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1 Introduction

This document provides a concise overview on the core results of our previous work [2, 3, 1] on the
exploration of axiom systems for category theory. Extending the previous studies we include one
further axiomatic theory in our experiments. This additional theory has been suggested by Mac
Lane [5] in 1948. We show that the axioms proposed by Mac Lane are equivalent to the ones studied
in [3], which includes an axioms set suggested by Scott [6] in the 1970s and another axioms set proposed
by Freyd and Scedrov [4] in 1990, which we slightly modified in [3] to remedy a minor technical issue.

The explanations given below are minimal, for more details we refer to the referenced papers, in
particular, to [3].

2 Embedding of Free Logic in HOL

We introduce a shallow semantical embedding of free logic [3] in Isabelle/HOL. Definite description
is omitted, since it is not needed in the studies below and also since the definition provided in [1]
introduces the here undesired commitment that at least one non-existing element of type i is a priori
given. We here want to consider this an optional condition.

typedecl i — Type for individuals
consts fExistence:: i⇒bool (E ) — Existence/definedness predicate in free logic

abbreviation fNot (¬) where ¬ϕ ≡ ¬ϕ
abbreviation fImpl (infixr → 13 ) where ϕ → ψ ≡ ϕ −→ ψ
abbreviation fId (infixr = 25 ) where l = r ≡ l = r
abbreviation fAll (∀ ) where ∀Φ ≡ ∀ x . E x −→ Φ x
abbreviation fAllBi (binder ∀ [8 ]9 ) where ∀ x . ϕ x ≡ ∀ϕ
abbreviation fOr (infixr ∨ 21 ) where ϕ ∨ ψ ≡ (¬ϕ) → ψ
abbreviation fAnd (infixr ∧ 22 ) where ϕ ∧ ψ ≡ ¬(¬ϕ ∨ ¬ψ)
abbreviation fImpli (infixr ← 13 ) where ϕ ← ψ ≡ ψ → ϕ
abbreviation fEquiv (infixr ↔ 15 ) where ϕ ↔ ψ ≡ (ϕ → ψ) ∧ (ψ → ϕ)
abbreviation fEx (∃ ) where ∃Φ ≡ ¬(∀ (λy . ¬(Φ y)))
abbreviation fExiBi (binder ∃ [8 ]9 ) where ∃ x . ϕ x ≡ ∃ϕ

3 Some Basic Notions in Category Theory

Morphisms in the category are modeled as objects of type i. We introduce three partial functions,
dom (domain), cod (codomain), and morphism composition (·).
For composition we assume set-theoretical composition here (i.e., functional composition from right
to left).

consts
domain:: i⇒i (dom - [108 ] 109 )
codomain:: i⇒i (cod - [110 ] 111 )
composition:: i⇒i⇒i (infix · 110 )

— Kleene Equality
abbreviation KlEq (infixr ∼= 56 ) where x ∼= y ≡ (E x ∨ E y) → x = y
— Existing Identity
abbreviation ExId (infixr ' 56 ) where x ' y ≡ (E x ∧ E y ∧ x = y)

— Identity-morphism: see also p. 4. of [4].
abbreviation ID i ≡ (∀ x . E (i ·x ) → i ·x ∼= x ) ∧ (∀ x . E (x ·i) → x ·i ∼= x )
— Identity-morphism: Mac Lane’s definition, the same as ID except for notion of equality.
abbreviation IDMcL % ≡ (∀α. E (%·α) → %·α = α) ∧ (∀ β. E (β·%) → β·% = β)

— The two notions of identity-morphisms are obviously equivalent.
lemma IDPredicates: ID ≡ IDMcL by auto
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4 The Axioms Sets studied by Benzmüller and Scott [3]

4.1 AxiomsSet1

AxiomsSet1 generalizes the notion of a monoid by introducing a partial, strict binary composition
operation “·”. The existence of left and right identity elements is addressed in axioms C i and D i. The
notions of dom (domain) and cod (codomain) abstract from their common meaning in the context of
sets. In category theory we work with just a single type of objects (the type i in our setting) and
therefore identity morphisms are employed to suitably characterize their meanings.

locale AxiomsSet1 =
assumes
S i: E (x ·y) → (E x ∧ E y) and
E i: E (x ·y) ← (E x ∧ E y ∧ (∃ z . z ·z ∼= z ∧ x ·z ∼= x ∧ z ·y ∼= y)) and
Ai: x ·(y ·z ) ∼= (x ·y)·z and
C i: ∀ y .∃ i . ID i ∧ i ·y ∼= y and
D i: ∀ x .∃ j . ID j ∧ x ·j ∼= x

begin
lemma True nitpick [satisfy ] oops — Consistency
lemma assumes ∃ x . ¬(E x ) shows True nitpick [satisfy ] oops — Consistency
lemma assumes (∃ x . ¬(E x )) ∧ (∃ x . (E x )) shows True nitpick [satisfy ] oops — Consistency

lemma E iImpl : E (x ·y) → (E x ∧ E y ∧ (∃ z . z ·z ∼= z ∧ x ·z ∼= x ∧ z ·y ∼= y)) by (metis Ai C i S i)
— Uniqueness of i and j in the latter two axioms.
lemma UC i: ∀ y .∃ i . ID i ∧ i ·y ∼= y ∧ (∀ j .(ID j ∧ j ·y ∼= y) → i ∼= j ) by (smt Ai C i S i)
lemma UD i: ∀ x .∃ j . ID j ∧ x ·j ∼= x ∧ (∀ i .(ID i ∧ x ·i ∼= x ) → j ∼= i) by (smt Ai D i S i)
— But i and j need not to equal.
lemma (∃C D . (∀ y . ID (C y) ∧ (C y)·y ∼= y) ∧ (∀ x . ID (D x ) ∧ x ·(D x ) ∼= x ) ∧ ¬(D = C ))

nitpick [satisfy ] oops — Model found
lemma (∃ x . E x ) ∧ (∃C D . (∀ y . ID(C y) ∧ (C y)·y ∼= y) ∧ (∀ x . ID(D x ) ∧ x ·(D x ) ∼= x ) ∧ ¬(D = C ))

nitpick [satisfy ] oops — Model found
end

4.2 AxiomsSet2

AxiomsSet2 is developed from AxiomsSet1 by Skolemization of the existentially quantified variables
i and j in axioms Ci and Di. We can argue semantically that every model of AxiomsSet1 has such
functions. Hence, we get a conservative extension of AxiomsSet1. The strictness axiom S is extended,
so that strictness is now also postulated for the new Skolem functions dom and cod.

locale AxiomsSet2 =
assumes
S ii: (E (x ·y) → (E x ∧ E y)) ∧ (E (dom x ) → E x ) ∧ (E (cod y) → E y) and
E ii: E (x ·y) ← (E x ∧ E y ∧ (∃ z . z ·z ∼= z ∧ x ·z ∼= x ∧ z ·y ∼= y)) and
Aii: x ·(y ·z ) ∼= (x ·y)·z and
C ii: E y → (ID(cod y) ∧ (cod y)·y ∼= y) and
D ii: E x → (ID(dom x ) ∧ x ·(dom x ) ∼= x )

begin
lemma True nitpick [satisfy ] oops — Consistency
lemma assumes ∃ x . ¬(E x ) shows True nitpick [satisfy ] oops — Consistency
lemma assumes (∃ x . ¬(E x )) ∧ (∃ x . (E x )) shows True nitpick [satisfy ] oops — Consistency

lemma E iiImpl : E (x ·y) → (E x ∧ E y ∧ (∃ z . z ·z ∼= z ∧ x ·z ∼= x ∧ z ·y ∼= y)) by (metis Aii C ii S ii)
lemma domTotal : E x → E (dom x ) by (metis D ii S ii)
lemma codTotal : E x → E (cod x ) by (metis C ii S ii)

end

4.2.1 AxiomsSet2 entails AxiomsSet1

context AxiomsSet2
begin
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lemma S i: E (x ·y) → (E x ∧ E y) using S ii by blast
lemma E i: E (x ·y) ← (E x ∧ E y ∧ (∃ z . z ·z ∼= z ∧ x ·z ∼= x ∧ z ·y ∼= y)) using E ii by blast
lemma Ai: x ·(y ·z ) ∼= (x ·y)·z using Aii by blast
lemma C i: ∀ y .∃ i . ID i ∧ i ·y ∼= y by (metis C ii S ii)
lemma D i: ∀ x .∃ j . ID j ∧ x ·j ∼= x by (metis D ii S ii)

end

4.2.2 AxiomsSet1 entails AxiomsSet2 (by semantic means)

By semantic means (Skolemization).

4.3 AxiomsSet3

In AxiomsSet3 the existence axiom Eii from AxiomsSet2 is simplified by taking advantage of the two
new Skolem functions dom and cod.

The left-to-right direction of existence axiom Eiii is implied.

locale AxiomsSet3 =
assumes
S iii: (E (x ·y) → (E x ∧ E y)) ∧ (E (dom x ) → E x ) ∧ (E (cod y) → E y) and
E iii: E (x ·y) ← (dom x ∼= cod y ∧ E (cod y)) and
Aiii: x ·(y ·z ) ∼= (x ·y)·z and
C iii: E y → (ID(cod y) ∧ (cod y)·y ∼= y) and
D iii: E x → (ID(dom x ) ∧ x ·(dom x ) ∼= x )

begin
lemma True nitpick [satisfy ] oops — Consistency
lemma assumes ∃ x . ¬(E x ) shows True nitpick [satisfy ] oops — Consistency
lemma assumes (∃ x . ¬(E x )) ∧ (∃ x . (E x )) shows True nitpick [satisfy ] oops — Consistency

lemma E iiiImpl : E (x ·y) → (dom x ∼= cod y ∧ E (cod y)) by (metis (full-types) Aiii C iii D iii S iii)
end

4.3.1 AxiomsSet3 entails AxiomsSet2

context AxiomsSet3
begin
lemma S ii: (E (x ·y) → (E x ∧ E y)) ∧ (E (dom x ) → E x ) ∧ (E (cod y) → E y) using S iii by blast
lemma E ii: E (x ·y) ← (E x ∧ E y ∧ (∃ z . z ·z ∼= z ∧ x ·z ∼= x ∧ z ·y ∼= y)) by (metis Aiii C iii D iii E iii

S iii)
lemma Aii: x ·(y ·z ) ∼= (x ·y)·z using Aiii by blast
lemma C ii: E y → (ID(cod y) ∧ (cod y)·y ∼= y) using C iii by auto
lemma D ii: E x → (ID(dom x ) ∧ x ·(dom x ) ∼= x ) using D iii by auto

end

4.3.2 AxiomsSet2 entails AxiomsSet3

context AxiomsSet2
begin
lemma S iii: (E (x ·y) → (E x ∧ E y)) ∧ (E (dom x ) → E x ) ∧ (E (cod y) → E y) using S ii by blast
lemma E iii: E (x ·y) ← (dom x ∼= cod y ∧ E (cod y)) by (metis C ii D ii E ii S ii)
lemma Aiii: x ·(y ·z ) ∼= (x ·y)·z using Aii by blast
lemma C iii: E y → (ID(cod y) ∧ (cod y)·y ∼= y) using C ii by auto
lemma D iii: E x → (ID(dom x ) ∧ x ·(dom x ) ∼= x ) using D ii by auto

end

4.4 The Axioms Set AxiomsSet4

AxiomsSet4 simplifies the axioms Ciii and Diii. However, as it turned out, these simplifications also
require the existence axiom Eiii to be strengthened into an equivalence.

locale AxiomsSet4 =
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assumes
S iv: (E (x ·y) → (E x ∧ E y)) ∧ (E (dom x ) → E x ) ∧ (E (cod y) → E y) and
E iv: E (x ·y) ↔ (dom x ∼= cod y ∧ E (cod y)) and
Aiv: x ·(y ·z ) ∼= (x ·y)·z and
C iv: (cod y)·y ∼= y and
D iv: x ·(dom x ) ∼= x

begin
lemma True nitpick [satisfy ] oops — Consistency
lemma assumes ∃ x . ¬(E x ) shows True nitpick [satisfy ] oops — Consistency
lemma assumes (∃ x . ¬(E x )) ∧ (∃ x . (E x )) shows True nitpick [satisfy ] oops — Consistency

end

4.4.1 AxiomsSet4 entails AxiomsSet3

context AxiomsSet4
begin
lemma S iii: (E (x ·y) → (E x ∧ E y)) ∧ (E (dom x ) → E x ) ∧ (E (cod y) → E y) using S iv by blast
lemma E iii: E (x ·y) ← (dom x ∼= cod y ∧ (E (cod y))) using E iv by blast
lemma Aiii: x ·(y ·z ) ∼= (x ·y)·z using Aiv by blast
lemma C iii: E y → (ID(cod y) ∧ (cod y)·y ∼= y) by (metis C iv D iv E iv)
lemma D iii: E x → (ID(dom x ) ∧ x ·(dom x ) ∼= x ) by (metis C iv D iv E iv)

end

4.4.2 AxiomsSet3 entails AxiomsSet4

context AxiomsSet3
begin
lemma S iv: (E (x ·y) → (E x ∧ E y)) ∧ (E (dom x ) → E x ) ∧ (E (cod y) → E y) using S iii by blast
lemma E iv: E (x ·y) ↔ (dom x ∼= cod y ∧ E (cod y)) by (metis (full-types) Aiii C iii D iii E iii S iii)
lemma Aiv: x ·(y ·z ) ∼= (x ·y)·z using Aiii by blast
lemma C iv: (cod y)·y ∼= y using C iii S iii by blast
lemma D iv: x ·(dom x ) ∼= x using D iii S iii by blast

end

4.5 AxiomsSet5

AxiomsSet5 has been proposed by Scott [6] in the 1970s. This set of axioms is equivalent to the axioms
set presented by Freyd and Scedrov in their textbook “Categories, Allegories” [4] when encoded in
free logic, corrected/adapted and further simplified, see Section 5.

locale AxiomsSet5 =
assumes
S1 : E (dom x ) → E x and
S2 : E (cod y) → E y and
S3 : E (x ·y) ↔ dom x ' cod y and
S4 : x ·(y ·z ) ∼= (x ·y)·z and
S5 : (cod y)·y ∼= y and
S6 : x ·(dom x ) ∼= x

begin
lemma True nitpick [satisfy ] oops — Consistency
lemma assumes ∃ x . ¬(E x ) shows True nitpick [satisfy ] oops — Consistency
lemma assumes (∃ x . ¬(E x )) ∧ (∃ x . (E x )) shows True nitpick [satisfy ] oops — Consistency

end

4.5.1 AxiomsSet5 entails AxiomsSet4

context AxiomsSet5
begin
lemma S iv: (E (x ·y)→ (E x ∧ E y)) ∧ (E (dom x )→ E x ) ∧ (E (cod y)→ E y) using S1 S2 S3 by blast
lemma E iv: E (x ·y) ↔ (dom x ∼= cod y ∧ E (cod y)) using S3 by metis
lemma Aiv: x ·(y ·z ) ∼= (x ·y)·z using S4 by blast

5



lemma C iv: (cod y)·y ∼= y using S5 by blast
lemma D iv: x ·(dom x ) ∼= x using S6 by blast

end

4.5.2 AxiomsSet4 entails AxiomsSet5

context AxiomsSet4
begin
lemma S1 : E (dom x ) → E x using S iv by blast
lemma S2 : E (cod y) → E y using S iv by blast
lemma S3 : E (x ·y) ↔ dom x ' cod y using E iv by metis
lemma S4 : x ·(y ·z ) ∼= (x ·y)·z using Aiv by blast
lemma S5 : (cod y)·y ∼= y using C iv by blast
lemma S6 : x ·(dom x ) ∼= x using D iv by blast

end

5 The Axioms Sets by Freyd and Scedrov [4]

5.1 AxiomsSet6

The axioms by Freyd and Scedrov [4] in our notation, when being corrected (cf. the modification in
axiom A1).

Freyd and Scedrov employ a different notation for dom x and cod x. They denote these operations by
2x and x2. Moreover, they employ diagrammatic composition instead of the set-theoretic definition
(functional composition from right to left) used so far. We leave it to the reader to verify that their
axioms corresponds to the axioms presented here modulo an appropriate conversion of notation.

locale AxiomsSet6 =
assumes

A1 : E (x ·y) ↔ dom x ' cod y and
A2a: cod(dom x ) ∼= dom x and
A2b: dom(cod y) ∼= cod y and
A3a: x ·(dom x ) ∼= x and
A3b: (cod y)·y ∼= y and
A4a: dom(x ·y) ∼= dom((dom x )·y) and
A4b: cod(x ·y) ∼= cod(x ·(cod y)) and
A5 : x ·(y ·z ) ∼= (x ·y)·z

begin
lemma True nitpick [satisfy ] oops — Consistency
lemma assumes ∃ x . ¬(E x ) shows True nitpick [satisfy ] oops — Consistency
lemma assumes (∃ x . ¬(E x )) ∧ (∃ x . (E x )) shows True nitpick [satisfy ] oops — Consistency

end

5.1.1 AxiomsSet6 entails AxiomsSet5

context AxiomsSet6
begin
lemma S1 : E (dom x ) → E x by (metis A1 A2a A3a)
lemma S2 : E (cod y) → E y using A1 A2b A3b by metis
lemma S3 : E (x ·y) ↔ dom x ' cod y by (metis A1 )
lemma S4 : x ·(y ·z ) ∼= (x ·y)·z using A5 by blast
lemma S5 : (cod y)·y ∼= y using A3b by blast
lemma S6 : x ·(dom x ) ∼= x using A3a by blast

lemma A4aRedundant : dom(x ·y) ∼= dom((dom x )·y) using A1 A2a A3a A5 by metis
lemma A4bRedundant : cod(x ·y) ∼= cod(x ·(cod y)) using A1 A2b A3b A5 by smt
lemma A2aRedundant : cod(dom x ) ∼= dom x using A1 A3a A3b A4a A4b by smt
lemma A2bRedundant : dom(cod y) ∼= cod y using A1 A3a A3b A4a A4b by smt

end
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5.1.2 AxiomsSet5 entails AxiomsSet6

context AxiomsSet5
begin
lemma A1 : E (x ·y) ↔ dom x ' cod y using S3 by blast
lemma A2 : cod(dom x ) ∼= dom x by (metis S1 S2 S3 S6 )
lemma A2b: dom(cod y) ∼= cod y using S1 S2 S3 S5 by metis
lemma A3a: x ·(dom x ) ∼= x using S6 by auto
lemma A3b: (cod y)·y ∼= y using S5 by blast
lemma A4a: dom(x ·y) ∼= dom((dom x )·y) by (metis S1 S3 S4 S5 S6 )
lemma A4b: cod(x ·y) ∼= cod(x ·(cod y)) by (metis (full-types) S2 S3 S4 S5 S6 )
lemma A5 : x ·(y ·z ) ∼= (x ·y)·z using S4 by blast

end

5.2 AxiomsSet7 (technically flawed)

The axioms by Freyd and Scedrov in our notation, without the suggested correction of axiom A1.
This axioms set is technically flawed when encoded in our given context. It leads to a constricted
inconsistency.

locale AxiomsSet7 =
assumes

A1 : E (x ·y) ↔ dom x ∼= cod y and
A2a: cod(dom x ) ∼= dom x and
A2b: dom(cod y) ∼= cod y and
A3a: x ·(dom x ) ∼= x and
A3b: (cod y)·y ∼= y and
A4a: dom(x ·y) ∼= dom((dom x )·y) and
A4b: cod(x ·y) ∼= cod(x ·(cod y)) and
A5 : x ·(y ·z ) ∼= (x ·y)·z

begin
lemma True nitpick [satisfy ] oops — Consistency

lemma InconsistencyAutomatic: (∃ x . ¬(E x )) → False by (metis A1 A2a A3a) — Inconsistency
lemma ∀ x . E x using InconsistencyAutomatic by auto

lemma InconsistencyInteractive:
assumes NEx : ∃ x . ¬(E x ) shows False
proof −
obtain a where 1 : ¬(E a) using NEx by auto
have 2 : a·(dom a) ∼= a using A3a by blast
have 3 : ¬(E (a·(dom a))) using 1 2 by metis
have 4 : E (a·(dom a)) ↔ dom a ∼= cod(dom a) using A1 by blast
have 5 : cod(dom a) ∼= dom a using A2a by blast
have 6 : E (a·(dom a)) ↔ dom a ∼= dom a using 4 5 by auto
have 7 : E (a·(dom a)) using 6 by blast
then show ?thesis using 7 3 by blast
qed

end

5.3 AxiomsSet7orig (technically flawed)

The axioms by Freyd and Scedrov in their original notation, without the suggested correction of axiom
A1.

We present the constricted inconsistency argument from above once again, but this time in the original
notation of Freyd and Scedrov.

locale AxiomsSet7orig =
fixes
source:: i⇒i (2- [108 ] 109 ) and
target :: i⇒i (-2 [110 ] 111 ) and
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compositionF :: i⇒i⇒i (infix · 110 )
assumes

A1 : E (x·y) ↔ (x2 ∼= 2y) and
A2a: ((2x )2) ∼= 2x and
A2b: 2(x2) ∼= 2x and
A3a: (2x )·x ∼= x and
A3b: x·(x2) ∼= x and
A4a: 2(x·y) ∼= 2(x·(2y)) and
A4b: (x·y)2 ∼= ((x2)·y)2 and
A5 : x·(y·z ) ∼= (x·y)·z

begin
lemma True nitpick [satisfy ] oops — Consistency

lemma InconsistencyAutomatic: (∃ x . ¬(E x )) → False by (metis A1 A2a A3a) — Inconsistency
lemma ∀ x . E x using InconsistencyAutomatic by auto

lemma InconsistencyInteractive:
assumes NEx : ∃ x . ¬(E x ) shows False
proof −
obtain a where 1 : ¬(E a) using assms by auto
have 2 : (2a)·a ∼= a using A3a by blast
have 3 : ¬(E ((2a)·a)) using 1 2 by metis
have 4 : E ((2a)·a) ↔ (2a)2 ∼= 2a using A1 by blast
have 5 : (2a)2 ∼= 2a using A2a by blast
have 6 : E ((2a)·a) using 4 5 by blast
then show ?thesis using 6 3 by blast
qed

end

5.4 AxiomsSet8 (algebraic reading, still technically flawed)

The axioms by Freyd and Scedrov in our notation again, but this time we adopt an algebraic reading
of the free variables, meaning that they range over existing morphisms only.

locale AxiomsSet8 =
assumes

B1 : ∀ x .∀ y . E (x ·y) ↔ dom x ∼= cod y and
B2a: ∀ x . cod(dom x ) ∼= dom x and
B2b: ∀ y . dom(cod y) ∼= cod y and
B3a: ∀ x . x ·(dom x ) ∼= x and
B3b: ∀ y . (cod y)·y ∼= y and
B4a: ∀ x .∀ y . dom(x ·y) ∼= dom((dom x )·y) and
B4b: ∀ x .∀ y . cod(x ·y) ∼= cod(x ·(cod y)) and
B5 : ∀ x .∀ y .∀ z . x ·(y ·z ) ∼= (x ·y)·z

begin
lemma True nitpick [satisfy ] oops — Consistency
lemma assumes ∃ x . ¬(E x ) shows True nitpick [satisfy ] oops — Consistency
lemma assumes (∃ x . ¬(E x )) ∧ (∃ x . (E x )) shows True nitpick [satisfy ] oops — Consistency

end

None of the axioms in AxiomsSet5 are implied.

context AxiomsSet8
begin
lemma S1 : E (dom x ) → E x nitpick oops — Nitpick finds a countermodel
lemma S2 : E (cod y) → E y nitpick oops — Nitpick finds a countermodel
lemma S3 : E (x ·y) ↔ dom x ' cod y nitpick oops — Nitpick finds a countermodel
lemma S4 : x ·(y ·z ) ∼= (x ·y)·z nitpick oops — Nitpick finds a countermodel
lemma S5 : (cod y)·y ∼= y nitpick oops — Nitpick finds a countermodel
lemma S6 : x ·(dom x ) ∼= x nitpick oops — Nitpick finds a countermodel

end
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5.5 AxiomsSet8Strict (algebraic reading)

The situation changes when strictness conditions are postulated. Note that in the algebraic framework
of Freyd and Scedrov such conditions have to be assumed as given in the logic, while here we can
explicitly encode them as axioms.

locale AxiomsSet8Strict = AxiomsSet8 +
assumes
B0a: E (x ·y) → (E x ∧ E y) and
B0b: E (dom x ) → E x and
B0c: E (cod x ) → E x

begin
lemma True nitpick [satisfy ] oops — Consistency
lemma assumes ∃ x . ¬(E x ) shows True nitpick [satisfy ] oops — Consistency
lemma assumes (∃ x . ¬(E x )) ∧ (∃ x . (E x )) shows True nitpick [satisfy ] oops — Consistency

end

5.5.1 AxiomsSet8Strict entails AxiomsSet5

context AxiomsSet8Strict
begin
lemma S1 : E (dom x ) → E x using B0b by blast
lemma S2 : E (cod y) → E y using B0c by blast
lemma S3 : E (x ·y) ↔ dom x ' cod y by (metis B0a B0b B0c B1 B3a)
lemma S4 : x ·(y ·z ) ∼= (x ·y)·z by (meson B0a B5 )
lemma S5 : (cod y)·y ∼= y using B0a B3b by blast
lemma S6 : x ·(dom x ) ∼= x using B0a B3a by blast

end

5.5.2 AxiomsSet5 entails AxiomsSet8Strict

context AxiomsSet5
begin
lemma B0a: E (x ·y) → (E x ∧ E y) using S1 S2 S3 by blast
lemma B0b: E (dom x ) → E x using S1 by blast
lemma B0c: E (cod x ) → E x using S2 by blast
lemma B1 : ∀ x .∀ y . E (x ·y) ↔ dom x ∼= cod y by (metis S3 S5 )
lemma B2a: ∀ x . cod(dom x ) ∼= dom x using A2 by blast
lemma B2b: ∀ y . dom(cod y) ∼= cod y using A2b by blast
lemma B3a: ∀ x . x ·(dom x ) ∼= x using S6 by blast
lemma B3b: ∀ y . (cod y)·y ∼= y using S5 by blast
lemma B4a: ∀ x .∀ y . dom(x ·y) ∼= dom((dom x )·y) by (metis S1 S3 S4 S6 )
lemma B4b: ∀ x .∀ y . cod(x ·y) ∼= cod(x ·(cod y)) by (metis S1 S2 S3 S4 S5 )
lemma B5 : ∀ x .∀ y .∀ z . x ·(y ·z ) ∼= (x ·y)·z using S4 by blast

end

5.5.3 AxiomsSet8Strict is Redundant

AxiomsSet8Strict is redundant: either the B2-axioms can be omitted or the B4-axioms.

context AxiomsSet8Strict
begin
lemma B2aRedundant : ∀ x . cod(dom x ) ∼= dom x by (metis B0a B1 B3a)
lemma B2bRedundant : ∀ y . dom(cod y) ∼= cod y by (metis B0a B1 B3b)
lemma B4aRedundant : ∀ x .∀ y . dom(x ·y) ∼= dom((dom x )·y) by (metis B0a B0b B1 B3a B5 )
lemma B4bRedundant : ∀ x .∀ y . cod(x ·y) ∼= cod(x ·(cod y)) by (metis B0a B0c B1 B3b B5 )

end
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6 The Axioms Sets of Mac Lane [5]

We analyse the axioms set suggested by Mac Lane [5] already in 1948. As for the theory by Freyd
and Scedrov above, which was developed much later, we need to assume strictness of composition
to show equivalence to our previous axiom sets. Note that his complicated conditions on existence
of compositions proved to be unnecessary, as we show. It shows it is hard to think about partial
operations.

locale AxiomsSetMcL =
assumes
C 0 : E (x ·y) → (E x ∧ E y) and
C 1 : ∀ γ β α. (E (γ·β) ∧ E ((γ·β)·α)) → E (β·α) and
C 1

′: ∀ γ β α. (E (β·α) ∧ E (γ·(β·α))) → E (γ·β) and
C 2 : ∀ γ β α. (E (γ·β) ∧ E (β·α)) → (E ((γ·β)·α) ∧ E (γ·(β·α)) ∧ ((γ·β)·α) = (γ·(β·α))) and
C 3 : ∀ γ. ∃ eD . IDMcL(eD) ∧ E (γ·eD) and
C 4 : ∀ γ. ∃ eR. IDMcL(eR) ∧ E (eR·γ)

begin
lemma True nitpick [satisfy ] oops — Consistency
lemma assumes ∃ x . ¬(E x ) shows True nitpick [satisfy ] oops — Consistency
lemma assumes (∃ x . ¬(E x )) ∧ (∃ x . (E x )) shows True nitpick [satisfy ] oops — Consistency

end

Remember that IDMcL was defined on p. 2 and proved equivalent to ID.

6.1 AxiomsSetMcL entails AxiomsSet1

context AxiomsSetMcL
begin
lemma S i: E (x ·y) → (E x ∧ E y) using C 0 by blast
lemma E i: E (x ·y) ← (E x ∧ E y ∧ (∃ z . z ·z ∼= z ∧ x ·z ∼= x ∧ z ·y ∼= y)) by (metis C 2)
lemma Ai: x ·(y ·z ) ∼= (x ·y)·z by (metis C 1 C 1

′ C 2 C 0)
lemma C i: ∀ y .∃ i . ID i ∧ i ·y ∼= y using C 4 by fastforce
lemma D i: ∀ x .∃ j . ID j ∧ x ·j ∼= x using C 3 by fastforce

end

6.2 AxiomsSet1 entails AxiomsSetMcL

context AxiomsSet1
begin
lemma C 0 : E (x ·y) → (E x ∧ E y) using S i by blast
lemma C 1 : ∀ γ β α. (E (γ·β) ∧ E ((γ·β)·α)) → E (β·α) by (metis Ai S i)
lemma C 1

′: ∀ γ β α. (E (β·α) ∧ E (γ·(β·α))) → E (γ·β) by (metis Ai S i)
lemma C 2 : ∀ γ β α. (E (γ·β) ∧ E (β·α)) → (E ((γ·β)·α) ∧ E (γ·(β·α)) ∧ ((γ·β)·α) = (γ·(β·α))) by (smt

Ai C i E i S i)
lemma C 3 : ∀ γ. ∃ eD . IDMcL(eD) ∧ E (γ·eD) using D i by force
lemma C 4 : ∀ γ. ∃ eR. IDMcL(eR) ∧ E (eR·γ) using C i by force

end

6.3 Skolemization of the Axioms of Mac Lane

Mac Lane employs diagrammatic composition instead of the set-theoretic definition as used in our
axiom sets. As we have seen above, this is not a problem as long as composition is the only primitive.
But when adding the Skolem terms dom and cod care must be taken and we should actually transform
all axioms into a common form. Below we address this (in a minimal way) by using dom in axiom
C 3s and cod in axiom C 4s, which is opposite of what Mac Lane proposed. For this axioms set we
then show equivalence to AxiomsSet1/2/5.

locale SkolemizedAxiomsSetMcL =
assumes
C 0s : (E (x ·y) → (E x ∧ E y)) ∧ (E (dom x ) → E x ) ∧ (E (cod y) → E y) and
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C 1s : ∀ γ β α. (E (γ·β) ∧ E ((γ·β)·α)) → E (β·α) and
C 1

′s: ∀ γ β α. (E (β·α) ∧ E (γ·(β·α))) → E (γ·β) and
C 2s : ∀ γ β α. (E (γ·β) ∧ E (β·α)) → (E ((γ·β)·α) ∧ E (γ·(β·α)) ∧ ((γ·β)·α) = (γ·(β·α))) and
C 3s : ∀ γ. IDMcL(dom γ) ∧ E (γ·(dom γ)) and
C 4s : ∀ γ. IDMcL(cod γ) ∧ E ((cod γ)·γ)

begin
lemma True nitpick [satisfy ] oops — Consistency
lemma assumes ∃ x . ¬(E x ) shows True nitpick [satisfy ] oops — Consistency
lemma assumes (∃ x . ¬(E x )) ∧ (∃ x . (E x )) shows True nitpick [satisfy ] oops — Consistency

end

6.4 SkolemizedAxiomsSetMcL entails AxiomsSetMcL and AxiomsSet1-5

context SkolemizedAxiomsSetMcL
begin
lemma C 0 : E (x ·y) → (E x ∧ E y) using C 0s by blast
lemma C 1 : ∀ γ β α. (E (γ·β) ∧ E ((γ·β)·α)) → E (β·α) using C 1s by blast
lemma C 1

′: ∀ γ β α. (E (β·α) ∧ E (γ·(β·α))) → E (γ·β) using C 1
′s by blast

lemma C 2 : ∀ γ β α. (E (γ·β) ∧ E (β·α))→ (E ((γ·β)·α) ∧ E (γ·(β·α)) ∧ ((γ·β)·α) = (γ·(β·α))) using C 2s
by blast

lemma C 3 : ∀ γ. ∃ eD . IDMcL(eD) ∧ E (γ·eD) by (metis C 0s C 3s)
lemma C 4 : ∀ γ. ∃ eR. IDMcL(eR) ∧ E (eR·γ) by (metis C 0s C 4s)

lemma S i: E (x ·y) → (E x ∧ E y) using C 0s by blast
lemma E i: E (x ·y) ← (E x ∧ E y ∧ (∃ z . z ·z ∼= z ∧ x ·z ∼= x ∧ z ·y ∼= y)) by (metis C 2s)
lemma Ai: x ·(y ·z ) ∼= (x ·y)·z by (metis C 1s C 1

′s C 2s C 0s)
lemma C i: ∀ y .∃ i . ID i ∧ i ·y ∼= y by (metis C 0s C 4s)
lemma D i: ∀ x .∃ j . ID j ∧ x ·j ∼= x by (metis C 0s C 3s)

lemma S ii: (E (x ·y) → (E x ∧ E y)) ∧ (E (dom x ) → E x ) ∧ (E (cod y) → E y) using C 0s by blast
lemma E ii: E (x ·y) ← (E x ∧ E y ∧ (∃ z . z ·z ∼= z ∧ x ·z ∼= x ∧ z ·y ∼= y)) by (metis C 2s)
lemma Aii: x ·(y ·z ) ∼= (x ·y)·z by (metis C 1s C 1

′s C 2s C 0s)
lemma C ii: E y → (ID(cod y) ∧ (cod y)·y ∼= y) using C 4s by auto
lemma D ii: E x → (ID(dom x ) ∧ x ·(dom x ) ∼= x ) using C 3s by auto

— AxiomsSets3/4 are omitted here; we already know they are equivalent.

lemma S1 : E (dom x ) → E x using C 0s by blast
lemma S2 : E (cod y) → E y using C 0s by blast
lemma S3 : E (x ·y) ↔ dom x ' cod y by (metis (full-types) C 0s C 1s C 1

′s C 2s C 3s C 4s)
lemma S4 : x ·(y ·z ) ∼= (x ·y)·z by (metis C 0s C 1s C 1

′s C 2s)
lemma S5 : (cod y)·y ∼= y using C 0s C 4s by blast
lemma S6 : x ·(dom x ) ∼= x using C 0s C 3s by blast

end
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