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In a nutshell

Human-level Al requires justifiable commonsense reasoning

— in particular: need for formal, normative accounts of
e Defaults: implications with exceptions
e Default inference: plausible reasoning with defaults
From A and if A then normally B plausibly infer B
NMR-Tutorial:
e Selected topics/lessons from 40 years of DR research

e Focus on theoretical /semantic issues



Contents

e [rom classical to generalized reasoning
e Defaults and default reasoning

e Context-based default reasoning

e Preferential model theory

e (Qualitative default entailment

e Ranking measure semantics

e Rkm-based default entailment

e Ranking-construction paradigm

e System JZ

(Probabilistic default entailment)



Abstract logic

A 2-valued logic £ = (L, ) is characterized by
e a language (type) L together with

e an inference relation - C 2 x L. or
an inference operator C': 21 — 2L with C'(®) = {¢ | ® ¢}

Classical: propositional /1st/2nd-order, modal/conditional, ...
Alternative: intuitionistic/constructive, resource-bounded, ...

Generalized: inductive/abductive, paraconsistent/ampliative, ...



Classical inference

In classical logic two standard ways to specify an inference rel. -

e Syntactic, proof-theoretic: ® Fr 1 (R rule base)
iff there is an R-derivation of ¢ from ®

e Semantic, model-theoretic: ® |- 1
iff every model satistying ® also satisfies ¢

Classical task: For a given semantic entailment |-,
find a semi-decidable (ideally decidable) Fr = |-



Tarskian inference

r, | are Tarskian inference relations (finitary):
e Inclusion: ® | ¢ for each ¢ € P
o Cut: f O F ¢y,....;0,, PU{F} F 1, then O ¢
e Monotony: If ¢ -, then UV F ¢

Default inference is not Tarskian: Incl4Cut ok, never Mon

Notation:
e Tarskian inference: F+ and Cn

o Generalized inference: ~ and C or Cp.



Nonmonotonic reasoning I

Real-world agents: must deal with incomplete, uncertain, erro-

neous, inconsistent, changing, and intractable info

— need for plausible guesses, withdrawable given new evidence /assumptions
— need for nonmonotonic reasoning: exploiting rules of thumb,
heuristics, implicit assumptions, meta-level /self-reflective consider-

ations ...

Goal: Enrich classical, monotonic core logic with reasonable formal
accounts of nonmonotonic reasoning exploiting various concepts of
rationality

Remind: Most reasoning outside of math is (also) nonmonotonic!



Nonmonotonic reasoning 11

Nonmonotonic reasoning in practice:
e Inductive (prior/model/parameter choice, direct inference)
e Legal (norms ordered by recency, specificity, authority)

e Commonsense (cognitive heuristics, generics, implicatures)

To distinguish:

e Historically grounded, domain-specific reasoning conventions,
e.g. in language and law

e Nonmonotonic reasoning concerned with underlying general the-
oretical and conceptual reasoning methods



Types of nonmonotonic reasoning

Generalized inference may violate any Tarskian principle:

e Inconsistency repair: Cut
e.g. {0, 79, ¥} fvine ¥ but {@, ~p, ¢, i} Pine ¥

e Resource-bounded reasoning: Incl
e Probabilistic threshold reasoning: Incl
e Inductive reasoning: Incl
o Default reasoning: Incl + Cut
For NMR: alternative finer-grained principles (see later)



Informal defaults

Default: standard/generic assumption, overridable by more con-
crete information

e.g. default/prototypical values in data bases, prima facie as-
sumptions, legal conventions (presumption of innocence), im-
plications/rules with exceptions, generic quantification, ...

Three common, overlapping readings:
o Plausibilistic/ontic: plausible/normal implications

o Auto-epistemic/context-dependent: classical implications/rules
with autoepistemic or defeasible assumptions

e Normative: prima facie norms, amendable laws

Our focus: epistemic/plausibilistic/ontic interpretations



Formal defaults

Default: A default over a base language L is an expression
©~ Y read as “if @, then by default "

where 0,1 € L and ~» denotes a defeasible implication

Strict implication: necessary implications without exceptions
o — 1 read as “@p strictly implies "

not to be confused with material implication ¢ — ) over L

Conditional language:
Li~, =) ={o~v,p > 9| o,y €L}

Note: Defaults typically encode contingent information



Propositional and first-order defaults

Propositional defaults:

o Tweety is a bird plausibly implies that Tweety can fly
Bird(Tweety) ~ Can fly(Tweety)

First-order defaults:

e Birds normally can fly
Bird(x) ~ Can fly(z) (open/schematic defaults)

Bird(x) ~, Canfly(x) (default quantifier, more expressive)

Most work on DR is essentially propositional — our focus



Default inference

Default inference: defeasible consequence relation exploiting de-
faults and strict implication

Standard default inferential task: for> C L, A C L(~, —)
YSUA |~ Y or ¥ poa

In addition one may also consider appropriate monotonic inference
relations - C |~ extending the basic logical inference on L:

SUA F o oor X Fa o



Examples

A prototypical domain for benchmarks ...
P.B.F for Tweety is a penguin, a bird, can fly
(P, B, F' are assumed logically independent)
e {PP—+»B B~F}F
e {PP—+»B B~F}-PB
e {P,-F,P—» B,B~» F} [ F (exception tolerance)
e {PP— B, B~ F,P~» —F} |~ —F (specificity principle)



Reiter’s default rules

Reiter’s Default Logic (RDL) 1980 an influential NM for-
malism

RDL is based on context-dependent rules with autoepistemic as-
sumptions, e.g. expressed as

B . F/F ~ If Tweety is a bird, and it is epistemically possi-
ble/consistent that he can fly, then assume that he can fly

Reiter’s general default rules: over classical (L, F):

9037717---777n/¢ (90777@7¢ GL)

@ antecedent, 7; justifications, 1 consequent

“If  given and each n; is consistent, then conclude )"



Reasoning with Reiter’s rules

Reiter’s rules can be used to build defeasible proofs (arguments)
producing maximal consistent speculative consequence sets - called
extensions - closed under the base logic. There may be

e Multiple: WU D = {p} U{p: ¢/t p: p/=}
Applying one rule blocks the other one
— the application order is relevant!

2 extensions: Fy = Cn({y,v¥}), Es = Cn({p, })
e One: WUD = {p,~x}U{p:¢¥/v,¥:x/x}
1 extension: E = Cn({y, ¥, })
e None: Consider the paradoxical rule: D = {T : =) /¢ }

If =) is consistent with £, then ¢ € E
If not, then ¢ is not derivable, and ¢ & E



Extension-based default reasoning

Extensions: acceptable speculative consequence sets £ = Cn(F),
which can be defined in various ways (not restricted to RDL)

Extension-based NMR: Euzt : (W, D) — Ext(W, D) C 2L

Skeptical inference: W U D 2t iff o € ( Ext(W, D)



Fixed point definition

Reiter’s rules refer to the set of expected consequences S the justi-
fications should be consistent with. Ideally, .S should be the actual
constructed extension F

Fixed point operator: links expected with actual consequences:

Fipw(S) is the smallest S” = Cn(S") with W C S and closed un-
der all default rules ¢ : ny,...,n,/® in D with S} —;, i.e. whose
justifications are consistent with S

Reiter’s extensions: Ext,q(D,W)={L| Fpw)(&)=E}
e Normal default theories (¢ : 1 /1) always have extensions

e Prerequisite-free semi-normal ones (T : n /A1) /1)) may have none

e Extensions are mutually inconsistent (no £ C E')



Some links

Strong links with logic programming and formal argumentation,
which differ by their restricted languages and extension concepts

Clauses in logic programs: a;, b, s; ground literals

b< ay,...,a,,not(sy),...,not(s,) ~

ap A ... \Nay 81, ... 8, /b

Stable sets ~ Reiter extensions restricted to ground atoms



Reiter’s default inference

Reiter defaults: usually interpreted as normal default rules

Translation:
T~ = piY/p and 7 o > Y — T/
Y UA }Nrdl W it Y € ﬂElEtrdl(AT, Z)

Existence of extensions is here guaranteed! (E F F possible)

Alternative default implementations possible:
e~ = T o=/ — resp. T:oAY/p—

but no clear advantages - only some trade-offs



Digression - KLM principles

In the 80s/90s: proliferation of DR and NMR formalisms

— e.g.: to repair perceived inadequacies of earlier proposals

— but: iterating, no end in sight ...

— seeking rationality principles to evaluate and classify the beasts

In fact: it is easier to discuss and analyze abstract principles than
examples tainted by diverging implicit world knowledge!

— Principles for nonmonotonic inference relations - on L, typically
keeping defaults fixed [Gabbay 85, Kraus et al. 90, Makinson 94],
with representation theorems based on possible worlds semantics



KLM-principles for RDL 1

e Supraclassicality (SC): ¥ ¢ implies ¥ |va ¢
e Left Logical Equivalence LLE:

¥ -3 and X pea v implies X fop o)
e Right Weakening RW:

Y oA v and ¥ 4" implies X a9
e Right Conjunction AND:

YA v and X fea ¢ implies 3 poa 0 A QY
e Cautious Monotony CM:

YA pand ¥ poa ¥ implies XU {p} oa @
e Cautious Transitivity CUT:

Yea pand YU {p} va ¥ implies 3 o 1.



e Reasoning by Cases OR:

YU{p} va v and SU{Y'} poa ¥ implies XU{pV '} oa @
e Rational Monotony RM:

> A ¥ and X o e implies XU {p} ea ¢

e Consistency Preservation CP: ¥ ~A F implies ¥ - F.



KLM-principles for RDL

~,q satisfies SC, LLE, RW, AND, CUT
Note that CUT is a prerequisite for incremental reasoning

~,q1 violates Cautious monotony:

Let A = {@ ~» 1,9~ x,x ~ =}, then
{e} UA R ap,x but {x, o} UA e

because Cn({y, x, 71 }) is an extension

I~ also violates OR::

{oV =} U{p~1h,~p~ P} L9 (no triggering)



Nonmonotonic modal logics

Nomonotonic modal logics: represent W U D in a modal logic
AEL, GK, ... [McDermott,Doyle 80, Moore 83, Lin Shoham 92]

— more expressivity, flexibility, transparency

[Tru 91]: translate Reiter defaults using a knowledge modality K:
e v L — K(p)
o v/ — K(p)\NK(-K(-n)) = K()

Extension concept Ext* for any modal logic X (& C L(K)):

EctX(®) = {E C L(K) | E={¢ € L(K) |
dU-K(LIK)—F)Fx ¢}

Ext,q(®) = Ext*(®) for T C X C S4 restricted to L [Tru 91]

Logic of defaults: allows to prove the equivalence of default bases



Specificity principle

Intuition: if defaults conflict, prefer the most specific one

If ¢ subsumes ¢’ and v, ¢ conflict
ie.pobF g orp—»¢eA andy -
@'~ Y Zgpeec 0~ P (.. 18 at least as specific as ...
Also desirable for defeasible subsumption: ¢ ~ ¢’ € A
Student, adults, jobs: {s,s~> a,a~> j, s~ —j} v a,

But: how to prioritize given longer conflicting chains of defaults?
Early try: theories of inheritance nets [Touretzky 86, Horty 94]

However: low expressivity, purely syntactic, clash of intuitions



The specificity issue for RDL

No specificity in RDL: it fails in its simplest form

pp—>bb~ fip~o =f} Y fof
Two extensions Cn({p,b, f}), Cn({p,b, = f})

Repair by encoding specificity with semi-normal rules? But:
e semi-normal default theories may have no extensions
e very cumbersome, possible side-effects
e — maybe better with explicit preferences

Defeasible specificity hard to characterize, but we may try ..



Preferences for default reasoning

Which preferences? What'’s their meaning? How to exploit them?

Extrinsic preferences: external attributions
e authority of the source (e.g. for default norms)
e utility, usefulness (for practical reasoning)

e application order (procedural, execution needs)

Our topic: Intrinsic preferences: fixed by the defaults
e strict/defeasible specificity
e reliability, strength

e aggregated preference structure



Default reasoning with preferences

Simplest: meta-level preferences over proper defaults A N L(~)

— preferences guide the default inference process: many ways

Standard default inference |~ parametrized by a transitive <:

Several approaches based on Reiter’s account: e.g. [Brewka 94]

(NMR tradition: < ¢’ means “d preferred to §')



Prioritized default logics

Prioritized default theory: (W, D, <), where
o (W, D) is a default theory
e D= D,UD, collects strict resp. normal default rules

e < C D? is a strict, well-founded partial order
i.e., every subset has <-minimal element(s) (true for finite <)

Why partiality? <j,.. may be partial, or total + partially known
Why well-foundedness? Bottom-up construction of extensions

Outcome: handles transparent inheritance/specificity scenarios



Prioritized extensions - an example

Greedy quasi-inductive definition with priorities:

FE is a prioritized extension of (W, D, <), or £ € Ext,q, iff
there is a well-ordering < of D,, extending < (< C<) s.t.
E =|JE; where Ej* = Cnp (W),

B2, = Crp, (B3 U {cons(0)}),

if there is a <-minimal default 6 € D active in E

(p /¢ is active in X iff X F pand X fF =), )

- < <
otherwise £ | = E



Some problems

e Risk of incoherence: by complex, meaning-blind interac-
tions between defaults, preferences and the logical structure (es-
pecially for intrinsic preferences) ignoring each other

e Complex specificity: Specificity orderings may achieve logi-
cal coherence, but viable transparent notions of defeasible speci-
ficity are elusive as the theory of inheritance nets has shown

e RDL legacy: PDL inherits several deficiencies of RDL

e Greedy approach: possible tensions between the application
order and the chosen preference order

eg. a~>b< T~ =b< T~ a: Cn({a,—b}) or Cn({a,b}})?

Alternative definitions: either similar issues, or no extensions



Qualitative plausibility models

Default conditionals:
@~ 1 @ plausibly /normally implies i

Idea: Defaults seen as constraints over epistemic orders

Models: Preferred model structures over £ = (L, |=):
o (W, =, wy) with wy € W C [T], and

e =< a preorder over W (< = <N ¥)
(v < w: v is at least as preferred /plausible as w)

Satisfaction relation: =, for L U L(—) U L(~).
o (W2, wo) Fpr @ iff wo = ¢
o (W, =, wp) Izpr o= iff o] MW C [y]



Preferential conditional semantics

Naively: (W, <, wq) Emin ¢ ~ ¢ it Min<([p]) C [¢]

But: There may be no minima - and imposing them artificially
(stopperedness, smoothness) is neither natural nor necessary

Example: W = {w, wy, ws, ...} with w E =, w; E ¢, and
let < be an infinite descending chain ... < w3 < w9y < wy. Then

(W, =, wy) Emin T ~ ¢ - despite arbitrarily preferred p-worlds

Generalized semantics: (W, <, wy) Emin @ ~ ¥ iff
for each w | ¢, thereisw = v | @ st. forallv = v | ¢, v E 9
Now: (W, =, w) FEpin p = ¢ it (W, <,w) Epin ¢ A =0 ~ F



Preferential conditional logic I

=nin defines a monotonic entailment relation
YUAR gy it [EUA]G Cy]pa (for v € LU L(~, —))

Axioms of preferential conditional logic I-,:

e v, 0 — /1 (Modus Ponens rule)

o v~ (Reflerivity)

o If-yp < ¢ then o~ /@~ 1) (Left logical equivalence)

o If-1 — ¢ then o~ / o~ (Right weakening)

e v~ Y, Y [~ p ANY' (Right conjunction)



Preferential conditional logic 11

o v~ Y, Yo [ oV~ (Reasoning by cases)

o v~~~ [ NP~ (Cautious monotony)

o o~ WANY ~ Y [ w1 (Cautious transitivity)

e p~F /—p (Necessity)

o v —» 1 if and only if ¢ A =) ~ F (Strict implication)
Object-level modus ponens fails: ¢, p ~> ¥ Fpq ¥

because the actual world can be exceptional!



Preferential entailment

How to specify nonmonotonic reasoning with defalt conditionals?

Simplest approach: P (Preferential entailment/System P)

{o1, . o UA P i Ao Ao Aoy~

Basic defeasible modus ponens: {o} U{p~ Y} UA P
{o. Wi U{p~ pf UA R Y i {op~f UA Y o -
Simple specificity. {s,s~ a,a~> j, s~ —j} P a, -y
Defeasible monotony fails: ¢ ~ Y o o A x ~ ¢

hence {¢, x} U{p~ ¥} L ¢ (only if ¢ Ax Jf9)



System Z 1

In System P, irrelevant generic info x can block an inference!

Idea: Inference based on plausibility maximization

Rational closure [Lehmann, Magidor 92|, System Z [Pearl 90]
Z-algorithm: (our variant) for finite ¥ U A:

1. Translate ¢ — ¢ into ¢ A =Y ~ F

2. Construct by induction (As; | 0 <4) and (p; | 0 < 1) s.t.
e p=T Asi={p~velA|pkp}
o pir1 = V{p A=t [ (o~ ¢) € Asi}

For ¢ < j we have p; = p; and As; C A,

For finite A, there is a smallest N s.t. Asy = Asya1, py - pyia



System Z 11

Z-rank ~ degree of exceptionality
Z-rank of defaults: Z(0) = maximal n s.t. § € As,

Z-rank of worlds: Z(w) = max{n | w = p,},
i.e. largest Z(9) s.t. w violates § (Z(p ~ F) = o0)

There is a canonical ranked model (WZ, <%) with
o WX =[vx] ={w €Tl | Z(w) < oo}
e v XX wiff Z(v) < Z(w)

Z-entailment (System Z):

{01, o UA 2y if (WE, 22) Emin Api ~ ¢



Properties of System Z

% verifies all the KLM-principles:

SC, LLE, RW, AND, OR, CUM (= CUT+CM), RM
Defeasible transitivity:

{s,s~a,a~ j} P a,j

{s,7j,s~a,a~ j} a,-j

Defeasible specificity:

{s,8~ —j, s~ a,a~ j} I~ a,—j (also {...} X% j)

LLE for defaults: A -k, A’ implies i = 3



Problems for System Z

Simple exceptional inheritance fails:

{dutch, —tall, dutch ~ tall, dutch ~ loud} [“* loud

The Z-model of A is given by: dtl < d—tl ~ dt—l ~ d—t—l
l.e. Z(dtl) — (0 and Z(d—lﬂ) = Z(dt—!l> = Z(d—lt—ll) =1

Hence dutch A —tall [“% loud: no exceptional inheritance

Replacing dutch by T, we can also falsify the Irrelevance Principle

IRR: f ¥ UA and X' UA" Jf, F have disjoint vocabularies,
then SUA o iff SUX UAUA |~



System LEX I

Idea: compare not just the highest-ranked violated defaults but
also lower-ranked ones, as well as their number at the different ranks

Lexicographic entailment [Lehmann 1995]: |/

Violation sequences for worlds: lexa(w) = (z;(w) | i < 00)
where z;(w) = [{0 € A | w = @s A =05, Z(0) = i}
Aguten: lex(d—tl) = (1,0,...0), lex(d—t-l) = (2,0,...0)

ANimp ={p ~ F}: lex(p) = (0,0,...1) , lex(—p) = (0,0,...0)



System LEX 11

Lex-ordering: v =<' w iff 2,(w) # 0, or

Zo(w) = 0 and for the highest ¢ with z;(v) # z;(w), z;(v) < z;(w)
LEX: Y UA R iff (Wt <K% =0 Agi ~ 1)

Winged birds example: A ={p — b,b~> f,p~ =f b~ w}

{p} UA M —f w because

lex(pb—f—w) = (2,0,..0), lex(pbf-w) = (1,1, ..0),
lex(pb—fw) = (1,0,..0), lex(pbfw) = (0,1, ..0)

pb— fw is obviously the most plausible world



Properties and problems

LEX extends Z: ~* C ' hence it is more speculative

Static priorities: Z-ranks of defaults are pre-computed, no induc-
tive prioritization considering e.g. the fine-grained preference status
of default antecedents

Radical ad hoc prioritization: Violating a more specific con-
flicting defaults has automatically more weight than violating two
independent less specific defaults - which is probabilistically unsound
and in conflict with irrelevance considerations.



Beyond plausibility orders

Drawbacks of qualitative plausibility orders:

e For w < w' and v < ¢/, the relative plausibility of w’ w.r.t. w
cannot be compared to that of v/ w.r.t. v

e No proper conditional independence notion

e Insufficient expressiveness/granularity

e Translation between /aggregation of plausibility contexts unclear
e [bixpected utility hard to model

Idea: Use plausibility valuations from world sets to an additive
structure of ordered values

Fine-grained example: probability measures P : Prop — [0, 1])



Plausibility valuations

General plausibility val. [Friedman, Halpern 96]:

Pl:B— (V, 1, T, =) with
PI(§) = L, PI(W) =T and PI(A) < PI(B)if AC B

Desiderata
e Conditional plausibility + reasonable independence concept
e < total order (partial order = set of total ones)

Simplest solution: Ranking measures [Spohn 88,12, Wey 95]

Ranking measures generalize

e Spohn’s rk-functions measuring the implausibility /surprise of
propositions, used to model revisable graded plain belief

e Real-valued multiplicative possibility [Dubois, Prade 94]



Real-valued ranking measures

Real-valued ranking measures (integers not enough!)
Let B, be the boolean algebra of L-propositions

R:B — ([0, 00],+, <) is a real-valued ranking measure (rkm) iff
e ([0,00],0,+,>): ordered additive stucture of pos. reals with oo
e R(W)=0, R(0) = oo (expresses impossibility)

o RIAUB)=min<{R(A),R(B)} forall A, B B

Conditional ranking measure:

R(B|A) = R(ANB) — R(A) for R(A) # o0, else R(B|A) = .
Ry is the uniform rkm with Ry(A) =0 for A # 0. R(p) := R([¢])



Ranking epistemology

Ranking measure values ~ degrees of implausibility /surprise

Ranking measures may model belief states (Spohn):

Belief strength in p is v iff R(—¢) =7

Conventional threshold: Bel(y) iff R(—¢) > 1 (R(p) =0)
Belief is closed under conjunction (plain belief) because
R(=(p A ) = R(=p V =) = min{R(~p), R(—¢)} > 1
R(—¢) = 0o = is epistemically impossible, i.e. ¢ a dogm

Probabilistic link: R(A) =r ~ P(A) = O(g"),
for infinitesimals 0 < e < 1



Ranking measure semantics

Rkm semantics for default ~» and strict implication —»:
RiEgp~ iff RloAny)+1< RieA—) iff R(=lp) > 1
R o= il R(eAY)+o0 < R(pA—w) i R(pA—1) = o0
Al ={R| R 0 forall§ € A}

We sometimes need a weaker satisfaction =7 using R(—t|p) > 0
Monotonic rk-entailment: A, 60 iff [A]x C [0]4

-, satisfies the rules for preferential conditional logic



Rkm-based default entailment

Goal: A rkm-based framework to specify default inference

Idea: Rkm semantics + preferred model theory for conditionals

Preferred rkm choice function: 7 : A — Z(A) C [A]«

Rkm-based default entailment w.r.t. Z: *:
SUA R iff forall R€Z(A) RED AL ~ o

Defeasible modus ponens:

{p}U{p~ Yt UA R Y ({p~ Pt UA R, o~ o)
Preferentiality: (X verifies SC, LLE, RW, AND, CUT, CM, OR



Rkm-based reconstructions

Preferential entailment: ? = |~ where Z,(A) = [A]«
System P is the weakest % because Z,(A) is maximal

Conditional monotonicity: ¥ U A P ¢ implies ¥ U AU A’ P 4

For finite A ;. F, there is a unique rkm-mode R which attributes
the lowest possible rkm-values to each proposition:

R4(A) = inf<{R(A) | R 0r A}
System Z: |~* = o with Z,(A) = {R4}
LLE for defaults: for Systems P, Z we have

[[A]]rk: = [[A/]lrk implies i = |Ni/



Reconstruction of System LEX

Semantic problems with System LEX:
Non-standard: Reconstructing ' requires infinite rkm-values:

l<l+4l<..N<..N+N<...N°<N?+1<...N*+N<
.N?4+N?2< .. N3< ... <00

(1,0,...0) < (2,0,...0) < ...(0,1,...0) < ...(0,2,...0) < ...¢
— LEX imposes excessively high implausibility values

Context dependence: The relative rkm-values may depend on
the rkm-value of a generic context X:

Rz g (ma) =1 but RS o (| X) =N

Are there less extreme rkm-inference notions supporting inheritance?



Ranking measure constructions

How to find reasonable R =, A respecting the structure of A?

Idea: Focus on those R obtained by iterated Spohn-style revision
on the uniform rkm prior Ry with ¢ — ¥ for p ~ 1 € A

Informally: Specify ranking models by adding context-dependent
penalties > 0 for each default a world violates

Minimal change when strengthening belief in ¢: make —p-worlds
uniformly more implausible

Ranking construction models: Let A = {p; ~ 1, | 1 < n}
Constr(A) = {R ):rk A | R = R0+Zi§n CLZ'[QOZ'/\_@DZ'}, a; € [OOO]}
Fact: If A f F, then Constr(A) # ()



Construction-based default entailment 1

Strategy: Default inference based on preferred rkm-constructions,
ie. pot with Z(A) C Constr(A)
System J: )/ = T’ where Z9(A) = Constr(A)

Exceptional inheritance: for logically independent a, b,
{=a,T~ a, T~ b} b
RE—a~b if R=Ry+x(T A—-a)+y(TA-b) for 1 <z y

because then R(—aAb)+1=x+1<z+y= R(—a A —b)



Construction-based default entailment 11

Advantages: Simplicity, robustness, intuitive behaviour

System J*t: T/ (A) = rk-construction models with a; > 1
o {-a}U{T ~ a,T~ aVb} b, but
e {-alU{T~a,T~aVb i b

Systems J, J* may be too cautious by not fully exploiting the idea
of plausibility maximization



Minimal rkm-constructions

Idea: Maximizing plausibility by minimizing shifting
JM: Z/"™(A) = set of R € Constr(A) with pointwise minimal

shifting vectors a;

Non-uniqueness:
" ({T ~ a, T ~ b, T ~ a A b}) is uncountable
T'"™(A) = {Ry + z[~a] + z[-b] + y[-a V —b] | x + y = 1}

Minimal rkm-constructions have not been born equal ...



Big Birds Hammer

Big Birds Hammer: Birds are normally small, birds can nor-
mally fly, exceptional birds (small or unable to fly) normally
cannot fly. What about the flying abilities of big birds?

{b,=s}U{b~ fib~ s, DA=(sA f)~ af} v af?
By specificity one may expect {b, ~s} UA |~ —f

(which holds for System Z, minimal information entailment)

But ZV"(A) = {(2—x)[bA=sA fl+z[bA=s]+1[bA=f] | = € [0, 2]},
R'(bA=sAf)=2=R'(bA=sA—f), hence {b,=s} UA /™ = f
The best fitting solution: RY = 2[b A =s A f] + 1[b A = f]



Justifiable constructibility

Idea: Ranking constraints should not be over-satisfied

Justifiable constructibility:

R = Yi<nailp; A ;] is justifiably constructible model of A iff
proper shifting of [¢; A =], i.e. a; > 0, implies satisfaction as an
equality constraint: R(p; A ;) + 1 = R(p; A =)

System JJ: 77/ (A) = justifiably constructible rk-models of A
Fact: 7/ (A) C TV™(A)

Big Birds Hammer: JJ provides the unique correct solution:

T (Apr) = {2[b A =s A f]+ 1[0 A= f]}



Non-uniqueness: If A = {T ~ a, T ~ b, T ~ a A b},
then 77 (A) = ZV™(A) is again uncountable



Canonical preferred ranking models

Goal: Specify for each A a canonical preferred rkm model
improving on Systems Z/LEX. Two main strategies:
e Ranking measure fusion: “take the average”
e Canonical rkm construction: liike for System 7 /LEX
Ranking measure fusion: For each rk-choice Z, let Z be s.t.
T(A) = {Ry} with Ry(A) = Inf-({R(A) | R € T(A)})
R\ is the most plausible lower bound of the Z-preferred A-models

Example: for System Z, Z*(A) = 7P = [A],,
Fact: R} € Mod,;(A), but Ry ¢ Constr(A) is possible



System JJR

JIR: TV (A) = ﬁj(A) — {R}"} - the best of both worlds?
[f the justifiably constructible model is unique, it is the JJR-model

For A={T~a,T~bT~ aAb}, R} =1[-aV -
(it is the Z-model of A and justifiably constructible)

Constructibility counterexample: Nested crossing
Ape={T~a,T~bT~rT~sT-—>(aANb1TANs)}
T (Ape) = {x[~a) + z[-b] + (1 — 2)[=r] + (1 —2)[~s] | z € [0,1]}

R‘KZC =1[=(aAD)]+1[=(aVbVrVs)+oo[=(aNb+rAs)
Z Constr(A,.)



Canonical preferred rk-constructions

Goal: Incremental construction of a canonical rkm-model R\ of A
in the spirit of System Z

Examples: the only rk-constructible ones I am aware of ...
System JZ, JLZ [Wey 98, 03]

Philosophy: Minimize the rk-construction efforts everywhere

Let A ={p;~ 1 Ei<n}

We seek a “minimally constructed” Ry = ¥;a;{¢; A —)j]



JZ-construction

Guiding principles of the JZ-construction
e Justifiable constructibility: no superfluous shifting

e No default redundancy: equivalent defaults considered once
w.lo.g.: (lei A =i, [wi]) = (lej A =], [s]) implies @ = 5

o Bottom-up plausibility maximization: first construct the most
plausible layers, ignoring the necessarily less plausible ones

e Local shifting minimization: when constructing a layer, realize
the not-yet-settled defaults by lexicographically minimizing the
longer shifts first

Note: Here the priorities are dynamic, not as for System 7, LEX



System JZ

System JZ: flagship proposal for rkm-based default inference

JZ-idea: Proceed rank by rank, trying to locally approximate
ranking minimization (system Z) by local ranking constructions lex-
icographically minimizing the shifting efforts for each target rank

Relative plausibility maximization: PM (R, A)
An auxiliary notion generalizing Ry = PM (R, A)

The most plausible rkm-model of A above R for R(AA™) # oo
PM(R, A)(A) = info{R(A) | R < R, R oy A}



JZ-algorithm I

Induction: We jointly construct sequences R;, Rf, A;, Al
Start: + = 0: Ro — Ro, RS = PM(R(),A> - RZA, AO = @, S0 =0

Step: © — 1+ 1: R; preceding partial ranking construction,
R = PM(R;,A), A; collection of settled defaults at stage ¢

si+1 smallest s > s; of the form s = R} (p; A ;) for §; € A — A,
Ay =10 € A=A | Ri(pj A ) = siy}



JZ-algorithm 11

Ri1 = Ri + Ss5.enr ailp; A0y,
where @ is the lex-length-minimal tuple & with, for all h < n,
(Ri + Xs.ear jles A 5]+

Ys;gnuar, 00lp; A=) (en A =)
> Sitl

i.e. reaching s;,1 while ignoring all the shiftable propositions
n A =, which verify RY(on A —tbp) > sit1
;F—I—l = PM(RZ'_H, A) and Az’+1 = Az U A;—I—l

Stop: If s;,1 does not exist, then R = Ri.1 =R,



Examples 1

Nested crossing:

Npe={T~a,T~bT~rT~sT—> (aNb>rAs)}

Ry = PM(Ry,A) =1[-a V =b] + oco[=(a Ab <> 1 A s)]
Ri(—a)=...=Rj(-s) =1 <00 = Ri(—-(aNb+>1rN5s))

hence s1 =1

The lex-length-minimal coeff. a; s.t. for Ry = a1[—a] + ... + a4[—$]

we have Ry + ool..](—a), ..., Ry + o0[..](—s) > sy =1 are a; = 1/2



Examples 11

A=A ={T~a,T~bT~r T~ s}
R =PM(Ry,A) =Ry +o0[=(aAb<>rAs)|, now so =00
The lex-length-minimal coefficient for =(a A b <> 7 A s) is 00

Ay = A, hence induction stops here and
RY =1/2[a]+ ...+ 1/2[s] + co[~(a A b+ 1 A s)]

is justifiably constructible.

Observe: The symmetries of A,,., justifiable constructibility, and
canonicity are enough to fix the result

Note: R‘Knc(ﬁa A —b) = 3/2 - thus we need rational rkm-values!



Examples 111

Big Birds Hammer light: Birds are normally small, birds
can normally fly, big birds are normally unable to fly

Ay ={b~> fib~ s, b N5~ f}, Yy = {b, —s}
Ry =Ry, = 1bA~f]+2[bA fA=s] (just to describe it).

Hence, in the first round we will only shift b A =f and b A —s,
ignoring the less plausible part b A =s A f. We have s; = 1 and

Ay ={b~ f, b~ s}.

Shifting b A —s is then redundant and Ry = 1[b A = f] + 0[b A —s].
R} is now just Ry + 2[b A f A —s], which puts b A f A —s to 2,

the next target rank is thus sy = 2. Hence Ry = Ri +2[bA f A—s.
Because Ay = Ay, we stop and RJAbez =1bA=fl+2[bA f A=



While {b, =f} U{b~> f,b~> s} p7% s,
we have {b, = f} U {b~s f,b~ 5,bA =5~ = f} L7 5, s



Properties and principles

System JZ verifies:
e all KLM postulates
e [rrelevance principle (and exceptional inheritance) (IRR)
e Representation/Language Independence (RI)
e Local default equivalence
System JZ violates:

e LLFE for defaults
But this is actually unavoidable if we insist on IRR and RI



Desirable inference

Let us call a default inference notion desirable iff:
e Supraclassicality for |~ w.r.t. F: FClva
e Basic nontriviality: {—¢o, T ~ ¢} K ¢ ifp FF, —p FF

e Representation invariance for |~:
for semantically invariant boolean isomorphisms f : L — L

I(@) o it D(f(e) b (@)
e LLE for defaults: |~p = poarif A A A

e Exceptional inheritance:
{=a} U{T ~ a, T ~ b} b for logically independent a, b
(follows from Irrelevance and and Representation invariance)



Exceptional inheritance paradox

Theorem: There are no desirable default inference notions!

What can we do? What to violate?

e Supraclassicality /nontriviality: untouchable cornerstones of de-
fault reasoning

e Representation invariance: conditio sine qua non for semantic-
based approaches

e LLE for defaults: only very weak conditional logics for defaults

e [ixceptional inheritance: only very weak inheritance patterns:
e.g. System Z



