS population-level genomes against the “Nucleotide
collection (nr/nt)” database. “Uncultured/environmental sample
sequences” were excluded and “Bacteria” was specified as an
“Entrez Query.” The “Number of database sequences” was
set to 10. In brief, MOLE-BLAST generally works as follows.
In the first step, the query sequences are grouped by locus
using BLAST (Altschul et al., 1997). Second, a BLAST database
search is performed to identify each query’s nearest-neighbor
target sequences. A multiple sequence alignment is subsequently
computed for each locus, including the query sequences and their
nearest neighbors, using MUSCLE (Edgar, 2004). MOLE-BLAST
then computes a phylogenetic tree for each locus multiple
sequence alignment using Neighbor Joining (Saitou and Nei,
1987) or Fast Minimum Evolution (Desper and Gascuel, 2004).

CLSGs and Melainabacteria
Gut-derived and environment-derived Melainabacteria
genomes from Di Rienzi et al. (2013) were downloaded4. Gut-
derived Melainabacteria genomes from Soo et al. (2014) were
downloaded from JGI IMG/ER under the accession numbers
2523533517 (Zag_1), 2531839741 (Zag_111), 2523533519
(Zag_221), 2522572068 (MH_37). The rpoB genes were
identified using PROKKA (Seemann, 2014) and their nucleotide
sequences were extracted. All rpoB gene sequences in the

3http://blast.ncbi.nlm.nih.gov/moleblast/moleblast.cgi
4http://ggkbase.berkeley.edu/mel/organisms
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publicly available Melainabacteria genomes and the CLSG genes
identified in this work were submitted to phylogeny.fr using
the “One Click” mode5 (Dereeper et al., 2008). The option “Use
the Gblocks program to eliminate poorly aligned positions and
divergent regions” was enabled. The alignment of the rpoB gene
sequences was computed using MUSCLE (Edgar, 2004) and
automatically curated using GBLOCKS (min. seq. for flank pos.:
85%; max. contig. Non-conserved pos.: 8; min. block length: 10;
gaps in final blocks: no; Castresana, 2000). PHYML including the
approximate Likelihood-Ratio Test (aLRT) was used to compute
the phylogeny (model: default; statistical test: alrt; number of
categories: 4, gamma: estimated; invariable sites: estimated;
remove gaps: enabled; Guindon and Gascuel, 2003; Anisimova
and Gascuel, 2006; Guindon et al., 2010). The tree was saved in
Newick-format and rendered using EVOLVIEW (Zhang et al.,
2012). Coloring of the resulting tree was performed manually in
ADOBE ILLUSTRATOR.

Visualization and Binning Using VIZBIN
Contigs from the respective samples were used as input for
VIZBIN (Laczny et al., 2015). The resulting two-dimensional
embeddings were employed to select bins of interest. If
not stated otherwise, reconstructed metagenomic sequence
fragments <1,000 nt were omitted from the visualization
and binning using VIZBIN (Laczny et al., 2015). Remaining
sequences longer than 5,000 nt were iteratively cut into segments
(chunks) of 5,000 nt as long as the remaining sequence
was at least 5,000 nt long. Otherwise the entire (remaining)
sequence was used. The creation of sequence chunks helps
to mitigate effects of variations in assembly quality on the
visualization: well-recovered genomes are assembled in longer
and fewer contigs than other genomes. However, long-assembled
genomes would, without the creation of chunks, be represented
by only a small number of points. This step can thus be
considered as a means to normalize sequence cluster size and
density for improved cluster identification and delineation. The
resulting sequences were used as input for VIZBIN. Additional
information was added to the visualizations on a per-case basis.
Generally, if coverage information was used, the opaqueness
value (alpha) of each point was determined based on the
natural logarithm of the corresponding fold-coverage value
and provided as the “coverage” annotation option in VIZBIN.
Particular sequences of interest were highlighted using either the
“label” annotation type (distinct color and shape per individual
label) in the case of the manual refinement of automatically
generated MGS or the “isMarker” annotation type (star-shape;
“beacon contig”) in the case of the manually defined CLSG
bins.

Re-assembly and Analysis of Recovered
Population-Level Genomes
The preprocessed reads (pairs and singletons) from the
sample with the highest average contig fold-coverage for each
population-level genome were aligned to the contigs of the
population-level genome using BOWTIE2 v.2.2.2 with default

5http://www.phylogeny.fr/simple_phylogeny.cgi

parameters. Contigs with exceptionally high or low fold-coverage,
i.e., outliers, were identified and excluded. More specifically, a
contig was considered an outlier if the absolute value of the
modified Z-score was greater than 3.5 (Iglewicz and Hoaglin,
1993). The reads (pairs and singletons) from the preserved
contigs were recruited using SAMTOFASTQ from PICARD
v.1.1306 and assembled using SPADES v.3.1.0 (Bankevich et al.,
2012) using the “careful” option.

RAST-Based Annotation and Accession
Functional annotation of the re-assembled genomes was
performed using the RAST webservice7 (Aziz et al., 2008;
Overbeek et al., 2014). The respective annotation results,
including the original genomes, are accessible under the
following accession IDs via a guest account: MGS00153 –
6666666.163363, MGS00248 – 6666666.163364, MGS00113-
CG02 – 6666666.163361, CLSG01 – 6666666.163354, CLSG02 –
6666666.163355, CLSG03 – 6666666.155161. The genome
analyses were performed by using automatically computed
‘Scenarios’ as well as by user-driven search of specific genes in
the ‘Genome Browser’ of the RAST webservice. Gaps in nearly
complete pathways or complexes were filled manually using a
BLAST search of the missing genes.

Data Accession
The raw non-human metagenomic reads are deposited
at the NCBI under the BioProject accession number
PRJNA289586.

RESULTS AND DISCUSSION

Here, we present the results of the application of our
two approaches, involving CANOPY CLUSTERING and/or
VIZBIN, for the identification, recovery, and refinement
of population-level genomes from human GIT-derived
metagenomic data of the MuSt project (Figure 1). The
metagenomic data was preprocessed and assembled using
a custom pipeline (Supplementary Figure S1). On average,
20,862,561 paired-end reads ± 608,594 (mean ± SD)
remained after preprocessing per sample thus resulting
in highly similar read library sizes across all samples. On
average, 877,215 contigs were assembled (Supplementary
Table S1).

Inspection and Refinement of
Automatically Generated Bins
CANOPY CLUSTERING requires the construction of a non-
redundant gene catalog and exploits the cross-sample correlation
of fold-coverages of genes in the catalog for bin (cluster)
definition. Here, CANOPY CLUSTERING was first applied to
the MuSt metagenomic dataset consisting of 55 samples from
20 individuals in total. A subset of the resulting clusters was
subsequently inspected and refined using VIZBIN (Figure 1).

6http://broadinstitute.github.io/picard
7http://rast.nmpdr.org/
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FIGURE 1 | Workflow scheme for the identification, recovery, and refinement of hitherto undescribed population-level genomes from metagenomic
data. Approach 1: the CANOPY CLUSTERING-based clusters are manually inspected and refined using VIZBIN. Approach 2: CLSGs are identified and used as
beacon contigs to highlight the respective clusters. The main tools used at each step (see “Materials and Methods”) are listed in parentheses.

This allowed an assessment whether CANOPY CLUSTERING
could be used for initial cluster definition/identification and
whether it would benefit from a post hoc application of

VIZBIN for the recovery of hitherto undescribed population-
level genomes from human GIT-derived metagenomic
data.
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The non-redundant gene catalog comprised 8,576,852 non-
redundant genes. After filtering for low-fold-coverage genes
(<fold-coverage < 2x per sample in all samples), the per-sample
fold-coverage values of the remaining genes were aggregated
into a 4,343,293-by-55 matrix serving as the input for CANOPY
CLUSTERING. In total, 365 clusters containing at least 700
genes were returned by CANOPY CLUSTERING. Clusters with
a minimum of 700 genes are referred to as “MGS” (Nielsen
et al., 2014) and the following results focus on the 365 identified
MGS. The degrees of completeness and contamination were
assessed using the set of 107 essential genes (see “Materials and
Methods”). The distribution of the numbers of different essential
genes per MGS (reflecting completeness) exhibited two major
modes, one around a total of 10 and one around a total of 100
essential genes per MGS (Supplementary Figure S2; top marginal
distribution). The median was 47 essential genes (mean was
49.55), with 75% of the MGS having ≤85 of the 107 essential
genes in at least one copy. The 365 MGS generally demonstrated
a low degree of contamination (Supplementary Figure S2; right
marginal distribution). More specifically, the median was three
essential genes in multiple copies (mean was 9.1) and 75% of the
MGS had ≤10 essential genes in multiple copies. However, an
increase in the degree of contamination, i.e., an increase in the
numbers of essential genes in multiple copies per MGS, could
be observed with an increase in completeness (Supplementary

Figure S2). This may be due to various reasons including
suboptimal clustering or covarying microorganisms. In any case,
suboptimal completeness and contamination results suggested
that it could be promising to use a complementary approach, here
VIZBIN, for the inspection and potential refinement of CANOPY
CLUSTERING-based clusters.

In order to prioritize the automatically generated clusters
for inspection and refinement using VIZBIN, all 365 MGS were
taxonomically classified using PHYLOPHLAN. This allowed us
to focus our efforts on the recovery of genomic complements
derived from hitherto undescribed organisms. Among the 365
MGS, 16 lacked a taxonomic assignment at the order/class-
level or lower (Figure 2). Three of these 16 MGS were
selected for further processing using VIZBIN: MGS00153 – an
Alphaproteobacteria-like MGS, MGS00248 – a Mollicutes-like
MGS, and MGS113 – a Cyanobacteria-like MGS. For each of the
three MGS, the sample that exhibited the highest average fold-
coverage of the respective MGS was chosen and the contigs of that
sample were used as input for VIZBIN-based visualization. Using
VIZBIN, contigs were highlighted, which contained genes of the
MGS of interest, and the contig bins were refined by manual
selection (Figure 3).

Contigs encoding genes of MGS00153 and MGS00248 were
mostly found within a single cluster each with few outlying
contigs in the respective VIZBIN maps (Figures 3A,B). Moreover,

FIGURE 2 | Degrees of completeness (number of different essential genes per MGS; x-axis) and contamination (number of essential genes in
multiple copies per MGS; y-axis) analyses results of automatically generated MGS with unknown order-level assignment grouped by phyla of
interest. Some MGS were unclassified at the class-level (black). Numbers above and connected to points indicate respective MGS identifiers. MGS00153,
MGS00248, and MGS00113 were selected for inspection and manual refinement using VIZBIN. The “confidence levels” (high, medium, or low) of the individual
taxonomic assignments were assigned by PHYLOPHLAN.
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FIGURE 3 | VIZBIN-based inspection and refinement of three automatically generated MGS. (A–C) Contigs ≥1,000 nt and cut into fragments of 5,000 nt in
length (see “Materials and Methods”) are shown. Symbols highlighted in red represent fragments coding for at least one gene included in the respective MGS, blue
symbols represent fragments not encoding any gene in the respective MGS. Red polygons indicate the selection boundaries manually defined in VIZBIN.
(A) MGS00153 – Alphaproteobacteria-like. (B) MGS00248 – Mollicutes-like. (C) MGS00113 – Cyanobacteria-like. Red circles indicate two additional clusters
represented by the MGS that were chosen for further inspection.
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the gene-wise %GC distributions of the automatically generated
or manually defined clusters were highly similar for these two
MGS (Figures 4A,B). In contrast to MGS00153 and MGS00248,
the genes of the Cyanobacteria-like MGS00113 were present
in contigs forming part of multiple contig clusters in the
VIZBIN map (Figure 3C). The gene-wise %GC distribution
of MGS00113 exhibited a large spread as well as relatively
high frequencies of genes with divergent %GC, in particular
for high %GC values (Figure 4C). This further supported that
MGS00113 represented a mixture of population-level genomic
complements. The three most prominent clusters (composite
genomes – CGs) representing genes of MGS00113 were chosen
in the VIZBIN map for further inspection and are referred to
as MGS00113-CG01, MGS00113-CG02, and MGS00113-CG03
in the following (Figure 3C). All CGs were found to be almost
complete with only MGS00113-CG03 containing several essential
genes in multiple copies (65/107). An online BLAST search
of the CGs’ rpoB genes revealed limited sequence similarity
for MGS00113-CG01 (78% identity over 11% of the query
sequence against Clostridium saccharobutylicum DSM 13864;
top hit), while MGS00113-CG02 and MGS00113-CG03 showed
higher sequence similarities (77% identity over 93% of the query
sequence against Coprococcus sp. ART55/1 and 75% identity
over 92% of the query sequence against Clostridium botulinum
A str. Hall, respectively; top hits). Given the PHYLOPHLAN-
based Cyanobacteria-like classification of MGS00113, CG01 was
compared separately to genomes derived from representatives
of the recently defined lineage of GIT-borne Cyanobacteria-like
microorganisms, the Melainabacteria (Di Rienzi et al., 2013;
Soo et al., 2014). This comparison revealed high sequence

FIGURE 4 | Gene-wise %GC distributions of automatically generated
vs. manually defined sequence clusters. (A) MGS00153. (B) MGS00248.
(C) MGS00113.

similarity with MEL.B1 (mean ANI of 97.11%, Supplementary
Figure S3) and suggested that these two (MGS00113-CG01 and
MEL.B1) represent closely related strains. MGS00113-CG01 and
MGS00113-CG03 were omitted from further analysis due to high
sequence similarity to the existing MEL.B1 genome or due to a
high degree of contamination, respectively.

While the automatically generated and the manually defined
clusters were largely concordant with respect to MGS00153 and
MGS00248, thus lending mutual support, the case of MGS00113
demonstrated the importance of post hoc inspection and
refinement. In particular, the PHYLOPHLAN-based taxonomic
classification of MGS00113 suggested the sequences to be derived
from a cyanobacterial organism. However, this classification was
misleading as MGS00113 represented a mixture of genomic
fragments of at least two classes and at least three distinct
organisms.

Targeted Recovery of Genomic
Complements Derived from
Cyanobacteria-Like Organisms
Motivated by the high similarity between MGS00113-CG01
and MEL.B1, it was intriguing to assess whether further
hitherto undescribed Cyanobacteria-like genomic complements
could be recovered from the MuSt metagenomic data via de
novo application of VIZBIN. To this end, Cyanobacteria-like
sequences (“beacon contigs”) were used to highlight candidate
cyanobacterial clusters and three population-level genomes were
subsequently recovered.

Identification of Cyanobacteria-Like Sequence
Groups
Phylogenetic marker genes encoded by the de novo assembled
contigs from the MuSt samples were first identified and
taxonomically classified using AMPHORA2. The phylogenetic
marker gene which was annotated to belong to the Cyanobacteria
phylum most often was the gene encoding the DNA-directed
RNA polymerase subunit beta (rpoB). A total of 139
cyanobacterial copies of this gene were found in 42 of the 55
MuSt samples. Subsequent sequence similarity-based clustering
of complete genes resulted in three sequence clusters which are
referred to herein as “CLSGs” and the respective representative
genes are referred to as “CLSG marker genes” (Figure 1).

Fold-coverages of the CLSG marker genes were used as
proxies for estimating population sizes to select for the sample
with the highest fold-coverage for each CLSG. The CLSGs
were numbered based on descending fold-coverage values with
CLSG01 exhibiting the highest fold-coverage in any sample (≈
109 fold-coverage; M1-4V3, i.e., family 1, individual 4 of that
family, sample 3 of that individual), CLSG02 was found to have
a fold-coverage of ≈ 44 (M2-1V2), and CLSG03 was found to
exhibit a quite low fold-coverage (≈ 6.6-fold-coverage; M2-2V2;
Figure 5). Pronounced intraindividual variations over time for
each of the three CLSGs were observed, representing up to two
orders of magnitude of differences for CLSG01 (M1-4V2 vs. M1-
4V3, i.e., samples at timepoints 2 and 3 of the same individual, in
Figure 5A).
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FIGURE 5 | CLSG marker gene rank-abundance plots for the ten samples with the highest apparent abundance of the respective populations.
(A) CLSG01. (B) CLSG02. (C) CLSG03. The fold-coverage of CLSG genes was used as a proxy for the abundance of the respective CLSG. Samples are denoted
as illustrated by the following example – M1-4V3: Family 1, individual 4 of that family, sample 3 of that individual.

In order to compare our CLSG populations to those previously
reported in samples from other geographical locations (Di
Rienzi et al., 2013) as well as other hosts (Soo et al., 2014),
a phylogenetic tree based on the three herein identified CLSG
rpoB genes and rpoB genes of 10 previously characterized
Melainabacteria population-level genomes was constructed
(Figure 6). Inspection of the tree revealed CLSG02 to be

FIGURE 6 | rpoB gene-based maximum likelihood phylogenetic tree of
previously published Melainabacteria genomes and herein recovered
CLSG genomes. Green, blue, and bold red text represent sequences derived
from genomes recovered in Di Rienzi et al. (2013) and Soo et al. (2014), and
herein, respectively. The environment-derived Melainabacterium ACD20 was
chosen as outgroup. Substitutions per site are indicated by the scale-bar on
top. Branch support values ≥0.5 are shown for the respective splits.

closely related to the MEL.B1 and MEL.C2 genomes. CLSG01
and CLSG03, however, exhibited far lower sequence similarity
to previously characterized Melainabacteria and appear to
be more distantly related. The environmental Melainabacteria
population (ACD20) was found to be basal to the GIT-derived
populations. None of the three CLSGs represented outgroups but
rather shared phylogenetic relationships with the GIT-derived
Melainabacteria.

Possible alternatives to the rpoB gene-based approach applied
here were the use of gyrA or gyrB (Kasai et al., 2000; Aranaz
et al., 2003; Baker et al., 2004; Menard et al., 2016), or the use
of a gene set, e.g., as annotated by AMPHORA2. However, gyrA
and gyrB seemed to be especially promising for the separation of
particularly closely related organisms and the use of single marker
genes provided important advantages in terms of simplicity over
more complex marker gene sets.

Recovery of Population-Level Genomes Guided by
CLSG Marker Genes
For each of the three CLSGs, the sample with the highest fold-
coverage of the respective CLSG marker genes was selected and
visualized using VIZBIN for cluster definition (Figure 7). The
clusters containing the CLSG01 and CLSG02 beacon contigs
were peripheral and well separated (Figures 7A,B). In addition,
for CLSG03, the fold-coverage was added as an opaqueness
value of the points to improve the delineation of cluster
boundaries, thereby facilitating cluster selection (Figure 7C).
The recovered population-level genomes are herein referred to
as CLSG genomes and an overview of genomic and functional
features is provided in Table 1.

The CLSG01 and CLSG02 genomes both exhibited a
high degree of completeness (106/107 essential genes) and
a low degree of contamination (3/107 essential genes in
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FIGURE 7 | Visualization and cluster selection of Cyanobacteria-like population-level genomes in VIZBIN. (A) CLSG01. (B) CLSG02. (C) CLSG03. (A–C)
Original contig sequences ≥1,000 nt, cut into fragments of 5,000 nt. Blue points represent sequences from the samples’ metagenomic assemblies. The black
star-like shape represents the beacon contig encoding the CLSG marker gene and is highlighted by a red arrow for quicker detection. Red polygons delineate the
selected sequence clusters. (C) The opaqueness is proportional to the natural logarithm of the fold-coverage and is used here to improve cluster boundary detection.
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TABLE 1 | Genomic and functional features of refined and re-assembled population-level genomes.

Population-level genome MGS00153 MGS00248 MGS00113-CG02 CLSG01 CLSG02 CLSG03

Originating sample M2-3V2 M2-1V2 M2-1V1 M1-4V3 M2-1V2 M2-2V2

Size (bp) 1,954,779 1,555,611 2,970,300 1,871,540 2,180,307 1,916,257

# Contigs 157 113 408 47 83 551

%GC 50.81 30.48 44.49 32.25 35.21 35.98

# CDS 2,049 1,410 2,605 1,848 2,139 1,876

# Protein-coding CDS 2,006 1,371 2,560 1,809 2,095 1,852

# rRNAs (complete or partial) 2x 16S 0 4x 16S/23S 0 5S/23S 0

# tRNAs 41 39 40 39 42 24

tRNAs missing for † I/F F/N I/F/Y none none C/D/F/H/N/T/Y

# Essential genes (out of 107) 105 76 102 106 106 81

# Multi-copy essent. genes 1 1 17 3 3 3

EMP pathway complete ‡ Yes No Yes Yes Yes Yes

PP pathway complete ∗ No No No No No No

TCA cycle complete No No No No No No

Entner–Doudoroff pathway complete No No No No No No

Predicted fermentation products § ET/AC ET/FO/AC ET/LA/FO/AC ET ET/LA/FO ET

Classical electron transport chain No No No No Partial No

Rnf electron transport complex Yes Partial Partial No No No

ATP synthase Yes Yes Yes Yes Yes Yes

# Flagellar genes 4 0 42 15 54 12

Vitamins: B1/B2/B3/B6/B9/B12/H ∇ −/−/−/−/+/−/− −/−/−/−/−/−/− −/+/+/−(?)/+/−(?)/− −/+/−/−/(?)/−/+ −/+/−/−/−(?)/−/+ −/+/−/−/−/−/+

†: C, cysteine; D, aspartic acid; F, phenylalanine; H, histidine; I, isoleucine; N, asparagine; T, threonine; Y, tyrosine. ‡: EMP, Embden-Meyerhof-Parnas. ∗: PP, pentose
phosphate. ¶: TCA, tricarboxylic acid. § : ET, ethanol; AC, acetate; LA, lactate; FO, formate. ∇ : −, incomplete; +, complete; ?, partially complete.

FIGURE 8 | Coverage distributions of individual CLSG genomes. (A) CLSG01 genome. (B) CLSG02 genome. (C) CLSG03 genome. The distributions of the
average per-contig fold-coverages are depicted. Contigs with average fold-coverage values within the range highlighted in green between the two dashed lines are
preserved. Contigs outside of this range exhibited exceptionally high or low fold-coverage values and were discarded, i.e., the absolute value of the modified Z-score
was greater than 3.5.

multiple copies; Table 1). In contrast, the CLSG03 genome
was less complete (81/107) and more contaminated (11/107
in multiple copies). The fold-coverage distributions of contigs
of the individual CLSG genomes indicated that only few
contigs exhibited divergent fold-coverage values, i.e., they
were of exceptionally high or low fold-coverage (Figure 8).
This supported the low degree of contamination as already
indicated by the essential genes’ abundance patterns. The

CLSG03 genome exhibited a relatively low overall fold-
coverage (<10×). Accordingly, the reduced degree of
completeness for this CLSG genome could be due to insufficient
sequencing depth for the corresponding population and
thus suboptimal assembly of the population-level genome.
In contrast, the almost completely recovered genome of
the most abundant CLSG, CLSG01, accounted for around
5% of the reads in the originating sample (M1-4V3), thus
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constituting a sizeable fraction of the sample’s metagenomic
complement.

Taxonomic and Functional
Characterizations of Recovered
Genomes
We expected that all genomic complements from a single
microbial population would exhibit similar fold-coverages in
a given sample. Accordingly, the manually recovered genomic
complements were refined by discarding contigs with extreme
fold-coverages (Figure 8) and the reads constituting the
preserved contigs were re-assembled (Figure 1). The refined
and re-assembled population-level genomes were characterized
taxonomically as well as functionally. The main results
are summarized here with further details provided in the
Supplementary Notes.

MGS00153 – Alphaproteobacteria-Like Population
The refined and re-assembled MGS00153 genome is likely
derived from a member of the Alphaproteobacteria class
(Figure 2; Supplementary Table S2). Unambiguous assignment
to a lower taxonomic level, e.g., order or family, remained
unresolved: two partially recovered 16S ribosomal RNA (rRNA)
genes suggested a placement within the Kopriimonadales order
while a MOLE-BLAST search of the recovered rpoB gene
suggested the Rhizobiales to be the most closely related order
(Figure 9A). This ambiguity could be due to the lack of reference
sequences derived from more closely related microorganisms.

Functional characterization of the MGS00153 genome
suggested that the identified organism has a fermentative lifestyle
with ethanol and acetate as fermentation products, is auxotroph
for most of the vitamins considered, and is unflagellated (Table 1;
Supplementary Material).

MGS00248 – Mollicutes-Like Population
The Mollicutes class has been assigned to the Firmicutes phylum
(Johansson and Pettersson, 2002) and has subsequently been
reassigned to the Tenericutes phylum (Ludwig et al., 2009), an
ambiguity which is reflected in the case of MGS00248 (Figures 2
and 9B, Supplementary Table 3, Supplementary Figure S4B).
The genome of MGS00248 exhibited features which are typical
for representatives of the Mollicutes class, e.g., genome size
(1.5 Mbp), and lack of flagellar assembly genes (Table 1).
Based on these inferred physiological traits, the organism is
suggested herein to be derived from a member of the Mollicutes
class.

MGS00113-CG02 – Clostridiales-Like Population
The organism represented by MGS00113-CG02 is likely a
member of the Clostridiales order based on the taxonomic
analysis results (Supplementary Table S4, Supplementary
Figure S4C, Figure 9C). Furthermore, it is suggested to be a
member of a butyrate-producing subgroup of organisms from
the Lachnospiraceae family within the Clostridiales order as the
MGS00113-CG02 genome was found to encode a butyrate-kinase
(fig| 6666666.163361.peg.1219; Meehan and Beiko, 2014).

Cyanobacteria-Like Populations
CLSG02 and MEL.B1 shared a high sequence similarity (mean
ANI of 97.03%, Supplementary Figure S6; Figure 6) and thus
likely represent the same species. Moreover, MGS00113-CG01
and CLSG02 were found to be almost identical (mean ANI
of 100%, Supplementary Figure S7). In contrast, the CLSG01
and CLSG03 genomes were more distantly related to previously
recovered genomes from the Melainabacteria class (Figure 6;
mean ANI of 77.63 and 77.77% to their respective closest
relatives, Supplementary Figures S8 and S9) and thus constitute
novel melainabacterial representatives.

Large overlaps in the functional potential with other
GIT-derived Melainabacteria and limited overlap with an
environment-derived Melainabacterium corroborated the
taxonomic assignment of the CLSG genomes to the GIT-
derived Melainabacteria class within the Cyanobacteria phylum
(Figure 10; Supplementary Tables S5–S7). Most notably, no
photosynthesis genes were found, the genomes were predicted to
encode genes for vitamin B production (B2, B9, H), and represent
obligate anaerobic fermenters (Table 1; Supplementary Material).
While CLSG02 and MEL.B1 likely represent the same species,
genome-specific functions were identified, e.g., a HigB/HigA
toxin-antitoxin (TA) system (Christensen-Dalsgaard et al., 2010)
was found to be encoded by the CLSG02 genome, yet, this is not
encoded by the other melainabacterial genomes.

CONCLUSION

The concurrent characterization of community composition
and functional potential through metagenomic sequencing is
of great importance for the analysis of microbial communities.
However, despite sequence assembly, metagenomic data typically
remains fragmented which in turn hampers population-
level analyses. Moreover, several microbial lineages are
underrepresented in current reference genome catalogs.
Therefore, reference-independent computational binning
approaches are required for the deconvolution of metagenomic
data into population-level genomes derived from hitherto
undescribed microorganisms. Here, we applied two reference-
independent binning approaches for the identification, recovery,
and refinement of such genomes derived from the human
GIT. The expansion of the repertoire of currently available
reference genomes by the herein recovered representatives is
expected to benefit human microbiome-based studies, eventually
resulting in improved taxonomic profiling and functional
characterization.

First, a multi sample-based, automated binning approach,
CANOPY CLUSTERING, was used to perform an initial
binning, which was followed by taxonomic classification of
the automatically generated bins. The taxonomic classification
enabled us to place a focus on sequence clusters likely derived
from hitherto undescribed microbial populations for VIZBIN-
based post hoc inspection and refinement. The importance of
complementary approaches, such as VIZBIN, that enable human
scrutiny of automatically generated sequence clusters is in
particular highlighted by the required refinement of MGS00113
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FIGURE 9 | rpoB gene-based phylogenetic trees for refined MGS genomes and their ten nearest neighbors according to MOLE-BLAST.
(A) MGS00153 – Alphaproteobacteria-like. (B) MGS00248 – Mollicutes-like. (C) MGS00113-CG02 – Clostridiales-like. Bold, red text represents the sequences
derived from population-level genomes recovered in this work. Scale bars on top represent substitutions per site.

FIGURE 10 | Comparisons of SEED-based functional roles of previously recovered Melainabacteria genomes and CLSG genomes recovered herein.
(A) The overlaps of SEED-based functional roles for two previously recovered, GIT-derived Melainabacteria population-level genomes (MEL.A1 and MEL.B1; Di
Rienzi et al., 2013) and the three CLSG population-level genomes recovered in this work (CLSG01–03) are shown. (B) The overlap of SEED-based functional roles
between a previously recovered groundwater-derived (ACD20) Melainabacteria population-level genome (Di Rienzi et al., 2013) and the CLSG01 genome is shown.

(multiple apparent clusters in the VIZBIN map, large spread in
%GC of the gene content). Overall, the combination of the two
binning approaches resulted in the recovery of one population-
level genome from the Alphaproteobacteria class (MGS00153),

one from the Mollicutes class (MGS00248), and one from the
Clostridiales order (MGS00113-CG02).

Second, a targeted de novo recovery of population-level
genomic complements from the Melainabacteria was performed,
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resulting in the recovery of two almost complete genomes
and one partial genome (CLSG01–03). The assignment to the
Melainabacteria was supported by phylogenetic, genomic, and
functional analyses. While large fractions of the functional
potential are shared between the herein recovered and the
previously described melainabacterial genomes, individual
genomes were found to encode genome-specific functions.
Moreover, pronounced intraindividual population-abundance
variations were observed over time which included differences in
estimated population sizes spanning two orders of magnitude.

The observed intraindividual variations of population-
abundances highlight the importance of longitudinal studies in
the context of in situ genome recovery. Despite extensive efforts
toward the recovery of microbial genomes from the human
GIT, several hitherto undescribed GIT-derived population-level
genomes were recovered in this work using the complementary
combination of an automated and a user-driven binning
approach. It is thus suggested that automated binning approaches
should be supplemented with user-driven approaches to ensure
the recovery of high-quality population-level genomes from
longitudinally collected metagenomic data.
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First draft genome sequence of a strain
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Abstract

The Gram-negative beta-proteobacterium Zoogloea sp. LCSB751 (LMG 29444) was newly isolated from foaming
activated sludge of a municipal wastewater treatment plant. Here, we describe its draft genome sequence and
annotation together with a general physiological and genomic analysis, as the first sequenced representative of the
Zoogloea genus. Moreover, Zoogloea sp. gene expression in its environment is described using metatranscriptomic
data obtained from the same treatment plant. The presented genomic and transcriptomic information demonstrate a
pronounced capacity of this genus to synthesize poly-β-hydroxyalkanoate within wastewater.

Keywords: Genome assembly, Genomic features, Lipid metabolism, Metatranscriptomics, Poly-hydroxyalkanoate,
Wastewater treatement plant

Introduction
Zoogloea spp. are chemoorganotrophic bacteria often
found in organically enriched aquatic environments and
are known to be able to accumulate intracellular gran-
ules of poly-β-hydroxyalkanoate [1]. The combination of
these two characteristics renders this genus particulary
interesting from the perspective of high-value resource
production from wastewater [2, 3]. In particular, PHA
may be used to synthesize biodegradable bioplastics or
chemically transformed into the biofuel hydroxybutyrate
methyl ester [2].
The genus name Zoogloea is derived from the Greek

term; meaning ‘animal glue’, which refers to a phenotypic
trait that was previously used to differentiate between
Zoogloea species and other metabolically similar bacteria
[1]. The polysaccharides making up this “zoogloeal
matrix” have been proposed to act as a matrix for the
adsorption of heavy metals [4].
To date, no genome sequence exists for any of the

representative strains of the five presently recognised

Zoogloea species and thus, limited information is avail-
able with regards to the genomic potential of the genus.
Here we report the genome of a newly isolated Zoogloea
sp. strain as a representative of the genus, with a focus
on its biotechnological potential in particular for the
production of biodiesel or bioplastics. Accordingly, we
studied the Zoogloea core metabolism of the genus,
particularly on the lipid accumulating properties of
Zoogloea sp. LCSB751. Moreover, we integrate metatran-
scriptomic sequencing data to resolve gene expression of
this genus in situ [5, 6]. Finally, we also analyze the clus-
tered regularly interspaced palindromic repeats mediated
defence mechanisms of Zoogloea sp. LCSB751 to infer
putatively associated bacteriophages [7].

Organism information
Classification and features
Zoogloea sp. LCSB751 was isolated from an activated
sludge sample collected from the surface of the first
anoxic tank of the Schifflange communal wastewater
treatment plant, Schifflange, Luxembourg (49°30′
48.29′′N; 6°1′4.53′′E) on 12 October 2011. The acti-
vated sludge sample was processed by serial dilution
with sterile physiological water to a factor of 104 and
the biomass was then cultivated on solid MSV peptone
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medium [8] at 20 °C and under anoxic conditions (less
than 100 ppm oxygen). Single colonies were iteratively
re-plated until a pure culture was obtained. The newly
isolated Zoogloea sp. LCSB751 was cryopreserved in 10%
glycerol at −80 °C.
Zoogloea sp. LCSB751 is a facultative anaerobe as it

was found to also grow aerobically at 20 °C - 25 °C with
agitation in the following liquid media: R2A [9], MSV
A + B [8] or Slijkhuis A [10]. Cell clumps were observed
in all tested culture conditions. When grown on R2A agar
or on MSV peptone agar at 25 °C under aerobic condi-
tions, Zoogloea sp. LCSB751 colonies were initially puncti-
form and after three days, they were white, circular and
raised with entire edges. The morphology of cells derived
from these growth conditions indicates that these are
short rod-shaped bacteria (Fig. 1a). The Gram-staining
was negative which is in accordance with previously de-
scribed isolates of Zoogloea spp. [11, 12] (Table 1).
Phylogenetic analysis based on 16S rRNA gene se-

quences confirmed that strain LCSB751 belongs to
the Zoogloea genus of the beta-proteobacterial class
(Table 1). However, this strain formed a distinct phyletic
linage from the five recognized species of Zoogloea, that
are represented by the type strains Z. caeni EMB43T [13],
Z. oleivorans BucT [11], Z. oryzea A-7T [14], Z. ramigera
Itzigsohn 1868 ATCC 19544T [15] and Z. resiniphila
DhA-35T [16, 17] (Fig. 2).

Extended feature descriptions
The capacity of Zoogloea sp. LCSB751 to accumulate
intracellular granules of lipids was tested using the dye
Nile Red as described by Roume, Heintz-Buschart et al.
[5]. Figure 1b shows the Nile Red positive phenotype of
the described strain.
Additionally, the growth characteristics of the strain

Zoogloea sp. LCSB751 were determined aerobically and
at 25 °C with agitation in 3 different liquid media. Its

generation time was the longest in Slijkhuis A medium
with the highest biomass production. MSV A + B
allowed a generation time of 4 h 30 min but lead to a
poor biomass production as demonstrated by the low
maximal optical density at 600 nm (OD600) of 0.21. The
tested liquid medium which allowed the fastest growth
for Zoogloea sp. LCSB751 was R2A while the biomass
production was close to those observed for Slijkhuis A
(Table 2).

Genome sequencing information
Genome project history
Overall, 140 pure bacterial isolates were obtained from a
single activated sludge sample, and screened for lipid in-
clusions using the Nile Red fluorescent dye. The ge-
nomes of 85 Nile Red-positive isolates were sequenced,
of which isolate LCSB065 has already been published
[5]. In particular, the genome of Zoogloea sp. LCSB751
was analyzed to obtain information about the functional
potential of this genus, which has no publically available
representative genome sequence, but also based on its
particular phylogenetic position and to acquire know-
ledge on the genes related to lipid accumulation. The
permanent draft genome sequence of this strain is avail-
able on NCBI with the GenBank accession number
MWUM00000000 (BioSample: SAMN06480675). Table 3
summarizes the project information according to the
MIGS compliance [18].

Growth conditions and genomic DNA preparation
Zoogloea sp. LCSB751 was grown on MSV peptone agar
medium [8] at 20 °C under anoxic conditions. Half of
the biomass was scrapped in order to cryopreserve the
strain, while the second half was used for DNA extrac-
tion using the Power Soil DNA isolation kit (MO BIO,
Carlsbad, CA, USA). This cryostock was used to distrib-
ute the strain to the Belgian Coordinated Collection of

Fig. 1 Photomicrograph of Zoogloea sp. strain LCSB751. a: bright field of anaerobically grown colonies, Nile Red stained after heat fixation;
b: same field observed with epifluorescence using an excitation light from a Xenon arc lamp. The beam was passed through an Optoscan
monochromator (Cairn Research, Kent, UK) with 550/20 nm selected band pass. Emitted light was reflected through a 620/60 nm bandpass filter
with a 565 dichroic connected to a cooled CCD camera (QImaging, Exi Blue). The images were taken using an inverted microscope (Nikon Ti)
equipped with a 60× oil immersion Nikon Apo-Plan lambda objective (1.4 N.A) and an intermediate magnification of 1.5×. The scale represents
10 μm. All imaging data were collected and analysed using the OptoMorph (Cairn Research, Kent, UK) and ImageJ
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Microorganisms collection center and deposited under
number LMG 29444.

Genome sequencing and assembly
The purified DNA was sequenced on an Illumina
Genome Analyzer IIx as previously described by Roume,
Heintz-Buschart and colleagues [5]. Briefly, a paired-end
sequencing library with a theoretical insert size of
300 bp was prepared with the AMPure XP/Size Select
Buffer Protocol as previously described by Kozarewa &
Turner [19], modified to allow for size-selection of frag-
ments using the double solid phase reversible
immobilization procedure [20] and sequenced on an
Illumina HiSeq with a read length of 100 bp at TGen
North (AZ, USA). The resulting 2,638,115 paired-end
reads were trimmed of N bases (i.e. minimum phred
quality score of 3 and filtered for Illumina TruSeq3

adapters), retaining 2,508,729 (~95%) of paired reads,
129,378 and eight forward- and reverse-singleton reads
(i.e. mate pair discarded), respectively. All reads retained
(paired-end and singleton reads) after the pre-processing
were de novo assembled using SPAdes ver. 3.1.1, using
the default kmer range and parameters [21].
The total number of contigs (776), the mean contig

length (7497 bp) and the N50 value (180,423 bp) of the
draft assembly of Zoogloea sp. LCSB751 (Table 3)
indicate a fragmented assembly despite an estimated se-
quencing depth of ~150× fold coverage, ~100× based on
21-mer frequencies (using KMC2 [22]) and a ~ 120×
average depth of coverage based on mapping reads back
onto the de novo assembled contigs [23–25]. Assembled
contigs above 1 kb are represented in Fig. 3.

Genome annotation
Gene (i.e. open reading frame) prediction and annotation
was carried out on the assembled contigs using Prokka
ver. 1.11 [26] and the RAST server [27], both executed
using default parameters and databases. Briefly, Prokka
predicted a total of 5200 features including 5118 CDS, 3
rRNA, 76 tRNA genes and one tmRNA genes as well as
two repeat regions. Similarly, the RAST server predicted a
total of 5202 features, of which 5125 represent coding se-
quences (CDS), 6 rRNA and 71 tRNA genes. The annota-
tion derived from the RAST server was used for most of
the genome descriptions and downstream analyses, unless
explicitly mentioned. CDS on the forward and reverse
strands within contigs above 1 kb are represented in
Fig. 3. In addition, the proteins predicted by the
RAST server were submitted to i) the WebMGA server
[28], ii) the SignalP server v.4.1 [29] and iii) the TMHMM
server v.2.0 [30], for COG functional annotation, signal
peptides prediction and transmembrane helices predic-
tion, respectively. 5202 of the predicted amino acid se-
quences were annotated with 13,030 Pfam IDs. Finally,
metaCRT [31] was used to predict CRISPR loci and
the resulting CRISPR-spacers were submitted to the
CRISPRtarget server [32] for the identification of pu-
tatively associated bacteriophage sequences.

Genome properties
The draft genome assembly of Zoogloea sp. LCSB751
consists of 5,817,831 bp with a G + C content of 64.2%,
distributed over 776 contigs (773 scaffolds) with an N50
value of 180,423 bp (Table 4), GC-skew and –deviation
of contigs above 1 kb are represented in Fig. 3. The raw
reads are available via the GenBank nucleotide database
under the accession number MWUM00000000, while
the assembly and the annotation (IDs 6666666.102999)
can be accessed through the RAST server guest account.
The rRNA operon region is assumed to be occurring

in multiple copies, because all reads from this region

Table 1 Classification and general features of Zoogloea sp.
strain LCSB751 according to the MIGS recommendation [18]
MIGS ID Property Term Evidence codea

Classification Domain Bacteria TAS [34]

Phylum Proteobacterium TAS [35]

Class Betaproteobacterium TAS [36]

Order Rhodocyclales TAS [13]

Family Rhodocyclaceae TAS [13]

Genus Zoogloea IDA

Species Unknown IDA

Strain: LCSB751

Gram stain Negative TAS [1]

Cell shape Rod TAS [1]

Motility Motile TAS [1]

Sporulation Not reported NAS

Temperature range 5–40 °C TAS [11, 13, 14]

Optimum temperature 25–30 °C TAS [11, 13]

pH range; Optimum 6.0–9.0; 6.5–7.5 TAS [11, 13]

MIGS-6 Habitat Activated sludge IDA

MIGS-6.3 Salinity Inhibited at 0.5%
NaCl (w/v)

TAS [14]

MIGS-22 Oxygen requirement facultative anaerobe IDA

MIGS-15 Biotic relationship free-living IDA

MIGS-14 Pathogenicity non-pathogen NAS

MIGS-4 Geographic location Luxembourg IDA

MIGS-5 Sample collection 2011 IDA

MIGS-4.1 Latitude 49°30′48.29′′N; IDA

MIGS-4.2 Longitude 6°1′4.53′′E IDA

MIGS-4.4 Altitude 275 m IDA
aEvidence codes - IDA Inferred from Direct Assay, TAS Traceable Author
Statement (i.e., a direct report exists in the literature), NAS Non-traceable
Author Statement (i.e., not directly observed for the living, isolated sample,
but based on a generally accepted property for the species, or anecdotal
evidence). These evidence codes are from the Gene Ontology project [37]
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were assembled into a single contig with a higher depth
of coverage (~1200×, for RAST server features:
fig|6666666.102999.rna.57, fig|6666666.102999.rna.60 and
fig|6666666.102999.rna.61) compared to the rest of the
genome. All 20 regular amino-acids were covered by
tRNA-anticodons. The RAST server and Prokka anno-
tated approximately 22% (1139) and 26% (1329) of the
CDS as hypothetical proteins or proteins of unknown
function, respectively. The distribution of COG functional

categories are reported in Table 5, while subsystem-based
functional classification are available via RAST server.

Insights from the genome sequence
Genome-based inference of the central metabolism
The genome of Zoogloea sp. LCSB751 is predicted to en-
code for all the genes required for a complete TCA
cycle, but is missing some or the complete set of genes
for the EMP pathway, the pentose phosphate pathway
and the Entner-Doudoroff pathway.
A periplasmic nitrate reductase as well as a nitrite

reductase were identified, suggesting complete reduc-
tion of nitrate to ammonia by Zoogloea sp. LCSB751.
Furthermore, a complete set of nif genes involved in
nitrogen fixation were also encoded in the genome.
Genes for a complete electron transport chain were

predicted as well as an alternative RNF complex [33].
The genome of Zoogloea sp. LCSB751 also encodes

numerous genes for flagella synthesis and assembly, sug-
gesting a motile lifestyle. Furthermore, the strain is pre-
dicted to be prototroph for all amino acids, nucleotides

Fig. 2 Phylogenetic tree based on 16S rRNA gene sequences. The type species strains of every species of the Rhodocyclaceae family were used
(in bold) as well as all the type strains of the genus Zoogloea, according to the List of Prokaryotic names with Standing in Nomenclature (LPSN;
http://www.bacterio.net). Whole genome GenBank IDs are provided in brackets. The 16S rRNA sequences were aligned using ClustalW, the
alignment was curated using Gblocks conserving 81% of the initial positions and the phylogeny was computed with BioNJ using 100 bootstraps
and the default (K2P) substitution model, using the pipeline Phylogeny.fr [38]

Table 2 Generation time, growth rate and maximum growth of
Zoogloea sp. LCSB751 under different aerobic culture conditions

Medium Generation time
± standard deviationa

Growth rate
(min−1)

Maximum OD600
b

R2A 1 h 54 min ± 3 min 0.0058 0.46

MSV A + B 4 h 30 min ± 53 min 0.0026 0.21

Slijkhuis A 10 h 42 min ± 1 h 51min 0.0011 0.73
aValues are an average of independent triplicate experiments
bOD600 stands for optical density measured at 600 nm with the spectrometer
“Biochrom WPA CO 8000 Cell Density Meter” using BRAND disposable semi-
micro UV cuvettes of 12.5 × 12.5 × 45 mm
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and vitamins B2, B6, B9, H, and is missing a single gene
for the synthesis of B12.
Additionally, the catechol 2,3-dioxygenase that has

been studied in Z. oleivorans, was found to be encoded
by the genome of Zoogloea sp. LCSB751 [11].

Lipid metabolism
The genome of Zoogloea sp. LCSB751 was further ana-
lysed with a focus on genes related to lipid metabolism,
to better understand the lipid accumulation properties
of Zoogloea spp. With 202 genes annotated with COG
functional category I “Lipid transport and metabolism”,
more than 3.8% of the genome of Zoogloea sp. LCSB751
is potentially dedicated to lipid metabolism (Table 5 and
Fig. 3). Using the SEED subsystem feature, similar results
were obtained with 194 genes (3.8%) classified in the
“Fatty acids, lipids and Isoprenoids” subsystem (Table 6).
Specifically, a complete set of predicted genes neces-

sary for the synthesis, polymerisation and depolymerisa-
tion of PHA [2] was found as well as the genes of the
MEP/DOXP pathway for terpenoid synthesis. However,

Fig. 3 Circular graphical map of the Zoogloea sp. LCSB751 draft genome assembly, annotation and in situ expression. Data shown on the map
explained from the outer to inner circles (i-x): i) contigs above 1 kb. Accordingly, all subsequent information contained within inner circles are
based on these contigs, including ii) forward strand coding sequences in red (CDS), iii) reverse strand CDS in blue, iv) CDS that are related to lipid
accumulation in yellow (forward and reverse strands), v-viii) gene expression in situ based on metatranscriptomic data from four sampling dates
(25 January 2011, 11 January 2012, 5 October 2011, and 12 October 2011 [6]) ix) GC-deviation (from overall G + C %) and x) GC-skew, respectively.
Graphics were generated using Circos [41]. CDS were predicted and annotated using the RAST server [27]. Metatranscriptomic data from four
sampling dates were aligned against the draft genome using BWA [42] and depth of coverage, computed using BEDtools [25] was used as a
proxy for expression. Depth of coverage <0.3 were set to zero

Table 3 Project information

MIGS ID Property Term

MIGS 31 Finishing quality Draft

MIGS-28 Libraries used Illumina paired-end reads
(insert size 30 bp)

MIGS 29 Sequencing platforms Illumina HiSeq

MIGS 31.2 Fold coverage 150×

MIGS 30 Assemblers SPAdes (version 3.1.1)

MIGS 32 Gene calling method RAST servera and Prokkab

Locus Tag fig|6666666.102999

Genbank ID MWUM00000000

GenBank Date of Release 15 March 2017

GOLD ID Gs0128811

BIOPROJECT PRJNA230567

MIGS 13 Source Material Identifier LMG 29444

Project relevance Environmental, biodiversity,
biotechnological

aGene calling using GLIMMER [27, 39]
bGene calling using Prodigal [26, 40]
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the gene necessary to convert diacylglycerol in triacyl-
glycerol or fatty alcohol in wax ester was not predicted,
suggesting that PHA granules are the only lipid bodies
accumulated in Zoogloea sp. LCSB751.

In situ gene expression
While genomic data provides information about the gen-
etic potential of Zoogloea sp. LCSB751, it is possible to
study expressed functions of the Zoogloea population in
situ by using metatranscriptomic data derived from the
biological wastewater treatment plant this strain origi-
nated from. Metatranscriptomic data derived from sam-
ples collected at four distinct time points (25 January
2011, 11 January 2012, 5 October 2011, and 12 October
2011), as studied by Muller and collaborators [6] was
used herein. Genes with an average depth of coverage
equal or higher than 0.3 were considered as expressed
by mapping the rRNA-depleted transcripts on the gen-
ome of Zoogloea sp. LCSB751. 259, 312, 269 and 330
genes, respectively, were expressed, with 160 of them
being expressed at all four time points (Fig. 3 and
Additional file 1: Table S1). For the vast majority, (4732
genes), no transcripts were detected, which can be ex-
plained by the low population size of Zoogloea sp. in
situ. This was estimated by phylogenetic marker gene
(16S rRNA) amplicon sequencing on the sample col-
lected on 25 January 2011 (data from [6]), for which the

Zoogloea sp. population size was estimated at 0.1%.
Similarly, metagenomic data from all the samples further
support the low abundance of this strain in situ
(Additional file 1: Table S2).
Nitrate reductase encoding genes (specifically the peri-

plasmic nitrate reductase; NapA) were found to be
expressed in all the four time points, while nitrite reduc-
tase or nitrogen fixation genes were sporadically
expressed in those four time points. Interestingly, at
least one copy of the acetoacetyl-CoA reductase and of
the polyhydroxyalkanoic acid synthase were found to be
expressed at each time point, possibly suggesting PHA
accumulation by the population of Zoogloea sp. in this
environment. Additionally, the third most expressed
gene of Zoogloea sp. in this environment is a “granule
associated protein (phasin)” typically known to be asso-
ciated with PHA granules.

Table 4 Genome statistics of Zoogloea sp. LCSB751

Attribute Value % of Totala

Genome size (bp) 5,817,831 100.00

DNA coding (bp)b 4,966,077 85.36

DNA G + C (bp) 3,733,728 64.18

DNA scaffolds 773 100.00

Total genes 5,202c / 5,200d 100.00c / 100.00d

Protein coding genes 5,125c / 5,118d 98.52c / 98.42d

RNA genes 77c / 80d 1.48c / 1.54d

Pseudo genes unknown unknown

Genes in internal clusters unknown unknown

Genes with function prediction c 3661 70.38

Genes assigned to COGs 4191 80.56

Genes with Pfam domains 4202 80.78

Genes with signal peptides 505 9.71

Genes with transmembrane helices 1157 22.24

CRISPR repeats 2d / 3e 2.85
aTotal is based on either the size of the genome in base pairs, total number of
scaffolds or the total number of genes in the annotated genome
bCumulative length of genes, without considering overlaps
cAs predicted by RAST server [27]
dAs predicted by Pokka [26]
eAs predicted by MetaCRT [31]

Table 5 Number of genes associated with general COG
functional categories

Code Value %age Description

J 182 3.50 Translation, ribosomal structure and
biogenesis

A 3 0.06 RNA processing and modification

K 342 6.57 Transcription

L 204 3.92 Replication, recombination and repair

B 3 0.06 Chromatin structure and dynamics

D 52 1.00 Cell cycle control, Cell division,
chromosome partitioning

V 69 1.33 Defense mechanisms

T 564 10.84 Signal transduction mechanisms

M 252 4.84 Cell wall/membrane biogenesis

N 177 3.40 Cell motility

U 142 2.73 Intracellular trafficking and secretion

O 189 3.63 Posttranslational modification,
protein turnover, chaperones

C 362 6.96 Energy production and conversion

G 130 2.50 Carbohydrate transport and metabolism

E 305 5.86 Amino acid transport and metabolism

F 85 1.63 Nucleotide transport and metabolism

H 185 3.56 Coenzyme transport and metabolism

I 202 3.88 Lipid transport and metabolism

P 283 5.44 Inorganic ion transport and metabolism

Q 126 2.42 Secondary metabolites biosynthesis,
transport and catabolism

R 520 10.00 General function prediction only

S 351 6.75 Function unknown

– 1011 19.43 Not in COGs

Percentage (%) is based on the total number of protein coding genes in
the genome
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CRISPR-Cas system and putative bacteriophages
A total of three CRISPR loci were detected with
metaCRT, accompanied by six CRISPR-associated
(cas) genes. Five of the predicted cas genes occur
consecutively, within the same contig and all of the
predicted cas genes occur adjacent to a CRISPR locus
[7]. Two of CRISPR repeats types were 37 bp in
length (sequence: GTTTCAATCCACGTCCGTTAT
TGCTAACGGACGAATC; GTGGCACTCGCTCCGA
AGGGAGCGACTTCGTTGAAGC) while one of them
is 32 bp (sequence: CACTCGCTCCGGAGGGAGC
GACTTCGTTGAAG). These CRISPRs contain 175,
51 and 11 spacers, respectively, ranging from lengths
of 33 to 46 bp. A total of 77 matches were found
when searching the spacers against the ACLAME
phage/viral/plasmid gene database, NCBI phage and
NCBI virus databases using the CRISPRtarget tool
[32]. 51 of the spacers match to bacteriophages, 6 to
viruses, 11 to genes within plasmids and six to genes
within prophages (Additional file 1: Table S3). Based
on the available metatranscriptomic data, minute to
no expression of the cas genes was observed, while
the detected CRISPR regions were not covered by the
metatranscriptomic data (Additional file 1: Table S1).
This is likely due to the overall low abundance of this
species in situ (Additional file 1: Table S2).

Conclusions
We describe the first draft genome of a strain potentially
belonging to a novel species within the genus Zoogloea.
The genetic inventory of Zoogloea sp. LCSB751 makes it
of particular interest for future wastewater treatment
strategies based around the comprehensive reclamation
of nutrients and chemical energy-rich biomolecules
around the concept of a “wastewater biorefinery col-
umn” [3] as well as for industrial biotechnological appli-
cations. Future comparative genomics studies would
allow the scientific community to further confirm if the
reported genomic repertoire is indeed typical of this
genus. Using metatranscriptomic data, we further show
that Zoogloea sp. populations are active in the studied
wastewater treatment plant despite being low in abun-
dance and likely accumulate PHA in situ.

Additional file

Additional file 1: Table S1. Metatranscriptomic coverage for the
predicted features of Zoogloea sp. LCSB751. Table S2. Metagenomic
coverage for the assembly contigs of Zoogloea sp. LCSB751. Table S3.
Zoogloea sp. LCSB751 CRISPR spacer complements (protospacer) as per
reported by CRISPRTarget [32]. (XLSX 182 kb)
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Table 6 Gene abundance and frequency related to the lipid
metabolism of Zoogloea sp. LCSB751
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feature count
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Cardiolipin synthesis 2 6.67

Glycerolipid and glycerophospholipid
metabolism in bacteria
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Polyhydroxybutyrate metabolism 56 100
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Nonmevalonate branch of isoprenoid
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acids, lipids and isoprenoid” are represented
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Birth mode is associated with earliest
strain-conferred gut microbiome functions
and immunostimulatory potential
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The rate of caesarean section delivery (CSD) is increasing worldwide. It remains unclear

whether disruption of mother-to-neonate transmission of microbiota through CSD occurs and

whether it affects human physiology. Here we perform metagenomic analysis of earliest gut

microbial community structures and functions. We identify differences in encoded functions

between microbiomes of vaginally delivered (VD) and CSD neonates. Several functional

pathways are over-represented in VD neonates, including lipopolysaccharide (LPS) bio-

synthesis. We link these enriched functions to individual-specific strains, which are trans-

mitted from mothers to neonates in case of VD. The stimulation of primary human immune

cells with LPS isolated from early stool samples of VD neonates results in higher levels of

tumour necrosis factor (TNF-α) and interleukin 18 (IL-18). Accordingly, the observed levels

of TNF-α and IL-18 in neonatal blood plasma are higher after VD. Taken together, our results

support that CSD disrupts mother-to-neonate transmission of specific microbial strains,

linked functional repertoires and immune-stimulatory potential during a critical window for

neonatal immune system priming.
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The past decades have witnessed steadily increasing rates in
caesarean section deliveries (CSD) performed largely in the
absence of medical necessity and reaching proportions of

19.1% worldwide and 25% in Europe1,2. During vaginal birth,
specific bacterial strains are transmitted from mothers to
infants3–6 and differences in microbial colonization in neonates
born by CSD have been identified7–10 as early as 3 days
postpartum7,10. However, due to conflicting results, which prin-
cipally imply a negligible impact of delivery mode on the colo-
nizing neonatal microbiome in the gut11, it remains unclear
whether disruption of mother-to-infant transmission of micro-
biota through CSD occurs and whether it affects human phy-
siology early on, with potentially persistent effects in later life. As
the first few days after birth represent a ‘critical window’ in
neonatal health and development12–14, there is growing concern
that disruption of microbial transmission from mother to neonate
is linked to conditions more frequently observed in CSD-born
individuals, including allergies15, chronic immune disorders16

and metabolic disorders17. To address these concerns, it is
essential to determine if there are differences in the functional
complement conferred by the earliest colonizing microbiota in
relation to CSD, if any differences result from changes in the
transmission of strains from mothers to neonates, and if these
impact neonatal physiology.

While the majority of studies so far indicate that delivery mode
is the strongest factor determining early neonatal gut microbiome
colonization3,7–10,18, these effects are either extenuated or largely
absent in other studies11,19. In this context, it is important to
consider that CSD may be performed as a result of underlying
maternal or foetal medical conditions (e.g., multiple gestation,
foetal malpresentation or suspected foetal macrosomia)20 and can
co-occur with other microbiome-influencing factors. More spe-
cifically, CSD is most often accompanied by the administration of
antibiotics to mothers due to local health regulations or hospital
practices (e.g., in case of a positive screening of the mother for
group B Streptococcus)21. Being born small for gestational age
(SGA) frequently coincides with CSD as well (i.e., more than 50%
of all SGA neonates)22. SGA neonates have an elevated propensity
for developing metabolic disorders during childhood or adult-
hood, which has been associated with alterations to the gut
microbiome23, and may be linked to the elevated rate of CSD in
this population.

Apart from confounding factors, the methods and study
designs employed over the past years may in part explain some of
the conflicting results regarding the effect of delivery mode on the
early gut microbiome. Notably, taxonomic profiling based on 16S
rRNA gene amplicon sequencing does not offer sufficient reso-
lution to assess the direct effect of the delivery mode at the level of
strain transmission, which is expected to be a determinant of
succession. Although recent studies have focused on mother-to-
neonate strain transfer and have shown that maternal strains do
colonize the neonatal gut, non-vaginal delivery was not assessed
comprehensively4–6. In addition, although single nucleotide var-
iants (SNVs) have been tracked over time, no such studies have so
far covered the earliest time points after delivery (days 0–5) in
well-matched mother–neonate pairs in relation to a direct com-
parison of delivery modes. Consequently, there is a strong need
for adequate high-resolution metagenomic analyses capable of
resolving the vertical transmission of individual-specific strains
and encoded functions from mothers to neonates on an indivi-
dual basis, while also supplementing observed in silico findings
with further in vitro validation experiments.

Independent of whether prenatal colonization of the foetus
takes place or not24, delivery marks the moment of extensive
exposure to microbial communities of faecal, vaginal, skin and
environmental origins and this event thereby has a profound

impact on the colonization of the neonatal gut9,25. The initial low
microbial biomass in the earliest neonatal stool samples7

makes the sequencing data prone to the over-representation of
putative artefactual reads24,26 and may contribute to the gen-
eration of inconsistent results. Therefore, the removal of any
artefactual sequences is essential to ensure unambiguous, high-
resolution overviews of the earliest microbial colonization of the
neonatal gut.

Here, we performed a detailed analysis of the earliest microbial
colonization of the neonatal gut using a combination of 16S
rRNA gene amplicon sequencing and high-resolution metage-
nomics. Our results highlight differences in gut microbiome
composition according to delivery mode as well as concurrent
differences in the encoded functional potential, which in turn are
linked to differences in the transfer of strains from mother to
neonate. Based on the enrichment of the LPS biosynthesis path-
way in VD neonates, we performed LPS extractions from neo-
natal stool samples, in vitro immune stimulation assays as well as
extensive assessments of LPS purity. The stimulation of primary
human immune cells with purified LPS from the faeces of VD
neonates collected at day 3 postpartum resulted in the production
of higher levels of TNF-α and IL-18. In accordance with these
results, the levels of TNF-α and IL-18 in neonatal blood plasma
were also higher in VD neonates when compared to CSD. Taken
together, we observe a microbiome-driven relationship between
delivery mode and endotoxin-induced immune system priming
with the potential for lasting effects in later life.

Results
Study design and cohort characteristics. To characterize the
temporal patterns of earliest microbial colonization in relation to
delivery mode, we recruited and sampled a total of 33 neonates
(Supplementary Data 1). The neonatal gut microbiome of some of
these neonates had previously been characterized using a com-
bination of 16S rRNA gene amplicon sequencing and quantitative
real-time PCR7. For a subset of neonates, well-matched neonatal
and maternal samples were subjected to high-resolution meta-
genomic analyses. To differentiate between potential effects of
CSD and/or SGA, neonates born by CSD and neonates born by
CSD and being SGA were included in the cohort and analysed
separately. For each mother–neonate pair, we sampled micro-
biomes of maternal body sites, which are indicated to be
important in relation to neonatal gut colonization (collection of
stool and vaginal swabs; Methods) less than 24 h before delivery.
Additionally, earliest neonatal stool samples were collected at
≤ 24 h, 3 days and 5 days postpartum (63 samples; Supplementary
Data 1). Extracted genomic DNA from all samples was subjected
to 16S rRNA gene amplicon sequencing and extracted DNA from
the samples of the subset of mother–neonate pairs were subjected
to random shotgun sequencing. The 16S rRNA gene amplicon
sequencing data were processed using NG-Tax27, while the
resulting metagenomic data were processed using a reproducible,
reference-independent bioinformatic pipeline28.

Removal of artefactual sequences. Neonatal stool samples from
days 1–5 postpartum contain limited amounts of microbial
DNA7, and low-biomass samples are prone to over-
representation of artefactual DNA that is introduced during the
extraction procedure or preparation of sequencing libraries24,26.
For the 16S rRNA gene amplicon sequencing data, any possible
effect from putative artefactual reads was restricted by applying
the methodology previously described in Wampach et al7. To
account for the presence of artefactual sequences in the metage-
nomic data, we devised an additional, combined in vitro and in
silico strategy to identify and remove artefactual sequences from
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the metagenomic data (Fig. 1a). For the in vitro part, DNA was
extracted from a human gut epithelial cell line using the same
procedure as for the neonatal stool samples and diluted to the
levels of DNA extractable from the collected low-biomass samples
(Methods). The choice of human DNA as a negative control was
based on the following criteria: (i) the inability to generate a
sequencing library from blank water control samples due to the
inherent very low amounts of DNA (these are typically below the
threshold for library construction); (ii) the ability to clearly dif-
ferentiate signal (in the titration series: human sequences) from
artefacts (non-human sequences); microbial DNA was not chosen
as the homology between contaminant and bona fide sequences
may have confounded delineation; (iii) the removal of human
sequences is common practice when performing metagenomic
analyses on human samples and appropriate methods exist to
distinguish between human and microbial sequences in silico; (iv)
the blinding of the variability originating from the laboratory
environment or sequencing facility due to the nature of the
samples (i.e., human control samples were treated with the exact
same reagents as the faecal study samples). Our in silico workflow
for the identification and removal of artefacts from metagenomic
data (Fig. 1b) first clusters29 contigs from the artefact control
samples and the study samples together (Supplementary Fig. 1a).
It subsequently removes contigs from study samples that cluster
with the artefactual contigs, i.e., that fall into the same bin
(Supplementary Note 1). After subsequent filtering steps and the
successful removal of artefactual contigs from all study samples,
we observed differences in the number of removed reads
according to sample type (Supplementary Fig. 1b; Supplementary
Data 2). On the basis of this essential data curation step,
sequences from Achromobacter xylosoxidans or Burkholderia spp.
taxa were for example identified and subsequently eliminated
from the bona fide metagenomic data. Using the curated meta-
genomic data, we obtained taxonomic profiles (Supplementary
Data 3), functionally annotated gene sets (Supplementary Data 4),
reconstructed genomes following binning30 and strain-
determining variant patterns31 (Supplementary Data 5).

Earliest microbial taxonomic profiles. The 16S rRNA gene
amplicon and the metagenomic sequencing data, which were
generated for a subset of mother–neonate pairs, showed highly
similar succession trends in terms of diversity, evenness and
richness measures (Supplementary Fig. 2a & b; Supplementary
Note 2). The taxonomic profiles derived from the 16S rRNA gene
amplicon and metagenomic sequencing were highly correlated
(Supplementary Fig. 3a). The differences in taxonomic profiles
according to delivery mode reflected results from previous stu-
dies, notably the higher relative abundance in Bacteroides and
Parabacteroides and lower levels in Staphylococcus in VD neo-
nates at days 3 and 5 postpartum7,10 (Supplementary Data 6 to 8;
Supplementary Note 3). In order to resolve the effect of delivery
mode in relation to other potentially contributing factors such as
maternal antibiotic intake prior to delivery, gestational age,
feeding regime and sampling time point, differentially abundant
taxa for both 16S rRNA gene amplicon and metagenomic
sequencing data were determined separately using a multivariate
additive general model approach (MaAsLin32). Taking into
account the effects of the above-mentioned factors, delivery mode
was found to be the dominant driver of neonatal gut microbiome
colonization, with other measured factors having considerably
less of an effect (Supplementary Note 4; Supplementary Data 9).

Earliest functional differences according to delivery mode. To
assess whether the apparent taxonomic differences between the
gut microbiomes of VD and CSD neonates are reflected at the
level of functional potential, we used the metagenomic sequen-
cing data to calculate Jensen-Shannon divergences for all samples
(Supplementary Fig. 4a). Overall, comparison of the functional
profiles of all neonates to the gut microbial potential of their
respective mothers highlighted that the neonatal gut microbiota
were more divergent from the maternal vaginal microbiota than
the corresponding gut microbiota (Supplementary Fig. 4a, b & c).
We also compared the CSD (±SGA) gut microbiota at day 3 and
day 5 postpartum to those of VD neonates (Fig. 2a). CSD (±SGA)
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derived
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shotgun sequencing

Sample collection
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Fig. 1 Curation of metagenomic data. a Schematic representation of the workflow for removal of artefacts introduced during genomic extraction or
preparation of sequence libraries in the low-biomass neonatal samples. b Sample-wise bioinformatic workflow for removal of artefactual sequences from
metagenomic data, extraction of taxonomic and functional profiles, and reconstruction of genomes and strain-resolved analyses. The resulting data sets
used for inter-sample comparisons are highlighted in grey. mOTU, metagenomic operational taxonomic unit
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neonates lacked most functions at day 3 compared to VD neo-
nates (Supplementary Fig. 5–10), while some appeared at day 5.
Notably, neonatal-maternal correlations between community-
wide functional potentials of the gut microbiomes at days 1, 3 and
5 postpartum were higher for VD than for CSD (±SGA) (Fig. 2b;
Wilcoxon rank-sum test, FDR-adjusted P= 6.0 × 10−3 for day 3
and P= 1.8 × 10−2 for day 5).

We detected a total of 1,697 functional categories from the
Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology
(KO) database that were differentially abundant in the compar-
isons of the gut microbiome of CSD or CSD+ SGA neonates to
VD neonates. These presented the same directionality of change
using the R package DESeq233 with a linear model considering the
different collection time points containing at least 1,000 KOs (days
3 and 5) as covariates (Fig. 2a; Supplementary Data 10). Among
the differentially abundant genes, there was an enrichment in
genes involved in LPS biosynthesis (Fig. 2a; hypergeometric test,

false discovery rate (FDR)-adjusted P= 1.5 × 10−9), and the
proportion of reads mapping to genes involved in this pathway
was larger in VD neonates compared to both CSD groups
neonates (Fig. 2c; Wilcoxon rank-sum test, FDR-adjusted P=
9.6 × 10−3). Other important microbial metabolic pathways,
which were enriched with differentially abundant genes between
VD and CSD (±SGA), included flagellar assembly (Fig. 2a;
hypergeometric test, FDR-adjusted P= 4.9 × 10−12), bacterial
chemotaxis (Fig. 2a; hypergeometric test, FDR-adjusted P=
1.5 × 10−2), cationic antimicrobial peptide (CAMP) resistance
(Fig. 2a; hypergeometric test, FDR-adjusted P= 4.0 × 10−3), two-
component system (Fig. 2a; hypergeometric test, FDR-adjusted P
= 2.5 × 10−5) and ABC transporters (Fig. 2a; hypergeometric test,
FDR-adjusted P= 1.3 × 10−4). As comparisons between VD and
CSD as well as VD and CSD+ SGA were largely matching
independent of SGA status, we combined both groups (CSD and
CSD+ SGA) to increase statistical power (CSD ± SGA). Notably,
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all pathways also showed higher relative gene abundances in VD
compared to CSD (±SGA) neonates except for the ABC
transporter pathway (Fig. 2c; Wilcoxon rank-sum test, FDR-
adjusted P= 4.1 × 10−3, 3.8 × 10−2, 2.2 × 10−4, 2.1 × 10−2,
respectively).

To corroborate the apparent higher propensity of the VD
microbiome for LPS biosynthesis, we annotated the OTUs
resulting from the 16S rRNA gene amplicon sequencing data
according to their attributed Gram staining information. Hereby,
we observed that the gut microbiomes of VD neonates harboured
significantly higher relative abundances of Gram-negative
bacteria at days 3 and 5 compared to CSD (±SGA) neonates
(Wilcoxon rank-sum test, FDR-adjusted P= 1.7 × 10−3 and P=
4.0 × 10−3 for day 3 and 5 respectively; Supplementary Fig. 3b).
Additionally, the relative abundances of 7,000 KO functional
categories were predicted using PanFP34 based on the extensive
16S rRNA gene amplicon data (Supplementary Data 11). A
multivariate analysis (MaAsLin32) was performed to compare the
functional profiles of CSD (±SGA) to VD neonates and for both
generated data sets (i.e., predicted KO functional categories based
on 16S rRNA gene amplicon sequencing data and annotated KOs
based on metagenomic sequencing data). Results from the
multivariate analyses demonstrated that delivery mode was the
strongest determining factor in both data sets (i.e., predicted and
metagenomics-based KOs) for explaining the differentially
abundant genes (Supplementary Data 9). Whilst not statistically
significant, the trends for the predicted microbial pathways
obtained with PanFP were largely concordant with the enriched
pathways in VD neonates based on the differential analysis of the
metagenomic data. Nevertheless, predictions of functional
potentials based on 16S rRNA gene amplicon sequencing data
are likely unreliable as a significant fraction of the gut
microbiome (i.e., up to 40%) is represented by microorganisms
without a sequenced isolate genome35. In contrast, the metage-
nomic data, through resolving the actual functional gene
complement, allows a detailed comparison of the functional
potential of the earliest gut microbiomes, as well as the tracking of
individual-specific single-nucleotide variants (SNVs).

Vertical transfer of enteric strains from mothers to neonates.
To determine if the observed differences in microbial functions
were encoded by specific strains that were vertically transferred
from the mother to the neonate, we mined the metagenomic
sequencing data to identify microbial taxa and strains that both
members of any of the 16 maternal–neonatal pairs, for which we
had generated metagenomic data, had in common. We devised an
ensemble approach to link reconstructed genomes on the basis of
taxonomic annotations30,, similarity of phylogenetic marker
genes and the presence of SNVs31 (Methods). This enabled the
tracking of specific strains from mothers to neonates (Supple-
mentary Data 5). Given the high degree of specificity, the pre-
sence of transferred strains is highly relevant on a pair-by-pair,
individual basis to assess mother-to-neonate transfer. This is all
the more important given the extensive inter-individual varia-
bility of the neonatal gut microbiome (Supplementary Fig. 3c).
Mother-to-neonate transfer differed between VD and CSD
(±SGA), with significantly more maternal strains being shared by
VD neonates than CSD (±SGA) neonates (Fig. 3a; Wilcoxon rank
sum test: P= 3 × 10−3). While the reconstructed genomes of 25
taxa belonging to the phyla Proteobacteria and Firmicutes were
identified in maternal–neonatal pairs for all birth modes (mostly
the skin-derived and upper-gastrointestinal tract-inhabiting
genera Streptococcus and Staphylococcus spp.), the reconstructed
genomes of 23 enteric taxa belonging to the phyla Bacteroidetes
and Actinobacteria (notably Bacteroides and Bifidobacterium

spp.) were exclusively observed in VD pairs. Notably, in the case
of vaginal delivery, multiple strains of Gram-positive bacteria
(e.g., Bifidobacterium) were transferred from mother to neonate
(Fig. 3a; transmission in 71% of all VD neonates, 0% in CSD ±
SGA on days 3 and 5), as well as Gram-negative bacteria (e.g.,
Bacteroidetes; Fig. 3a; transmission in 79% of all VD neonates, 0%
in CSD and 20% in CSD+ SGA on days 3 and 5).

Linking differentially abundant functions to transferred
strains. To compare the levels of genetic divergence between
early colonizing microbial populations over time, we calculated
fixation indices (FST) and intra-population diversity (π), on
the basis of the resolved SNVs. Our results reflected a shift in
population structures during the transfer from mothers to neo-
nates. We observed higher fixation indices (Wilcoxon signed-
rank test: P < 4 × 10−3) between maternal and neonates’ strains
(M:3 and M:5; Fig. 3b; Supplementary Fig. 11a) compared to
the same transferred strains observed at different times within
the neonates (i.e., 3:5). Moreover, intra-population diversity
tended to increase during the first days of life for strains that
were not transmitted from the mother and belonged to the
phylum Firmicutes, as seen in CSD compared to VD neonates
(Wilcoxon rank sum test for day 5 versus day 3: P= 1 × 10−2;
Fig. 3c; Supplementary Fig. 11b), suggesting that new strains
invaded the neonatal gut during this short time period. The dif-
ferences in relative abundance of taxa corresponded to the
inferred routes of transmission linked to birth mode. For exam-
ple, the metagenomic operational taxonomic unit (mOTU) Bac-
teroides dorei/vulgatus was more abundant in VD neonates,
whereas Staphylococcus epidermidis was more abundant in CSD
(±SGA) neonates (Fig. 3d, e). While the same strain of B. vulgatus
was present in paired maternal and neonatal samples in the VD
group (Fig. 3f), S. epidermidis strains were observed only in CSD
neonates (Fig. 3g), suggesting an origin outside the maternal gut
or vaginal environment. Taken together, these results are con-
sistent with the transmission of strains from the maternal gut
microbiome during vaginal delivery, resulting in relatively stable
colonization of the neonatal gut during the earliest days, in
contrast to CSD neonates.

To assess whether the transferred strains conferred specific
functional traits to the neonate or not, we assessed the genomic
complements of the earliest microbiota. Analysis of reconstructed
genomes that were linked to maternal metagenomes showed that
vertically transmitted strains were more likely to be enriched in
functions that were depleted in CSD neonates (odds ratio (OR)
5.0, Fisher’s exact test P= 2.4 × 10−11). Among these strains,
Bacteroidetes (B. vulgatus and other Bacteroides species) and
Clostridium spp. were common. Most strikingly, a B. vulgatus
genome, which shared the majority of SNVs with the correspond-
ing maternal reconstructed genome, was enriched in functions
that were significantly more abundant in VD neonates compared
to CSD (±SGA) neonates (OR= 3.7, FDR-adjusted P= 3.0 × 10
−186; Fig. 3h). By contrast, strains of Staphylococcus aureus, an
uncharacterized Actinobacterium and S. epidermidis encoded
functions that were more prevalent in association with CSD. The
reconstructed genome of S. epidermidis (Fig. 3i) was enriched
(OR= 4.1, FDR-adjusted P= 5.9 × 10−57) in functions with
higher relative abundances in CSD (±SGA) neonates, and
considerably fewer SNVs were shared with the respective mother.
These results indicate that vaginal delivery not only favours the
vertical transfer of enteric strains from mother to neonate, but
also results in the transfer of specific functional traits to the
neonate, which are involved in important microbial pathways
such as LPS biosynthesis and may be relevant in stimulating the
developing immune system during the first days of life.
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Immunostimulatory potential of the earliest gut microbiome.
As LPS forms part of the outer membrane of Gram-negative
bacteria, the attributed Gram staining information of micro-
organisms directly corresponds to their propensity to synthetize
LPS. Importantly, LPS is a highly potent innate immune
activator that is recognized by the Toll-like receptor (TLR) 4.
The earliest VD gut microbiome exhibited an enrichment in
the microbial LPS biosynthesis pathway (Figs. 2a and 3h) as
well as in Gram-negative taxa, which were frequently

transmitted from the mother (Fig. 3a). This observation is sup-
ported by the 16S rRNA gene amplicon sequencing data (Sup-
plementary Fig. 3b). Consequently, an apparent higher
microbial synthesis of LPS likely results in an increased immu-
nostimulatory potential of the developing gut microbiome.
To test whether the VD-associated colonizing gut microbiota,
which encode a specific functional complement (including
an enrichment in genes involved in LPS biosynthesis), drives
early physiological differences in VD neonates, we focussed on
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the early immunostimulatory potential of LPS from the
neonatal gut.

Based on our data, the microbial composition differed most
strongly in VD and CSD neonates on day 3 postpartum and
thereby may critically affect the developing immune system at
this time12. We isolated LPS from faecal samples from day 3 with
sufficient biomass from 16 neonates (7 VD, 7 CSD, 2 CSD+
SGA; Supplementary Data 12; Methods). We subsequently used
several approaches to assess the purity of the isolated LPS
fractions (Supplementary Note 5; Methods). Using agarose and
polyacrylamide gel electrophoresis, we successfully visualized the
isolated LPS and did not find traces of protein contamination but
observed minor traces of fragmented DNA. However, this DNA
did not contribute considerably to the immunostimulatory effect
of the LPS fractions (Supplementary Fig. 12). No contamination
with peptidoglycan or other bacterial molecules containing the D-
glutamyl-meso-diaminopimelic acid moiety were detected in the
isolated LPS fractions using the highly sensitive HEK-Blue™
reporter cells overexpressing the receptors hTLR2, hNOD1 and
hNOD2, respectively (Supplementary Fig. 13; Methods). Some
microbial products detected by hTLR2 (e.g., lipoteichoic acid,
lipoprotein from Gram-positive bacteria, lipoarabinomannan
from Mycobacteria or zymosan from yeast cell walls) were likely
present in LPS samples for which high amounts of LPS were
obtained from faecal samples. Conclusively, the isolated LPS
fractions were assessed to be of high purity based on the HEK-
Blue™ cell assays, although some unknown microbial products
may play a stimulatory role in the high-yield LPS fractions (1 ng
of standard LPS and an average of 2.9 ng of LPS isolated from VD
neonates; Supplementary Fig. 13b). Consequently, the composi-
tion of the different isolated LPS fractions played a role in the
subsequently triggered immune response.

To assess the stimulatory effect at the interface between the
neonatal innate and adaptive immune systems36, we stimulated

monocyte-derived dendritic cells (MoDCs) from 12 adult donors
with neonatal LPS extracts (Methods). In order to reflect the
in vivo situation as closely as possible, we stimulated the MoDCs
with the exact same LPS volume that was obtainable from
the same initial amount of faecal material from each neonate
sample and subsequently measured levels of the LPS-inducible
cytokine TNF-α in the supernatants using an ELISA assay
(Fig. 4a; Supplementary Data 13). In parallel, a panel of additional
cytokines was measured using an approach for quantifying and
normalizing the employed LPS fractions (Methods). This was
based on a maximum stimulation of MoDCs with 100 Endotoxin
Units (EU) of LPS in order to mimic the amount of LPS an
immune cell may encounter within a given neonatal sample
(Supplementary Figure 14; Supplementary Data 14 and 15).
The levels of all measured cytokines, and especially of TNF-α
and IL-18, were higher in culture supernatants from MoDCs
treated with LPS from VD neonates (Supplementary Fig. 14;
Supplementary Data 16; Supplementary Note 6). Based on the
outcome of all applied methods, we observed that the nature and
composition of the different LPS subtypes contributed to the level
of immune activation triggered by the LPS fractions from the
different samples. Taken together, these results demonstrate
higher immunostimulatory potentials of the earliest gut micro-
biome in neonates born by VD compared to CSD.

To test whether potential effects of differential immunostimu-
lation are apparent early on in vivo, we assessed cytokine levels in
plasma samples from a total of 31 neonates (Supplementary
Data 1). Plasma samples were collected on the same day as the
neonatal faecal samples from which LPS was isolated, i.e., day 3
postpartum. Levels of IL-18 were significantly higher in the VD
group compared to the CSD group (Wilcoxon rank-sum test,
FDR-adjusted P= 2.4 × 10−3; Fig. 4b), as were the levels of TNF-
α (FDR-adjusted P= 3.0 × 10−2; Fig. 4b, Supplementary Data 17;
Supplementary Note 7), which is consistent with previous results
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in neonates at a similar age37 and in healthy infants aged
0–3 months38.

Discussion
Here we employed high-resolution, artefact-curated metagenomic
analyses of paired, high-quality samples from mothers and neo-
nates to resolve the neonatal gut microbiome over the first few
days of life. While previous studies have used analogous analytical
approaches (16S rRNA gene amplicon sequencing and metage-
nomics) to resolve the early neonatal gut microbiome, these
studies did not involve the systematic collection and appropriate
preservation of paired mother–neonate samples11, they did not
specifically track vertical strain transfer11,18, they did not include
provisions for the removal of artefactual sequences3,5,6,11,18, they
did not focus on the earliest time points after delivery3,18, nor did
they resolve differences in functional potential according to
delivery mode3,5,6,11,18. However, consideration of these factors
is essential to assess the effect of delivery mode on the earliest
transfer of community structure and function, subsequent
microbiome colonization patterns and the resulting effects on
neonatal physiology. Our cohort included paired sample sets
from mothers (i.e., vaginal swabs and stool collected prior to
delivery) and their respective neonates (i.e., stool collected at days
1, 3 and 5 and blood plasma at day 3) born by distinct delivery
modes. All microbiome samples yielded high-resolution, artefact-
curated sequencing data, which was analysed at the strain level.

As earliest neonatal gut microbiome samples are naturally of
low biomass, the accurate identification and curation of potential
artefactual sequences is essential. In the absence of appropriate
controls, sequences derived from contaminant taxa in reagents
may be relatively prominent, thereby masking actual signals and
confounding results regarding in particular the transfer of taxa
and functions from mothers to neonates. In our study, adequate
controls were included and putative artefactual reads removed
based on a combined in vitro and in silico workflow. In order to
reach the required specificity to unambiguously address the
question of vertical transmission of microbial community struc-
ture and function from mother to neonate, the use of curated,
high-resolution metagenomic sequencing data (rather than solely
performing 16S rRNA gene amplicon sequencing) is imperative.
More specifically, the applied methodological approach allows the
highly specific tracking of individual microbial functions and
strains from mother to neonates on a case-by-case basis. Our
results based on both 16S rRNA gene amplicon and metagenomic
sequencing, and supported by multivariate analyses, demonstrate
that early differences exist in the gut microbiomes of neonates
and that these differences are predominantly driven by the mode
of delivery. Our data agrees with previously reported differences
in microbial composition related to birth mode, notably the
increased relative abundance of Bacteroides and Parabacteroides
in VD neonates as well as OTUs assigned to Staphylococcus being
enriched in CSD neonates3,4,7,39. No fundamental differences in
taxonomical compositions nor functional potentials were appar-
ent when comparing CSD and CSD+ SGA neonates, indicating
that delivery mode is a stronger determinant for neonatal gut
microbial colonization than SGA status.

In line with the broad taxonomic differences between VD and
CSD, our findings demonstrate that CSD significantly affects the
functional gene complement of the earliest neonatal gut micro-
biome by impeding the vertical transfer of specific bacterial
strains from the maternal gut microbiome to the neonate. Con-
sequently, the gut of CSD neonates is most likely colonized by
strains derived from other sources, such as breast milk, skin or
saliva, as suggested in previous studies40–42. Notably, a selection
of enteric strains from the mother was found to be exclusively

transferred to the VD neonate (e.g., Bacteroidetes). When mea-
suring population differentiation (FST), we found evidence that
strains acquired from the mother are capable of quickly adapting
to the new environment, as observed previously5. In contrast,
vaginal strains harboured a low potential to stably colonize the
neonatal gut thereby further adding to recently published data
demonstrating that vaginal taxa do not play a prominent role in
the initial colonization of the neonatal gut5. This may in part be
explained by the distinct niches of the anaerobic gastrointestinal
environment and the microaerophilic vaginal environment. With
respect to ongoing clinical interventions aimed at restoring the
earliest neonatal gut microbiome in the case of caesarean sec-
tion43, our findings raise questions over the expected efficiency of
microbiota engraftment from a purely vaginal source and suggest
that gut-derived strains may be more efficacious.

Independent of the precise mechanism of strain transfer, we
observed that several functional pathways were significantly
under-represented in CSD neonates, while these were in turn
enriched in VD neonates and linked to vertically transmitted
strains, in particular the LPS biosynthesis pathway (Fig. 2a). LPS,
an outer surface membrane component of Gram-negative bac-
teria, promotes the secretion of pro-inflammatory cytokines and
thereby sits at the interface of the earliest gut microbiome colo-
nization and neonatal immune system priming. Following the
apparent enrichments in LPS biosynthesis in VD neonates due to
higher amounts of Gram-negative bacteria, the subsequent
extraction and quantification of LPS from neonatal stool and
stimulation of primary human immune cells therewith demon-
strated a reduced immunostimulatory potential of the earliest gut
microbiome in CSD neonates. The differences in earliest immune
system priming may result in persistent effects on human phy-
siology in later life, which has also been recently suggested based
on work in a murine model44. On the basis of the observed
immunogenicity of the purified LPS fractions, it has not escaped
our attention that other factors, including the actual LPS com-
position, may additionally contribute to the difference in the
immunostimulatory potential of the colonizing gut microbiome
(Fig. 4a; Supplementary Note 6). Furthermore, other bacterial
products, triggering for example TLR2, may contribute towards
the observed higher immunostimulatory potential of faecal LPS
from VD neonates (Supplementary Fig. 13; Supplementary
Note 5). Considering the potential repercussions on neonatal
physiology, the detailed elucidation of these additional factors will
be the subject of future work.

Our study highlights differences in immunostimulatory
potential of the earliest gut microbiome according to delivery
mode. This occurs during a critical window of immune system
priming. Notably, alterations to early immune system stimulation
may be linked to the higher propensity of CSD infants to develop
chronic diseases in later life2. For example, previous studies
focusing on environmental exposure in early life have suggested
that the exposure to Gram-negative bacteria and/or environ-
mental endotoxins (such as LPS) could confer protective effects
towards allergy development45,46. In this context, LPS is likely
closely involved in the priming of the neonatal immune system
and the subsequent tolerance towards the colonizing gut micro-
biome during a most critical window in early neonatal life12–14.
Using a mouse model, it has been shown that strongly immu-
nostimulatory LPS can contribute to the protection from
immune-mediated diseases such as diabetes47 and that disruption
of host-commensal interactions in early-life can lead to persistent
defects in the development of specific immune subsets12. On the
basis of additional cytokine measurements in neonatal plasma,
VD neonates displayed higher levels of IL-18 and TNF-α, thereby
indicating a link between the immunostimulatory potential of
microbial LPS in the gut and the overall immune status of the
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neonatal host early on. Investigations of the longer-term con-
sequences of these differences between CSD and VD neonates will
be necessary to assess their possible impact on the development of
chronic diseases in later life.

Apart from LPS biosynthesis, other pathways that were sig-
nificantly enriched in the gut microbiome of VD neonates
included genes involved in membrane transport, i.e., ATP-
binding cassette (ABC) transporters. On the one hand this may
reflect the adaptation of the colonizing microbiome of VD neo-
nates to the gut environment through enhanced nutrient intake.
On the other hand, associated ABC transporter proteins for both
Gram-positive and Gram-negative bacteria have previously been
shown to be immunogenic48, which may suggest that they play a
role in the activation of the neonatal immune system. Addition-
ally, enrichments in pathways relating to bacterial motility were
observed. These included the two-component system pathway,
which is an important mediator of signal transduction, flagellar
assembly and bacterial chemotaxis. These pathways are essential
for bacterial motility in response to external stimuli and conse-
quently also for competition with other members of the gut
microbiome49. Additionally, flagellin, the main structural com-
ponent of the flagellum, is an effective stimulator of innate
immunity50 and promotes mucosal immunity through the acti-
vation of TLR551. Another functional pathway that is potentially
interacting with the human immune system early on is the
resistance to cationic antimicrobial peptides (CAMP). While this
resistance has been observed in all major commensal phyla and
across all members of the phylum Bacteroidetes, this pathway is
essential to evade detection by the human immune system
through the modification of the microbial LPS structure52. In the
context of our study, an enrichment in CAMP resistance may
therefore prevent the dominant colonizers (i.e., Bacteroidetes)
from being recognized by the immune system and subsequently
removed from the VD neonatal gut. Future studies are needed to
assess whether the gut microbiome of VD neonates harbours
more modified LPS moieties linked to CAMP resistance and
which potential effects the altered LPS structures may have on the
neonatal immune system. In accordance with the observation of
an apparent enrichment in flagellar biosynthesis, bacterial che-
motaxis and CAMP resistance, other microbiota-derived mole-
cular factors, apart from LPS, may be involved in early immune
system priming.

Our results imply that a more comprehensive understanding of
the effect of the earliest microbial exposure on innate and
adaptive immune responses and the different molecular factors
involved in neonatal immune system priming is necessary. Future
long-term follow-up studies based on larger cohorts, high-
resolution multi-omic analyses, detailed immunological screen-
ing and tracking of health status will be essential to unravel the
interdependencies between mode of delivery, other potential
confounding factors, mother-to-neonate transmission, micro-
biome colonization, exposure to microbial factors, immune sys-
tem priming and long-term health status. Furthermore,
additional sources of maternal strains of importance in relation to
microbiome-conferred molecular factors, besides the maternal
vagina and gut, have to be considered to assess their relative
importance in relation to their impact on neonate physiology. For
this, additional samples may be obtained from maternal milk,
skin, the oral cavity, and the hospital environment5,11,40–42. An
additional focus should be placed on uncovering the source and
mode of transfer of gut strains from mothers to neonates. Such
mechanistic understanding will be important for devising future
clinical interventions principally aimed at restoring a VD-like
pioneering microbiota in the case of CSD. An alternative
approach may consist of ensuring appropriate early priming of
the neonatal immune system by the controlled provision of

microbial antigens. Both avenues may provide the basis for the
development of preventative strategies for adverse health effects
in CSD neonates in the future.

Methods
Ethics. Written informed consent was obtained before specimen collection from all
enrolled mothers after a detailed consultation. All aspects of recruitment as well as
collection, handling, processing and storing of samples and data were approved by
the Luxembourg ethics board, the Comité national d’éthique de recherche, under
reference number 201110/06 and by the Luxembourg National Commission for
Data Protection under reference number A005335/R000058.

Clinical metadata. All study participants were enrolled and gave birth at the
Centre Hospitalier de Luxembourg (CHL). Exclusion criteria for mother–neonate
pairs included the administration of antibiotics to neonates immediately post-
partum, birth prior to 34 weeks of gestation, and maternal gestational diabetes.
Clinical metadata for all the analysed time points (days 1, 3 and 5 postpartum) are
listed in Supplementary Data 1. Recorded metadata include information on the
delivery mode, classification of caesarean section as elective or emergent, birth
weight, gestational age, identification of the neonate as small for gestational age
(SGA status) where relevant, gender, body length, weight and feeding regime. If a
neonate received formula milk at any collection time point, the neonate was
considered having received combined feeding for the remainder of the study, as
even short-term formula feeding has been shown to cause profound and long-
lasting shifts in the gastrointestinal microbiome composition53. Enrolled pairs of
mothers and neonates (n= 16 pairs) included one twin birth (C115 (CSD) and
C116 (CSD+ SGA)).

Sample collection. Neonatal faecal samples were collected during the first 24 h as
well as at days 3 and 5 after birth. Samples and data were collected at the CHL until
day 3 after birth; subsequent samples were collected at home by trained study
nurses. From the 33 neonates that were recruited into the study, the gut micro-
biome of 15 (Supplementary Data 1) had previously been characterized using a
combination of 16S rRNA gene amplicon sequencing and quantitative real-time
PCR7. For a subset of neonates, the mother was sampled additionally. Maternal
samples (vaginal swabs and faeces) were collected less than 24 h before delivery.
Samples were collected into sterile plastic tubes, immediately flash-frozen in liquid
nitrogen and stored at −80 °C until further processing. Neonatal blood was col-
lected by capillary or venous sampling, and plasma was isolated and stored at −80 °
C from 31 healthy neonates (13 VD, 13 CSD, five CSD+ SGA) at day 3
(28 samples) or day 5 (three samples) after birth, including 15 of the 16 neonates
for whom metagenomic data were analysed (six VD, four CSD, five CSD+ SGA),
two neonates for whom no metagenomic but 16S rRNA gene amplicon sequencing
data were available (two CSD) and 14 neonates (seven VD, seven CSD) that were
sampled under the same conditions7 (Supplementary Data 1). Clinical data were
stored on secure servers at the Luxembourg Centre for Systems Biomedicine
(LCSB), and biological samples were stored until further processing at the Inte-
grated BioBank of Luxembourg (IBBL), which is NF S96-900:2011 certified.

Sample processing and extraction of nucleic acids. Genomic DNA was isolated
from vaginal swabs with the PowerSoil DNA isolation kit (MO BIO Laboratories;
Antwerp, Belgium) with an additional step to increase extraction yield involving
the incubation of the samples in PowerSoil tubes with solution C1 at 65 °C for 10
min prior to homogenization for 5 min at 20 Hz in an Oscillating Mill MM 400
(Retsch, Haan, Germany). DNA was subsequently extracted following the manu-
facturer’s instructions.

Faecal samples and cell-culture pellets were processed with the Powerlyzer
PowerSoil DNA isolation kit (MO BIO Laboratories), optimized for low-yield
samples. Bead solution (500 µl), C1 (60 µl), UltraPure™ Phenol:Chloroform:Isoamyl
Alcohol (25:24:1, v/v; Invitrogen, Aalst, Belgium; 200 µl) and 50 mg neonatal stool
or 150 mg maternal stool were added to a dry glass bead tube, incubated at 65 °C
for 10 min, and homogenized by milling for 45 s at 4 m s−1 in a FastPrep-24 5 G
(MP Biomedicals, Illkirch-Graffenstaden, France). Samples were centrifuged for 1
min at 12,000 g. Solutions C2 (250 µl) and C3 (100 µl) were added to the
supernatant and incubated at 4 °C for 5 min, centrifuged for 1 min at 12,000 g, then
700 µl of solution C4 and 600 µl of 100% ethanol were added to the supernatant
and mixed. 650 µl were loaded onto a Spin Filter and centrifuged at 10,000 × g for 1
min. This step was repeated until all lysate had passed through the filter. For the
higher input-mass maternal faecal samples, the same isolation procedure was
followed except that the filters were washed with a mix of 300 µl solution C4 and
370 µl 100% ethanol, with centrifugation at 10,000 × g for 1 min. This latter step
was omitted for the low input neonatal samples. All filters were washed with 650 µl
100% ethanol, then 500 µl solution C5. After drying, 60 µl solution C6 was added to
the centre of the filter and incubated at room temperature for 5 min. DNA was
eluted by centrifugation at 10,000 × g for 30 s. RNase A (100 µg ml−1, 2 µl) was
added and incubated at 37 °C for ≥ 30 min. Then, one-tenth volume 3M sodium
acetate (pH 6.8) and two volumes isopropanol were added to precipitate the DNA
on ice prior to centrifugation. The pellet was washed with 150 µl 70% ethanol,
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before the dried DNA was dissolved in 50 µl (neonatal faecal samples) or 100 µl
(maternal faecal samples) RNase-free water. To obtain an artefact control sample,
DNA was extracted from 800,000 trypsinized Caco-2 cells/ml. Caco-2 cells were
grown in Dulbecco’s Modified Eagle’s Medium (Thermo Fisher Scientific, Ghent,
Belgium) containing 20% v/v foetal bovine serum and 1% penicillin–streptomycin
(Invitrogen) to prevent microbial growth. DNA was extracted with the low-
biomass protocol described above, subsequently titrated and samples with 480, 240,
120, 60 and 30 ng total mass were sequenced. DNA integrity and quantity were
determined for extracted samples of all origins on 1% agarose gels and in a Qubit
2.0 fluorometer (Thermo Fisher Scientific). Extracted DNA was stored at −80 °C
until further use.

DNA sequencing. All DNA samples (along with 8 controls) underwent standard
amplicon sequencing of the V4 region of 16S rRNA genes using primers 515F- 5′-
GTGBCAGCMGCCGCGGTAA-3′ and 805R- 5′-GACTACHVGGGTATCTAA
TCC-3′ at the Center for Analytical Research and Technology–Groupe Inter-
disciplinaire de Génoprotéomique Appliquée (CART-GIGA; Liège, Belgium).
Selected DNA samples of maternal (vaginal and faecal extracts), neonatal (faecal
extracts at days 1, 3 and 5) and cell-culture origins were subjected to random
shotgun sequencing (Supplementary Data 1). Metagenomic libraries were con-
structed with an optimized low-quantity DNA library preparation kit and
sequenced on a HiSeq 2500 platform (Illumina) at GATC Biotech (Konstanz,
Germany). For neonatal samples collected from C105, C109, C110 and C119
metagenomic libraries were prepared using TruSeq DNA Nano kit (Illumina) and
sequenced on a NextSeq 500 platform (Illumina) at LCSB Sequencing Platform. A
total of 84% of the study samples (63 of 75) collected from the mother–neonate
pairs yielded sufficient DNA for metagenomic sequencing and sufficient artefact-
curated metagenomic data for subsequent analyses.

Metagenomic data processing. Metagenomic data sets were processed with the
Integrated Meta-omic Pipeline (IMP; version 1.3), which performs pre-processing,
assembly, functional annotation of predicted genes and downstream analyses of
Illumina next-generation sequencing metagenomic data in a single, reproducible
workflow28. Illumina TruSeq3-PE-2 adapter sequences were trimmed from the
reads in the pre-processing step (including the removal of human reads), and the
de novo assembly step used the MEGAHIT54 metagenome assembler. The IMP
parameters were customized for different sample types: default parameters were
retained for maternal faecal samples; for low-biomass samples (maternal vaginal
swabs, neonatal faecal samples from days 1, 3 and 5 and cell culture sample), the
integrated VizBin29 sequence cut-off length was set to 1.

Curation of metagenomic data from artefacts. To identify and exclude arte-
factual sequences in the low biomass samples, contigs were assembled from the
sequencing reads obtained from the DNA extracts of the Caco-2 cells after the
removal of human reads. Given that the Caco-2 cells were cultured in the presence
of 1% penicillin–streptomycin, that the routine surveys for Mycoplasma were
negative, and that the metagenomic sequencing data did not include any Myco-
plasma sequences, any bacterial contamination of the mammalian cell culture
could be confidently excluded. Then, metagenomic reads from each study sample
were mapped against these contigs using Bowtie 255 (version 2.0.2). Matching
sequences were excluded prior to taxonomic profiling of metagenomic reads by
phylogenetic markers35. As the artefactual sequences identified in the control
samples did not represent full genomes, we further used a binning-based approach
to identify additional potential artefactual sequences of the same organism among
the de novo assembled contigs of the study samples. After removing the rRNA
sequences from the contigs56, we performed joint binning of control cell-culture
contigs with each of the samples’ contigs individually using VizBin29 without any
length cut-off. Bins were identified based on VizBin embeddings56 using density-
based spatial clustering of applications with noise (DBSCAN), without correction
for the depth of coverage and completeness. All distinct bins (total length < 10
Mbp) that contained > 0.01% of the total contig length of the cell-culture control
sample were considered putative reconstructed genomes of artefactual DNA, and
the corresponding contigs were removed from the study samples in silico.

Functional profiling. Genes were predicted from contigs assembled with IMP and,
after removing artefactual contigs, these genes were functionally annotated with
hidden Markov models (HMMs)56 trained for all KO57 groups. The functional KO
HMMs were aligned using HMMER 3.158,59. The best hit KO (if multiple KOs
could be assigned to a gene, the KO with the highest bit score was chosen) for every
gene was assigned if the bit score was higher than the binary logarithm of the
number of target genes. The FeatureCounts60 tool with arguments –p and –O was
used to extract the number of reads per KO (Supplementary Data 4; representing
mean ± standard deviation 77 ± 13 % of all mapping reads).

Linking genome reconstructions by marker gene sequence homology. The
curated contigs were binned based on the VizBin embeddings using DBSCAN as
well as correction by the depth of coverage and completeness56. The reconstructed
genomes of all samples belonging to a mother–neonate pair were merged into a
union set. For each sample set, predicted amino acid sequences were searched

against and annotated using a defined set of essential marker genes61 using
HMMER 3.158. Protein sequences assigned to 35 specific marker genes that form
the cross-section of previously suggested sets of phylogenetic marker genes61,62

were selected. These marker amino acid sequences were clustered with CD-HIT63

at 97.5% identity. The frequencies of genes from different genome reconstructions
co-occurring in the same clusters were determined. A simple graph network
representation was constructed with the reconstructed genomes as nodes and
counts of co-occurrences between two reconstructed genomes as weighted,
undirected edges. Highly interlinked sub-networks, representing related recon-
structed genomes, were detected with the cluster_fast_greedy algorithm64 imple-
mented in the R package igraph (v.1.0.1). The resulting reconstructed genomes
from a given sub-network were manually inspected, and the taxonomy of recon-
structed genomes was assigned using PhyloPhlAn30 (Supplementary Data 5).

Strain-level analysis. Strains that occurred in multiple samples were determined
with StrainPhlAn31, using the pre-processed sequencing read data and recon-
structed genomes. For each sample, taxonomic profiles were generated from pre-
processed reads with MetaPhlAn265 using default settings. Strain reconstructions
were extracted with the sample2markers.py script in StrainPhlAn with default
arguments. StrainPhlAn was used to extract the clades detected in all samples and
to construct reference databases for each clade. The sample-based strain recon-
structions and reference databases of each clade and all reconstructed genomes
were analysed with StrainPhlAn to build multiple sequence alignments and phy-
logenetic trees. The neonatal samples were considered to share strains with
maternal samples if the cophenetic distance between the neonatal microbiome
read-based or reconstructed genome-based markers and the maternal markers was
less than the distance to the markers of any other individual. Trees were visualized
with GraPhlAn (https://bitbucket.org/nsegata/graphlan/wiki/Home). To visualize
the positions of markers in genome reconstructions, the reference markers of the
species assigned to the reconstructed genomes in StrainPhlAn were aligned to the
genome reconstructions post hoc, using blastn and an E value cut-off of 1 × 10−10,
as in StrainPhlAn.

Fixation index and intra-population diversity calculation. For all neonatal
reconstructed genomes that were estimated to be > 65% complete and linked to at
least one other sample of the same neonate or their mother, the fixation index (FST)
and the intra-population diversity (π) were assessed by the presence of SNVs.
Metagenomic sequencing reads were mapped against the reconstructed genomes
using MOSAIK66 (version 2.2), with default parameters. A minimum alignment
identity of 95% was applied to restrict the mapping to reads of the same species67.
Genome–sample combinations generating alignments with a median coverage <
20X and/or a breadth < 40% were not included in downstream analyses. To reduce
bias stemming from variation in coverage, alignments were down-sampled to a
median coverage of 20X using Picard tools (version 1.85; http://broadinstitute.
github.io/picard/). SNV calling was performed with FreeBayes68 (version 1.1.0)
using the -pooled-continuous option on the merged alignment files containing all
samples for the same genome. Potential SNVs were required to be supported by
four or more reads and to have an allele frequency ≥ 1%.

The output from FreeBayes (VCF-file) was used as input for POGENOM
(https://github.com/EnvGen/POGENOM), a Perl-based tool that enables
population-genomic analysis of metagenome samples. POGENOM was used to
calculate the intra-population nucleotide diversity (π), which is defined as the
average number of nucleotide differences per site between any two sequence reads
chosen randomly from the sample population (0 ≤ π < 1). When reads of two or
more samples mapped with sufficient coverage to the same genome, the fixation
index (FST) was calculated, reflecting the population differentiation between a pair
of samples. FST is defined as one minus the average intra-population diversity of
the samples divided by the nucleotide diversity between the samples (inter-
population diversity). POGENOM was tuned to include only the loci recovered in
all samples mapped to the same reference genome, assuring a valid comparison of
the intra-species variation.

Processing of amplicon sequencing data. Analysis of the 16S rRNA gene
amplicon sequences was performed with NG-Tax27, with default parameters.
Operational taxonomic units (OTUs) were assigned to the taxonomy in an open
reference approach, using USEARCH69 against the SILVA70 16S rRNA gene
amplicon reference database (version 128; Supplementary Data 6). To exclude
sequencing artefacts, only dominant phylotypes were examined by removing OTUs
that were represented by fewer than 10 reads in the study samples.

Analyses of taxonomic profiles. To determine the Gram staining of the bacteria,
we used the NCBI microbial attributes, which can be downloaded from http://
www-ab2.informatik.uni-tuebingen.de/megan/taxonomy/microbialattributes.zip.
Final Gram staining was assessed by main staining trends per genus and manually
curated at the family and order levels. Functional community profiles were pre-
dicted based on OTU abundances using PanFP34.

Statistical data analysis. The R statistical software package (version 3.3.3) was
used for statistical analyses and visualization of the taxonomic profiles derived
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from metagenomic and amplicon sequencing. Sum normalization and calculations
of taxon richness (number of metagenomic OTUs (mOTUs) for metagenomic data
or OTUs for amplicon sequencing data), diversity (Shannon), evenness (Pielou)
indices and Spearman correlation coefficients were performed using the vegan R
package. To discover differences in the data sets between the birth modes at the
different collection time points postpartum, Wilcoxon rank-sum tests were applied,
with FDR multiple-testing adjustment if applicable. Differential taxonomic abun-
dances (according to delivery mode) were also calculated using ANCOM71 with
Benjamini-Hochberg multiple testing correction at 0.05 false-discovery rate. To
determine the effect of the variables within the metadata, differentially abundant
taxa were also determined using MaAslin32 with default parameters and a q < 0.05
threshold for multi-testing correction. The model used was genus ~ sampling day
+maternal antibiotic intake+ feeding regime+ gestational age. Differential ana-
lysis of KO abundance, comparing VD to CSD and VD to CSD+ SGA with a
linear model, which considered the different collection time points containing at
least 1000 KOs (days 3 and 5) as covariates, was performed with the R package
DESeq2 version 1.10.133. KOs were considered significantly differentially abundant
in VD and CSD (±SGA) if the FDR-adjusted P value of the Wald test was < 0.05 for
at least one comparison (CSD vs. VD or CSD+ SGA versus VD) and the direc-
tionality of change in both comparisons was the same. Principal coordinate analysis
(PCoA) graphs were generated using Jensen-Shannon distances as implemented in
the R package phyloseq72. Differentially abundant pathways were detected through
pathway enrichment analysis using a custom R script56. Tests for the enrichment of
reconstructed genomes with differentially abundant KOs were performed using
Fisher’s exact test and FDR-adjustment for multiple testing in R.

LPS isolation from neonatal faecal samples. LPS was isolated from 16 selected
neonatal faecal samples on the basis of availability of sufficient material. Samples (7
VD, 7 CSD, 2 CSD+ SGA; Supplementary Data 12) were collected on day 3 after
birth, and from overnight cultures of Escherichia coli strain K-12 (sub-strain
MG1655). To maximise yields, LPS was purified from three aliquots of 50 mg of
each neonatal faecal sample using the hot phenol–water method73 and further
purification was performed using a modified phenol re-extraction protocol74. For
the E. coli control samples, three 5 ml overnight cultures were diluted to an optical
density (600 nm) of 0.5 and centrifuged. LPS was isolated from cell pellets by the
same protocol as above. LPS for each individual was pooled and quantified using an
ELISA-based endotoxin detection assay (Endolisa; # 609033, Hyglos GmbH,
Germany). From the 16 neonatal faecal samples, 11 produced measurable amounts
of LPS, whereas 5 were under the detection limit (Supplementary Data 12). An
extraction blank was generated using the same LPS isolation protocol.

Quantitative real-time PCR to determine bacterial loads. DNA from all neo-
natal faecal samples used for LPS isolation was diluted (when applicable) to a
concentration of 1 ng l−1 and amplified in duplicates with universal prokaryotic
16S rRNA gene primers 926F and 1062R75 and with specific Escherichia coli pri-
mers Ec461F and Ec780R76 . Primer sequences, annealing temperatures and cycle
details are specified in Supplementary Data 14. Genomic DNA isolated from Sal-
monella Typhimurium LT2 and E. coli strain K-12 (sub-strain MG1655) was used
to prepare standard curves for universal prokaryotic and specific E. coli primers,
respectively. Reaction mixture, measurements and calculations of bacterial load
(nanograms bacterial DNA per milligram stool and nanograms E. coli DNA per
milligram stool) were performed as previously described7 (Supplementary
Data 14). The proportion of E. coli DNA in comparison to total bacterial DNA was
subsequently calculated.

In vitro immunostimulation using LPS from neonatal faecal samples. Primary
human monocytes were isolated from blood samples obtained from the Lux-
embourg Red Cross originating from twelve healthy adult donors. Human neonatal
dendritic cells (DCs) were previously shown to be competent in MHC class I
antigen processing and presentation to the same extent than adult DCs77. Most
importantly, the NF-κB-dependent pathway in TLR-4 signalling is intact in neo-
natal MoDCs as they produce pro-inflammatory cytokines upon LPS stimulation,
while adult and neonatal DCs are both able to produce comparable levels of TNF-α,
IL-6 and IL-8 in response to LPS78. Isolated monocytes were differentiated into
dendritic cells (MoDCs) in 12-well plates for 5 days in RPMI 1640 medium
(Thermo Fisher Scientific) supplemented with 10% foetal bovine serum (Thermo
Fisher Scientific), 20 ng ml−1 each of granulocyte-macrophage colony-stimulating
factor (Peprotech, London, UK), 20 ng ml−1 IL-4 (Peprotech) and 1%
penicillin–streptomycin (Invitrogen). To assess the immune stimulatory potential
of isolated LPS, we treated MoDCs for 24 h with LPS extracted from VD or CSD
(±SGA) neonatal faecal samples using two different methods; one based on LPS
volume and one based on the normalization of LPS concentration with the bac-
terial load (see below for more information).

As we started from the same amount of material for all the neonatal stool
samples and used the exact same extraction protocol to isolate all LPS fractions for
all samples, we assumed that if we treated MoDCs from the same donor with the
exact same volume of yielded LPS (independent of the concentration of LPS
present), we would realistically emulate the microbial LPS load which immune cells

would be exposed to in vivo and thus be representative of the immunostimulatory
potential of a given sample at 3 days postpartum. To stimulate MoDCs, 7.5 µl of
LPS extract per 105 MoDCs was added per well. For the negative control, MoDCs
were incubated with 7.5 µl of LPS extraction blank, and for the positive control,
MoDCs were treated with 15 endotoxin units (EU) LPS isolated from E. coli
cultures. MoDCs were treated for 24 h to assess the immunostimulatory potential
of the isolated LPS. Treatments were performed in duplicates and tested on at least
three different donors. Culture supernatants from stimulated MoDCs were diluted
1/10 (or 1/50, if above standard curve range) and analysed for the presence of TNF-
α using a commercial ELISA reagent set (Human TNF alpha uncoated ELISA, Life
Technologies, Belgium) and a microplate reader (Biotek instruments, Germany).

For the second method, we verified our results using the bacterial load for
normalizing LPS concentration values. Naturally, all faecal samples have a different
bacterial load within the 150 mg of starting material that is used to isolate LPS. In
order to assess if the differences that we observed before with equal volumes of LPS
(see above) were due to the fact that some samples have a much lower bacterial
load or if also the bacterial composition (and proportion of Gram-negative
bacteria) plays a role in the immunostimulation, we normalized the amount of LPS
used to stimulate MoDCs with the bacterial load. For example, the bacterial load
was highest for VD neonate C105 (Supplementary Data 15; Supplementary
Fig. 14), and the corresponding bacterial load was 51.5 µg DNA per 150 mg stool.
Therefore, this load was divided by the load in each other sample to yield a
normalization factor. To stimulate MoDCs with 100 EU of LPS, 2.51 µl C105 LPS
was added. For other samples, the LPS load was calculated by multiplying 2.51 µl by
the previously determined bacterial normalization factor. For the negative control,
2 × 105 MoDCs were incubated with 15 µl of LPS extraction blank, and for the
positive control 2 × 105 MoDCs were treated with 100 EU LPS isolated from E. coli
cultures. Treatments were performed on cells from four distinct MoDCs donors
(2 × 105 MoDCs/donor), except for LPS isolated from C120, which was only
sufficient to stimulate donor 4’s MoDCs in duplicate. MoDCs and isolated LPS
samples were incubated for 24 h. Culture supernatants from stimulated MoDCs
were diluted twofold and analysed for the presence of seven cytokines (CXCL8/IL-
8, IL-1β, IL-6, IL-10, IL-12p70, IL-18 and TNF-α) using a Human Premixed Multi-
Analyte Kit (R&D Systems Europe; UK) and a MagPix multiplex reader (Luminex,
Netherlands), according to the manufacturers’ instructions (Supplementary
Data 16). Statistical significance between the different cohorts was determined
using the Wilcoxon rank-sum test.

Coomassie blue and silver staining of LPS extracts. On the basis of availability
of sufficient extracted LPS material, 0.5 µg of extracted LPS from the stool samples
of two VD neonates (C007 and C111) collected on day 3 after birth, were prepared
with Laemmli sample buffer (Bio-Rad, Belgium), heated for 5 min at 95 °C and
separated on 12 % Bis-Tris precast gel (Bio-Rad, Belgium) at 200 V for 45 min. As
positive controls, 0.5 µg, 1 µg and 10 µg of commercially available LPS (Escherichia
coli O55:B5, gel-filtration chromatography; Sigma-Aldrich, Belgium) and 10 µg of
E. coli protein extract were used. A precast gel was loaded with the LPS samples
and stained with Coomassie (Imperial protein stain, ThermoFisher, Belgium) to
check for protein contaminations. Silver staining of the gel was performed using a
corresponding kit (SilverQuest, ThermoFisher, Belgium) according to the manu-
facturer’s instructions.

Ethidium bromide staining of LPS extracts. To check if LPS extracts were
contaminated with immunostimulatory nucleic acids, 0.5 µg of extracted LPS from
the stool samples of two VD neonates (C007 and C111), which presented highly
concentrated LPS fractions that could be visualised on agarose gel, were prepared
with DNA loading dye (ThermoFisher, Belgium) and loaded onto a 1% agarose gel.
In addition, 0.5, 1 and 10 µg of commercially available LPS (Escherichia coli O55:
B5, gel-filtration chromatography; Sigma-Aldrich, Belgium) were used to compare
the purity of the LPS samples. As a positive control, 100 ng of E. coli DNA extract
was used. The gel was stained with ethidium bromide, separated at 100 V for 50
min and analysed using a BioDocAnalyse system (Biometra, Germany). To check if
nucleic acid contaminations could be identified in isolated LPS samples and would
result in a TNF-α response, agarose bands were cut out (Supplementary Fig. 12)
and purified using NucleoSpin Gel and PCR Clean-up kit (Macherey-Nagel,
France). As controls, bands of E. coli DNA and commercially available LPS (10 µg)
were cut out and purified. In addition, a purification blank was generated. The
purified DNA fractions were used to stimulate MoDCs following the same protocol
as for the stimulation with extracted LPS.

HEK-Blue™ cell assay. In order to verify the purity of the extracted LPS fractions,
HEK-Blue™ reporter cell lines overexpressing one of the receptors hTLR2, hTLR4,
NOD1 or NOD2 (InvivoGen, France), were stimulated with LPS extracted from
five selected neonatal faecal samples (three VD and two CSD), which presented
sufficient amounts of extractable LPS. HEK-Blue™ TLR and NOD cells are designed
to detect stimulants of the human receptors by induction of secreted embryonic
alkaline phosphatase (SEAP). For all the cell lines, the levels of SEAP were
determined with HEK-Blue™ Detection (InvivoGen, France), a cell culture medium
that allows for real-time detection of SEAP.
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While the hTLR4 receptor only recognizes LPS, hTLR2 recognizes
peptidoglycan, lipoteichoic acid and lipoprotein from gram-positive bacteria,
lipoarabinomannan from mycobacteria, and zymosan from the yeast cell wall, the
receptor NOD1 binds to bacterial molecules containing the D-glutamyl-meso-
diaminopimelic acid (iE-DAP) moiety and NOD2 recognizes bacterial molecules
(peptidoglycans) and stimulates an immune reaction. HEK-Blue™ cells were grown
and maintained in DMEM (4.5 g l−1 glucose, L-glutamine, Sigma-Aldrich,
Belgium), supplemented with 10% foetal bovine serum (Thermo Fisher Scientific),
1% penicillin–streptomycin (Sigma-Aldrich, Belgium), 100 µg ml−1 Normocin
(InvivoGen, France) and respective selective antibiotics according to the user’s
manual.

To monitor the activation of NF-κB, HEK-Blue™ cells were seeded according to
the user’s manual in HEK-Blue™ Detection medium (InvivoGen, France), in flat-
bottom 96-well plates and stimulated for 22 h with LPS samples. We used two
conditions: first, using the same concentration of LPS, where 1 µl of extracted LPS
(0.01 ng µl−1) was added per well, and second, using the same volume of LPS,
where 7.5 µl extracted LPS was added to 105 HEK-Blue™ cells. To convert
endotoxin activity (EU) into mass (ng), we considered that around 10 EU are
equivalent to 1 ng endotoxin79. For positive controls, HEK-Blue™ NOD1 cells were
stimulated with 1 µl TriDAP (10 µg µl−1, InvivoGen, France), HEK-Blue™ NOD2
cells with 1 µl Murabutide (10 µg µl−1, InvivoGen, France), HEK-Blue™ hTLR2 cells
with 1 µl of Pam3CSK4 (1 µg µl−1; InvivoGen, France) and HEK-Blue™ hTLR4 cells
with 1 µl ultrapure LPS (5 µg µl−1, source strain: ATCC 12014; CDC 5624-50
[NCTC 9701], InvivoGen, France). In addition, all cell lines were treated with 1 µl
ultrapure LPS (5 µg µl−1, InvivoGen, France) and 1 µl ultrapure LPS (0.01 ng µl−1,
InvivoGen, France) as well as with commercially available LPS (standard LPS;
Escherichia coli O55:B5, gel-filtration chromatography; Sigma-Aldrich, Belgium): 1
µl of 5 µg µl−1 and 1 µl of 0.01 ng µl−1. For the negative control, HEK-Blue™ cells
were incubated with 1 µl of endotoxin-free H2O (InvivoGen, France). All
conditions were performed in duplicates and SEAP expression was monitored
using a microplate reader at 655 nm (Biotek instruments, Germany) except for LPS
isolated from C117 where only 7.5 µl extracted LPS/105 HEK-Blue™ cells was added
to the cells and tested in duplicates.

Cytokine profiling of neonatal plasma samples. Plasma samples (n= 31) col-
lected 3 or 5 days postpartum (13 VD, 13 CSD and five CSD+ SGA; 28 samples
collected at day 3, 3 samples collected at day 5 postpartum; Supplementary Data 1)
were diluted twofold and analysed for 18 cytokines using a Human Premixed
Multi-Analyte Kit (R&D Systems Europe) and a Bio-Plex analyser multiplex reader
(Bio-Rad, Belgium), according to the manufacturers’ instructions. The kit is able to
detect CXCL8/IL-8, IL-1β, IL-6, IL-10, IL-12/23 p40, IFN-β, IL-15, IL-21, IL-5,
Galectin-1, IFN-γ, IL-18, IL-27, Granzyme B, IL-13, IL-2, IL-4 and TNF-α. Of these
cytokines, 11 were above the detection limit (CXCL8/IL-8, IL-6, IL-10, IL-15, IL-21,
Galectin-1, IL-18, IL-13, IL-2, IL-4 and TNF-α; Supplementary Data 17).

Code availability. All custom scripts written for this study are available online at
https://git-r3lab.uni.lu/Cosmic/Earliest.

Data availability
The pre-processed, non-human metagenomic sequencing data and the amplicon
sequencing data generated during the current study are available from NCBI under
bioproject accession number PRJNA379120. A reporting summary for this Article
is available as a Supplementary Information file.
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