
ABCDE - Short Summer Tutorial

Default Entailment Course

Emil Weydert

University of Luxembourg, CSC/ICR

LuxLogAI 2018

Luxembourg, 20 Sep, 2018



In a nutshell

Human-level AI requires justifiable commonsense reasoning

! in particular: need for formal, normative accounts of

• Defaults: implications with exceptions

• Default inference: plausible reasoning with defaults

From A and if A then normally B plausibly infer B

NMR-Tutorial:

• Selected topics/lessons from 40 years of DR research

• Focus on theoretical/semantic issues



Contents

• From classical to generalized reasoning

• Defaults and default reasoning

• Context-based default reasoning

• Preferential model theory

• Qualitative default entailment

• Ranking measure semantics

• Rkm-based default entailment

• Ranking-construction paradigm

• System JZ

• (Probabilistic default entailment)



Abstract logic

A 2-valued logic L = (L,`) is characterized by

• a language (type) L together with

• an inference relation ` ✓ 2L ⇥ L, or
an inference operator C : 2L ! 2L with C(�) = { | � `  }

Classical: propositional/1st/2nd-order, modal/conditional, ...

Alternative: intuitionistic/constructive, resource-bounded, ...

Generalized: inductive/abductive, paraconsistent/ampliative, ...



Classical inference

In classical logic two standard ways to specify an inference rel. `
• Syntactic, proof-theoretic: � `R  (R rule base)
i↵ there is an R-derivation of  from �

• Semantic, model-theoretic: � k�  
i↵ every model satisfying � also satisfies  

Classical task: For a given semantic entailment k�,
find a semi-decidable (ideally decidable) `R = k�



Tarskian inference

`R, k� are Tarskian inference relations (finitary):

• Inclusion: � `  for each  2 �
• Cut: If � ` '1, ...,'n, � [ {~'} `  , then � `  
• Monotony: If � `  , then � [  `  
Default inference is not Tarskian: Incl+Cut ok, never Mon

Notation:

• Tarskian inference: ` and Cn

• Generalized inference: |⇠ and C or C|⇠



Nonmonotonic reasoning I

Real-world agents: must deal with incomplete, uncertain, erro-
neous, inconsistent, changing, and intractable info
! need for plausible guesses, withdrawable given new evidence/assumptions
! need for nonmonotonic reasoning: exploiting rules of thumb,
heuristics, implicit assumptions, meta-level/self-reflective consider-
ations ...

Goal: Enrich classical, monotonic core logic with reasonable formal
accounts of nonmonotonic reasoning exploiting various concepts of
rationality

Remind: Most reasoning outside of math is (also) nonmonotonic!



Nonmonotonic reasoning II

Nonmonotonic reasoning in practice:

• Inductive (prior/model/parameter choice, direct inference)

• Legal (norms ordered by recency, specificity, authority)

• Commonsense (cognitive heuristics, generics, implicatures)

To distinguish:

• Historically grounded, domain-specific reasoning conventions,
e.g. in language and law

• Nonmonotonic reasoning concerned with underlying general the-
oretical and conceptual reasoning methods



Types of nonmonotonic reasoning

Generalized inference may violate any Tarskian principle:

• Inconsistency repair: Cut
e.g. {',¬', } |⇠inc  but {',¬', ,¬ } 6|⇠inc  

• Resource-bounded reasoning: Incl

• Probabilistic threshold reasoning: Incl

• Inductive reasoning: Incl

• Default reasoning: Incl + Cut

For NMR: alternative finer-grained principles (see later)



Informal defaults

Default: standard/generic assumption, overridable by more con-
crete information

e.g. default/prototypical values in data bases, prima facie as-

sumptions, legal conventions (presumption of innocence), im-

plications/rules with exceptions, generic quantification, ...

Three common, overlapping readings:

• Plausibilistic/ontic: plausible/normal implications

• Auto-epistemic/context-dependent: classical implications/rules
with autoepistemic or defeasible assumptions

• Normative: prima facie norms, amendable laws

Our focus: epistemic/plausibilistic/ontic interpretations



Formal defaults

Default: A default over a base language L is an expression

';  read as “if ', then by default  ”

where ', 2 L and ; denotes a defeasible implication

Strict implication: necessary implications without exceptions

'⇣  read as “' strictly implies  ”

not to be confused with material implication '!  over L

Conditional language:

L(;,⇣) = {';  ,'⇣  | ', 2 L}

Note: Defaults typically encode contingent information



Propositional and first-order defaults

Propositional defaults:

• Tweety is a bird plausibly implies that Tweety can fly

Bird(Tweety) ; Canfly(Tweety)

First-order defaults:

• Birds normally can fly

Bird(x) ; Canfly(x) (open/schematic defaults)

Bird(x) ;x Canfly(x) (default quantifier, more expressive)

Most work on DR is essentially propositional ! our focus



Default inference

Default inference: defeasible consequence relation exploiting de-
faults and strict implication

Standard default inferential task: for ⌃ ✓ L, � ✓ L(;,⇣)

⌃ [� |⇠  or ⌃ |⇠�  

In addition one may also consider appropriate monotonic inference
relations ` ⇢ |⇠ extending the basic logical inference on L:

⌃ [� `  or ⌃ `�  



Examples

A prototypical domain for benchmarks ...

P,B,F for Tweety is a penguin, a bird, can fly

(P,B, F are assumed logically independent)

• {P, P ⇣ B,B ; F} |⇠ F

• {P, P ⇣ B,B ; F} ` P,B

• {P,¬F, P ⇣ B,B ; F} 6|⇠ F (exception tolerance)

• {P, P ⇣ B,B ; F, P ; ¬F} |⇠ ¬F (specificity principle)



Reiter’s default rules

Reiter’s Default Logic (RDL) 1980 an influential NM for-
malism

RDL is based on context-dependent rules with autoepistemic as-
sumptions, e.g. expressed as

B : F/F ⇠ If Tweety is a bird, and it is epistemically possi-

ble/consistent that he can fly, then assume that he can fly

Reiter’s general default rules: over classical (L,`):
' : ⌘1, . . . , ⌘n/ (', ⌘i, 2 L)

' antecedent, ⌘i justifications,  consequent

“If ' given and each ⌘i is consistent, then conclude  ”



Reasoning with Reiter’s rules

Reiter’s rules can be used to build defeasible proofs (arguments)
producing maximal consistent speculative consequence sets - called
extensions - closed under the base logic. There may be

• Multiple: W [D = {'} [ {' :  / ,' : ¬ /¬ }
Applying one rule blocks the other one
! the application order is relevant!

2 extensions: E1 = Cn({', }), E2 = Cn({',¬ })
• One: W [D = {',¬�} [ {' :  / , : �/�}
1 extension: E = Cn({', ,¬ })

• None: Consider the paradoxical rule: D = {T : ¬ / }
If ¬ is consistent with E, then  2 E
If not, then  is not derivable, and  62 E



Extension-based default reasoning

Extensions: acceptable speculative consequence setsE = Cn(E),
which can be defined in various ways (not restricted to RDL)

Extension-based NMR: Ext : (W,D) 7! Ext(W,D) ✓ 2L

Skeptical inference: W [D |⇠Ext  i↵  2
T
Ext(W,D)



Fixed point definition

Reiter’s rules refer to the set of expected consequences S the justi-
fications should be consistent with. Ideally, S should be the actual
constructed extension E

Fixed point operator: links expected with actual consequences:

F(D,W )(S) is the smallest S 0 = Cn(S 0) with W ✓ S 0 and closed un-
der all default rules ' : ⌘1, . . . , ⌘n/ in D with S 6 ` ¬⌘i, i.e. whose
justifications are consistent with S

Reiter’s extensions: Extrdl(D,W ) = {E | F(D,W )(E) = E}
• Normal default theories (' :  / ) always have extensions

• Prerequisite-free semi-normal ones (T : ⌘^ / ) may have none

• Extensions are mutually inconsistent (no E ⇢ E 0)



Some links

Strong links with logic programming and formal argumentation,
which di↵er by their restricted languages and extension concepts

Clauses in logic programs: ai, b, sj ground literals

b a1, . . . , an, not(s1), . . . , not(sm) ⇠

a1 ^ . . . ^ an : ¬s1, . . .¬sm/b
Stable sets ⇠ Reiter extensions restricted to ground atoms



Reiter’s default inference

Reiter defaults: usually interpreted as normal default rules

Translation:

⌧ : ';  7! ' :  / and ⌧ : '⇣  7! ' : T/ 

⌃ [� |⇠rdl  i↵  2 \Extrdl(�⌧ ,⌃)

Existence of extensions is here guaranteed! (E ` F possible)

Alternative default implementations possible:

';  7! T : '!  /'!  resp. T : ' ^  /'!  

but no clear advantages - only some trade-o↵s



Digression - KLM principles

In the 80s/90s: proliferation of DR and NMR formalisms

! e.g.: to repair perceived inadequacies of earlier proposals

! but: iterating, no end in sight ...

! seeking rationality principles to evaluate and classify the beasts

In fact: it is easier to discuss and analyze abstract principles than
examples tainted by diverging implicit world knowledge!

! Principles for nonmonotonic inference relations - on L, typically
keeping defaults fixed [Gabbay 85, Kraus et al. 90, Makinson 94],
with representation theorems based on possible worlds semantics



KLM-principles for RDL I

• Supraclassicality (SC): ⌃ `  implies ⌃ |⇠�  

• Left Logical Equivalence LLE:
⌃ a` ⌃0 and ⌃ |⇠�  implies ⌃0 |⇠�  

• Right Weakening RW:
⌃ |⇠�  and  `  0 implies ⌃ |⇠�  

0

• Right Conjunction AND:
⌃ |⇠�  and ⌃ |⇠�  

0 implies ⌃ |⇠�  ^  0

• Cautious Monotony CM:
⌃ |⇠� ' and ⌃ |⇠�  implies ⌃ [ {'} |⇠�  

• Cautious Transitivity CUT:
⌃ |⇠� ' and ⌃ [ {'} |⇠�  implies ⌃ |⇠�  .



• Reasoning by Cases OR:
⌃[{'} |⇠�  and ⌃[{'0} |⇠�  implies ⌃[{'_'0} |⇠�  

• Rational Monotony RM:
⌃ |⇠�  and ⌃ 6|⇠� ¬' implies ⌃ [ {'} |⇠�  

• Consistency Preservation CP: ⌃ |⇠� F implies ⌃ ` F.



KLM-principles for RDL

|⇠rdl satisfies SC, LLE, RW, AND, CUT

Note that CUT is a prerequisite for incremental reasoning

|⇠rdl violates Cautious monotony:

Let � = {';  , ; �,�; ¬ }, then
{'} [� |⇠rdl  ,� but {�,'} [� 6|⇠rdl  

because Cn({',�,¬ }) is an extension

|⇠rdl also violates OR:

{' _ ¬'} [ {';  ,¬';  } 6|⇠  (no triggering)



Nonmonotonic modal logics

Nomonotonic modal logics: represent W [D in a modal logic
AEL, GK, ... [McDermott,Doyle 80, Moore 83, Lin Shoham 92]

! more expressivity, flexibility, transparency

[Tru 91]: translate Reiter defaults using a knowledge modality K:

• ' 2 L 7! K(')

• ' : ⌘/ 7! K(') ^K(¬K(¬⌘))! K( )

Extension concept ExtX for any modal logic X (� ✓ L(K)):

ExtX(�) = {E ✓ L(K) | E = { 2 L(K) |
� [ ¬K(L(K)� E) `X  }

Extrdl(�) = ExtX(�) for T ✓ X ✓ S4 restricted to L [Tru 91]

Logic of defaults: allows to prove the equivalence of default bases



Specificity principle

Intuition: if defaults conflict, prefer the most specific one

If ' subsumes '0 and  , 0 conflict

i.e. ' ` '0 or '⇣ '0 2 �, and  ` ¬ 0:
'0 ;  0 �spec ';  (... is at least as specific as ...)

Also desirable for defeasible subsumption: '; '0 2 �
Student, adults, jobs: {s, s ; a, a ; j, s ; ¬j} |⇠ a,¬j

But: how to prioritize given longer conflicting chains of defaults?

Early try: theories of inheritance nets [Touretzky 86, Horty 94]

However: low expressivity, purely syntactic, clash of intuitions



The specificity issue for RDL

No specificity in RDL: it fails in its simplest form

{p, p ⇣ b, b ; f, p ; ¬f} 6|⇠rdl f,¬f

Two extensions Cn({p, b, f}), Cn({p, b,¬f})

Repair by encoding specificity with semi-normal rules? But:

• semi-normal default theories may have no extensions

• very cumbersome, possible side-e↵ects

• ! maybe better with explicit preferences

Defeasible specificity hard to characterize, but we may try ...



Preferences for default reasoning

Which preferences? What’s their meaning? How to exploit them?

Extrinsic preferences: external attributions

• authority of the source (e.g. for default norms)

• utility, usefulness (for practical reasoning)

• application order (procedural, execution needs)

Our topic: Intrinsic preferences: fixed by the defaults

• strict/defeasible specificity

• reliability, strength

• aggregated preference structure



Default reasoning with preferences

Simplest: meta-level preferences over proper defaults � \ L(;)

! preferences guide the default inference process: many ways

Standard default inference |⇠ parametrized by a transitive �:
⌃ [� |⇠�  

Several approaches based on Reiter’s account: e.g. [Brewka 94]

(NMR tradition: � < �0 means “� preferred to �0”)



Prioritized default logics

Prioritized default theory: (W,D,<), where

• (W,D) is a default theory

• D = Ds [Dn collects strict resp. normal default rules

• < ✓ D2
n is a strict, well-founded partial order

i.e., every subset has <-minimal element(s) (true for finite <)

Why partiality? <spec may be partial, or total + partially known

Why well-foundedness? Bottom-up construction of extensions

Outcome: handles transparent inheritance/specificity scenarios



Prioritized extensions - an example

Greedy quasi-inductive definition with priorities:

E is a prioritized extension of (W,D,<), or E 2 Extpdl, i↵

there is a well-ordering � of Dn extending < (< ✓�) s.t.

E =
S

E�↵ where E�0 = CnDs(W ),

E�↵+1 = CnDs(E
�
↵ [ {cons(�)}),

if there is a �-minimal default � 2 D active in E�↵

(' :  / is active in X i↵ X ` ' and X 6 ` ¬ , )

otherwise E�↵+1 = E�↵



Some problems

• Risk of incoherence: by complex, meaning-blind interac-
tions between defaults, preferences and the logical structure (es-
pecially for intrinsic preferences) ignoring each other

• Complex specificity: Specificity orderings may achieve logi-
cal coherence, but viable transparent notions of defeasible speci-
ficity are elusive as the theory of inheritance nets has shown

• RDL legacy: PDL inherits several deficiencies of RDL

• Greedy approach: possible tensions between the application
order and the chosen preference order

e.g. a ; b < T ; ¬b < T ; a : Cn({a,¬b}) or Cn({a, b}})?

Alternative definitions: either similar issues, or no extensions



Qualitative plausibility models

Default conditionals:

';  : ' plausibly/normally implies  

Idea: Defaults seen as constraints over epistemic orders

Models: Preferred model structures over L = (L, |=):
• (W,�, w0) with w0 2 W ✓ [[T]]L, and

• � a preorder over W (� = � \ 6⌫)
(v � w: v is at least as preferred/plausible as w)

Satisfaction relation: |=pr for L [ L(⇣) [ L(;).

• (W,�, w0) |=pr ' i↵ w0 |= '

• (W,�, w0) |=pr '⇣  i↵ [[']] \W ✓ [[ ]]



Preferential conditional semantics

Naively: (W,�, w0) |=min ';  i↵ Min�([[']]) ✓ [[ ]]

But: There may be no minima - and imposing them artificially
(stopperedness, smoothness) is neither natural nor necessary

Example: W = {w,w1, w2, ...} with w |= ¬', wi |= ', and

let � be an infinite descending chain . . . � w3 � w2 � w1. Then

(W,�, w0) |=min T ; ¬' - despite arbitrarily preferred '-worlds

Generalized semantics: (W,�, w0) |=min ';  i↵

for each w |= ', there is w ⌫ v |= ' s.t. for all v ⌫ v0 |= ', v0 |=  

Now: (W,�, w) |=min '⇣  i↵ (W,�, w) |=min ' ^ ¬ ; F



Preferential conditional logic I

|=min defines a monotonic entailment relation `pcl:
⌃ [� `pcl � i↵ [[⌃ [�]]pcl ✓ [[�]]pcl (for � 2 L [ L(;,⇣))

Axioms of preferential conditional logic `pcl:
• ','!  / (Modus Ponens rule)

• '; ' (Reflexivity)

• If ` '$ '0 then ';  / '0 ;  (Left logical equivalence)

• If `  !  0 then ';  / ';  0 (Right weakening)

• ';  , ';  0 / ';  ^  0 (Right conjunction)



Preferential conditional logic II

• ';  , '0 ;  / ' _ '0 ;  (Reasoning by cases)

• '; '0, ';  / ' ^ '0 ;  (Cautious monotony)

• '; '0, ' ^ '0 ;  / ';  (Cautious transitivity)

• '; F / ¬' (Necessity)

• '⇣  if and only if ' ^ ¬ ; F (Strict implication)

Object-level modus ponens fails: ',';  6 `pcl  
because the actual world can be exceptional!



Preferential entailment

How to specify nonmonotonic reasoning with defalt conditionals?

Simplest approach: |⇠p (Preferential entailment/System P)

{'1, . . . ,'n} [� |⇠p  i↵ � `pcl '1 ^ . . . ^ 'n ;  

Basic defeasible modus ponens: {'} [ {';  } [� |⇠p  

{',¬ } [ {';  } [� 6|⇠p  if {';  } [� 6 ` '⇣  

Simple specificity: {s, s ; a, a ; j, s ; ¬j} |⇠p a,¬j

Defeasible monotony fails: ';  6 `pcl ' ^ �;  

hence {',�} [ {';  } 6|⇠p  (only if ' ^ � 6 `  )



System Z I

In System P, irrelevant generic info � can block an inference!

Idea: Inference based on plausibility maximization

Rational closure [Lehmann, Magidor 92], System Z [Pearl 90]

Z-algorithm: (our variant) for finite ⌃ [�:

1. Translate '⇣  into ' ^ ¬ ; F

2. Construct by induction (��i | 0  i) and (⇢i | 0  i) s.t.

• ⇢0 = T, ��i = {';  2 � | ' ` ⇢i}
• ⇢i+1 = _{' ^ ¬ | (';  ) 2 ��i}
For i < j we have ⇢j ` ⇢i and ��j ✓ ��i.

For finite �, there is a smallest N s.t. ��N = ��N+1, ⇢N a` ⇢N+1



System Z II

Z-rank ⇠ degree of exceptionality

Z-rank of defaults: Z(�) = maximal n s.t. � 2 ��n

Z-rank of worlds: Z(w) = max{n | w |= ⇢n},
i.e. largest Z(�) s.t. w violates � (Z('; F) =1)

There is a canonical ranked model (WZ
� ,�Z

�) with

• WZ
� = [[¬⇢1]] = {w 2 [[T]]L | Z(w) <1}

• v �Z
� w i↵ Z(v)  Z(w)

Z-entailment (System Z):

{'1, . . . ,'n} [� |⇠z  i↵ (WZ
� ,�Z

�) |=min ^'i ;  



Properties of System Z

|⇠z
� verifies all the KLM-principles:

SC, LLE, RW, AND, OR, CUM (= CUT+CM), RM

Defeasible transitivity:

{s, s ; a, a ; j} |⇠z a, j

{s,¬j, s ; a, a ; j} |⇠z a,¬j

Defeasible specificity:

{s, s ; ¬j, s ; a, a ; j} |⇠z a,¬j (also {...} 6|⇠z j)

LLE for defaults: � a`pcl �0 implies |⇠z
� = |⇠z

�0



Problems for System Z

Simple exceptional inheritance fails:

{dutch,¬tall, dutch ; tall, dutch ; loud} 6|⇠z loud

The Z-model of � is given by: dtl � d¬tl ⇠ dt¬l ⇠ d¬t¬l
i.e. Z(dtl) = 0 and Z(d¬tl) = Z(dt¬l) = Z(d¬t¬l) = 1

Hence dutch ^ ¬tall 6|⇠z
� loud: no exceptional inheritance

Replacing dutch byT, we can also falsify the Irrelevance Principle

IRR: If ⌃ [� and ⌃0 [�0 6 `pcl F have disjoint vocabularies,

then ⌃ [� |⇠  i↵ ⌃ [ ⌃0 [� [�0 |⇠  



System LEX I

Idea: compare not just the highest-ranked violated defaults but
also lower-ranked ones, as well as their number at the di↵erent ranks

Lexicographic entailment [Lehmann 1995]: |⇠lex

Violation sequences for worlds: lex�(w) = (zi(w) | i  1)

where zi(w) = |{� 2 � | w |= '� ^ ¬ �, Z(�) = i}|

�dutch: lex(d¬tl) = (1, 0, . . . 0), lex(d¬t¬l) = (2, 0, . . . 0)

�imp = {p ; F}: lex(p) = (0, 0, . . . 1) , lex(¬p) = (0, 0, . . . 0)



System LEX II

Lex-ordering: v �lex w i↵ z1(w) 6= 0, or

z1(w) = 0 and for the highest i with zi(v) 6= zi(w), zi(v)  zi(w)

LEX: ⌃ [� |⇠lex  i↵ (Wlex
� ,�lex

� ) |=min ^'i ;  

Winged birds example: � = {p ⇣ b, b ; f, p ; ¬f, b ; w}

{p} [� |⇠lex ¬f, w because

lex(pb¬f¬w) = (2, 0, ..0), lex(pbf¬w) = (1, 1, ..0),
lex(pb¬fw) = (1, 0, ..0), lex(pbfw) = (0, 1, ..0)

pb¬fw is obviously the most plausible world



Properties and problems

LEX extends Z: |⇠z ⇢ |⇠lex, hence it is more speculative

Static priorities: Z-ranks of defaults are pre-computed, no induc-
tive prioritization considering e.g. the fine-grained preference status
of default antecedents

Radical ad hoc prioritization: Violating a more specific con-
flicting defaults has automatically more weight than violating two
independent less specific defaults - which is probabilistically unsound
and in conflict with irrelevance considerations.



Beyond plausibility orders

Drawbacks of qualitative plausibility orders:

• For w � w0 and v � v0, the relative plausibility of w0 w.r.t. w
cannot be compared to that of v0 w.r.t. v

• No proper conditional independence notion

• Insu�cient expressiveness/granularity

• Translation between/aggregation of plausibility contexts unclear

• Expected utility hard to model

Idea: Use plausibility valuations from world sets to an additive
structure of ordered values

Fine-grained example: probability measures P : Prop! [0, 1])



Plausibility valuations

General plausibility val. [Friedman, Halpern 96]:

Pl : B ! (V,?,>,�) with
Pl(;) = ?, P l(W ) = > and Pl(A) � Pl(B) if A ✓ B

Desiderata

• Conditional plausibility + reasonable independence concept

• � total order (partial order = set of total ones)

Simplest solution: Ranking measures [Spohn 88,12, Wey 95]

Ranking measures generalize

• Spohn’s rk-functions measuring the implausibility/surprise of
propositions, used to model revisable graded plain belief

• Real-valued multiplicative possibility [Dubois, Prade 94]



Real-valued ranking measures

Real-valued ranking measures (integers not enough!)

Let BL be the boolean algebra of L-propositions

R : B! ([0,1],+,) is a real-valued ranking measure (rkm) i↵

• ([0,1], 0,+,�): ordered additive stucture of pos. reals with1
• R(W ) = 0, R(;) =1 (expresses impossibility)

• R(A [ B) = min{R(A), R(B)} for all A,B 2 B
Conditional ranking measure:
R(B|A) = R(A \ B)�R(A) for R(A) 6=1, else R(B|A) =1.

R0 is the uniform rkm with R0(A) = 0 for A 6= ;. R(') := R([[']])



Ranking epistemology

Ranking measure values ⇠ degrees of implausibility/surprise

Ranking measures may model belief states (Spohn):

Belief strength in ' is r i↵ R(¬') = r

Conventional threshold: Bel(') i↵ R(¬') � 1 (R(') = 0)

Belief is closed under conjunction (plain belief) because

R(¬(' ^  )) = R(¬' _ ¬ ) = min{R(¬'), R(¬ )} � 1

R(¬') =1: ¬' is epistemically impossible, i.e. ' a dogm

Probabilistic link: R(A) = r ⇠ P (A) = O("r),
for infinitesimals 0 < "⌧ 1



Ranking measure semantics

Rkm semantics for default ; and strict implication ⇣:

R |=rk ';  i↵ R(' ^  ) + 1  R(' ^ ¬ ) i↵ R(¬ |') � 1

R |=rk '⇣  i↵ R('^ )+1  R('^¬ ) i↵ R('^¬ ) =1

[[�]]rk = {R | R |=rk � for all � 2 �}

We sometimes need a weaker satisfaction |=>0
rk using R(¬ |') > 0

Monotonic rk-entailment: � `rk � i↵ [[�]]rk ✓ [[�]]rk

`rk satisfies the rules for preferential conditional logic



Rkm-based default entailment

Goal: A rkm-based framework to specify default inference

Idea: Rkm semantics + preferred model theory for conditionals

Preferred rkm choice function: I : � 7! I(�) ✓ [[�]]rk

Rkm-based default entailment w.r.t. I: |⇠I :

⌃ [� |⇠I  i↵ for all R 2 I(�) R |=>0
rk ^⌃;  

Defeasible modus ponens:

{'} [ {';  } [� |⇠I  ({';  } [� `rk ';  )

Preferentiality: |⇠I
� verifies SC, LLE, RW, AND, CUT, CM, OR



Rkm-based reconstructions

Preferential entailment: |⇠p = |⇠Ip where Ip(�) = [[�]]rk

System P is the weakest |⇠I because Ip(�) is maximal

Conditional monotonicity: ⌃ [� |⇠p  implies ⌃ [� [�0 |⇠p  

For finite� 6 `rk F, there is a unique rkm-mode Rz
� which attributes

the lowest possible rkm-values to each proposition:

Rz
�(A) = inf{R(A) | R |=rk �}

System Z: |⇠z = |⇠Iz with Iz(�) = {Rz
�}

LLE for defaults: for Systems P, Z we have

[[�]]rk = [[�0]]rk implies |⇠I
� = |⇠I

�0



Reconstruction of System LEX

Semantic problems with System LEX:

Non-standard: Reconstructing |⇠lex requires infinite rkm-values:

1 < 1+1 < . . . N < . . . N+N < . . . N 2 < N 2+1 < . . . N 2+N <

. . . N 2 +N 2 < . . . N 3 < . . . <1

(1, 0, . . . 0) < (2, 0, . . . 0) < . . . (0, 1, . . . 0) < . . . (0, 2, . . . 0) < ...1

! LEX imposes excessively high implausibility values

Context dependence: The relative rkm-values may depend on
the rkm-value of a generic context X :

Rlex,N
{T;a}(¬a) = 1 but Rlex,N

{X;a,T;¬X}(¬a | X) = N

Are there less extreme rkm-inference notions supporting inheritance?



Ranking measure constructions

How to find reasonable R |=rk � respecting the structure of �?

Idea: Focus on those R obtained by iterated Spohn-style revision
on the uniform rkm prior R0 with '!  for ';  2 �

Informally: Specify ranking models by adding context-dependent
penalties � 0 for each default a world violates

Minimal change when strengthening belief in ': make ¬'-worlds
uniformly more implausible

Ranking construction models: Let � = {'i ;  i | i  n}

Constr(�) = {R |=rk � | R = R0+
P

in ai['i^¬ i], ai 2 [0.1]}

Fact: If � 6 ` F, then Constr(�) 6= ;



Construction-based default entailment I

Strategy: Default inference based on preferred rkm-constructions,

i.e. |⇠I with I(�) ✓ Constr(�)

System J: |⇠j = |⇠Ij where Ij(�) = Constr(�)

Exceptional inheritance: for logically independent a, b,

{¬a,T ; a,T ; b} |⇠j b

R |=rk ¬a ; b if R = R0 + x(T ^ ¬a) + y(T ^ ¬b) for 1  x, y

because then R(¬a ^ b) + 1 = x + 1  x + y = R(¬a ^ ¬b)



Construction-based default entailment II

Advantages: Simplicity, robustness, intuitive behaviour

System J+: Ij+(�) = rk-construction models with ai � 1

• {¬a} [ {T ; a,T ; a _ b} 6|⇠j b, but

• {¬a} [ {T ; a,T ; a _ b} |⇠j+ b

Systems J, J+ may be too cautious by not fully exploiting the idea
of plausibility maximization



Minimal rkm-constructions

Idea: Maximizing plausibility by minimizing shifting

JM: Ijm(�) = set of R 2 Constr(�) with pointwise minimal
shifting vectors ~ai

Non-uniqueness:

Ijm({T ; a,T ; b,T ; a ^ b}) is uncountable

Ijm(�) = {R0 + x[¬a] + x[¬b] + y[¬a _ ¬b] | x + y = 1}

Minimal rkm-constructions have not been born equal ...



Big Birds Hammer

Big Birds Hammer: Birds are normally small, birds can nor-

mally fly, exceptional birds (small or unable to fly) normally

cannot fly. What about the flying abilities of big birds?

{b,¬s} [ {b ; f, b ; s, b ^ ¬(s ^ f ) ; ¬f} |⇠ ¬f ?

By specificity one may expect {b,¬s} [� |⇠ ¬f
(which holds for System Z, minimal information entailment)

But Ijm(�) = {(2�x)[b^¬s^f ]+x[b^¬s]+1[b^¬f ] | x 2 [0, 2]},

R1(b^¬s^ f ) = 2 = R1(b^¬s^¬f ), hence {b,¬s}[� 6|⇠jm ¬f

The best fitting solution: R0 = 2[b ^ ¬s ^ f ] + 1[b ^ ¬f ]



Justifiable constructibility

Idea: Ranking constraints should not be over-satisfied

Justifiable constructibility:

R = ⌃inai['i ^ ¬ i] is justifiably constructible model of � i↵
proper shifting of [['i ^ ¬ i]], i.e. ai > 0, implies satisfaction as an
equality constraint: R('i ^  i) + 1 = R('i ^ ¬ i)

System JJ: Ijj(�) = justifiably constructible rk-models of �

Fact: Ijj(�) ✓ Ijm(�)

Big Birds Hammer: JJ provides the unique correct solution:

Ijj(�bbh) = {2[b ^ ¬s ^ f ] + 1[b ^ ¬f ]}



Non-uniqueness: If � = {T ; a,T ; b,T ; a ^ b},
then Ijj(�) = Ijm(�) is again uncountable



Canonical preferred ranking models

Goal: Specify for each � a canonical preferred rkm model

improving on Systems Z/LEX. Two main strategies:

• Ranking measure fusion: “take the average”

• Canonical rkm construction: liike for System Z/LEX

Ranking measure fusion: For each rk-choice I, let Î be s.t.

Î(�) = {R⇤�} with R⇤�(A) = Inf({R(A) | R 2 I(�)})
R⇤� is the most plausible lower bound of the I-preferred �-models

Example: for System Z, Iz(�) = Îp = [[�]]rk

Fact: R⇤� 2Modrk(�), but R⇤� 62 Constr(�) is possible



System JJR

JJR: Ijjr(�) = Îjj(�) = {Rjjr
� } - the best of both worlds?

If the justifiably constructible model is unique, it is the JJR-model

For � = {T ; a,T ; b,T ; a ^ b}, Rjjr
� = 1[¬a _ ¬b]

(it is the Z-model of � and justifiably constructible)

Constructibility counterexample: Nested crossing

�nc = {T ; a,T ; b,T ; r,T ; s,T ⇣ (a ^ b$ r ^ s)}

Ijj(�nc) = {x[¬a] + x[¬b] + (1� x)[¬r] + (1� x)[¬s] | x 2 [0, 1]}

Rjjr
�nc

= 1[¬(a ^ b)] + 1[¬(a _ b _ r _ s)] +1[¬(a ^ b$ r ^ s)]

62 Constr(�nc)



Canonical preferred rk-constructions

Goal: Incremental construction of a canonical rkm-model R⇤� of �
in the spirit of System Z

Examples: the only rk-constructible ones I am aware of ...

System JZ, JLZ [Wey 98, 03]

Philosophy: Minimize the rk-construction e↵orts everywhere

Let � = {'i ;  i |= i  n}

We seek a “minimally constructed” R⇤� = ⌃iai['i ^ ¬ i]



JZ-construction

Guiding principles of the JZ-construction

• Justifiable constructibility: no superfluous shifting

• No default redundancy: equivalent defaults considered once
w.l.o.g.: ([['i ^ ¬ i]], [['i]]) = ([['j ^ ¬ j]], [['j]]) implies i = j

• Bottom-up plausibility maximization: first construct the most
plausible layers, ignoring the necessarily less plausible ones

• Local shifting minimization: when constructing a layer, realize
the not-yet-settled defaults by lexicographically minimizing the
longer shifts first

Note: Here the priorities are dynamic, not as for System Z, LEX



System JZ

System JZ: flagship proposal for rkm-based default inference

JZ-idea: Proceed rank by rank, trying to locally approximate
ranking minimization (system Z) by local ranking constructions lex-
icographically minimizing the shifting e↵orts for each target rank

Relative plausibility maximization: PM(R,�)

An auxiliary notion generalizing Rz
� = PM(R0,�)

The most plausible rkm-model of � above R for R(^�!) 6=1

PM(R,�)(A) = inf{R0(A) | R  R0, R0 |=rk �}



JZ-algorithm I

Induction: We jointly construct sequences Ri,R
⇤
i ,�i,�0i,

Start: i = 0: R0 = R0, R⇤0 = PM(R0,�) = Rz
�, �0 = ;, s0 = 0

Step: i! i + 1: Ri preceding partial ranking construction,
R⇤i = PM(Ri,�), �i collection of settled defaults at stage i

si+1 smallest s > si of the form s = R⇤i ('j ^ ¬ j) for �j 2 ���i

�0i+1 = {�j 2 ���i | R⇤i ('j ^ ¬ j) = si+1}



JZ-algorithm II

Ri+1 = Ri + ⌃�j2�0i+1
ai['j ^ ¬ j],

where ~a is the lex-length-minimal tuple ~x with, for all h  n,

(Ri + ⌃�j2�0i+1
xj['j ^ ¬ j]+

⌃�j 62�i[�0i+1
1['j ^ ¬ j])('h ^ ¬ h)

� si+1

i.e. reaching si+1 while ignoring all the shiftable propositions
'h ^ ¬ h which verify R⇤i ('h ^ ¬ h) > si+1

R⇤i+1 = PM(Ri+1,�) and �i+1 = �i [�0i+1

Stop: If si+1 does not exist, then Rjz
� = Ri+1 = Ri.



Examples I

Nested crossing:

�nc = {T ; a,T ; b,T ; r,T ; s,T ⇣ (a ^ b$ r ^ s)}

R⇤0 = PM(R0,�) = 1[¬a _ ¬b] +1[¬(a ^ b$ r ^ s)]

R⇤0(¬a) = ... = R⇤0(¬s) = 1 <1 = R⇤0(¬(a ^ b$ r ^ s))

hence s1 = 1

The lex-length-minimal coe↵. ai s.t. for R1 = a1[¬a] + ... + a4[¬s]

we have R1 +1[..](¬a), ..., R1 +1[..](¬s) � s1 = 1 are ai = 1/2



Examples II

�1 = �01 = {T ; a,T ; b,T ; r,T ; s}

R⇤1 = PM(R1,�) = R1 +1[¬(a ^ b$ r ^ s)], now s2 =1

The lex-length-minimal coe�cient for ¬(a ^ b$ r ^ s) is 1

�2 = �, hence induction stops here and

Rjz
�nc

= 1/2[a] + ... + 1/2[s] +1[¬(a ^ b$ r ^ s)]

is justifiably constructible.

Observe: The symmetries of �nc, justifiable constructibility, and
canonicity are enough to fix the result

Note: Rjz
�nc

(¬a ^ ¬b) = 3/2 - thus we need rational rkm-values!



Examples III

Big Birds Hammer light: Birds are normally small, birds

can normally fly, big birds are normally unable to fly

�bbl = {b ; f, b ; s, b ^ ¬s ; ¬f}, ⌃bbl = {b,¬s}
R⇤0 = Rz

�bbl
= 1[b ^ ¬f ] + 2[b ^ f ^ ¬s] (just to describe it).

Hence, in the first round we will only shift b ^ ¬f and b ^ ¬s,
ignoring the less plausible part b ^ ¬s ^ f . We have s1 = 1 and
�1 = {b ; f, b ; s}.

Shifting b ^ ¬s is then redundant and R1 = 1[b ^ ¬f ] + 0[b ^ ¬s].
R⇤1 is now just R1 + 2[b ^ f ^ ¬s], which puts b ^ f ^ ¬s to 2,
the next target rank is thus s2 = 2. Hence R2 = R1+2[b^ f ^¬s].
Because �2 = �bbl, we stop and Rjz

�bbl
= 1[b ^ ¬f ] + 2[b ^ f ^ ¬s]



While {b,¬f} [ {b ; f, b ; s} |⇠jz s,

we have {b,¬f} [ {b ; f, b ; s, b ^ ¬s ; ¬f} 6|⇠jz s,¬s



Properties and principles

System JZ verifies:

• all KLM postulates

• Irrelevance principle (and exceptional inheritance) (IRR)

• Representation/Language Independence (RI)

• Local default equivalence

System JZ violates:

• LLE for defaults

But this is actually unavoidable if we insist on IRR and RI



Desirable inference

Let us call a default inference notion desirable i↵:

• Supraclassicality for |⇠ w.r.t. `: `✓|⇠�

• Basic nontriviality: {¬',T ; '} 6|⇠ ' if ' 6 ` F, ¬' 6 ` F

• Representation invariance for |⇠:
for semantically invariant boolean isomorphisms f : L! L

�(~') |⇠  i↵ �( ~f (')) |⇠ f ( )

• LLE for defaults: |⇠� = |⇠�0 if � a`rk �0

• Exceptional inheritance:
{¬a} [ {T ; a,T ; b} |⇠ b for logically independent a, b
(follows from Irrelevance and and Representation invariance)



Exceptional inheritance paradox

Theorem: There are no desirable default inference notions!

What can we do? What to violate?

• Supraclassicality/nontriviality: untouchable cornerstones of de-
fault reasoning

• Representation invariance: conditio sine qua non for semantic-
based approaches

• LLE for defaults: only very weak conditional logics for defaults

• Exceptional inheritance: only very weak inheritance patterns:
e.g. System Z


