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The Consistency and Complexity of

Multiplicative Additive System Virtual

Ross HORNE1

Abstract

This paper investigates the proof theory of multiplicative additive
system virtual (MAV). MAV combines two established proof calculi:
multiplicative additive linear logic (MALL) and basic system virtual
(BV). Due to the presence of the self-dual non-commutative operator
from BV, the calculus MAV is defined in the calculus of structures —
a generalisation of the sequent calculus where inference rules can be
applied in any context. A generalised cut elimination result is proven for
MAV, thereby establishing the consistency of linear implication defined
in the calculus. The cut elimination proof involves a termination
measure based on multisets of multisets of natural numbers to handle
subtle interactions between operators of BV and MAV. Proof search
in MAV is proven to be a PSPACE-complete decision problem. The
study of this calculus is motivated by observations about applications
in computer science to the verification of protocols and to querying.

Keywords: proof theory, deep inference, non-commutative logic

1 Introduction

This paper provides proof theoretic results supporting a line of work that
makes the case for using systems defined in the calculus of structures for
formal verification of protocols. The companion paper [11] makes the case
for an extension of the calculus BV [20] with the additive operators as a
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foundation for finite session types [24, 26] inspired by the Scribble protocol
modelling language [25]. A session type is a specification of the types of
messages exchanged in a protocol along with control flow information about
the order in which messages are sent and received. Session types can be used
for both the static [37, 29] and runtime [28] verification of protocols.

Advantages of using the session types formalised in the calculus of
structures, highlighted in the companion paper [11], include the following:

• Provability in the calculus of structures provides a natural notion of
multi-party compatibility. Given a multi-set of session types, repre-
senting the local behaviour of participants in a protocol, multi-party
compatibility determines whether the participants can work together
to successfully complete a session (without deadlock due to a hanging
receive with no corresponding send for example).

• Provable linear implications define a subtype relation over session types.
The subtype relation allows not only the types of messages exchanged
to be varied but also for the control flow of messages to be compared.
A participant satisfying a super-type is always capable of fulfilling the
role of any participant satisfying any of the corresponding sub-types.

• A new operator is introduced to the field of session types that is dual
to parallel composition. This new operator can be used to model the
parallel synchronisation of separate inputs, for example.

A further, more objective, justification for the use of the calculus of
structures as a foundation for session types is that the formal model is a
logical system in its own right. We provide this logical system with the
technical name multiplicative additive system virtual (MAV). The calculus
is a combination of two established proof calculi basic system virtual2 (BV)
and multiplicative additive linear logic (MALL). However, it is not sufficient
to assume that the proposed combination of these two existing proof calculi
preserve the desirable properties of a proof calculus. Nor is it sufficient just
to cite the techniques employed [20, 46, 49, 22, 9] and hope they work. A
thorough check is required. This paper addresses these issues, so that we
can confidently recommend the use of systems based on MAV, such as the
session type system introduced in the companion paper [11].

2The term virtual refers to an alternative intuition from physics where rules can create
and annihilate virtual particle pairs [4].
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This paper answers two important questions about MAV. Firstly, does
MAV really define a logical system? Secondly, is the complexity bound for
proof search reasonable?

The question of whether MAV really defines a logical system is ap-
proached by proof theoretic techniques. Inside MAV there is an internally
derived notion of linear implication. If MAV is a good logical system, then
implication should at least do the basic things that implication is expected
to do. For example, every logical system agrees that if A holds then A
holds, i.e. A implies A. The other property that is expected of any deductive
system since the notion of a syllogism was introduced by Aristotle in Prior
Analytics [35], is that if A implies B and B implies C, then A implies C.
Considering all logical systems in the broadest sense, any other property that
might be expected of implication is challenged by another logical system
where that property of implication does not hold. Thus the presence of a
notion of implication satisfying these two properties highlighted is an indica-
tor of the consistency of a logical system, where deductive reasoning can be
performed using implication. This paper establishes that linear implication
in MAV obeys these most fundamental properties expected of implication.

MAV possesses a self-dual non-commutative operator — an operator, say
“op”, where “A op B” is not necessarily equivalent to “B op A”, and also the
de Morgan dual of “op” is “op” itself. Contrast this with classical conjunction
∧, which has classical disjunction ∨ as its De Morgan dual. A motivating
observation for this work is that, in the original paper initiating investigations
into session types [24], both a self-dual non-commutative operator and a pair
of de Morgan dual lattice operators are employed. In that original paper,
the lattice operators were directly inspired [1] by the additives in MALL, and
are used in session types to control choice or branching in protocols.

Due to the presence of a self-dual non-commutative operator, the
consistency of linear implication is investigated in a generalisation of the
sequent calculus, called the calculus of structures [20]. The sequent calculus,
due to Gentzen [16], is a flexible formalism for expressing proof systems
and establishing consistency results, but is constrained to reasoning in a
shallow structure called a sequent. Tiu [50] established that a calculus with
a self-dual non-commutative operator called BV cannot be expressed without
a technique enabled by the calculus of structures, called deep inference. In
deep inference, rules are applied at any depth within a proposition. The
main contribution of this paper is to establish that techniques developed in
the calculus of structures can be adapted to the system MAV.
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The question of the reasonable complexity of proof search is of course
subjective. This paper establishes that proof search is a PSPACE-complete
problem, . . . but is that reasonable? To justify whether the complexity bound
is reasonable, applications should be considered. Concerning the problems
associated with verifying protocols in the companion paper [11], a good
protocol is likely to be of a limited size, so a PSPACE-complete verification
tool is reasonable. In the setting of query languages, PSPACE-complete
problems are common, including the combined complexity of Codd-equivalent
languages [51] such as relational algebra. By the combined complexity we
mean the complexity in terms of arbitrary queries and data. However, other
complexity measures, such as query complexity, that reflect the fact that
the data is large compared to a query and either the data or query is likely
to be mostly static, explain why in practice most queries on a database
run efficiently. Therefore, we argue that for the envisioned applications, a
PSPACE-complete complexity bound for proof search is comparable to what
would be expected for an expressive but finite system.

Section 2 provides background material on the sequent calculus and the
logical system multiplicative additive linear logic. The reader comfortable
with linear logic can skip this section. Section 3 introduces the syntax
and semantics of MAV expressed in the calculus of structures. Section 4
provides the proof theoretic devices that establish the consistency of MAV,
via a generalised cut elimination result. Finally, in Section 5, several proof
theoretic results and known complexity results are invoked to establish the
complexity of MAV.

2 Multiplicative Additive Linear Logic

For reference, we introduce the logical system multiplicative additive linear
logic (MALL) expressed in the sequent calculus. MALL is a sub-system of
linear logic. Linear logic was discovered by Girard [17] when investigating
the separation of the roles of duplication and disposal of formulae, called
contraction and weakening, from the role of negation in proof systems for
intuitionistic logic. By removing the powerful exponential operators that
control the use of contraction and weakening from propositional linear logic,
we obtain a well behaved logical system with two pairs of conjunction and
disjunction operators — the multiplicatives and the additives.

The semantics of MALL can be expressed in a proof calculus called the
sequent calculus. The sequent calculus involves two levels of syntax – the
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object level and the meta level. The object level concerns the propositions
themselves, while the meta level concerns the language for describing proofs.

The meta level sequents. Sequents are meta level constructs that consist
of a bag of propositions separated by commas. Another name for a bag
is a commutative monoid which is a structure satisfying associativity and
commutativity, with a unit. Sequents range over Γ,∆, as defined by the
following grammar, where T is any proposition.

Γ ::= T | Γ,Γ

The following structural congruence (a reflexive, transitive, symmetric re-
lation that holds in any context) over sequents induces the structural rule
exchange, where the exchange rule allows any two formulae inside a sequent
to exchange position. The unit I is an elegant way of handling empty sequents.
Also, due to associativity, brackets can be omitted in sequents.

(Γ,∆) , E ≡ Γ, (∆, E) Γ,∆ ≡ ∆,Γ Γ, I ≡ Γ

Γ ≡ Γ if Γ ≡ ∆ then ∆ ≡ Γ if Γ ≡ ∆ and ∆ ≡ E, then Γ ≡ E

if Γ ≡ ∆ then Γ, E ≡ ∆, E if Γ ≡ ∆ then E,Γ ≡ E,∆

Premises and conclusions of rules are considered modulo the structural
congruence over sequents. Three forms of rules are used to define MALL:
axioms with no premise and one conclusion that always holds; and rules
with either one or two premises, where the conclusion holds only if all of the
premises hold. The forms of rules are expressed below.

if Γ ≡ Γ′ and ∆ ≡ ∆′ and E ≡ E′ and
` Γ ` ∆

` E
, then

` Γ′ ` ∆′

` E′

if Γ ≡ Γ′ and ∆ ≡ ∆′ and
` Γ

` ∆
, then

` Γ′

` ∆′

if Γ ≡ ∆ and ` Γ
then ` ∆

We are deliberately putting more emphasis than normal on the structural
rule of exchange, since harnessing this structural rule is central to the
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development of non-commutative logic in the forthcoming sections of this
paper. Just removing exchange is insufficient to achieve a consistent non-
commutative logical system. Removing the distinction between the object
level and meta level syntax have been found to be critical [50] for the study of
non-commutative operators in a proof calculus. For ease of comparison with
the following sections a structural congruence style explanation of exchange
is presented, rather than simply stating, as in the presentation by Girard [17],
that exchange permutes all propositions in a sequent.

The object level propositions. Propositions are formed from units,
atoms, negative atoms and binary operators. There is one unit written I.
The grammar for propositions is defined as follows.

T ::= I | a | a | T ⊗ T | T ‖ T | T ⊕ T | T & T

The atoms of the calculus are drawn from some set of atomic propositions and
can either be positive a or negative a. The remaining syntactic constructs
can be divided into multiplicative and additive constructs, hence the name
multiplicative additive linear logic. The multiplicatives are the unit I, times
⊗ and par ‖. The additives are plus ⊕ and with &.

Derived concepts of negation and implication. Notice that in the
syntax of propositions, only atoms are negated or complemented, using an
overline. Negation is extended to all propositions by the following function
that transforms a proposition into the complementary proposition in negation
normal form, where negation applies only to atoms as permitted by the
syntax.

a = a I = I (T ⊗ U) = T ‖ U (T ‖ U) = T ⊗ U

(T ⊕ U) = T & U (T & U) = T ⊕ U

The above functions state that ⊗ and ‖ are de Morgan dual to each other,
as are ⊕ and &; similarly to the de Morgan duality between and and or in
classical logic. Similarly to classical logic, where classical implication T ⇒ U
is defined as not T or U , linear implication, written V (W , is defined as
V ‖W .
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Rules for MALL. The propositions of the calculus are characterised by
their deductive rules in Fig. 1.

The rules for multiplicative conjunction, times ⊗, and additive conjunc-
tion, with &, are equivalent in a classical setting, where the structural rules
of weakening and contraction are permitted. By using the structural rule
of weakening, that allows propositions in a sequent to be forgotten, A⊗B
implies A&B would be provable. By using the structural rule of contraction,
that allows propositions in a sequent to be duplicated, A&B implies A⊗B
would be provable. However, neither weakening nor contraction are present
in MALL, hence neither of the above two implications hold in general. Hence
multiplicative and additive conjunction are distinguished operators.

The with rule for additive conjunction A&B suggest that both A and
B must hold the same given context. An additive disjunction A ⊕ B has
a dual meaning where A or B must hold in the given context. Additive
conjunction and disjunction define greatest lower bounds and least upper
bounds respectively, in the lattice of propositions ordered by implication.

The intuition behind the multiplicative connectives is best understood in
terms of resources and interaction. Both multiplicative conjunction (times ⊗)
and multiplicative disjunction (par ‖) indicate the partitioning of resources.
The difference is that par permits interaction between atoms on either side
of the operator, while times forbids interaction. The interactions are enacted
by the atomic interaction rule where a positive and negative atom may
cancel each other out. The atomic interaction rule has a more general form
than normal that permits any preorder over atoms to be defined, where a
preorder is a reflexive transitive relation. This enables what we will call
subsorting over atoms, that we introduce due to applications of this work to
subtyping [15, 11].

Considering propositions in a sequent as resources, the rules that par-
tition resources are the times rule and the mix rule. The mix rule allows
propositions in a sequent to be partitioned in any way, whereas the times rule
ensures that the partition is chosen such that the two propositions separated
by the multiplicative conjunction remain separate. The presence of the mix
rule simplifies the calculus since there is only one self-dual multiplicative unit
I [17], that we call simply unit. Elsewhere in the literature, presentations of
MALL without the mix rule have two distinct multiplicative units, but most
models of linear logic identify these units [2].
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unit
` I

` a ≤ b
atomic interaction

` a ‖ b

` Γ, T ` ∆, U
times

` Γ,∆, T ⊗ U

` Γ, T, U
par

` Γ, T ‖ U
` Γ ` ∆

mix
` Γ,∆

` Γ, T ` Γ, U
with

` Γ, T & U

` Γ, T
left

` Γ, T ⊕ U

` Γ, U
right

` Γ, T ⊕ U

Figure 1: The deductive rules of MALL, where Γ 6≡ I and ∆ 6≡ I in the rule
mix. In atomic interaction, ` a ≤ b is a conclusion for any deductive system
defined such that ≤ is a preorder over atoms.

The proof theory. A proof in the sequent calculus is a tree of rules
such that all leaves of the proof tree are axioms. Proofs in MALL enjoy a
cut elimination result, which means that any proof established using the
following cut rule can also be established without the cut rule.

` Γ, U ` U,∆
cut

` Γ,∆

In proof theory, a rule that can be added to a proof system without changing
the propositions that are provable are called admissible. Thus the following
result is a special case of Girard’s cut elimination proof for linear logic [17],
elaborated in several other references [38, 18].

Theorem 1 The cut rule is admissible for MALL. Specifically, if there is a
proof a proposition T using the rules of MALL and cut, then we can construct
a proof of the proposition T using only the rules of MALL.

The proof is constructive since the proof is an algorithm that transforms one
proof into another proof. The cut elimination result can be regarded as a
transitivity property of linear implication in MALL, since a corollary is that:
if ` T ( U and ` U ( V hold, then ` T ( V holds.

Several standard properties of MALL will be employed in this work.
Firstly, the following result follows from a straightforward induction and
establishes the reflexivity of implication.
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Proposition 1 For any proposition T , ` T , T holds. Consequently, the
following axiom is admissible in MALL.

interaction
` T , T

Define a MALL context to be a context with one hole { · } constructed
from the following grammar, where � ∈ {⊗, ‖,⊕,&} and T is any proposition
of MALL.

C{ } ::= { · } | T � C{ } | C{ } � T
Note that negation is not part of the syntax of MALL, except over atoms,
so cannot appear in the context. The absence of negation in contexts is
to ensure that contexts preserve the direction of implication. Thereby, the
following proposition follows by straightforward induction.

Proposition 2 If ` T ( U holds then, for any MALL context C{ }, it
holds that ` C{ T }( C{ U }.

We also know that the fragment MALL is decidable, by the following
result due to Lincoln et al. [33].

Theorem 2 The problem of searching for a proof of a proposition in MALL
is PSPACE-complete.

The above result in the original paper by Lincoln et al. was for MALL without
the mix rule or subsorting for atoms. However, neither the inclusion of the
mix rule nor subsorting of atoms affect the proof of the above proposition,
as long as the decision problem for subsorting of atoms is in PSPACE. Thus
MALL is of the same complexity as intuitionistic propositional logic [43],
relational algebra [51], and the canonical PSPACE-complete problem QBF,
hence there exist mutual polynomial time encodings.

In anticipation of results later in the paper, we establish the following
lemma.

Lemma 1 The following propositions hold in MALL, assuming ` a ≤ b.

` I( a ‖ b ` T ⊗ (U ‖ V )( (T ⊗ U) ‖ V

` I( I & I ` T ( T ⊕ U ` U ( T ⊕ U

` (T ‖ U) & (T ‖ V )( T ‖ (U & V )

`
(
P ⊕Q

)
⊗
(
R⊕ S

)
‖ (P ‖ R) & (Q ‖ S)
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Proof: Assuming ` a ≤ b holds in the subsorting system, the following
proofs hold.

` a ≤ b

` a ‖ b

` I( a ‖ b

` I ` I

` I & I

` I( I & I

By using the interaction axiom and the rules of MALL the following
proofs can be constructed.

` T , T

` U,U ` V , V

`
(
U ⊗ V

)
, U, V

` T ,
(
U ⊗ V

)
, (T ⊗ U) , V

` T ⊗ (U ‖ V )( (T ⊗ U) ‖ V

` T , T

` T , T ⊕ U

` T ( T ⊕ U

` U,U

` U, T ⊕ U

` U ( T ⊕ U

` T , T ` U,U

` T ⊗ U, T, U

`
(
T ⊗ U

)
⊕
(
T ⊗ V

)
, T, U

` T , T ` V , V

` T ⊗ V , T, V

`
(
T ⊗ U

)
⊕
(
T ⊗ V

)
, T, V

`
(
T ⊗ U

)
⊕
(
T ⊗ V

)
, T, U & V

` (T ‖ U) & (T ‖ V )( T ‖ (U & V )

` P ‖ R, (P ‖ R)

` P ⊗
(
R⊕ S

)
, (P ‖ R)

`
(
P ⊕Q

)
⊗
(
R⊕ S

)
, (P ‖ R)

Q ‖ S, (Q ‖ S)

` Q⊗
(
R⊕ S

)
, (Q ‖ S)

`
(
P ⊕Q

)
⊗
(
R⊕ S

)
, (Q ‖ S)

`
(
P ⊕Q

)
⊗
(
R⊕ S

)
, (P ‖ R) & (Q ‖ S)

`
(
P ⊕Q

)
⊗
(
R⊕ S

)
‖ (P ‖ R) & (Q ‖ S)

By Proposition 1, the above proofs also hold in MALL. 2

The above lemma can be considered initially to be examples of proofs
in MALL. However, the above lemma will be used in Section 5, where MALL
is used as a reference to establish complexity results.
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3 Introducing the Non-commutative Operator

By introducing a non-commutative operator in MAV, a new proof theoretic
formalism is required, called the calculus of structures [20]. The calculus of
structures enables certain logical systems that can not be expressed in the
sequent calculus [50], to be treated proof theoretically.

A variety of logical systems, including the calculus BV, have been
studied in the calculus of structures. BV is a conservative extension of
multiplicative-only linear logic (with mix) extended with a self-dual non-
commutative operator called seq. In this work, we consider a conservative
extension of multiplicative-additive linear logic (with mix), as introduced in
Section 2, with the self-dual non-commutative operator seq.

When introducing the calculus of structures [20], Guglielmi makes the
following statements as one of his two major aims, further to the aim of a
deeper understanding of the non-commutative logic called pomset logic [39]

— a logic whose semantics is defined using generalised proof nets:

If one wants to extend pomset logic to more expressive logics,
then the sequent calculus usually is a better formalism than proof
nets, because it is more versatile, for example with exponentials
and additives.

Following the above stated aim, the versatility of the calculus of struc-
tures has been demonstrated by expressing the semantics of BV extended
with exponentials, called NEL — a system that enjoys a generalised cut
elimination result [49, 22], and is undecidable [46].

Straßburger [45] provides a proof of a generalised elimination result for
propositional linear logic, including the additives, directly in the calculus
of structures. Straßburger’s work heavily inspires the proof in this paper.
However, the presence of the non-commutative self-dual operator and also a
self-dual unit considerably complicate the proof in this work. This paper
is the first to explicitly and directly address a proof calculus where the
additives and self-dual non-commutative operator seq coexist, in a system
named multiplicative additive system virtual (MAV). MAV is an extension of
basic system virtual (BV) and multiplicative additive linear logic (MALL).

The syntax of MAV. The syntax of MAV is the syntax of MALL extended
with a non-commutative operator called seq. Seq was introduced in the
system BV. The following grammar defines the syntax of propositions in
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MAV.

T ::= I unit
| a positive atom
| a negative atom
| T ; T sequential composition (seq)
| T ‖ T parallel composition (par)
| T ⊗ T times
| T ⊕ T internal choice or plus
| T & T external choice or with

We clarify the notation to facilitate comparison with related work. We
use the notation ‖ for par where elsewhere the notion ` or square brackets
[ · , · ] is used. This is to draw an intuitive connection between par and
parallel composition operators in process calculi that permit interaction and
interleaving. We use overline a to denote negative atoms, where elsewhere
a⊥ is used. This is to drawn an intuitive connection between negated atoms
and output in process calculi. Also we prefer the semi-colon to the operator
/ or angular brackets 〈 · ; · 〉 due to the ubiquitous use of the semi-colon for
sequential composition. Work by Bruscoli [6] and forthcoming work by the
authors on weak complete distributed simulation put the process calculus
intuition on a precise foundation.

To reduce the number of brackets in propositions we assume an operator
precedence. We assume that the multiplicatives times ⊗, par ‖ and seq ;
bind more strongly than the additives plus ⊕ and with &.

The semantics of MAV. The semantics of MAV is defined by a term
rewriting system modulo an equational theory. The rewrite rules and equa-
tional theory are presented in Fig. 2. As standard for term rewriting, the
(bidirectional) equations can be applied at any point in a derivation, and
the (unidirectional) rules can be applied in any context, where a context
C{ } is any proposition with one hole { · } in which any proposition can be
plugged, as defined by the following grammar where � ∈ {;, ‖,⊗,⊕,&} and
T is any proposition.

C{ } ::= { · } | T � C{ } | C{ } � T

Thus we have the following implicit rule for applying any rule in any context.

C{ T } −→ C{ U } only if T −→ U context closure
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We also have the following congruence relation that serves a similar role
to the exchange rule in the sequent calculus. The main differences compared
to sequents is that exchange can occur deep within any context and can be
applied to par, seq and times structures, not only par structures.

(T ‖ U) ‖ V ≡ T ‖ (U ‖ V ) T ‖ U ≡ U ‖ V T ‖ I ≡ T

(T ⊗ U)⊗ V ≡ T ⊗ (U ⊗ V ) T ⊗ U ≡ U ⊗ V T ⊗ I ≡ T

(T ; U) ; V ≡ T ; (U ; V ) I ; T ≡ T T ; I ≡ T

Since equivalence is a congruence — a reflexive, transitive, symmetric relation
that holds in any context — we have the following standard assumptions.

T ≡ T if T ≡ U and U ≡ V , then T ≡ V

if T ≡ U then U ≡ T if T ≡ U then C{ T } ≡ C{ U }

The equational system ensures that (T, ;, I) is a monoid, and both (T, ‖, I)
and (T,⊗, I) are commutative monoids. To quotient propositions by the
equational theory defined above, the following congruence rule can always
be applied to any rule.

if V ≡ T and T −→ U and U ≡W , then V −→W congruence

The term rewriting system in Fig 2 defines the deductive rules of
multiplicative additive system virtual (MAV). We briefly explain the rewrite
rules.

• The atomic interaction rules enable a negative atom and positive atom
to annihilate each other, whenever the negated atom is a subsort of
the positive atom. The only assumptions are: firstly, to preserve
consistency, the subsorting system must define a preorder (a reflexive
transitive relation); secondly, to preserve the time complexity bound,
the complexity of determining whether one atom is a subsort of another
atom must be in PSPACE.

Permitting any preorder as a subsorting relation enables considerable
creativity. For example, in the companion paper for this work [11],
the authors define atoms such that they carry the type of message
exchanged in a protocol. For example, if sorts are regular expression
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I & I −→ I tidy a ‖ b −→ I only if ` a ≤ b atomic interaction

(T ⊗ U) ‖ V −→ T ⊗ (U ‖ V ) switch

(T ; U) ‖ (V ; W ) −→ (T ‖ V ) ; (U ‖W ) sequence

T ⊕ U −→ T left T ⊕ U −→ U right

(T & U) ‖ V −→ (T ‖ V ) & (U ‖ V ) external

(T ; U) & (V ; W ) −→ (T & V ) ; (U &W ) medial

Figure 2: Term rewriting system modulo an equational theory for MAV.

types for XML [27], the subsorting can be induced by a subtype system,
which defines a preorder hence preserves consistency but increases
time complexity since subtyping is EXPTIME-complete. In contrast,
when sorts are any partial order over finite types (without recursive
types) defined by a finite number of subtype inequalities [14], then the
complexity class is also preserved.

• The switch rule captures the essence of the rule for times in linear
logic. The rule focuses a parallel composition on where an interaction
takes place and forbids interaction elsewhere. A similar rule appears
in categorical models of linear logic [12].

• The sequence rule arises in the theory of pomsets [19]. The rules
also appears in concurrent Kleene algebras [23]. The rule strengthens
causal dependencies. If we consider two parallel propositions to be
two threads, then seq introduced a barrier across two parallel threads
where there is a certain point that both threads must have reached
before either thread can proceed.

• The left and right rules represent an internal choice where we, as
the prover or designer of a runtime, have control over the branch
to select. The external rule represents when we the prover cannot
determine which branch will be selected; hence must analyse both
possibilities as independent branches of the proof in parallel. The tidy
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rule simply acknowledges when two branches in an external choice
have both completed successfully.

We assume that following restrictions, to avoid rules that can be applied
infinitely. The most subtle case below is for the medial rule, which will be
explained when required in the proofs.

• The switch rule is such that T 6≡ I and V 6≡ I.

• The sequence rule is such that T 6≡ I and W 6≡ I.

• The external rule is such that V 6≡ I.

• The medial rule is such that: either P 6≡ I or R 6≡ I, and also either
Q 6≡ I or S 6≡ I.

Since rules can only be applied finitely, proof search is finite. Thereby, MAV
defines an analytic proof system, which is a system that behaves well for proof
search. The exact definition of an analytic proof system varies depending on
the proof calculus, but hinges on the rules being finitely generating. For a
discussion on analytic proof systems in the calculus of structures see [7].

We extend the complementation operator, overline, to all propositions
using the following function that transforms a proposition into its comple-
mentary proposition. The only new case compared to the complementation
operator for MALL in Section 2 is for the non-commutative operator seq.

a = a I = I (T ⊗ U) = T ‖ U (T ‖ U) = T ⊗ U

P ; Q = P ; Q (T ⊕ U) = T & U (T & U) = T ⊕ U

The above function transforms any proposition into a proposition in negation
normal form, where complementation applies only to atoms, as permitted
by the syntax of propositions. We deliberately do not include complemen-
tation for arbitrary propositions in the syntax for propositions, since the
contravariant nature of complementation complicates the rewriting system
without any gain in expressive power [20].

Proofs in MAV. In the calculus of structures a proof is a special derivation
that reduces to the unit, where the unit represents a successfully completed
proof. As a slight abuse of notation, −→ denotes its own reflexive and
transitive closure.
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Definition 1 A derivation T −→ U of length 0, holds only if T ≡ U . Given
a derivation P −→ Q of length n and a rule instance Q −→ R, P −→ R is
a derivation of length n+ 1.

If for any derivation T −→ I holds according to the term rewriting
system of MAV, then we write ` T , and say that T is provable.

As with MALL, complementation is used to define linear implication in
MAV, where T ( U is defined as T ‖ U . Since linear implication involves
complementation, linear implication is not part of the syntax of propositions
but is a derived concept. The consistency of MAV can be seen as establishing
that the relation defined by all provable linear implications is a preorder, i.e.
a reflexive transitive closed relation.

Reflexivity. Reflexivity of linear implication can be established straight-
forwardly. Since T ( T is defined as T ‖ T , the following proposition is
simply a reflexivity property of linear implication in MAV.

Proposition 3 (Reflexivity) For any proposition T , ` T ‖ T holds.

Proof: The proof proceeds by induction on the structure of T .

The base cases for any atom a follows immediately from the atomic
interaction rule. Since subsorting over atoms is reflexive, ` a ‖ a. The base
case for the unit is immediate by definition of a proof.

For the induction hypothesis assume that ` T ‖ T and ` U ‖ U .
Thereby, the following cases hold.

Consider when the root connective in the proposition is the times
operator. The following proof holds, by switch and the induction hypothesis.

(T ⊗ U) ‖ (T ⊗ U) = T ‖ U ‖ (T ⊗ U) −→
(
T ‖ T

)
⊗
(
U ‖ U

)
−→ I

The case when the root connective is the par operator is symmetric to the
above.

Consider when the root connective in the proposition is the seq operator.
The following proof holds, by the sequence rule and the induction hypothesis.

(T ; U) ‖ (T ; U) =
(
T ; U

)
‖ (T ; U) −→

(
T ‖ T

)
;
(
U ‖ U

)
−→ I

Consider when the root connective in the proposition is &, the external
choice operator. By induction, external, left, right, and tidy, the following
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proof holds.

(T & U) ‖ (T & U) =
(
T ⊕ U

)
‖ (T & U)

−→
(
T ⊕ U

)
‖ T &

(
T ⊕ U

)
‖ U

−→ T ‖ T & U ‖ U
−→ I & I −→ I

The case for when internal choice, ⊕, is the root connective is symmetric to
the case for external choice.

This completes the case analysis. Therefore, by induction on the size of
the negated proposition, the proposition holds. 2

Cut elimination. The main result of this paper is the key result required
to establish that linear implication is a transitive relation. The following
result is a generalisation of a consistency result called cut elimination that
appears commonly in proof theory.

Theorem 3 (Cut elimination) For any proposition T , if ` C
{
T ⊗ T

}
,

then ` C{ I }.

The above theorem can be stated alternatively by supposing that there is a
proof in MAV that also uses the extra rule:

I −→ T ⊗ T (co-interact)

Given such a proof, a new proof can be constructed that uses only the rules
of MAV. In this case, we say that the rule co-interact is admissible.

The proof of Theorem 3 involves a technique known as splitting in-
troduced in [20]. The following section proves the necessary lemmata to
establish the above theorem.

Before proceeding with lemmata, we provide a corollary that demon-
strates that a consequence of cut elimination is indeed that linear implication
defines a preorder. A stronger statement is proven: since implication is
preserved in any context, it is a precongruence.

Corollary 1 Linear implication is a precongruence — a reflexive transitive
relation that holds in any context.

Proof: For reflexivity, T ( T holds immediately by Proposition 3.
For transitivity, suppose that T ( U and U ( V hold. Thereby the

following proof can be constructed.(
T ‖

(
U ⊗ U

)
‖ V
)
−→

(
T ‖ U

)
⊗
(
U ‖ V

)
−→ I
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Hence, by Theorem 3, ` T ‖ V as required.
For contextual closure, assume that T ( U holds. By Proposition 3,

and switch we can construct the following proof.

C{ T } ‖ C
{ (

T ⊗ T
)
‖ U

}
−→ C{ T } ‖ C

{
T ⊗

(
T ‖ U

) }
−→ C{ T } ‖ C{ T } −→ I

Hence by Theorem 3, ` C{ T } ‖ C{ U } as required. 2

Disussion on the medial rule. Most rules of the calculus are either
lifted directly from BV or directly from a system for MALL in the calculus
of structures, such as LS [44]. The exception is the medial rule.

(P ; Q) & (R ; S) −→ (P &R) ; (Q& S) medial

To consider a situation where this medial rule is necessary consider the
following example propositions, with atoms a to j.

Q ,
(
a ;
(
b ; c& d ; e

))
‖
(
f ;
(
g ; h& i ; j

))
R , (a ; (b⊕ d) ; (c⊕ e))⊗ (f ; (g ⊕ i) ; (h⊕ j))
S , ((a ; (b⊕ d))⊗ (f ; (g ⊕ i))) ; ((c⊕ e)⊗ (h⊕ j))

Now notice that, without the medial rule the following implications are
provable: ` Q( R and ` R( S. Therefore, for a system satisfying cut
elimination and hence with a transitive implication, we would expect that
` Q ( S holds. However, if we exclude the medial rule from MAV then
` Q( S does not hold.

If we include the medial rules in MAV, then we can establish the
following proof of ` Q( S, where firstly the medial rule is applied twice
inside Q, secondly the sequence rule is applied twice, and finally reflexivity
of implication is applied twice.

Q ‖ S −→
(
a ;
(
b& d

)
; (c& e)

)
‖
(
f ;
((
g & i

)
;
(
h& j

)))
‖ (((a ; (b⊕ d))⊗ (f ; (g ⊕ i))) ; ((c⊕ e)⊗ (h⊕ j)))

−→
((
a ;
(
b& d

))
‖
(
f ;
(
g & i

))
‖ ((a ; (b⊕ d))⊗ (f ; (g ⊕ i)))

)
;(

(c& e) ‖
(
h& j

)
‖ ((c⊕ e)⊗ (h⊕ j))

)
−→ I

Thus the medial rule is sufficient to achieve transitivity of implication in
this case. The fact that it is sufficient in all cases is of course established by
the main cut elimination result of this paper.
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4 Splitting, Context Reduction and Elimination

Proofs of generalised cut elimination results in the calculus of structures can
be achieved through several means. Several approaches were investigated in
obtaining the current proofs presented. Before proceeding further we briefly
explain why the current approach has been adopted.

For classical propositional logic, a graphical normalisation approach,
called atomic flows [21], has been developed. Atomic flows are graphs that
track the contraction and interaction of atoms in proofs. Unfortunately,
atomic flows have not yet been successfully adapted to logics based on linear
logic, such as MALL. This is likely to be because current work on atomic
flows relies on an interplay between interaction and contraction that cannot
be exploited when, as in linear logic, contraction applies only to the additives
while interaction applies only to the multiplicatives. However, we suspect
that further insight into cut elimination can be gleaned from adapting atomic
flows. The hint that such an approach may be possible is that the medial
rule that mysteriously appears in MAV, arises naturally when contraction is
reduced to an atomic form [44].

Another approach, used for the non-commutative exponential system
NEL [49] is to apply a technique called decomposition that decomposes a
proof into normal forms where rules are applied in a certain order. The
decomposition result for NEL is complex. The proof requires a vast case
analysis and a complex termination measure. Part of the difficulty with
decomposition is that it is related to results in proof theory that are known
to be difficult, such as interpolation [36]. Thus proving a decomposition
result in order to prove cut elimination is likely to be tackling a harder result
than necessary.

Thus our approach proceeds by proving the splitting lemma more
directly [22], without a decomposition result. However, the decomposition
technique influences the approach in this work, since the splitting proof
handles operators in a specific order — firstly the with operator is treated,
secondly the multiplicatives are treated simultaneously, finally the plus
operator and atoms are handled. This suggests that there is probably also a
proof using the decomposition technique.

The main challenge in this section is devising a termination measure
that handles a key case where the associativity of seq and the one-way
distributivity of with over seq interact badly.
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4.1 Branching and Splitting

The reason that proofs in MAV are more complex than BV, which is NP-
complete [30], is the presence of the with operator &. The presence of with
operators can result in an exponential number of independent branches
to fully explore during proof search. However, in MALL, each independent
branch of a proof is polynomial in the size of the syntax tree of the proposition
proven. This is the basis of the argument that MALL is in PSPACE, as
expressed in Theorem 2. A similar argument applies to the system MAV, as
applied in Section 5.

The trick to control the complexity of normalisation is to hide indepen-
dent branches of a proof. To illustrate the technique, we provide an example
of a derivation before proving the lemma in general. Consider the following
annotated derivation, assuming the following subsorting over atoms: ` a ≤ c,
` b ≤ c, ` a ≤ d, ` b ≤ d.

(
a& b

)
‖ (c& (d⊕ e)) −→

(
a& b

)
‖ (c& d)

−→
((
a& b

)
‖ c
)

&
((
a& b

)
‖ d
)

−→
(

(a ‖ c) &
(
b ‖ c

))
&
((
a& b

)
‖ d
)

−→
(

I&
(
b ‖ c

))
&
((
a& b

)
‖ d
)

−→
(
I& I

)
&
((
a& b

)
‖ d
)

−→ I &
((
a& b

)
‖ d
)

−→ I &

(
(a ‖ d) &

(
b ‖ d

))
−→ I &

(
I&

(
b ‖ d

))
−→ I &

(
I& I

)
−→ I & I −→ I

In the above derivation, one of the with operators is highlighted in bold &
and the term to the right of the operator is underscored. This indicates
that we aim to hide the right branch of that operator, leaving only the
part of the proposition not underlined, as performed by a function ` over
propositions. The function ` is defined as follows, where � ∈ {;, ‖,⊗,⊕,&}
is any (non-bold) binary connective and k ∈ {a, a, I} is any atom or constant
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proposition.

` (T & U) = T ` (T � U) = `(T )� `(U) `(k) = k

By applying the function ` to the propositions at each step in the above
proof and by removing steps that become redundant, we obtain the following
valid proof.

a ‖ (c& (d⊕ e)) −→ a ‖ (c& d)
−→ (a ‖ c) & (a ‖ d)
−→ I & (a ‖ d)
−→ I & I −→ I

Notice in the example derivation above that there are two with operators
initially, indicated by & and &, where we do not want to delete the right
branch of the later. Also notice that, in the course of a derivation the
bold external choice or with is duplicated by the external rule acting over a
non-bold with operator, hence there may be multiple bold occurrences of
with in a proposition.

By generalising the above observations, the following lemma is obtained.
The lemma states that we can split a proof involving the with operator &
into two proofs.

Lemma 2 (Branching) If ` C{ T & U } then both ` C{ T } and ` C{ U }.

Proof: The proof works by constructing two proofs such that the respective
left and right formula of the with connective are removed. To do so, we
remove deductive rules that either involve the with connective concerned, or
appear inside the branch to be removed. We provide only the case where
the left branch is selected, the other case is symmetric.

The induction hypothesis is that if T has a proof of length n, then we
can construct a proof of `(T ). The base case is when `(T ) = T (e.g. when
T = I), in which case we are done. The inductive cases are listed below.

Consider when the bottommost rule of a proof involves a bold with as
follows:

C{ T &D{ U } } −→ C{ T &D{ V } }

where C{ T &D{ V } } has a proof of length n. Hence, by the induction hy-
pothesis, ` ` (C{ T &D{ V } }) holds. Furthermore, ` (C{ T &D{ V } }) =
` (C{ T &D{ U } }). Hence ` ` (C{ T &D{ U } }) holds, as required.
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Consider when the bottommost rule of a proof involves a bold with as
follows:

C{ (T & U) ‖ V } −→ C{ (T ‖ V ) & (U ‖ V ) }

where C{ (T ‖ V ) & (U ‖ V ) } has a proof of length n. By the induc-
tion hypothesis, ` ` (C{ (T ‖ V ) & (U ‖ V ) }) holds. Furthermore, it is
clear that ` (C{ (T ‖ V ) & (U ‖ V ) }) = ` (C{ (T & U) ‖ V }). Thereby
` ` (C{ (T & U) ‖ V }) holds, as required.

Consider when the bottommost rule of a proof involves a bold with
operator as follows:

C{ (T ; U) & (V ; W ) } −→ C{ (T & V ) ; (U &W ) }

where C{ (T & V ) ; (U &W ) } has a proof of length n. By the induction
hypothesis, ` ` (C{ (T & V ) ; (U &W ) }) holds. Furthermore, it is clear
that ` (C{ (T & V ) ; (U &W ) }) = ` (C{ (T ; U) & (V ; W ) }). Thereby
` ` (C{ (T ; U) & (V ; W ) }) holds, as required.

Consider the case where C{ I & I } −→ C{ I }, where ` C{ I } has a proof
of length n. By the induction hypothesis, ` ` (` C{ I }) holds. Furthermore
` (C{ I & I }) = ` (C{ I }); hence ` ` (C{ I & I }) as required.

In all other cases, C{ T } −→ C{ U }, by any rule, such that C{ T }
has a proof of length n and also ` (C{ T }) 6≡ ` (C{ U }). By induction,
` ` (C{ U }) holds. Therefore, by applying the same rule, we can obtain a
proof of ` (U).

All cases are exhausted, thereby if ` T holds then ` `(T ) for any length
of proof. Whence, by assuming that C{ T & U } holds, we can construct
a proof of ` (C{ T & U }) = C{ T }. A symmetric argument using a right
projection on the bold with operator constructs a proof of C{ U }. 2

Killing contexts. To handle branching caused by the with operator,
all independent branches of a proof must be tracked until they are all
completed. To track independent branches of a proof search, similarly to
Straßburger [45, 9], we require the following notion of a killing context.

Definition 2 An n-ary killing context T { } is a context with n holes such
that:

• if n = 1, then T { } = { · } where { · } is a hole into which any
proposition can be plugged;
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• if m ≥ 1 and n ≥ 1, then if T 0{ } is a m-ary killing context and
T 1{ } is an n-ary killing context, then T 0{ }&T 1{ } is a (m+n)-ary
killing context.

Killing contexts have several nice properties. Firstly, if you fill all holes
with the unit, then the resulting proposition is provable. Secondly, killing
contexts distribute over parallel composition, as expressed in the following
lemma.

Lemma 3 For any killing context T { }, ` T { I, . . . , I } and the following
derivation holds.

T ‖ T { U1, U2, . . . Un } −→ T { T ‖ U1, T ‖ U2, . . . T ‖ Un }

Proof: The proofs follow by straightforward inductions over the structure
of a killing context.

There are two base cases. When the killing context is the top only
T ‖ > −→ > and > −→ I, as required. When the killing context is one hole
only T ‖ { U } = { T ‖ U } and { I } = I, as required. Now assume that by
the induction hypothesis the following hold for killing contexts T 1{ } and
T 2{ }, and also ` T 1{ I, . . . , I } and ` T 2{ I, . . . , I }.

T ‖ T 1{ U1, . . . , Um } −→ T 1{ T ‖ U1, . . . , T ‖ Um }
T ‖ T 2{ Um+1, . . . , Um+n } −→ T 2{ T ‖ Um+1, . . . , T ‖ Um+n }

Hence, by distributivity the following derivation can be constructed.

T ‖
(
T 1{ U1, . . . , Um }& T 2{ Um+1, . . . , Um+n }

)
−→ T ‖ T 1{ U1, . . . , Um }& T ‖ T 2{ Um+1, . . . , Um+n }
−→ T 1{ T ‖ U1, . . . , T ‖ Um }& T 2{ T ‖ Um+1, . . . , T ‖ Um+n }

Furthermore, T 1{ I, . . . , I }& T 2{ I, . . . , I } −→ I & I −→ I holds. 2

For readability of large formulae involving an n-ary killing context,
T { } and family of n propositions U1, U2, . . . , Un, we introduce the shortcut
notion. T { Ui : 1 ≤ i ≤ n } is a shortcut for T { U1, U2, . . . , Un }. In special
cases, we also use the notation T { Ui : i ∈ I } where I is a finite subset of
natural numbers indexing Ui.

The following lemma is used for the most troublesome case in the
splitting lemma. It is critical for coping with the sequential operator in
the precence of the additives — the only case of the splitting lemma that
demands the medial rule. The case analysis considers carefully the restiction
on the medial rule, by using the obseration that (P ; I)&(Q ; I) ≡ (P &Q) ; I

and hence the medial rule is not required in such cases.
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Lemma 4 Assume that I is a finite subset of natural numbers, Pi and Qi

are propositions, for i ∈ I, and T { } is an n-ary killing context. There exist
killing contexts T 0{ } and T 1{ } and sets of natural numbers J ⊆ I and
K ⊆ I such that the following derivation holds.

T { Pi ; Qi : i ∈ I } −→ T 0{ Pj : j ∈ J } ; T 1{ Qk : k ∈ K }

Proof: Proceed by induction on the structure of the killing context.
For the base, case consider the killing context consisting of one hole, hence
{P ; Q} = {P} ; {Q}, as required.

Now consider the case for a (m+ n)-ary killing context defined as
follows.

T 0{ Pi ; Qi : i ∈ I0 }& T 1{ Pi ; Qi : i ∈ I1 }

There are three cases to consider. If Pi ≡ I, for all i ∈ I0 ∪ I1, then the
following equivalence holds.

T 0{ Pi ; Qi : i ∈ I0 }& T 1{ Pi ; Qi : i ∈ I1 }
≡ I ; T 0{ Qi : i ∈ I0 }& T 1{ Qi : i ∈ I1 }

Similarly, if Qi ≡ I for all i ∈ I0 ∪ I1, then the following equivalence holds.

T 0{ Pi ; Qi : i ∈ I0 }& T 1{ Pi ; Qi : i ∈ I1 }
≡ T 0{ Pi : i ∈ I0 }& T 1{ Pi : i ∈ I1 } ; I

Otherwise, by induction we have the following derivations where J0 ⊆ I0,
K0 ⊆ I0, J1 ⊆ I1 and K1 ⊆ I1.

T 0{ Pi ; Qi : i ∈ I0 } −→ T 0
0 { Pj : j ∈ J0 } ; T 0

1 { Qk : k ∈ K0 }

T 1{ Pi ; Qi : i ∈ I1 } −→ T 1
0 { Pj : j ∈ J1 } ; T 1

1 { Qk : k ∈ K1 }

Hence by the medial rule the following derivation can be constructed as
required, since either T 0

0 { Pj : j ∈ J0 } 6≡ I or T 1
0 { Pj : j ∈ J1 } 6≡ I and also

either T 0
1 { Qk : k ∈ K0 } 6≡ I or T 1

1 { Qk : k ∈ K1 } 6≡ I.

T 0{ Pi ; Qi : i ∈ I0 }& T 1{ Pi ; Qi : i ∈ I1 }
−→

(
T 0
0 { Pj : j ∈ J0 } ; T 0

1 { Qk : k ∈ K0 }
)

&(
T 1
0 { Pj : j ∈ J1 } ; T 1

1 { Qk : k ∈ K1 }
)

−→
(
T 0
0 { Pj : j ∈ J0 }& T 1

0 { Pj : j ∈ J1 }
)

;(
T 0
1 { Qk : k ∈ K0 }& T 1

1 { Qk : k ∈ K1 }
)

Notice that T 0
0 { }& T 1

0 { } and T 0
1 { }& T 1

1 { } are two killing contexts
and J0 ∪ J1 ⊆ I0 ∪ I1 and K0 ∪K1 ⊆ I0 ∪ I1 as required. 2
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The size of a proof. As an induction measure in the splitting lemma, we
will require a measure of the size of a proof. To define the size of a proof we
require the following definition of the size of a proposition. The size of the
proposition is defined using multisets of multisets of natural numbers with
a particular ordering. Multiset orderings are an established technique for
proving the termination of procedures [13].

The multiset of multisets employed here is more complex than the
multiset ordering for LS [46] (a formulation of MALL in the calculus of
structures), due to subtle interaction problems between the unit, seq and
with operators. In particular, applying the structural rules I ; P ≡ P ≡ P ; I

and the medial gives rise to the following rewrite.

C{ P &Q } ≡ C{ (P ; I) & (I ; Q) } → C{ (P & I) ; (I &Q) }

In the above derivation, the units cannot in general be removed from the
proposition on the right hand side; hence extra care should be taken that
these units do not increase the size of the proposition. This observation
leads us to the notion of multisets of multisets of natural numbers defined
below.

A multiset of natural numbers is a set of natural numbers where numbers
may occur more than once. To define the multiset ordering, we require the
standard multiset (disjoint) union operator ∪ and a multiset sum operator
defined such that M +N = {m+ n : m ∈M and n ∈ N}.

We also define the following two operators over multisets of multisets
of natural numbers. If M and N are multisets of multisets, then we define
pointwise plus and pointwise union as follows.

M�N = {M +N,M ∈M and N ∈ N}
MtN = {M ∪N,M ∈M and N ∈ N}

The following function defines the multiset of multisets representing the
size of a proposition.

|I| = {{0}} |a| = |a| = {{1}}

|P ‖ Q| = |P |� |Q| |P &Q| = |P ⊕Q| = |P | t |Q|

|P ⊗Q| = |P ; Q| =


|P | if Q ≡ I

|Q| if P ≡ I

|P | ∪ |Q| otherwise
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Over multisets of natural numbers, we define a multiset ordering M ≤ N
defined if and only if there exists an injective multiset function f : M → N
such that, for all m ∈ M , m ≤ f(m). Strict multiset ordering M < N is
defined such that M ≤ N but M 6= N .

We now define a different multiset order over multisets of multisets of
natural numbers. Given two multisets of multisetsM and N ,M @ N holds
if and only if M can be obtained from N by repeatedly removing at least
one multiset N from N and replacing N with zero or more multisets Mi

such that Mi < N . Mv N is defined when M @ N or M = N .
Most of the following properties, required in proofs, are standard for mul-

tisets. The properties concerning multisets of multisets of natural numbers
are treated more carefully.

Lemma 5 The following properties hold for multisets of natural numbers
K, M and N and multisets of multisets of natural numbers K, M and N .

M +N = N +M (K +M) +N = K + (M +N)

M ∪N = N ∪M (K ∪M) ∪N = K ∪ (M ∪N)

K + (M ∪N) = (K +M) ∪ (K +N)

M + {0} = M M < M ∪N M < M + {1} {0} ≤M

if {{0}} @M and {{0}} @ N then M∪N @M�N

K t (M∪N ) = (K tM) ∪ (K tN )

K � (MtN ) = (K �M) t (K �N )

K � (M∪N ) = (K �M) ∪ (K �N )

Furthermore, ≤ and v are a precongruences.

Proof: Most properties are standard for multisets. We provide only
proofs for the final four properties, which involve interactions between the
two distinct multiset orderings.

Firstly, assume that {{0}} @M and {{0}} @ N . Hence either {{1}} v
M or {{0, 0}} v M and also either {{1}} v N or {{0, 0}} v N . For any
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M ∈M and N ∈ N , we have that

M ∈M∪N and N ∈M∪N

and also
M +N ∈M�N

Now, there are four cases to consider. If {0, 0} ≤ M then N < N ∪ N =
{0, 0} + N ≤ M + N ; and similarly if {0, 0} ≤ N then M < M + N .
If {1} ≤ M then N < {1} + N ≤ M + N ; and similarly if {1} ≤ N
then M < M + N . In all cases M < M + N and N < M + N . Hence
M∪N @M�N .

Secondly, consider every M ∈ M, N ∈ N , K ∈ K, in which case the
following hold.

M ∪K ∈ (MtK) ∪ (N tK) and N ∪K ∈ (MtK) ∪ (N tK)

and also

M ∪K ∈ (M∪N ) t K and N ∪K ∈ (M∪N ) t K

Hence (MtK) ∪ (N tK) = (M∪N ) t K.

Thirdly, consider distributivity of � over t. In this case the following
resoning holds, as required.

(M�K) t (N �K) = {(M +K) ∪ (N +K) : M ∈M, N ∈ N ,K ∈ K}
= {(M ∪N) +K : M ∈M, N ∈ N ,K ∈ K}
= (MtN )�K

Fourthly, consider when M ∈M, N ∈ N and K ∈ K. In this case the
following holds

M +K ∈ K � (M∪N ) and N +K ∈ K � (M∪N )

and also

M +K ∈ (K �M) ∪ (K �N ) and N +K ∈ (K �M) ∪ (K �N )

Therefore K � (M∪N ) = (K �M) ∪ (K �N ). 2

The key property of multisets is the distributivity of + over ∪, from
which we can establish |(P &Q) ‖ R| = |(P ‖ R) & (Q ‖ R)|. Thus, although
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the abstract syntax tree grows when the external rule is applied, the multiset
defined size of the proposition remains bounded by the size of the conclusion.
The following four lemmas formalise the property of rewrite rules that
rewriting reduces the size of the proposition, where Lemma 7 and Lemma 8
emphasise the strict multiset inequality in these cases.

Lemma 6 If P ≡ Q then |P | = |Q|.

Proof: Consider the cases for the unit hold by the following reasoning,
using Lemma 5.

|P ‖ I| = |P |� {{0}} = |P |

|I ; P | = |P ; I| = |P ⊗ I| = |P |

For commutativity the following arguments hold for par and times
respectively.

|P ‖ Q| = |P |� |Q| = {M +N : M ∈ |P | , N ∈ |Q|}
= {N +M : M ∈ |P | , N ∈ |Q|} = |Q|� |P | = |P ‖ Q|

|P ⊗Q| = |P | ∪ |Q| = |Q| ∪ |P | = |Q⊗ P |

Associativity properties hold by extending associativity of multisets to
multisets of multisets.

|(P ‖ Q) ‖ R| = (|P |� |Q|)� |R|
= {(M +N) +K : M ∈ |P | , N ∈ |Q| ,K ∈ |R|}
= {M + (N +K) : M ∈ |P | , N ∈ |Q| ,K ∈ |R|}
= |P |� (|Q|� |R|) = |P ‖ (Q ‖ R)|

If any one of P ≡ I, Q ≡ I or R ≡ I hold, then |(P ; Q) ; R| = |P ; (Q ; R)|
by definition. If P 6≡ I and Q 6≡ I and R 6≡ I, then the following equalities
hold.

|(P ; Q) ; R| = (|P | ∪ |Q|) ∪ |R| = |P | ∪ (|Q| ∪ |R|) = |P ; (Q ; R)|

The same associativity argument works for the times operator. 2

Lemma 7 Assuming that P 6≡ I and R 6≡ I, the following strict multiset
inequality holds.

|C{ P ⊗ (Q ‖ R) }| @ |C{ (P ⊗Q) ‖ R }|
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Proof: If Q 6≡ I, then, since R 6≡ I we have {{0}} @ |R| and hence
|P | = |P |�{{0}} @ |P |� |R|; and therefore the following holds by Lemma 5.

|P ⊗ (Q ‖ R)| = |P | ∪ (|Q|� |R|)
@ (|P |� |R|) ∪ (|Q|� |R|)
= (|P | ∪ |Q|)� |R| = |(P ⊗Q) ‖ R|

If Q ≡ I then, since {{0}} @ |P | and {{0}} @ |R|, the following holds by
Lemma 5 and Lemma 6.

|P ⊗ (I ‖ R)| = |P | ∪ |R| @ |P |� |R| = |(P ⊗ I) ‖ R|

2

Lemma 8 Assuming that Q 6≡ I and R 6≡ I the following strict multiset
inequality holds.

|C{ (P ‖ R) ; (Q ‖ S) }| @ C{ (P ; Q) ‖ (R ; S) }

Proof: If Q 6≡ I and R 6≡ I, then the following holds by Lemma 5.

|(P ‖ R) ; (Q ‖ S)| = (|P |� |R|) ∪ (|Q|� |S|)
@ (|P |� |R|) ∪ (|Q|� |S|) ∪ (|P |� |S|) ∪ (|Q|� |R|)
= (|P | ∪ |Q|)� (|R| ∪ |S|) = |(P ; Q)� (R ‖ S)|

If Q ≡ I and R 6≡ I, then, since {{0}} @ |R|, and hence |S| = |S|� {{0}} @
|S|� |R|, therefore by Lemma 5 and Lemma 6 the following strict inequality
holds.

|(P ‖ R) ; (I ‖ S)| = (|P |� |R|) ∪ |S|
@ (|P |� |R|) ∪ (|S|� |R|)
v |P |� (|R| ∪ |S|) = |(P ; I)� (R ‖ S)|

A symmetric argument holds when Q 6≡ I and R ≡ I.
If Q ≡ I and R ≡ I, then {{0}} @ |P | and {{0}} @ |S|; hence the

following strict inequality holds by Lemma 5 and Lemma 6.

|(P ‖ I) ; (I ‖ S)| = |P | ∪ |S| @ |P |� |S| = |(P ; I) ‖ (I ; S)|

2

Lemma 9 If P −→ Q, then |Q| v |P |.
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Proof: The proof proceeds by induction on the number of rules in a
derivation. The base case holds, by Lemma 6.

Consider the case for the switch rule, in a derivation of the following
form, where P 6≡ I and R 6≡ I.

S −→ C{ (P ⊗Q) ‖ R } −→ C{ P ⊗ (Q ‖ R) }

By Lemma 7, |C{ P ⊗ (Q ‖ R) }| @ |C{ (P ⊗Q) ‖ R }| and, by induction,
|C{ (P ⊗Q) ‖ R }| v |S|; therefore |C{ P ⊗ (Q ‖ R) }| @ |S|.

Consider the case for the sequence rule, for a derivation of the following
form, where P 6≡ I and Q 6≡ I.

T −→ C{ (P ; Q) ‖ (R ; S) } −→ C{ (P ‖ R) ; (Q ‖ S) }

By Lemma 8, |C{ (P ‖ R) ; (Q ‖ S) }| @ |C{ (P ; Q) ‖ (R ; S) }| and, by in-
duction, |C{ (P ; Q) ‖ (R ; S) }| v |S|; therefore |C{ (P ‖ R) ; (Q ‖ S) }| @
|S|, as required.

Consider the case for the medial rule, for a derivation of the following
form, where either P 6≡ I or R 6≡ I and also either Q 6≡ I or S 6≡ I.

T −→ C{ (P ; Q) & (R ; S) } −→ C{ (P &R) ; (Q& S) }

For when all of P , Q, R and S are not equivalent to the unit.

|(P &R) ; (Q& S)| = (|P | t |R|) ∪ (|Q| t |S|)
@ (|P | t |R|) ∪ (|Q| t |S|) ∪ (|P | t |S|) ∪ (|Q| t |R|)
= (|P | ∪ |Q|) t (|R| ∪ |S|) = |(P ; Q) & (R ; S)|

For when exactly one of P , Q, R and S is equivalent to the unit, all cases
are symmetric. Without loss of generality suppose that S ≡ I (and possibly
also Q ≡ I). By Lemma 5 and Lemma 6 the following holds.

|(P &R) ; (Q& I)| = (|P | t |R|) ∪ (|Q| t {{0}})
v (|P | t |R|) ∪ (|Q| t |R|)
= (|P | ∪ |Q|) t |R| = |(P ; Q) & (R ; I)|

There is one more form of case to consider for the medial: either P 6≡ I,
Q ≡ I, R ≡ I and S 6≡ I; or P ≡ I, Q 6≡ I, R 6≡ I and S ≡ I. We consider
only the former case. The later case, can be treated symmetrically. Since
P 6≡ I and S 6≡ I, {{0}} @ |P | and {{0}} @ |S|. Therefore, |P | t {{0}} @
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|P | t |S| and |Q| t {{0}} @ |P | t |S|. Hence, we have established that
(|P | t {{0}}) ∪ (|Q| t {{0}}) v |P | t |S|.

Note that the restriction on the medial rule either P 6≡ I or R 6≡ I and
also either Q 6≡ I or S 6≡ I excludes any further cases. Hence we have estab-
lished that C{ (P &R) ; (Q& S) } v C{ (P ; Q) & (R ; S) } and since, by in-
duction C{ (P ; Q) & (R ; S) } v |T | we have that C{ (P &R) ; (Q& S) } v
|T | as required.

Consider the case for the external rule, in which case we have a derivation
of the following form, where R 6≡ I.

S −→ C{ (P &Q) ‖ R } −→ C{ (P ‖ R) & (Q ‖ R) }

Now, by Lemma 5 we know that the following multiset equality holds.

|(P &Q) ‖ R| = (|P | t |Q|)�R
= (|P |�R) t (|Q|�R) = |(P ‖ R) & (Q ‖ R)|

Hence, |C{ (P ‖ R) & (Q ‖ R) }| = |C{ (P &Q) ‖ R }| and also, by induc-
tion, |C{ (P &Q) ‖ R }| v |S|, hence |C{ (P ‖ R) & (Q ‖ R) }| v |S| as
required.

The cases for the rules tidy, left, right, atomic interact are relatively
straightforward to establish by using Lemma 5, since the following multiset
inequalities hold.

|I| @ |I & I| |I| @ |a& a| |P | @ |P ⊕Q| |Q| @ |P ⊕Q|

Hence the lemma holds by induction on the length of the derivation. 2

We now define the size of a proof ` P using a pair consisting of the
size of the proposition, |P |, and the number of rules applied in the proof
of the proposition. The pairs representing the size of a proof are ordered
lexicographically.

Definition 3 Consider a proof of proposition P that applies m rule in-
stances. The size of this proof is given by the pair (|P | ,m). Suppose that
the size of a proof of Q is (|Q| , n) then we say that (|P | ,m) ≺ (|Q| , n) if
and only if |P | @ |Q| or |P | = |Q| and m < n.

Termination Lemmas. The following notable lemma, will be used to
deal with a troublesome case concerning the interaction between associativity
of seq and partial distributivity of the additives. For now, consider Lemma 10
as a substantial example of applying the above lemmata for multisets.
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Lemma 10 Assume that T0 6≡ I, T2 6≡ I and, either U 6≡ I or V 6≡ I, and
the following derivations hold.

W −→ T { Pi ; Qi : 1 ≤ i ≤ n }

There are two symmetric cases to consider. For the first case, also assume
that the following derivation holds for every i.

V ‖ Qi −→ T i
{
Ri

j ; Si
j : 1 ≤ j ≤ mi

}
In this case, the following two strict multiset inequalities hold.∣∣∣(T0 ; T1) ‖

(
(U ‖ Pi) ; T i

{
Ri

j : 1 ≤ j ≤ mi

})∣∣∣
@ |(T0 ; T1 ; T2) ‖ (U ; V ) ‖W |∣∣T2 ‖ T i

{
Si
j : 1 ≤ j ≤ mi

}∣∣ @ |(T0 ; T1 ; T2) ‖ (U ; V ) ‖W |

For the second case, symmetric to the above. Instead assume that the
following derivation holds for every i.

U ‖ Pi −→ T i
{
Ri

j ; Si
j : 1 ≤ j ≤ mi

}
In this second case, the following two strict multiset inequalities hold.∣∣∣(T1 ; T2) ‖

(
T i
{
Si
j : 1 ≤ j ≤ mi

}
; (Qi ‖ V )

)∣∣∣
@ |(T0 ; T1 ; T2) ‖ (U ; V ) ‖W |∣∣T0 ‖ T i

{
Ri

j : 1 ≤ j ≤ mi

}∣∣ @ |(T0 ; T1 ; T2) ‖ (U ; V ) ‖W |

Proof: Consider the case when U 6≡ I and V 6≡ I. By definition, the size of
the proposition on the left is as follows.

M , |(T0 ; T1 ; T2) ‖ (U ; V ) ‖W | = (|T0 ; T1| ∪ |T2|)� |U ; V |� |W |

Since W −→ T { Pi ; Qi : 1 ≤ i ≤ n }, by Lemma 9, the following inequality
holds.

|Pi ; Qi| v
⋃

1≤i≤n
|Pi ; Qi| = |T { Pi ; Qi : 1 ≤ i ≤ n }| v |W |

Hence, since v is a precongruence the following inequality holds.

(|T0 ; T1| ∪ |T2|)� |U ; V |� |Pi ; Qi| v M
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Now since V ‖ Qi −→ T i
{
Ri

j ; Si
j : 1 ≤ j ≤ mi

}
, by Lemma 9, the follow-

ing inequality holds.∣∣T i
{
Ri

j ; Si
j : 1 ≤ j ≤ mi

}∣∣ v |V ‖ Qi|

Hence the following multiset inequalities hold.⋃
1≤j≤mi

∣∣Ri
j

∣∣ v |V |� |Qi| and
⋃

1≤j≤mi

∣∣Si
j

∣∣ v |V |� |Qi|

We can therefore establishes the following strict multiset inequality, by
Lemma 5. ∣∣∣T2 ‖ T i

{
Si
j : 1 ≤ j ≤ mi

}∣∣∣
= |T2|�

∣∣∣T i
{
Si
j : 1 ≤ j ≤ mi

}∣∣∣
v |T2|� |V |� |Qi|
@ (|T0 ; T1| ∪ |T2|)� |U ; V |� |Pi ; Qi| v M

For the other strict multiset inequality, observe that the following strict
multiset inequality holds.

(|T0 ; T1|)� |U ; V |� |Pi ; Qi| @M

Hence it is sufficient to establish that the following multiset inequality holds.∣∣(T0 ; T1) ‖
(
(U ‖ Pi) ; T i

{
Ri

j : 1 ≤ j ≤ mi

})∣∣ v (|T0 ; T1|)�|U ; V |�|Pi ; Qi|

To establish this consider three cases:

• when U 6≡ I and V 6≡ I;

• when U ≡ I and V 6≡ I;

• when U 6≡ I and V ≡ I.

At this point, consider when U 6≡ I and V 6≡ I. By repeatedly applying
distributivity of � over ∪ and since |P | v |P ; Q| and |Q| v |P ; Q|, by
Lemma 5, the following holds.

|T0 ; T1|� (|U | ∪ |V |)� |Pi ; Qi|
= |T0 ; T1|� ((|U |� |Pi ; Qi|) ∪ (|V |� |Pi ; Qi|))
w |T0 ; T1|� ((|U |� |Pi|) ∪ (|V |� |Qi|))
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Since v is a precongruence the following multiset inequality is established,
as required.∣∣∣(T0 ; T1) ‖

(
(U ‖ Pi) ; T i

{
Ri

j : 1 ≤ j ≤ mi

})∣∣∣
= |T0 ; T1|�

(|U |� |Pi|) ∪
⋃

1≤j≤mi

∣∣Ri
j

∣∣
v |T0 ; T1|� ((|U |� |Pi|) ∪ (|V |� |Qi|))

At this point, consider when U ≡ I and V 6≡ I, for which we must
consider three sub-cases:

• when Pi 6≡ I and Qi 6≡ I;

• when Pi ≡ I;

• when Pi 6≡ I and Qi ≡ I.

If Pi 6≡ I and Qi 6≡ I then by Lemma 5 the following multiset inequality
holds, as required.

|T0 ; T1|� |V |� (|Pi| ∪ |Qi|)
= |T0 ; T1|� ((|V |� |Pi|) ∪ (|V |� |Qi|))
w |T0 ; T1|� (|Pi| ∪ (|V |� |Qi|))
w |T0 ; T1|�

(
|Pi| ∪

∣∣∣T i
{
Ri

j : 1 ≤ j ≤ mi

}∣∣∣)
=

∣∣∣(T0 ; T1) ‖
(
Pi ; T i

{
Ri

j : 1 ≤ j ≤ mi

})∣∣∣
If Pi ≡ I then by Lemma 5 the following multiset inequality holds, as required.

|T0 ; T1|� |V |� |Qi|
w |T0 ; T1|�

∣∣∣T i
{
Ri

j ; Si
j : 1 ≤ j ≤ mi

}∣∣∣
=

∣∣∣(T0 ; T1) ‖ T i
{
Ri

j : 1 ≤ j ≤ mi

}∣∣∣
If Qi ≡ I and Pi 6≡ I, hence |Pi| ∪ |V | @ |Pi|� |V | by Lemma 5, the following
multiset inequality holds, as required.

|T0 ; T1|� |Pi|� |V |
w |T0 ; T1|� (|Pi| ∪ |V |)
w |T0 ; T1|�

(
|Pi| ∪

∣∣∣T i
{
Ri

j : 1 ≤ j ≤ mi

}∣∣∣)
=

∣∣∣(T0 ; T1) ‖
(
Pi ; T i

{
Ri

j : 1 ≤ j ≤ mi

})∣∣∣
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This completes all sub-cases for when U ≡ I and V 6≡ I.

In the third and final case consider when U 6≡ I and V ≡ I. In this case,
there are three sub-cases to consider.

• when Pi 6≡ I and Qi 6≡ I;

• when Pi ≡ I and T i
{
Ri

j : 1 ≤ j ≤ mi

}
6≡ I;

• when T i
{
Ri

j : 1 ≤ j ≤ mi

}
≡ I;

Consider the sub-case where Pi 6≡ I and Qi 6≡ I, in which case the following
multiset inequality holds, as required.∣∣∣(T0 ; T1) ‖

(
(U ‖ Pi) ; T i

{
Ri

j : 1 ≤ j ≤ mi

})∣∣∣
= |T0 ; T1|�

(
(|U |� |Pi|) ∪

∣∣∣T i
{
Ri

j : 1 ≤ j ≤ mi

}∣∣∣)
v |T0 ; T1|� ((|U |� |Pi|) ∪ |Qi|)
v |T0 ; T1|� ((|U |� |Pi|) ∪ (|U |� |Qi|))
= |T0 ; T1|� |U |� (|Pi| ∪ |Qi|)

Consider the sub-case where T i
{
Ri

j : 1 ≤ j ≤ mi

}
6≡ I and Pi ≡ I. Hence

|U |∪
∣∣∣T i
{
Ri

j : 1 ≤ j ≤ mi

}∣∣∣ v |U |� ∣∣∣T i
{
Ri

j : 1 ≤ j ≤ mi

}∣∣∣, by Lemma 5

since also U 6≡ I. Thereby the following multiset inequality holds, as required.∣∣∣(T0 ; T1) ‖
(
U ; T i

{
Ri

j : 1 ≤ j ≤ mi

})∣∣∣
= |T0 ; T1|�

(
|U | ∪

∣∣∣T i
{
Ri

j : 1 ≤ j ≤ mi

}∣∣∣)
v |T0 ; T1|�

(
|U |�

∣∣∣T i
{
Ri

j : 1 ≤ j ≤ mi

}∣∣∣)
v |T0 ; T1|� (|U |� |Qi|)
= |T0 ; T1|� |U |� |Qi|

Consider the sub-case where T i
{
Ri

j : 1 ≤ j ≤ mi

}
≡ I, in which case the

following multiset inequality holds since |Pi| v |Pi ; Qi| by Lemma 5, as
required.

|(T0 ; T1) ‖ U ‖ Pi|
= |T0 ; T1|� |U |� |Pi|
v |T0 ; T1|� |U |� |Pi ; Qi|
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This completes the sub-case analysis of the case when U 6≡ I and V ≡ I.
Thereby all cases have been considered for the first part of the lemma.

The analysis of the second part of the lemma is symmetric to the first. 2

We will also require the following lemma for the most involved case
concerning times in the proof of splitting.

Lemma 11 For the following assume that T 6≡ I and U 6≡ I and also the
following derivations hold.

W −→ T { Ri ‖ Si : 1 ≤ i ≤ n }

Ri −→ T 0
i

{
P i,0
j ‖ Q

i,0
j : 1 ≤ j ≤ m0

i

}
V ‖ Si −→ T 1

i

{
P i,1
k ‖ Q

i,1
k : 1 ≤ k ≤ m1

i

}
For any i, j and k, the following two strict multiset inequalities hold.∣∣∣T ‖ P i,0

j ‖ P
i,1
k

∣∣∣ @ |(T ⊗ U) ‖ V ‖W |∣∣∣U ‖ Qi,0
j ‖ Q

i,1
k

∣∣∣ @ |(T ⊗ U) ‖ V ‖W |

Proof: Since T 6≡ I and U 6≡ I, by definition.

M , |(T ⊗ U) ‖ V ‖W | = (|T | ∪ |U |)� |V |� |W |

Since W −→ T { Ri ‖ Si : 1 ≤ i ≤ n }, by Lemma 9, and by Lemma 5 we
have the following.

|Ri|� |Si| v |T { Ri ‖ Si : 1 ≤ i ≤ n }| v |W |

Hence, since v is a precongruence we have.

(|T | ∪ |U |)� |V |� |Ri|� |Si| v (|T | ∪ |U |)� |V |� |W |

Now since V ‖ Si −→ T 1
i

{
P i,1
k ‖ Q

i,1
k : 1 ≤ k ≤ m1

i

}
, by Lemma 9 and

Lemma 5 we have.∣∣∣P i,1
k

∣∣∣� ∣∣∣Qi,1
k

∣∣∣ v ∣∣∣T 1
i

{
P i,1
k ‖ Q

i,1
k : 1 ≤ k ≤ m1

i

}∣∣∣ v |V ‖ Si|
Similarly, since Ri −→ T 0

i

{
P i,0
j ‖ Q

i,0
j : 1 ≤ j ≤ m0

i

}
, by Lemma 9 and

Lemma 5 we have.∣∣∣P i,0
j

∣∣∣� ∣∣∣Qi,0
j

∣∣∣ v ∣∣∣T 0
i

{
P i,0
j ‖ Q

i,0
j : 1 ≤ j ≤ m0

i

}∣∣∣ v |Ri|
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Since v is a precongruence the following multiset inequality must hold.

(|T | ∪ |U |)�
∣∣∣P i,0

j

∣∣∣� ∣∣∣Qi,0
j

∣∣∣� ∣∣∣P i,1
k

∣∣∣� ∣∣∣Qi,1
k

∣∣∣ v (|T | ∪ |U |)� |V |� |Ri|� |Si|

Hence we have the following two strict inequalities, since M @ M ∪N by
Lemma 5, as required.

|T |�
∣∣∣P i,0

j

∣∣∣� ∣∣∣P i,1
k

∣∣∣ @ (|T | ∪ |U |)�
∣∣∣P i,0

j

∣∣∣� ∣∣∣Qi,0
j

∣∣∣� ∣∣∣P i,1
k

∣∣∣� ∣∣∣Qi,1
k

∣∣∣ vM
|U |�

∣∣∣Qi,0
j

∣∣∣� ∣∣∣Qi,1
k

∣∣∣ @ (|T | ∪ |U |)�
∣∣∣P i,0

j

∣∣∣� ∣∣∣Qi,0
j

∣∣∣� ∣∣∣P i,1
k

∣∣∣� ∣∣∣Qi,1
k

∣∣∣ vM
2

The splitting technique. The splitting proof technique was established
in the calculus of structures to prove cut elimination for the calculus BV [20],
and has been extended to other systems [22, 40]. Splitting works strictly in
a shallow context, which is a context like a sequent, where the object-level
operator ‖ and meta-level operator comma collapse to one operator.

Splitting says that you can pick any proposition in a shallow context,
which we call the principal proposition, and rewrite the rest of the shallow
context into a form consisting of several independent branches, tracked by a
killing context, where in each branch a rule for the principal proposition can
be applied, e.g. the sequence rule for seq, or the left and right rules for plus.

The splitting is divided into the remaining lemmas in this sub-section
(Lemmas 12, 13 and 14). The multiplicative operators ⊗ and ; must be
treated together since they involve a mutual recursion, Lemma 2 and the
lemmas regarding multiset orders. The remaining splitting lemmas for plus
(Lemma 13) and atoms (Lemma 14) can be treated independently, since
they each rely only on Lemmas 2, 12 and simple properties of multisets.
Notice that the splitting lemmas for plus and atoms are weaker than the
splitting lemma for the multiplicatives, since the termination measure for
the multiplicatives is used in the other two proofs, but not vice-versa.

The proof of each splitting lemma proceeds by induction on the size
of a proof in MAV. In each splitting lemma, there are three forms of cases
to consider. When the principal proposition is actively involved in the
bottommost rule in the proof, we call it the principal case. When the
principal proposition is inside the part of the proposition modified by the
bottommost rule in a proof, but the root connective of the principal formula
itself is not touched, we call it a commutative case. The final form of case
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is when a rule is applied entirely inside or independently of the principal
formula, which we call a deep inference case.

Lemma 12 (Splitting multiplicatives) The following statements hold.

• If ` (S ⊗ T ) ‖ U , then there exist propositions Vi and Wi such that
` S ‖ Vi and ` T ‖ Wi, where 1 ≤ i ≤ n, and n-ary killing context
T { } such that U −→ T { V1 ‖W1, . . . , Vn ‖Wn }.

• If ` (S ; T ) ‖ U , then there exist propositions Vi and Wi such that
` S ‖ Vi and ` T ‖ Wi, where 1 ≤ i ≤ n, and n-ary killing context
T { } such that U −→ T { V1 ;W1, . . . , Vn ;Wn }.

Furthermore the size of the proofs of S ‖ Vi and T ‖ Wi are less than the
size of the proofs of (S ⊗ T ) ‖ U and (S ; T ) ‖ U .

Proof: The proof proceeds by induction on the size of proofs of the
forms (S ; T ) ‖ U and (S ⊗ T ) ‖ U . The size of proofs is given by the
lexicographical order of the size of the proposition and the number of rule
instances, as in Defn. 3. The base case is when the length of such proofs are
0, hence S ≡ I, T ≡ I and U ≡ I. In this case the following derivations of
length zero, I ≡ I ‖ I and I ≡ I ; I, satisfy the induction invariant.

Principal times case: Consider the principal case for times. The principal
case, when times is actively involved in the bottommost rule, is a proof that
begins as follows, where T0 ⊗ U0 6≡ I and also V 6≡ I, otherwise the switch
rule cannot be applied, and also T0 ⊗ T1 6≡ I and U0 ⊗ U1 6≡ I otherwise
splitting follows by a trivial equivalence:

(T0 ⊗ T1 ⊗ U0 ⊗ U1) ‖ V ‖W −→ (T0 ⊗ U0 ⊗ ((T1 ⊗ U1) ‖ V )) ‖W

such that ` (T0 ⊗ U0 ⊗ ((T1 ⊗ U1) ‖ V )) ‖W . Furthermore, since T0⊗U0 6≡ I

and also V 6≡ I, the following strict inequality holds by Lemma 7.

|(T0 ⊗ U0 ⊗ ((T1 ⊗ U1) ‖ V )) ‖W | @ |(T0 ⊗ T1 ⊗ U0 ⊗ U1) ‖ V ‖W |

Therefore the size of the proof is reduced and hence the hypothesis may be
applied.

By the induction hypothesis, there existRi and Si such that ` (T0 ⊗ U0) ‖
Ri and ` (T1 ⊗ U1) ‖ V ‖ Si, for 1 ≤ i ≤ n, and an n-ary killing context
T { } such that the following holds.

W −→ T { R1 ‖ S1, . . . , Rn ‖ Sn }



Multiplicative Additive System Virtual 39

Furthermore |(T0 ⊗ U0) ‖ Ri| and |(T1 ⊗ U1) ‖ V ‖ Si| are bounded above by
|(T0 ⊗ U0 ⊗ ((T1 ⊗ U1) ‖ V )) ‖W |.

Hence, by the induction hypothesis twice more there exist propositions
P i,0
j , Qi,0

j , P i,1
k and Qi,1

k such that ` T0 ‖ P i,0
j , ` U0 ‖ Qi,0

j , ` T1 ‖ P i,1
k and

` U1 ‖ Qi,1
k , for 1 ≤ j ≤ m0

i and 1 ≤ k ≤ m1
i , and m0

i -ary killing context
T 0
i { } and m1

i -ary killing context T 1
i { } such that the following derivations

hold.

Ri −→ T 0
i

{
P i,0
j ‖ Q

i,0
j : 1 ≤ j ≤ m0

i

}
V ‖ Si −→ T 1

i

{
P i,1
k ‖ Q

i,1
k : 1 ≤ k ≤ m1

i

}
Thereby the following derivation can be constructed, by Lemma 3.

V ‖W −→ V ‖ T { Ri ‖ Si : 1 ≤ i ≤ n }
−→ T { Ri ‖ V ‖ Si : 1 ≤ i ≤ n }

−→ T

 T 0
i

{
P i,0
j ‖ Q

i,0
j : 1 ≤ j ≤ m0

i

}
‖ T 1

i

{
P i,1
k ‖ Q

i,1
k : 1 ≤ k ≤ m1

i

} : 1 ≤ i ≤ n


−→ T

{
T 1
i

{
T 0
i

{
P i,0
j ‖ Q

i,0
j : 1 ≤ j ≤ m0

i

}
‖ P i,1

k ‖ Q
i,1
k : 1 ≤ k ≤ m1

i

}
: 1 ≤ i ≤ n

}

−→ T

 T 1
i

 T 0
i

{
P i,0
j ‖ P

i,1
k ‖ Q

i,0
j ‖ Q

i,1
k

: 1 ≤ j ≤ m0
i

}
: 1 ≤ k ≤ m1

i

 : 1 ≤ i ≤ n


Now observe that the following proofs can be constructed.

(T0 ⊗ T1) ‖ P i,0
j ‖ P

i,1
k −→

(
T0 ‖ P i,0

j

)
⊗
(
T1 ‖ P i,1

k

)
−→ I

(U0 ⊗ U1) ‖ Qi,0
j ‖ Q

i,1
k −→

(
U0 ‖ Qi,0

j

)
⊗
(
U1 ‖ Qi,1

k

)
−→ I

Furthermore, since T0 ⊗ T1 6≡ I and U0 ⊗ U1 6≡ I by Lemma 11, we have the
following strict multiset inequalities.∣∣∣(T0 ⊗ T1) ‖ P i,0

j ‖ P
i,1
k

∣∣∣ @ |(T0 ⊗ T1 ⊗ U0 ⊗ U1) ‖ V ‖W |∣∣∣(U0 ⊗ U1) ‖ Qi,0
j ‖ Q

i,1
k

∣∣∣ @ |(T0 ⊗ T1 ⊗ U0 ⊗ U1) ‖ V ‖W |

Thereby the size of either of the above two proofs is strictly less than the
size of any proof of (T0 ⊗ T1 ⊗ U0 ⊗ U1) ‖ V ‖W , as required.
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Principal seq case: Consider the principal case for sequential composi-
tion. The difficulty in this case is that, due to associativity of sequential
composition, the sequence rule may be applied in several ways when there
are multiple sequential compositions. Consider a principal proposition of
the form (T0 ; T1) ; T2, where we aim to split the formula around the second
sequential composition. The difficulty is that the bottommost rule may be an
instance of the sequence rule applied between T0 and T1 ; T2. Symmetrically,
the principal formula may be of the form T0 ; (T1 ; T2) but the bottommost
rule may be an instance of the sequence rule applied between T0 ; T1 and T2.
In the following analysis, only the former case is considered. The symmetric
case follows the same pattern.

Consider when the principal proposition is of the form (T0 ; T1) ; T2
and the bottommost rule in a proof is of the following form, where T0 6≡ I,
T2 6≡ I, otherwise splitting is trivial, and either U 6≡ I or V 6≡ I otherwise the
sequence rule cannot be applied:

(T0 ; T1 ; T2) ‖ (U ; V ) ‖W −→ ((T0 ‖ U) ; ((T1 ; T2) ‖ V )) ‖W

such that ((T0 ‖ U) ; ((T1 ; T2) ‖ V )) ‖ W has a proof. By Lemma 8,
|((T0 ‖ U) ; ((T1 ; T2) ‖ V )) ‖W | @ |(T0 ; T1 ; T2) ‖ (U ; V ) ‖W | hence the
induction hypothesis may be applied.

By the induction hypothesis, there exist Pi and Qi such that ` T0 ‖
U ‖ Pi and ` (T1 ; T2) ‖ V ‖ Qi, for 1 ≤ i ≤ n, and an n-ary killing context
T { } such that the following holds.

W −→ T { P1 ; Q1, . . . , Pn ; Qn }

where furthermore |(T1 ; T2) ‖ V ‖ Qi| v |((T0 ‖ U) ; ((T1 ; T2) ‖ V )) ‖W |,
hence the induction hypothesis is enabled again.

By the induction hypothesis, there exists Ri
j and Si

j such that ` T1 ‖ Ri
j

and ` T2 ‖ Si
j , for 1 ≤ j ≤ mi, and mi-ary killing context T i{ } such that

the following derivation holds.

V ‖ Qi −→ T i
{
Ri

1 ; Si
1, . . . , R

i
mi

; Si
mi

}
Furthermore, by Lemma 3 there exist killing context T i

0 { } and T i
1 { } and

sets of integers J ⊆ {1, . . . , n}, K ⊆ {1, . . . , n} such that.

T i
{
Ri

1 ; Si
1, . . . , R

i
mi

; Si
mi

}
−→ T i

0

{
Ri

j : j ∈ J
}

; T i
1

{
Si
k : k ∈ K

}
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Thereby, the following derivation can be constructed.

(U ; V ) ‖W −→ (U ; V ) ‖ T { P1 ; Q1, . . . , Pn ; Qn }
−→ T { (U ; V ) ‖ (P1 ; Q1) , . . . , (U ; V ) ‖ (Pn ; Qn) }
−→ T { (U ‖ P1) ; (V ‖ Q1) , . . . , (U ‖ Pn) ; (V ‖ Qn) }
−→ T

{
(U ‖ P1) ; T i

{
Ri

j ; Si
j : 1 ≤ j ≤ mi

}
: 1 ≤ i ≤ n

}
−→ T

{
(U ‖ P1) ; T i

0

{
Ri

j : j ∈ J
}

; T i
1

{
Si
k : k ∈ K

}
: 1 ≤ i ≤ n

}

Furthermore, the following proofs can be constructed.

T2 ‖ T i
{
Si
j : 1 ≤ j ≤ mi

}
−→ T i

{
T2 ‖ Si

j : 1 ≤ j ≤ mi

}
−→ T i{ I : 1 ≤ j ≤ mi } −→ I

(T0 ; T1) ‖
(

(U ‖ Pi) ; T i
{
Ri

j : 1 ≤ j ≤ mi

})
−→ (T0 ‖ U ‖ Pi) ;

(
T1 ‖ T i

{
Ri

j : 1 ≤ j ≤ mi

})
−→ T1 ‖ T i

{
Ri

j : 1 ≤ j ≤ mi

}
−→ T i

{
T1 ‖ Ri

j : 1 ≤ j ≤ mi

}
−→ T i{ I : 1 ≤ j ≤ mi } −→ I

By Lemma 10, we know that the size of the above two proofs is strictly less
than the size of any proof of (T0 ; T1 ; T2) ‖ (U ; V ) ‖W .

Commutative cases: The commutative cases to consider are for &, ⊗
and ; where the principal proposition is involved in the bottommost rules,
but the principal proposition is not modified. There are six cases to consider,
three each for ⊗ and ; as the root connective of the principal proposition.

We present the commutative cases for & distributing over the principal
proposition. Notice that killing contexts are necessary due to an application
of the external rule in the context of another operator, thereby branching
the proof search.

Consider the commutative case for & where T ⊗ U is the principal
proposition. The bottommost rule is of the following form.

(T ⊗ U) ‖ (V &W ) ‖ Q −→ ((T ⊗ U) ‖ V & (T ⊗ U) ‖W ) ‖ Q

such that ` ((T ⊗ U) ‖ V & (T ⊗ U) ‖W ) ‖ Q holds.
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By Lemma 2, ` (T ⊗ U) ‖ V ‖ Q and also ` (T ⊗ U) ‖ W ‖ Q.
Furthermore, by Lemma 5, |(T ⊗ U) ‖ V ‖ Q| @ |(T ⊗ U) ‖ (V &W ) ‖ Q|
and |(T ⊗ U) ‖W ‖ Q| @ |(T ⊗ U) ‖ (V &W ) ‖ Q|, hence the induction
hypothesis is enabled.

Therefore, by the induction hypothesis twice, there exist R0
i and S0

i

such that ` T ‖ R0
i and ` U ‖ S0

i , where 1 ≤ i ≤ m, and R1
j and S1

j such

that ` T ‖ R1
j and ` U ‖ S1

j , where 1 ≤ j ≤ n, and m-ary and n-ary killing

contexts T 0{ } and T 1{ } respectively such that the following holds.

V ‖ Q −→ T 0
{
R0

1 ‖ S0
1 , R

0
2 ‖ S0

2 , . . . , R
0
m ‖ S0

m

}
W ‖ Q −→ T 1

{
R1

1 ; S1
1 , R

1
2 ‖ S1

2 , . . . , R
1
n ‖ S1

n

}
Furthermore,

∣∣T ‖ R0
i

∣∣ v |(T ⊗ U) ‖ V ‖ Q| and
∣∣U ‖ S0

i

∣∣ v |(T ⊗ U) ‖ V ‖ Q|
and

∣∣∣T ‖ R1
j

∣∣∣ v |(T ⊗ U) ‖W ‖ Q| and
∣∣∣U ‖ S1

j

∣∣∣ v |(T ⊗ U) ‖W ‖ Q|.
Thereby the following derivation can be constructed, as required.

(V &W ) ‖ Q
−→ V ‖ Q&W ‖ Q
−→ T 1{ V1 ‖ R1, . . . , Vm ‖ Rm }& T 2{ W1 ‖ S1, . . . ,Wn ‖ Sn }

Notice that T 1{ }& T 2{ } is an (m+ n)-ary killing context satisfying the
induction invariant.

Consider the commutative case for & where T ; U is the principal
proposition. The bottommost rule is of the following form.

(T ; U) ‖ (V &W ) ‖ Q −→ ((T ; U) ‖ V & (T ; U) ‖W ) ‖ Q

such that ` ((T ; U) ‖ V & (T ; U) ‖W ) ‖ Q holds.
By Lemma 2, ` (T ; U) ‖ V ‖ Q and ` (T ; U) ‖W ‖ Q. Furthermore,

by Lemma 5 we have that |(T ; U) ‖ V ‖ Q| @ |(T ; U) ‖ (V &W ) ‖ Q| and
|(T ; U) ‖W ‖ Q| @ |(T ; U) ‖ (V &W ) ‖ Q|, hence the induction hypothe-
sis is enabled.

Therefore, by the induction hypothesis, there exist R0
i and S0

i such
that ` T ‖ R0

i and ` U ‖ S0
i , where 1 ≤ i ≤ m, and R1

j and R1
j such that

` T ‖ R1
j and ` U ‖ S1

j , where 1 ≤ j ≤ n, and m-ary and n-ary killing

contexts T 0{ }, T 1{ } respectively such that the following derivation holds.

V ‖ Q −→ T 0
{
R0

1 ; S0
1 , R

0
2 ; S0

2 , . . . , R
0
m ; S0

m

}
W ‖ Q −→ T 1

{
R1

1 ; S1
1 , R

1
2 ; S1

2 , . . . , R
1
n ; S1

n

}
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Furthermore,
∣∣T ‖ R0

i

∣∣ v |(T ; U) ‖ V ‖ Q|,
∣∣U ‖ S0

i

∣∣ v |(T ; U) ‖ V ‖ Q|,∣∣T ‖ R1
i

∣∣ v |(T ; U) ‖W ‖ Q|,
∣∣U ‖ S1

i

∣∣ v |(T ; U) ‖W ‖ Q|, hence strictly
bounded above by |(T ; U) ‖ (V &W ) ‖ Q|.

Thereby the following derivation can be constructed.

(V &W ) ‖ Q
−→ V ‖ Q&W ‖ Q
−→ T 0

{
R0

1 ; S0
1 , . . . , R

0
m ; S0

m

}
& T 1

{
R1

1 ; S1
1 , . . . , R

1
n ; S1

n

}
Notice that T 1{ }& T 2{ } is an (m+ n)-ary killing context satisfying the
induction invariant.

We present the cases where the sequence rule and switch rule commute
with the principal proposition without direct involvement in the root connec-
tive of the principal proposition. The cases are presented where the principal
proposition moves entirely to the left hand side of seq operator. The cases
where the principal proposition moves entirely to the right hand side of the
seq operator, and the cases for times, are similar to the cases presented
below; as are the commutative cases for the switch rule. Simply exchange
seq for times and par at appropriate points.

Consider the commutative case for sequential composition in the pres-
ence of principal proposition T ; U , where the seq connective in the principal
proposition is not active on the sequence rule. In this case, the bottommost
rule in a proof is of the following form, where T ; U 6≡ I and P 6≡ I.

(T ; U) ‖ (V ; P ) ‖W ‖ Q −→ (((T ; U) ‖ V ‖W ) ; P ) ‖ Q

such that ` (((T ; U) ‖ V ‖W ) ; P ) ‖ Q holds. Furthermore, by Lemma 8,
|(((T ; U) ‖ V ‖W ) ; P ) ‖ Q| @ |(T ; U) ‖ (V ; P ) ‖W ‖ Q|, hence the in-
duction hypothesis is enabled.

By the induction hypothesis, there exists Ri, Si such that ` (T ; U) ‖
V ‖ W ‖ Ri and ` P ‖ Si, for 1 ≤ i ≤ n, and n-ary killing context T { }
such that the following derivation holds.

Q −→ T { R1 ; S1, . . . , Rn ; Sn }

Furthermore, |(T ; U) ‖ V ‖W ‖ Ri| v |(((T ; U) ‖ V ‖W ) ; P ) ‖ Q| hence
the induction hypothesis is enabled again.

By the induction hypothesis, for 1 ≤ i ≤ n, there exist propositions
P i
j , Qi

j such that ` T ‖ P i
j and ` U ‖ Qi

j hold, for 1 ≤ j ≤ mi, and killing
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contexts T i{ } such that the following derivation holds.

V ‖W ‖ Ri −→ T i
{
P i
1 ; Qi

1, . . . , P
i
mi

; Qi
mi

}
Furthermore the following strict multiset inequalities hold.∣∣T ‖ P i

j

∣∣ @ |(T ; U) ‖ (V ; P ) ‖W ‖ Q|∣∣U ‖ Qi
j

∣∣ @ |(T ; U) ‖ (V ; P ) ‖W ‖ Q|

Hence the following derivation can be constructed, as required.

(V ; P ) ‖W ‖ Q
−→ (V ; P ) ‖W ‖ T { R1 ; S1, . . . , Rn ; Sn }
−→ T { (V ; P ) ‖W ‖ (R1 ; S1) , . . . , (V ; P ) ‖W ‖ (Rn ; Sn) }
−→ T { (V ‖W ‖ R1) ; (P ‖ S1) , . . . , (V ‖W ‖ Rn) ; (P ‖ Sn) }
−→ T { V ‖W ‖ R1, . . . , V ‖W ‖ Rn }
−→ T

{
T i
{
P i
j ; Qi

j : 1 ≤ j ≤ mi

}
: 1 ≤ i ≤ n

}
The case for the sequence rule commuting with the principal proposition
T ⊗ U is similar to the above case. Also the cases for the switch rule
commuting with seq and times as the principal proposition, follow a similar
pattern.

Deep inference cases: The remaining cases are the deep inference cases,
where the bottommost rule does not interfere with the root connective of
the principal proposition. We provide one illustrative case where sequential
composition is the principal proposition and the rule applies only outside
that connective. Assume that the following application of any rule is the
bottommost rule in a proof.

(T ; U) ‖ C{ V } −→ (T ; U) ‖ C{ W }

such that ` (T ; U) ‖ C{ W }. By the induction hypothesis, there exist
n-ary killing context T { } and propositions Qi and Ri such that ` T ‖ Qi

and ` U ‖ Ri, for 1 ≤ i ≤ n, such that the following holds.

C{ W } −→ T { Q1 ; R1, . . . , Qn ; Rn }

Hence, the following derivation holds, satisfying the induction invariant.

C{ V } −→ C{ W }
−→ T { Q1 ; R1, . . . , Qn ; Rn }
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A similar proof holds for any principal proposition.

Alternatively, the bottommost rule may appear inside the context of
principal proposition without affecting the root connective of the principal
proposition. We provide one illustrative case where sequential composition
is the principal proposition. Assume that the following application of any
rule is the bottommost rule in a proof.

(C{ T } ; V ) ‖W −→ (C{ U } ; V ) ‖W

such that ` (C{ U } ; V ) ‖W has a proof of length n. Hence by induction,
there exist n-ary killing context T { } and propositions Pi and Qi such that
` C{ U } ‖ Pi and ` V ‖ Qi hold and have a proof no longer than n, for
1 ≤ i ≤ n, and furthermore the following holds.

W −→ T { P1 ; Q1, . . . , Pn ; Qn }

Hence we can construct the following proof of length no longer than n+ 1,
for all i, as required.

C{ T } ‖ Pi −→ C{ U } ‖ Pi −→ I

A similar proof holds for any principal proposition.
Thereby, all cases for the splitting lemma for multiplicatives have been

considered. 2

Lemma 13 (Splitting plus) If ` (T ⊕ U) ‖ V , then there exist proposi-
tions Wi such that either ` T ‖Wi or ` U ‖Wi where 1 ≤ i ≤ n, and n-ary
killing context T { } such that V −→ T { W1,W2, . . . ,Wn }.

Proof: The proof is by induction on the size of the proof of the proposition
to which splitting is applied, where the size of a proof is as in Defn. 3.
Consider the base case for the plus operator. The cases for the left rule and
right rule are symmetric. Without loss of generality, consider when the left
rule is the bottommost rule in a proof as follows.

(T ⊕ U) ‖ V −→ T ‖ V

such that ` T ‖ V , which immediately satisfies the conditions of the lemma.

The three commutative cases for &, ; and ⊗, are similar to the commu-
tative cases in Lemma 12.



46 Ross Horne

Consider the commutative case for & when ⊕ is the principal operator.
In this case, the bottommost rule in a proof is of the following form.

(T ⊕ U) ‖ (V &W ) ‖ P ‖ Q −→ ((T ⊕ U) ‖ V ‖ P & (T ⊕ U) ‖W ‖ P ) ‖ Q

such that ` ((T ⊕ U) ‖ V ‖ P & (T ⊕ U) ‖W ‖ P ) ‖ Q.
By Lemma 2, ` (T ⊕ U) ‖ V ‖ P ‖ Q and ` (T ⊕ U) ‖W ‖ P ‖ Q hold.

Furthermore, the size of the above proofs are bound as follows, by Lemma 5.

|(T ⊕ U) ‖ V ‖ P ‖ Q| @ |(T ⊕ U) ‖ (V &W ) ‖ P ‖ Q|

|(T ⊕ U) ‖W ‖ P ‖ Q| @ |(T ⊕ U) ‖ (V &W ) ‖ P ‖ Q|

Hence by induction there exists m-ary and n-ary killing contexts T 1{ }
and T 2{ } respectively and propositions Ri and Sj , where 1 ≤ i ≤ m and
1 ≤ j ≤ n, such that the following derivations hold:

V ‖ P ‖ Q −→ T 1{ R1, . . . , Rm }
W ‖ P ‖ Q −→ T 2{ S1, . . . , Sn }

and either ` T ‖ Ri or ` U ‖ Ri; and also either ` T ‖ Sj or ` U ‖ Sj .
Hence the following derivation can be constructed, as required.

(V &W ) ‖ P ‖ Q −→ V ‖ P ‖ Q&W ‖ P ‖ Q
−→ T 1{ R1, . . . , Rm }& T 2{ S1, . . . , Sn }

Notice that T 1{ }& T 2{ } is an (m+ n)-ary killing context satisfying the
induction invariant.

Consider the commutative case for seq in the presence of principal
proposition T ⊕ U . There are two cases to consider, when the principal
proposition ends up on the left or right of the seq operator. Consider the case
where the operator ends up on the left of seq. In this case, the bottommost
rule in a proof is of the following form, where P 6≡ I.

(T ⊕ U) ‖ (V ; W ) ‖ P ‖ Q −→ (((T ⊕ U) ‖ V ‖W ) ; P ) ‖ Q

such that ` (((T ⊕ U) ‖ V ‖W ) ; P ) ‖ Q holds. Furthermore, by Lemma 8
|(((T ⊕ U) ‖ V ‖W ) ; P ) ‖ Q| @ |(T ⊕ U) ‖ (V ; W ) ‖ P ‖ Q|. By Lemma 12,
there exist Ri and Si such that ` (T ⊕ U) ‖ V ‖ W ‖ Ri and ` P ‖ Si, for
1 ≤ i ≤ n, and n-ary killing context T { } such that the following derivation
holds.

Q −→ T { R1 ; S1, . . . , Rn ; Sn }
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Furthermore, also by Lemma 12, the following multiset inequality holds,
enabling the induction hypothesis.

|(T ⊕ U) ‖ V ‖W ‖ Ri| v |(((T ⊕ U) ‖ V ‖W ) ; P ) ‖ Q|

By the induction hypothesis, for 1 ≤ i ≤ n, there exist propositions P i
j such

that either ` T ‖ P i
j or ` U ‖ P i

j holds, for 1 ≤ j ≤ mi, and killing contexts

T i{ } such that the following derivation holds.

V ‖W ‖ Ri −→ T i
{
P i
1, . . . , P

i
mi

}
Hence the following derivation can be constructed, as required.

(V ; W ) ‖ P ‖ Q
−→ (V ; W ) ‖ P ‖ T { R1 ; S1, . . . , Rn ; Sn }
−→ T { (V ; W ) ‖ P ‖ R1 ; S1, . . . , (V ; W ) ‖ P ‖ Rn ; Sn }
−→ T { (V ‖W ‖ R1) ; (P ‖ S1) , . . . , (V ‖W ‖ Rn) ; (P ‖ Sn) }
−→ T { V ‖W ‖ R1, . . . , V ‖W ‖ Rn }
−→ T

{
T 1
{
P 1
1 , . . . , P

1
m1

}
, . . . , T i

{
Pn
1 , . . . , P

n
mn

} }
The other commutative cases for the sequence rule and switch rule are similar
to the above case.

The remaining cases are deep inference cases, where the bottommost rule
does not interfere with the root connective of the principal proposition. We
provide one illustrative case where plus is the root connective of the principal
proposition and the rule applies only outside that connective. Assume that
the following is the bottommost rule in a proof of length k + 1.

(T ⊕ U) ‖ C{ V } −→ (T ⊕ U) ‖ C{ W }

such that ` (T ; U) ‖ C{ W } has a proof of length k. By Lemma 9
|(T ⊕ U) ‖ C{ W }| v |(T ⊕ U) ‖ C{ V }|, hence the induction hypothesis is
enabled.

By the induction hypothesis, there exist n-ary killing context T { } and
propositions Pi such that either ` T ‖ Pi or ` U ‖ Pi, for 1 ≤ i ≤ n, such
that the following holds.

C{ W } −→ T { P1, . . . , Pn }

Hence clearly, the following derivation holds, satisfying the induction invari-
ant.

C{ V } −→ C{ W }
−→ T { P1, . . . , Pn }
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Alternatively, the bottommost rule may appear inside the context of
principal proposition without affecting the root connective of the principal
proposition. We consider the case for when the rule is applied on the left
of ⊕. Assume that the bottommost rule of a proof of length k + 1 is of the
following form.

(C{ T } ⊕ V ) ‖W −→ (C{ U } ⊕ V ) ‖W

such that ` (C{ U } ⊕ V ) ‖ W has a proof with k rule instances. Further-
more, by Lemma 9, |(C{ U } ⊕ V ) ‖W | v |(C{ T } ⊕ V ) ‖W |, hence the
induction hypothesis is enabled.

Hence by induction, there exist n-ary killing context T { } and proposi-
tions Pi such that either ` C{ U } ‖ Pi or ` V ‖ Pi, for 1 ≤ i ≤ n, such that
the following holds.

W −→ T { P1, . . . , Pn }

Hence either ` V ‖ Pi holds, or the following proof of C{ T } ‖ Pi holds, for
all i, as required.

C{ T } ‖ Pi −→ C{ U } ‖ Pi −→ I

A symmetic proof holds for a rule applied in the right branch of ⊕.

All cases for the splitting lemma for plus have been considered, thereby
the lemma follows by induction on the size of the proof. 2

Lemma 14 (Splitting atoms) The following statements hold.

• For any atom a, if ` a ‖ T , then there exist atoms b1, b2, . . . , bn such
that a ≤ bi, for 1 ≤ i ≤ n, and n-ary killing context T { } such that
T −→ T { b1, b2, . . . , bn }.

• For any atom a, if ` a ‖ T , then there exist atoms b1, b2, . . . , bn such
that bi ≤ a, where 1 ≤ i ≤ n, and n-ary killing context T { } such that
T −→ T

{
b1, b2, . . . , bn

}
.

Proof: Proceed by induction on the size of the proof, as defined in
Defn. 3. Consider the base case for atoms. The case for positive and negative
atoms are symmetric in the direction of subsorting. Consider the case for
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negative atoms and suppose that the bottommost rule in a proof is an atomic
interaction as follows, where a and b are atoms such that ` a ≤ b.

a ‖ b ‖ U −→ U

where ` U . Hence, the derivation b ‖ U −→ b can be constructed as required.

Consider the commutative case for & when an atom a is the principal
proposition. In this case, the bottommost rule in a proof is of the following
form.

a ‖ (T & U) ‖ V ‖W −→ (a ‖ T ‖ V & a ‖ U ‖ V ) ‖W

such that ` (a ‖ T ‖ V & a ‖ U ‖ V ) ‖W holds. By Lemma 2, ` a ‖ T ‖ V ‖
W and ` a ‖ U ‖ V ‖ W hold. Furthermore, the following strict multiset
inequalities hold, by Lemma 5.

|a ‖ T ‖ V ‖W | @ |a ‖ (T & U) ‖ V ‖W |

|a ‖ U ‖ V ‖W | @ |a ‖ (T & U) ‖ V ‖W |

Hence, by induction, there exists m-ary and n-ary killing contexts T 1{ }
and T 2{ } respectively and atoms bi and cj where 1 ≤ i ≤ m and 1 ≤ j ≤ n
such that the following derivations hold:

V ‖ P ‖ Q −→ T 1
{
b1, . . . , bm

}
W ‖ P ‖ Q −→ T 2{ c1, . . . , cn }

and furthermore ` bi ≤ a and ` ci ≤ a for all i. Hence the following
derivation can be constructed.

(T & U) ‖ V ‖W −→ T ‖ V ‖W & U ‖ V ‖W
−→ T 1

{
b1, . . . , bm

}
& T 2{ c1, . . . , cn }

Notice that T 1{ } & T 2{ } is an (m+ n)-ary killing context satisfying
the induction invariant. The case for negative atoms is symmetric in the
direction of the subsorting relation.

Consider the cases for the multiplicatives commuting with an atom.
Firstly, consider the commutative case for seq in the presence of principal
proposition a. In this case, the bottommost rule in a proof is of the following
form, where U 6≡ I.

a ‖ (T ; U) ‖ V ‖W −→ ((a ‖ T ‖ V ) ; U) ‖W
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such that ` ((a ‖ T ‖ V ) ; U) ‖ W holds. Furthermore, by Lemma 8, the
following strict multiset inequality holds.

|((a ‖ T ‖ V ) ; U) ‖W | @ |a ‖ (T ; U) ‖ V ‖W |

By Lemma 12, there exist Pi and Qi such that ` a ‖ V ‖ T ‖ Pi and
` U ‖ Qi, for 1 ≤ i ≤ n, and n-ary killing context T { } such that the
following derivation holds.

W −→ T { P1 ; Q1, . . . , Pn ; Qn }

Furthermore, |a ‖ V ‖ T ‖ Pi| v |((a ‖ T ‖ V ) ; U) ‖W |, enabling the induc-
tion hypothesis.

By the induction hypothesis, for 1 ≤ i ≤ n, there exist atoms bij such

that ` bij ≤ a, for 1 ≤ j ≤ mi, and mi-ary killing contexts T i{ } such that
the following derivation holds.

V ‖ T ‖ Pi −→ T i
{
bi1, b

i
2, . . . , b

i
mi

}
Hence the following derivation can be constructed.

(T ; U) ‖ V ‖W
−→ (T ; U) ‖ V ‖ T { P1 ; Q1, . . . , Pn ; Qn }
−→ T { (T ; U) ‖ V ‖ (P1 ; Q1) , . . . , (T ; U) ‖ V ‖ (Pn ; Qn) }
−→ T { (T ‖ V ‖ P1) ; (U ; Q1) , . . . , (T ‖ V ‖ Pn) ; (U ; Qn) }
−→ T { T ‖ V ‖ P1, . . . , T ‖ V ‖ Pn }
−→ T

{
T 1
{
b11, b

1
2, . . . , b

1
m1

}
, . . . , T n

{
bn1 , b

n
2 , . . . , b

n
mn

} }
By construction, ` bij ≤ a for all i and j and T

{
T 1{ } , . . . , T n{ }

}
is a∑

imi-ary killing context, as required. The second commutative case for seq
and the commutative case for times are similar, and the cases for negative
atoms are symmetric.

The remaining deep inference cases are when a rule appears in the
context of the proposition. Assume that the following is the bottommost
rule in a proof that applies k + 1 instances of rules.

a ‖ C{ V } −→ a ‖ C{ W }

such that ` a ‖ C{ W } holds by applying k instances of rules. By Lemma 9,
|a ‖ C{ W }| v |a ‖ C{ V }|, hence the induction hypothesis in enabled.
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By the induction hypothesis, there exist atoms bi such that ` bi ≤ a, for
1 ≤ i ≤ n, and n-ary killing context T { } such that the following derivation
holds.

C{ W } −→ T
{
b1, b2, . . . , bn

}
Hence clearly, the following derivation holds, satisfying the induction invari-
ant: C{ V } −→ C{ W } −→ T

{
b1, b2, . . . , bn

}
.

We have covered all cases for the splitting lemma for atoms, thereby
the lemma follows by induction on the size of the proof. 2

4.2 From a Shallow Context to a Deep Context

The context reduction lemma enables a implication that holds in a shallow
context to be extended such that it holds in any context. Notice that the
shallow context, consisting of only the par connective, is analogous to a
sequent which is a context defined only by the meta-level connective comma.
The proof of the context reduction lemma involves a stronger intermediate
induction invariant from which the lemma follows directly.

Lemma 15 (Context reduction) If ` T ‖ V implies ` U ‖ V , for any
V , then ` C{ T } implies ` C{ U }, for any context C{ }.

Proof: Firstly we establish, by induction on the size of the context, the
following stronger property. If ` C{ T }, then there exist Ui for 1 ≤ i ≤ n
and n-ary killing context T { } such that ` T ‖ Ui; and, for any proposition
V there exists Wi such that either Wi = V ‖ Ui or Wi = I and the following
holds:

C{ V } −→ T { W1,W2, . . . ,Wn }

The base case is when the context is of the from { } ‖ P , where the hole
appears directly inside a parallel composition, in which case we are done.

Consider the case for a context of the form (C{ } ⊗ U) ‖ P such that
` (C{ T } ⊗ U) ‖ P . By Lemma 12, there exist n-ary killing context T { }
and propositions Qi and Ri, for 1 ≤ i ≤ n, such that

P −→ T { Q1 ‖ R1, . . . , Qn ‖ Rn }

and ` C{ T } ‖ Qi and ` U ‖ Ri hold.
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By the induction hypothesis, for every i such that 1 ≤ i ≤ n, there exist
mi-ary killing context T i{ } and propositions W i

j such that ` T ‖W i
j holds,

for 1 ≤ j ≤ mi; and, for any proposition V , for 1 ≤ j ≤ mi, there exists Si
j

such that either Si
j = I or Si

j = V ‖W i
j and the following derivation holds:

C{ V } ‖ Qi −→ T i
{
Si
1, . . . , S

i
mi

}
Hence we can construct the following derivation for any proposition V .

(C{ V } ⊗ U) ‖ P −→ (C{ V } ⊗ U) ‖ T { Q1 ‖ R1, . . . , Qn ‖ Rn }
−→ T { (C{ V } ⊗ U) ‖ Qi ‖ Ri : 1 ≤ i ≤ n }
−→ T { (C{ V } ‖ Qi)⊗ (U ‖ Ri) : 1 ≤ i ≤ n }
−→ T { C{ V } ‖ Qi : 1 ≤ i ≤ n }
−→ T

{
T i
{
Si
1, . . . , S

i
mi

}
: 1 ≤ i ≤ n

}
The final proposition above consists of a (

∑
imi)-ary killing context and

propositions Si
j such that either Si

j = I or Si
j = V ‖W i

j for all i, j. Thereby,
the induction invariant is satisfied. The two cases for when the hole appears
on the left or right of a sequential composition are similar to the above case
for times.

Consider the case for a context of the form (C{ }& U) ‖ P such that
` (C{ T }& U) ‖ P . By Lemma 2, ` C{ T } ‖ P and ` U ‖ P hold.

Hence, by the induction hypothesis, there exist killing context T { }
and propositions Vi for 1 ≤ i ≤ n such that ` T ‖ Vi; and, for all propositions
W , for 1 ≤ i ≤ n, there exists Si such that either Si = I or Si = W ‖ Vi and
the following derivation holds:

C{ W } ‖ P −→ T { S1, . . . , Sn }

Hence we can construct a derivation as follows for all propositions W .

(C{ W }& U) ‖ P −→ C{ W } ‖ P & U ‖ P
−→ C{ W } ‖ P & I

−→ T { S1, . . . , Sn }& I

where T { } & { · } is a (n+ 1)-ary killing context and Sn+1 = I, thereby
satisfying the induction invariant. The case when the hole appears on the
right of an external choice is similar.

Consider the case for a context of the form (C{ } ⊕ U) ‖ P where
` (C{ T } ⊕ U) ‖ P . By Lemma 13, there exist killing context T { } and Vi
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for 1 ≤ i ≤ n such that either ` C{ T } ‖ Vi or ` U ‖ Vi and the following
derivation holds:

P −→ T { V1, . . . , Vn }
Now, by the induction hypothesis, if ` C{ T } ‖ Vi holds, then there exist
T i{ } and propositions W i

j for 1 ≤ j ≤ mi such that ` T ‖ W i
j ; and, for

any proposition Q for 1 ≤ j ≤ mi, there exists Si
j where wither Si

j = I or

Si
j = Q ‖W i

j and the following derivation holds:

C{ Q } ‖ Vi −→ T i
{
Si
1, . . . , S

i
mi

}
Hence we can construct the following derivation for any proposition Q.

(C{ Q } ⊕ U) ‖ P −→ (C{ Q } ⊕ U) ‖ T { V1, . . . , Vn }
−→ T { (C{ Q } ⊕ U) ‖ V1, . . . , (C{ Q } ⊕ U) ‖ Vn }
−→ T { R1, . . . , Rn }

where Ri is defined as follows.

Ri =

{
I if ` U ‖ Vi
T i
{
Si
1, . . . , S

i
mi

}
otherwise

The above is well-defined since if ` U ‖ Vi holds, then

(C{ Q } ⊕ U) ‖ Vi −→ U ‖ Vi −→ I = Ri

and, if ` U ‖ Vi does not hold, then ` C{ T } ‖ Vi must hold; hence the
following derivation can be applied:

(C{ Q } ⊕ U) ‖ Vi −→ C{ Q } ‖ Vi −→ T i
{
Si
1, . . . , S

i
mi

}
= Ri

Hence the induction invariant is satisfied.
Having established the stronger intermediate lemma, assume that for

any local proposition U , ` S ‖ U implies ` T ‖ U , and fix any context
C{ } such that ` C{ S } holds. By the above intermediate lemma, there
exist n-ary killing context T { } and, for 1 ≤ i ≤ n, Pi such that either
Pi = I or there exists Wi where Pi = T ‖Wi and ` S ‖Wi, and furthermore
C{ T } −→ T { P1, . . . , Pn }. Since also ` T ‖ Wi holds for 1 ≤ i ≤ n, the
following proof can be constructed.

C{ T } −→ T { P1, . . . , Pn } −→ T { I, . . . , I } −→ I

Therefore ` C{ T } holds as required. 2

Note that the above lemma corrects a flaw present in the corresponding
lemma in [9]:Lemma 14. In particular, the possibility that Wi = I in the
induction invarient is required to handle the additives, even if the operator
seq is removed.
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4.3 Co-rule Elmination and Cut Elimination

By a complementary rule, or co-rule, we mean a rule where the direction of
rewriting is reversed and complementation is applied to both propositions in
the rewrite rule. Given a rule of the form P −→ Q, its co-rule is of the form
Q −→ P . The full list of co-rules are presented in Fig. 3. Note that switch
is its own co-rule.

The following results show that the rules complimentary to those that
appear in Fig. 2 are admissible in MAV. The proofs of the following lemmata
follow from applying splitting exhaustively and finally applying the context
lemma (Lemma 15). Note that admissibility results for two rules — the
co-rules for the left and right rules, co-left and co-right respectively — were
proven directly in Lemma 2.

Lemma 16 (Co-tidy Elimination) If ` C{ I⊕ I }, then ` C{ I }.

Proof: Assume that ` (I⊕ I) ‖ T holds. By Lemma 13, there exist
killing context T { } and propositions Ui, for 1 ≤ i ≤ n, such that ` I ‖ Ui

or ` I ‖ Ui hold, hence ` Ui holds, and the following derivation can be
constructed.

T −→ T { U1, U2, . . . , Un }
Hence the following proof can be constructed, as required.

T −→ T { U1, U2, . . . , Un } −→ T { I, I, . . . , I } −→ I

Hence ` I ‖ T holds. Therefore, by Lemma 15, for any context ` C{ I⊕ I }
yields ` C{ I }, as required. 2

Lemma 17 (Co-external Elimination)

If ` C{ T ⊗ (U ⊕ V ) }, then ` C{ (T ⊗ U)⊕ (T ⊗ V ) }.

Proof: Assume that ` ((T ⊕ U)⊗ V ) ‖ W holds. By Lemma 12, there
exist killing context T { } and propositions Pi and Qi, for 1 ≤ i ≤ n, such
that ` (T ⊕ U) ‖ Pi and ` V ‖ Qi and the following derivation holds:

W −→ T { P1 ‖ Q1, . . . , Pn ‖ Qn }

Now, by Lemma 13, for every i, there exists killing context T i{ } and
propositions Ri

j , for 1 ≤ j ≤ mi, such that either ` T ‖ Ri
j or ` U ‖ Ri

j

holds and the following derivation holds:

Pi −→ T i
{
Ri

1, R
i
2, . . . , R

i
mi

}
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I & I −→ I tidy a ‖ b −→ I only if a ≤ b atomic interaction

(T ⊗ U) ‖ V −→ T ⊗ (U ‖ V ) switch

(T ; U) ‖ (V ; W ) −→ (T ‖ V ) ; (U ‖W ) sequence

T ⊕ U −→ T left T ⊕ U −→ U right

T ‖ (U & V ) −→ (T ‖ U) & (T ‖ V ) external

(T ; U) & (V ; W ) −→ (T & V ) ; (U &W ) medial

I −→ I⊕ I co-tidy I −→ a⊗ b only if a ≤ b atomic co-interaction

(T ⊗ V ) ; (U ⊗W ) −→ (T ; U)⊗ (V ; W ) co-sequence

T −→ T & U co-left U −→ T & U co-right

(T ⊗ U)⊕ (T ⊗ V ) −→ T ⊗ (U ⊕ V ) co-external

(T ⊕ V ) ; (U ⊕W ) −→ (T ; U)⊕ (V ; W ) co-medial

Figure 3: Term rewriting system modulo an equational theory for SMAV.
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Notice that if ` T ‖ Ri
j holds then the following derivation can be constructed.

(T ⊗ V ⊕ U ⊗ V ) ‖ Ri
j ‖ Qi −→ (T ⊗ V ) ‖ Ri

j ‖ Qi

−→
(
T ‖ Ri

j

)
⊗ (V ‖ Qi)

−→ I

Otherwise ` U ‖ Ri
j holds, hence the following derivation can be constructed.

(T ⊗ V ⊕ U ⊗ V ) ‖ Ri
j ‖ Qi −→ (U ⊗ V ) ‖ Ri

j ‖ Qi

−→
(
U ‖ Ri

j

)
⊗ (V ‖ Qi)

−→ I

Hence we can construct the following proof, as required.

(T ⊗ V ⊕ U ⊗ V ) ‖W
−→ (T ⊗ V ⊕ U ⊗ V ) ‖ T { P1 ‖ Q1, . . . , Pn ‖ Qn }
−→ (T ⊗ V ⊕ U ⊗ V ) ‖ T

{
T i
{
Ri

1, R
i
2, . . . , R

i
mi

}
‖ Qi : 1 ≤ i ≤ n

}
−→ (T ⊗ V ⊕ U ⊗ V ) ‖ T

{
T i
{
Ri

j ‖ Qi : 1 ≤ j ≤ mi

}
: 1 ≤ i ≤ n

}
−→ T

{
(T ⊗ V ⊕ U ⊗ V ) ‖ T i

{
Ri

j ‖ Qi : 1 ≤ j ≤ mi

}
: 1 ≤ i ≤ n

}
−→ T

{
T i
{

(T ⊗ V ⊕ U ⊗ V ) ‖ Ri
j ‖ Qi : 1 ≤ j ≤ mi

}
: 1 ≤ i ≤ n

}
−→ T

{
T i{ I : 1 ≤ j ≤ mi } : 1 ≤ i ≤ n

}
−→ I

Hence ` (T ⊗ V ⊕ U ⊗ V ) ‖ W holds. Therefore, by Lemma 15, for any
context ` C{ (T ⊕ U)⊗ V } yields ` C{ T ⊗ V ⊕ U ⊗ V }, as required. 2

Lemma 18 (Co-seqence Elimination) If ` C{ (T ; U)⊗ (V ; W ) } then
` C{ (T ⊗ V ) ; (U ⊗W ) }.

Proof: Assume that ` ((T ; U)⊗ (V ; W )) ‖ P holds. By Lemma 12,
there exist n-ary killing context T { } and Q0

i and Q1
i , for 1 ≤ i ≤ n, such

that ` (T ; U) ‖ Q0
i and ` (V ; W ) ‖ Q1

i and the following derivation holds:

P −→ T
{
Q0

1 ‖ Q1
1, Q

0
2 ‖ Q1

2, . . . , Q
0
n ‖ Q1

n

}
Hence by Lemma 12, for k ∈ {0, 1} there exists mk

i -ary killing context T k
i { }

and propositions Rk
i,j and Sk

i,j , for 1 ≤ j ≤ mk
i , such that ` T ‖ R0

i,j and

` U ‖ S0
i,j and ` V ‖ R1

i,j and `W ‖ S1
i,j and the following derivation holds:

Qk
i −→ T k

i

{
Rk

i,1 ; Sk
i,1, R

k
i,2 ; Sk

i,2 . . . , R
k
i,mi

; Sk
i,mi

}
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Hence we can construct the following proof.

((T ⊗ V ) ; (U ⊗W )) ‖ P
−→ ((T ⊗ V ) ; (U ⊗W )) ‖ T

{
Q0

1 ‖ Q1
1, Q

0
2 ‖ Q1

2, . . . , Q
0
n ‖ Q1

n

}
−→ ((T ⊗ V ) ; (U ⊗W )) ‖ T


T 0
i

{
R0

i,j ; S0
i,j : 1 ≤ j ≤ m0

i

}
‖ T 1

i

{
R1

i,k ; S1
i,k : 1 ≤ k ≤ m1

i

}
: 1 ≤ i ≤ n


−→ ((T ⊗ V ) ; (U ⊗W )) ‖ T


T 1
i


T 0
i

{
R0

i,j ; S0
i,j

: 1 ≤ j ≤ m0
i

}
‖
(
R1

i,k ; S1
i,k

)
: 1 ≤ k ≤ m1

i


: 1 ≤ i ≤ n



−→ ((T ⊗ V ) ; (U ⊗W )) ‖ T


T 1
i


T 0
i


(
R0

i,j ; S0
i,j

)
‖
(
R1

i,k ; S1
i,k

)
: 1 ≤ j ≤ m0

i


: 1 ≤ k ≤ m1

i


: 1 ≤ i ≤ n



−→ ((T ⊗ V ) ; (U ⊗W )) ‖ T


T 1
i


T 0
i


(
R0

i,j ‖ R1
i,k

)
;(

S0
i,j ‖ S1

i,k

)
: 1 ≤ j ≤ m0

i


: 1 ≤ k ≤ m1

i


: 1 ≤ i ≤ n


−→ T


T 1
i


T 0
i


((T ⊗ V ) ; (U ⊗W ))

‖
((
R0

i,j ‖ R1
i,k

)
;
(
S0
i,j ‖ S1

i,k

))
: 1 ≤ j ≤ m0

i


: 1 ≤ k ≤ m1

i


: 1 ≤ i ≤ n



−→ T


T 1
i


T 0
i


(

(T ⊗ V ) ‖ R0
i,j ‖ R1

i,k

)
;(

(U ⊗W ) ‖ S0
i,j ‖ S1

i,k

)
: 1 ≤ j ≤ m0

i


: 1 ≤ k ≤ m1

i


: 1 ≤ i ≤ n



−→ T


T 1
i


T 0
i


((
T ‖ R0

i,j

)
⊗
(
V ‖ R1

i,k

))
;((

U ‖ S0
i,j

)
⊗
(
W ‖ S1

i,k

))
: 1 ≤ j ≤ m0

i


: 1 ≤ k ≤ m1

i


: 1 ≤ i ≤ n


−→ T

{
T 1
i

{
T 0
i

{
I : 1 ≤ j ≤ m0

i

}
: 1 ≤ k ≤ m1

i

}
: 1 ≤ i ≤ n

}
−→ I
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Hence ` ((T ⊗ V ) ; (U ⊗W )) ‖ P holds. Therefore, by Lemma 15, for
any context ` C{ (T ; U)⊗ (V ; W ) } yields ` C{ (T ⊗ V ) ; (U ⊗W ) }, as
required. 2

Lemma 19 (Atomic Co-Interact Elimination) If ` C
{
a⊗ b

}
, where

` a ≤ b, then ` C{ I }.

Proof: Assume for atoms a and b, where ` a ≤ b, `
(
a⊗ b

)
σ ‖ T .

By Lemma 12, there exist n-ary killing context T { } and formulae Ui

and Vi such that ` a ‖ Ui and ` b ‖ Vi, for 1 ≤ i ≤ n, such that
T −→ T { U1 ‖ V1, U2 ‖ V2, . . . }. By Lemma 14, for every i, there exist m0

i -

ary killing contexts T 0
i { } and atoms cji such that ` cji ≤ a for 1 ≤ j ≤ m0

i

such that Ui −→ T 0
i

{
c1i , . . . , c

m0
i

i

}
. By Lemma 14, for every i, there

exist m1
i -ary killing contexts T 1

i { } and atoms dki such that ` b ≤ dki for

1 ≤ k ≤ m1
i such that Vi −→ T 1

i

{
d1i , . . . , d

m1
i

i

}
. Also, since ` cji ≤ a and

` a ≤ b and ` b ≤ dki , by the transitivity of ≤ for atoms, ` cji ≤ dki . Thereby
the following derivation holds, by repeatedly applying the external rule.

T −→ T { U1 ‖ V1, U2 ‖ V2, . . . }
−→ T

{
T 0
i

{
cji : 1 ≤ j ≤ m0

i

}
‖ T 1

i

{
dki : 1 ≤ k ≤ m1

i

}
: 1 ≤ i ≤ n

}
−→ T

{
T 1
i

{
T 0
i

{
cji : 1 ≤ j ≤ m0

i

}
‖ dki : 1 ≤ k ≤ m1

i

}
: 1 ≤ i ≤ n

}
−→ T

{
T 1
i

{
T 0
i

{
cji ‖ dki : 1 ≤ j ≤ m0

i

}
: 1 ≤ k ≤ m1

i

}
: 1 ≤ i ≤ n

}
−→ T

{
T 1
i

{
T 0
i

{
I : 1 ≤ j ≤ m0

i

}
: 1 ≤ k ≤ m1

i

}
: 1 ≤ i ≤ n

}
−→ I

Hence ` T holds. Therefore, by Lemma 15, for any context C{ }, if
` C
{
a⊗ b

}
holds, then ` C{ I } holds, as required. 2

Proof of Theorem 3. Theorem 3 follows from the above co-rule elimina-
tion results, by induction on the size of the proposition eliminated. Thereby
we establish the consistency of the system MAV. The conclusion of the proof
of Theorem 3 is provided below.
Proof: The proof follows by inductively applying co-rule elimination on
the structure of a proposition T appearing in a provable proposition of the
form C

{
T ⊗ T

}
.

The base cases for any atom a follows since subsorting over atoms is
reflexive hence if ` C{ a⊗ a } then ` C{ I } by Lemma 19. The base case
for the unit is immediate.
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As the induction hypothesis in the following cases assume that, for any
contexts, ` C

{
T ⊗ T

}
yields C{ I } and ` D

{
U ⊗ U

}
yields D{ I }.

Consider when the root connective in the formula is the times oper-
ator. Assume that ` C

{
T ⊗ U ⊗

(
T ‖ U

) }
holds. By the switch rule,

` C
{ (

T ⊗ T
)
‖
(
U ⊗ U

) }
holds. Hence, by the induction hypothesis twice,

` C{ I } holds. The case for when parallel composition is the root connective
is symmetric to the case for times.

Consider when the root connective in the formula is parallel composition
operator. Assume that ` C

{
(T ; U)⊗

(
T ; U

) }
holds. By Lemma 18,

` C
{ (

T ⊗ T
)

;
(
U ⊗ U

) }
holds. Hence, by the induction hypothesis twice,

` C{ I } holds.
Consider when the root connective in the formula is the & opera-

tor. Assume that ` C
{

(T & U)⊗
(
T ⊕ U

) }
holds. By Lemma 17, it

holds that ` C
{

(T & U)⊗ T ⊕ (T & U)⊗ U
}

. By Lemma 2 twice, `
C
{
T ⊗ T ⊕ U ⊗ U

}
holds. Hence by the induction hypothesis twice, `

C{ I⊕ I } holds. Hence by Lemma 16, ` C{ I } holds, as required. The case
for when internal choice, ⊕, is the root connective is symmetric to the case
for external choice.

This completes the case analysis. Therefore, by induction on the size of
the proposition T , if ` C

{
T ⊗ T

}
holds, then ` C{ I } holds. 2

The above proof follows a similar pattern to Proposition 3, except that
a co-rule elimination lemma is applied at each step. The above theorem is
constructive, hence a cut elimination algorithm can be extracted from this
proof that could be machine checked.

A symmetric term rewriting system. Note that no elimination result
for the co-medial rules was required to establish cut elimination (Theorem 3).
The co-medial rule can be eliminated directly using Corollary 1.

Lemma 20 If ` C{ (T ; U)⊕ (V ; W ) } then ` C{ (T ⊕ V ) ; (U ⊕W ) }.
Proof: Assume that ` C{ (T ; U)⊕ (V ; W ) }. The following proof holds
in MAV.

(T ; U)⊕ (V ; W )( (T ⊕ V ) ; (U ⊕W )

−→
((
T ; U

)
‖ ((T ⊕ V ) ; (U ⊕W ))

)
&
((
V ; W

)
‖ ((T ⊕ V ) ; (U ⊕W ))

)
−→

((
T ; U

)
‖ (T ; U)

)
&
((
V ; W

)
‖ (V ; W )

)
−→ I & I −→ I

Hence, by context closure in Corollary 1, the following is provable.

` C{ (T ; U)⊕ (V ; W ) }( C{ (T ⊕ V ) ; (U ⊕W ) }
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Furthermore, by transitivity in Corollary 1, a proof of the following can be
constructed in MAV, as required: ` C{ (T ⊕ V ) ; (U ⊕W ) }. 2

Co-rules are interesting in their own right, since derivations extended
with all co-rules coincide with provable linear implications. Suppose that
SMAV is the system MAV extended with all co-rules. The following corollary
is an immediate consequence of Theorem 3, the proof being standard for
related calculi with a cut elimination result.

Corollary 2 ` V ( U if and only if U −→ V in SMAV.

The advantage of the former definition of linear implication, using provability,
is that MAV is in some sense analytic [5, 7], hence the length of derivations
is bounded. In contrast, in SMAV many co-rules can be applied infinitely.

5 The Complexity of MAV

We explore some immediate consequences of cut elimination. Firstly, we
prove that MAV is a conservative extension of MALL with mix. Secondly,
this observation is used to establish the complexity class of MAV.

5.1 A Conservative Extension with the Operator Seq.

To establish that MAV is a conservative extension of MALL, we must establish
that, for any proposition T in MALL, i.e. without the seq operator, ` T
holds in MAV if and only if ` T holds in MALL. The proof is divided into
the following two lemmas.

Lemma 21 For any proposition T in MALL, if ` T holds in MALL, then
` T holds in MAV.

Proof: The proof is by induction on the depth of the proof tree in
MALL. For sequents define the following transformation for proposition T
and sequents Γ and ∆.

JT K = T JΓ,∆K = JΓK ‖ J∆K

Consider the base cases. ` a, b follows from the atomic interact axiom
in MALL only if a ≤ b holds, hence Ja, bK −→ I by the atomic interact rule
in MAV. If ` I, then trivially I is provable.

Consider the inductive case for times. If ` Γ,∆, T ⊗ U follows from
proofs of ` Γ, T and ` ∆, U in MALL, then by the induction hypothesis
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JΓ, T K and J∆, UK are provable in MAV. Hence the following proof can be
constructed in MAV.

JΓ,∆, T ⊗ UK −→ JΓ, T K⊗ J∆, UK −→ I

Consider the inductive case for par. If ` Γ, T ‖ U follows from `
Γ, T, U , then by the induction hypothesis JΓ, T, UK is provable in MAV, and
furthermore JΓ, T, UK ≡ JΓ, T ‖ UK, hence we are done.

Consider the inductive case for mix. If ` Γ,∆ follows from a proof of
` Γ and ` ∆, then by the induction hypothesis JΓK and J∆K is provable in
MAV. Hence the following proof can be constructed in MAV: JΓ,∆K −→ I.

Consider the inductive case for with. If ` Γ, T & U follows from proof
of ` Γ, T and ` Γ, U in MALL, then by the induction hypothesis JΓ, T K and
JΓ, UK are provable. Hence the following proof can be constructed in MAV.

JΓ, T & UK −→ JΓ, T K & JΓ, UK −→ I & I −→ I

Consider the inductive cases for plus. Without loss of generality consider
the left rule. If ` Γ, T ⊕ U follows from a proof of ` Γ, T , then by the
induction hypothesis JΓ, T K is provable in MAV. Hence the following proof
can be constructed in MAV.

JΓ, T ⊕ UK −→ JΓ, T K −→ I

Hence, by induction on the depth of a proof tree in MALL, if ` Γ, then
JΓK is provable in MAV. Since JT K = T , we are done. 2

Notice that in a proposition that does not involve seq operator, the seq
operator can be introduced in an intermediate state of the proof by a rule
of the following form C{ (T ; I) ‖ (I ; U) } −→ C{ (T ‖ I) ; (I ‖ U) }, where
T 6≡ I and U 6≡ I. The proof of the following proposition checks that such
scenarios do not increase the number of propositions from MALL that are
provable in MAV.

By applying Theorem 1, we can establish the following contrapositive
to Lemma 21.

Lemma 22 For any proposition T in MALL, i.e. without the seq operator,
if ` T holds in MAV, then ` T holds in MALL.

Proof: The trick is to define a function s(T ) over propositions, that
transforms every occurrence of seq to par, as follows, where � ∈ {‖,⊗,⊕,&}
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is any binary connective.

s(T ; U) = l(T ) ‖ l(U) s(T � U) = l(T )� l(U)

s(I) = I s(a) = a s(a) = a

We now aim to establish that if ` T holds in MAV, then ` s(T ) is also
provable in MALL. By establishing this stronger property, the lemma follows
since for propositions P in MALL, s(P ) = P since seq never occurs in MALL.

Firstly, observe that the following equivalences hold.

• s((T ; U) ; V ) ≡ s(T ; (U ; V )),

• s(I ; T ) ≡ s(T ),

• s(T ; I) ≡ s(T ).

Therefore if T ≡ U , then s(T ) ≡ s(U).
The base case is when T ≡ I is a proof of length 0 in MAV. In this

s(T ) ≡ I hence the following is a proof in MALL.

` s(T )

Now consider proofs in MAV of length n+ 1 of the following form.

W ≡ C{ U } −→ C{ V } −→ I

where C{ V } has a proof of length n and U −→ V is one instance of any
rule in MAV.

For rules other than sequence and medial, observe that s(U) −→ s(V )
follows by applying the same rule. For example, for the switch rule the
following holds.

s((P ⊗Q) ‖ R) = (s(P )⊗ s(Q)) ‖ s(R)
−→ s(P )⊗ (s(Q) ‖ s(R)) = s(P ⊗ (Q ‖ R))

Furthermore, for all such rules, ` V ( U by Lemma 1.
Consider now the cases of the sequence rule. The following follows by

applying associativity and commutativity of par.

s((P ; Q) ‖ (R ; S)) = (s(P ) ‖ s(Q)) ‖ (s(R) ‖ s(S))
≡ (s(P ) ‖ s(R)) ‖ (s(Q) ‖ s(S)) = s((P ‖ R) ; (Q ‖ S))
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Thereby ` s((P ‖ R) ; (Q ‖ S))( s((P ; Q) ‖ (R ; S)) holds in MALL.
Consider also the case of the medial rule. In this case, observe that the

following holds by definition.

s((P &Q) ; (R& S))( s((P ; R) & (Q ; S))

=
(
s(P )⊕ s(Q)

)
⊗
(
s(R)⊕ s(S)

)
‖ (s(P ) ‖ s(R)) & (s(Q) ‖ s(S))

Thereby ` s((P &Q) ; (R& S))( s((P ; R) & (Q ; S)) holds in MALL by
Lemma 1.

Notice that in each case we have established that ` s(V )( s(U) holds
in MALL and hence ` s(C{ V })( s(C{ U }) holds by Proposition 2. Also
observe that since C{ U } ≡W we have that s(C{ U }) ≡ s(W ) and hence
` s(C{ U })( s(W ) holds in MALL.

Now, by the induction hypothesis, s(C{ V }) is provable in MALL, hence
the following proof can be constructed for W using the rules of MALL and
the cut rule.

s(C{ V }) ` s(C{ V }), s(C{ U })

` s(C{ U }) ` s(C{ U }), s(W )

` s(W )

Hence, by Theorem 1, we can construct a proof of s(W ) in MALL. 2

5.2 Seq Preserves the Complexity Bound.

Proof search in MAV, like MALL, is a PSPACE-complete decision problem.
Lemmas 21 and 22, establish that provability in MAV is PSPACE-hard. It
remains to establish that proof search in MAV is in PSPACE, as sketched in
the following proposition.

Proposition 4 Proof search in MAV is in PSPACE.

Proof: The trick is to observe that branches of the proof separated by the
with operators can be evaluated separately, in the sense that we can fix one
branch of each with operator and never apply any rule inside the context of
that branch. The following measure verifies that such derivations that forbid
deductions in the context of one branch of a with operator are polynomial
in length. For any proof, for a formula of MAV that does not involve the &
operator, define the measure µ(T ) to be the sum of the following:

• the number of occurrences of the ⊕ operator in T .
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• the cardinality of the multiset relation 6;, defined such that for two
occurrences of atoms a and b in T , a 6; b if and only if there is no
C{ }, U and V , such that a occurs in U and b occurs in V such that
T = C{ U ; V }.

• double the cardinality of the multiset relation ∼, defined such that for
any two occurrences of atoms a and b in T , a ∼ b if and only if there is
C{ }, U and V , such that a occurs in U and b occurs in V such that
T = C{ U ‖ V }.

Every rule that is not applied inside a forbidden branch of a with operator
strictly decreases the above measure. Hence a proof of any proposition T
of size n that does not involve the & operator is of length no greater than
µ(T ), where µ(T ) = O

(
n2
)
.

Now suppose that ` T is any proof in MAV. There are at most 2n

independent branches in T to check where n is the number of & operators
that occur in the formula, obtained by hiding one branch of each with
operator. Each of these independent branches can be investigated in parallel
in a universal fashion by an alternating Turing machine [8]. An accepting
state is reached when a proposition is equivalent to the unit. Since the
alternating Turing machine finishes in polynomial time, and AP=PSPACE,
we are done. 2

Note the parallelism induced by independent branches could be illu-
minated further by the proposed formalisms that are more explicit about
concurrent proof search in deep inference, such as formalism B [47]. It
may also be interesting to revisit the above problem in the context of the
interactive proof class IP [42, 34].

The following is the main complexity result of this paper.

Theorem 4 Proof search in MAV is PSPACE complete.

Proof: By Lemma 21 and Lemma 22, the identity embedding of a propo-
sition of MALL in MAV, reduces the problem of provability of a proposition
in MALL to provability of the same proposition in MAV. Since by Theo-
rem 2, provability in MALL is PSPACE-complete, provability in MALL is
PSPACE-hard. Since, by Lemma 4, provability in MALL is in PSPACE, the
problem is PSPACE-complete. 2

The suitability of this complexity bound depends on the application,
e.g. to verifying protocols or to querying provenance, as discussed in the
introduction. Reductions to established PSPACE-complete problems, such
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as certain decision problems for QBF and relational algebra, suggest a path
for the implementation of tools based on MAV.

6 Conclusion and Future Work

This article is a companion paper for a conference paper [11] that observes
connections between operators that appear in the proof calculi BV and MALL
and operators that appear in session types. These observations lead to the
system MAV investigated in this work. Further to the rules directly from
BV and MAV, a rule relating seq from BV and with from MALL called the
medial rule is required. This paper establishes proof theoretic results that
are of primary importance when introducing a new proof calculus.

The main result is the generalised cut elimination result in Theorem 3.
By using cut elimination, many results can be established including the
transitivity of an internal notion of linear implication (Corollary 1), the
completeness of the symmetric extension of MAV (Corollary 2), and several
results concerning session types that appear in the companion paper [11].
This main result follows from a technique developed in the calculus of
structures called splitting. Novel features include the handling of subsorting
for atoms, and the direct splitting of proofs into independent branches to
control the size of the proof search (Lemma 2). The most challenging case is
the principal case for seq in Lemma 12. This particular case is challenging
due to interactions between seq and with, which do not co-exist in any other
published proof calculus, although the problem was acknowledged several
years previously [45]. A termination measure defined over multisets of
multisets of natural numbers is introduced. The preservation of the measure
by the problematic case involves the substantial case analysis in Lemma 10.

The secondary result, in Theorem 4, establishes that proof search in MAV
is PSPACE-complete. This result is included for a more complete picture,
and to suggest an implementation path for a tool that decides provability
by using a reduction to an established PSPACE-complete problem.

In the literature, Ruet [41] presents a cut elimination result for a logical
system in which the additives and both commutative and non-commutative
multiplicatives co-exist, called NL. A distinction between NL and MAV is
that NL has a pair of De Morgan dual non-commutative operators and two
multiplicative units; whereas MAV has a single self-dual non-commutative op-
erator and a single self-dual multiplicative unit. A stronger difference is that
the non-commutative operators in NL are subject to “seesaw” and “entropy”
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rules that together make these operators cyclic in the sense that propositions
can be ordered but the last proposition in a structure is effectively ordered
directly before the first, forming a cycle. Such a cyclic non-commutative
logic has been proposed as an approach to quantum logic [52]. However, the
cyclic non-commutative operators of NL do not meet the requirements of
explicitly ordering events in a finite session of a protocol, as explained in
the companion paper that motivates MAV [11].

The reason for such a thorough proof theoretic treatment of MAV is that
we propose MAV for a range of applications in computer science. Applications
include the verification of propocols using session types, as proposed in the
companion paper [11], and query languages for partially ordered structures
such as provenance diagrams [10, 31]. To be able to use MAV in confidence,
the fact that it is a consistent logical system in a well understood complexity
class, increases confidence that MAV is a “good” model to use in some
objective sense.

The consistency of the system suggests that MAV is a solid starting point
for future investigations into more expressive proof calculi. We know that
the induction measure for splitting presented is not sufficient to handle the
additive units, for which the induction measure would need to be revisited.
However, we know that the techniques presented here adapt to an extension
of MAV with first-order quantifiers. MAV is a finite calculus in which only
finite structures can be presented. In future work, we aim to investigate
extensions for second-order quantifiers [48] and infinite structures [3] that
are likely to be undecidable [46, 32].
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