Security Analysis of the Drone Communication
Protocol: Fuzzing the M AVLink protocol

Karel Domin Eduard Marin Iraklis Symeonidis
KU Leuven
ESAT-COSIC and iMinds
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium
karel.domin®@student.kuleuven.be {first.surname}@esat.kuleuven.be

Abstract

The MAVLink protocol, used for bidirectional communication between a drone
and a ground control station, will soon become a worldwide standard. The
protocol has been the subject of research many times before. Through this
paper, we introduce the method of fuzzing as a complementing technique to
the other research, to find vulnerabilities that have not been found before by
different techniques. The goal is to identify possible vulnerabilities in the protocol
implementation in order to make it more secure.

1 Introduction

Currently, drones are used to support critical services such as forest fire and illegal
hunting detection, search and rescue operations or to deliver medical supplies. For this
purpose, they are often equipped with a navigation system (GPS), a camera and an
audio interface. Furthermore, they have a radio that enables wireless communication
with the Ground Control Station (GCS) or a remote control. Besides the clear benefits
of using drones in all these services, they can also pose important security and privacy
threats. The wireless communication channel opens up the door for several types of
remote attacks. For example, adversaries could attempt to obtain sensitive data by
eavesdropping the wireless medium, send malicious commands to the drone, or alter
its software.

Previous research has focused on analysing the wireless communication protocols
of commercial drones [3], and exploiting the lack of security measures in the communi-
cation channel [4, 5]. However, we are not aware of any security analysis of the drone’s
software. In this paper, we tackle this problem, and carry out a software security
analysis of the MAVLink protocol, which is expected to become a world-wide standard
within the DroneCode project [2]. More specifically, we investigate potential design or
implementation protocol flaws using fuzzing techniques. The goal is to inject invalid or
semi-invalid data to produce an unexpected software behaviour. We briefly formulate
three different research questions that we would like to explore more in detail in the
rest of this paper. This includes: (i) how can we identify software security flaws in
the MAVLink framework?, (ii) what are the consequences of exploiting these security
flaws? and (iii) can we provide countermeasures to mitigate such issues?.

2 Related Work

Most of the research conducted in the past years resulted in attacks against the secu-
rity of drones. When a vulnerability was found, the vulnerability was exploited and
the drone could be hijacked or could crash. Academic research had the goal of re-
producing a certain attack, make a theoretical background or proof and try to come
up with countermeasures to assure the security of the drone. A large portion of the

conducted research is about GPS spoofing. A GPS spoofing attack attempts to mis-
lead the drone’s GPS receiver by broadcasting fake GPS signals while pretending to
be a legitimate GPS signal sent by a satellite. This attack can trick any device us-
ing GPS signals into changing its trajectory or make the device believe that it is at
another location [11]. Other research focuses on the lack of security mechanisms like
authentication and encryption. There is lot of bidirectional communication between
the drone and the GCS. Many different types of communication channels can be used
for this like WiFi, Bluetooth or Radio Channels. The major problem with these com-
munication channels is that they are used without any form of encryption or that they
are used together with weak encryption that can be cracked. Some research about the
vulnerabilities of MAVLink includes adding encryption to the protocol [12, 5, 4, 13],
but this has not yet been implemented in the MAVLink protocol. We want to look at
the vulnerability analysis from another perspective. We want to search the space of
software vulnerabilities of the MAVLink protocol. As far as we know, the fuzz-testing
method has not yet been applied for analysis of the MAVLink protocol.

3 Background information

3.1 Fuzzing

Fuzzing is a technique for finding vulnerabilities and bugs in software programs and
protocols by injecting malformed or semi-malformed data. The injected data may
include minimum / maximum values and invalid, unexpected or random data. Sub-
sequently the system can be observed to find any kind of unexpected behavior, e.g. if
the program crashes. There are three main types of fuzzing variants that can be dis-
tinguished: Plain Fuzzing, Protocol Fuzzing and State-based Fuzzing [15, 16]. Plain
Fuzzing is the most simple way of testing. The input data is usually made by changing
some parts of correct input that has been recorded. It provides very little assurance
on code coverage because it does not go very deep into the protocol [14]. In Protocol
Fuzzing, the input is generated based on the protocol specifications like packet format
and dependencies between field. This is called Smart generation and is able to create
semi-valid input. The opposite, dumb generation, is the corruption of data packets
without awareness of the data structure. Protocol fuzzers typically generate test cases
with minimum values, maximum values [14, 17]. State-based Fuzzing is a fuzzing
technique that does not try to find errors and vulnerabilities by changing the content
of the packets, but instead attempts to fuzz the state-machine of the software [14]. The
most common method is to start with a dumb and basic fuzzer and then increase the
amount of intelligence when necessary to create a smarter fuzzer [18]. Depending on
the availability of source code, we can also distinguish between Black-box Fuzzing
and White-box Fuzzing. The actual techniques used for fuzzing are typically a combi-
nation of black-box or white-box fuzzing with dumb or smart fuzzing. Unlike black-box
fuzzing, white-box fuzzing requires a greater testing effort, however it provides a better
test coverage [19].

3.2 MAVLink

The Micro Air Vehicle Communication Protocol (MAVLink Protocol) is a point-to-
point communication protocol that allows two entities to exchange information. It is
used for bidirectional communications between the drone and the GCS. MAVLink is a
part of the DroneCode project, governed by the Linux Foundation [20]. A MAVLink
message is sent bytewise over the communication channel, followed by a checksum for
error correction. If the checksum does not match, then it means that the message is

corrupted and will be discarded. Figure. 1 shows the structure of a MAVLink message.
We will now give a brief description of the fields included in the message:

¢ Magic: indicates the beginning of a o Component ID: ID of the sending
new messages. component.

¢ Length: indicates the length of the o Message ID: ID of the message in the
payload field. payload.

o Payload: payload of the packet,

o Sequence number: indicates the se- which contains the parameters of the
quence number of the packet. message.
o System ID: ID of the sending system. o CRC" checksum for validation.

MAVLink messages are handled by the handleMessage (msg) function. This func-
tion has a switch statement, handling the different message IDs [21].

Magic|Len|Seq|SysID|CompID |MsgID |Payload|CRC

—_——— e —
lbyte 1byte lbyte 1byte 1 byte 1 byte x byte 2 byte

Figure 1: MAVLink packet structure

3.3 Fuzzing Methodology

For our experiments we built a fuzzer capable of creating custom MAVLink messages.
Several strategies are applied to construct the messages that are sent to the drone.
Initially, we started with a random dumb fuzzing to observe how the software handles
invalid messages. We then made a smarter fuzzer which takes into account the mes-
sage format, and constructs semi-valid messages. The techniques for constructing the
payload of the messages are different for every test case.

4 Methodology

4.1 Lab Setup

Our laboratory setup employs the Software In The Loop environment (SITL) [7], which
provides simulators for the ArduCopter, ArduPlane and ArduRover. We use the drone
simulator for the ArduCopter [1]. The simulator is run on a Linux virtual machine
and the fuzzer on a host machine. The host system is running OS X EI Capitan (8gb
RAM, 2,4 GHz Intel Core i5) and the virtual machine for the virtual drone is running
Ubuntu 14.04 TLS 64-bit. The communication between both machines is via a TCP
connection.

Configuration:
Name H Specification ‘ Function ‘ IP-address
Host System || Mac OSX Host 192.168.56.1
System 2 VM2: Ubuntu | Virtual Drone | 192.168.56.102

4.1.1 Case Studies

Our fuzzer, which is implemented in Python, is capable of constructing valid MAV Link
messages. We now discuss how every field in the packet is constructed in our fuzzer.
The Magic is a fixed value and is set to "fe", whereas the Length field is set to
the size of the payload field. In every transmitted message the Seq is increased by
one, and it is reset to zero if it reaches the value of 255. The SysID and CompID
are kept fixed, i.e. "f£" and "00", respectively. The MsgId is a value in the range
of 0-255. The payload contains the parameters that are used internally, (e.g. the
height of the drone), and is generated based on different strategies, which we will
discuss more in detail for each experiment. The CRC value is generated using a CRC-16
function; its polynomial generator is 0x1021, the initial value is FFFF, the input data
bytes are reversed, and the CRC result is reversed before the final XOR operation.
The CRC parameters were obtained by looking at the available documentation and
testing the generator on [23]. The input to the generation function is as follows:
Length+seq+SysID+ComplD+MsglID+ Payload+Seed.

The seed is a x25 checksum generated over the message name, followed by the type
and name of each field. This seed is used to capture changes in the XML describing
the message definitions. This results in messages being rejected by the recipient if they
do not have the same XML structure.

There are some properties that a fuzzer needs to have. A fuzzer must be able to
record the test cases for reproduction. Therefore, every constructed message is written
to a file before it is sent to the virtual drone. Another property is the ability of
transmitting the test cases to the system under test. Since we are using SITL with a
TCP connection therefore, the fuzzer initiates a three-way handshake with the virtual
drone and a connection is established via sockets. The generated messages can now be
sent to the drone over this socket. To observe the behaviour of the drone, we can use
different approaches. A simple observation is to check whether or not the connection
with the drone is still alive. To further investigate its behaviour, the virtual drone can
be run inside gdb [22].

To start the virtual drone, the command in Listing 1 is used. This starts the
Arducopter simulation for a quadcopter, at a certain location with all of the memory
erased and faster operation. We define the following test cases.

Listing 1: Startup command

./arducopter.elf --home -35,149,584,270 --model quad
--speedup 100 --wipe

Test Case 1 We establish a connection to the drone and start to send completely
random data including numbers, letters and characters. The actual structure of a
MAVLink message is ignored at the moment. The length of the data sent to the
virtual drone ranges from 1 to 1000 characters. We do this to test how the software
handles incorrect data.

Test Case 2 For every message ID, we create a message with payloads of length
ranging from the minimum length (i.e. 1 byte) to the maximum length (i.e. 255 bytes).
The payload consists of completely random combinations of hexadecimal values. We
repeat this test several times. This test is used to give an indication of how semi-valid
messages are handled. This is important since these messages can go deeper into the
software.

Test Case 3 We also test the system’s behaviour when messages without any pay-
load are sent. For every message id, a new message (with no payload) will be con-
structed with the length set to zero. This test aims to find vulnerabilities that do not
depend on the payload.

Test Case 4 We construct payloads consisting entirely out of the minimum value.
This test investigates how the implementation handles the minimum value "00". This
is done for payloads with a length ranging from 1 to 255 bytes.

Test Case 5 following the previous test case, we do the same for the maximum
value "ff".

Test Case 6 Within this test case, we do not send the messages byte per byte.
An entire message with all the necessary fields is included in one TCP packet. We
incrementally increase the length of the random payload from 1 to 255 bytes extending
the length of the entire message.

Test Case 7 Within this test case, we try to identify vulnerabilities depending on
the value of the length field and the actual value of the payload. In a first run, we
constructed messages with up to 5 bytes of payload and set the value of the length field
to the length of the payload minus one. In the second run, we did the same, except
that the value of the length field was set to the length of the payload plus one.

5 Results Obtained and Discussion

Resulting from the listed test cases, we were able to identify a few security flaws.
Particularly, from the sixth test case, where the payload increased randomly, the fuzzing
script was able to crash the virtual drone. The error caused by the fuzzing script can
be seen in Listing. 2.

Listing 2: Flaoting Point Exception

ERROR: Floating point exception - aborting
Aborted (core dumped)

To investigate the cause of the exceptions we used the gdb debugger and the core
dump of the memory when the kernel crash occurred. From an analysis we identified
that errors corresponds to three specific functions. However, further investigation needs
to be performed to identify the exact cause of the exceptions.

The next step of our work is to complete the entire range of the test cases aiming
to gain more results identifying error flaws of the MAVLink software implementation.
Moreover, we aim to further investigate the causes of the identified software flaws.
However, we have to stress that fuzzing all possible test cases is a resource demanding
operation. For instance, there is a limitation concerning to the memory usage. With
the current setup, it is not possible to try all possible permutations of payloads, for all
possible message and payload lengths. Currently, we are looking to further improve
the fuzzing scripts aiming to make the fuzzing operations more memory efficient.

6 Conclusion

This work aims to identify software vulnerabilities, by using the technique of fuzzing.
Currently we focused our research on the MAVLink protocol. MAVLink is used as a
communication protocol between a drone and a ground control station. The protocol
is actively developed by the community and aims to become one of the drone commu-
nication standards. Our aim is to contribute to the identification of the security flaws
of the protocol and to help the development community to mitigate these flaws. At
the same time, we want to proof the suitability of fuzzing techniques for discovering
vulnerabilities in the implementation of the protocol. Currently, we have identified
software vulnerabilities that we are further investigating.

Many fuzzing platforms do already exist and can be used for the software analysis
of the MAVLink protocol. Our next step is to further research and extend our fuzzing
scripts aiming to generate more complex fuzzing scenarios.

7 Acknowledgements

This work was supported in part by the Research Council KU Leuven (C16/15/058).

References

[1] ArduCopter, https://www.dronecode.org/, 24 03 2016.
[2] DroneCode, http://ardupilot.org/copter/index.html, 24 03 2016.

[3] B. Hond, Fuzzing the GSM Protocol, Radboud University Nijmegen, Netherlands,
2011.

[4] J. A. Marty, Vulnerability Analysis of the MAVLink Protocol for Command and
control of Unmanned Aircraft — Air Force Institute of Technology, USA, 2014.

[5] N. Butcher, A. Stewart and Dr. S. Biaz , Securing the MAVLink Communication
Protocol for Unmanned Aircraft Systems, Appalachian State University, Auburn
University, USA, 2013.

[6] Sulley Manual, http://www.fuzzing.org/wp-content/SulleyManual.pdf, 24 03
2016.

[7] Software In The Loop, http://ardupilot.org/dev/docs/
sitl-simulator-software-in-the-loop.html, 24 03 2016.

8] AR drone that infects other drones with virus wins
dronegames, http://spectrum.ieee.org/automaton/robotics/diy/
ar-drone-that-infects-other-drones-with-virus-wins-dronegames, 03
05 2016.

9] SkyJack, https://github.com/samyk/skyjack, 03 05 2016.
[10] Maldrone, http://garagedhackers.com/entry.php?b=3105, 03 05 2016.

[11] GPS Spoofing, https://capec.mitre.org/data/definitions/628.html, 03 05
2016.

[12] Thomas M. DuBuisson, Galois, Inc.1 , SMACCMPilot Secure MAVLink Commu-
nications, Galois, Inc.1, 2013.

[13] MAVLink 2.0 packet signing proposal, https://docs.google.com/document/d/
1ET1e69qQRcaNWAmpG2wz0o0pFKSF _bcTmYMQvtTGI8ns, 03 05 2016.

[14] B. Hond, Fuzzing the GSM Protocol, ~Radboud University Nijmegen, 2011.

[15] A. Takanen, C. Miller, J. DeMott Fuzzing for Software Security Testing and Qual-
ity Assurance, ARTECH HOUSE, INC., 2008.

[16] A. Greene, M. Sutton, P. Amini Fuzzing Brute Force Vulnerability Discovery,
Addison-Wesley, 2007.

[17) OWASP Fuzzing, https://www.owasp.org/index.php/Fuzzing, 03 05 2016.

[18] 15 Minute Guide to Fuzzing, https://www.mwrinfosecurity.com/
our-thinking/15-minute-guide-to-fuzzing/, 03 05 2016.

[19] J.eystadt, Automated Penetration Testing with White-Box Fuzzing, Microsoft Cor-
poration, 2008.

[20] MAVLink Protocol, http://qgroundcontrol.org/mavlink/start, 03 05 2016.

[21] S. Balasubramanian, MAVLink Tutorial for Absolute Dummies (part-I),
http://dev.ardupilot.com/wp-content/uploads/sites/6/2015/05/MAVLINK_
FOR_DUMMIESPartl1_v.1.1.pdf, 03 05 2016.

[22] GDB: The GNU Project Debugger , https://www.gnu.org/software/gdb/, 03
05 2016.

(23] CRC Generator, http://www.zorc.breitbandkatze.de/crc.html, 03 05 2016.

