
Christoph Benzmüller
Jens Otten (Eds.)

Automated Reasoning in
Quantified Non-Classical Logics

3rd International Workshop, ARQNL 2018,
Oxford, United Kingdom, July 18th, 2018

Proceedings

Also appeared as

CEUR Workshop Proceedings, Volume 2095
CEUR-WS.org/Vol-2095

Automated Reasoning in Quantified Non-Classical Logics ARQNL 2018

Preface

This volume contains the proceedings of the Third International Workshop on Automated Rea-
soning in Quantified Non-Classical Logics (ARQNL 2018), held July 18th, 2018, in Oxford,
United Kingdom. The workshop was affiliated and co-located with the International Joint
Conference on Automated Reasoning (IJCAR 2018), which was part of the Federated Logic
Conference (FLoC 2018). The aim of the ARQNL 2018 Workshop has been to foster the de-
velopment of proof calculi, automated theorem proving (ATP) systems and model finders for
all sorts of quantified non-classical logics. The ARQNL workshop series provides a forum for
researchers to present and discuss recent developments in this area.

Non-classical logics — such as modal logics, conditional logics, intuitionistic logic, de-
scription logics, temporal logics, linear logic, multivalued logic, dynamic logic, deontic logic,
fuzzy logic, paraconsistent logic, relevance logic, free logic, natural logic — have many appli-
cations in AI, Computer Science, Philosophy, Linguistics, and Mathematics. Hence, the au-
tomation of proof search in these logics is a crucial task. For many propositional non-classical
logics there exist proof calculi and ATP systems. But proof search is significantly more difficult
than in classical logic. For first-order and higher-order non-classical logics the mechanization
and automation of proof search is even more difficult. Furthermore, extending existing non-
classical propositional calculi, proof techniques and implementations to quantified logics is
often not straightforward. As a result, for most quantified non-classical logics there exist no
or only few (efficient) ATP systems. It is in particular the aim of the ARQNL workshop se-
ries to initiate and foster practical implementations and evaluations of such ATP systems for
non-classical logics.

The ARQNL 2018 Workshop received eight paper submissions. Each paper was reviewed
by at least three referees, and following an online discussion, six research papers were selected
to be included in the proceedings. The ARQNL 2018 Workshop also included invited talks by
Larry Moss and Giles Reger. Additionally, one research paper was selected for presentation at
the workshop.

We would like to sincerely thank the invited speakers and all authors for their contributions.
We would also like to thank the members of the Program Committee of ARQNL 2018 for their
professional work in the review process. Furthermore, we would like to thank the IJCAR
Workshop Chair Alberto Griggio and the Organizing Committee of FLoC 2018. Finally, many
thanks to all active participants of the ARQNL 2018 Workshop.

Luxembourg and Oslo, July 2018 Christoph Benzmüller
Jens Otten

ii

Automated Reasoning in Quantified Non-Classical Logics ARQNL 2018

Organization

Program Committee

Christoph Benzmüller University of Luxembourg & FU Berlin, Germany – co-chair
José Luiz Fiadeiro Royal Holloway University of London
Marcelo Finger University of São Paulo, Brazil
Didier Galmiche Université de Lorraine - LORIA, France
Rajeev Goré The Australian National University, Australia
Andreas Herzig IRIT-CNRS, France
Sven Linker University of Liverpool, UK
Aniello Murano Università di Napoli “Federico II”, Italy
Hans De Nivelle Nazarbayev University, Kazakhstan
Jens Otten University of Oslo, Norway – co-chair
Valeria De Paiva Nuance Communications, UK
Xavier Parent University of Luxembourg, Luxembourg
Revantha Ramanayake Vienna University of Technology, Austria
Giselle Reis Carnegie Mellon University, Qatar
Leila Ribeiro Universidade Federal do Rio Grande do Sul, Brazil
Bruno Woltzenlogel Paleo Vienna University of Technology, Austria

Workshop Chairs

Christoph Benzmüller
University of Luxembourg (and Freie Universität Berlin)
Avenue de l’Université, L-4365 Esch-sur-Alzette, Luxembourg
E-mail: christoph.benzmueller@uni.lu

Jens Otten
University of Oslo
PO Box 1080 Blindern, 0316 Oslo, Norway
E-mail: jeotten@ifi.uio.no

iii

Automated Reasoning in Quantified Non-Classical Logics ARQNL 2018

Contents

Implementations of Natural Logics 1–10
Lawrence S. Moss

Some Thoughts About FOL-Translations in Vampire 11–25
Giles Reger

Pseudo-Propositional Logic 26–33
Ahmad-Saher Azizi-Sultan

A Simple Semi-automated Proof Assistant for First-order Modal Logics 34–48
Tomer Libal

Labelled Connection-based Proof Search for Multiplicative Intuitionistic 49–63
Linear Logic
Didier Galmiche and Daniel Méry

Labelled Calculi for Quantified Modal Logics with Non-rigid and Non- 64–78
denoting Terms
Eugenio Orlandelli and Giovanna Corsi

System Demonstration: The Higher-Order Prover Leo-III 79–85
Alexander Steen and Christoph Benzmüller

Evidence Extraction from Parameterised Boolean Equation Systems 86–100
Wieger Wesselink and Tim A.C. Willemse

iv

Implementations of Natural Logics

Lawrence S. Moss

Indiana University, Bloomington, IN 47405, USA lmoss@indiana.edu

Abstract

We discuss what is known about implementations of logical systems whose syntax is either a small
fragment of natural language, or alternatively is a formal language which looks more like natural
language than standard logical systems. Much of this work in this area is now carried out under the
name of natural logic. Just as in modal logic or description logic, there are many systems of natural
logic; indeed, some of those systems have features reminiscent of modal logic and description logic.
For the most part, quantification in natural logics looks more like description logic or term logic (i.e.,
syllogistic logic) than first-order logic. The main design criteria for natural logics are that (1) one can
be able to use them to carry out significant parts of reasoning; and (2) they should be decidable, and
indeed algorithmically manageable. All of the questions that we ask about the implementation of any
logics can be asked about natural logics. This paper surveys what is known in the area and mentions
open questions and areas.

1 Introduction

This workshop is concerned with Automated Reasoning in Quantified Non-Classical Logics. The spe-
cific contribution in this paper might be called automated reasoning pertaining to human reasoning, but
done in a setting that deviates from the normative frameworks in logic. The specific area of application
is natural language semantics, especially done with an eye towards automated reasoning in formal lan-
guages which approximate natural language. Admittedly, these days formal logic in computer science
is primarily a tool in areas like verification; connections of logic to AI are less prominent. Nevertheless,
the original and primary motivation for logic is (arguably) the study of inference in language, from
Aristotelian syllogisms onward. This is the target area of this paper.

The natural logic program This is a summary of the program of natural logic, taken from papers and
talks:

1. Show the aspects of natural language inference that can be modeled at all can be modeled using
logical systems which are decidable.

2. To make connections to proof-theoretic semantics, and to psycholinguistic studies about human
reasoning.

3. Whenever possible, to obtain complete axiomatizations, because the resulting logical systems are
likely to be interesting, and also complexity results.

4. To implement the logics, and thus to have running systems that directly work in natural language,
or at least in formal languages that are closer to natural language than to traditional logical calculi.

5. To re-think aspects of natural language semantics, putting inference at the center of the study
rather than at the periphery.

ARQNL 2018 1 CEUR-WS.org/Vol-2095

Implementations of Natural Logics Moss

Arist
otle

Church-Turing

Peano-Frege

S

S†

Peano-Frege

S≥ S≥ adds |p| ≥ |q|
R

R∗
R∗(tr)

R∗(tr, opp)
R†
R∗†
R∗†(tr)

R∗†(tr, opp)

FOL

FO2

first-order logic

2 variable FO logic

† adds full N -negation

R + relative clauses

R = relational syllogistic

R∗ + (transitive)
comparative adjs

R∗(tr) + opposites

S + full N -negation

S: all/some/no p are q

Figure 1: Some logical systems in the natural logic area, along with FOL and others.

Goal (4) is the topic of this paper, but goal (3) is also relevant. Most of the work on natural logic
has pursued goals (1) and (3). Concerning (3), there are now a myriad of logical systems which are
complete and decidable and which have something to do with natural language. Some of them are listed
in a chart in Figure 1. Here is a guide to those systems, starting with the three boundary lines.

The line called “Church-Turing” at the top separates the logics which are undecidable (above the
line) from those which are not. FOL is first-order logic. FO2 is two-variable first-order logic; this is
well-known as a decidable logic. This logic is not directly relevant to our study, but since many logics
can be expressed in FO2, they inherit the decidability.

The line called Peano-Frege separates the sub-logics of FOL (to the right) from the one logic on
this chart which is not sub-logic of FOL. These logics are “non-classical”, being unrelated to FOL. And
they deal with “quantity” (but not “quantification” in the usual sense). I would hope that people in the
ARQNL community will find them interesting. I discuss them in Section 3. It should be mentioned that
there are other logics to the left of the Peano-Frege boundary. Space didn’t permit a larger display.

The line called Aristotle separates the logics with a syllogistic formulation from those which lack
such a formulation. This line is much less “firm” than the other lines, for two reasons. First, there is
no accepted definition of what a syllogistic proof system even is. For us, it means a logic with a finite
set of rules, each of which is essentially a Horn clause, and also allowing reductio ad absurdum. The
second noteworthy feature of the Aristotle line is that sometimes a logic L which is provably above the
line has a super-logic L′ which is below the line. That is, sometimes, adding vocabulary to a logical
system enables one to find a syllogistic presentation. This feature has made some doubt whether there
is much of a point to the Aristotle boundary. Be that as it may, there certainly is work to do in clarifying
the line which we name for Aristotle.

2

2

Implementations of Natural Logics Moss

Specific logics We go into details on the syntax and semantics of some of the logics in the chart,
starting with S at the bottom. This is the classical syllogistic. The syntax starts with a collection of
nouns; we use lower-case letters like p, q, x, and y for nouns. The syntax just has sentences of the form
all x are y, some x are y, and no x are y. These sentences are not analyzed as usual in first-order logic.
The sentences of S do not involve recursion. Also, there are no propositional connectives in this tiny
logic.

For the semantics, we consider modelsM consisting of a set M and subsets [[x]] ⊆M for all nouns
x. We then declare

M |= all x are y iff [[x]] ⊆ [[y]]
M |= some x are y iff [[x]] ∩ [[y]] 6= ∅
M |= some x are y iff [[x]] ∩ [[y]] 6= ∅

Please note that we are not rendering sentences like all x are y into first-order logic. Instead, we are
giving a semantics to syllogistic logic.

Then we ask some very traditional questions. For a set Γ of sentences in this language, and for
another sentence ϕ, we say that Γ |= ϕ if every modelM which satisfies all sentences in Γ also satisfies
ϕ. This is the notion of semantic consequence from logic. There is a matching proof system, defining a
relation Γ ` ϕ. For example, here are two rules

all x are y all y are z

all x are z
BARBARA all x are y some x are z

some y are z DARII

One feature of the logics in this area is that frequently there are many rules.
As expected, there is a Completeness Theorem. For the purposes of this paper, the important point

is that the relation Γ ` ϕ (for Γ a finite set) is in NLOGSPACE (see [20]), and it is straightforward to
implement.

We return to the chart to briefly discuss the other logics. The logic R above S adds transitive verbs
(such as see, love, and hate), interpreted as arbitrary binary relations on the universe. The syntax ofR is
bit complicated, so we won’t go into full details. But the following are examples of sentences of it: all
x see some y and no x see all y. In English, sentences like the first of these are ambiguous, and to make
a proper logical study we take just the standard reading, where all has wide scope. Moving up,R∗ adds
terms in a recursive way to R. We present the syntax of two related systems formally in Section 2. So
all (see all (love all dogs)) (hate some cat) is a sentence of R∗; its usual rendering in English would be
all who see all who love all dogs also hate some cat. R∗(tr) adds comparative adjectives such as taller
than, interpreted again as binary relations, but insisting that those interpretations be transitive (hence
the tr) and irreflexive. Adding converse relations such as shorter than takes us up to R(tr, opp). For
example, a logical rule in this logic would be to assume all x are taller than all y and conclude all y are
shorter than all x.

The logics with the dagger † add full negation on all nouns. So in S†, one can say some non-x are
non-y. This sentence is not part of the classical syllogistic. We interpret “non” in a classical way, so
[[non-x]] = M \ [[x]]. If one wanted to be “non-classical” here, one certainly could.

More on natural logic may be found in the Handbook article [15].

Complexity A great deal is known about the complexity of the consequence relation Γ ` ϕ. The
logics at the bottom of the chart, S, S†,R, and S≤ are in NLOGSPACE (see [20]). R∗ is NP-COMPLETE
(see [13]). The logics R†, R†∗, and R†∗(tr) are complete for EXPTIME. It is open to investigate
approximation algorithms for these kinds of logics.

Of special interest for implementations Most of these logics have not been implemented, but of
course it would be interesting to do so. Further, we do not even have approximation algorithms for

3

3

Implementations of Natural Logics Moss

these logics. All of this would be good to do. The smallest logics in the chart have been implemented,
and there are some interesting features. First, once a logic has negation, contradictions are possible.
Perhaps the most natural way to handle these is by adding reductio ad absurdum to the proof system.
However, this complicates the proof search in a big way. And in general, allowing reductio ad absurdum
in syllogistic logics raises the complexity beyond PTIME. To circumvent reductio ad absurdum, one can
use ex falso quodlibet. This principle allows us to derive an arbitrary conclusion from a contradiction.

Another interesting thing about the implementations of logics “low in the chart” is that completeness
and model-building are closely related. Here is how this works. Suppose we are given Γ and ϕ and want
to know whether or not Γ ` ϕ; if this hold, we want a proof, and if not, we want a counter-model. One
proves a kind of conservativity fact about these logics: if there a derivation of Γ ` ϕ, then there is one
with the property that all terms in it are subterms of the premises or of the conclusion. This is a distant
relative of the subformula property, and it make proof search efficient. One simply generates all of the
consequences of Γ and looks for ϕ. If ϕ is not found, then the sentences which are consequences of
it usually gives us a model in a canonical way. The upshot is that one does not need a separate model
finder.

Predecessors There are two main predecessor areas to the work that I am discussing, one from Artifi-
cial Intelligence, the other from Philosophy. In AI, there is a long tradition of thinking about inference
from language. Sometimes this is even taken as a primary problem of natural language processing. But
most of that work does not propose small fragments the way we are doing it here. Still, some early
papers in the area do work (in effect) with fragments, such as [18, 13]. Those papers have observations
that are useful even now. The other background area is Philosophy, especially to those interested in
reconstruction of ancient logical systems such as the syllogistic. For this line of work, see [11, 6, 4, 12].
The main difference between it and what we have mentioned so far is that the syllogistic logics in the
natural logic area are extended syllogistic logics; we are willing to go beyond the ancient systems in
every way.

2 Tableau for Beyond Syllogistic Logic
The most prominent topic for the ARQNL workshop is quantified non-classical logics. I take it that
“quantified” here means “having the standard quantifiers.” In Section 3 below, we consider a different
sense of “quantified”: dealing with quantities (but doing so in a non-classical way). But first, in this
section, I want to suggest another direction. Let us return to the chart in Figure 1. The logics above the
line marked Aristotle can be shown to have no syllogistic proof system, not even one that uses (RAA).
The language that I want to mention in this section is R∗†. It is a term logic; the variables range over
subsets of a model, not individuals. Its syntax comes from [20] and is found in Figure 2. (Actually, I
have changed the original syntax in small ways, and my syntax is closer to that of [14].)

For the semantics, we interpret nouns by subsets of the universe M of a model (as in the previous
section), verbs by relations on M , noun and verb complements classically, and then inductively interpret
terms by

[[r all x]] = {n ∈M : for all m ∈ [[x]], (m,n) ∈ [[r]]}
[[r some x]] = {n ∈M : for some m ∈ [[x]], (m,n) ∈ [[r]]}

In terms of the complexity, the consequence relation for R∗ is CO-NP COMPLETE (see [13]). For
R∗†, the complexity jumps to EXPTIME-complete (see [20], following Pratt-Hartmann [19]). In general,
the addition of full negation is responsible for a number of complexity jumps in the area.

It is possible to construct natural deduction style proof systems for this logic and related ones [14].
People interested in proof calculi for fragments of first-order logic might find this work interesting. But

4

4

Implementations of Natural Logics Moss

Expression Variables Syntax
nouns p, q, x, y
verbs s
unary literal l p | p̄
binary literal r s | s̄
term c, d l | r some c | r all c
R∗ sentence ϕ some b+ d | some d b+ | all b+ d | all d b+

Figure 2: Syntax of R∗†.

nobody has investigated or implemented proof search for the logics in [14]. So from the point of view
of this paper, those systems are less interesting.

Wennstrom [22] provided an analytic tableau system for R∗†. His system is complete. He showed
that for every finite set s of sentences in the language which is unsatisfiable, there is a (finite) closed
tableau, proving the unsatisfiability of s. And if s is satisfiable, then the proof search algorithm es-
sentially provides us with a model. In addition, Wennstrom, provided three different tableau search
strategies for the language. (We should mention that the tableau system is not strongly complete.)
These all have to do with witnesses to existential sentences. In order to have finiteness results of the
kind we mentioned, some care is needed.

Wennstrom also implemented all three strategies. He worked in miniKanren [5], a relational pro-
gramming language embedded in Scheme. He evaluated these on a number of test sets. Evaluation was
done using Petite Chez Scheme on a Windows 7 (64 bit) laptop. To give an idea, here is one of the tests:

{∀(k,m),∃(∀(∀(∃(k, h), s), r),∃(∃(∃(m,h), s), r))}

(The syntax here employs evident abbreviations from what we mentioned in Figure 2. For example
∃(t, r) abbreviates r some t.) The fourfold nesting of the quantifiers means that this example was too
complicated to actually run.

Other tableau systems and implementations Wennstrom [22] was influenced by Pratt-Hartmann
and Moss [20], the paper that put forward most of the systems in Figure 1. But the idea of using tableau
comes from Muskens [17], the primary source on tableau methods in connection with natural language
reasoning. This work was taken up by Abzianidze in his papers [1, 2, 3]. These papers build on [17],
but in addition they implement the ideas. To date, this is the most sophisticated and most successful
implementation effort of the kind reported in this paper. The main reason not to go into more detail
on it in this paper is that I cannot point to so many problems that could interest people at the ARQNL
workshop.

3 Sizes of sets

This section discusses a topic that I think could be of interest at ARQNL, the logic S≤. This logic adds
to syllogistic logic some decidedly non-first order semantics, but with a simple syntax. We add to the
classical syllogistic two extra kinds of sentences: there are at least as many x as y, and there are more
x than y. The semantics is just what one would expect: use set theoretic models, and use the standard
notion of cardinality. In this discussion, we are going to restrict attention to finite models, since this is
most in the spirit of the subject. (But one can work on infinite sets; see [16].)

5

5

Implementations of Natural Logics Moss

Again, we should emphasize that these logical systems do not have quantifiers; for that matter,
they do not have propositional connectives ∧, ∨, or ¬. The only sentences are the ones mentioned.
In a sense, they are the cognitive module for reasoning about size comparison of sets, in the simplest
possible setting.

It might come as a surprise, but reasoning about the sizes of sets does not by itself require a “big”
logical system.

There is a complete proof system. It has 22 rules and so we won’t present them all. But let us show
several of them:

all p are q there are at least as many p as q
all q are p

(CARD-MIX)

there are more q than p

there are more p than q
(MORE-ANTI)

∃≥(p, p) ∃≥(q, q)

∃≥(p, q)
(HALF)

(CARD-MIX) requires that the universe be finite. In the last two rules, we use x as an abbreviation of
non-x. In (CARD-MIX), we use ∃≥(x, y) as an abbreviation of there are at least as many x as y. So,
here is an explanation of the (HALF) rule. If there are at least as many p as non-p, then the p’s are at
least half of the universe. So if there are at most as many q as non-q, then q’s have at most half of the
elements in the universe.

As we mentioned before, the logic does not have reductio ad absurdum, but it has the related princi-
ple of ex falso quodlibet. In more detail, reductio ad absurdum is an admissible rule, but it is not needed.
One can use the following weaker forms

∃≥(p, q) ∃>(q, p)
ϕ (X-CARD)

some p are q no p are q
ϕ (X)

These basically say that anything follows from a contradiction. It is open to construct and implement
meaningful natural logics which are paraconsistent.

3.1 Implementation
The logic has been implemented in Sage1. This implementation is on the cloud, and the author shares
it. See https://cocalc.com/. Other syllogistic logics have been implemented in Haskell.

For example, one may enter in the CoCalc implementation the following.

assumptions= [’All non-a are b’,

’There are more c than non-b’,

’There are more non-c than non-b’,

’There are at least as many non-d as d’,

’There are at least as many c as non-c’,

’There are at least as many non-d as non-a’]

conclusion = ’All a are non-c’

follows(assumptions,conclusion)

1As a programming language, Sage is close to Python. It is mainly associated with CoCalc (https://cocalc.com/);
CoCalc incorporates a lot of mathematical software, all of it open source. It provides Jupyter notebooks and course management
tools.

6

6

Implementations of Natural Logics Moss

We are asking whether the conclusion follows from the assumptions. This particular set of assump-
tions is more complicated than what most people deal with in everyday life, even when they consider
the sizes of sets. This is largely due to the set complements.

As we mentioned, the proof search algorithm basically gives counter-models to non-theorems. In
the case of this logic, this fact takes special work. Returning to our example, the result appears instantly.
(That is, for a set of assumptions of this type, the algorithm takes less than one second, running over the
web.) We get back

The conclusion does not follow

Here is a counter-model.

We take the universe of the model to be {0, 1, 2, 3, 4, 5}
noun semantics

a {2, 3}
b {0, 1, 4, 5}
c {0, 2, 3}
d {}

So the system gives the semantics of a, b, c, and d as subsets of {0, . . . , 5}. Notice that the
assumptions are true in the model which was found, but the conclusion is false.

Here is an example of a derivation found by our implementation. We ask whether the putative
conclusion below really follows:

All non-x are x
Some non-y are z
There are more x than y

In this case, the conclusion does follow, and the system returns a proof.

Here is a formal proof in our system:

1 All non-x are x Assumption

2 All y are x One 1

3 All non-x are x Assumption

4 All non-y are x One 3

5 Some non-y are z Assumption

6 Some non-y are non-y Some 5

7 Some non-y are x Darii 4 6

8 Some x are non-y Conversion 7

9 There are more x than y More 2 8

What about propositional logic? Propositional connectives make complex sentences from sentences.
We did not add the propositional connectives to this particular logic to keep the complexity low, and also
to illustrate the idea that one should find special-purpose logics for topics like sizes of sets. However,
one certainly could add in the connectives. The resulting logic has been explored, but we lack the space
to expand on this. It is open to implement such logics, or to connect the work to SAT solvers.

7

7

Implementations of Natural Logics Moss

4 Reasoning without grammar, and forgetting about completeness
The ultimate goal of the work that I am reporting on is to have working systems that do inference in
natural language, or something close. It is clear that the program of natural logic that I have discussed,
where one works with ever more complicated fragments, has a long way to go. I hope that some of the
languages which we have found so far will be of interest even to people outside of the area. It is equally
clear that for natural language inference itself, the method of fragments has its limitation: to get started
with it, one must have a language with a clear syntax and semantics.

Readers of this paper will be surprised by the title of this section. The standard assumptions in all
areas of formal logic is that logical language come with a precisely defined semantics and especially a
precisely defined syntax. This syntax is usually trivial in the sense that parsing a logical language is a
non-issue. For natural language, the opposite is true. Parsing is a complex matter. (The semantics is
even worse, of course.)

This section loosen this assumption in connection with sizes of sets. It is based on [9, 8]. It calls on
some knowledge of formal and computational linguistics.

We are interested in polarity marking, as shown below:

More dogs↓ than cats↑ walk↓

Most↑ dogs= who= every= cat= chased= cried↑

Every dog↓ scares ↑ at least two↓ cats↑

The ↑ notation means that whenever we use the given sentence truthfully, if we replace the marked
word w with another word which is “≥ w” in an appropriate sense (see below for an example), then
the resulting sentence will still be true. So we have a semantic inference. The ↓ notation means the
same thing, except that when we substitute using a word ≤ w, we again preserve truth. Finally, the =

notation means that we have neither property in general; in a valid semantic inference statement, we can
only replace the word with itself rather than with something larger or smaller. We call ↑ and ↓ polarity
indicators.

For example, suppose that we had a collection of background facts like cats ≤ animals, beagles ≤
dogs, scares ≤ startles, and one ≤ two. This kind of background fact could be read off from WordNet,
thought of as a proxy for word learning by a child from her mother. In any case, our ↑ and ↓ notations
on Every dog↓ scares ↑ at least two↓ cats↑ would allow us to conclude Every beagle startles at least one
animal. In general, ↑ notations permit the replacement of a “larger” word and ↓ notations permit the
replacement of a smaller one.

The goal of work on the monotonicity calculus such as [21, 10, 9] is to provide a computational
system to determine the notations ↑, ↓,= on input text “in the wild”. That means that the goal would
be to take text from a published source or from the internet, or wherever, and to then accurately and
automatically determine the polarity indicators. Then using a stock of background facts, we get a very
simple “inference engine,” suitable for carrying out a reasonable fraction of the humanly interesting
inferences. The system would handle monotonicity inferences [7, 21]. Such a system would not be
complete at all, because many forms of inference are not monotonicity inferences.

We must emphasize that [9] is also not a complete success. The work there depends on having a
correctly parsed representation of whatever sentence is under consideration, either as a premise of an
argument or as the conclusion. And here is the rub: it is rather difficult to obtain semantically useable
parses. We have wide-coverage parsers; that is, programs capable of training on data (probabilistically)
and then giving structure to input sentences. And the parses of interest to us are those in a grammatical
framework called combinatory categorial grammar (CCG). CCG is a descendant of categorial grammar
(CG), and it is lexicalized; that is, the grammatical principles are encoded in complex lexical types
rather than in top-down phrase structure rules. From our point of view, this is a double-edged sword.

8

8

Implementations of Natural Logics Moss

On the one hand, CG and CCG connect syntax and semantics because string concatenation in the syntax
is matched by function application in the semantics, or to combinators of various sorts. On the other
hand, there is no real hope of writing a complete set of rules for logical systems whose syntax is so
complicated as to require a grammar of this form. In effect, we give up on completeness in order to
study a syntax that is better than a toy. For that matter, working with a wide-coverage parser for a
framework like CCG means that some of the parses will be erroneous in the first place. And so the
entire notion of deduction will have to be reconsidered, allowing for mistakes along the way.

The connection to automated reasoning There are several reasons why this topic of automated
monotonicity reasoning deserves mention in a paper on natural logic for the ARQNL community. Given
a set of assumptions in natural language (or even in formal logic), if one has ↑ and ↓ information on the
individual words and the constituent phrases, then a “good deal” of logical inference follows “easily”,
by substitution. Admittedly, we are vague here; see [8]. It is a nice open question to quantify in a mean-
ingful way the amount of logical inference that is due to very simple operations, such as monotonicity
substitution. Beyond this, there are some interesting technical questions about how exactly one would
compute ↑ and ↓ information from parse trees.

5 Conclusion
My feeling is that people interested in the topics like “proof calculi, automated theorem proving systems
and model finders for all sorts of quantified non-classical logics” will find much to like in the topic of
natural logic. Although the systems in the area will be new, and so on a technical level one would be
tempted to see differences, there is a close ideological kinship. Both are about automated reasoning,
both are willing to consider new systems of various types.

We close with a review of the main points in this survey paper for people in the area.
First, first-order logic (FOL) is not the only approach to the topic of quantification: extended syllo-

gistic logics in the natural logic family offer an alternative. That alternative is not nearly as well-studied
as FOL. There are numerous computational problems related to extended syllogistic logics, and there
are also a few working systems.

Even if one prefers FOL for the things that it can do, FOL cannot handle some manifestly second-
order phenomena such as reasoning about the sizes of sets. We mentioned logics which can cover this
reasoning and showed a simple implementation.

An old effort in AI is to study inference from text using automated logic. This topic is currently under
revision, due to the connection with the monotonicity calculus. From the point of view of this paper,
automating monotonicity inference is an important next step in doing automated reasoning concerning
quantification.

References
[1] Lasha Abzianidze. A tableau prover for natural logic and language. In Proceedings of the 2015 Conference

on Empirical Methods in Natural Language Processing, EMNLP 2015, Lisbon, Portugal, September 17-21,
2015, pages 2492–2502, 2015.

[2] Lasha Abzianidze. A tableau prover for natural logic and language. In EMNLP, pages 2492–2502, 2015.
[3] Lasha Abzianidze. Natural solution to fracas entailment problems. In Proceedings of the Fifth Joint Confer-

ence on Lexical and Computational Semantics, *SEM 2016, Berlin, Germany, 11-12 August 2016, 2016.
[4] John Corcoran. Completeness of an ancient logic. Journal of Symbolic Logic, 37(4):696–702, 1972.
[5] William E. Byrd Daniel P. Friedman and Oleg Kiselyov. The Reasoned Schemer. MIT Press, 2005.

9

9

Implementations of Natural Logics Moss

[6] George Englebretsen. Three Logicians. Van Gorcum, Assen, 1981.
[7] Bart Geurts. Monotonicity and processing load. Journal of Semantics, 22(1):97–117, 2005.
[8] Hai Hu, Thomas F. Icard III, and Lawrence S. Moss. Automated reasoning from polarized parse trees. In

Proc. Natural Language in Computer Science (NLCS’18), 2018.
[9] Hai Hu and Lawrence S. Moss. Polarity computations in flexible categorial grammar. In M. Nissim (et al),

editor, Proceedings of The Seventh Joint Conference on Lexical and Computational Semantics, *SEM 2018,
New Orleans, Louisiana, 2018.

[10] Thomas F. Icard and Lawrence S. Moss. Recent progress on monotonicity. Linguistic Issues in Language
Technology, 9(7):167–194, 2014.

[11] Jan Łukasiewicz. Aristotle’s Syllogistic. Clarendon Press, Oxford, 2nd edition, 1957.
[12] John N. Martin. Aristotle’s natural deduction revisited. History and Philosophy of Logic, 18(1):1–15, 1997.
[13] David A. McAllester and Robert Givan. Natural language syntax and first-order inference. Artificial Intelli-

gence, 56:1–20, 1992.
[14] Lawrence S. Moss. Logics for two fragments beyond the syllogistic boundary. In Fields of Logic and Com-

putation: Essays Dedicated to Yuri Gurevich on the Occasion of His 70th Birthday, volume 6300 of LNCS,
pages 538–563. Springer-Verlag, 2010.

[15] Lawrence S. Moss. Natural logic. In Handbook of Contemporary Semantic Theory, Second Edition, chap-
ter 18. John Wiley & Sons, 2015.

[16] Lawrence S. Moss and Selçuk Topal. Syllogistic logic with cardinality comparisons on infinite sets. Review
of Symbolic Logic, 2018.

[17] Reinhard Muskens. An analytic tableau system for natural logic. In Logic, Language and Meaning - 17th Am-
sterdam Colloquium, Amsterdam, The Netherlands, December 16-18, 2009, Revised Selected Papers, pages
104–113, 2009.

[18] Noritaka Nishihara, Kenichi Morita, and Shigenori Iwata. An extended syllogistic system with verbs and
proper nouns, and its completeness proof. Systems and Computers in Japan, 21(1):760–771, 1990.

[19] Ian Pratt-Hartmann. Fragments of language. Journal of Logic, Language and Information, 13:207–223, 2004.
[20] Ian Pratt-Hartmann and Lawrence S. Moss. Logics for the relational syllogistic. Review of Symbolic Logic,

2(4):647–683, 2009.
[21] Johan van Benthem. Essays in Logical Semantics, volume 29 of Studies in Linguistics and Philosophy. D.

Reidel Publishing Co., Dordrecht, 1986.
[22] Erik Wennstrom. Tableau-based model generation for relational syllogistic logics. In International Symposium

on Artificial Intelligence and Mathematics, ISAIM 2014, Fort Lauderdale, FL, USA, January 6-8, 2014, 2014.

10

10

Some Thoughts About FOL-Translations in

Vampire

Giles Reger

University of Manchester, Manchester, U.K.
giles.reger@manchester.ac.uk

Abstract

It is a common approach when faced with a reasoning problem to translate that problem
into first-order logic and utilise a first-order automated theorem prover (ATP). One of
the reasons for this is that first-order ATPs have reached a good level of maturity after
decades of development. However, not all translations are equal and in many cases the
same problem can be translated in ways that either help or hinder the ATP. This paper
looks at this activity from the perspective of a first-order ATP (mostly Vampire).

1 Introduction

This paper looks at the common activity of encoding problems in first-order logic and running
an automated theorem prover (ATP) on the resulting formulas from the perspective of the
ATP. This paper focusses on the Vampire [30] theorem prover (available at https://vprover.
github.io/) but much of the discussion applies to other similarly constructed theorem provers
(e.g. E [46] and SPASS [51]).

Over the last few years we have been looking at the application of program analysis/verifi-
cation, the related encodings, and how Vampire can work with these encodings. In this paper I
also mention another setting where we have begun to do some work: working with logics more
expressive than first-order logic. This paper comes at the start of an activity to inspect the
first-order problems coming from translations involving these logics and considering how we can
make Vampire perform better on them.

Throughout the paper I use the terms encoding and translation reasonably interchangeably
and lazily. Sometimes the term translation makes more sense (we are moving from one for-
mally defined language to another) and sometimes encoding makes more sense (we are taking
a description of a problem and representing it in first-order logic).

This issue of different encodings have differing impacts on how easily a problem is solved
is well-known in the automated reasoning community. A standard example is the explosion in
conversion to CNF in SAT when not using the Tseitin encoding. The result is obviously bad
because it is much larger. In the setting of first-order theorem proving large inputs are also
bad but there are other (more subtle) ways in which an encoding can impact the effectiveness
of proof search.

The main points of this paper are as follows:

1. The way in which a problem is expressed can have a significant impact on how easy or
hard it is for an ATP to solve it and the causes of this go beyond the size of the translation

2. It is often non-obvious whether a translation will be good; we need experiments

3. Sometimes there is no best solution i.e. different encodings may be helpful in different
scenarios. In such cases it can be advantageous to move this choice within the ATP

1

ARQNL 2018 11 CEUR-WS.org/Vol-2095

Some thoughts about FOL-translations in Vampire Giles Reger

4. Sometimes the only solution is to extend the ATP with additional rules or heuristics to
make the ATP treat an encoding in the way we want it to be treated

This points are expanded (with examples) in the rest of the paper.
The rest of the paper is structured as follows. Section 2 describes the relevant inner workings

of Vampire that might have a significant impact on the way that it handles different encodings.
Section 3 reviews some encodings described in the literature. Section 4 attempts to make some
hints about things to consider when designing a representation of a problem in first-order in
logic. Section 5 gives some advice on how different encodings should be compared. Section 6
concludes.

2 The Relevant Anatomy of a First-Order ATP

In this section we review the main components of Vampire [30] that might affect how well it
handles different encodings. As mentioned above, Vampire shares some elements with other
well-known first-order theorem provers.

We consider multi-sorted first-order logic with equality as input to the tool. It will become
clear later that Vampire accepts extensions of this in its input, however its underlying logic
remains multi-sorted first-order logic with equality and extensions are (mostly) handled as
translations into this.

Usually, Vampire deals with the separate notions of axioms and conjecture (or goal). In-
tuitively, axioms formalise the domain of interest and the conjecture is the claim that should
logically follow from the axioms. The conjecture is, therefore, negated before we start the
search for a contradiction. Conjectures are captured by the TPTP input language but not by
the SMT-LIB input language where everything is an axiom.

2.1 Preprocessing

Vampire works with clauses. So before proof search it is necessary to transform input for-
mulas into this clausal form. In addition to this process there are a number of (satisfiability,
but not necessarily equivalence, preserving) optimisation steps. For more information about
preprocessing see [17, 43].

Clausification. This involves the replacement of existentially quantified variables by Skolem
functions, the expansion of equivalences, rewriting to negation normal form and then application
of associativity rules to reach conjunctive normal form. It is well know that this process can
lead to an explosion in the number of clauses.

Subformula naming. A standard approach to dealing with the above explosion is the naming
of subformulas (similar to the Tseitin encoding from SAT). This process is parametrised by a
threshold which controls at which point we choose to name a subformula. There is a trade-off
here between a (possible) reduction in the size and number of resulting clauses and restricting
the size of the signature. Later we will learn that large clauses and a large signature are both
detrimental for proof search.

Definition inlining. Vampire detects definitions at the formula and term level. The equiva-
lence p(X)↔ F [X] is a definition if p does not occur in formula F , similarly the unit equality

2

12

Some thoughts about FOL-translations in Vampire Giles Reger

Figure 1: Illustrating the Given Clause Algorithm.

f(X) = t is a definition if f does not appear in term t. Definitions may be inlined i.e. all oc-
currences of p or f are replaced by their definition. This reduces the size of the signature with
the cost of a potential increase in the size of clauses. Note that it can be quite easy to break
this notion of definition in encodings. For example, by introducing a guard to a definition.

Goal-based premise selection. Vampire can use a goal to make proof search more goal-
directed. The point here is that if an encoding does not explicitly highlight the goal we cannot
make use of these techniques. There are two techniques used in preprocessing. The first is SInE
selection [19] which heuristically selects a subset of axioms that are likely to be used in the
proof of the goal. Axioms are selected using a notion of closeness to the goal that is based on
whether they can be connected to the goal via their least common symbol. The second is the
set of support strategy [52] where clauses from the goal are put into a set of support and proof
search is restricted so that it only makes inferences with clauses in, or derived from, this set.

2.2 Saturation-Based Proof Search

After a clause set has been produced, Vampire attempts to saturate this set with respect to
some inference system I. The clause set is saturated if for every inference from I with premises
in S the conclusion of the inference is also added to S. If the saturated set S contains a
contradiction then the initial formulas are unsatisfiable. Otherwise, if I is a complete inference
system and, importantly, the requirements for this completeness have been preserved, then the
initial formulas are satisfiable. Finite saturation may not be possible and many heuristics are
employed to make finding a contradiction more likely.

To compute this saturation we use a set of active clauses, with the invariant that all infer-
ences between active clauses have been performed, and a set of passive clauses waiting to be
activated. The algorithm then iteratively selects a given clause from passive and performs all
necessary inferences to add it to active. The results of these inferences are added to passive
(after undergoing some processing). This is illustrated in Figure 1. An important aspect of this
process is clause selection. Clauses are selected either based on their age (youngest first) or
their weight (lightest first) with these two properties being alternated in some specified ratio.

A recent addition to this story is AVATAR [50, 40], which (optionally) performs clause
splitting using a SAT solver. The main point here is that the success of AVATAR is driven by
the observation that saturation-based proof search does not perform well with long or heavy
clauses. Therefore, encodings should avoid the introduction of such clauses. As an additional
point, AVATAR can only be utilised if the boolean structure of a problem is exposed at the
literal-level. For example, including a predicate implies with associated axioms would not play

3

13

Some thoughts about FOL-translations in Vampire Giles Reger

to AVATAR’s strengths.

2.3 Inference Rules

Vampire uses resolution and superposition as its inference system I [1, 34]. A key feature of this
calculus is the use of literal selection and orderings to restrict the application of inference rules,
thus restricting the growth of the clause sets. Vampire uses a Knuth-Bendix term ordering
(KBO) [23, 25, 32] which orders terms first by weight and then by symbol precedence whilst
agreeing with a multisubset ordering on free variables. The symbol ordering is taken as a
parameter but is relatively coarse in Vampire e.g. by order of occurrence in the input, arity,
frequency or the reverse of these. There has been some work beginning to explore more clever
things to do here [22, 38] but we have not considered treating symbols introduced by translations
differently (although they will appear last in occurrence).

Understanding this is important as some translations change symbols used in terms, which
can change where the term comes in the term ordering. Vampire makes use of both complete
and incomplete literal selection functions [18] which combine the notion of maximality in the
term ordering with heuristics such as selecting the literal with the least top-level variables.

Another very important concept related to saturation is the notion of redundancy. The idea
is that some clauses in S are redundant in the sense that they can be safely removed from S
without compromising completeness. The notion of saturation then becomes saturation-up-to-
redundancy [1, 34]. An important redundancy check is subsumption. A clause A subsumes B if
some subclause of B is an instance of A, in which case B can be safely removed from the search
space as doing so does not change the possible models of the search space S. The fact that
Vampire removes redundant formulas is good but if there is a lot of redundancy in the encoding
we can still have issues as this removal can be lazy (e.g. when using the discount saturation
loop that does not remove redundancies from the passive set).

Figure 2 gives a selection of inference rules used in Vampire. An interesting point can be
illustrated by examining the demodulation rule. This uses unit equalities to rewrite clauses
to replace larger terms by smaller terms. A similar, but more general, rewriting is performed
by superposition. Ordering restrictions in inference rules make proof search practical but, as I
comment later, can mean that the theorem prover does not treat encoded rules in the way that
we want.

2.4 Strategies and Portfolio Mode

Vampire is a portfolio solver [36]. It implements many different techniques and when solving
a problem it may use tens to hundreds of different strategies in a time-sliced fashion. Along
with the above saturation-based proof search method, Vampire also implements the InstGen
calculus [24] and a finite-model building through reduction to SAT [42]. In addition, Vampire
can be run in a parallel mode where strategies are distributed over a given number of cores.

This is important as Vampire can try different preprocessing and proof search parameters
in different strategies, meaning that it does not matter if a particular encoding does not work
well with one particular strategy. Furthermore, if Vampire is allowed to do the translation itself
then it can try multiple different translations during proof search.

2.5 Problem Characteristics that Matter

As summary, we can discuss the problem characteristics that matter. The main ones we usually
talk about are:

4

14

Some thoughts about FOL-translations in Vampire Giles Reger

Resolution Factoring

A ∨ C1 ¬A′ ∨ C2

(C1 ∨ C2)θ
, A ∨A′ ∨ C

(A ∨ C)θ
,

where, for both inferences, θ = mgu(A,A′) and A is not an equality literal

Superposition

l ' r ∨ C1 L[s]p ∨ C2

(L[r]p ∨ C1 ∨ C2)θ
or

l ' r ∨ C1 t[s]p ⊗ t′ ∨ C2

(t[r]p ⊗ t′ ∨ C1 ∨ C2)θ
,

where θ = mgu(l, s) and rθ 6� lθ and, for the left rule L[s] is not an equality literal,
and for the right rule ⊗ stands either for ' or 6' and t′θ 6� t[s]θ

EqualityResolution EqualityFactoring

s 6' t ∨ C
Cθ

, s ' t ∨ s′ ' t′ ∨ C
(t 6' t′ ∨ s′ ' t′ ∨ C)θ

,

where θ = mgu(s, t) where θ = mgu(s, s′), tθ 6� sθ, and t′θ 6� s′θ

Demodulation UnitResultingResolution

l ' r �����L[lθ] ∨ C
(L[rθ] ∨ C)θ

, C ∨A1 ∨ . . . An ¬B1 . . . ¬Bn
Cθ

,

where lθ � rθ where |C| ≤ 1 and θ =
⊔

mgu(Ai, Bi)

Figure 2: Selected inference rules.

• Number of resulting clauses. Clearly, if there are more clauses it will take longer to
process them initially. However, the number of clauses is a bad proxy for effort as a small
clause set can lead to many consequences, where a large clause set may have almost no
consequences at all.

• Size of resulting clauses. Long and heavy clauses lead to even longer and heavier clauses
when applying rules such as resolution. Some processes, such as subsumption checking,
are exponential in the length of a clause.

• Size of signature. In SAT-solving the relationship with the signature is clear as each sym-
bol represents a potential choice point. In saturation-based proof search we are effectively
trying to eliminate the literals in clauses until we get an empty clause. The combination
of clause selection and literal selection steers this process. The notion of maximality built
into literal selection means that ‘bigger’ symbols are preferred, driving proof search to ef-
fectively eliminate symbols in this order. So, like in SAT solving, the larger the signature
the more work we need to do.

5

15

Some thoughts about FOL-translations in Vampire Giles Reger

But as we can see from the discussions of literal selection in this paper, issues with encodings
can be more subtle than this.

3 Examples of Translations/Encodings

This section reviews some translations or encodings targeting first-order logic. I don’t attempt
to be exhaustive; in fact there are many well-established examples that I will have missed.

3.1 Simplifying things further

Not all ATPs can handle multi-sorted first-order logic with equality. There are methods that
can be used to remove things that are not supported or wanted.

Removing sorts. It is not always possible to simply drop sort information from problems as
the ‘size’ of different sorts may have different constraints [11]. Two proposed solutions are to
either guard the use of sorted variables by a sort predicate that indicates whether a variable is
of that sort (this predicate can be set to false in a model for all constants not of the appropriate
sort) or tag all values of a sort using a sort function for that sort (in a model the function
can map all constants to a constant of the given sort). Both solutions add a lot of clutter to
the signature although sort predicates add more as they also require the addition of axioms
for the sort predicates. Experimental evaluation [8, 42] concluded that the encodings can be
complementary. Similar techniques can be used for removing polymorphism [8]. An important
optimisation here is that we can simply drop sorts if they are monotonic [11].

Removing equality. Every atom t = s can be replaced by eq(t, s) with the addition of
axioms for reflexivity, symmetry, transitivity of eq and congruence of functions and predicates.
However, the result is not able to use the efficient superposition or demodulation rules. Vampire
optionally makes this transformation as in some cases it can aid proof search, in particular when
we do not require deep equality reasoning. It is necessary to remove equality when using InstGen
as this does not support equality.

Removing functions. A well known decidable fragment of first-order logic is the Bernays-
Schönfinkel fragment (also known as effectively propositional) where formulas contain no (non-
zero arity) function symbols (even after Skolemisation). If a problem fits in this fragment then
we obtain this useful property. For example, the problem of finding a finite model of a first-order
formula can be reduced to a sequence of effectively propositional problems [4].

3.2 Syntactic Extensions for Program Verification

A common setting where we see problems encoded in first-order logic is for program verification.
Tools such as Boogie [31] and Why3 [10] produce first-order proof obligations. There tend to
be common expressions in such obligations, such as if-then-else, which is why languages such
as TPTP [48, 49] and SMT-LIB [3] support these features. However, ATPs typically do not
support these features directly but via the following translations.

6

16

Some thoughts about FOL-translations in Vampire Giles Reger

Boolean sort. In first-order logic predicates are of boolean sort and functions are not. How-
ever, in programs we typically want to reason about boolean functions, which requires a first-
class boolean sort in the problem. This can be encoded in first-order logic (as explained in
the FOOL work [26, 28]) by the introduction of two constants true and false and two axioms
true 6= false and ∀x ∈ bool : x = true ∨ x = false. This second axiom is problematic as it will
unify with every boolean sorted term and assert that it is either true or false. To overcome
this we introduce a specialised inference rule that captures the desired behaviour without the
explosive nature [26].

If-then-else. Conditionals are a common construct in programs and it is important to model
them. This is often done by extending the syntax by a term of the form if b then s else t for a
boolean sorted term b and two terms of the same sort t and s. The question is then how this
should be translated to first-order logic. I discuss three alternatives. In each case we assume
we are given a formula containing an if-then-else term e.g. F [if b then s else t]. In the first case
we translate this formula into two formulas

b→ F [s] , ¬b→ F [t]

where b and its negation are used as guards. This has the disadvantage that it copies F . An
altnernative is to produce the three formulas

F [g(X)] , b→ g(X) = s , ¬b→ g(X) = t

where g is a fresh symbol and X are the free variables of the original if-then-else term. This
introduces a new symbol g. Finally, we could replace the formula by F [iteτ (b, s, t)], where ite
is a fixed function symbol of the sort bool × τ × τ → τ , and add the general axioms

(X = true)→ iteτ (X, s, t) = s , (X = false)→ iteτ (X, s, t) = t

capturing the intended behaviour of iteτ . This only introduce a pair of axioms per set of
if-then-else expressions with the same resultant sort.

We now have three different translations and the question is: which should we use? There
are various observations we can make at this point. The first translation copies F , which may
lead to many more clauses being introduced if F is complex. However, it does not extend the
signature, whilst the second two translations do. The last translation introduces some axioms
that are likely to be quite productive during proof search. We should also think about what we
want to happen here; ideally the guards will be evaluated first and then the rest of the expression
either selected or thrown away. Recall that literal selection is the mechanism for choosing which
part of a clause is explored next. In general, literal selection prefers heavier literals that are
more ground and dislikes positive equalities. Therefore, in the second translation it is likely
that the guards will be evaluated before the equalities. In general, it is likely that the guard
will be simpler than the conditional body and therefore the first translation is likely to not do
what we want. However, it is difficult to draw conclusions from this; as discussed at the end
of this paper, we should really run some experiments to see. Note that currently Vampire will
pick between the first two depending on the subformula naming threshold [27].

Next state relations. Recent work [12] has used a tuple-based let-in expression to encode
next-state relations of loop-free imperative programs. These tuple-based let-in expressions are
then translated into clausal form by introducing names for the bound functions [26] and relevant
axioms for the tuples (if required). The point of this translation was to avoid translation to

7

17

Some thoughts about FOL-translations in Vampire Giles Reger

single static assignment form as is often done in translations of imperative programs [2]. The
reason to avoid such a form is that it drastically increases the size of the signature. Another
benefit of this work is that we can translate loop-free imperative programs directly into first-
order logic, allowing Vampire to take such programs directly in its input.

3.3 Proofs about Programming Languages

Recent work [15, 14] has used ATPs to aid in establishing soundness properties of type systems.
The idea is to translate a language specification and an ‘exploration task’ into first-order logic.
They define and evaluate 36 different compilation strategies for producing first-order problems.

The most interesting observation to make about this work is that they reinvent a number
of encodings and fail to take advantage of the encodings that already exist within ATPs. For
example, they consider if-then-else and let-in expressions but do not encode these in the TPTP
format but choose their own encodings. In this case they make the first choice for encoding
conditionals given above and they choose an alternative way to capture let-in expressions. They
also explore the inlining of definitions in their encoding, a step that Vampire already takes in
preprocessing. Even though they were able to use more contextual information to decide when
to inline, they found that their inlining had minimal impact on performance.

A positive point about this work is that they made a thorough comparison of the different
encodings, although some of the suggested encodings were likely to hinder rather than help the
ATP. In particular, those that remove information from the problem.

3.4 Higher-Order Logic

Many of the automated methods for reasoning in higher-order logic work via (a series of)
encodings into first-order logic. Well-known examples are the Sledgehammer tool [9, 35] and
Leo III [47]. The translation of higher-order logic to first-order logic has been well studied
[33]. In the translation it is necessary to remove three kinds of higher-order constructs and we
discuss the standard translation for removing these here.

Handling partial application and applied variables. In higher-order formulas it is possi-
ble to partially apply function symbols, which means that we cannot use the standard first-order
term structure. The standard solution is to use the so-called applicative form. The general idea
is to introduce a special app symbol (per pair of sorts in the multi-sorted setting). An applica-
tion st is then translated as app(s, t). This also addresses the issue that higher-order formulas
can contain applied variables e.g. ∃f.∀x.f(x) = x now becomes ∃f.∀x.app(f, x) = x.

Whilst this translation is correct it also adds a lot of clutter to clauses that causes problems
for proof search. One example of this is in literal selection as applicative form can change
the notion of maximal literal. For example, the literal g(a) = a will be maximal in clause
f(a) = a∨g(b) = b if g � f in the symbol ordering. However, in appτ1(f, a) = a∨appτ2(g, b) = b
the maximal literal depends on the ordering of appτ1 and appτ2 , which cannot consistently agree
with the symbol ordering (consider h of sort τ1 such that h � g). As a result, it seems likely
that the number of maximal literals in clauses will significantly increase. Additionally, literal
selection heuristics often consider the number of ‘top’ variables of a literal but the applicative
form changes the height of variables in terms. Finally, the applicative form can decrease the
efficiency of term indexing as (i) these often use function symbols to organise the tree but these
have been replaced, and (ii) terms are larger making the indices larger.

8

18

Some thoughts about FOL-translations in Vampire Giles Reger

However, the applicative form is only needed for supporting partial application and applied
variables. If neither are used in a problem then it is not needed (although note that the
combinator translation discussed below for λ-expressions introduces applied variables).

Removing λ-expressions. The standard approach to removing λ-expressions is rewriting
with Turner combinators [33] and the addition of axioms defining these combinators. The
translation itself can lead to very large terms, which can be mitigated by the introduction of
additional axioms at the cost of further axioms and extensions to the signature. An alternative
is λ-lifting which introduces new function symbols for every nested λ-expression, which again
can significantly increase the size of the signature. To avoid combinator axioms cluttering proof
search we have begun to explore replacing these with (incomplete) inference rules emulating
their behaviour [6].

Translating logical operators. It is sometimes necessary to translate logical operators oc-
curring inside λ-expressions (other embedded logical operators can be lifted via naming). These
must then be specified by axioms e.g. OR could be defined by

app(app(OR, x), y) = true ⇐⇒ X = true ∨ Y = true

which produces the clauses

app(app(OR, X), Y) = false ∨ X = true ∨ Y = true
app(app(OR, X), Y) = true ∨ X = false
app(app(OR, X), Y) = true ∨ Y = false

Alternatively, the last clause could be dropped and replaced by

app(app(OR, X), Y) = app(app(OR, Y), X)

The non-orientability of this last equality suggests that it would be too productive. Finally,
whilst it seems most natural to introduce an equivalence, we would not typically need to reason
in the other direction and it could be interesting to see how necessary the first clause is.

3.5 Other Logics

As we have seen from the previous example, a common activity is to consider other logics as
(possibly incomplete) embeddings into first-order logic. In all cases, an interesting direction of
research will be to inspect the kinds of problems produced and consider whether the encoding
or ATP could be improved.

Translations via higher-order logic. Many non-classical logics, included quantified multi-
modal logics, intuitionistic logic, conditional logics, hybrid logic, and free logics can be encoded
in higher-order logic [5, 13].

Ontology Languages. In this setting it is more typical to use optimised reasoners for decid-
able logics. However, some work has looked at translating these logics into first-order logic and
employing an ATP. As two examples, Schneider and Sutcliffe [45] give a translation of OWL 2
Full into first-order logic and Horrocks and Voronkov [20] translate the KIF language. In both
cases the translations allowed ATPs to solve difficult problems but it was not clear whether
they were in any sense optimal.

9

19

Some thoughts about FOL-translations in Vampire Giles Reger

Propositional Modal Logic. There exists a standard relational encoding of certain proposi-
tional modal logics into first-order logic where the accessibility relation is given as a predicate R
and relational correspondence properties are captured as additional axioms. To combat certain
deficiencies in this translation, a functional translation method was introduced with different
variations [21]. One observation here is that many of the relational correspondence properties
are not friendly for proof search and it may be interesting to explore specific ATP extensions
that could help with such translations.

4 Improving a Translation

When thinking about translations of problems to first-order logic there are things that can be
done to improve ATP performance within the translation and there are things that can only be
done within the ATP. I discuss both sets of improvements here.

4.1 What Can be Controlled in an Encoding

The following describes some things to watch out for when designing a translation.

Throwing things away. A common mistake in encodings is to throw away information
that the theorem prover can use in proof search. An obvious example of this is performing
Skolemisation and dropping information about which function symbols are Skolem functions –
in some applications, e.g. inductive theorem proving, such Skolem constants play a special role
in proof search. Another example is dropping information about which formula is the goal. A
more subtle example of this is to perform subformula naming before passing the problem to
Vampire. In this case the original structure is lost and it is not possible for Vampire to choose
to name fewer subformulas. Recall that an advantage of the strategy scheduling structure of
Vampire is that it can try out various different preprocessing steps. In general, if an ATP can
perform a preprocessing step then it should be given the option to.

Not adding what is helpful. Quite often there is some information about a problem that
may not affect the solvability of the problem but can be useful in improving the performance of
the solver. An obvious example is in the translation of the problem of finding first-order models
to EPR [4]. In this translation there are a number of symmetries that are known during the
translation but that would be expensive to recover after the fact. Failing to add these gives the
solver unnecessary work to do. Another example would be failing to exclude (sets of) axioms
that are known to have no relation to the current goal – something that may be known when
generating the problem but can be difficult to determine by the ATP.

4.2 What Needs ATP Support

Here I discuss some issues with translations that require ATP support to handle.

Exploding axioms. It is quite common to include an axiomitisation of some theory that is
included in the problem but only needed a little bit in proof search. It is also common for these
axioms to be explosive, in the sense that they generate a lot of unnecessary consequences in
the search space. A typical example would be axioms for arithmetic, or even for equality. We
have already seen an example with this when encoding the boolean sort.

10

20

Some thoughts about FOL-translations in Vampire Giles Reger

One ATP-based solution to this that we have explored [39, 7] is to identify such axioms and
limit the depth to which these axioms can interact. This is effectively the same as precomputing
the set of consequences of the axioms up to a certain size but happens dynamically at proof
search so may not require the full set. An alternative ATP-based solution is to capture the
rules represented by the axioms as additional inference rules.

Rewriting the wrong way. Sometimes rules may not do what we want them to do. For
example, the following rule for set extensionality

(∀x)(∀y)(((∀e)(e ∈ y ↔ e ∈ y))→ x = y)

will be clausified as

f(x, y) 6∈ x ∨ f(x, y) 6∈ y ∨ x = y

which is correct but will not be treated in the way we want by the ATP. Literal selection prefers
larger literals and dislikes (positive) equalities. Therefore, the literal x = y will not be selected.
However, given the goal a 6= b for sets a and b we want this to unify with x = y to generate
the necessary subgoals. The rewrite rule is oriented the wrong way. This can also happen with
implications or equalities where we want to rewrite something small into something big.

One ATP-based solution is to introduce specific rules to handle special cases. For example,
in the case of extensionality Vampire includes the inference rule [16]

x ' y ∨ C s 6' t ∨D
C{x 7→ s, y 7→ t} ∨D

,

where x ' y ∨ C is identified as an extensionality clause.

Finding the goal. As mentioned previously, preprocessing and proof search can benefit from
knowing what the goal of a problem is. Ideally the translation preserves this but the ATP can
also attempt to guess the goal based on the location of axioms in the input problem and the
frequency of symbols occurring in different parts of the problem [37].

Changing the translation. It can be possible to detect cases where an alternative encoding
may be preferable and switch to that encoding via a further translation step. For example, some
work [44] in the CVC4 SMT solver looked at identifying datatypes encoding natural numbers
and translating these to guarded usage of integers, which the solver has better support for.

Supporting multiple encodings. Ultimately we may want to try various encodings via the
strategy scheduling approach. However, if the ATP cannot understand the original problem then
it cannot natively support these encodings. The solution here is to extend the input language
of the ATP such that it supports additional features that allow the different encodings to take
place. This is what we have done with our work on programs [12] and datatypes [29].

5 Comparing Encodings

It is generally hard to evaluate the addition of a new feature to a first-order ATP [41]. The
same can be said for encodings. Here I give a few thoughts about how to go about it:

11

21

Some thoughts about FOL-translations in Vampire Giles Reger

1. Actually do it. Without experiments it is impossible to draw any real conclusions. A
corollary here is don’t rely on properties of the output of the encoding that you assume are
good proxies for performance e.g. the number of resulting clauses. Whilst bigger problems
can pose a problem for ATPs, there are many small (< 50 clauses) problems that ATPs
find very challenging.

2. Use portfolio mode. The encoding may require certain preprocessing or proof search
parameters to be switched on (or off) to be effective. Running in a single mode may
miss this and the wrong conclusion may be drawn. Furthermore, the encoding may react
positively to multiple different strategies and similarly, without portfolio mode this will
be missed. A corollary here is to look at the strategies actually used to solve problems
and see if there are any common patterns.

3. Don’t use portfolio mode. The portfolio modes in a solver are tuned to the current options
and assumptions about input problems. They are usually slightly over-fitted. Perhaps
the parameter option needed for your encoding is not included. The obvious solution is
to search the parameter space for the optimal combination of parameters for a particular
encoding. This is what we often do in Vampire but it is very expensive.

4. Think about the resources. Do the input problems reflect what you care about; often it is
easy to come up with pathological bad cases but optimising for these often makes little
practical difference. Is the time limit sensible; for portfolio mode allow minutes (I use 5)
and for single strategies allow seconds (I use 10 to 30) but use cases vary. The point here
is whether the results reflect actual usage for the problem being targeted – one encoding
may work better than another for cases that you don’t care about.

6 Conclusion

In this paper I aimed to give some thoughts about the activity of translating problems into
first-order logic. My main conclusion is that for some encodings we need ATP support, and
this is what we are trying to provide in Vampire. If you want help extending Vampire for a
particular encoding please contact me.

References

[1] L. Bachmair and H. Ganzinger. Resolution theorem proving. In A. Robinson and A. Voronkov,
editors, Handbook of Automated Reasoning, volume I, chapter 2, pages 19–99. Elsevier Science,
2001.

[2] Michael Barnett and K. Rustan M. Leino. To goto where no statement has gone before. In
Verified Software: Theories, Tools, Experiments, Third International Conference, VSTTE 2010,
Edinburgh, UK, August 16-19, 2010. Proceedings, pages 157–168, 2010.

[3] Clark Barrett, Aaron Stump, and Cesare Tinelli. The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org, 2010.

[4] Peter Baumgartner, Alexander Fuchs, Hans de Nivelle, and Cesare Tinelli. Computing finite
models by reduction to function-free clause logic. Journal of Applied Logic, 7(1):58 – 74, 2009.
Special Issue: Empirically Successful Computerized Reasoning.

[5] Christoph Benzmüller and Lawrence C Paulson. Multimodal and intuitionistic logics in simple
type theory. Logic Journal of IGPL, 18(6):881–892, 2010.

12

22

Some thoughts about FOL-translations in Vampire Giles Reger

[6] Ahmed Bhayat and Giles Reger. Higher-order reasoning vampire style. In 25th Automated Rea-
soning Workshop, page 19, 2018.

[7] Ahmed Bhayat and Giles Reger. Set of support for higher-order reasoning. In PAAR 2018, 2018.

[8] J. C. Blanchette, S. Böhme, A. Popescu, and N. Smallbone. Encoding monomorphic and poly-
morphic types. In Proceedings of the 19th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS 2013), 2013.

[9] Jasmin Christian Blanchette, Sascha Böhme, and Lawrence C. Paulson. Extending sledgehammer
with SMT solvers. J. Autom. Reasoning, 51(1):109–128, 2013.

[10] Franois Bobot, Jean christophe Fillitre, Claude March, and Andrei Paskevich. Why3: Shepherd
your herd of provers. In In Workshop on Intermediate Veri cation Languages, 2011.

[11] Koen Claessen, Ann Lillieström, and Nicholas Smallbone. Sort it out with monotonicity - trans-
lating between many-sorted and unsorted first-order logic. In Automated Deduction - CADE-23
- 23rd International Conference on Automated Deduction, Wroclaw, Poland, July 31 - August 5,
2011. Proceedings, pages 207–221, 2011.

[12] Laura Kovcs Evgenii Kotelnikov and Andrei Voronkov. A FOOLish encoding of the next state
relations of imperative programs. In IJCAR 2018, 2018.

[13] Tobias Gleißner, Alexander Steen, and Christoph Benzmüller. Theorem provers for every normal
modal logic. In LPAR-21, 21st International Conference on Logic for Programming, Artificial
Intelligence and Reasoning, Maun, Botswana, May 7-12, 2017, pages 14–30, 2017.

[14] Sylvia Grewe, Sebastian Erdweg, and Mira Mezini. Using vampire in soundness proofs of type
systems. In Proceedings of the 1st and 2nd Vampire Workshops, Vampire@VSL 2014, Vienna,
Austria, July 23, 2014 / Vampire@CADE 2015, Berlin, Germany, August 2, 2015, pages 33–51,
2015.

[15] Sylvia Grewe, Sebastian Erdweg, André Pacak, Michael Raulf, and Mira Mezini. Exploration of
language specifications by compilation to first-order logic. Sci. Comput. Program., 155:146–172,
2018.

[16] Ashutosh Gupta, Laura Kovcs, Bernhard Kragl, and Andrei Voronkov. Extensional crisis and
proving identity. In Franck Cassez and Jean-Franois Raskin, editors, Automated Technology for
Verification and Analysis, volume 8837 of Lecture Notes in Computer Science, pages 185–200.
Springer International Publishing, 2014.

[17] Krystof Hoder, Zurab Khasidashvili, Konstantin Korovin, and Andrei Voronkov. Preprocessing
techniques for first-order clausification. In Formal Methods in Computer-Aided Design, FMCAD
2012, Cambridge, UK, October 22-25, 2012, pages 44–51, 2012.

[18] Kryštof Hoder, Giles Reger, Martin Suda, and Andrei Voronkov. Selecting the selection. In Nicola
Olivetti and Ashish Tiwari, editors, Automated Reasoning: 8th International Joint Conference,
IJCAR 2016, Coimbra, Portugal, June 27 – July 2, 2016, Proceedings, pages 313–329, Cham,
2016. Springer International Publishing.

[19] Krystof Hoder and Andrei Voronkov. Sine qua non for large theory reasoning. In Automated
Deduction - CADE-23 - 23rd International Conference on Automated Deduction, Wroclaw, Poland,
July 31 - August 5, 2011. Proceedings, pages 299–314, 2011.

[20] Ian Horrocks and Andrei Voronkov. Reasoning support for expressive ontology languages using a
theorem prover. In Proceedings of the 4th International Conference on Foundations of Information
and Knowledge Systems, FoIKS’06, pages 201–218, Berlin, Heidelberg, 2006. Springer-Verlag.

[21] Ullrich Hustadt and Renate A. Schmidt. MSPASS: Modal reasoning by translation and first-order
resolution. In Roy Dyckhoff, editor, Automated Reasoning with Analytic Tableaux and Related
Methods, pages 67–71, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

[22] Jan Jakubuv, Martin Suda, and Josef Urban. Automated invention of strategies and term orderings
for vampire. In GCAI 2017, 3rd Global Conference on Artificial Intelligence, Miami, FL, USA,
18-22 October 2017., pages 121–133, 2017.

[23] D. Knuth and P. Bendix. Simple word problems in universal algebras. In J. Leech, editor,

13

23

Some thoughts about FOL-translations in Vampire Giles Reger

Computational Problems in Abstract Algebra, pages 263–297. Pergamon Press, Oxford, 1970.

[24] Konstantin Korovin. Inst-Gen – A Modular Approach to Instantiation-Based Automated Rea-
soning. In Andrei Voronkov and Christoph Weidenbach, editors, Programming Logics: Essays in
Memory of Harald Ganzinger, pages 239–270, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[25] Konstantin Korovin and Andrei Voronkov. Orienting rewrite rules with the Knuth–Bendix order.
Inf. Comput., 183(2):165–186, June 2003.

[26] Evgenii Kotelnikov, Laura Kovács, Giles Reger, and Andrei Voronkov. The vampire and the
FOOL. In Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs,
CPP 2016, pages 37–48. ACM, 2016.

[27] Evgenii Kotelnikov, Laura Kovács, Martin Suda, and Andrei Voronkov. A clausal normal form
translation for FOOL. In GCAI 2016. 2nd Global Conference on Artificial Intelligence, September
19 - October 2, 2016, Berlin, Germany, pages 53–71, 2016.

[28] Evgenii Kotelnikov, Laura Kovács, and Andrei Voronkov. A first class boolean sort in first-order
theorem proving and TPTP. In Intelligent Computer Mathematics - International Conference,
CICM 2015, Washington, DC, USA, July 13-17, 2015, Proceedings, pages 71–86, 2015.

[29] Laura Kovács, Simon Robillard, and Andrei Voronkov. Coming to terms with quantified reasoning.
In Giuseppe Castagna and Andrew D. Gordon, editors, Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017, Paris, France, January 18-20,
2017, pages 260–270. ACM, 2017.

[30] Laura Kovács and Andrei Voronkov. First-order theorem proving and Vampire. In CAV 2013,
volume 8044 of LNCS, pages 1–35, 2013.

[31] K. Rustan M. Leino and Philipp Rümmer. A polymorphic intermediate verification language:
Design and logical encoding. In Proceedings of the 16th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, TACAS’10, pages 312–327, Berlin, Hei-
delberg, 2010. Springer-Verlag.

[32] Michel Ludwig and Uwe Waldmann. An extension of the Knuth-Bendix ordering with LPO-like
properties. In Logic for Programming, Artificial Intelligence, and Reasoning, 14th International
Conference, LPAR 2007, Yerevan, Armenia, October 15-19, 2007, Proceedings, pages 348–362,
2007.

[33] Jia Meng and Lawrence C. Paulson. Translating higher-order clauses to first-order clauses. Journal
of Automated Reasoning, 40(1):35–60, Jan 2008.

[34] R. Nieuwenhuis and A. Rubio. Paramodulation-based theorem proving. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chapter 7, pages 371–443.
Elsevier Science, 2001.

[35] Lawrence C. Paulson and Jasmin Christian Blanchette. Three years of experience with sledge-
hammer, a practical link between automatic and interactive theorem provers. In Geoff Sutcliffe,
Stephan Schulz, and Eugenia Ternovska, editors, IWIL 2010. The 8th International Workshop on
the Implementation of Logics, volume 2 of EPiC Series in Computing, pages 1–11. EasyChair,
2012.

[36] Michael Rawson and Giles Reger. Dynamic strategy priority: Empower the strong and abandon
the weak. In PAAR 2018, 2018.

[37] Giles Reger and Martin Riener. What is the point of an smt-lib problem? In 16th International
Workshop on Satisfiability Modulo Theories, 2018.

[38] Giles Reger and Martin Suda. Measuring progress to predict success: Can a good proof strategy
be evolved? AITP 2017, 2017.

[39] Giles Reger and Martin Suda. Set of support for theory reasoning. In IWIL Workshop and LPAR
Short Presentations, volume 1 of Kalpa Publications in Computing, pages 124–134. EasyChair,
2017.

[40] Giles Reger, Martin Suda, and Andrei Voronkov. Playing with AVATAR. In P. Amy Felty and
Aart Middeldorp, editors, Automated Deduction - CADE-25: 25th International Conference on

14

24

Some thoughts about FOL-translations in Vampire Giles Reger

Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings, pages 399–415, Cham,
2015. Springer International Publishing.

[41] Giles Reger, Martin Suda, and Andrei Voronkov. The challenges of evaluating a new feature in
Vampire. In Laura Kovács and Andrei Voronkov, editors, Proceedings of the 1st and 2nd Vampire
Workshops, volume 38 of EPiC Series in Computing, pages 70–74. EasyChair, 2016.

[42] Giles Reger, Martin Suda, and Andrei Voronkov. Finding finite models in multi-sorted first-order
logic. In Nadia Creignou and Daniel Le Berre, editors, Theory and Applications of Satisfiability
Testing – SAT 2016: 19th International Conference, Bordeaux, France, July 5-8, 2016, Proceed-
ings, pages 323–341. Springer International Publishing, 2016.

[43] Giles Reger, Martin Suda, and Andrei Voronkov. New techniques in clausal form generation. In
Christoph Benzmüller, Geoff Sutcliffe, and Raul Rojas, editors, GCAI 2016. 2nd Global Conference
on Artificial Intelligence, volume 41 of EPiC Series in Computing, pages 11–23. EasyChair, 2016.

[44] Andrew Reynolds and Viktor Kuncak. Induction for SMT solvers. In Verification, Model Check-
ing, and Abstract Interpretation - 16th International Conference, VMCAI 2015, Mumbai, India,
January 12-14, 2015. Proceedings, pages 80–98, 2015.

[45] Michael Schneider and Geoff Sutcliffe. Reasoning in the OWL 2 full ontology language using
first-order automated theorem proving. In Nikolaj Bjørner and Viorica Sofronie-Stokkermans,
editors, Automated Deduction – CADE-23, pages 461–475, Berlin, Heidelberg, 2011. Springer
Berlin Heidelberg.

[46] S. Schulz. E — a brainiac theorem prover. 15(2-3):111–126, 2002.

[47] Alexander Steen and Christoph Benzmüller. The higher-order prover Leo-III. CoRR,
abs/1802.02732, 2018.

[48] Geoff Sutcliffe. The TPTP problem library and associated infrastructure. J. Autom. Reasoning,
43(4):337–362, 2009.

[49] Geoff Sutcliffe and Evgenii Kotelnikov. TFX: The TPTP extended typed first-order form. In
PAAR 2018, 2018.

[50] Andrei Voronkov. AVATAR: The architecture for first-order theorem provers. In Armin Biere and
Roderick Bloem, editors, Computer Aided Verification, volume 8559 of Lecture Notes in Computer
Science, pages 696–710. Springer International Publishing, 2014.

[51] C. Weidenbach. Combining superposition, sorts and splitting. In A. Robinson and A. Voronkov,
editors, Handbook of Automated Reasoning, volume II, chapter 27, pages 1965–2013. Elsevier
Science, 2001.

[52] Lawrence Wos, George A. Robinson, and Daniel F. Carson. Efficiency and completeness of the set
of support strategy in theorem proving. J. ACM, 12(4):536–541, October 1965.

15

25

Pseudo-Propositional Logic
Ahmad-Saher Azizi-Sultan

Taibah University, Medinah Munawwarah, Saudi Arabia
sultansaher@hotmail.com

Abstract
Propositional logic is the main ingredient used to build up SAT solvers which have gradually

become powerful tools to solve a variety of important and complicated problems such as planning,
scheduling, and verifications. However further uses of these solvers are subject to the resulting com-
plexity of transforming counting constraints into conjunctive normal form (CNF). This transforma-
tion leads, generally, to a substantial increase in the number of variables and clauses, due to the
limitation of the expressive power of propositional logic. To overcome this drawback, this work ex-
tends the alphabet of propositional logic by including the natural numbers as a means of counting
and adjusts the underlying language accordingly. The resulting representational formalism, called
pseudo-propositional logic, can be viewed as a generalization of propositional logic where counting
constraints are naturally formulated, and the generalized inference rules can be as easily applied and
implemented as arithmetic.

1 Introduction
During the last few decades SAT solvers have gained considerable advances and become a tool suitable
for attacking more and more practical problems arising in different areas such as formal verification
[1, 2, 12], planning [9, 11], scheduling [8], etc. Most of these solvers, if not all, are a variety of Davis-
Putnam-Logemann-Loveland (DPLL) algorithm [4, 5] which is based on blind branch and backtrack
techniques that explore the search space exhaustively until a solution is found. As SAT is one of the
canonical NP-complete problems [3], generally any exhaustive search algorithm results in impractical
excessive time complexity.

In order to reduce the size of the search tree, modern SAT solvers such as Chaff, BerkMin, and
MiniSAT have equipped the DPLL algorithm with pruning techniques known as backjumping, conflict-
driven lemma learning, and restarts [6, 7, 10]. Although these techniques were able to reduce the search
space, the major drawback of having blind control over the search process remains.

To mine solutions efficiently, there is a need for a tool that could scan over the search field and detect
the spots that potentially contain solutions. Unfortunately, the limited expressive power of propositional
logic does not allow for such a tool to be built-in. Furthermore, the input of SAT solvers is, usually,
a formula in its CNF. However, many applications contain counting constraints and transforming these
constraints into CNF generally leads to a substantial increase in the number of variables and clauses.
This is again due to the lack of expressive tools in the underlying propositional language.

This work takes the liberty to extend the alphabet of propositional logic by including the natural
numbers as a means of counting and adjusts the underlying language accordingly. The resulting rep-
resentational formalism, which we can conveniently agree to call pseudo-propositional logic, may be
viewed as a generalization of propositional logic, where counting constraints are naturally formulated
and at the same time the Boolean nature of the propositional variables is kept preserved. This allows
for encoding counting constraints as well as SAT instances much more compact than if it is encoded
using CNF. Furthermore, the generalized inference rules are as easily applied and implemented as arith-
metic. In such a case, equipping backtracking procedures with some combinatorial techniques allows
for assigning truth values to a variety of propositional variables simultaneously. This leads to easily
detecting the branches of the search tree that possibly contain solutions, or at least prune the useless
ones, allowing for possible improvement in terms of calculation complexity.

ARQNL 2018 26 CEUR-WS.org/Vol-2095

Pseudo-Propositional Logic Azizi-Sultan

2 Language
Definition 1. Let P = {p,q, · · ·} be a finite or countably infinite set of propositional symbols and N
be the natural numbers. The alphabet A underlying the language of pseudo-propositional formulas is
defined as A = P ∪N∪{¬,+,(,)}, where {¬,+,(,)} resemble the negation, addition, opening and
closing punctuation symbols, respectively.

Definition 2. The language or formulas of pseudo-propositional logic, symbolized by F , is defined
recursively as follows:

• If p ∈P and n ∈ N then np ∈F , called prime formula.

• If α,β ∈F , then (α +β), ¬α ∈F .

A prime formula or its negation is called a literal. A formula which is a literal or an addition of two
or more literals is said to be in normal form. A subformula of a formula α is a substring occurring in α ,
which is itself a formula.

Before proceeding further, let us agree upon the following two conventions to ease readability:

• Propositional variables or symbols will be denoted by p,q, . . . , formulas by α,β ,ϕ, . . . , set of
formulas by F,G, . . . , and set of queries, which will be defined in section 4, by FFF ,GGG, . . . , where
these letters may also be indexed.

• As in arithmetical terms, parenthesis are omitted whenever it is possible.

3 Semantics
A proposition can have only one of the truth values, true or false. Conveniently to the context of this
work, these values are represented by (1,0) for true and (0,1) for false. More formally, this is rephrased
by the definition of interpretation.

Definition 3. An interpretation I is a subset of P represented by the mapping φ : P →{(1,0),(0,1)}
which is defined as follows:

φ(p) =

{
(1,0) if p ∈ I,
(0,1) if p /∈ I.

Thus, the interpretation I is the subset of P containing only those propositional symbols that are mapped
to (1,0) under φ . That is

I = {p ∈P |φ(p) = (1,0)}. (1)

Recursively, the mapping φ can be extended to become from the set of formulas F to M = Z2

which is the meaning set in the context of pseudo-propositional logic. In order to do so the following
two functions are prerequisites:

• Negation ¬∗ : M →M where ¬∗(n,m) = (m,n).

• Addition1 + : M ×M →M , where +((n,m),(k, l)) = (n+ k,m+ l).

Yet every interpretation I defines recursively its own mapping I : F →M as follows:

1This addition is easily distinguished from the addition of formulas in definition 1.

2

27

Pseudo-Propositional Logic Azizi-Sultan

1) Recursion base. Recall that if ϕ is an atom then ϕ = n p for some n∈N and p∈P . Consequently
the recursion base reads

I(ϕ) = I(n p) = nφ(p).

2) Recursion steps.

I(α) =

{
¬∗(I(β)) if α is of the form ¬β ,
I(β1)+ I(β2) if α is of the form β1 +β2.

After assigning meanings to formulas, one can investigate how formulas are related to each other
according to their meanings.

Definition 4. Two formulas α and β are equivalent, in symbols α ≡ β , iff I(α) = I(β) for every
interpretation I.

Example 1. For any α, β ∈F , it is obvious that α +β ≡ β +α and ¬¬α ≡ α .

Proposition 1. For any α, β ∈F , the equivalence ¬(α +β)≡ ¬α +¬β holds.

Proof. Given an interpretation I suppose that I(α) = (n, l) and I(β) = (m,k).

I(¬(α +β)) = ¬∗ I(α +β) = ¬∗(I(α)+ I(β)) = ¬∗((n, l)+(m,k))

= ¬∗(n+m, l + k) = (l + k,n+m).

On the other hand,

I(¬α +¬β) = I(¬α)+ I(¬β) = ¬∗I(α)+¬∗I(β)) = ¬∗(n, l)+¬∗(m,k)

= (l,n)+(k,m) = (l + k,n+m).

Thus I(¬(α +β)) = I(¬α +¬β) for any given interpretation I.

Proposition 2. If p ∈P and n,m ∈ N then (n p+m p)≡ (n+m)p.

Proof. Let I be an interpretation then,

I(np+mp) = I(np)+ I(mp) = nφ(p)+mφ(p) = (n+m)φ(p) = I((n+m)p).

Obviously, ≡ is an equivalence relation. Moreover, it is a congruence relation on F , i.e., for all
α1,α2,β1,β2 ∈F ,

α1 ≡ α2,β1 ≡ β2⇒¬α1 ≡ ¬α2,α1 +β1 ≡ α2 +β2. (2)

For this reason the replacement theorem holds. It enables one to substitute a subformula β , of a formula
α , by an equivalent one without altering the meaning of α . If we let α [β1/β2] denote the formula that
is obtained from α by substituting every occurrence of β1 by β2, the replacement theorem becomes as
follows:

Theorem 1. If the formulas β1 and β2 are equivalent, so are α and α [β1/β2].

3

28

Pseudo-Propositional Logic Azizi-Sultan

Proof by induction on α . Suppose α is a prime formula. Then, for both cases α = β1 and α 6= β1
we clearly have α ≡ α [β1/β2]. Now let α = α1 +α2. If α = β1 then trivially α ≡ α [β1/β2] holds.
Otherwise α [β1/β2] = α1 [β1/β2]+α2 [β1/β2]. By the induction hypothesis we have α1 ≡ α1 [β1/β2]
and α2 ≡ α2 [β1/β2]. According to the congruence property 2 one concludes that

α = (α1 +α2)≡ α1 [β1/β2]+α2 [β1/β2] = α [β1/β2] .

The induction steps for ¬ follows analogously.

Taking into account that one can eliminate all negation signs except those in front of prime formulas
by Proposition 1, the replacement theorem transforms every formula into an equivalent one which is a
normal form. This is actually interesting from an implementational point of view, as efficiency might be
gained by restricting the inference rules to the mentioned normal form.

After assigning meaning to formulas and seeing how they are related, it is time to consider counting
constraints which are represented by queries defined in the upcoming section.

4 Queries and Models
Definition 5. For a given formula ϕ ∈F and an n ∈N, in pseudo-propositional logic we are interested
in finding an answer to the query: is there an interpretation I such that I(ϕ) = (m, l) where m≥ n. Every
formula ϕ combined with a natural number n forms a query ϕ(n). The set of all possible queries is
denoted by Q. That is Q = {ϕ(n) : ϕ ∈F ,n ∈ N}.

Having defined queries, modelling becomes straightforward. Simply, it defines relations between
interpretations and queries.

Definition 6. It is said that an interpretation I is a model for a query ϕ(n), in symbols I |= ϕ(n), iff
I(ϕ) = (n̄, l) with n̄≥ n. Considering a set of queries QQQ, it is said that I is a model for QQQ, and symbolised
by I |= QQQ, iff I |= ϕ(n) for every query ϕ(n) ∈ QQQ.

It is time now to start reasoning which is as easy as arithmetic. The coming proposition is an ideal
example of reasoning in pseudo-propositional logic.

Proposition 3. Let α(n),ϕ(m) ∈ Q. If I is an interpretation such that I |= α(n) and I |= ϕ(m), then
I |= (α +ϕ)(n+m).

Proof. Since I |= α(n) and I |= ϕ(m), this implies that I(α) = (n̄, l), n̄ ≥ n and I(ϕ) = (m̄,k), m̄ ≥ m.
Thus

I(α +ϕ) = I(α)+ I(ϕ) = (n̄, l)+(m̄,k) = (n̄+ m̄, l + k).

Since n̄+ m̄≥ n+m we conclude that I |= (α +ϕ)(n+m).

One can easily conceive that satisfiability in pseudo-propositional logic concerns queries rather than
formulas.

• It is said that ϕ(n) (resp. QQQ) is satisfiable iff there exists an interpretation I such that I |= ϕ(n)

(resp. I |= QQQ).

• It is said that ϕ(n) (resp. QQQ) is unsatisfiable iff for every interpretation I we have I 6|= ϕ(n) (resp.
I 6|= QQQ).

Consequently the equivalence relation is lifted to the level of queries as demonstrated below.

4

29

Pseudo-Propositional Logic Azizi-Sultan

5 Consequence and Equivalence
Definition 7. QQQ is a logical consequence of FFF , written FFF |= QQQ, if I |= QQQ for every interpretation I that is
a model for FFF . In short, I |= FFF ⇒ I |= QQQ for all interpretations I.

Definition 8. If FFF |= QQQ and QQQ |= FFF then we say FFF and QQQ are semantically equivalent. We denote this
by FFF ≡ QQQ.

In this work, FFF |= α(n) (resp. α(n) |= FFF) will mean FFF |= {α(n)} (resp. {α(n)} |= FFF). More
generally, we write FFF |= α(n1)

1 ,α(n2)
2 , . . . ,α(nk)

k (resp. α(n1)
1 ,α(n2)

2 , . . . ,α(nk)
k |= FFF) instead of FFF |=

{α(n1)
1 ,α(n2)

2 , . . . ,α(nk)
k } (resp. {α(n1)

1 ,α(n2)
2 , . . . ,α(nk)

k } |= FFF), and more briefly we write FFF , α(n) |= ϕ(m)

instead of FFF ∪ {α(n)} |= ϕ(m). Analogous notation will be used regarding semantic equivalence.

Note 1. Proposition 3 can be rewritten as follows:

α(n),ϕ(m) |= (α +ϕ)(n+m).

Example 2. Let QQQ = {ϕ(i) : i = 1,2, . . . ,n− 1}. Moreover suppose that I |= ϕ(n). This means that
I(ϕ) = (n̄, l) where n̄≥ n > i. Consequently, I |= ϕ(i) for all i < n. Thus ϕ(n) |= QQQ.

Lemma 1. Let ϕ be a formula and n > 1 then (ϕ + p+¬p)(n) |= ϕ(n−1).

Proof. Suppose I |= (ϕ + p+¬p)(n). This means that I(ϕ + p+¬p) = I(ϕ)+ (1,1) = (n̄, l) where
n̄ ≥ n and l ≥ 1. Since (Z2,+) is an abelian group we conclude that I(ϕ) = (n̄− 1, l− 1). That is
I |= ϕ(n−1).

An obvious generalization and a direct consequence of lemma 1 is the resolution theorem which
reads:

Theorem 2. If ϕ ∈F and n > m̄≥ m, then the following consequence holds:

(ϕ + m̄p+¬(mp))(n) |= (ϕ +(m̄−m)p)(n−m).

To keep things from being complicated before going any further, the following theorem must be
proven.

Theorem 3. If the formulas β1 and β2 are equivalent, so are the queries α(n) and (α [β1/β2])
(n) for

every n ∈ N.

Proof. Suppose that I |= α(n). This means that I(α) = (n̄, l) where n̄≥ n. Since β1 ≡ β2, from Theorem
1 it follows that α ≡α [β1/β2]. Thus I(α) = I(α [β1/β2]) = (n̄, l) where n̄≥ n. Thus I |= (α [β1/β2])

(n).
We conclude that α(n) |= (α [β1/β2])

(n). Taking into account that (α [β1/β2]) [β2/β1] = α , the conse-
quence (α [β1/β2])

(n) |= α(n) follows analogously.

If we call a query with a normal form formula a normal form query, then theorems 1 and 3 transform
any query into an equivalent one which is a normal form. Thus to solve the satisfiability problem in
pseudo-proposition logic it suffices to consider only the sets of queries that are normal form.

Finally, to start applying pseudo-propositional logic to solve real-world problems, such as SAT for
example, one more theorem is needed.

Theorem 4. If FFF |= QQQ and for every interpretation I which models QQQ we have I 6|= FFF, then FFF is unsat-
isfiable.

5

30

Pseudo-Propositional Logic Azizi-Sultan

Proof. Suppose that FFF is satisfiable. This means that there exists an interpretation I such that I |= FFF .
Consequently, I |= QQQ since FFF |= QQQ. This contradicts the theorem’s hypothesis.

Informally speaking, before solving a SAT problem for a given set of queries FFF , Theorem 4 tempts
one to use proper inference rules to find a simpler set of queries QQQ such that FFF |= QQQ. Now it is enough
to look for a solution for FFF among only those solutions that solve QQQ.

Furthermore any algorithm that solves SAT problem in pseudo-propositional logic can be used to
solve the SAT problem of propositional logic. Actually pseudo-propositional logic can be viewed as a
generalization of propositional logic. This is justified by the fact that every formula or sentence S in
propositional logic can be represented equivalently by a set of queries QQQ in pseudo-propositional logic.
To see this let P = {p1, p2, p3, · · ·} be our set of propositional symbols and let the literal li be either
pi or its negation. Moreover, suppose that converting the sentence S into its CNF results in the set of
clauses {Ci : i = 1,2, . . . ,n} where each clause Ci is the disjunctions of a set of literals {l j : j ∈ Ji ⊂N}.
If we denote to S in its CNF by SCNF we conclude that

SCNF =
n∧

i=1

Ci =
n∧

i=1

(
∨

j∈Ji

l j

)
.

Clearly each clause Ci which has the form

Ci =
∨

j∈Ji

l j

can be equivalently represented in pseudo-propositional logic by the query

Qi =

(
∑
j∈Ji

l j

)(1)

.

If we let QQQ = {Qi : i = 1,2, . . . ,n} then the sentence S, which is equivalent to SCNF , is satisfiable iff QQQ
is satisfiable. Moreover, an interpretation I is a model for QQQ iff I is a model for S. A detailed example is
presented in the sequel.

6 Application on SAT
This section is not meant to present an algorithm that competes with the current SAT solvers. It just gives
an idea of how one can make use of pseudo-propositional logic to solve problems such as SAT. This is
actually done in three steps. Intuitively, the first step involves transforming the given SAT instance into
the corresponding set of queries FFF in pseudo-propositional logic. The second step reprocesses the set FFF
using inference rules to generate a proper compact set of queries QQQ such that FFF |= QQQ. Finally, apply a
backtracking procedure to find a solution for QQQ and check if it satisfies the original SAT instance. The
final step is repeated until a solution is found or the problem is unsatisfiable otherwise.

Example 3. Consider the following CNF instance:

x1∨ x2∨ x3, ¬x1∨¬x2, ¬x1∨¬x3, ¬x2∨¬x3,

x1∨ x2∨ x4, ¬x1∨¬x2, ¬x1∨¬x4, ¬x2∨¬x4,

x1∨ x3∨ x4, ¬x1∨¬x3, ¬x1∨¬x4, ¬x3∨¬x4,

x2∨ x3∨ x4, ¬x2∨¬x3, ¬x2∨¬x4, ¬x3∨¬x4.

6

31

Pseudo-Propositional Logic Azizi-Sultan

This can be equivalently represented by a set of queries in pseudo-propositional logic as follows:

FFF = { (x1 + x2 + x3)
(1), (¬x1 +¬x2)

(1), (¬x1 +¬x3)
(1), (¬x2 +¬x3)

(1),

(x1 + x2 + x4)
(1), (¬x1 +¬x2)

(1), (¬x1 +¬x4)
(1), (¬x2 +¬x4)

(1),

(x1 + x3 + x4)
(1), (¬x1 +¬x3)

(1), (¬x1 +¬x4)
(1), (¬x3 +¬x4)

(1),

(x2 + x3 + x4)
(1), (¬x2 +¬x3)

(1), (¬x2 +¬x4)
(1), (¬x3 +¬x4)

(1)}.
Taking into account Proposition 2 while adding each consecutive homogeneous2 couple of queries in FFF
results in

FFF1 = { (2x1 +2x2 + x3 + x4)
(2), (¬2x1 +¬x2 +¬x3)

(2), (¬x1 +¬2x2 +¬x3)
(2),

(¬x1 +¬x2 +¬2x4)
(2), (x1 + x2 +2x3 +2x4)

(2), (¬2x1 +¬x3 +¬x4)
(2),

(¬x2 +¬2x3 +¬x4)
(2), (¬x2 +¬x3 +¬2x4)

(2)}.
One can easily conceive that FFF ≡ FFF1 which shows how encoding in pseudo-propositional logic is much
more compact than it is in CNF. Although it is not always the case that FFF ≡ FFF1 but we, at least, know
from Proposition 3 that FFF |= FFF1. If we add again and again each consecutive homogeneous couple of
queries in FFF1, we finally get

FFF2 = {(3x1 +3x2 +3x3 +3x4)
(4), (¬6x1 +¬6x2 +¬6x3 +¬6x4)

(12)},
as a logical consequence of FFF1. By backtracking and propagation, FFF2 has only the following six inter-
pretations:

I1 = {x1,x2}, I2 = {x1,x3}, I3 = {x1,x4},
I4 = {x2,x3}, I5 = {x2,x4}, I6 = {x3,x4}.

Since non of these interpretations model FFF, according to Theorem 4 FFF and consequently the original
SAT instance are unsatisfiable.

7 Conclusion and Further Work
This work has introduced pseudo-propositional logic, a generalization of propositional logic with con-
siderable extension of its expressive power. This enables the resulting representational formalism to en-
code counting constraints as well as SAT instances naturally, and much more compact than the encoding
using CNF. The inference rules of the resulting pseudo-propositional logic, besides their Boolean nature,
have arithmetical flavour allowing for easy implementation. Moreover, as it was seen in Example 3, ap-
plying backtracking on the final entailed set of queries may yield simultaneous multi-variables guesses,
eliminating considerable parts of the search tree that have not been yet explored and hence allowing
for potential improvement in terms of time complexity. Another promising improvement is subject to a
further investigation on how to construct a compact proper final entailed set of queries which maximizes
the eliminated part of the search tree and at the same time captures all possible solutions of the original
problem.

8 Acknowledgments
I would like to thank Prof. Steffen Hölldobler, Director of the International Center for Computational
Logic, Dresden, Germany. I have learned from him how to rationalise logically rather than just thinking
mathematically. Without his influence this work would not have been established.

2containing literals of the same polarity

7

32

Pseudo-Propositional Logic Azizi-Sultan

References
[1] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu. Symbolic model checking using sat procedures

instead of bdds. In Proceedings of the 36th Annual ACM/IEEE Design Automation Conference, DAC ’99,
pages 317–320, New York, NY, USA, 1999. ACM.

[2] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Symbolic model checking without
bdds. In Proceedings of the 5th International Conference on Tools and Algorithms for Construction and
Analysis of Systems, TACAS ’99, pages 193–207, London, UK, UK, 1999. Springer-Verlag.

[3] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the 3rd Annual ACM
Symposium on Theory of Computing, May 3-5, 1971, Shaker Heights, Ohio, USA, pages 151–158, 1971.

[4] Martin Davis, George Logemann, and Donald W. Loveland. A machine program for theorem-proving. Com-
mun. ACM, 5(7):394–397, 1962.

[5] Martin Davis and Hilary Putnam. A computing procedure for quantification theory. J. ACM, 7(3):201–215,
1960.

[6] Niklas Eén and Niklas Sörensson. An extensible sat-solver. In Theory and Applications of Satisfiability
Testing, 6th International Conference, SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected
Revised Papers, pages 502–518, 2003.

[7] Eugene Goldberg and Yakov Novikov. Berkmin: A fast and robust sat-solver. Discrete Applied Mathematics,
155(12):1549 – 1561, 2007. SAT 2001, the Fourth International Symposium on the Theory and Applications
of Satisfiability Testing.

[8] Carla P. Gomes, Bart Selman, Ken McAloon, and Carol Tretkoff. Randomization in backtrack search: Ex-
ploiting heavy-tailed profiles for solving hard scheduling problems. In Proceedings of the Fourth International
Conference on Artificial Intelligence Planning Systems, Pittsburgh, Pennsylvania, USA, 1998, pages 208–213,
1998.

[9] Henry Kautz and Bart Selman. Pushing the envelope: Planning, propositional logic, and stochastic search.
In Proceedings of the Thirteenth National Conference on Artificial Intelligence - Volume 2, AAAI’96, pages
1194–1201. AAAI Press, 1996.

[10] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff: Engineering
an efficient SAT solver. In Proceedings of the 38th Design Automation Conference, DAC 2001, Las Vegas,
NV, USA, June 18-22, 2001, pages 530–535, 2001.

[11] Stuart J. Russell and Peter Norvig. Artificial intelligence - a modern approach, 2nd Edition. Prentice Hall
series in artificial intelligence. Prentice Hall, 2003.

[12] Miroslav N Velev and Randal E Bryant. Effective use of boolean satisfiability procedures in the formal
verification of superscalar and vliw microprocessors. Journal of Symbolic Computation, 35(2):73 – 106,
2003.

8

33

A Simple Semi-automated Proof Assistant for

First-order Modal Logics

Tomer Libal

The American University of Paris, France
tlibal@aup.edu

Abstract

Most theorem provers and proof assistants are written in imperative or functional
programming languages. Recently, the claim that higher-order logic programming languages
might be better suited for this task was revisited and a new interpreter, as well as new proof
assistants based on it, were introduced. In this paper I follow these results and describe a
concise implementation of a prototype for a semi-automated proof assistant for first-order
modal logics. The aim of this paper is to encourage the development of personal proof
assistants and semi-automated provers for a variety of modal logics.

1 Introduction

Proof assistants are sophisticated systems which have helped users to prove a wide range of
mathematical theorems [8, 20, 21, 23] and program properties [3, 11, 25]. Nevertheless, these
tools normally require knowledge of computational logic, mathematical skills and experience
with the chosen tool. In addition, these tools are based on specific theories, such as intuitionistic
type theory for Coq [1] or higher-order logic for Isabelle/HOL [35] and HOL Light [24], which
might not be easily applicable to other domains, such as to first-order modal logics.

Benzmüller and Wolzenlogel Paleo have shown that by embedding higher-order modal logics
in Coq [4], one can interactively search for proofs. A general description of their work with
respect also to other proof assistants is described in [6]. Such an approach takes advantage of the
full power of a leading proof assistant and is also clearly general and applicable to other domains.
Possible downsides are the Coq expertise required, the required knowledge in intuistionistic type
theory for extensions as well as the fact that despite being shallow, an embedding is still an
indirect way of communicating with the target calculus - modal logic in our case.

Except the above mentioned works, very little progress has been made towards using
proof assistants for modal logics. One reason for that is that proof assistants are non-trivial
software requiring a high level of programming skills. Therefore, the majority of proof assistants
are implemented in functional programming languages which facilitate their creation. Still,
programmers of any proof assistant must handle a variety of common but non-trivial tasks such
as proof search, unification, substitutions and many others. Therefore, it is not surprising that
one of the leading theorem provers for first-order modal logics is MleanCoP, which is written
in Prolog [36]. Prolog gives programmers proof search and other operations for free and allow
for a more concise and trusted code. Still, the fact that Prolog is based on first-order logic
necessarily means that it is not suitable for a shallow embedding of systems whose meta-theory
requires higher-order logic. Among such systems are first-order classical and modal logics. Such
embeddings would require a programming language which supports higher-order features, such
as binding and higher-order unification.

Advocates of higher-order logic programming languages, such as Felty and Miller [18] have
argued that these languages are very suited for the creation of proof assistants [17, 30] and proof
checkers [29]. Higher-order logic programming languages provide a native support for all of the

1

ARQNL 2018 34 CEUR-WS.org/Vol-2095

A Simple Proof Assistant Libal

required tasks just mentioned and offer, therefore, not only a much easier coding experience but
also an increased level of trust in its correctness. More recently, Sacerdoti-Coen, Tassi, Dunchev
and Ferruccio have developed an efficient interpreter [16] for the higher-order logic programming
language λProlog [31] and used it for the creation of several proof assistants [15, 22, 38]. They
showed that using higher-order logic programming greatly reduces the size of the program.
While there are many similarities between their work and the current paper, I am interested in
utilizing logic programming for the creation of many, simple and personalized proof assistants
and not for the implementation of full scale, general and complex ones.

Another complexity arising in the creation of proof assistants is the need to interface between
the users and the tool. The calculi at the core of most proof assistants do not support, out of
the box, interactive proof search. Focused sequent calculi [2] partially solve this problem by
separating proof search into two different modes. One of the modes, which can be executed
fully automatically, can be applied eagerly in order to save the user from tasks not requiring her
attention. The assistant then switches to the second mode when user interaction is required.

The above discussion identifies two issues. First, when one wants to use a proof assistant for
modal logics, she needs to have both a good proficiency with the current ones and the ability to
embed her logic in their theories. Second, if she chooses to implement her own, the task is far
from being simple. In this paper I want to present a third alternative – implement your own
proof assistant by following a precise recipe. As we will see, the advantages of this approach
are the simplicity of the process – I exemplify that by the implementation of a proof assistant
for first-order modal logic which consists of less than 200 lines of code. There are also several
disadvantages, the most important of which is the need to have a proof calculus based on focused
sequents. Another disadvantage is the required λProlog skill. It should be noted though, that
the vast majority of the code requires only proficiency in Prolog.

The technique demonstrated in this paper, of using a focused calculus together with higher-
order logic programming, is based on the work by Miller and his group towards proof certification
[29, 13, 12]. Given that proof certification can be considered as a restriction of interactive
proof search where the interaction is done between the proof certificate and the program, this
paper attempts to generalize the approach to arbitrary interaction including the interaction
between a user and a program. At the same time, using higher-order logic programming
towards the creation of proof assistants is one of the purposes of the group behind the ELPI
interpreter [15, 22, 38]. Their work is focused on the implementation and extension of fully
fledged proof assistants.

My main aim though, is the application of this approach to the creation of proof assistants
in domains where proof automation is lacking, such as in modal logic and in fields such as
law [37]. I propose that by using λProlog and focusing, any user can implement and customize
her theorem prover to meet her needs. The proof assistant for first-order modal logics described
in this paper is based on the existence of a focused sequent calculus for this logic. I have
therefore obtained such a calculus by the combination of two existing ones. The next section
focuses on its presentation. The following section then introduces the other technology I use –
higher-order logic programming. I then describe the implementation of a proof assistant for
first-order modal logic based on these technologies and give examples of usage and extension. I
finish with a short conclusion and mention some possible future work.

2 Focused sequent calculus for first-order modal logics

Theorem provers are often implemented using efficient proof calculi, like, e.g., resolution,
combined with the additional use of heuristics and optimization techniques. The use of these

2

35

A Simple Proof Assistant Libal

techniques together with required operations such as unification and search leads to a lower
degree of trust. On the other hand, traditional proof calculi, like the sequent calculus, rely on
less meta-theory and enjoy a higher degree of trust but are quite inefficient for proof search. In
order to use the sequent calculus as the basis of automated deduction, much more structure
within proofs needs to be established. Focused sequent calculi, first introduced by Andreoli [2]
for linear logic, combine the higher degree of trust of sequent calculi with a more efficient proof
search. They take advantage of the fact that some of the rules are “invertible”, i.e., can be
applied without requiring backtracking, and that some other rules can “focus” on the same
formula for a batch of deduction steps.

In this paper, I will combine two different focused sequent calculi in order to obtain a
sound and complete system for first-order modal logic for K with constant domains and rigid
designation. This means that each quantified variable denotes the same element in all worlds
and in addition, that the domain for quantification in each world is the same. Please refer
to [9] for more information. The existence of focused systems for some other modal logics [27]
suggests that the approach described in this paper can be extended. The syntax for first-order
modal formulas contains atomic predicates P (t1, . . . , tn), the usual first-order connectives and
quantifiers as well as the modal operators 2 and ♦. The first system I will use is the focused
first-order sequent calculus (LKF) system defined in [26]. I will combine it with the focused
sequent calculus for propositional modal logic for K defined in [33]. This calculus is based on
labeled sequents.

The basic idea behind labeled proof systems for modal logic is to internalize elements of the
corresponding Kripke semantics into the syntax. The LMF system defined in [33] is a sound
and complete system for a variety of propositional modal logics. Fig. 1 presents the combined
system, LMF1.

Sequents in LMF1 have the form G ` Θ ⇓ x : B or G ` Θ ⇑ Γ, where the relational set (of the
sequent) G is a set of relational atoms, x : B is a labeled formula (see below) and Θ and Γ are
multisets of labeled formulas.

Formulas in LMF1 which are expressed in negation normal form, can have either positive or
negative polarity and are constructed from atomic formulas, whose polarity has to be assigned,
and from logical connectives whose polarity is pre-assigned. The choice of polarization does not
affect the provability of a formula, but it can have a big impact on proof search and on the
structure of proofs: one can observe, e.g., that in LKF the rule for ∨− is invertible while the one
for ∨+ is not. The connectives ∧−,∨−, 2 and ∀ are of negative polarity, while ∧+,∨+, ♦ and ∃
are of positive polarity. A composed formula has the same polarity of its main connective. In
order to polarize literals, we are allowed to fix the polarity of atomic formulas in any way we see
fit. We may ask that all atomic formulas are positive, that they are all negative, or we can mix
polarity assignments. In any case, if A is a positive atomic formula, then it is a positive formula
and ¬A is a negative formula: conversely, if A is a negative atomic formula, then it is a negative
formula and ¬A is a positive formula. The basic entities of the calculus are labelled formulas –
x : F – which attach to each formula F a label x which denotes the world F is true in.

Deductions in LKF are constructed by synchronous and asynchronous phases. A synchronous
phase, in which sequents have the form G ` Θ ⇓ x : B, corresponds to the application of
synchronous rules to a specific positive formula B under focus (and possibly its immediate
positive subformulas). An asynchronous phase, in which sequents have the form G ` Θ ⇑ Γ,
consists in the application of invertible rules to negative formulas contained in Γ (and possibly
their immediate negative subformulas). Phases can be changed by the application of the release
rule. In order to simplify the implementation and the representation, I have excluded the cut

rule from the calculus. The admissibility of this rule in LKF means that while proofs might be

3

36

A Simple Proof Assistant Libal

Asynchronous introduction rules

G ` Θ ⇑ x : A,Γ G ` Θ ⇑ x : B,Γ

G ` Θ ⇑ x : A ∧− B,Γ ∧−K
G ` Θ ⇑ x : A, x : B,Γ

G ` Θ ⇑ x : A ∨−B,Γ ∨
−
K

G ∪ {xRy} ` Θ ⇑ y : B,Γ

G ` Θ ⇑ x : �B,Γ �K

G ` Θ ⇑ x : [y/z]B,Γ

G ` Θ ⇑ x : ∀z.B,Γ ∀K

Synchronous introduction rules

G ` Θ ⇓ x : A G ` Θ ⇓ x : B

G ` Θ ⇓ x : A ∧+ B ∧+K
G ` Θ ⇓ x : [t/z]B

G ` Θ ⇓ x : ∃z.B ∃K

G ` Θ ⇓ x : Bi

G ` Θ ⇓ x : B1 ∨+B2
∨+, i ∈ {1, 2} G ∪ {xRy} ` Θ ⇓ y : B

G∪{xRy} ` Θ ⇓ x : ♦B ♦K

Identity rule

G ` x : ¬B,Θ ⇓ x : B
initK

Structural rules

G ` Θ, x : B ⇑ Γ

G ` Θ ⇑ x : B,Γ
storeK

G ` Θ ⇑ x : B

G ` Θ ⇓ x : B
releaseK

G ` x : B,Θ ⇓ x : B

G ` x : B,Θ ⇑ · decideK

In decideK , B is positive; in releaseK , B is negative; in storeK , B is a positive formula or a
negative literal; in initK , B is a positive literal. In �K and ∀K , y is different from x and z and
does not occur in Θ, Γ, G.

Figure 1: LMF1: a focused labeled proof system for the first-order modal logic K.

harder to find, completeness is not impaired.
In order to prove the soundness and completeness of LMF1, we need to define a translation of

first-order modal formulas into first-order logic and prove that the translated formula is provable
in LKF iff the original formula is provable in LMF1. The translation STx() is similar to the
one in [9] and extends the standard translation (see, e.g., [7]) with a treatment for quantifiers.
Treatment of polarities is omitted from the definition below since it does not affect provability.
This translation provides a bridge between first-order modal logic and first-order classical logic:

STx(P (y1, . . . , yn)) = P (x, y1, . . . , yn) STx(A ∧B) = STx(A) ∧ STx(B)

STx(¬A) = ¬STx(A) STx(�A) = ∀y(R(x, y) ⊃ STy(A))

STx(A ∨B) = STx(A) ∨ STx(B) STx(♦A) = ∃y(R(x, y) ∧ STy(A))

STx(∀yP (y)) = ∀ySTx(P (y)) STx(∃yP (y)) = ∃ySTx(P (y))

where x is a free variable denoting the world in which the formula is being evaluated. The
first-order language into which modal formulas are translated is usually referred to as first-order
correspondence language [7]. It consists of a binary predicate symbol R and an (n + 1)ary
predicate symbol P for each nary predicate P in the modal language. When a modal operator is
translated, a new fresh variable is introduced. It is easy to show that for any modal formula A,
any model M and any world w, we have that M, w |= A if and only if M |= STx(A)[x← w].

Using the translation, we can state the soundness and completeness proposition. It is
intuitively correct given the results for similar calculi but a proof will clearly be added in the
future.

4

37

A Simple Proof Assistant Libal

Ξ′,G ∪ {xRy} ` Θ ⇓ y : B ♦(Ξ,♦B, y,Ξ′)
Ξ,G∪{xRy} ` Θ ⇓ x : ♦B ♦K

Figure 2: Augmenting the♦K inference rule

Proposition 2.1. Given a first-order modal formula F , ` ⇓x : F is provable in LMF1 for an
arbitrary world variable x iff ` ⇓STx(F) is provable in LKF.

2.1 Driving the search in the focused sequent calculus

The system LMF1 offers a structure for proof search – we can eagerly follow paths which
apply asynchronous inference rules. Full proof search needs also to deal with the synchronous
inference rules, for which there is no effective automation. The ProofCert project [29], which
offers solutions to proof certification, suggests augmenting the inference rules with additional
predicates. These predicates, on the one hand, will serve as points of communication with the
implementation of the calculus (the kernel from now on) and will allow for the control and
tracking of the search. On the other hand, being added as premises to the inference rules, these
predicates do not affect the soundness of the kernel and therefore, do not impair the trust we
can place in searching over it. They can, nevertheless, harm completeness. Consider for example
an implementation of the ∃ control predicate which always returns the same witness. Clearly,
the program will fail to find a proof if it requires any other witness. In this example, a correct
implementation will prompt the user for the witness or postpone supplying it (more about that
in Sec. 4.4). The control predicates communicate with the user or prover using a data structure
which is being transferred and manipulated by the predicates. This data structure represents
the proof evidence in the proof certifier architecture discussed by Miller in [29].

This approach is very suitable for conducting search using interactive or automated theorem
provers as well. We can generalize the role of the data structure discussed above to represent
information between the user and the kernel. I will therefore generalize the ”proof evidence”
data structure in the proof certification architecture of Miller to a ”proof control” data structure.
In this paper, this data structure can serve as a proof evidence but it will also serve for getting
commands from the user as well as for generating a proof certificate once a proof was found. I
can now follow other works on proof certification [12, 13] and enrich each rule of LMF1 with
proof controls and additional predicates. Figure 2 gives an example of adding the control and
additional predicate (in blue) to the♦K inference rule. Figure 3 lists all the predicates separately
from the calculus (due to lack of space). Each sequent now contains additional information in
the form of the proof control Ξ. At the same time, each rule is associated with a predicate,
such as ♦(Ξ, F, w,Ξ′). This predicate might prevent the rule from being called or guide it by
supplying such information as the witness to be used in the application of the ∃K or♦K inference
rules. The arguments in the example are the input proof control Ξ, the formula F , the world w
to which we should move next and a proof control Ξ′ which is given to the upper sequent. I call
the resulting calculus LMF a.

One implementation choice is to use indices in order to refer to formulas in the context.
In order to achieve that, the implementations of storeK and decideK rules contain additional
information which is omitted from the definition of the LMF1 calculus given in Fig. 1.

5

38

A Simple Proof Assistant Libal

Asynchronous control predicates

∧−(Ξ, F,Ξ′,Ξ′′) ∨−(Ξ, F,Ξ′) ∀(Ξ, F,Ξ′y) �(Ξ, F,Ξ′w)

Synchronous control predicates

∧+(Ξ, F,Ξ′,Ξ′′) ∨+(Ξ, F,Ξ′, i) ∃(Ξ, F, t,Ξ′) ♦(Ξ, F, w,Ξ′)

Identity and structural control predicates

init(Ξ, l) release(Ξ,Ξ′) store(Ξ, C, l,Ξ′) decide(Ξ, l,Ξ′)

Figure 3: The additional predicates added to the inference rules of LMF1 in order to obtain
LMF a

3 Higher-order logic programming

The other technology I use in this paper in an attempt to build a simple but trusted proof
assistant, is a higher-order logic programming language. λProlog [31] is an extension of Prolog
which supports binders [30] and restricted higher-order formulas [32]. Being a logic programming
language, it gives us proof search, unification, substitution and other operations which are
required in any automated or interactive theorem prover. The extensions allow for the encoding
of the meta-theory of predicate calculi, which is impossible in the first-order Prolog language.
More concretely, the syntax of λProlog has support for λ-abstractions, written x\ t for λx.t
and for applications, written (t x). Existential variables can occur anywhere inside a term and
are denoted by words starting with a capital letter. The variable w occurring in a term F can
be universally quantified by writing pi w\ F. I use the symbols some, all, box, dia, !-!

and &-& to denote the encoded logical connectives ”exists”, ”for all”, the modalities ”box” and
”diamond”, a negative disjunction and a negative conjunction. The implementation contains only
the negative versions of the disjunction and conjunction rules presented in Sec. 2. As discussed
there, this choice does not affect provability. β-normalization and α-equality are built-in. The
full syntax of the language can be found in Miller and Nadathur’s book ”Programming with
Higher-Order Logic” [31].

The implementation of λProlog on which I have tested the prover is ELPI [16] which can be
installed following instructions on Github1. ELPI offers more than just the implementation of
λProlog and includes features such as having input/output modes on predicates and support of
constraints [15]. These features are not required in the simple proof assistant I describe and are
therefore not used in the implementation. Examples of the way these features are used can be
found in the implementations of proof assistants for HOL [15] and type theory [22].

4 A proof assistant based on focusing and logic program-
ming

In this section, I will present the architecture and techniques used in order to obtain a minimal,
trusted proof assistant for first-order modal logic. I believe that this approach can be applied
for creating proof assistants for various other logics, based on the existence of suitable focused

1https://github.com/LPCIC/elpi

6

39

A Simple Proof Assistant Libal

calculi. Some parts of the code are omitted from this paper for brevity. These parts mainly
deal with bootstrapping the program and are written using shell scripts. The proof assistant
implementation can be found on Github2 and Zenodo3.

4.1 The kernel

The first immediate advantage of using a higher-order logic programming language is the simple
and direct coding of the calculus. Fig. 4, 5 and 6 show the code of the whole implementation.
A comparison to Fig. 1 shows that each inference rule directly maps to a λProlog clause. The
conclusion of each rule is denoted by the head of the formula while each premise is denoted by a
single conjunct in the body. The components of each head are the Cert variable, which is used
for the transformation of information between the user and the kernel as well the formula (or
formulas, in the case of a negative phase) to prove. The two phases are denoted by the function
symbols unfk and foc.

We can see immediately the way the control predicates work. Before we can apply a rule,
we need first to consult with the control predicate, which in turn, may change the Cert data
structure or even falsify the call. I will refer to the implementation of these predicates in the next
section, but we can already demonstrate how they work. Consider, for example, the diamond

rule (Fig. 2 and Fig. 6). When λProlog tries to satisfy this clause, it attempts to satisfy each
of the antecedents. The first of which is a call to the implementation of the dia_ke control
predicate. The implementation is discussed in the next section but one can see that in case
the implementation of this clause fails, λProlog will fail to apply the diamond rule and it will
backtrack. One can also see that the implementation can substitute for the variable T a term.
This term will then be used by the rule as the new label for the formula. This simple mechanism
allows us to both control the proof search and to supply additional information (based on user
input, for example).

The way we store polarized formulas in the implementation of the labeled sequent calculus is
by using a term of the form lform w f where w is the label (world) and f is the formula. Atoms
are polarized using the constructor p for positive atoms and n for negative ones. The example in
Sec. 4.3 demonstrates the use of these constructors. Five predicates of special interest are the
store, forall, exists, box and diamond. Each emphasizes the need for a higher-order logic
programming language in a different way.

The store shows the importance of supporting implications in the bodies of predicates.
It allows us to dynamically update the λProlog database with new true predicates. We use
this feature in order to both denote the context of the sequent, i.e those formulas on which
we may decide on later, and the relational set. One can also deal with this problem in the
Prolog programming language. Either by using lists for denoting the context or by using the
assert and retract predicates. Both approaches prevent us from having a direct and concise
representation of LMF1. The first due to the requirement to repeatedly manipulate and check
the list (not to mention the overhead for searching in the list). The second due to the need to
apply the system predicates manually in the correct points in the program. For example, one
should manually retract an asserted predicate once we leave the scope of the implication. These
manual manipulations can lead to unnecessary complications.

The forall predicate has a condition that the variable y is a fresh variable. Dealing with
fresh variables is a recurring problem in all implementations of theorem provers. Some approaches
favor using a specific naming scheme in order to ensure that variables are fresh while others

2https://github.com/proofcert/PPAssistant
3https://zenodo.org/record/1252457

7

40

A Simple Proof Assistant Libal

1 % decide
2 check Cert (unfK []) :-
3 decide Cert Indx Cert ’,
4 inCtxt Indx P,
5 isPos P,
6 check Cert ’ (foc P).
7 % release
8 check Cert (foc N) :-
9 isNeg N,

10 release Cert Cert ’,
11 check Cert ’ (unfK [N]).
12 % store
13 check Cert (unfK [C|Rest]) :-
14 (isPos C ; isNegAtm C),
15 store Cert C Indx Cert ’,
16 inCtxt Indx C => check Cert ’ (unfK Rest).
17 % initial
18 check Cert (foc (lform L (p A))) :-
19 initial_ke Cert Indx ,
20 inCtxt Indx (lform L (n A)).

Figure 4: λProlog implementation of the structural rules

might use an auxiliary set of used variables. Using λProlog we need just to quantify over this
variable. λProlog variable capture avoidance mechanism will ensure that this variable is fresh.
Another feature of λProlog which is exhibited by this rule is higher-order application. The
quantified formula variable B is applied to the fresh variable. In general, the application of a
variable to a term requires higher-order unification in the proof search, which is known to be
undecidable [19]. Miller has shown [28] that the application of a variable to a bound variable
require a simpler form of unification, which is not only decidable but exhibits the same properties
as the first-order unification used in Prolog.

A more intriguing predicate though, is exists. Here we see an application of two free
variables, B and T. Such an application is beyond the scope of the efficient unification algorithm
just mentioned. Despite that, implementations of λProlog apply sound techniques of postponing
these unification problems [34] which seem to suffice in most cases.

Regarding the modalities, we see a close similarity between box and forall. The only
difference being the addition of the new accessible world to the λProlog database, in a similar
way to store. The diamond rule, which is very similar to the exists one, then also requires
the existence of the specific relation in the λProlog database in order to proceed.

4.2 Interacting with the user

The previous section discussed the implementation of the calculus. For some problems, all we need
to do is to apply the kernel on a given formula. λProlog will succeed only if a proof can be found
and will automatically handle all issues related to search, substitution, unification, normalization,
etc. which are normally implemented as part of each theorem prover or proof assistant. This
gives us a very simple implementation of an automated theorem prover for first-order modal
logic. The downside is, of course, that first-order modal theorem proving is undecidable and
requires coming up with witnesses for worlds and terms, making automated theorem proving over
the sequent calculus less practical than other methods, such as resolution [14] and free-variable
tableaux [10]. The main novelty of this paper is that we can overcome this downside by using
other features of λProlog, namely the input and output functionality.

Using the control predicates, we can notify the user of interesting rule applications, such as
the addition of fresh variables, new worlds or the storing of formulas in the context. We can also

8

41

A Simple Proof Assistant Libal

1 % orNeg
2 check Cert (unfK [lform L (A !-! B) | Rest]) :-
3 orNeg_kc Cert (lform L (A !-! B)) Cert ’,
4 check Cert ’ (unfK [lform L A, lform L B| Rest]).
5 % conjunction
6 check Cert (unfK [lform L (A &-& B) | Rest]) :-
7 andNeg_kc Cert (lform L (A &-& B)) CertA CertB ,
8 check CertA (unfK [lform L A | Rest]),
9 check CertB (unfK [lform L B | Rest]).

10 % box modality
11 check Cert (unfK [lform L (box B) | Theta]) :-
12 box_kc Cert (lform L (box B)) Cert ’,
13 pi w\ rel L w => check (Cert ’ w) (unfK [lform w B | Theta]).
14 % forall quantifier
15 check Cert (unfK [lform L (all B) | Theta]) :-
16 all_kc Cert (all B) Cert ’,
17 pi w\ (check (Cert ’ w) (unfK [lform L (B w) | Theta])).

Figure 5: λProlog implementation of the asynchronous rules

1 % diamond modality
2 check Cert (foc (lform L (dia B))) :-
3 dia_ke Cert (lform L (dia B)) T Cert ’,
4 rel L T,
5 check Cert ’ (foc (lform T B)).
6 % exists quantifier
7 check Cert (foc (lform L (some B))) :-
8 some_ke Cert (lform L (some B)) T Cert ’,
9 check Cert ’ (foc (lform L (B T))).

Figure 6: λProlog implementation of the Synchronous rules

use them in order to prompt the user for input about how to proceed in case we need to decide
on a formula from the context or pick up a witness or a world. Fig. 7 shows the implementation
of the control predicates which support these basic operations. The predicates are divided into
two groups. Those which can be applied fully automatically, which include most predicates, and
those which are applied interactively, which include the decide, diamond and exists predicates.
I have simplified the implementation to include only negative conjunctions and disjunctions
(see Sec. 3). The addition of the positive versions does not fundamentally change the approach
presented here. In case we would like to support these two inference rules, we will have to treat
them in the interactive group.

The interface for a user interaction with the program is to iteratively add guidance information
to the proof control. At the beginning, the control contains no user information and the program
stops the moment such information is required. In addition, the program displays to the user
information about the current proof state such as about fresh variables which were used or new
formulas which were added to the context, together with their indices. When the program stops
due to required user information, it prompts a message to the user asking the user to supply this
information as can be seen in the implementation of the predicates decide (lines 1-3), diamond
(lines 25-32) and some (lines 42-49).

The proof control I use contains 5 elements.

• the proof evidence – this is used in order to display at the end to the user the generated
proof

• the list of user commands – this list, initially empty, contains the commands from the user

9

42

A Simple Proof Assistant Libal

• an index marking the current inference rule – this index is used to store labeled formulas
in a consistent way

• the list of fresh worlds generated so far – this list is used in order to allow the user to pick
up a world The user, of course, has no access to the fresh worlds (or to any other part in
the trusted kernel) and I use a mechanism discussed below in order to allow her to supply
them

• the list of fresh variables generated so far – Similarly to the list of fresh worlds, this list is
used in order to allow the user to supply term witnesses which contain fresh variables

Each of the interactive predicates contains two versions, one for prompting the user for input
and the other for applying the user input. The first is applied when the user commands list (the
second argument in the controls object) is empty. The input in the case of the decide predicate
is an index of a formula in context (which should be chosen from the ones displayed earlier
by the store predicate). In the case of the diamond or some predicates, the input is the term
witness.

In the case of the diamond and on some cases, also for the some inference rule, the imple-
mentation needs to substitute fresh variables inside the term supplied by the user. I use λProlog
abstraction and β-normalization directly. The user keeps track on the number n and order
of both fresh worlds and fresh variables introduced so far and the chosen world or the term
witness is then of the form x1\ . . . xn\t where t may contain any of the bound variables, in the
case of some, or the actual chosen world, in the case of diamond. The apply_vars predicate is
responsible for applying to the terms the fresh variables in the correct order. It should be noted
that this cumbersome mechanism can be easily replaced by a naming mechanism given a more
sophisticated user interface.

The indexing mechanism I use is based on trees and assign each unitary child of a parent I
the index (u I) while binary children are assigned the indices (l I) and (r I) respectively.
The index of the theorem is e. Note that the indexing system is based on inferences and that
indices are assigned to formulas only upon storing them in the context. For example, if our
theorem is A &-& B, meaning a negative conjunction, then this formula is assigned the index
e. In the focused sequent calculus, the only inference rule which can be applied right now is
the negative conjunction and the left and right derivations keep track of the indices (l e) and
(r e). Only in case we store the formulas A or B in the following step will we assign them the
indices (l e) or (r e)

I note here that the implementation is using a relatively basic user feedback. In particular,
when conjunctions and branching are involved, it becomes very difficult to follow the different
branches and their respective contexts and fresh variables. I do supply a mechanism for handling
conjunctions (via the branch command), but a more user friendly implementation would need
to display this information in a better way, for example, by the use of graphical trees.

4.3 An example

In this section I demonstrate the execution of the prover on the Barcan formula, which is a
theorem of modal logic K with constant domains and rigid terms. In order to use the assistant,
the user needs to call the prover with the theorem and an empty commands list.

$>./run.sh ’((some x\ dia (n (q x))) !-! (box (all x\ (p (q x)))))’ ’[]’

Since we start in a negative phase and the theorem is negative, the assistant eagerly does
the following ordered steps, the first five of which are asynchronous.

10

43

A Simple Proof Assistant Libal

1 decide (interact (unary (decideI no_index) leaf) [] _ _ _) _ _ :- !,
2 output std_out "You have to choose an index to decide on from the context",
3 output std_out "\n", fail.
4 decide_ke (interact (unary (decideI I) L) [I|Com] FI E1 E2) I
5 (interact L Com (u FI) E1 E2).
6 store_kc (interact (unary (storeI I) L) Com I E1 E2) F I (interact L Com (u I) E1 E2) :-
7 output std_out "Adding to context formula ",
8 term_to_string F S1 ,
9 output std_out S1,

10 output std_out " with index ",
11 term_to_string I S2 ,
12 output std_out S2,
13 output std_out "\n".
14 release_ke (interact (unary releaseI L) Com FI E1 E2) (interact L Com (u FI) E1 E2).
15 initial_ke (interact (axiom (initialI I)) [] _ _ _) I.
16 orNeg_kc (interact (unary (orNegI FI) L) Com FI E1 E2) F (interact L Com (u FI) E1 E2).
17 andNeg_kc (interact (binary (andNegI FI) L1 L2) [branch LC RC] FI E1 E2) F
18 (interact L1 LC (l FI) E1 E2) (interact L2 RC (r FI) E1 E2).
19 box_kc (interact (unary (boxI FI) L) Com FI E1 E2) F (Eigen\ (interact L) Com (u FI)
20 [eigen FI Eigen| E1] E2) :-
21 output std_out "Using world variable ",
22 term_to_string FI S1,
23 output std_out S1,
24 output std_out "\n".
25 dia_ke (interact (unary (diaI no_index) leaf) [] FI _ _) F _ _ :- !,
26 output std_out "You have to choose the world to use for instatiation for the formula: ",
27 term_to_string F S1 ,
28 output std_out S1,
29 output std_out "\nAt index: ",
30 term_to_string FI S2,
31 output std_out S2,
32 output std_out "\n", fail.
33 dia_ke (interact (unary (someI FI) L) [W|Com] FI E1 E2) _ W’
34 (interact L Com (u FI) E1 E2) :-
35 apply_vars W E1 W’.
36 all_kc (interact (unary (allI FI) L) Com FI E1 E2) F
37 (Eigen\ (interact L) Com (u FI) E1 [eigen FI Eigen| E2]) :-
38 output std_out "Using eigen variable ",
39 term_to_string FI S1,
40 output std_out S1,
41 output std_out "\n".
42 some_ke (interact (unary (someI no_index) leaf) [] FI _ _) F _ _ :- !,
43 output std_out "You have to choose the term to use for instantiation: ",
44 term_to_string F S1 ,
45 output std_out S1,
46 output std_out "\nAt index: ",
47 term_to_string FI S2,
48 output std_out S2,
49 output std_out "\n", fail.
50 some_ke (interact (unary (someI FI) L) [T|Com] FI E1 E2) _ T’
51 (interact L Com (u FI) E1 E2) :-
52 apply_vars T E2 T’.
53 apply_vars T [] T.
54 apply_vars T [eigen _ X|L] T’ :-
55 apply_vars (T X) L T’.

Figure 7: λProlog implementation of basic interaction with the user

11

44

A Simple Proof Assistant Libal

Figure 8: A screenshot of an intermediary step of proving the Barcan formula

1. Applies the ∨−K inference rule

2. Adds to the context the positive formula lform z some x\ dia (n (q x)) with index
u e (z denotes the starting world)

3. Applies the �K in order to produce a fresh world

4. Applies the ∀K in order to produce a fresh variable

5. Adds to the context the positive formula lform x0 (p (q x1))

with index u (u (u (u e)))

6. Prompts the user to input an index to decide on

Using the provided simple user interface, the program now terminates and the user is
expected to run it again, this time setting the list provided in the second argument to contain an
interactive command. The first interactive command is therefore, to choose the index u e. We
are now entering the synchronous phase and are asked also to supply the witness for the ∃K rule.
In this case, the witness is just the (only) fresh variable introduced earlier and we command
the assistant to choose (x\x). Still being in a synchronous phase, we are now asked to supply
the world to satisfy the ♦K rule. We choose the first (and only) previously introduced world
using (x\x). The assistant now observes that we have the negative atom lform x0 (n (q x1))

with index u (u (u (u (u (u (u (u (u e)))))))). We are now asked again to pick up an
index of a formula to decide on. We observe that the context contains the positive and negative
versions of the same atom (in the same world) and we decide on the positive version with index
u (u (u (u e))). The initK rule is automatically applied and the assistant responds with the
formal proof we have obtained.

The last execution is therefore,

$>./run.sh ’((some x\ dia (n (q x))) !-! (box (all x\ (p (q x))))) ’
’[(u e),(x\x),(x\x),u (u (u (u e)))]’

Fig. 8 shows a screenshot of the interaction after supplying the input ’[(u e),(x\x),(x\x)]’

4.4 Creating and using tactics

Supporting interactive proof search still falls short from the needs of most users. Optimally, a
proof assistant would require the help of the user only for the most complex problems and will be
able to deal with simpler ones by itself. In the previous example, we had to search for the index
to decide on. But, there are finitely many options only. Can’t we let the prover try all options
by itself? In order to support a tactics language, I extend the program with an additional tactics
file. This file will contain additional implementations for the control predicates. The λProlog
interpreter will choose the right implementation according to whether the predicate is called
with a tactic command or with a command to decide on an index of a formula or a witness

12

45

A Simple Proof Assistant Libal

1 decide_ke (interact (unary (decideI I) L) [auto|Com] FI E1 E2) I
2 (interact L Com (u FI) E1 E2).
3 dia_ke (interact (unary (diaI FI) L) [world|Com] FI E1 E2) _ T
4 (interact L Com (u FI) E1 E2) :-
5 apply_vars T E1 T’.
6 some_ke (interact (unary (someI FI) L) [var|Com] FI E1 E2) _ _
7 (interact L Com (u FI) E1 E2) :- !.

Figure 9: λProlog implementation of some tactics

term. Fig. 9 presents the additional predicates we need to add in order to support several basic
tactics.

The auto tactic, which is supplied when asked to decide on a formula, attempts to choose
one according to the order they are stored in the λProlog database. Similarly, the world tactic
attempts to choose a world according to the order we have stored them in the proof control.
Coming up with a witness is more complex. Unlike with deciding on a formula or selecting a
world, we are now facing a possibly infinite number of options. Luckily, λProlog can again help
us with the task. We can use the language metavariables and λProlog will postpone the choice
until it can unify this variable with an appropriate term. The var tactic therefore replaces the
chosen term with such a metavariable.

Using these tactics, the commands required in order to prove the theorem from the example
is

$>./run.sh ’((some x\ dia (n (q x))) !-! (box (all x\ (p (q x))))) ’
’[auto ,var ,world ,auto]’

It should be noted though, that in the general case the simple tactics presented may not be
as easy to use. For example, when deciding using the auto command, the system will decide on
the last formula stored in the context and only if it fails later to find a proof, will it backtrack
and pick another. This scheme will therefore get very confusing if we are also prompt to input
information on the wrong branch. One can think of more advanced tactics which present to the
user all possible paths and not just one as in the current implementation.

5 Conclusion and further work

The aim of this paper was to investigate the applicability of a minimal proof assistant based on
focusing and λProlog for interactive proof search in first-order modal logic. We have considered
also the amount of work required in order to design proof assistants for arbitrary focused systems.

The main target audience of this approach are users who are in need of a proof assistant for
logics which do not enjoy an abundant number of tools. The next step is to try to apply this
approach to concrete domains where interactive tools are scarce, such as in deontic logic ([5]
contains some interesting recent developments). There are several other possible extensions to
this work. An important extension is the creation of a generic graphical user interface, which
can parse and display λProlog proofs and proof information. Another is the creation of a library
of basic tactics which can be applied to a variety of logics.

References

[1] The Coq proof assistant. https://coq.inria.fr/.

13

46

A Simple Proof Assistant Libal

[2] Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. J. Log. Comput.,
2(3):297–347, 1992.

[3] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. Formal certification of code-based
cryptographic proofs. ACM SIGPLAN Notices, 44(1):90–101, 2009.

[4] Christoph Benzmüller and Bruno Woltzenlogel Paleo. Interacting with modal logics in the coq
proof assistant. In International Computer Science Symposium in Russia, pages 398–411. Springer,
2015.

[5] Christoph Benzmüller, Xavier Parent, and Leendert van der Torre. A deontic logic reasoning
infrastructure. In Russel Miller, Dirk Nowotka, and Florin Manea, editors, 14th Conference on
Computability in Europe, CiE 2018, Kiel, Germany, July 30-August, 2018, Proceedings. Springer,
2018. To appear.

[6] Christoph Benzmüller and Bruno Woltzenlogel Paleo. Higher-order modal logics: Automation and
applications. In Adrian Paschke and Wolfgang Faber, editors, Reasoning Web 2015, number 9203
in LNCS, pages 32–74, Berlin, Germany, 2015. Springer. (Invited paper).

[7] Patrick Blackburn and Johan Van Benthem. Modal logic: a semantic perspective. In Studies in
Logic and Practical Reasoning, volume 3, pages 1–84. Elsevier, 2007.

[8] Sylvie Boldo, François Clément, Jean-Christophe Filliâtre, Micaela Mayero, Guillaume Melquiond,
and Pierre Weis. Formal proof of a wave equation resolution scheme: the method error. In
International Conference on Interactive Theorem Proving, pages 147–162. Springer, 2010.

[9] Torben Braüner and Silvio Ghilardi. 9 first-order modal logic. In Studies in Logic and Practical
Reasoning, volume 3, pages 549–620. Elsevier, 2007.

[10] Serenella Cerrito and Marta Cialdea Mayer. Free-variable tableaux for constant-domain quantified
modal logics with rigid and non-rigid designation. In International Joint Conference on Automated
Reasoning, pages 137–151. Springer, 2001.

[11] Boutheina Chetali and Quang-Huy Nguyen. About the world-first smart card certificate with eal7
formal assurances. Slides 9th ICCC, Jeju, Korea (September 2008), www. commoncriteriaportal.
org/iccc/9iccc/pdf B, 2404, 2008.

[12] Zakaria Chihani, Tomer Libal, and Giselle Reis. The proof certifier checkers. In International
Conference on Automated Reasoning with Analytic Tableaux and Related Methods, pages 201–210.
Springer, 2015.

[13] Zakaria Chihani, Dale Miller, and Fabien Renaud. A semantic framework for proof evidence.
Journal of Automated Reasoning, 59(3):287–330, 2017.

[14] Marta Cialdea. Resolution for some first-order modal systems. Theoretical Computer Science,
85(2):213–229, 1991.

[15] Cvetan Dunchev, Claudio Sacerdoti Coen, and Enrico Tassi. Implementing hol in an higher order
logic programming language. In Proceedings of the Eleventh Workshop on Logical Frameworks and
Meta-Languages: Theory and Practice, page 4. ACM, 2016.

[16] Cvetan Dunchev, Ferruccio Guidi, Claudio Sacerdoti Coen, and Enrico Tassi. Elpi: Fast, em-
beddable, \lambda prolog interpreter. In Logic for Programming, Artificial Intelligence, and
Reasoning, pages 460–468. Springer, 2015.

[17] Amy Felty. Implementing tactics and tacticals in a higher-order logic programming language.
Journal of Automated Reasoning, 11(1):43–81, 1993.

[18] Amy Felty and Dale Miller. Specifying theorem provers in a higher-order logic programming
language. In International Conference on Automated Deduction, pages 61–80. Springer, 1988.

[19] Warren D Goldfarb. The undecidability of the second-order unification problem. Theoretical
Computer Science, 13(2):225–230, 1981.

[20] Georges Gonthier. Formal proof–the four-color theorem. Notices of the AMS, 55(11):1382–1393,
2008.

[21] Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Cohen, François Garillot,

14

47

A Simple Proof Assistant Libal

Stéphane Le Roux, Assia Mahboubi, Russell OConnor, Sidi Ould Biha, et al. A machine-checked
proof of the odd order theorem. In International Conference on Interactive Theorem Proving, pages
163–179. Springer, 2013.

[22] Ferruccio Guidi, Claudio Sacerdoti Coen, and Enrico Tassi. Implementing type theory in higher
order constraint logic programming. 2017.

[23] Thomas Hales, Mark Adams, Gertrud Bauer, Tat Dat Dang, John Harrison, Hoang Le Truong,
Cezary Kaliszyk, Victor Magron, Sean McLaughlin, Tat Thang Nguyen, et al. A formal proof of
the kepler conjecture. In Forum of Mathematics, Pi, volume 5. Cambridge University Press, 2017.

[24] John Harrison. The HOL light theorem prover. https://github.com/jrh13/hol-light/.

[25] Xavier Leroy. Formal verification of a realistic compiler. Communications of the ACM, 52(7):107–115,
2009.

[26] Chuck Liang and Dale Miller. Focusing and polarization in linear, intuitionistic, and classical logics.
Theor. Comput. Sci., 410(46):4747–4768, 2009.

[27] Sonia Marin, Dale Miller, and Marco Volpe. A focused framework for emulating modal proof
systems. In Advances in Modal Logic 11, proceedings of the 11th conference on ”Advances in Modal
Logic,” held in Budapest, Hungary, August 30 - September 2, 2016, pages 469–488, 2016.

[28] Dale Miller. A logic programming language with lambda-abstraction, function variables, and simple
unification. Journal of logic and computation, 1(4):497–536, 1991.

[29] Dale Miller. A proposal for broad spectrum proof certificates. In International Conference on
Certified Programs and Proofs, pages 54–69. Springer, 2011.

[30] Dale Miller. Mechanized Metatheory Revisited: An Extended Abstract . In Post-proceedings of
TYPES 2016 , Novi Sad, Serbia, 2017.

[31] Dale Miller and Gopalan Nadathur. Programming with higher-order logic. Cambridge University
Press, 2012.

[32] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform proofs as a foundation
for logic programming. Annals of Pure and Applied logic, 51(1-2):125–157, 1991.

[33] Dale Miller and Marco Volpe. Focused labeled proof systems for modal logic. In Logic for
Programming, Artificial Intelligence, and Reasoning, pages 266–280. Springer, 2015.

[34] Gopalan Nadathur. A treatment of higher-order features in logic programming. Theory and Practice
of Logic Programming, 5(3):305–354, 2005.

[35] Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Isabelle/HOL: a proof assistant for
higher-order logic, volume 2283. Springer Science & Business Media, 2002.

[36] Jens Otten. Mleancop: A connection prover for first-order modal logic. In International Joint
Conference on Automated Reasoning, pages 269–276. Springer, 2014.

[37] Livio Robaldo and Xin Sun. Reified input/output logic: Combining input/output logic and
reification to represent norms coming from existing legislation. Journal of Logic and Computation,
27(8):2471–2503, 2017.

[38] Enrico Tassi. Elpi: an extension language for coq metaprogramming coq in the elpi λprolog dialect.
2017.

15

48

Labelled Connection-based Proof Search for

Multiplicative Intuitionistic Linear Logic

Didier Galmiche and Daniel Méry

LORIA - Université de Lorraine
Campus Scienti�que, BP 239
Vand÷uvre-lès-Nancy, France

Abstract

We propose a connection-based characterization for multiplicative intuitionistic linear
logic (MILL) which is based on labels and constraints that capture Urquhart's possible
world semantics of the logic. We �rst brie�y recall the purely syntactic sequent calculus
for MILL, which we call LMILL. Then, in the spirit of our previous results on the Logic
of Bunched Implications (BI), we present a connection-based characterization of MILL
provability. We show its soundness and completeness without the need for any notion of
multiplicity. From the characterization, we �nally propose a labelled sequent calculus for
MILL.

1 Introduction

In previous works we have developed connection-based characterizations of validity in non-
classical logics like the Logic of Bunched Implications (BI) [2] and Bi-intuitionistic logic [3].
They are based on speci�c concepts like labels and constraints in order to capture the model
semantics and then the semantic interactions between connectives in such logics. It is an
alternative approach to the standard view of connection calculi for non-classical logics that are
based on the notion of pre�xes. This notion allows one to capture the non-permutabilities of
the sequent calculi rules and has been developed and improved in the context of intuitionistic
logic [9, 10] but also of modal logics [8]. There exist connection-based characterizations and
related connection methods for multiplicative (commutative) linear logic (MLL) [1, 6] but, as
far as we know, not for multiplicative intuitionistic linear logic (MILL). The connection-based
characterization proposed for fragments of Linear Logic [4] like MLL or MELL is based on
particular pre�xes and substitutions dedicated to these logics [6, 5]. In order to extend or adapt
it to MILL, it would be necessary to de�ne and consider what could be called intuitionistic and
linear pre�xes, which could be di�cult to deal with.

Our approach consists in specializing our above-mentioned results for BI to the Multiplica-
tive Intuitionistic Linear Logic (MILL) and then de�ne and illustrate a connection-based char-
acterization of provability for MILL that deals with speci�c labels and constraints. Then we
generate semantic structures from MILL's Urquhart's semantics [12] and develop a characteri-
zation of provability from labels and constraints that capture this semantics. It could be seen as
a generalization of the pre�xes more appropriate to connection-based proof search in resource
logics like BI logic or Linear Logic. Since BI is conservative over MILL [7], a connection-based
characterization for MILL can be obtained, by restriction of the previous characterization for
BI, to the multiplicative connectives. In this case, we have to take into account the notion of
multiplicity and also global conditions on the paths. The characterization for MILL proposed
here does not deal with multiplicity and only considers local conditions on the paths. In ad-
dition we de�ne a labelled sequent calculus for MILL, called GMILL and prove its soundness
and also its completeness by translation of MILL proofs to GMILL proofs.

ARQNL 2018 49 CEUR-WS.org/Vol-2095

Labelled Connection-based Proof Search for MILL Didier Galmiche and Daniel Méry

ax
A ` A

Γ ` C
1L

Γ, 1 ` C
1R` 1

Γ,A,B,∆ ` C
∗L

Γ,A ∗ B,∆ ` C

Γ ` A ∆ ` B
∗R

Γ,∆ ` A ∗ B

Γ ` A ∆,B ` C
−∗L

Γ,A−∗ B,∆ ` C

Γ,A ` B
−∗R

Γ ` A−∗ B

Figure 1: Sequent Calculus for MILL

2 Multiplicative Intuitionistic Linear Logic

The propositional language of MILL consists of a denumerable set L = P,Q, . . . of proposi-
tional letters, the multiplicative unit 1 and the multiplicative connectives ∗ and −∗. P(L), the
collection of MILL propositions over L, is given by the following inductive de�nition:

A ::= P | 1 | A ∗A | A−∗A.

Let us remark that since the forthcoming connection-based characterization of MILL-provability
is inspired by our previous work on BI [2], we do not use the more widespread symbols ⊗ and
−◦ to denote multiplicative conjunction and implication and rather stick with the star and
magic-wand notations of these connectives.

Judgements of MILL are sequents of the form Γ ` A, where A is a proposition and Γ, called
the context, is a (possibly empty) multiset of formulas.

The standard sequent calculus for MILL, which we call LMILL1, is given in Figure 1. One
di�culty with such a calculus lies in the fact that the rules for left-implication and right-
conjunction both require context splitting from conclusion to premises. Making relevant choices
when context-splitting is required is crucial for the e�ciency of backward proof-search.

The semantics we use for MILL models is a possible worlds semantics à la Kripke, mainly
inspired from the operational semantics of Urquhart [12]. Let us recall it brie�y.

De�nition 1 (MILL-frame). A MILL-frame is a partially ordered commutative monoid M =
〈M, ·, e,v〉, in which M is a set of worlds and v is compatible with ·, i.e.:

∀m∀n ∈M. if m v n and m′ v n′ then m ·m′ v n · n′.

De�nition 2 (MILL-interpretation). A MILL-intepretation is a function J−K : L → P(M)
that satis�es Kripke monotonicity, i.e.:

∀m,n ∈M. if m v n and m ∈ JPK then n ∈ JPK.

De�nition 3 (MILL-model). Let P(L) be the collection of MILL propositions over a language

L of propositional letters, a MILL-model is a structure R = 〈M, ·, e,v, J−K, |= 〉, in which

〈M, ·, e,v〉 is a MILL-frame, J−K is a MILL-interpretation, and |= is a forcing relation on

M × P(L) satisfying the following conditions:

• m |= P i� m ∈ JPK
1 In the spirit of LJ and LK for intuitionistic and classic logic, although LMILL has no labels.

2 50

Labelled Connection-based Proof Search for MILL Didier Galmiche and Daniel Méry

• m |= 1 i� e v m

• m |= A ∗ B i� there exist n1, n2 ∈M such that n1 · n2 v m, n1 |= A and n2 |= B

• m |= A−∗ B i�, for all n1, n2 ∈M , if n1 |= A and m · n1 v n2 then n2 |= B.

De�nition 4 (MILL-validity). Let R be MILL-model. A formula A is valid in R, written
R |= A, i� e |= A. A is valid, written, |= A, i� R |= A for all models R. A �nite set of for-

mulas {A1, . . . ,An } entails a formula B, written A1, . . . ,An |= B, i� |= (A1 ∗ . . . ∗An)−∗ B.

Theorem 1 (Soundness and Completeness). For all formulas A, |= A i� ` A.

3 Labelled Connections for MILL

The connection-based characterization of MILL-provability we de�ne in this paper is based on
labels and constraints that capture the semantic properties of MILL-frames instead of capturing
the syntactic properties (such as permutabilities, context-splitting or linearity) of the purely
syntactic sequent calculus LMILL as the standard pre�x-based approach does for IL or MLL
[5, 6, 13]. We already successfully used a similar approach for BI [2], and since BI is conser-
vative w.r.t. MILL [7], the characterization in [2] also applies to MILL. However, although the
characterization for MILL presented in this paper can indeed be seen as a re�nement of the one
given for BI, its improvements are two-fold: �rstly, it does not need any notion of multiplicity
and, secondly, it is local in that the conditions for characterizing provability are not stated
w.r.t. the global set of atomic paths but w.r.t. each atomic path individually. The locality of
the characterization is a key step towards implementing a memory-space e�cient depth-�rst
path-reduction strategy in a future connection-based prover for MILL. Indeed global conditions
would require us to keep the whole set of atomic paths in memory while checking provability
conditions. Since the number of atomic paths can grow exponentially large with the size of a
formula, local conditions are preferable if one wants to make a more e�cient use of the memory
space (linear in the size of the initial formula).

3.1 Labels and Constraints

Given an alphabet C (for example a, b, c, · · ·), C0, the set of atomic labels over C, is de�ned as
the set C extended with the unit symbol ε. We then de�ne LC, the set of labels over C, as the
smallest set containing C0, and closed under composition (x, y ∈ LC implies xy ∈ LC). Labels
are considered up to associativity, commutativity and identity w.r.t. ε. Therefore, aabcc, cbaca
and cbcaaε are simply regarded as equivalent.

A label constraint is an expression x ≤ y where x and y are labels. A constraint of the form
x ≤ x is called an axiom and we write x = y to express that x ≤ y and y ≤ x. We use the
following inference rules for reasoning on constraints:

R
x ≤ x

x ≤ z z ≤ y
T

x ≤ y
x ≤ y x′ ≤ y′

F
xx′ ≤ yy′

The R and T rules formalize the re�exivity and transitivity of ≤ while the F rule corresponds
to the functoriality (also called compatibility) of label-composition w.r.t. ≤. In this formal
system, given a constraint k and a set of constraints H, we write H |≈ k if there is a deduction
of k from H. The notation H |≈ K, where K is a non-empty set of constraints, means that for
all k ∈ K, H |≈ k.

351

Labelled Connection-based Proof Search for MILL Didier Galmiche and Daniel Méry

3.2 Labelled Indexed Formula Tree

Here we recall the standard notions coming from previous matrix-characterizations of provability
[6, 13]. A decomposition tree of a formula A is its representation as a syntactic tree with
nodes called positions. A position u exactly identi�es a subformula of A denoted f(u). An
atomic position is a position for an atomic formula. If u is a non-atomic position the principal
connective of f(u) is denoted c(u). Moreover such a position corresponds to an internal node
and we denote [u]i with i ∈ { 1, 2 } the position of the i-th child of the node corresponding to
u and then [u]? = { v | (∃i ∈ N)(v = [u]i) }. If u is not a root position we say that u is of rank
r(u) = i if u is the i-th child of its father position denoted by [u]0.

The decomposition tree induces a partial order � on the positions such that the root is
the least element and if u � v then u dominates v in the tree or in the formula (from now on
we do not distinguish a formula A from its decomposition tree). Then we denote [u] ↑ the set
{ v | v ∈ A and v� u } of upward positions of u and [u] ↓ the set { v | v ∈ A and u� v } of its
downward positions. The notations [·] ↑ and [·] ↓ are easily generalized to a set s of positions by
[s] ↑ = {u | u ∈ [v] ↑ and v ∈ s } and [s] ↓ = {u | u ∈ [v] ↓ and v ∈ s }.

For each position, we assign a polarity pol(u) but also a principal type ptyp(u) and a sec-
ondary type styp(u). Therefore, we have di�erent principal types depending on the connective
and the associated polarity. We de�ne two principal types named πα, πβ . Given a set of
positions p, Pα(p) = {u | u ∈ p and ptyp(u) = πα } is the set of positions of type πα and
Pβ(p) = {u | u ∈ p and ptyp(u) = πβ } is the set of positions of type πβ .
Moreover we consider the following sets of secondary type positions: for i in { 1, 2 }, Sαi(p) =
{u | u ∈ p and styp(u) = παi }, Sβi(p) = {u | u ∈ p and styp(u) = πβi } and Sα(p) =
Sα1(p) ∪ Sα2(p), Sβ(p) = Sβ1(p) ∪ Sβ2(p).

Depending on the principal type, we associate a label slab(u) and sometimes a constraint
kon(u) to a position u. Such a label is either a position or a position with a tilde in order to
identify the formula that introduced the label. We de�ne constraints in order to capture context-
splitting. The labelled signed formula lsf(u) of a position u is a triple (slab(u), f(u), pol(u))

and is denoted f(u)
pol(u)

: slab(u). The construction of an indexed formula tree is obtained by
inductively applying the rules described in Figure 2.

lsf(u) ptyp(u) kon(u) lsf(u1) lsf(u2)

(A−∗ B)
0

: x πα xu ≤ ũ A1 : u B0 : ũ

(A ∗ B)
1

: x πα uũ ≤ x A1 : u B1 : ũ

(A−∗ B)
1

: x πβ xu ≤ ũ A0 : u B1 : ũ

(A ∗ B)
0

: x πβ uũ ≤ x A0 : u B0 : ũ

Figure 2: Signed formulae for MILL

For a given formula A the root position a0 has a polarity pol(a0) = 0, a label slab(a0) = ε

and the signed formula (A)
0

: ε where ε is the identity of label composition. u1 and u2 are
respectively the �rst and second subpositions. The principal type of a position u depends on
its principal connective and polarity.

The constraints associated to πα-positions are called assertions while those associated to
πβ-positions are called requirements. The atomic labels introduced by positions of principal
type πα (resp. πβ) are called constants (resp. variables). Given a set of positions p, the
associated sets of assertions and requirements are Kα(p) = { kon(u) | u ∈ Pα(p) } and Kβ(p) =

4 52

Labelled Connection-based Proof Search for MILL Didier Galmiche and Daniel Méry

−∗0 : ε

∗1 : a0

P1 : a1 ∗1 : ã1

−∗1 : a3

Q0 : a4 R1 : ã4

S1 : ã3

∗0 : ã0

∗0 : a8

P0 : a9 −∗0 : ã9

Q1 : a11 R0 : ã11

S0 : ã8

a0

a1

a2 a3

a4

a5 a6

a7

a8

a9

a10 a11

a12 a13

a14

u pol(u) f(u) ptyp(u) styp(u) slab(u) kon(u)

a0 0 (P ∗ ((Q−∗ R) ∗ S))−∗ ((P ∗ (Q−∗ R)) ∗ S) πα − ε εa0 ≤ ã0

a1 1 P ∗ ((Q−∗ R) ∗ S) πα πα1 a0 a1ã1 ≤ a0

a2 1 P − πα1 a1 −
a3 1 (Q−∗ R) ∗ S πα πα2 ã1 a3ã3 ≤ ã1

a4 1 Q−∗ R πβ πα1 a3 a3a4 ≤ ã4

a5 0 Q − πβ1
a4 −

a6 1 R − πβ2
ã4 −

a7 1 S − πα2 ã3 −
a8 0 (P ∗ (Q−∗ R)) ∗ S πβ πα2 ã0 a8ã8 ≤ ã0

a9 0 P ∗ (Q−∗ R) πβ πβ1
a8 a9ã9 ≤ a8

a10 0 P − πβ1
a9 −

a11 0 Q−∗ R πα πβ2
ã9 ã9a11 ≤ ã11

a12 1 Q − πα1 a11 −
a13 0 R − πα2 ã11 −
a14 0 S − πβ2

ã8 −

Figure 3: Indexed formula tree of (P ∗ ((Q−∗ R) ∗ S))−∗ ((P ∗ (Q−∗ R)) ∗ S)

{ kon(u) | u ∈ Pβ(p) } respectively. The associated sets of constants and variables are then
de�ned as Σα(p) = {x | x occurs in Kα(p) } and Σβ(p) = {x | x occurs in Kβ(p) }. We set
Σαβ(p) = Σα(p)∪Σβ(p) and de�ne Lα(p), Lβ(p) and Lαβ(p) as the sets of atomic and compound
labels generated by Σα(p), Σβ(p) and Σαβ(p) respectively. For readability, we omit the set of
positions p in notations whenever p is the set Pos of all positions.

3.2.1 An Example (part 1)

Let us consider the formula A ≡ (P∗ ((Q−∗R)∗S))−∗ ((P∗ (Q−∗R))∗S) that is represented as
a syntax tree each node of which being identi�ed with a position (see the tree at the righthand
side of Figure 3). Moreover, we can associate an indexed formula tree (with labelled signed

formulae as nodes), inductively built from (A)
0

: ε and the rules of Figure 2. This tree is the
one at the lefthand side of Figure 3. In parallel, we have the generation of constraints for
the positions of principal type πα and πβ (see kon(u) in the table of Figure 3). Then, in this
case we can deduce that Pα = { a0, a1, a3, a11 }, Pβ = { a4, a8, a9 }, Sα1 = { a1, a2, a4, a12 },
Sβ1 = { a5, a9, a10 }, Sα2 = { a3, a7, a8, a13 }, Sβ2 = { a6, a11, a14 }. In addition the assertions
and requirements are

Kα = { εa0 ≤ ã0, a1ã1 ≤ a0, a3ã3 ≤ ã1, ã9a11 ≤ ã11 }
Kβ = { a8ã8 ≤ ã0, a9ã9 ≤ a8, a3a4 ≤ ã4 }

553

Labelled Connection-based Proof Search for MILL Didier Galmiche and Daniel Méry

{ a0 }

{ a1, a8 }

{ a2, a3, a8 }

{ a2, a4, a7, a8 }

{ a2, a6, a7, a8 }

{ s′, a14 }{ s′, a9 }

{ s′, a11 }

{ s′, a12, a13 }

{ s′, a10 }

{ a2, a5, a7, a8 }

{ s, a14 }{ s, a9 }

{ s, a11 }

{ s, a12, a13 }

{ s, a10 }

Figure 4: Path reduction with s = a2, a5, a7 and s′ = a2, a6, a7

The constants and variables are

Σα = { a0, ã0, a1, ã1, a3, ã3, a11, ã11 } Σβ = { a4, ã4, a8, ã8, a9, ã9 }.

3.3 Paths and Connections

In this section, we adapt the standard notions of path, connection and spanning set of connec-
tions in the context of labels and constraints.

De�nition 5 (Paths). Let A be an indexed formula. The set of paths in A is inductively

de�ned as follows:

1. { a0 } is a path, where a0 is the root position.

2. If s is a path such that u ∈ s then

• if ptyp(u) ∈ {πα } then s\{u } ∪ { [u]1, [u]2 } is a path,

• if ptyp(u) ∈ {πβ } then s\{u } ∪ { [u]1 } and s\{u } ∪ { [u]2 } are paths2.

We say that a path s′ in A is obtained from a path s by reduction on the indexed position u
if it results from s using the second clause of De�nition 5. An atomic path is a path that only
contains atomic indexed positions. Consequently an atomic path is non-reducible and is always
a leaf of a path reduction tree. A con�guration of A is a �nite set of paths in A.

De�nition 6 (Reduction). A reduction of an indexed formula A is a �nite sequence (Si)1≤i≤n
of con�gurations in A such that Si+1 is obtained from Si by reduction of a position u in a path

s of Si following De�nition 5. We say that Si+1 is obtained by reduction of Si of u in s. A

reduction (Si)1≤i≤n is said atomic if all the paths of Sn are atomic.

De�nition 7 (Connection). Let A be an indexed formula, a connection c in A is:

1. a pair 〈u, v 〉 of atomic positions such that f(u) = f(v), pol(u) = 1 and pol(v) = 0, or

2 Let us remark that the branching indicates non-determinism.

6 54

Labelled Connection-based Proof Search for MILL Didier Galmiche and Daniel Méry

2. a pair 〈 a0, v 〉 such that f(v) = 1 and pol(v) = 0.

The �rst case corresponds to an atomic axiom rule (ax) in LMILL, while the second one cor-

responds to the rule 1R. Let us also note that the �rst position of a connection is the one with

the positive polarity.

We denote Con the set of connections in A. The constraint kon(c) associated to a connection
c = 〈u, v 〉 is de�ned as kon(c) = slab(u) ≤ slab(v). For a 1-connection c = 〈 a0, v 〉 we have
kon(〈 a0, v 〉) = ε ≤ slab(v) since slab(a0) = ε. In order to distinguish these constraints from
the assertions and requirements they are called connection constraints. Moreover, the notions
of upward and downward positions are extended to connections as follows: c ↑ = {u, v } ↑ and
c ↓ = {u, v } ↓.

De�nition 8 (MILL-cover). Let A be an indexed formula, a connection c = 〈u, v 〉 in A covers
a path s in A, denoted c � s, if v ∈ s and (u 6= a0 ⇒ u ∈ s). Let S be a set of paths in A, a

cover of S is a set C = { (s, 〈u, v 〉) | s ∈ S and 〈u, v 〉 ∈ Con and 〈u, v 〉 � s } such that

(s, 〈u, v 〉) ∈ C and (s, 〈u′, v′ 〉) ∈ C ⇒ u = u′ and v = v′.

A cover of A is a cover of the set of atomic paths in A.

3.3.1 An Example (part 2)

The reduction of the initial path { a0 } results in six atomic paths as depicted in Figure 4. At
each step, we indicate the position which is reduced with an underscore. For conciseness, we
write s and s′ as shortcuts for a2, a5, a7 and a2, a6, a7. The set C =

{ (s1, 〈 a2, a10 〉), (s2, 〈 a12, a5 〉), (s3, 〈 a7, a14 〉), (s4, 〈 a2, a10 〉), (s5, 〈 a6, a13 〉), (s6, 〈 a7, a14 〉) }

covers all atomics paths. Indeed, 〈 a2, a10 〉 covers paths s1 and s4, 〈 a12, a5 〉 covers the path s2,
〈 a7, a14 〉 covers the path s3 and s6, 〈 a6, a13 〉 covers the path s5. We observe that connections
〈 a2, a10 〉 and 〈 a7, a14 〉 cover two atomic paths at the same time.

3.4 Characterizing MILL-Provability

In this section we de�ne a connection-based characterization of MILL-provability which relies
on the notions of substitution and certi�cation.

De�nition 9 (Substitution). Let A be an indexed formula. A substitution for A is an appli-

cation σ : Σβ → Lα, that can be extended to labels and constraints as follows:

• xσ = x if x is a constant or if x = ε,

• (x ◦ y)σ = xσ ◦ yσ,

• (x ≤ y)σ = xσ ≤ yσ.

Moreover a substitution σ for an indexed formula A induces an instantiation relation on
indexed positions, denoted ≺, such that

(∀u, v ∈ Pos)(u ≺ v i� v ∈ Pβ and (u ⊆ vσ or ũ ⊆ vσ).

De�nition 10 (Certi�cation). Let A be an indexed formula. A certi�cation for A is an appli-

cation γ : Pβ → ℘(Pα) that associates a set of πα-positions with any πβ-position in A.

755

Labelled Connection-based Proof Search for MILL Didier Galmiche and Daniel Méry

A certi�cation γ for an indexed formula A induces a deduction relation on indexed positions,
denoted @, such that

(∀u, v ∈ Pos)(u @ v i� v ∈ Pβ and u ∈ vγ).

An expression u @ v means that v is deduced from u (in A). The relations of domination,
instantiation and deduction induce a reduction relation C= (� ∪ ≺ ∪ @)+ where (·)+ repre-
sents the transitive closure. An expression u C v means that u must be reduced before v (in
A). Now we can express the provability conditions in terms of connections.

De�nition 11 (Complementarity). Let s be a path in an indexed formula A and σ be a sub-

stitution, a connection c in A is complementary in s under σ if c � s and Kα(s ↑)σ |≈ kon(c)σ.
A path s is complementary under σ if there exists a connection that is complementary in s
under σ. A cover C of a set of paths in A is complementary under σ if (∀(s, c) ∈ C) c is

complementary in s under σ.

De�nition 12 (Provability). A formula A is provable if there exist a cover C of the set of

atomic paths of A, a substitution σ and a certi�cation γ for A such that:

1. the reduction relation C is irre�exive, (C1)

2. ∀(s, 〈u, v 〉) ∈ C, ∀w ∈ Pβ(s ↑), wγ ⊆ Pα(s ↑), (C2)

3. ∀(s, 〈u, v 〉) ∈ C, ∀w ∈ Pβ(s ↑), k(wγ)σ |≈ k(w)σ, (C3)

4. ∀(s, 〈u, v 〉) ∈ C, ∀x ∈ Σβ(s ↑), xσ ∈ Lα(s ↑), (C4)

5. ∀(s, 〈u, v 〉) ∈ C, 〈u, v 〉 is complementary in s under σ. (C5)

The �rst condition induces the acyclicity of the graph associated to C and then the existence
of a reduction (decomposition) order of the formula A that respects the precedence constraints
between πα and πβ positions. The second and third conditions ensure that, in an atomic path s,
every requirement introduced by a position of principal type πβ must be introduced before the
two positions of the connection that makes the path s complementary and should be certi�ed
by assertions corresponding to positions of principal type πα that can be reduced before this
requirement in a reduction from the initial path { a0 } to s. In a similar way the fourth condition
means that each variable, introduced before reaching the connection that makes an atomic path
complementary, is instantiated by a label composed from constants that can be reduced before
this variable in a reduction from the initial path { a0 } to s.

3.4.1 An Example (part 3)

The reduction path process from { a0 } provides the following atomic paths:
s1 = { a2, a5, a7, a10 }, s2 = { a2, a5, a7, a12, a13 }, s3 = { a2, a5, a7, a14 }, s4 = { a2, a6, a7, a10 },
s5 = { a2, a6, a7, a12, a13 } and s6 = { a2, a6, a7, a14 }.
From the following cover C =

{ (s1, 〈 a2, a10 〉), (s2, 〈 a12, a5 〉), (s3, 〈 a7, a14 〉), (s4, 〈 a2, a10 〉), (s5, 〈 a6, a13 〉), (s6, 〈 a7, a14 〉) }

we generate the set of constraints:

KC = { (s1, a1 ≤ a9), (s2, a11 ≤ a4), (s3, ã3 ≤ ã8), (s4, ã1 ≤ ã9), (s5, ã4 ≤ ã11)(s6, ã3 ≤ ã8) }.

8 56

Labelled Connection-based Proof Search for MILL Didier Galmiche and Daniel Méry

Then we consider the substitution:

a9σ = a1, a4σ = a11, ã8σ = ã3, ã4σ = ã11, a8σ = X, ã9σ = Y

Then we solve the following requirements:

1) εa0 ≤ ã0, a1ã1 ≤ a0, a3ã3 ≤ ã1, Y a11 ≤ ã11 |≈ a3a11 ≤ ã11

2) εa0 ≤ ã0, a1ã1 ≤ a0, a3ã3 ≤ ã1, Y a11 ≤ ã11 |≈ Xã3 ≤ ã0

3) εa0 ≤ ã0, a1ã1 ≤ a0, a3ã3 ≤ ã1, Y a11 ≤ ã11 |≈ a1Y ≤ X
From 1) we directly deduce Y = a3 and also a4γ = { a11 }. The requirement in 1) is the one of
the position a4 and in order to verify it we use the assertion a3a11 ≤ ã11 of position a11. From
3) we deduce a trivial solution for X that is X = a1a3 and also that a9γ = ∅. Requirement 2)
is veri�ed because we have:

a1 ≤ a1 a3ã3 ≤ ã1
F

a1a3ã3 ≤ a1ã1 a1ã1 ≤ a0
T

a1a3ã3 ≤ a0 εa0 ≤ ã0
T

a1a3ã3 ≤ ã0

and then we deduce a8γ = { a0, a1, a3 } since εa0 ≤ ã0, a1ã1 ≤ a0, a3ã3 ≤ ã1 are the respective
assertions of a0, a1, a3.

In order to verify the conditions (C2) to (C5), let us consider the following table:

(s, 〈u, v 〉) Pβ({u, v } ↑) Pα(s ↑) Σβ({u, v } ↑) Σα(s ↑)
(s1, 〈 a2, a10 〉) a8, a9 a0, a1, a3 a8, ã8, a9, ã9 a0, ã0, a1, ã1, a3, ã3

(s2, 〈 a12, a5 〉) a4, a8, a9 a0, a1, a3, a11 a4, ã4, a8, ã8, a9, ã9 ã0, a1, ã1, a3, ã3, a11, ã11

(s3, 〈 a7, a14 〉) a8, a9 a0, a1, a3 a8, ã8 a0, ã0, a1, ã1, a3, ã3

(s4, 〈 a2, a10 〉) a8, a9 a0, a1, a3 a8, ã8, a9, ã9 a0, ã0, a1, ã1, a3, ã3

(s5, 〈 a6, a13 〉) a4, a8, a9 a0, a1, a3, a11 a4, ã4, a8, ã8, a9, ã9 ã0, a1, ã1, a3, ã3, a11, ã11

(s6, 〈 a7, a14 〉) a8, a9 a0, a1, a3 a8, ã8 a0, ã0, a1, ã1, a3, ã3

We have a9γ = ∅ ⊆ Pα(s ↑) for all paths s ∈ { s1, s2, s4, s5, s6 } and a8γ = { a0, a1, a3 } ⊆ Pα(s ↑)
for all paths s ∈ { s1 . . . s6 }. Moreover, for all paths s ∈ { s2, s5 }, a4γ = { a11 } ⊆ Pα(s ↑).
Then the condition (C2) is veri�ed. In addition, for all paths s ∈ { s1, s2, s4, s5 } we have
a9σ = a1 ∈ Lα(s ↑) and ã9σ = a3 ∈ Lα(s ↑) for all paths s ∈ { s1, s2, s3, s4, s5, s6 } we have
a8σ = a1a3 ∈ Lα(s ↑) and ã8σ = ã3 ∈ Lα(s ↑), and for all paths s ∈ { s2, s5 } we have
a4σ = a11 ∈ Lα(s ↑) and ã4σ = ã11 ∈ Lα(s ↑).

The last thing to do is to compute the reduction relation C that is obtained by the transitive
closure of the domination relation�, the instantiation relation @ and the deduction relation @.
The instantiation relation induced by σ is

a1 @ a9, a3 @ a9, a1 @ a8, a11 @ a4

and the deduction relation induced by γ is

a0 @ a8, a1 @ a8, a3 @ a8, a11 @ a4.

The reduction relation C is represented in Figure 5. As the graph is acyclic, A is valid in MILL.

957

Labelled Connection-based Proof Search for MILL Didier Galmiche and Daniel Méry

a0

a1

a2 a3

a4

a5 a6

a7

a8

a9

a10 a11

a12 a13

a14

Figure 5: Reduction order for (P ∗ ((Q−∗ R) ∗ S)−∗ ((P ∗ (Q−∗ R)) ∗ S)

4 Properties of the Characterization

In this section we prove the soundness and completeness of characterization given in De�ni-
tion 12. The completeness is proved by showing that any formula provable in the LMILL sequent
calculus is also provable according to the connection-based characterization (CMILL-provable).

De�nition 13 (Complete reduction). Let A be an indexed formula and C be a cover of A, a

reduction (Si)1≤i≤n in A is complete for C if C is a cover of Sn.

De�nition 14 (Proper reduction). Let A be an indexed formula and σ be a substitution for A,

a reduction (Si)1≤i≤n is σ-proper i�

1. ∀S ∈ (Si)1≤i≤n,∀s ∈ S,Kα(s ↑)σ |≈ Kβ(s ↑)σ and

2. ∀S ∈ (Si)0≤i≤n,∀s ∈ S, ∀x ∈ Σβ(s ↑), xσ ∈ Lα(s ↑).

De�nition 15 (Realization). Let A be an indexed formula and s be a path in A. An inter-
pretation of s in a resource model R = 〈 (M,v, ·, e), |=, J� K 〉 is a function ‖�‖ : Σα(s ↑)→M
that can be extended to labels Lα(s ↑) with ‖ε‖ = e and ‖xy‖ = ‖x‖ · ‖y‖.
Given a substitution σ for A, we denote ‖�‖σ the composed function ‖�‖ ◦ σ from the set

Lαβ(s ↑) of labels of s to the set of worlds M of R.
A realization of s is a couple (‖�‖, σ) such that:

1. For all assertions x ≤ y ∈ Kα(s ↑), ‖x‖σ v ‖y‖σ.

2. For all positions u ∈ s such that lsf(u) = A1 : x, ‖x‖σ |= A.

3. For all positions u ∈ s such that lsf(u) = A0 : x, ‖x‖σ 6|= A.

A path is realizable if there exists a realization of s in a model R. A con�guration is realizable
if at least one of its paths is realizable.

Lemma 1. Let s be a path in an indexed formula A, (‖�‖, σ) be a realization of s in a model

R = (M, e, ·,v, |=) and K ⊆ Kα(s ↑) a subset of assertions associated to s. If Kσ |≈ (x≤ y)σ
then ‖x‖σ v ‖y‖σ.

Proof. By de�nition of a realization, for any assertion x′ ≤ y′ of K we have ‖x′‖σ v ‖y′‖σ.
By hypothesis, under σ, the constraint x≤ y is deduced (in the K-deduction system) from

10 58

Labelled Connection-based Proof Search for MILL Didier Galmiche and Daniel Méry

assertions of K by rules expressing re�exivity and transitivity of ≤ and also compatibility of
label composition with ≤. Moreover, by de�nition of a preorder, v is re�exive and transitive and
by de�nition of a MILL-model, world composition is compatible with v in R. Consequently, the
rules of the K-deduction system transfer the notion of realizability from premisses to conclusion.

Lemma 2. Let A be an indexed formula, σ be a substitution for A and (Si)1≤i≤n be a σ-proper
reduction for A, if Si is σ-realizable then Si+1 is σ-realizable.

Proof. As the con�guration Si is realizable under σ, it contains a path s that is realizable under
σ in a model (M, e, ·,v, |=) for a interpretation ‖�‖. Let us suppose that Si+1 is obtained by a
reduction of a position u in a path of S. If u 6∈ s then Si+1 remains realizable under σ because it
always contains the path s. Otherwise, we proceed by case analysis depending on the principal
connective of lsf(u) = Apol : x and show that Si+1 remains realizable under σ:

• Case (B ∗ C)
1

: x
The path s is reduced into s′ by replacing the position u by its children positions [u]1 and
[u]2 such that lsf([u]1) = B1 : u and lsf([u]2) = C1 : ũ. Then Σα(s′ ↑) = Σα(s ↑)∪{u, ũ }
and Kα(s′ ↑) = Kα(s ↑) ∪ {uũ ≤ x }. By hypothesis, ‖�‖σ is a realization of s and
then ‖x‖σ |= B ∗ C. Thus, by de�nition of |=, there exist two worlds m,n ∈ M such
that m · n v ‖x‖σ, m |= B and n |= C. We then extend ‖�‖ to u and ũ by de�ning
‖u‖ = m and ‖ũ‖ = n to obtain ‖u‖σ |= B, ‖ũ‖σ |= C and ‖uũ‖σ = ‖u‖σ · ‖ũ‖σ v ‖x‖σ.
Consequently s′ is realizable under σ.

• Case (B ∗ C)
0

: x
The path is reduced into two paths s′ and s′′ such that Σβ(s′ ↑) = Σβ(s ↑) ∪ {u },
Σβ(s′′ ↑) = Σβ(s ↑) ∪ { ũ } and Kβ(s′ ↑) = Kβ(s′′ ↑) = Kβ(s ↑) ∪ {uũ ≤ x }. By hy-
pothesis the reduction (Si)1≤i≤n is σ-proper and we have Kα(s′ ↑)σ |≈ Kβ(s′ ↑)σ and
Kα(s′′ ↑)σ |≈ Kβ(s′′ ↑)σ. In particular Kα(s ↑) = Kα(s′ ↑) = Kα(s′′ ↑), Kβ(s′ ↑) = Kβ(s′′ ↑)
and uũ ≤ x ∈ Kβ(s′ ↑) entail Kα(s ↑)σ |≈ (uũ ≤ x)σ. As ‖�‖σ is a realization of s, we
have ‖x‖σ 6|= B ∗ C and from Lemma 1 we deduce ‖u‖σ ·‖ũ‖σ v ‖x‖σ. Then, by de�nition
of |=, for all worlds m,n ∈ M such that m · n v ‖x‖σ, we have either m 6|= B or n 6|= C.
In particular, we have either ‖u‖σ 6|= B or ‖ũ‖σ 6|= C. Consequently, either s′ is realizable
under σ or s′′ is realizable under σ.

• The other cases are similar.

Lemma 3. Let A be an indexed formula and σ be a substitution for A. If a path s is comple-

mentary under σ then it is not realizable under σ.

Proof. Let us suppose that s contains a connection 〈u, v 〉 such that f(u) = f(v), pol(u) =
1, pol(v) = 0 and Kα(s ↑)σ |≈ slab(u)σ ≤ slab(v)σ. If s is realizable under σ for an inter-
pretation ‖�‖ in a model R then ‖slab(u)‖σ |= f(u), ‖slab(v)‖σ 6|= f(u) and ‖slab(u)‖σ v
‖slab(v)‖σ, which is contradictory because by Kripke monotonicity ‖slab(u)‖σ v ‖slab(v)‖σ
and ‖slab(u)‖σ |= f(u) entail ‖slab(v)‖σ |= f(u). The case of a 1-connection is similar.

Theorem 2 (Soundness). If a formula A is CMILL-provable then it is valid.

1159

Labelled Connection-based Proof Search for MILL Didier Galmiche and Daniel Méry

Proof. As A is provable, there is a cover C of the set of atomic paths of A, a substitution σ
and a certi�cation γ for A satisfying the conditions of De�nition 12.
Let us suppose that A is not valid. Then, there exists a model R = (M, e, ·,v, |=) such that
e 6|= A. The initial con�guration S1 = { { a0 } } is then trivially realizable under σ by considering
the interpretation ‖�‖ the domain of which is empty. It is easy to show that conditions (C1)
to (C5) entail the existence of a reduction (Si)1≤i≤n from S1 that is complete for C, σ-proper
and such that all paths of Sn contain at least a connection of C. As S1 is realizable under σ,
Lemma 2 entails that the con�guration Sn is also realizable under σ. But then, by Lemma 3, we
deduce that Sn cannot be complementary, which is a contradiction. Therefore, A is valid.

Let us now consider the question of completeness of this characterization.

Theorem 3 (Completeness). If a formula A is valid then A is CMILL-provable.

Proof. From the sound and completeness of MILL-models, it is su�cient to prove that if A
is LMILL-provable then A is CMILL-provable (provable by the connection characterization).
The proof is by induction on a LMILL-proof of A, knowing that a sequent Γ ` A is provable
in LMILL if and only if the formula ΦΓ −∗ A is provable in LMILL, where ΦΓ is the formula
obtained by replacing each comma in the context Γ with multiplicative conjunction ∗.

• Case ax: the axiom A ` A corresponds to the formula A−∗ A which is trivially CMILL-
provable.

• Case −∗R: By induction hypothesis we suppose that the sequent Γ ,A ` B is provable and
we show that the sequent Γ ` A−∗ B is also provable. If Γ,A ` B is CMILL-provable an
atomic reduction R1 = (Si)1≤i≤n of ((ΦΓ ∗ A) −∗ B), a cover C of Sn, a substitution σ
and a certi�cation γ for A that satisfy the conditions of De�nition 12.

From the atomic reduction R1 for ((ΦΓ∗A)−∗B) we can build an atomic reduction R2 for
(ΦΓ−∗(A−∗B)). On the left-hand side of the next �gure, we describe the �rst steps of the
reduction R1 and, on the right-hand side, we describe the �rst steps of the corresponding
reduction R2. We represent here a path s as a set of signed formulae and not as a set of
positions, namely we have lsf(s) = { lsf(u) | u ∈ s }.

{ ((ΦΓ ∗A)−∗ B)0 : ε }

{ (ΦΓ ∗A)1 : a0,B
0 : ã0 }

{ΦΓ
1 : a1,A

1 : ã1,B
0 : ã0 }

...
R1

{ (ΦΓ −∗ (A−∗ B))0 : ε }

{ΦΓ
1 : a0, (A−∗ B)0 : ã0 }

{ΦΓ
1 : a0,A

1 : ai,B
0 : ãi }

...
R2

We observe that the �rst reduction steps in R1 and R2 lead to paths containing the
same signed formulae, modulo a renaming of a1 into a0, of ã1 into ai and of ã0 into ãi.
Consequently, modulo the renaming, we can reduce R2 by applying exactly the same
reduction steps than for R1. Then, after the two �rst steps previously described, R1 and
R2 introduce the same signed formulae and then the same constraints (assertions and
requirements) between labels, modulo renaming.
Moreover, the assertions { a0ã0 ≤, a1ã1 ≤ ã0 } introduced in the two �rst steps ofR1 entail
relations between labels ã0, a1, ã1 of R1 weaker than the ones between labels a0, ai, ãi in

12 60

Labelled Connection-based Proof Search for MILL Didier Galmiche and Daniel Méry

id
Γ, x ≤ y,A : x ` A : y,∆

1R
Γ, ε ≤ x ` x : 1,∆

Γ, ε ≤ x ` ∆
1L

Γ, 1 : x ` ∆

Γ, ab ≤ x,A : a,B : b ` ∆
∗L

Γ,A ∗ B : x ` ∆

yz ≤ x,Γ ` A : y,∆ yz ≤ x,Γ ` B : z,∆
∗R

Γ, yz ≤ x ` A ∗ B : x,∆

Γ, xy ≤ z ` A : y,∆ Γ, xy ≤ z,B : z ` ∆
−∗L

Γ, xy ≤ z,A−∗ B : x ` ∆

Γ,A : a, xa ≤ b ` B : b,∆
−∗R

Γ ` A−∗B : x,∆

Γ, x ≤ x ` ∆
R

Γ ` ∆

Γ, x ≤ z, x ≤ y, y ≤ z ` ∆
T

Γ, x ≤ y, y ≤ z ` ∆

Γ, xx′ ≤ yy′, x ≤ x′, y ≤ y′ ` ∆
F

Γ, x ≤ y, x′ ≤ y′ ` ∆

Side conditions:
� In ∗L and −∗R, the constants a and b do not occur in the conclusion.
� In R the label x must already occur in the conclusion.

Figure 6: Labelled Sequent Calculus GMILL

R2 by assertions { a0ã0 ≤, ã0ai ≤ ãi } introduced in the two �rst steps of R2. In fact,
R1 imposes slab(ΦΓ)slab(A) ≤ slab(B) while R2 imposes slab(ΦΓ)slab(A) = slab(B).
Consequently, as R1 leads to a set of atomic paths satisfying the conditions of De�nition
12, it is the same for R2 by induction hypothesis.

• Case ∗L: immediate by the translation Φ, because ΦΓ,A,B = ΦΓ,A∗B.

• The other cases are similar.

5 A Labelled Sequent Calculus for MILL

From the previous characterization we can derive a sound and complete labelled sequent calculus
GMILL3 for MILL. Soundness and completeness are easy consequences of Theorem 2 and
Theorem 3.

Labels and constraints for GMILL are de�ned similarly as in Section 3.1 except that GMILL
does not make use of variables. The sequent calculus GMILL deals with sequents of the form
Γ ` ∆ where Γ and ∆ are multisets containing labelled formulas, Γ being allowed to also contain
constraints. Labelled formulas are pairs (A, x), written A : x, where A is a formula and x is
a label. Label constraints occurring in Γ are called assertions. We denote Γr the restriction of
Γ to its constraints. GMILL does not have explicit requirements. Instead, the rules ∗R and
−∗L are required to have a speci�c constraint (which in the connection-based characterization

3 The G in GMILL is reminiscent of the fact that labels and label-constraints can be viewed as a graphical

structure we usually call a resource-graph in related works.

1361

Labelled Connection-based Proof Search for MILL Didier Galmiche and Daniel Méry

. . . , a1 ≤ a1, . . . ,P : a1, . . . ` . . . ,P : a1

Π3

. . . , a3 ≤ a3, . . . ,Q−∗ R : a3, . . . ` . . . ,Q−∗ R : a3

Π4

Π3 Π4 ∗R
a1a3 ≤ a1a3, a3 ≤ a3, . . . , a1 ≤ a1, . . . ,P : a1,Q−∗ R : a3, . . . ` . . . ,P ∗ (Q−∗ R) : a1a3

F
a3 ≤ a3, . . . , a1 ≤ a1, . . . ,P : a1,Q−∗ R : a3, . . . ` . . . ,P ∗ (Q−∗ R) : a1a3

R
a1a3ã3 ≤ ã0, . . . ,P : a1,Q−∗ R : a3, . . . ` . . . ,P ∗ (Q−∗ R) : a1a3

Π1

ã3 ≤ ã3, . . . , S : ã3 ` . . . ,S : ã3

R
a1a3ã3 ≤ ã0, a1a3ã3 ≤ a1ã1, a1 ≤ a1, a3ã3 ≤ ã1, a1ã1 ≤ ã0, εa0 ≤ ã0, . . . , S : ã3 ` . . . ,S : ã3

Π2

Π1 Π2 ∗R
a1a3ã3 ≤ ã0, . . . ,P : a1,Q−∗ R : a3, S : ã3 ` ((P ∗ (Q−∗ R)) ∗ S) : ã0

T
a1a3ã3 ≤ a1ã1, . . . , a1ã1 ≤ ã0, . . . ,P : a1,Q−∗ R : a3, S : ã3 ` ((P ∗ (Q−∗ R)) ∗ S) : ã0

F
a1 ≤ a1, a3ã3 ≤ ã1, . . . ,P : a1,Q−∗ R : a3, S : ã3 ` ((P ∗ (Q−∗ R)) ∗ S) : ã0

R
a3ã3 ≤ ã1, a1ã1 ≤ ã0, εa0 ≤ ã0,P : a1,Q−∗ R : a3, S : ã3 ` ((P ∗ (Q−∗ R)) ∗ S) : ã0

a1ã1 ≤ ã0, εa0 ≤ ã0,P : a1, ((Q−∗ R) ∗ S) : ã1 ` ((P ∗ (Q−∗ R)) ∗ S) : ã0

εa0 ≤ ã0, (P ∗ ((Q−∗ R) ∗ S) : a0 ` ((P ∗ (Q−∗ R)) ∗ S) : ã0

` (P ∗ ((Q−∗ R) ∗ S))−∗ ((P ∗ (Q−∗ R)) ∗ S) : ε

Figure 7: GMILL-proof of (P ∗ ((Q−∗ R) ∗ S))−∗ ((P ∗ (Q−∗ R)) ∗ S)

corresponds to a requirement) occuring in Γr for the rules to be applicable. The rules of the
GMILL calculus are given in Figure 6.

From the proof of Theorem 3, one can derive a translation of LMILL-proofs into GMILL-
proofs so that for any LMILL-proof the corresponding GMILL-proof applies the same rules in
the same order. Therefore, since LMILL does not allow contraction, GMILL has no need for
it too. Moreover, conditions (C1) to (C5) given in De�nition 12 imply that whenever ∗R and
−∗L need to be applied in GMILL, Γr contains enough assertions to make the rule applicable.
Therefore we have the following results.

Theorem 4. If a formula A has a proof in LMILL then it is has a proof in GMILL that follows

the same rule application strategy.

Theorem 5. A formula A is provable in LMILL i� it is provable in GMILL.

Figure 5 illustrates how GMILL works by giving an example of a derivation in the GMILL

14 62

Labelled Connection-based Proof Search for MILL Didier Galmiche and Daniel Méry

calculus for the formula (P ∗ ((Q −∗ R) ∗ S)) −∗ ((P ∗ (Q −∗ R)) ∗ S), which is exactly the one
prescribed by the reduction ordering we computed in the running example of Section 3.4.

6 Future Work

From this connection-based characterization of validity in MILL we will consider di�erent per-
spectives. First we aim at de�ning a connection method for MILL from such a characterization
that mainly corresponds to the de�nition and implementation of an algorithm for solving our
constraints. A complementary question consist in studying how our results can be adapted or
re�ned to deal with other fragments of Intuitionistic Linear Logic and mainly �rst-order ones
including quanti�cations.

The question of reconstruction of proofs in the MILL sequent calculus from our connection
calculus for MILL with labels and constraints has also to be explored w.r.t. existing techniques
[11]. Moreover, taking into account the relationships in MLL between some connection-based
characterizations and proof-nets [1], we aim at studying similar relationships for MILL and
propose new proof methods based on proof-net construction.

References

[1] D. Galmiche. Connection Methods in Linear Logic and Proof nets Construction. Theoretical

Computer Science, 232(1-2):231�272, 2000.

[2] D. Galmiche and D. Méry. Connection-based proof search in propositional BI logic. In 18th Int.

Conference on Automated Deduction, CADE-18, LNAI 2392, pages 111�128, 2002. Copenhagen,
Danemark.

[3] D. Galmiche and D. Méry. A Connection-based Characterization of Bi-intuitionistic Validity. In
23rd Int. Conference on Automated Deduction, CADE-23, LNAI 6803, pages 253�267, Wroclaw
Poland, July 2011.

[4] J.Y. Girard. Linear logic. Theoretical Computer Science, 50(1):1�102, 1987.

[5] C. Kreitz and H. Mantel. A matrix characterization for multiplicative exponential linear logic.
Journal of Automated Reasoning, 32(2):121�166, 2004.

[6] C. Kreitz and J. Otten. Connection-based theorem proving in classical and non-classical logics.
Journal of Universal Computer Science, 5(3):88�112, 1999.

[7] P.W. O'Hearn and D. Pym. The Logic of Bunched Implications. Bulletin of Symbolic Logic,
5(2):215�244, 1999.

[8] J. Otten. Mleancop: A connection prover for �rst-order modal logic. In Int. Joint Conference on

Automated Reasoning, IJCAR 2014, LNAI 8562, pages 269�276, Vienna, Austria, 2014.

[9] J. Otten and C. Kreitz. A connection based proof method for intuitionistic logic. In 4th Workshop

on Theorem Proving with Analytic Tableaux and Related Methods, LNAI 918, pages 122�137, St
Goar am Rhein, Germany, 1995. Springer Verlag.

[10] J. Otten and C. Kreitz. T-string-uni�cation: unifying pre�xes in non classical proof methods. In
5th Int. Workshop TABLEAUX'96, LNAI 1071, pages 244�260, Terrasini, Palermo, Italy, 1996.
Springer Verlag.

[11] S. Schmitt and C. Kreitz. Converting non-classical matrix proofs into sequent-style systems. In
13th Int. Conference on Automated Deduction, LNAI 1104, pages 418�432, New Brunswick, NJ,
USA, 1996.

[12] A. Urquhart. Semantics for Relevant Logic. Journal of Symbolic Logic, 37:159�169, 1972.

[13] L.A. Wallen. Automated Proof search in Non-Classical Logics. MIT Press, 1990.

1563

Labelled Calculi for Quantified Modal Logics with

Non-rigid and Non-denoting Terms

Eugenio Orlandelli and Giovanna Corsi

University of Bologna, Bologna, Italy
{eugenio.orlandelli,giovanna.corsi}@unibo.it

Abstract

We introduce labelled sequent calculi for quantified modal logics with non-rigid and
and non-denoting terms. We prove that these calculi have the good structural properties
of G3-style calculi. In particular, all rules are height-preserving invertible, weakening and
contraction are height-preserving admissible and cut is admissible. Finally, we show that
each calculus gives a proof-theoretic characterization of validity in the corresponding class
of models.

1 Introduction

The proof-theoretic study of propositional modal logics has been a very active field of research
in the last few decades thanks to the introduction of generalizations of Gentzen-style sequent
calculi such as display calculi [1], hypersequents [1], and labelled sequent calculi [10]. Nev-
ertheless, the proof-theoretic study of quantified modal logics (QMLs) has remained rather
underdeveloped. One notable exception is [10, Chap. 12.1], where labelled sequent calculi for
QMLs are introduced. More specifically, the labelled calculi for the propositional modal logics
in the cube of normal modalities – i.e. the minimal normal modal logic K and its extensions
with axioms D,T, 4, 5 – are extended with quantifiers based on varying, increasing, decreasing
and constant domains. One interesting aspect of QMLs that has not been considered in [10] is
the study of logics based on a language containing the identity predicate and non-rigid as well
as non-denoting terms, see [6, 7]. We introduce labelled calculi for these logics and we study
their structural properties.

As it is convincingly argued in [6, 7], the need for non-rigid and non-denoting terms origi-
nates from problems already touched upon in the classical works of Frege [8] and Russell [12].
First, as Frege noticed, even if ‘Hesperus’ and ‘Phosphorus’ are both names of Venus and the
ancient knew that objects are self-identical, the Babylonians did not know that Hesperus is
Phosphorus. Despite this, in quantified epistemic logics based on rigid terms, we can prove
that the Babylonians knew it. Moreover, Russell showed that the sentence ‘The present king
of France is not bald’ is ambiguous since it might either mean that the sentence ‘the present
king of France is bald’ is false, or that the present king of France is such that he is non-bald.
Given that the expression ‘The present king of France’ does not actually denote anyone, the
first reading is, in fact, true and the second false. If we exclude non-denoting terms, we cannot
account for these two readings of that sentence (unless we explain away the term expressing
the definite description ‘the present king of France’).

As the two examples above show, it is interesting to consider QMLs with non-rigid and/or
non-denoting terms, but their addition to the language of QMLs is not trivial [6, 7]. The
problem, roughly, is that if t is a non-rigid (or non-denoting) term, the formal sentence 3Pt
becomes ambiguous. When it is evaluated in a possible world w of some model, it might either
mean that the object denoted by t in w satisfies the unary predicate P is some world v that
is accessible from w, or that there is a world u that is accessible from w and such that the

ARQNL 2018 64 CEUR-WS.org/Vol-2095

Labelled calculi for QMLs with non-rigid and non-denoting terms Orlandelli and Corsi

formal sentence Pt is true therein. For rigid terms these two readings are equivalent. For non-
rigid terms neither reading entails the other, and, therefore, we need some scoping mechanism
to disambiguate the formula 3Pt. The solution proposed in [6, 7] is that of extending the
language with the operator of predicate abstraction λ. The two readings of 3Pt can thus be
expressed, respectively, by the (semantically independent) formal sentences:

λx.3Px.t and 3(λx.Px.t) . (1)

We will extend the labelled sequent calculi for QMLs presented in [10] to handle non-rigid
and non-denoting terms based on the predicate abstraction operator λ. We will study the
structural properties of these extensions, and we will show that, as for the calculi in [10], all
the rules of inference are height-preserving invertible, the structural rules of weakening and
contraction are height-preserving admissible, and the rule of cut is admissible. Finally, we will
prove that each calculus considered characterizes validity in the appropriate class of models.

The paper is organized as follows. Section 2 sketches the labelled calculi for QMLs presented
in [10]. In particular, the language and semantics of QMLs without non-rigid and non-denoting
terms are introduced in Section 2.1. Labelled calculi for these logics and their main meta-
theoretical properties are outlined in Section 2.2. In Section 3, we extend the labelled approach
to QMLs with identity and non-rigid and non-denoting terms. We once again start by outlining
the syntax and the semantics (Section 3.1). Then, we introduce labelled calculi for these logics
(Section 3.2), and we prove: (i) that they have the good structural properties that are distinctive
of G3-style calculi (Section 3.2.1) and (ii) that they are sound and complete with respect to
the appropriate classes of quantified modal models (Section 3.2.2). We conclude in Section 4.

2 Quantified Modal Logics without Individual Constants

In this section, we present QMLs based on a varying domain semantics defined over a signature
not containing individual constants nor the identity symbol, and we present labelled calculi for
these logics. Apart from some minor adjustment, the semantics is as in [7, Chap. 4.7], and the
calculi are as in [10, Chap. 12.1]. This section is needed to make the paper self-contained and
it might be skipped by readers already familiar with QMLs and labelled calculi.

2.1 Syntax and Semantics

Let S be a signature containing, for every n ∈ N, an at most denumerable set of n-ary predicate
letters Pn1 , P

n
2 , . . . ; let V AR be an infinite set of variables x1, x2, . . . ; and let the primitive

logical symbols be ¬,∧,∀,2. The language L is given by the grammar:

A ::= Pny1, . . . , yn | ¬A | A ∧A | ∀yA | 2A (L)

where Pn ∈ S and y, y1, . . . , yn ∈ V AR. In this paper we use the following metavariables:

• P,Q,R for predicate letters;

• x, y, z for variables;

• p, q, r for atomic formulas;

• A,B,C for formulas.

2

65

Labelled calculi for QMLs with non-rigid and non-denoting terms Orlandelli and Corsi

We follow the standard conventions for parentheses. The formulas ⊥,>, A ∨ B,A ⊃ B, ∃yA,
and �A are defined as expected. The notions of free and bound occurrences of a variable in a
formula are the usual ones. Given a formula A, we use A[y/x] to denote the formula obtained
by replacing each free occurrence of x in A with an occurrence of y, provided that y is free for
x in A – i.e., if no one of the new occurrences of y would be bound by a quantifier. The weight
of a formula is the number of nodes of its generation tree.

A model (over the signature S) is a tuple:

M =<W,R,D,V > (2)

where

• W 6= ∅ is a nonempty set of (possible) worlds (to be denoted by w, v, u . . .);

• R ⊆ W ×W is a binary accessibility relation between worlds;

• D : W −→ 2D is a function mapping each world to a possibly empty set of objects Dw

(its domain), where D =
⋃
w∈W Dw is nonempty and disjoint from W;

• V : S ×W −→ 2D
n

is an interpretation function mapping, at each world w, each n-ary
predicate P (∈ S) to a subset of Dn.

Given a model M =<W,R,D,V >, an assignment (over M) is a function σ : V AR −→ D
mapping each variable x to an element of the union of the domains of the model. Moreover, for
a ∈ D, σx.a denotes the assignment behaving like σ save for x that is mapped to the object a.

Definition 1 (Satisfaction). Given a model M , an assignment σ over it, and a world w of that
model, we define the notion of satisfaction of an L -formula A as follows:

σ |=M
w Px1, . . . xn iff < σ(x1), . . . , σ(xn) >∈ V(P,w)

σ |=M
w ¬B iff σ 6|=M

w B

σ |=M
w B ∧ C iff σ |=M

w B and σ |=M
w C

σ |=M
w ∀xB iff for all a ∈ Dw, σ

x.a |=M
w B

σ |=M
w 2B iff for all v ∈ W, wRv implies σ |=M

v B

The notions of truth in a world w of a model (|=M
w A), truth in a model (|=M A), and

validity in a class of models (C |= A) are defined as usual.
As it is well known, some notable formulas, such as the Barcan Formulas, are valid in classes

of models defined by properties of the accessibility relation and/or of the domains. By an L -
logic Q.L we mean the set of all L -formulas that are valid in a class of models defined by some
combination of the properties given in Table 1. We use standard names for L -logics – e.g.,
Q.K stands for the set of L -formulas valid in the class of all models, and Q.S4⊕BF stands for
the set of L -formulas valid in the class of all reflexive and transitive models with decreasing
domains. We say that M is a model for Q.L whenever |=M A for all A ∈ Q.L.

2.2 Labelled Sequent Calculi

Labelled sequent calculi for L -logics have been introduced in [10, Chap. 12.1]. These calculi
are based on an extension of the modal language in order to internalize the semantics of QMLs
as follows. First of all, we introduce a set LAB of fresh variables, called labels. Labels will be
denoted by w, v, u, . . . and will be used to represent worlds. Then, we extend the set of formulas

3

66

Labelled calculi for QMLs with non-rigid and non-denoting terms Orlandelli and Corsi

Table 1: Modal axioms and corresponding semantic properties

T := 2A ⊃ A reflexivity:=∀w ∈ W(wRw)

D := 2A ⊃ 3A seriality:=∀w ∈ W∃u ∈ W(wRu)

4 := 2A ⊃ 22A transitivity:=∀w, v, u ∈ W(wRv ∧ vRu ⊃ wRu)

5 := 3A ⊃ 23A Euclideaness:=∀w, v, u ∈ W(wRv ∧ wRu ⊃ vRu)

NE := ∀xA ⊃ ∃xA nonempty domains:=∀w ∈ W∃a ∈ D(a ∈ Dw)

UI := ∀xA ⊃ A[y/x] constant domains:=∀w ∈ W∀a ∈ D(a ∈ Dw)

CBF := 2∀xA ⊃ ∀x2A increasing domains:=∀w, v ∈ W∀a ∈ D(a ∈ Dw ∧ wRv ⊃ a ∈ Dv)

BF := ∀x2A ⊃ 2∀xA decreasing domains:=∀w, v ∈ W∀a ∈ D(a ∈ Dv ∧ wRv ⊃ a ∈ Dw)

by adding atomic formulas of shape x ∈ w – expressing that (the object assigned to) x is in the
domain of quantification of (the world represented by) w – and of shape wRv – expressing that
v is accessible from w. Lastly, we replace each L -formula A with the labelled formulas w : A
– expressing that A holds at w. A labelled sequent is an expression:

Ω; Γ⇒ ∆

where Ω is a multiset of atomic formulas of shape x ∈ w or wRv, and Γ and ∆ are multisets of
labelled formulas. Given a formula E of this extended language, E[w/v] is the formula obtained
by substituting each occurrence of v in E with an occurrence of w. Substitution of variables is
extended to formulas of the extended language as expected, and both kinds of substitution are
extended to sequents by applying them componentwise.

The rules of the calculus G3Q.K, for the minimal L -logic Q.K, are given in Table 2. For
each logic Q.L extending Q.K, the calculus G3Q.L is obtained by extending G3Q.K with the
non-logical rules of Table 3 that express proof-theoretically the semantic properties that define
Q.L (cf. Table 1). Whenever a calculus contains rule Eucl, it contains also all its contracted
instances Euclc. Observe that CBF (BF) is not derivable in calculi where rule Incr (Decr) is
not primitive nor admissible (given Proposition 2.8, this can be checked semantically).

A G3Q.L-derivation of a sequent Ω; Γ ⇒ ∆ is a tree of sequents, whose leaves are initial
sequents, whose root is Ω; Γ ⇒ ∆, and which grows according to the rules of G3Q.L. As
usual, we consider only derivations of pure sequents – i.e., sequents where no variable has both
free and bound occurrences. The height of a G3Q.L-derivation is the number of nodes of its
longest branch. We say that Ω; Γ ⇒ ∆ is G3Q.L-derivable (with height n), and we write
G3Q.L `(n) Ω; Γ ⇒ ∆, if there is a G3Q.L-derivation (of height at most n) of Ω; Γ ⇒ ∆.
A rule is said to be (height-preserving) admissible in G3Q.L, if, whenever its premisses are
G3Q.L-derivable (with height at most n), also its conclusion is G3Q.L-derivable (with height
at most n). In each rule depicted in Tables 2 and 3, Ω,Γ and ∆ are called contexts, the formulas
occurring in the conclusion are called principal, and the formulas occurring in the premisses
only are called active.

The following proposition presents the main meta-theoretical properties of G3Q.L. The
proofs can be found in [10, Chap. 12.1].

Proposition 2 (Properties of G3Q.L).

1. Sequents of shape Ω;w : A,Γ⇒ ∆, w : A (with A non-atomic) are G3Q.L-derivable.

4

67

Labelled calculi for QMLs with non-rigid and non-denoting terms Orlandelli and Corsi

Table 2: Rules of G3Q.K

initial sequents: Ω;w : p,Γ⇒ ∆, w : p, with p atomic

logical rules:

Ω; Γ⇒ ∆, w : A

Ω;w : ¬A,Γ⇒ ∆
L¬

Ω;w : A,Γ⇒ ∆

Ω; Γ⇒ ∆, w : ¬A R¬

Ω;w : A,w : B,Γ⇒ ∆

Ω;w : A ∧B,Γ⇒ ∆
L∧

Ω; Γ⇒ ∆, w : A Ω; Γ⇒ ∆, w : B

Ω; Γ⇒ ∆, w : A ∧B R∧

y ∈ w,Ω;w : A[y/x], w : ∀xA,Γ⇒ ∆

y ∈ w,Ω;w : ∀xA,Γ⇒ ∆
L∀

z ∈ w,Ω; Γ⇒ ∆, w : A[z/x]

Ω; Γ⇒ ∆, w : ∀xA R∀, z fresh

wRv,Ω; v : A,w : 2A,Γ⇒ ∆

wRv,Ω;w : 2A,Γ⇒ ∆
L2

wRu,Ω; Γ⇒ ∆, u : A

Ω; Γ⇒ ∆, w : 2A
R2, u fresh

Table 3: Non-logical rules

wRw,Ω; Γ⇒ ∆

Ω; Γ⇒ ∆
RefW

vRu,wRv, wRu,Ω; Γ⇒ ∆

wRv, wRu,Ω; Γ⇒ ∆,
Eucl

vRv, wRv,Ω; Γ⇒ ∆

wRv,Ω; Γ⇒ ∆,
Euclc

wRu,Ω; Γ⇒ ∆

Ω; Γ⇒ ∆,
Ser , u fresh

wRu,wRv, vRu,Ω; Γ⇒ ∆

wRv, vRu,Ω; Γ⇒ ∆
Trans

z ∈ w,Ω; Γ⇒ ∆

Ω; Γ⇒ ∆
NonEm, z fresh

x ∈ v, x ∈ w,wRv,Ω; Γ⇒ ∆

x ∈ w,wRv,Ω; Γ⇒ ∆
Incr

x ∈ w,Ω; Γ⇒ ∆

Ω; Γ⇒ ∆
Cons

x ∈ w, x ∈ v, wRv,Ω; Γ⇒ ∆

x ∈ v, wRv,Ω; Γ⇒ ∆
Decr

2. The rule of α-conversion is height-preserving admissible: if G3Q.L `n Ω; Γ ⇒ ∆, then
G3Q.L `n Ω; Γ′ ⇒ ∆′, where Γ′ (∆′) is obtained from Γ (∆) by renaming bound variables.

3. The following rules of substitution are height-preserving admissible in G3Q.L:

Ω; Γ⇒ ∆

Ω[y/x]; Γ[y/x]⇒ ∆[y/x]
[y/x]

Ω; Γ⇒ ∆

Ω[w/v]; Γ[w/v]⇒ ∆[w/v]
[w/v]

where y is free for x in each formula occurring in Γ,∆ for rule [y/x].

4. The following rules of weakening are height-preserving admissible in G3Q.L:

Ω; Γ⇒ ∆

Ω′,Ω; Γ⇒ ∆
LWΩ

Ω; Γ⇒ ∆

Ω; Γ′,Γ⇒ ∆
LW

Ω; Γ⇒ ∆

Ω; Γ⇒ ∆,∆′
RW

5. Each rule of G3Q.L is height-preserving invertible.

6. The following rules of contraction are height-preserving admissible in G3Q.L:

Ω′,Ω′,Ω; Γ⇒ ∆

Ω′,Ω; Γ⇒ ∆
LCΩ

Ω; Γ′,Γ′,Γ⇒ ∆

Ω; Γ′,Γ⇒ ∆
LC

Ω; Γ⇒ ∆,∆′,∆′

Ω; Γ⇒ ∆,∆′
RC

5

68

Labelled calculi for QMLs with non-rigid and non-denoting terms Orlandelli and Corsi

7. The following rule of Cut is admissible in G3Q.L:

Ω; Γ⇒ ∆, w : A Ω′;w : A,Γ′ ⇒ ∆′

Ω,Ω′; Γ′,Γ⇒ ∆,∆′
Cut

8. G3Q.L is sound and complete with respect to the class of all models for Q.L.

3 Quantified Modal Logics with Individual Constants

Now we move to QMLs based on a language containing also non-rigid and non-denoting indi-
vidual constants and the identity predicate. Given that constants will have a world-dependent
interpretation, we will introduce the operator λ as a scoping mechanism. This allows us to
distinguish between the formula λx.2Px.c (that is interpreted by first determining the object
o denoted by c in w, and then by moving to worlds accessible from w to see whether o satisfies
P therein) and the formula 2(λx.Px.c) (interpreted by first moving to each world v accessible
from w, and then by determining the object denoted by c in each v and checking if it satisfies
P). The semantics is analogous to the varying domain semantics considered in [7, Chap. 11]
and in [6]. Lastly, we introduce labelled sequent calculi for logics based on this semantics and
we study their meta-theoretical properties.

3.1 Syntax and Semantics

The language of Lλ is obtained by extending the signature S with an at most denumerable
set CON of individual constants c1, c2, . . . ; functions of higher arity are omitted for simplicity.
Let us call Sλ the extended signature. Moreover, we extend the set of logical symbols with
the operator λ of predicate abstraction and with the logical predicate =. The term-forming
operator ι[7, Chap. 12] is omitted for simplicity. The set TER of terms is the union of V AR
and CON . The set of Lλ-formulas is generated by the grammar:

A ::= Pny1, . . . , yn | y1 = y2 | ¬A | A ∧A | ∀yA | 2A | λy.A.t (Lλ)

where y, y1, . . . , yn ∈ V AR, Pn ∈ Sλ, and t ∈ TER. We will use for Lλ-formulas the same
definitions introduced in Sect 2.1 for L-formulas; the only novelty being that, in λx.A.y, the
occurrences of x are bound by λ and the displayed instance of y is free. Note that individual
constants cannot occur in atomic Lλ-formulas: they can only be applied to a formula via λ.

A model (over the signature Sλ) is a tuple:

M =<W,R,D,V > (3)

where W, R and D are defined as for M , see 2, and V is defined as:

• V : Sλ ×W −→ 2D
n

is a partial interpretation function such that:

1. for each predicate Pn and each w ∈ W, V(Pn, w) ⊆ Dn;

2. for each individual constants c and for some, possibly not all, w ∈ W, V(c, w) ∈ D.

Assignments are defined as before as (total) functions σ : V AR −→ D. With an abuse of
notation, we use σw(t) for the object denoted by the term t in M under σ – i.e., σw(t) stands
for σ(t) if t is a variable and for V(t, w) if t is an individual constant. Notice that, if t is a
constant, the fact that V(t, w) = o does not entail that V(t, v) = o nor that V(t, v) is defined.

6

69

Labelled calculi for QMLs with non-rigid and non-denoting terms Orlandelli and Corsi

Table 4: Additional modal axioms and corresponding properties

RG := λx.2A.t ⊃ 2(λx.A.t) rigidity:=∀w, v ∈ W,∀t ∈ CON(wRv&σw(t) ∈ D ⊃ σv(t) = σw(t))

TT := λx.x = x.t totality:=∀w ∈ W∀t ∈ CON(σw(t) ∈ D)

Definition 3 (Satisfaction). Satisfaction of an Lλ-formula A at a world w of a modelM under
an assignment σ is defined as in Definition 1 with the addition of the following clauses:

σ |=Mw x = y iff σ(x) = σ(y)

σ |=Mw λx.B.t iff σw(t) is defined and σx.σw(t) |=Mw B

The notions of truth and of validity are defined as in Sect. 2.1. An Lλ-logic Qλ.L is defined
as the set of all formulas valid in some class of modelsM that is obtained by some combination
of the semantic properties in Tables 1 and 4.

We end the presentation of the semantics by emphasizing the effects of non-denoting and
non-rigid constants. First, since c may not denote at a world w of a modelM, it might happen
that c satisfies no predicate at w, not even self-identity. Second, since constants might denote
different objects at different worlds, we cannot use the information that the constants h and
p denote the same object in w (say, h and p stand, respectively, for the names ‘Hesperus’
and ‘Phosphorus’, and both denote Venus in w) to conclude that they denote the same object
in worlds accessible from w. The sentence λx.λy.x = y.p.h ⊃ 2(λx.λy.x = y.p.h) is not
valid in models with non-rigid designators. This might seem incompatible with the fact that
an unrestricted rule of replacement holds for identity. But identity atoms express a relation
between variables and not between constants, which may only be applied to an identity via
the operator λ. Thus, the rule of replacement allows only to substitute variables that denote
the same object. The operator λ might be looked at as a device to block the permutation of
substitutions and modalities for non-rigid constants, as is witness by axiom RG in Table 4.
Finally, note that for y ∈ V AR, the formulas λx.A.y and A[y/x] are semantically equivalent.
This holds because variables are rigid and always denoting terms.

3.2 Labelled Sequent Calculi

In order to introduce labelled sequent calculi for QMLs with non-rigid and non-denoting indi-
vidual constants, we extend the language of labelled calculi with ternary atomic expressions of

shape x
w≈ t, which will be used to express that the variable x picks the object denoted in w by

the term t. From now on, a sequent Ω; Γ⇒ ∆ is an expression where Ω is a multiset of atomic

formulas of shape x
w≈ t, x ∈ w or wRv; and Γ and ∆ are multisets of labelled Lλ-formulas.

The rules of the calculus G3Qλ.K are the rules of G3Q.K, see Table 2, plus the rules for
identity and the rules for λ of Table 5. Observe that the rules for identity contain the labelled
version of the universal rules first introduced in [9]. When w : y = x holds, by Repl we can
replace x with y in any atomic formula that, so to say, talks about w. The universal rule
RigV ar implies that if x and y denote the same object in some world, they do so in each world.
Thus, variables behave as rigid designators and labels could be omitted from identities. We
choose to keep them in order to have a more uniform notation.

The satisfaction clause for λx.A.t in a world w is similar to that for ∃xA, the only difference
being that A has to be satisfied not by some arbitrary object of Dw, but by the one and only

7

70

Labelled calculi for QMLs with non-rigid and non-denoting terms Orlandelli and Corsi

Table 5: Additional rules for G3λ.L

rules for identity:

Ω;w : x = x,Γ⇒ ∆

Ω; Γ⇒ ∆
Ref=

Ω; v : y = z, w : y = z,Γ⇒ ∆

Ω;w : y = z,Γ⇒ ∆
RigVar

Ω, E[z/x], E[y/x], w : y = z,Γ⇒ ∆

Ω, E[y/x], w : y = z,Γ⇒ ∆,
Repl E is either xi

w≈ t or xi ∈ w or w : p

rules for λ:

z
w≈ t,Ω;w : A[z/x],Γ⇒ ∆

Ω;w : λx.A.t,Γ⇒ ∆
Lλ, z fresh

y
w≈ t,Ω; Γ⇒ ∆, w : λx.A.t, w : A[y/x]

y
w≈ t,Ω; Γ⇒ ∆, w : λx.A.t

Rλ

x
w≈ x,Ω; Γ⇒ ∆

Ω; Γ⇒ ∆
DenVar

y
w≈ x,Ω;w : x = y,Γ⇒ ∆

y
w≈ x,Ω; Γ⇒ ∆

DenId

non-logical rules:

z
w≈ t,Ω; Γ⇒ ∆

Ω; Γ⇒ ∆
Tot, z fresh

x
v≈ t, x w≈ t, wRv,Ω; Γ⇒ ∆

x
w≈ t, wRv,Ω; Γ⇒ ∆

Rig

object of D that is denoted by t in that world of that model. Therefore the rules for λ are like

the ones for ∃, see [10], save that they are restricted by atomic formulas of shape y
w≈ t instead

of y ∈ w. The universal rule DenId ensures that if y in w picks the object denoted by x, then x
and y denote the same object. Finally, the universal rule DenV ar ensures that variables denote
at every world.

The calculus G3Qλ.L is obtained by extending G3Qλ.K with the non-logical rules from
Tables 3 and 5 that express the semantic properties defining Qλ.L.

Example 4 (Derivation of axioms in Table 4). We show here that RG is derivable in calculi
containing rule Rig (where rule R⊃ is admissible) and that TT is derivable in calculi containing
rule Tot. These derivations also show that these formulas are not derivable in calculi without
these rules when t is an individual constant. If t is a variable, TT is always derivable thanks to
RigV ar, and RG is always derivable thanks to DenV ar, DenId, RigV ar, and Repl.

y
v≈ t, wRv, y

w≈ t; v : A[y/x], w : 2A[y/x]⇒ v : λx.A.t, v : A[y/x]
Lem.5

y
v≈ t, wRv, y

w≈ t; v : A[y/x], w : 2A[y/x]⇒ v : λx.A.t
Rλ

wRv, y
w≈ t; v : A[y/x], w : 2A[y/x]⇒ v : λx.A.t

Rig

wRv, y
w≈ t;w : 2A[y/x]⇒ v : λx.A.t

L2

y
w≈ t;w : 2A[y/x]⇒ w : 2(λx.A.t)

R2

w : λx.2A.t⇒ w : 2(λx.A.t)
Lλ

⇒ w : λx.2A.t ⊃ 2(λx.A.t)
R⊃

8

71

Labelled calculi for QMLs with non-rigid and non-denoting terms Orlandelli and Corsi

y
w≈ t;w : y = y ⇒ w : λx.x = x.t, w : y = y

y
w≈ t⇒ w : λx.x = x.t, w : y = y

Ref=

y
w≈ t⇒ w : λx.x = x.t

Rλ

⇒ w : λx.x = x.t
Tot

3.2.1 Structural Properties

Lemma 5 (Initial sequents). Sequents of shape Ω;w : A,Γ ⇒ ∆, w : A (with A arbitrary
Lλ-formula) are G3Qλ.L-derivable.

Proof. By induction on the weight of A; for the inductive steps it is enough to apply, root first,
the rules for the principal operator of A and then the inductive hypothesis (IH).

Lemma 6 (α-conversion). G3Qλ.L `n Ω; Γ ⇒ ∆ entails G3Qλ.L `n Ω; Γ′ ⇒ ∆′, where Γ′

(∆′) is obtained from Γ (∆) by renaming some bound variable (without capturing variables).

Proof. The proof is by induction on the height of the G3Qλ.L-derivation D of Ω; Γ ⇒ ∆. To
illustrate, suppose we know that G3Qλ.L `n Ω;w : λx.A.t,Γ⇒ ∆, and we want to show that
G3Qλ.L `n Ω;w : λy.A[y/x].t,Γ⇒ ∆. If w : λx.A.t is not principal in the last step of D, the
proof is straightforward. Else, we transform

z
w≈ t,Ω;w : A[z/x],Γ⇒ ∆

Ω;w : λx.A.t,Γ⇒ ∆
Lλ

into

z
w≈ t,Ω;w : A[z/x],Γ⇒ ∆

z
w≈ t,Ω;w : (A[y/x])[z/y],Γ⇒ ∆)

?

Ω;w : λy.A[y/x].t,Γ⇒ ∆
Lλ

where the step ? is height-preserving admissible since, having assumed that the renaming cannot
capture variables, w : (A[y/x])[z/y] is just a cumbersome notation for w : A[z/x].

Lemma 7 (Substitutions). The following rules are height-preserving admissible in G3Qλ.L:

Ω; Γ⇒ ∆

Ω[y/x]; Γ[y/x]⇒ ∆[y/x]
[y/x]

Ω; Γ⇒ ∆

Ω[w/v]; Γ[w/v]⇒ ∆[w/v]
[w/v]

where y is free for x in each formula occurring in Γ,∆ for rule [y/x].

Proof. Both proofs are by induction on the height of the derivation D of the premiss Ω; Γ⇒ ∆.
The base cases and the inductive steps where the last rule is not a rule from Table 5 are proved
in [10, Lemma 12.4].

Of the new cases, the only nontrivial one is the one for rule [y/x] where the last step is by
Lλ and the substitution [y/x] clashes with its variable condition. E.g., the last step of D is

y
w≈ t,Ω;w : A[y/x],Γ′ ⇒ ∆

Ω;w : λx.A.t,Γ′ ⇒ ∆
Lλ

with x occurring free in Ω,Γ′,∆. We apply IH twice to the premiss of the last step of D, the
first time to replace y with z, for some fresh variable z, and the second time to replace x with
y. We finish by applying rule Lλ. We have thus transformed D into D[y/x]:

9

72

Labelled calculi for QMLs with non-rigid and non-denoting terms Orlandelli and Corsi

y
w≈ t,Ω;w : A[y/x],Γ′ ⇒ ∆

z
w≈ t,Ω;w : A[z/x],Γ′ ⇒ ∆

IH

z
w≈ (t[y/x]),Ω[y/x];w : A[z/x],Γ′[y/x]⇒ ∆[y/x]

IH

Ω[y/x];w : λx.A.(t[y/x]),Γ′[y/x]⇒ ∆[y/x]
Lλ

which has the same height as D because the steps by IH are height-preserving admissible.

Theorem 8 (Weakening). The following rules are height-preserving admissible in G3Qλ.L:

Ω; Γ⇒ ∆

Ω′,Ω; Γ⇒ ∆
LWΩ

Ω; Γ⇒ ∆

Ω; Γ′,Γ⇒ ∆
LW

Ω; Γ⇒ ∆

Ω; Γ⇒ ∆,∆′
RW

Proof. The proofs are by induction on the height of the derivation D of the premiss Ω; Γ⇒ ∆.
The base cases and the inductive cases where the last step of D is not by a rule from Table
5 are proved in [10, Thm. 12.5]. The proofs of the inductive cases when the last step of D is
by Lλ or by Rλ are analogous to the ones in [10, Thm. 12.5] with last step of D by rules L∃
and R∃, respectively. The remaining cases are similar to the other ones with last step by a
geometric rule and can, therefore, be omitted.

Lemma 9 (Invertibility). Each rule of G3Qλ.L is height-preserving invertible.

Proof. We prove only the case of Lλ (Rλ is ‘Kleene’-invertible thanks to the repetition of the
principal formulas in the premiss). The proof is by induction on the height of the derivation
D of Ω;w : λx.A.t,Γ ⇒ ∆. If the height of D is 0 or if w : λx.A.t is principal in the last
step of D, the lemma holds trivially. In the other inductive cases we obtain a derivation of

y
w≈ t,Ω;w;A[y/x],Γ⇒ ∆ (where y is any variable) by first applying to the premiss(es) of the

last step of D an height-preserving admissible instance of substitution to avoid problems with
variable conditions on the last step of D, if this is needed. Then, we apply IH to the sequent(s)
just obtained and we finish by applying the last rule applied in D.

Theorem 10 (Contraction). The following rules are height-preserving admissible in G3Qλ.L:

Ω′,Ω′,Ω; Γ⇒ ∆

Ω′,Ω; Γ⇒ ∆
LCΩ

Ω; Γ′,Γ′,Γ⇒ ∆

Ω; Γ′,Γ⇒ ∆
LC

Ω; Γ⇒ ∆,∆′,∆′

Ω; Γ⇒ ∆,∆′
RC

Proof. The proof is handled by a simultaneous induction on the height of the derivations of
the premisses of LCw, LC and RC. Without loss of generality, we assume the multiset we are
contracting is made of only one formula E.

The base cases hold, and the inductive cases depend on whether zero, one, or two instances
of E are principal in the last step R of the derivation D of the premiss. If zero instances are
principal in R, we apply IH to the premiss(es) of R and then R, and we are done.

If one instance is principal and R is by one of L¬, R¬, L∧, R∧, R∀, R2 and Lλ, we proceed
by first applying invertibility to that rule, then we apply IH as many times as needed, and
we conclude by applying an instance of that rule. Else, R is by a rule with repetition of the
principal formula(s) in the premiss and we don’t even need invertibility.

If two instances are principal, R is one of Euclid, Trans, and Repl. The case of Euclid
is taken care by the presence of its contracted instances Euclidc. For Trans, we have three
occurences of wRw in the premiss of this rule instances: two principal and one active. We
apply IH twice and we are done. For Repl, the active formula of the last rule instance must be
of shape w : x = x, and, after having applied IH, we can get rid of it by applying Ref=.

10

73

Labelled calculi for QMLs with non-rigid and non-denoting terms Orlandelli and Corsi

Theorem 11 (Cut). The following rule of Cut is admissible in G3Q.L:

Ω; Γ⇒ ∆, w : A Ω′;w : A,Γ′ ⇒ ∆′

Ω,Ω′; Γ′,Γ⇒ ∆,∆′
Cut

Proof. The proof, which extends that of [10, Thm. 12.9], considers an uppermost instance of
Cut which is handled by a principal induction on the weight of the cut-formula w : A with a
sub-induction on the sum of the heights of the derivations D1 and D2 of the two premisses of
cut (cut-height, for shortness). The proof can be organized in four exhaustive cases: in case 1
one of the two premisses is an initial sequent. In case 2 the cut formula is not principal in the
left premiss only and in case 3 it is not principal in the right premiss. Finally, in case 4, the
cut formula is principal in both premisses.

In case 1, the conclusion of Cut is an initial sequent and, therefore, we can dispense with
that instance of Cut.

In case 2, we transform the derivation by: (i) applying, if the last rule applied in D1 has
a variable condition, an height-preserving admissible substitution to rename its eigenvariable
with a fresh one; then, (ii) we apply one or two instances of Cut on each premiss of D1 with
the conclusion of D2. These instances of Cut are admissible by IH because they have a lesser
cut-height. We finish (iii) by applying an instance of the last rule applied in D1 and, if needed,
some instances of contraction.

Case 3 is similar to case 2. To illustrate, suppose the last step of D2 is by Lλ, we transform

Ω; Γ⇒ ∆, w : A

y
v≈ t,Ω′;w : A, v : B[y/x],Γ′ ⇒ ∆′

Ω′;w : A, v : λx.B.t,Γ′ ⇒ ∆′
Lλ

Ω,Ω′; v : λx.B.t,Γ′,Γ⇒ ∆,∆′
Cut

into

Ω; Γ⇒ ∆, w : A

y
v≈ t,Ω′;w : A, v : B[y/x],Γ′ ⇒ ∆′

z
v≈ t,Ω′;w : A, v : B[z/x],Γ′ ⇒ ∆′

[z/y]

z
v≈ t,Ω,Ω′; v : B[z/x],Γ,Γ′ ⇒ ∆,∆′

Cut

Ω,Ω′; v : λx.B.t,Γ′,Γ⇒ ∆,∆′
Lλ

In case 4, we have subcases according to the principal operator of w : A. We consider only
the case where w : A is of shape w : λx.B.t (for w : A of shape either w : B ∧ C or w : ∀xB or
w : 2B, see [10, Thm. 12.9]; when it is of shape w : ¬B there is no problem). We transform

z
v≈ t,Ω; Γ⇒ ∆, v : λx.B.t, v : B[z/x]

z
v≈ t,Ω; Γ⇒ ∆, v : λx.B.t

Rλ
y
v≈ t,Ω′; v : B[y/x],Γ′ ⇒ ∆′

Ω′; v : λx.B.t,Γ′ ⇒ ∆′
Lλ

z
v≈ t,Ω,Ω′; Γ′,Γ⇒ ∆,∆′

cut

into

z
v≈ t,Ω; Γ⇒ ∆, v : B[z/x], v : λx.B.t Ω′; v : λx.B.t,Γ′ ⇒ ∆′

z
v≈ t,Ω,Ω′; Γ⇒ ∆,∆′, v : B[z/x]

Cut1

y
v≈ t,Ω′; v : B[y/x],Γ′ ⇒ ∆′

z
v≈ t,Ω′; v : B[z/x],Γ′ ⇒ ∆′

[z/y]

z
v≈ t, z v≈ t,Ω,Ω′,Ω′, ; Γ′,Γ⇒ ∆,∆′,∆′

Cut2

z
v≈ t,Ω,Ω′; Γ′,Γ⇒ ∆,∆

LCΩ+LC+RC

where Cut1 is admissible because it has a lesser cut-height, and Cut2 is admissible because its
cut-formula has a lower weight.

11

74

Labelled calculi for QMLs with non-rigid and non-denoting terms Orlandelli and Corsi

3.2.2 Soundness and Completeness

Definition 12. Given a model M =< W,R,D,V >, let f : LAB ∪ V AR −→ W ∪ D be a
function mapping labels to worlds of the model and mapping variables to objects of the union
of the domains of the model. We say that:

M satisfies w : A under f iff f |=Mf(w) A

M satisfies x ∈ w under f iff f(x) ∈ Df(w)

M satisfies wRv under f iff f(w)Rf(v)

M satisfies x
w≈ t under f iff

{
V (t, f(w)) = f(x) if t is an individual constant;
f(t) = f(x) if t is a variable;

Given a sequent Ω; Γ ⇒ ∆ we say that it is Qλ.L-valid iff for every pair M, f where M is
a model for Qλ.L, if M satisfies under f all formulas in Ω,Γ then M satisfies under f some
formula in ∆.

Theorem 13 (Soundness). If a sequent Ω; Γ⇒ ∆ is G3Qλ.L-derivable, then it is Qλ.L-valid.

Proof. The proof is by induction on the height of the G3Qλ.L-derivation of Ω; Γ ⇒ ∆. The
base case holds since Γ and ∆ have one formula in common, and it is easy to see that the
propositional rules, the rules for ∀, and the rules for 2 preserve validity on every model.

For rule Lλ, let the last step of D be:

y
w≈ t,Ω;w : A[y/x],Γ⇒ ∆

Ω;w : λx.A.t,Γ⇒ ∆
Lλ

LetM and f be such thatM satisfies under f all formulas in Ω,Γ and the formula w : λx.A.t.
We have to prove that M satisfies under f also some formula in ∆. Since f |=Mf(w) λx.A.t,

we know that, in f(w), the term t denotes some object a ∈ D and that fy.a |=Mf(w) A[y/x],
where y does not occur in Ω,Γ, A. This implies that M satisfies under fy.a all formulas in

y
w≈ t,Ω;w : A[y/x],Γ, and therefore, by IH, M satisfies under fy.a also some formula in ∆.

Since y does not occur in ∆, we conclude that M satisfies under f some formula in ∆.
For rule Rλ, let the last step of D be:

y
w≈ t,Ω; Γ⇒ ∆, w : λx.A.t, w : A[y/x]

y
w≈ t,Ω; Γ⇒ ∆, w : λx.A.t

Rλ

We consider an arbitrary pair M, f satisfying all formulas in y
w≈ t,Ω,Γ. By IH we know that

they satisfy also some formula in ∆, w : λx.A.t, w : A[y/x]. If they satisfy some formula in
∆, w : λx.A.t there is nothing to prove. Else, M satisfies under f the formulas w : A[y/x] and

y
w≈ t, in this case it is easy to see that M satisfies under f also λx.A.t.

The rules for identity preserves validity on every model: the proof is standard for rules Ref=

and Repl, and for RigV ar, it depends on the fact that variables are rigid designators. Also
the rules DenV ar and DenId preserves validity on every model. For DenV ar this depends on
the fact that variables denote in every world. For DenId, this holds because the fact that M
satisfies y

w≈ x under f means that f(x) = f(y). Therefore, M must also satisfy under f the
formula w : x = y.

If the last step in D is by a non-logical rule R of G3Qλ.L, we can show that R preserves
Qλ.L-validity. To illustrate, if R is Rig, we consider a model M where constants are rigid
designators, see Table 4. Given a generic f such that M satisfies under f all formulas in

12

75

Labelled calculi for QMLs with non-rigid and non-denoting terms Orlandelli and Corsi

wRv, x
w≈ t,Ω,Γ. We have to prove that M satisfies under f also some formula in ∆. By

rigidity, M satisfies under f also x
v≈ t and, by IH, we conclude that it satisfies some formula

in ∆.

Theorem 14 (Completeness). If a sequent Ω; Γ⇒ ∆ is Qλ.L-valid, it is G3Qλ.L-derivable.

Proof. The proof is organized in four main steps. First, in Def. 15, we sketch a root-first
G3Qλ.L-proof-search procedure. Second, in Def. 16, we define the notion of saturation for a
branch of a G3Qλ.L-proof-search tree and, in Proposition 17, we show that, for every sequent, a
G3Qλ.L-proof-search either gives us a G3Qλ.L-derivation of that sequent, or it has a saturated
branch. Third, in Def. 19, we define a modelMB out of a saturated branch B. Finally, in Lemma
20, we prove that MB is a model for Qλ.L that falsifies Ω; Γ⇒ ∆.

Definition 15. A G3Qλ.L-proof-search tree for a sequent Ω; Γ ⇒ ∆ is a tree of sequents
generated according to the following inductive procedure. At step 0 we write the one node
tree Ω; Γ⇒ ∆. At step n + 1, if all leaves of the tree generated at step n are initial sequents,
the procedure ends. Else, we continue the bottom-up construction by applying, to each leaf that
is not an initial sequent, each applicable instance of a rule of G3Qλ.L or, if no rule instance is
applicable, we copy the leaf on top of itself. For rules Ref=, RefW , Ser,NonEm,Cons,DenV ar
and Tot, we consider applicable only instances where, save for eigenvariables, all terms and
labels occurring in the active formula of that instance already occur in the leaf. See [10, Thm.
12.14] for the details of the inductive procedure.

Definition 16 (Saturation). A branch B of a G3Qλ.L-proof-search tree for a sequent is QλL-
saturated if it satisfies the following conditions, where Γ (∆) is the union of the antecedents
(succedents) occurring in that branch,

1. no w : p occurs in Γ ∩∆;

2. if w : ¬A is in Γ, then w : A is in ∆;

3. if w : ¬A is in ∆, then w : A is in Γ;

4. if w : A ∧B is in Γ, then both w : A and w : B are in Γ;

5. if w : A ∧B is in ∆, then at least one of w : A and w : B is in ∆;

6. if both w : ∀xA and y ∈ w are in Γ, then w : A(y/x) is in Γ;

7. if w : ∀xA is in ∆, then, for some z, w : A(z/x) is in ∆ and z ∈ w is in Γ;

8. if both w : 2A and wRv are in Γ, then v : A is in Γ;

9. if w : 2A is in ∆, then, for some u, u : A is in ∆ and wRu is in Γ;

10. if w : λx.A.t is in Γ, then, for some z, both z
w≈ t and w : A[z/x] are in Γ;

11. if w : λx.A.t is in ∆ and y
w≈ t is in Γ, then w : A[y/x] is in ∆;

12. if the principal formulas of some instance of one of Ref=, Repl, RigV ar, DenV ar, and
DenId is in Γ, then also the corresponding active formulas are in Γ.

13R. if R is a non-logical rule of G3tm.L, then for each set of principal formulas of R that are
in Γ also the corresponding active formulas are in Γ (for some eigenvariable of R, if any).

13

76

Labelled calculi for QMLs with non-rigid and non-denoting terms Orlandelli and Corsi

Proposition 17. Let us consider a G3Qλ.L-proof-search tree for a sequent S, two cases are
possible: either the tree is finite or not. If the tree is finite, given that all of its leaves are initial
sequents and that it grows by applying rules of G3Qλ.L, it is a G3Qλ.L-derivation of S and,
by Theorem 13, S is Qλ.L-vaild. Else, by König’s Lemma, the tree has an infinite branch B
that is Qλ.L-saturated since every applicable rule instance has been applied at some step of
the construction of the tree.

Proposition 18. It is immediate to notice that, by saturation under rule Ref= and Repl the
set of variables x, y such that w : x = y is in Γ form an equivalence class and that, by saturation
under RigV ar, the same equivalence class holds with respect to each label v occurring in Γ,∆.

Definition 19. Let B be a saturated branch of a G3Qλ.L-proof-search tree for a sequent. The
model MB =<WB,RB,DB,VB > is defined from B as follows:

• WB is the set of all labels occurring in B;

• RB is such that wRv iff wRv occurs in B;

• DB is such that, for each w ∈ WB, Dw is the set containing, for each variable x such that
x ∈ w occurs in B, the equivalence class [x] of all x, y such that w : x = y occurs in B;

• VM is defined as follows:

– for every predicate Pn ∈ Sλ, V (Pn, w) is the set of all n-tuples of equivalence classes
of variables < [x1], . . . , [xn] > such that w : Px1, . . . , xn occurs in Γ;

– for every constant c ∈ Sλ, V (c, w) is [x] if x
w≈ c occurs in Γ, else it is undefined.

Lemma 20. If MB is the model defined from a saturated branch B of a G3Qλ.L-proof-search
tree for a sequent Ω; Γ ⇒ ∆ and σ is the assignment defined by σ(x) = [x], then, for each
labelled formula w : A occurring in B,

1. σ |=MB
w A iff w : A occurs in Γ

2. MB is a model for Qλ.L.

Proof. The proof of claim 1 is by induction on the weight of w : A. The base case holds thanks
to the definition of VB, and the inductive cases depends on the construction of MB and on
properties 2–12 of the definition of saturated branch.

To illustrate, suppose w : A ≡ w : λxB.t. If w : A occurs in Γ, then, by Def. 16.10, for some

z, z
w≈ t and w : B[z/x] are in Γ. This implies that σw(t) = [z] and, by IH, that σx.[z] |=Bw B.

Thus, σ |=Bw λx.B.t. Else, w : λx.B.t is in ∆ and, for each t such that y
w≈ t is in Γ (if any),

Def. 16.11 entails that w : B[y/x] is in ∆. By construction we have that that σw(t) = [y] and,

thanks to IH (and 16.1), σx.[y] 6|=MB
w B. We conclude that σ 6|=MB

w λx.B.t.
Claim 2 holds thanks to property 13R of saturated branch: if a non-logical rule R is in

G3Qλ.L, then we have to show that MB satisfies the semantic property corresponding to R.
This holds by construction ofMB since B is saturated with respect to rule R. For example, for
rule Rig, we have to prove that wRBv and sw(t) ∈ DB – i.e., sw(t) is defined in MB – implies
that sv(t) = σw(t). Suppose that wRv is in Γ, if t is a variable, then, 16.12 entails that, for all

y, if y
w≈ t is in Γ, then, also y

v≈ t is in Γ (by saturation under DenV ar, DenId, RigV ar, and

Repl). Else, t is a constant and if, for some y, y
w≈ t is in Γ, saturation under rule Rig entails

that y
v≈ t is in Γ. In both cases MB behaves as desired.

14

77

Labelled calculi for QMLs with non-rigid and non-denoting terms Orlandelli and Corsi

4 Conclusion

We have introduced labelled sequent calculi that characterize the QMLs with non-rigid and non-
denoting terms introduced in [6, 7], and we have studied their structural properties. To the best
of our knowledge, this is the first proof-theoretic study of these logics. In [6, 7] prefixed tableaux
for these logics have been considered, but there is no study of their structural properties. Notice
that, even if we have considered only the Qλ-extensions of propositional modal logics L in the
cube of normal modalities, the present approach can be extended, in a modular way, to the
Qλ-extensions of any propositional modal logic whose class of models is defined by first-order
definable modal logics (by applying, if needed, the geometrisation technique introduced in [5]).
For example, we can introduce a calculus characterizing validity in the class of all constant
domain models satisfying confluence: ∀w, v, u ∈ W(wRv ∧ wRu ⊃ ∃w′ ∈ W(vRw′ ∧ uRw′).
From [4], we know that confluence corresponds to Geach’s axiom 2 := 32A ⊃ 23A and that
the quantified modal axiomatic system Q.2⊕BF is incomplete with respect to the class of all
confluent constant domain models. Nevertheless, confluence is a geometric property, and it can
be expressed in labelled calculi by the rule:

vRw′, uRw′, wRv, wRu,Ω; Γ⇒ ∆

wRv, wRu,Ω; Γ⇒ ∆
Conf ,w′ fresh

It can be proved that the labelled calculus G3Qλ.K+{Cons,Conf} is sound and complete
with respect to the class of confluent constant domain models.

The calculi introduced here are somehow related to the ones we gave in [3] for the indexed
epistemic logics studied in [2]. The QMLs studied here are less general than the ones in [2],
but they have the advantage of being simpler and of involving no major departure from the
standard modal language. Therefore the present approach to non-rigid and non-denoting terms
can easily be extended to most variants of QMLs. For example, it carries over to labelled calculi
for term-modal logics [11].

References

[1] Agata Ciabattoni, Revantha Ramanayake, and Heinrich Wansing. Hypersequent and display cal-
culi - a unified perspective. Studia Logica, 102(6):1245–1294, 2014.

[2] Giovanna Corsi and Eugenio Orlandelli. Free quantified epistemic logics. Studia Logica,
101(6):1159–1183, 2013.

[3] Giovanna Corsi and Eugenio Orlandelli. Sequent calculi for indexed epistemic logics. In Proceedings
of ARQNL 2016, pages 21–35. CEUR-WS, 2016.

[4] Max Cresswell. Incompleteness and the barcan formula. J. Phil. Logic, 24(4):379–403, 1995.

[5] Roy Dyckhoff and Sara Negri. Geometrisation of first-order logic. Bulletin of Symbolic Logic,
21(2):123–163, 2015.

[6] Melvin Fitting. On quantified modal logic. Fundamenta Informaticae, 39(1–2):105–121, 1999.

[7] Melvin Fitting and Richard L. Mendelsohn. First-Order Modal Logic. Springer, 1998.

[8] Gottlob Frege. Über sinn und bedeutung. Zeitschrift für Philosophie Und Philosophische Kritik,
100(1):25–50, 1892.

[9] Sara Negri and Jan von Plato. Cut elimination in the presence of axioms. Bullettin of Symbolic
Logic, 4(4):418–435, 1998.

[10] Sara Negri and Jan von Plato. Proof Analysis. Cambridge University Press, 2011.

[11] Eugenio Orlandelli and Giovanna Corsi. Decidable term-modal logics. In Proceedings of EUMAS
2017 and AT 2017, pages 1–15. Springer, Forthcoming.

[12] Bertrand Russell. On denoting. Mind, 14(56):479–493, 1905.

15

78

System Demonstration: The Higher-Order Prover Leo-III

Alexander Steen1 and Christoph Benzmüller2,1

1 Freie Universität Berlin, Institute for Computer Science, Berlin, Germany
2 University of Luxembourg, FSTC, Luxembourg

{a.steen|c.benzmueller}@fu-berlin.de

Abstract

The higher-order ATP system Leo-III is demonstrated. Leo-III supports flexible and
effective reasoning in every common semantical variation of normal modal logics.

Many powerful automated and interactive theorem proving systems for first-order and
higher-order logics have been developed over the past decades. However, with a few notable
exceptions, most available systems focus on classical logics only. In particular for quantified
non-classical logics only a small number of implemented systems is available to date. This is in
contrast to an increasing number of challenging and interesting applications for such systems in
artificial intelligence, computer science, mathematics and philosophy [10, 8, 9, 5, 6, 7]. Meta-
physics, for example, is an area where higher-order modal logics (HOMLs) play an important
role. The development of ATPs for HOMLs, however, is still in its infancy. The Leo-III prover,
which is presented here, is addressing this gap.

Leo-III [4] is in the first place an automated theorem prover for classical higher-order logic
(HOL) with Henkin semantics and choice [1]. Despite its primary focus on HOL, Leo-III comes
with effective means for reasoning in HOMLs. In fact, reasoning in every normal modal logic
variant is supported in Leo-III. To achieve this, the prover internally implements a shallow
semantical embedding approach [2, 3]. The key idea of this approach is to provide and exploit
faithful mappings for HOML input problems to HOL. This is orthogonal to the direct imple-
mentation of specialised theorem provers, which usually focus on a small subset of modal logic
systems only. The semantical embedding approach realised in Leo-III, in contrast, allows for a
quick adaptation to a broad variety of expressive, non-classical logics.

Leo-III in particular supports (but is not limited to) first-order and higher-order extensions
of the well known modal logic cube for different concrete choices of

Quantification semantics, including cumulative, decreasing, constant and varying domains,

Rigidity, including rigid and world-dependent constant symbols, and

Consequence, including the usual notions of local and global consequence.

When taking all possible parameter combinations into account this amounts to more than
120 supported HOMLs [3, §2.2]. The exact number of logics is in fact much higher, since Leo-III
also supports multi-modal logics and offers fine-grained control over more specific combinations
of the above semantical parameters (e.g. different quantification semantics per type).

Higher-order modal logics. HOMLs as addressed here are extensions of HOL, which has
been proposed by Church, and further studied by Henkin, Andrews and others. HOL provides
lambda-notation as an elegant means to denote unnamed functions, predicates and sets (by
their characteristic functions). HOML, in turn, augments HOL with a set of modal operators
2i, i ∈ I, for some index set I, and is equipped with a suitable combination of HOL semantics
and a Kripke-style modal semantics. In our approach an adequate notion of Henkin semantics
for both HOML and HOL is assumed.

ARQNL 2018 79 CEUR-WS.org/Vol-2095

System Demonstration: The Higher-Order Prover Leo-III Steen and Benzmüller

Figure 1: Example modal logic problem input for Leo-III. The first three lines specify the exact
modal logic (here a S5 logic with rigid constants, constant domain quantification and global
consequence) under which the problem is to be analyzed. The conjecture is represented by the
last two lines and encodes the formula ∀Pι→o∀Fι→ι∀Xι∃Gι→ι(32P (F (X))⇒ 2P (G(X))).

thf(s5_spec, logic, ($modal := [

$constants := $rigid, $quantification := $constant,

$consequence := $global, $modalities := $modal_system_S5])).

thf(becker,conjecture,(! [P:$i>$o,F:$i>$i, X:$i]: (? [G:$i>$i]:

(($dia @ ($box @ (P @ (F @ X)))) => ($box @ (P @ (G @ X))))))).

Automation of HOML. In order to automate reasoning in HOMLs, Leo-III exploits the
semantical embedding approach and internally translates modal logic problems into equivalent
problems formulated within classical higher-order logic. To that end, the de-facto standard
TPTP THF input syntax is augmented to include the modal connectives. Fig. 1 displays an
example modal logic formula that is an instance of a corollary of Becker’s postulate, with $box

and $dia representing the (mono-)modal operators 2 and 3, respectively, and the usual TPTP
text representatives of the remaining logical connectives. This example formula is valid in S5
but not in any weaker system.

The logic specification format displayed in the example from Fig. 1 is stemming from
an ongoing TPTP language extension proposal.1 In this logic specification, the identifiers
$constants, $quantification and $consequence specify the exact semantical settings for
the rigidity of constant symbols, the quantification semantics and the consequence relation,
respectively. Finally, $modalities specify the properties of the modal connectives. Valid
values are either pre-defined identifiers representing the usual modal logic systems, as in
$modalities := $modal_system_S5 for the specification of an S5 modal logic, or lists of indi-
vidual modal axiom schemes, as in $modalities := [$modal_axiom_K, $modal_axiom_B].

The reasoning process of Leo-III proceeds as follows:

1. The user inputs a HOML problem in the adapted TPTP syntax from above (Fig. 1).

2. Leo-III analyses the logic specification contained within the input and automatically se-
lects the definitions and axioms to be added to the embedded problem representation.

3. The problem statement itself is translated into its embedded equivalent using the defini-
tions from the previous step.

4. Finally, Leo-III starts reasoning in (meta-logic) HOL and returns SZS compliant result
information and, if successful, also a proof object just as for standard HOL problems.

Summary. At the ARQNL 2018 event we will demonstrate Leo-III, which, in terms of sup-
ported logics, is the most widely applicable automated theorem prover available to date. The
embedding procedure is also available as stand-alone implementation at github.com/leoprover
and can be used in conjunction with every THF-compliant ATP.

1 See http://www.cs.miami.edu/~tptp/TPTP/Proposals/LogicSpecification.html for more details.

2

80

System Demonstration: The Higher-Order Prover Leo-III Steen and Benzmüller

A Installation and Usage of Leo-III

Acquisition and Installation

Leo-III is freely available on GitHub (https://github.com/leoprover/Leo-III) under BSD-
3 license. The most current release (version 1.2) is accessible under https://github.com/

leoprover/Leo-III/releases/latest. To get it, simply download the source archive and
extract it so some location.

> wget https://github.com/leoprover/Leo-III/archive/v1.2.tar.gz
> tar -xvzf v1.2.tar.gz

After extraction, Leo-III can be built using Make. Simply cd to the extracted directory and
run make:

> cd Leo-III-1.2/
> make

After building, there should be a directory bin/, relative from the current directory. This
directory contains the binary leo3 of Leo-III.

Leo-III can optionally be installed by invoking

> make install

which copies the binary to the directory $HOME/bin by default.

Usage

Leo-III is invoked via command-line (assuming the leo3 executable is in $PATH):
For the example of Becker’s postulate of Fig. 1, running

> leo3 becker.p -p

will invoke Leo-III for proving this conjecture (the -p option enables the output of a proof
certificate). This will produce the following result:

% Axioms used in derivation (1): mrel_meuclidean
% No. of inferences in proof: 22
% No. of processed clauses: 14
% No. of generated clauses: 77
[...]
% SZS status Theorem for becker.p : 4179 ms resp. 1443 ms w/o parsing
% SZS output start CNFRefutation for becker.p
thf(mworld_type, type, mworld: $tType).
thf(mrel_type, type, mrel: (mworld > (mworld > $o))).
thf(meuclidean_type, type, meuclidean: ((mworld > (mworld > $o)) > $o)).
thf(meuclidean_def, definition, (meuclidean = (^ [A:(mworld > (mworld > $o))]: ! [B:mworld,C:mworld,D:mworld

]: (((A @ B @ C) & (A @ B @ D)) => (A @ C @ D))))).
thf(mvalid_type, type, mvalid: ((mworld > $o) > $o)).
thf(mvalid_def, definition, (mvalid = (’!’ @ mworld))).
thf(mimplies_type, type, mimplies: ((mworld > $o) > ((mworld > $o) > (mworld > $o)))).
thf(mimplies_def, definition, (mimplies = (^ [A:(mworld > $o),B:(mworld > $o),C:mworld]: ((A @ C) => (B @ C))

))).
thf(mdia_type, type, mdia: ((mworld > $o) > (mworld > $o))).
thf(mdia_def, definition, (mdia = (^ [A:(mworld > $o),B:mworld]: ? [C:mworld]: ((mrel @ B @ C) & (A @ C))))).
thf(mbox_type, type, mbox: ((mworld > $o) > (mworld > $o))).
thf(mbox_def, definition, (mbox = (^ [A:(mworld > $o),B:mworld]: ! [C:mworld]: ((mrel @ B @ C) => (A @ C)))))

.
thf(mexists_const__o__d_i_t__d_i_c__type, type, mexists_const__o__d_i_t__d_i_c_: ((($i > $i) > (mworld > $o))

> (mworld > $o))).
thf(mexists_const__o__d_i_t__d_i_c__def, definition, (mexists_const__o__d_i_t__d_i_c_ = (^ [A:(($i > $i) > (

mworld > $o)),B:mworld]: ? [C:($i > $i)]: (A @ C @ B)))).
thf(mforall_const__o__d_i_t__o_mworld_t__d_o_c__c__type, type, mforall_const__o__d_i_t__o_mworld_t__d_o_c__c_

: ((($i > (mworld > $o)) > (mworld > $o)) > (mworld > $o))).

3

81

System Demonstration: The Higher-Order Prover Leo-III Steen and Benzmüller

thf(mforall_const__o__d_i_t__o_mworld_t__d_o_c__c__def, definition, (
mforall_const__o__d_i_t__o_mworld_t__d_o_c__c_ = (^ [A:(($i > (mworld > $o)) > (mworld > $o)),B:mworld]:
! [C:($i > (mworld > $o))]: (A @ C @ B)))).

thf(mforall_const__o__d_i_c__type, type, mforall_const__o__d_i_c_: (($i > (mworld > $o)) > (mworld > $o))).
thf(mforall_const__o__d_i_c__def, definition, (mforall_const__o__d_i_c_ = (^ [A:($i > (mworld > $o)),B:mworld

]: ! [C:$i]: (A @ C @ B)))).
thf(mforall_const__o__d_i_t__d_i_c__type, type, mforall_const__o__d_i_t__d_i_c_: ((($i > $i) > (mworld > $o))

> (mworld > $o))).
thf(mforall_const__o__d_i_t__d_i_c__def, definition, (mforall_const__o__d_i_t__d_i_c_ = (^ [A:(($i > $i) > (

mworld > $o)),B:mworld]: ! [C:($i > $i)]: (A @ C @ B)))).
thf(sk1_type, type, sk1: mworld).
thf(sk2_type, type, sk2: ($i > (mworld > $o))).
thf(sk3_type, type, sk3: ($i > $i)).
thf(sk4_type, type, sk4: $i).
thf(sk5_type, type, sk5: mworld).
thf(sk6_type, type, sk6: (($i > $i) > mworld)).
thf(1,conjecture,((mvalid @ (mforall_const__o__d_i_t__o_mworld_t__d_o_c__c_ @ (^ [A:($i > (mworld > $o))]: (

mforall_const__o__d_i_t__d_i_c_ @ (^ [B:($i > $i)]: (mforall_const__o__d_i_c_ @ (^ [C:$i]: (
mexists_const__o__d_i_t__d_i_c_ @ (^ [D:($i > $i)]: (mimplies @ (mdia @ (mbox @ (A @ (B @ C)))) @ (mbox
@ (A @ (D @ C)))))))))))))),file(’becker.p’,1)).

thf(2,negated_conjecture,((~ (mvalid @ (mforall_const__o__d_i_t__o_mworld_t__d_o_c__c_ @ (^ [A:($i > (mworld
> $o))]: (mforall_const__o__d_i_t__d_i_c_ @ (^ [B:($i > $i)]: (mforall_const__o__d_i_c_ @ (^ [C:$i]: (
mexists_const__o__d_i_t__d_i_c_ @ (^ [D:($i > $i)]: (mimplies @ (mdia @ (mbox @ (A @ (B @ C)))) @ (mbox
@ (A @ (D @ C))))))))))))))),inference(neg_conjecture,[status(cth)],[1])).

thf(5,plain,((~ (! [A:mworld,B:($i > (mworld > $o)),C:($i > $i),D:$i]: ? [E:($i > $i)]: ((? [F:mworld]: ((
mrel @ A @ F) & ! [G:mworld]: ((mrel @ F @ G) => (B @ (C @ D) @ G)))) => (! [F:mworld]: ((mrel @ A @ F)
=> (B @ (E @ D) @ F))))))),inference(defexp_and_simp_and_etaexpand,[status(thm)],[2])).

thf(6,plain,((~ (! [A:mworld,B:($i > (mworld > $o)),C:($i > $i),D:$i]: ((? [E:mworld]: ((mrel @ A @ E) & ! [F
:mworld]: ((mrel @ E @ F) => (B @ (C @ D) @ F)))) => (? [E:($i > $i)]: ! [F:mworld]: ((mrel @ A @ F) =>
(B @ (E @ D) @ F))))))),inference(miniscope,[status(thm)],[5])).

thf(10,plain,((mrel @ sk1 @ sk5)),inference(cnf,[status(esa)],[6])).
thf(4,axiom,((meuclidean @ mrel)),file(’becker.p’,mrel_meuclidean)).
thf(15,plain,((! [A:mworld,B:mworld,C:mworld]: (((mrel @ A @ B) & (mrel @ A @ C)) => (mrel @ B @ C)))),

inference(defexp_and_simp_and_etaexpand,[status(thm)],[4])).
thf(16,plain,(! [C:mworld,B:mworld,A:mworld] : ((~ (mrel @ A @ B)) | (~ (mrel @ A @ C)) | (mrel @ B @ C))),

inference(cnf,[status(esa)],[15])).
thf(17,plain,(! [C:mworld,B:mworld,A:mworld] : ((~ (mrel @ A @ C)) | (mrel @ B @ C) | ((mrel @ sk1 @ sk5) !=

(mrel @ A @ B)))),inference(paramod_ordered,[status(thm)],[10,16])).
thf(18,plain,(! [A:mworld] : ((~ (mrel @ sk1 @ A)) | (mrel @ sk5 @ A))),inference(pattern_uni,[status(thm)

],[17:[bind(A, $thf(sk1)),bind(B, $thf(sk5))]])).
thf(40,plain,(! [A:mworld] : ((~ (mrel @ sk1 @ A)) | (mrel @ sk5 @ A))),inference(simp,[status(thm)],[18])).
thf(9,plain,(! [A:mworld] : ((~ (mrel @ sk5 @ A)) | (sk2 @ (sk3 @ sk4) @ A))),inference(cnf,[status(esa)

],[6])).
thf(7,plain,(! [A:($i > $i)] : ((~ (sk2 @ (A @ sk4) @ (sk6 @ (A)))))),inference(cnf,[status(esa)],[6])).
thf(11,plain,(! [A:($i > $i)] : ((~ (sk2 @ (A @ sk4) @ (sk6 @ (A)))))),inference(simp,[status(thm)],[7])).
thf(206,plain,(! [B:($i > $i),A:mworld] : ((~ (mrel @ sk5 @ A)) | ((sk2 @ (sk3 @ sk4) @ A) != (sk2 @ (B @ sk4

) @ (sk6 @ (B)))))),inference(paramod_ordered,[status(thm)],[9,11])).
thf(212,plain,((~ (mrel @ sk5 @ (sk6 @ (^ [A:$i]: (sk3 @ sk4)))))),inference(pre_uni,[status(thm)],[206:[bind

(A, $thf(sk6 @ (^ [C:$i]: (sk3 @ sk4)))),bind(B, $thf(^ [C:$i]: (sk3 @ sk4)))]])).
thf(259,plain,(! [A:mworld] : ((~ (mrel @ sk1 @ A)) | ((mrel @ sk5 @ A) != (mrel @ sk5 @ (sk6 @ (^ [B:$i]: (

sk3 @ sk4))))))),inference(paramod_ordered,[status(thm)],[40,212])).
thf(260,plain,((~ (mrel @ sk1 @ (sk6 @ (^ [A:$i]: (sk3 @ sk4)))))),inference(pattern_uni,[status(thm)],[259:[

bind(A, $thf(sk6 @ (^ [B:$i]: (sk3 @ sk4))))]])).
thf(8,plain,(! [A:($i > $i)] : ((mrel @ sk1 @ (sk6 @ (A))))),inference(cnf,[status(esa)],[6])).
thf(12,plain,(! [A:($i > $i)] : ((mrel @ sk1 @ (sk6 @ (A))))),inference(simp,[status(thm)],[8])).
thf(269,plain,(~ ($true)),inference(rewrite,[status(thm)],[260,12])).
thf(270,plain,($false),inference(simp,[status(thm)],[269])).
% SZS output end CNFRefutation for becker.p

The line starting with ”% SZS status Theorem” confirms that the conjecture is indeed a theo-
rem and the contents between ”% SZS output start” and ”% SZS output end” are the proof
certificate for this claim.

4

82

System Demonstration: The Higher-Order Prover Leo-III Steen and Benzmüller

Becker’s Postulate Embedded

The semantically embedded variant of becker.p that is used internally by Leo-III is as follows
(this can also be generated using the stand-alone embedding tool available at https://github.
com/leoprover/embed_modal):

% declare type for possible worlds
thf(mworld_type,type,(

mworld: $tType)).

% declare accessibility relations
thf(mrel_type,type,(

mrel: mworld > mworld > $o)).

% define accessibility relation properties
thf(mreflexive_type,type,(

mreflexive: (mworld > mworld > $o) > $o)).

thf(mreflexive_def,definition,
(mreflexive
= (^ [R: mworld > mworld > $o] :

! [A: mworld] :
(R @ A @ A)))).

thf(meuclidean_type,type,(
meuclidean: (mworld > mworld > $o) > $o)).

thf(meuclidean_def,definition,
(meuclidean
= (^ [R: mworld > mworld > $o] :

! [A: mworld,B: mworld,C: mworld] :
(((R @ A @ B)
& (R @ A @ C))

=> (R @ B @ C))))).

% assign properties to accessibility relations
thf(mrel_mreflexive,axiom,(

mreflexive @ mrel)).

thf(mrel_meuclidean,axiom,(
meuclidean @ mrel)).

% define valid operator
thf(mvalid_type,type,(

mvalid: (mworld > $o) > $o)).

thf(mvalid_def,definition,
(mvalid
= (^ [S: mworld > $o] :

! [W: mworld] :
(S @ W)))).

% define nullary, unary and binary connectives which are no quantifiers
thf(mimplies_type,type,(

mimplies: (mworld > $o) > (mworld > $o) > mworld > $o)).

thf(mimplies,definition,
(mimplies
= (^ [A: mworld > $o,B: mworld > $o,W: mworld] :

((A @ W)
=> (B @ W))))).

thf(mdia_type,type,(
mdia: (mworld > $o) > mworld > $o)).

thf(mdia_def,definition,
(mdia
= (^ [A: mworld > $o,W: mworld] :

? [V: mworld] :
((mrel @ W @ V)
& (A @ V))))).

5

83

System Demonstration: The Higher-Order Prover Leo-III Steen and Benzmüller

thf(mbox_type,type,(
mbox: (mworld > $o) > mworld > $o)).

thf(mbox_def,definition,
(mbox
= (^ [A: mworld > $o,W: mworld] :

! [V: mworld] :
((mrel @ W @ V)
=> (A @ V))))).

% define exists quantifiers
thf(mexists_const_type__o__d_i_t__d_i_c_,type,(

mexists_const__o__d_i_t__d_i_c_: (($i > $i) > mworld > $o) > mworld > $o)).

thf(mexists_const__o__d_i_t__d_i_c_,definition,
(mexists_const__o__d_i_t__d_i_c_
= (^ [A: ($i > $i) > mworld > $o,W: mworld] :

? [X: $i > $i] :
(A @ X @ W)))).

% define for all quantifiers
thf(mforall_const_type__o__d_i_t__o_mworld_t__d_o_c__c_,type,(

mforall_const__o__d_i_t__o_mworld_t__d_o_c__c_: (($i > mworld > $o) > mworld > $o) > mworld > $o)).

thf(mforall_const__o__d_i_t__o_mworld_t__d_o_c__c_,definition,
(mforall_const__o__d_i_t__o_mworld_t__d_o_c__c_
= (^ [A: ($i > mworld > $o) > mworld > $o,W: mworld] :

! [X: $i > mworld > $o] :
(A @ X @ W)))).

thf(mforall_const_type__o__d_i_c_,type,(
mforall_const__o__d_i_c_: ($i > mworld > $o) > mworld > $o)).

thf(mforall_const__o__d_i_c_,definition,
(mforall_const__o__d_i_c_
= (^ [A: $i > mworld > $o,W: mworld] :

! [X: $i] :
(A @ X @ W)))).

thf(mforall_const_type__o__d_i_t__d_i_c_,type,(
mforall_const__o__d_i_t__d_i_c_: (($i > $i) > mworld > $o) > mworld > $o)).

thf(mforall_const__o__d_i_t__d_i_c_,definition,
(mforall_const__o__d_i_t__d_i_c_
= (^ [A: ($i > $i) > mworld > $o,W: mworld] :

! [X: $i > $i] :
(A @ X @ W)))).

% transformed problem
thf(1,conjecture,

(mvalid
@ (mforall_const__o__d_i_t__o_mworld_t__d_o_c__c_
@ ^ [P: $i > mworld > $o] :

(mforall_const__o__d_i_t__d_i_c_
@ ^ [F: $i > $i] :

(mforall_const__o__d_i_c_
@ ^ [X: $i] :

(mexists_const__o__d_i_t__d_i_c_
@ ^ [Q: $i > $i] :

(mimplies @ (mdia @ (mbox @ (P @ (F @ X)))) @ (mbox @ (P @ (Q @ X))))))
)))).

6

84

System Demonstration: The Higher-Order Prover Leo-III Steen and Benzmüller

References

[1] Peter Andrews. Church’s type theory. In Edward N. Zalta, editor, The Stanford Encyclopedia of
Philosophy. Metaphysics Research Lab, Stanford University, spring 2014 edition, 2014.

[2] Christoph Benzmüller and Lawrence Paulson. Quantified Multimodal Logics in Simple Type The-
ory. Logica Universalis (Special Issue on Multimodal Logics), 7(1):7–20, 2013.

[3] Tobias Gleißner, Alexander Steen, and Christoph Benzmüller. Theorem provers for every normal
modal logic. In LPAR-21, volume 46 of EPiC Series in Computing, pages 14–30. EasyChair, 2017.

[4] Alexander Steen and Christoph Benzmüller. The higher-order prover Leo-III. In IJCAR 2018,
LNCS. Springer, 2018. forthcoming.

[5] Daniel Kirchner and Christoph Benzmüller and Edward N. Zalta. Mechanizing Principia Logico-
Metaphysica in Functional Type Theory (Extended Abstract). In 3rd Conference on Artificial
Intelligence and Theorem Proving (AITP 2018), Book of Abstracts, 2018.

[6] Christoph Benzmüller, Xavier Parent, and Leendert van der Torre. A Deontic Logic Reasoning
Infrastructure. In 14th Conference on Computability in Europe, CiE 2018, Kiel, Germany, July
30-August, 2018, Proceedings, LNAI Vol. 10505, pages 114–127, Springer, 2018.

[7] David Fuenmayor and Christoph Benzmüller. A Case Study on Computational Hermeneutics:
E. J. Lowe’s Modal Ontological Argument. PhilPapers, https://philpapers.org/rec/FUEACS,
2017.

[8] David Fuenmayor and Christoph Benzmüller. Types, Tableaus and Gödel’s God in Isabelle/HOL.
Archive of Formal Proofs, 2017.

[9] Christoph Benzmüller and Bruno Woltzenlogel Paleo. The Inconsistency in Gödel’s Ontological
Argument: A Success Story for AI in Metaphysics. In IJCAI 2916, pages 936–942, AAAI Press,
2016.

[10] Christoph Benzmüller, Leon Weber, and Bruno Woltzenlogel Paleo. Computer-Assisted Analysis
of the Anderson-Hájek Controversy. Logica Universalis, 11(1):139–151, 2017.

7

85

Evidence Extraction from
Parameterised Boolean Equation Systems

Wieger Wesselink and Tim A.C. Willemse

Eindhoven University of Technology, Eindhoven, The Netherlands
{j.w.wesselink,t.a.c.willemse}@tue.nl

Abstract

Model checking is a technique for automatically assessing the quality of software and hardware
systems and designs. Given a formalisation of both the system behaviour and the requirements the
system should meet, a model checker returns either a yes or a no. In case the answer is not as
expected, it is desirable to provide feedback to the user as to why this is the case. Providing such
feedback, however, is not straightforward if the requirement is expressed in a highly expressive logic
such as the modal µ-calculus, and when the decision problem is solved using intermediate formalisms.
In this paper, we show how to extract witnesses and counterexamples from parameterised Boolean
equation systems encoding the model checking problem for the first-order modal µ-calculus. We have
implemented our technique in the modelling and analysis toolset mCRL2 and showcase our approach
on a few illustrative examples.

1 Introduction
The complexity of the average computer-controlled system has reached a point at which it has become
impossible to fully understand a system. By modelling a system and subsequently analysing whether
the crucial safety and liveness requirements of the system are upheld, some confidence in the system’s
correctness can be obtained. The complexity of the average system, however, precludes that such an
analysis can be conducted manually.

Model checking is an automated technique for assessing whether a requirement holds for a model of
a system. This technique requires as input a mathematical description of the behaviour of a system, often
given in terms of (a high-level description of) a Kripke Structure or Labelled Transition System, and a
logical formula, often given in some appropriate temporal logic. By feeding both artefacts to a tool,
colloquially referred to as the model checker, the yes or no verdict produced by the tool states whether
(the model of) the system meets the requirement. Knowing that a system fails to meet a requirement,
however, does not help to improve on the system design. For that, richer feedback in the form of
evidence (i.e. a counterexample or a witness) of the model checker is required.

Depending on the logic that is required to perform the verification, however, it is not always clear
what type of evidence must be extracted from a negative model checking exercise. While for linear time
logic (LTL), a lasso, or a prefix of a lasso typically suffices, the problem becomes more pronounced
for branching time logics such as CTL, CTL∗ or the modal µ-calculus. The reason for this is that the
formulae over such logics are essentially interpreted over infinite computation trees.

In this paper, we describe how evidence can be constructed for an extension of the modal µ-calculus,
viz. the first-order modal µ-calculus [12], within the context of the analysis toolset mCRL2 [5]. This
logic extends the standard modal µ-calculus by adding first-order quantification and parameterised fix-
points. We draw inspiration from previous work [7] explaining how, in theory, evidence can be extracted
from decision problems encoded in the logic of Least Fixed Point (LFP). The main idea is that a coun-
terexample or witness for the model checking problem is a ‘submodel’ of the original model, which can
be used to reconstruct the proof of the original negative model checking result.

ARQNL 2018 86 CEUR-WS.org/Vol-2095

Evidence Extraction from Parameterised Boolean Equation Systems Wesselink, Willemse

One obstacle in applying the techniques outlined for LFP is that the model checker in mCRL2 uses
parameterised Boolean equation systems (PBESs) [13] to solve the model checking problem. While
LFP and PBESs have much in common, they differ in exactly those aspects used for evidence extrac-
tion. Our first contribution is therefore to show how this problem can effectively be overcome without
changing the underlying theory for PBESs. Our second contribution is an implementation of our so-
lution, illustrating the feasibility and appeal of the approach. As far as we are aware, ours is the first
work demonstrating the feasibility of constructing diagnostics in this way for the full (first-order) modal
µ-calculus with arbitrary alternation.

Related Work. We refer to Busard’s PhD thesis [3] for a thorough overview of literature on generating
diagnostics for model checking for the modal µ-calculus, but also other logics such as CTL and epis-
temic logics; we here give a concise overview of the most relevant related works. There are several
works that address the problem of constructing diagnostics for the modal µ-calculus model checking
problem. In [20], diagnostics is presented as a game played on the model checking game for the modal
µ-calculus. A related approach is given by [14] who essentially suggests to generate tableaux as wit-
nesses to the model checking problem. In [17], diagnostics are defined as explanations for the truth
values of the underlying Boolean equation system that is used to solve a model checking problem for
the alternation-free fragment of the modal µ-calculus. This technique is closely related to [20]. In
contrast to our work, these approaches require the user conducting the verification to understand the
underlying mechanism for conducting the verification. Finally, in the work by Tan and Cleaveland [21],
which can be seen as a generalisation of [17], evidence is presented as information extracted from (dec-
orated) support sets. These are closely related to the proof graphs underlying [6] and the idea of using
decorations is reminiscent of the idea underlying [7] to allow first-order relations in proof graphs.

Outline. We give a cursory overview of the necessary background in Section 2; i.e. we briefly address
the underlying theory for modelling data and system behaviours, the first-order modal µ-calculus, and
we formalise the model checking problem. In Section 3, we introduce PBESs, we explain how the model
checking problem can be converted to the problem of solving a PBES, and we illustrate the problem of
extracting evidence from a PBES encoding a model checking problem. In Section 4, we illustrate how
we can extract evidence from a PBES by modifying the encoding of the model checking problem and
in Section 5, we illustrate how our solution works on practical examples. We conclude in Section 6.

2 Preliminaries

Our work is set in a context in which we rely on abstract data types to describe (and reason about) data.
That is, we assume a given algebraic specification S = 〈S,Σ,E〉 where S is a set of sorts, Σ is a family
of operation(s) and E is a family of equations. As a convention, we write data sorts using letters D, E,
etcetera. We have a set D of data variables, with typical elements d,d1, . . .

The semantics of an algebraic specification S = 〈S,Σ,E〉 is given by a many-sorted Σ-algebra con-
sisting of data domains corresponding to S and operations corresponding to Σ, satisfying the identities
of E. We here adopt an initial algebra semantics point of view. For every sort D, E,. . . , we denote the
domains they represent by D, E,. . . . For a closed term t of a given sort, say D (denoted t:D), we assume
an interpretation function [[t]] that maps t to a value of D it represents. For open terms we use a data
environment ε that maps each variable from D to a value of the proper domain. If we wish to indicate
which variables may occur freely within a term t, we add these as ‘parameters’ to t; i.e. we write t(d)
to indicate that d is the only free variable in t. The interpretation of an open term t, denoted as [[t]]ε is
obtained in the standard way. We write ε[d 7→ v] for the environment that maps variable d to value v and
all other variables d′ are mapped to ε(d′).

2

87

Evidence Extraction from Parameterised Boolean Equation Systems Wesselink, Willemse

We require the presence of a sort B representing the Booleans B= {true, false}. For convenience we
also assume the existence of the sort N representing the natural numbers N. For both sorts we assume
the usual operators are available and we do not write constants or operators in the syntactic domain
any different from their semantic counterparts. For example, the Boolean value true is represented
by the constant true and the value false is represented by the constant false. The syntactic operator
∧ :B×B→ B corresponds to the usual, semantic conjunction ∧ :B×B→ B; etcetera.

Note that for readability, and without loss of generality, we use a single—possibly compound—data
type in our definitions and formal statements.

2.1 Processes
The behaviours of software and hardware systems can be adequately modelled using labelled transition
systems (LTSs). Modelling languages, such as process algebras and I/O-automata, provide language
constructs such as conditional choice, interleaving parallelism and sequential composition through
which one can compactly specify such systems. A useful normal form to which many such specifi-
cations can be compiled automatically is the Linear process equation (LPE) format, see e.g. [11].

An LPE typically models the (global) state of a (software or hardware) system by means of a finite
vector of formal data parameters, ranging over adequately chosen sorts. The behaviours are described by
a non-deterministic choice (denoted by the + operator) among rules taken from a finite set of condition-
action-effect rules, prescribing under which condition an action (modelling a message exchange or an
event) is enabled, leading to an update of the vector of formal parameters. A formal definition of an
LPE, employing syntax that stays true to its process-algebraic heritage, is given below.

Definition 1. A linear process equation is an equation of the following form:

L(dL:DL) = +{ ∑
ea:Ea

ca(dL,ea)→ a(fa(dL,ea)) ·L(ga(dL,ea)) | a ∈A ct}

The sort DL is used to represent the set of states and variable dL represents a state; a is a (typed) action
label taken from a finite set A ct of (typed) action labels. Each action label a is associated with a local
variable ea of sort Ea, an expression ca:B, which acts as a condition, an expression fa:Da, which yields
an argument emitted along a when executed, and an operation ga:DL, which yields a new state. We
require that dL and eL are the only free variables occurring in these expressions.

The interpretation of L with an initial state represented by closed term e:DL, denoted by L(e), is a
labelled transition system M = 〈S,A,→,s0〉, where:
• S = DL with initial state s0 = [[e]] ∈ S;
• A = {a(va) | a ∈A ct,va ∈ Da} is the (possibly infinite) set of actions;

• →⊆ S×A×S is the set of transitions, where v
a(va)−−−→ w holds if and only if for some u ∈ Ea and

environment ε:
– [[fa(dL,ea)]]ε[dL 7→ v,ea 7→ u] = va and [[ga(dL,ea)]]ε[dL 7→ v,ea 7→ u] = w,
– [[ca(dL,ea)]]ε[dL 7→ v,ea 7→ u] evaluates to true.

Throughout this paper, whenever we refer to an LPE L we implicitly mean the LPE as given by
Def. 1, with dL being the state parameter of sort DL of process L. Note that an LPE L compactly
expresses that in a state, represented by parameter dL, whenever condition ca(dL,da) holds (for some
non-deterministically chosen value for variable da), then action a carrying data parameter fa(dL,da) can
be executed, effectively changing the global state to ga(dL,da).

Notation 1. In our examples we permit ourselves to be less strict in following the LPE format and allow
for multiple summands ranging over the same action label. Moreover, in case a summand binds a local

3

88

Evidence Extraction from Parameterised Boolean Equation Systems Wesselink, Willemse

variable da which does not occur in the expressions ca, fa and ga, we omit the ∑-symbol altogether. In
our examples, action labels can carry zero or more arguments. Whenever condition ca is the constant
true, we omit both the condition and the→ symbol.

Example 1. As a running example, we consider a small system modelling a simple counter that can
increase and decrease a parameter n, reset that parameter to 0 when it has a positive value, and show the
current value. The system is described by L(0), where LPE L is given below.

L(n:N) = inc ·L(n+1)
+ (n > 0)→ dec ·L(n−1)
+ (n > 1)→ reset ·L(0)
+ show(n) ·L(n)

Parts of the (infinite) labelled transition system associated to the LPE are depicted below; the dashed
edges indicate the presence of one (or more) edges.

0 1 2 33

inc

dec

inc

dec

reset

inc

dec

reset

show(0) show(1) show(2) show(3)

2.2 First-Order Modal µ-Calculus
Model checking is concerned with checking whether a modal property holds for a given system or not.
The first-order modal µ-calculus (µ-calculus for short) of [18, 12] is a highly-expressive language for
stating such properties. This logic is based on the standard modal µ-calculus [2], extended with first-
order quantification and parameterised fixpoints, adding data as a first-class citizen. We briefly review
its syntax and semantics, and we demonstrate its use by means of several small examples.

Definition 2. The µ-calculus, ranging over a set of (typed) action labels A ct is given by the following
BNF grammar; formula ϕ represents a state formula and formula α represents an action formula:

ϕ ::= b | Z(e) | ¬ϕ | ϕ1∧ϕ2 | [α]ϕ1 | ∀d:D. ϕ | νZ(d:D = e). ϕ
α ::= a(ea) | b | ¬α1 | α1∧α2 | ∀d:D. α1

b is an expression of sort B; e is a data expression of type D; Z:D→ B is a fixpoint variable from a
set of fixpoint variables P; for simplicity, we assume all fixpoint variables range over the same sort D.
Expressions of the form (νZ(d:D = e). ϕ) are subject to the restriction that any free occurrence of Z in
ϕ must be within the scope of an even number of negation symbols ¬. Finally, a is an action label from
the set A ct and expression ea of sort Da is a parameter of a.

For reference we include the semantics of a µ-calculus formula in Table 1. Note that the ordered set
〈[D→ 2S],v〉 is a complete lattice, where [D→ 2S] is the set of functions from D to subsets of S and v
is defined as f v g iff for all v ∈D, we have f (v)⊆ g(v). Since the functionals Φρε are monotonic over
this lattice, the interpretation of fixpoint expressions is then justified [22].

In the remainder of this paper, we use the following standard abbreviations for µ-calculus formulae
ϕ , action formulae α and (both µ-calculus formulae and action formulae) ψ .

(ψ1∨ψ2) = ¬(¬ψ1∧¬ψ2)
〈α〉ϕ = ¬[α]¬ϕ
∃d:D.ψ = ¬∀d:D.¬ψ
µZ(d:D = e).ϕ = ¬νZ(d:D=e). ¬ϕ[Z := ¬Z]

4

89

Evidence Extraction from Parameterised Boolean Equation Systems Wesselink, Willemse

Table 1: The interpretation of a µ-calculus formula ϕ and action formula α , denoted by [[ϕ]]ρε and
‖α ‖ε , respectively, in the context of environments ε and ρ and an LTS M = 〈S,A,→,s0〉.

[[b]]ρε =

{
S if [[b]]ε is true
/0 otherwise

[[Z(e)]]ρε = ρ(Z)([[e]]ε)
[[¬ϕ]]ρε = S\ [[ϕ]]ρε
[[ϕ1∧ϕ2]]ρε = [[ϕ1]]ρε ∩ [[ϕ2]]ρε
[[[α]ϕ]]ρε = {w∈S | ∀w′∈S ∀a∈A (w a−→ w′∧a∈‖α ‖ε)⇒ w′∈[[ϕ]]ρε}
[[∀d:D.ϕ]]ρε =

⋂
v∈D[[ϕ]]ρ(ε[d 7→ v])

[[νZ(d:D=e). ϕ]]ρε = (νΦρε)([[e]]ε), where Φρε :(D→ 2S)→ (D→ 2S) is defined as:
Φρε (F) = λv ∈ D.[[ϕ]](ρ[Z 7→ F])(ε[d 7→ v]) for F :D→ 2S

‖b‖ε =

{
A if [[b]]ε is true
/0 otherwise

‖a(ea)‖ε = {a([[ea]]ε)}
‖¬α ‖ε = A\‖α ‖ε
‖α1∧α2 ‖ε = ‖α1 ‖ε ∩‖α2 ‖ε
‖∀d:D.α ‖ε =

⋂
v∈D ‖α ‖ε[d 7→ v]

A µ-calculus formula (in the language enriched with the above abbreviations) is in Positive Normal
Form (PNF) whenever negation only occurs at the lowest level and all bound variables are distinct.
We only consider formulae in PNF. Note that this is no restriction as every µ-calculus formula can be
converted to PNF using suitable α-renaming and logical rules such as De Morgan. Moreover, we only
consider µ-calculus formulae that are closed: data variables d only occur in the scope of a quantifier
or a fixpoint binding it, and each fixpoint variable Z only occurs in the scope of a fixpoint that binds
it. Since the semantics of closed formulae is independent from the environments ε and ρ , we typically
write [[ϕ]] rather than [[ϕ]]ρε for closed ϕ . A formula ϕ is normalised whenever none of its subformulae
of the form σX(d:D = e). ψ contain unbound data variables. Every closed formula can be converted (in
linear time) to an equivalent normalised formula, see e.g. [16].

We are mainly concerned with the problem of deciding (and explaining) whether a given LPE L(e)
meets a logical specification ϕ given by a µ-calculus formula; this is known as the model checking
problem. That is, we wish to decide whether [[e]] ∈ [[ϕ]]; we write L(e) |= ϕ to denote just this.

We finish this section with a few illustrative examples of the use of data in formulae and parameter-
isation of fixpoints.

Example 2. Consider the LPE modelling the counter. Below are some simple properties of the counter,
expressed in the µ-calculus.

1. the counter is deadlock-free: νX .([true]X ∧〈true〉true);
2. the counter can be incremented ad infinitum: νX .〈inc〉X ;
3. the counter can alternatingly increase and decrease ad infinitum: νX .〈inc〉〈dec〉X ;
4. the counter can be decreased infinitely often: νX .µY.(〈dec〉X ∨〈inc〉Y);
5. the counter can take on any natural number: ∀n:N.µX .(〈show(n)〉true∨〈true〉X).

5

90

Evidence Extraction from Parameterised Boolean Equation Systems Wesselink, Willemse

Table 2: The semantics [[ϕ]]ηε of a predicate formula ϕ is a truth assignment given in the context of a
data environment ε and a predicate environment η :X → (DX → B).

[[b]]ηε = [[b]]ε
[[X(e)]]ηε = η(X)([[e]]ε)
[[ϕ1∨ϕ2]]ηε = [[ϕ1]]ηε or [[ϕ2]]ηε
[[ϕ1∧ϕ2]]ηε = [[ϕ1]]ηε and [[ϕ2]]ηε
[[∃d:D.ϕ]]ηε = [[ϕ]]η(ε[d 7→ v]) for some v ∈ D
[[∀d:D.ϕ]]ηε = [[ϕ]]η(ε[d 7→ v]) for all v ∈ D

6. on all paths, the counter can decrease as often as it has increased:
νX(m:N = 0).([inc]X(m+1)∧ [dec]X(m−1)∧ [¬inc∧¬dec]X(m)∧ (m = 0∨〈dec〉true));

Note that all of the above properties hold for the initial state of the counter except for the last one: due
to the reset action that can take place at any moment, the system may return to the initial state in which
it can no longer perform a dec action.

3 Model Checking using Parameterised Boolean Equation Sys-
tems

Solving the first-order modal µ-calculus model checking problem can be done in various ways. We here
focus on the use of an intermediate formalism called parameterised Boolean equation systems [13].
These equation systems underlie several verification toolsets for specifying and analysing software and
hardware systems, such as the CADP and mCRL2 toolsets. The advantage of using an intermediate
formalism is that it allows for building dedicated techniques for that formalism [13, 12].

Parameterised Boolean Equation Systems are sequences of fixpoint equations where each equation
is of the form νX(d:D) = ϕ or µX(d:D) = ϕ . A parameterised Boolean equation is, in a sense, a
simplified and equational variant of a first-order µ-calculus formula, lacking modal operators. We refer
to the left-hand side variable of a parameterised Boolean equation as a predicate variable, whereas the
right-hand side formula is called a predicate formulae.

Definition 3. A parameterised Boolean equation system E is a system of equations defined by:

E ::= /0 | (µX(dX :DX) = ϕ) E | (νX(dX :DX) = ϕ) E
ϕ ::= b | X(e) | ϕ ∨ϕ | ϕ ∧ϕ | ∃d:D.ϕ | ∀d:D.ϕ

b is an expression of sort B, X is a predicate variable taken from some sufficiently large set of typed
predicate variables X , dX is a data parameter of sort DX , d is a data variable of sort D and e is a data
expression of the appropriate sort. Again for simplicity, we assume that all predicate variables range
over the same sort DX .

We only consider well-formed, closed PBESs in this paper. A PBES E is said to be well-formed
iff every predicate variable X ∈ bnd(E), where bnd(E) is the set of bound variables (those predicate
variables occurring at the left-hand side of the equations), occurs at the left-hand side of precisely one
equation of E . A PBES E is said to be closed iff (1) for each right-hand side predicate formula ϕ
occurring in E we have occ(ϕ) ⊆ bnd(E), where occ(ϕ) contains all predicate variables occurring in

6

91

Evidence Extraction from Parameterised Boolean Equation Systems Wesselink, Willemse

ϕ , and, (2) whenever the only free data variable occurring in ϕ is the data parameter occurring at the
left-hand side of ϕ’s equation.

The interpretation of predicate formulae is listed in Table 2; for the fixpoint semantics of a PBES
we refer to e.g. [13]. Instead of the fixpoint semantics we here focus on the equivalent proof graph
semantics provided in [6]. This semantics is both more accessible (operational) and better suits our
needs of computing counterexamples and witnesses. The proof graph semantics of a PBES explains the
value, or truth assignment for each bound predicate variable by means of a directed graph with vertices
ranging over the signatures of a PBES. A signature is a tuple (X ,v) for X ∈ bnd(E) and v ∈DX a value
taken from the domain underlying the type of X ; that is, we set sig(E) = {(X ,v) | v∈DX ,X ∈ bnd(E)}.
We order each pair of variables X ,Y ∈ bnd(E) as follows: X ≤Y iff the equation for Y follows that of X
and we write X < Y iff X ≤ Y and X 6= Y . Moreover, we say that a variable X is a ν-variable whenever
X occurs at the left-hand side of a greatest fixpoint equation; otherwise, X is a µ-variable.

Definition 4. A graph G = (V,E), for V ⊆ sig(E) and E ⊆V ×V is a proof graph iff:
1. for all equations (σX(dX :DX) = ϕ) in E for which (X ,v) ∈ V , [[ϕ]]Θ(X ,v)ε[dX 7→ v] holds

for some ε and where Θ(X ,v) is the environment defined as follows: Θ(X ,v)(Y) = {w ∈ DX |
〈(X ,v),(Y,w)〉 ∈ E} for all Y ;

2. for all infinite paths (X1,v1) (X2,v2) . . . through G , the smallest variable (w.r.t. the ordering <)
occurring infinitely often on that path is a ν-variable.

The semantics (often referred to as the (partial) solution) of a PBES is as follows; the correspondence
with the more traditional fixpoint semantics follows from, e.g. [6].

Definition 5. Let E be a PBES. The semantics of E is a predicate environment [[E]] defined as follows:
v ∈ [[E]](X) iff X ∈ bnd(E) and there is a proof graph G = (V,E) such that (X ,v) ∈V .

The dual of a proof graph is called a refutation graph. Such a graph explains that a value v does
not belong to the set of values defined by some variable X . The notion of a refutation graph is defined
analogously to a proof graph, using complementation for Θ(X ,v) in condition 1 and requiring that the
least variable occurring on any infinite path in the graph is a µ-variable.

A proof graph containing a vertex (X ,v) provides evidence that the value v belongs to the set of
values defined by X in the PBES. In that case, the first condition essentially states that v belongs to X
because all successors of (X ,v) together yield an environment that makes the right-hand side formula
for X hold when parameter dX is assigned value v. The second condition ensures that the graph respects
the parity condition typically associated with (nested) fixpoint formulae.

Example 3. Consider the PBES (νX(n:N) = Y (n)) (µY (n:N) = (n > 0∧X(n− 1))∨Y (n+ 1)). A
proof graph for this PBES is given below:

(X ,0) (Y,0) (Y,1)

Note that there are an infinite number of proof graphs containing (X ,0). An alternative proof graph is,
e.g. the following:

(X ,0) (Y,0) (Y,1) (Y,2) (X ,1)

From the first proof graph it follows that {0} ⊆ [[E]](X), whereas from the second proof graph it follows
that {0,1} ⊆ [[E]](X) and {0,1,2} ⊆ [[E]](Y). Note that it is straightforward to show, by extending the
given proof graphs, that for any natural number k ∈ N, we have k ∈ [[E]](X) and k ∈ [[E]](Y).

7

92

Evidence Extraction from Parameterised Boolean Equation Systems Wesselink, Willemse

A proof graph is minimal if leaving out vertices or edges yields a graph that violates the proof graph
conditions. We here note that the problem of computing a minimal proof graph (i.e. a subgraph of a
proof graph that is as small as possible), is NP hard [6]. However, some techniques for computing a
proof graph, such as solving a parity game induced by a PBES and using the winning strategies to filter
unreachable vertices, yield minimal proof graphs by definition. Note that minimality of a proof graph
does not imply the non-existence of a proof graph that is strictly smaller, see the example below.

Example 4. Consider the two proof graphs of Example 3. The first graph is a minimal proof graph and
it is also the smallest possible proof graph. The second proof graph is clearly not minimal; however, by
omitting the edge from (Y,1) to (X ,0) we obtain another minimal proof graph. The thus obtained proof
graph is clearly not the smallest possible proof graph.

There are numerous ways in which a PBES E can be partially solved, i.e. for which we can decide,
for a given bound predicate variable X ∈ bnd(E) and value v, whether v ∈ [[E]](X). For instance, one
can use Gauß Elimination and symbolic approximation [12], or by constructing and solving a parity
game that is induced by a PBES [18].

As we remarked at the start of this section, the usefulness of PBESs lies in the observation that
there is a linear-time reduction of the first-order modal µ-calculus model checking problem for LPEs to
PBESs, see e.g. [12]. This transformation generalises the reduction of the (standard) modal µ-calculus
for LTSs to Boolean equation systems [15]. For reference, we provide the details for this reduction in
Table 3; in the next section, we present our modifications to this transformation. The correctness of the
original transformation is given by the following theorem, taken from [12].

Theorem 1. Let formula σX(d:D= e′). ψ be a closed, normalised first-order modal µ-calculus formula
and L(e) be an LPE. Then L(e) |= σX(d:D = e′). ψ iff ([[e]], [[e′]]) ∈ [[EL(σX(d:D = e′). ψ)]](X).

Example 5. We illustrate the transformation on the counter modelled by LPE L(0) of Example 1.
Say that we wish to analyse whether the counter can be decreased infinitely often, i.e. property (4)
of Example 2: νX .µY.(〈dec〉X ∨〈inc〉Y). The PBES resulting from the transformation (after logical
simplification, eliminating all subformulae obtained from summands not matching the action labels in
the modal operators) is the PBES of Example 3. Note that, per Theorem 1, the proof graphs given there
illustrate that the property holds for L(0).

Next, suppose we wish to verify the property that we can infinitely often alternatingly increase and
decrease parameter n, i.e. property (3) of Example 2. Recall that this is formalised by the following µ-
calculus formula νX .〈inc〉〈dec〉X . The PBES E we obtain from this property (again after some logical
simplification) is as follows:

νX(n:N) = n+1 > 0∧X((n+1)−1)

It follows, by definition, that 0 ∈ [[E]](X), see the proof graph given below.

(X ,0)

Consequently, by Theorem 1 we find that also L(0) |= νX .〈inc〉〈dec〉X .

In [6], proof graphs and refutation graphs for PBESs were introduced in an effort to provide a
meaningful explanation of the answer to a decision problem encoded in a PBES. While at the level of
a PBES these graphs indeed meet their objective, as they provide the exact reasoning underlying the
(partial) solution of a PBES, they do not aid in understanding the solution at the level of the decision
problem that is encoded in the PBES. This is clearly illustrated in, e.g. the last proof graph for the PBES
underlying the model checking problem of Example 5: the single vertex with a self-loop, constituting
the proof graph, does not explain which transitions of the LTS of Example 5 are involved.

8

93

Evidence Extraction from Parameterised Boolean Equation Systems Wesselink, Willemse

Table 3: Translation scheme for encoding the problem L |= σX(d:DX = e′). ψ into an equation system.
Recall that parameter dL of sort DL, occurring in the rules, originates from LPE L of Def. 1; likewise,
the expressions ca, fa and ga originate from this LPE.

EL(b) = ε
EL(X(e)) = ε
EL(ϕ ⊕ ψ) = EL(ϕ) EL(ψ) for ⊕ ∈ {∧,∨}
EL(Qd:D.ϕ) = EL(ϕ) for Q ∈ {∀,∃}
EL([α]ϕ) = EL(ϕ)
EL(〈α〉ϕ) = EL(ϕ)
EL(σX(d:DX = e). ψ) = (σX(dL:DL,d:DX) = RHSL(ψ)) EL(ψ)

RHSL(b) = b
RHSL(X(e)) = X(dL,e)
RHSL(ϕ ⊕ ψ) = RHSL(ϕ)⊕ RHSL(ψ) for ⊕ ∈ {∧,∨}
RHSL(Qd:D.ϕ) = Qd:D. RHSL(ϕ) for Q ∈ {∀,∃}
RHSL([α]ϕ) =

∧
a∈A ct ∀ea:Da. (ca(dL,ea)∧match(a(fa(dL,ea)),α))

=⇒ (RHSL(ϕ)[ga(dL,ea)/dL])
RHSL(〈α〉ϕ) =

∨
a∈A ct ∃ea:Da. (ca(dL,ea)∧match(a(fa(dL,ea)),α)
∧ (RHSL(ϕ)[ga(dL,ea)/dL]))

RHSL(σX(d:DX = e). ϕ) = X(dL,e)

match(a(v),b) = b
match(a(v),a′(e′)) = (v = e′)∧ (a= a′)
match(a(v),¬α) = ¬match(a(v),α)
match(a(v),α ∧β) = match(a(v),α)∧match(a(v),β)
match(a(v),∀d:D. α) = ∀d:D. match(a(v),α)

4 Evidence Extraction from PBESs
Whenever a model checking problem yields an unexpected verdict, evidence in the form of a witness or
counterexample supporting that verdict can be helpful in analysing the root cause. Following [7], such a
witness or counterexample is a fragment of the original labelled transition system (or LPE) that can be
used to reconstruct the model checking verdict. However, a proof graph underlying a PBES that encodes
a model checking problem lacks some essential information about the LPE to extract a counterexample
or witness, see Example 5. This issue was recognised and further studied in [7] in a slightly different
setting, viz. in the setting of the logic Least Fixed Point (LFP).

The solution proposed in [7] is to extend the proof graphs with information about first-order relation
symbols from the structures involved in the encoded decision problem. Using proof graphs enriched
in this way, evidence (e.g. counterexamples or witnesses) can be extracted from the proof graphs by
projecting onto the vertices referring to the relational symbols of the desired structure(s). The thus
obtained structures are weak substructures of the original structures that allow for reconstructing the
proof graph underlying the original PBES.

Porting the proposed solution to the setting to PBESs is, however, not straightforward. The reason
for this is that, unlike in LFP formulae, one cannot refer to first-order relational symbols; one can
essentially only refer to Boolean expressions and predicate variables. Consequently, proof graphs for
PBESs cannot be enriched in a similar fashion.

We propose to solve this problem by adding the information from the structures, relevant for con-
structing proper diagnostics, to the encoding of the decision problem. For instance, if the diagnostics

9

94

Evidence Extraction from Parameterised Boolean Equation Systems Wesselink, Willemse

for a model checking problem requires that a weak substructure of the original structures can be recon-
structed, then we add information about that structure to our encoding. The extra information is added
in the form of additional equations and by adding predicate variables that refer to those equations. For
the model checking problem, this only requires changing the rules for RHSL([α]ϕ) and RHSL(〈α〉ϕ):

RHSL([α]ϕ) =
∧

a∈A ct ∀ea:Ea. (ca(dL,ea)∧match(a(fa(dL,ea)),α))

=⇒
((

RHSL(ϕ)[ga(dL,ea)/dL]∧L+
a (dL, fa(dL,ea),ga(dL,ea))

)

∨L−a (dL, fa(dL,ea),ga(dL,ea))
)

RHSL(〈α〉ϕ) =
∨

a∈A ct ∃ea:Ea.
(

ca(dL,ea)∧match(a(fa(dL,ea)),α)

∧
((

RHSL(ϕ)[ga(dL,ea)/dL]∨L−a (dL, fa(dL,ea),ga(dL,ea))
)

∧L+
a (dL, fa(dL,ea),ga(dL,ea))

))

All remaining rules remain as before. The two additional equations that must be added to the translation
for each action label a, are as follows:

(νL+
a (dL:DL,da:Da,d′L:DL) = true) (µL−a (dL:DL,da:Da,d′L:DL) = false)

Note that their exact position in the resulting PBES does not matter (their solutions are independent
of other equations as they are simple constants, so in a proof graph or refutation graph, vertices of the
form (L+

a ,v,va,w) or (L−a ,v,va,w) never need to be part of an infinite path); for simplicity, we add these
equations at the end of the PBES. We denote the updated translation by Ec

L.

Theorem 2. Let formula σX(d:D= e′). ψ be a closed, normalised first-order modal µ-calculus formula
and L(e) be an LPE. Then L(e) |= σX(d:D = e′). ψ iff ([[e]], [[e′]]) ∈ [[Ec

L(σX(d:D = e′). ψ)]](X).

Proof. The correctness of the new transformation follows immediately from the fact that we can sub-
stitute ‘solved’ equations for their references, see [13]. That is, by replacing L+

a by the constant true
and replacing L−a by the constant false we can effectively reduce the new rules for translating [α]ϕ and
〈α〉ϕ to the ones from Table 3.

Intuitively, the modification in the translation of the 〈α〉ϕ and [α]ϕ construction allows for extract-
ing evidence from a proof graph because whenever the proof graph records information about which
predicate variables are required to make ϕ hold true, also information about the transition, encoded by
the predicate variable L+

a must be recorded in the proof graph. This follows from the fact that, e.g. in the
new translation for 〈α〉ϕ , the expression L+

a is added as a conjunct in the new translation. For similar
reasons, whenever there is no α-matching transition leading to a state satisfying ϕ , the proof graph will
contain all α-matching transitions, encoded by the predicate variable L−a .

Before we formally define how we can extract diagnostic information from a proof graph, we illus-
trate the basic idea by showing how to solve the problem we encountered in Example 5.

Example 6. Reconsider the second model checking problem of Example 5, i.e. the problem of deciding
whether the counter system satisfies property νX .〈inc〉〈dec〉X . Whereas the standard transformation
yields a PBES consisting of only one equation, we now obtain a PBES E with seven equations (two of

10

95

Evidence Extraction from Parameterised Boolean Equation Systems Wesselink, Willemse

which are redundant):
(

νX(n:N) = n+1 > 0∧((
((X((n+1)−1)∧L+

dec(n+1,(n+1)−1))∨L−dec(n+1,(n+1)−1))
∧L+

inc(n,n+1))
∨L−inc(n,n+1)

))

(νL+
inc(n:N,n′:N) = true) (νL+

dec(n:N,n′:N) = true) (νL+
reset(n:N,n′:N) = true)

(µL−inc(n:N,n′:N) = false) (µL−dec(n:N,n′:N) = false) (µL−reset(n:N,n′:N) = false)

Note that the smaller proof graph of Example 5 we could use to demonstrate that 0 ∈ [[E]](X) now no
longer is appropriate since it misses relevant information about the signatures for L+

inc and L+
dec. Adding

this extra information yields the following proof graph:

(X ,0) (L+
inc,0,1)(L+

dec,1,0)

The signatures containing the L+
inc and L+

dec predicate variables encode information about the transitions
in the LPE that were involved in constructing the proof that the property we verify holds. Following the
basic ideas outlined in [7], we extract the relevant information by filtering the relevant vertices from the
proof graph and construct an LPE. In our case, we can extract the following LPE L+:

L+(n:N) = (n = 0)→ inc ·L+(1)
+ (n = 1)→ dec ·L+(0)

The LTS induced by L+(0), providing diagnostics at the level of the system, is as follows:

0 1

inc

dec

Note that the LTS is a subgraph of the LTS underlying L(0) (see the original LTS of Example 1), which,
moreover, provides a compact and intuitive argument why the property holds. Moreover, the proof graph
underlying the PBES encoding the same µ-calculus model checking problem on L+(0) is isomorphic to
the one we provided above.

We next formalise the notions of witness and counterexample.

Definition 6. Let L be an LPE and ϕ a µ-calculus formula. Let G = (V,E) be a finite, minimal proof
graph proving L(e) |= ϕ . Let W (a) = {(eL,ea,e′L) | (L+, [[eL]], [[ea]], [[e′L]]) ∈ V}. The witness extracted
from G is the LPE Lw defined as follows:

Lw(dL:DL) = +{ ∑
(eL,ea,e′L):DL×Da×DL

(eL,ea,e′L) ∈W (a)→ a(ea) ·Lw(e′L) | a ∈A ct }

In a similar vein, a counterexample LPE Lc is obtained by filtering all Lc signatures from V in the
refutation graph.

We note that the LTS underlying LPE Lw (and, likewise, the LTS underlying LPE Lc) is a substruc-
ture of the LTS underlying L; this follows from minimality of the proof graph from which these LPEs
are extracted, plus the fact that the conditions under which the transitions are present are enforced in
the translations of RHSL([α]ϕ) and RHSL(〈α〉ϕ). The theorem below states that the witness extracted
from the PBES indeed contains enough information to reconstruct the proof graph from which it was
extracted; a dual result holds for counterexamples extracted from a refutation graph.

11

96

Evidence Extraction from Parameterised Boolean Equation Systems Wesselink, Willemse

Theorem 3. Let L be an LPE and ϕ a µ-calculus formula. Let G = (V,E) be a finite, minimal proof
graph proving L(e) |= ϕ , and let Lw be the witness LPE extracted from G . Then any proof graph proving
Lw(e) |= ϕ is isomorphic to some proof graph proving L(e) |= ϕ .

Proof. This follows essentially from the observation that the LTS underlying the LPE Lw, extracted from
G , is a substructure of the LTS underlying L. The bijection that maps all vertices of the form (L+

w ,v)
to (L+,v) and all other vertices to their identities in the proof graph proving Lw(e) |= ϕ then yields an
isomorphic proof graph proving L(e) |= ϕ; see also Theorem 10 in [7].

5 Applications
We have implemented the modified transformation in the mCRL2 toolset in the existing tool lps2pbes.
Moreover, we have developed a new tool, called pbessolve, which extracts evidence from a PBES that
is obtained via the new transformation. The latter tool uses instantiation to a parity game (much like the
technique outlined in [23, 18]), which is then solved using Zielonka’s recursive algorithm [24, 10] and
from which we extract a witness or counterexample as per Def. 6.

We illustrate the effectiveness of the techniques we outlined in this paper through three examples
taken from the mCRL2 repository. The first example is a scheduling problem sometimes referred to as
the bridge-crossing puzzle. Our second example concerns three communication protocols. The third
example we consider is the Storage Management System [19] of the DIRAC Community Grid Solution
for the LHCb experiment at CERN.

5.1 Bridge Crossing

The bridge-crossing puzzle centres around a scheduling problem with limited access to resources. The
problem is essentially as follows. A family of four people (person A, B, C and D), chased by a pack of
wolves, needs to cross a narrow bridge at night. The bridge can only hold two persons at a time and the
damages to the bridge require the persons to carry a torch to avoid falling off the bridge. Unfortunately,
there is only one torch; its battery is running out and can only last another 18 minutes. Persons A and
B can cross the bridge in 1, resp. 2 minutes but person C requires 5 minutes and D even requires 10
minutes to cross the bridge. The problem is whether they have a strategy to safely cross the bridge
before the battery of the torch runs out.

We model the puzzle as an LPE, where we model the state space by keeping track of the positions of
the four persons (i.e. which side of the bridge they are), and the time that has passed since switching on
the torch. We consider two types of move actions: move(p1, l), modelling the person p1 who is carrying
a torch to move to location l (which can be s for safe, or d, for dangerous) and move(p1, p2, l), modelling
the person p1 who is carrying a torch, crossing the bridge together with p2. Moreover, action safe(i)
signals that the family managed to safely cross the bridge, taking i minutes; action fail indicates that
the family did not manage to cross the bridge before the battery of the torch ran out. To verify whether
the family has a strategy to safely cross the bridge, we verify the following formula:

µX .(〈true〉X ∨〈∃i:N.safe(i)〉true)

The witness proving the formula holds is depicted below, with 0 being the initial state. It shows a
schedule by which the family can safely cross the bridge.

0 1 2 3 4 5 6
move(B,A,s) move(A,d) move(D,C,s) move(B,d) move(B,A,s) safe(17)

12

97

Evidence Extraction from Parameterised Boolean Equation Systems Wesselink, Willemse

5.2 Communication Protocols
Communication protocols allow for exchanging information between devices through networks using
strict rules and conventions. In general, the communication medium (i.e. the network) may not be
perfectly reliable: it may re-order, scramble or even lose data that it transports. Part of the problem
solved by a communication protocol is to disassemble and reassemble messages sent via such a network,
working around the assumed characteristics of the network to achieve reliable information exchange.

A variety of communication protocols exist; we here consider the classic Alternating Bit Protocol
(ABP), the One Bit Sliding Window Protocol, which is a simple bidirectional sliding window protocol
with piggy backing and window sizes as the receiving and sending side of size 1 [1], and the full Sliding
Window Protocol [9]. The property that we check for all three protocols is the following: there are no
paths on which reading of a datum d is enabled infinitely often, but occurs only finitely often. Assuming
that the data domain we range over is D and read(d) models reading datum d, this can be formalised
as follows (see also, e.g. [2]):

∀d:D.νX .µY.νZ.([read(d)]X ∧ ([read(d)]false∨ [¬read(d)]Y)∧ [¬read(d)]Z)

None of the three protocols satisfy the property for |D|> 1. The counterexamples we can extract all have
a similar flavour but differ in the number of actions involved and the underlying reason for violating the
property. We depict these counterexamples in Figure 1; we have omitted all other involved actions in
these counterexamples.

13

14
1501

2

3

4

5

6
7 8 9

10

11

1216

r
e
a
d
(d

0)

r
e
a
d
(d

0)

1

0 2

3

r
e
a
d
(d

0)

r
e
a
d
(d

0)

0 1

2 3

read(d0)

read(d0)

Figure 1: Counterexamples for the if reading of a datum is infinitely often enabled then it occurs infinitely
often requirement. Left: counterexample for the ABP, middle: counterexample for the One Bit protocol,
right: counterexample for the Sliding Window Protocol. In all cases, state 0 indicates the initial state;
non-read(0) edge-labels have been omitted from our graphs.

All three counterexamples show the presence of an infinite path along which a read(d0) is enabled,
but never taken. Note that since this is a typical branching-time property with a strong fairness con-
straint, the counterexample cannot simply be represented by an infinite path represented by a lasso.

5.3 The DIRAC Storage Management System
DIRAC (Distributed Infrastructure with Remote Agent Control) is a grid solution that is designed to sup-
port both production activities as well as user data analysis for the Large Hadron Collider ‘beauty’ ex-
periment. It consists of distributed services that cooperate with light-weight agents that deliver workload
to the grid resources: services accept requests from running jobs and agents, whereas agents actively

13

98

Evidence Extraction from Parameterised Boolean Equation Systems Wesselink, Willemse

work towards specific goals. The logic of each individual agent is fairly simple but the main source of
complexity arises from their cooperation. Agents communicate using the services’ databases as a shared
memory for synchronising the state transitions. A formal model and analysis of two critical subsystems
of DIRAC is described in [19]; one of these is the Storage Management System (SMS). In [19], it was
shown that this system violated several requirements. Most of these requirements were safety require-
ments. A violation of such a requirement is a simple trace in the system, which is fairly easy to generate
and visualise. A requirement that defied such a simple approach is the following liveness requirement:

νX .([true]X∧
[state([tStaged])∨state([tFailed])]νY.([¬state([tDeleted])]Y∧

µZ.(〈true〉Z∨〈state([tDeleted])〉true)))

The requirement essentially states that each task that is in a terminating state (i.e. in state tFailed or
tStaged) is eventually removed from the DIRAC system (i.e. tDeleted). The only action of concern
is the state(s) action, which emits the current state s of a task. The counterexample to the property
is depicted in Figure 2; the original LTS contains 142 states, which can be further reduced (without
affecting the behaviours encoded by the LTS) to the depicted 26 states.

25

22

24

23

21

18

20

19

17

14

16

15

131210

state([tStaged])

Figure 2: Counterexamples for the requirement that each task in a terminating state is eventually re-
moved for the Storage Management Systems. State 0 indicates the initial state; we omitted all edge
labels except for the trigger state([tStaged]). The dashed line between state 1 and 12 indicates a single
path through states 2, 3,. . . , 12; the dotted transitions are 3D artefacts.

The counterexample clearly indicates a path towards a part of the system where the task, once staged
(in state 13), will never be removed from the system.

6 Conclusions and Future Work
We studied and implemented the extraction of useful evidence from parameterised Boolean equation
systems (PBESs) encoding the model checking problem for the first-order modal µ-calculus. Our so-
lution is inspired by the LFP-approach outlined (but not implemented) in [7]. Our solution, which we
have also implementation and which is made available through the mCRL2 [5] toolset, shows the appeal
of the technique even when used for explaining the failure for complex requirements to hold.

Apart from the model checking problem, PBESs can also be used for checking behavioural equiva-
lence of processes [4]. Diagnostics for such problems are typically presented in the form of a game [8].
We expect to be able to apply the ideas outlined in the current paper to such problems as well, leading to
evidence in the form of substructures for both input models, which, combined, explain the differences
between both models. Implementing this problem and investigating whether such a solution would
provide intelligible feedback to the user is left for future work.

14

99

Evidence Extraction from Parameterised Boolean Equation Systems Wesselink, Willemse

References
[1] M. Bezem and J.F. Groote. A correctness proof of a one-bit sliding window protocol in µCRL. Comput. J.,

37(4):289–307, 1994.
[2] J. Bradfield and C. Stirling. Modal logics and mu-calculi. In Handbook of Process Algebra, pages 293–332.

Elsevier, North-Holland, 2001.
[3] S. Busard. Symbolic Model Checking of Multi-Modal Logics: Uniform Strategies and Rich Explanations.

PhD thesis, Université catholique de Louvain (UCL), 2017.
[4] T. Chen, B. Ploeger, J. van de Pol, and T.A.C. Willemse. Equivalence checking for infinite systems using

parameterized Boolean equation systems. In CONCUR, volume 4703 of LNCS, pages 120–135. Springer,
2007.

[5] S. Cranen, J.F. Groote, J.J.A. Keiren, F.P.M. Stappers, E.P. de Vink, W. Wesselink, and T.A.C. Willemse. An
overview of the mCRL2 toolset and its recent advances. In TACAS, volume 7795 of LNCS, pages 199–213.
Springer, 2013.

[6] S. Cranen, B. Luttik, and T.A.C. Willemse. Proof graphs for parameterised Boolean equation systems. In
CONCUR, volume 8052 of LNCS, pages 470–484. Springer, 2013.

[7] S. Cranen, B. Luttik, and T.A.C. Willemse. Evidence for fixpoint logic. In CSL, volume 41 of LIPIcs, pages
78–93. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

[8] D. de Frutos-Escrig, J.J.A. Keiren, and T.A.C. Willemse. Games for bisimulations and abstraction. Logical
Methods in Computer Science, 13(4), 2017.

[9] W. Fokkink, J.F. Groote, J. Pang, B. Badban, and J. van de Pol. Verifying a sliding window protocol in µCRL.
In AMAST, volume 3116 of LNCS, pages 148–163. Springer, 2004.

[10] M. Gazda and T.A.C. Willemse. Zielonka’s recursive algorithm: dull, weak and solitaire games and tighter
bounds. In GandALF, volume 119 of EPTCS, pages 7–20, 2013.

[11] J.F. Groote and M.R. Mousavi. Modeling and Analysis of Communicating Systems. MIT Press, 2014.
[12] J.F. Groote and T.A.C. Willemse. Model-checking processes with data. Sci. Comput. Program., 56(3):251–

273, 2005.
[13] J.F. Groote and T.A.C. Willemse. Parameterised Boolean equation systems. Theor. Comput. Sci., 343(3):332–

369, 2005.
[14] A. Kick. Tableaux and witnesses for the µ-calculus, 1995. Tech. Rep. 44/95, University of Karlsruhe.
[15] A. Mader. Verification of Modal Properties Using Boolean Equation Systems. PhD thesis, Technische Uni-

versität München, 1997.
[16] R. Mateescu. Vérification des propriétés temporelles des programmes parallèles. PhD thesis, Institut National

Polytechnique de Grenoble, 1998.
[17] R. Mateescu. Efficient diagnostic generation for Boolean equation systems. In TACAS, volume 1785 of LNCS,

pages 251–265. Springer, 2000.
[18] B. Ploeger, W. Wesselink, and T.A.C. Willemse. Verification of reactive systems via instantiation of parame-

terised Boolean equation systems. Inf. Comput., 209(4):637–663, 2011.
[19] D. Remenska, T.A.C. Willemse, K. Verstoep, J. Templon, and H.E. Bal. Using model checking to analyze the

system behavior of the LHC production grid. Future Generation Comp. Syst., 29(8):2239–2251, 2013.
[20] P. Stevens and C. Stirling. Practical model-checking using games. In TACAS, volume 1384 of LNCS, pages

85–101. Springer, 1998.
[21] L. Tan and R. Cleaveland. Evidence-based model checking. In CAV, volume 2404 of LNCS, pages 455–470.

Springer, 2002.
[22] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math., 5(2):285–309, June 1955.
[23] A. van Dam, B. Ploeger, and T.A.C. Willemse. Instantiation for parameterised Boolean equation systems. In

ICTAC, volume 5160 of LNCS, pages 440–454. Springer, 2008.
[24] W. Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theor.

Comput. Sci., 200(1-2):135–183, 1998.

15

100

