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—— Abstract

Open bisimilarity is a strong bisimulation congruence for the n-calculus. In open bisimilarity, free names
in processes are treated as variables that may be instantiated; in contrast to late bisimilarity where free
names are constants. An established modal logic due to Milner, Parrow, and Walker characterises late
bisimilarity, that is, two processes satisfy the same set of formulae if and only if they are bisimilar. We
propose an intuitionistic variation of this modal logic and prove that it characterises open bisimilarity. The
soundness proof is mechanised in Abella. The completeness proof provides an algorithm for generating
distinguishing formulae, useful for explaining and certifying whenever processes are non-bisimilar.
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1 Introduction

In this work, we consider open bisimilarity [!3] which ensures processes equivalence under any
context at any point in their execution. Open bisimulation is an appealing choice of equivalence
for state-space reduction due to its lazy call-by-need approach to inputs, which makes it easier to
automate [15]. In such a call-by-need approach, a value received is only observed when it needs to
be used. Furthermore, some process calculi have been shown to enjoy sound and complete algebraic
characterisations with respect to open bisimilarity.

The fine algebraic properties of open bisimilarity may be desirable for some applications. For
many applications, it is desirable to avoid a situation where an equivalence technique proves that
two components are equivalent in a sandbox test environment, when, in fact, they are distinguish-
able when plugged into a larger system. More subtly, processes may change context during execu-
tion [ | 0]; for example, virtual machines migrate between devices, and replicas replace components at
runtime to keep a system live in the face of unavoidable node failures. For some notions of observa-
tional equivalence two processes may be indistinguishable when executed in any context prescribed;
however, if the same two processes execute a few steps and then are migrated to another context,
then it is possible that, from that point, the processes can exhibit observably distinct behaviours.

Process equivalences for the n-calculus coarser than open bisimilarity are prone to limitations
described above. For instance, late bisimilarity [¢] is not a congruence, since it is not preserved by
input prefixes. Furthermore, even if we take the greatest congruence relation contained in late bisim-
ilarity, called late congruence, late congruence is no longer a bisimulation hence is not necessarily
preserved during execution. These issues are remedied by open bisimilarity [13].

The problem we address is the nature of a modal logic characterising open bisimilarity, in the
tradition pioneered by Hennessy and Milner [6]. A modal logic characterising a bisimulation should
have the property that whenever two processes are not bisimilar there should exist a distinguishing
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formula in the modal logic that holds for one process, but not for the other process. Such dis-
tinguishing formulae are useful for explaining why two processes are not bisimilar. Modal logics
characterising late bisimilarity and coarser bisimulations were developed early in the literature on
the mr-calculus, by Milner, Parrow and Walker [9].

A novelty of our modal logic characterising open bisimilarity, which we name OM, is that it is
intuitionistic rather than classical. A non-classical feature of OM is that box and diamond modalities
have independent interpretations, except in special cases such as [7]£f which is equivalent to —(7)tt.
In general, in OM it is rarely the case that box can be defined in terms of diamond and negation.
This contrasts to a classical modal logic we would expect that [7]¢ and —({7)—¢ define equivalent
formulae, however such de Morgan dualities do not hold for most OM formulae.

More profoundly, the law of excluded middle does not hold in OM. For example, the process
ab || c(x) does not satisfy the formula (r)tt V —(7)tt, that is, ab || c(x) ¢ ()t V ={7)tt. The failure
of the formula above relies on the fact that we have not yet fixed whether a = ¢ or a # ¢, which
amounts to the absence of the law of excluded middle for name equality, as observed in related work
on logical encodings of open bisimilarity [16]. In open bisimulation, both a and ¢ are variables that
may or may not be instantiated with the same value.

As a further example, consider the following two processes.

R £ r.(ab.a(x) + a(x).ab + 1) + 1.(ab.c(x) + c(x).ab) S £R+71.(ab || c(x))

The above processes are not open bisimilar. Process R satisfies [7]({(7)tt V =(7)tt) but process S
does not, since there is a 7-transition to process ab || c(x) that we just agreed above does not satisfy
(t)ytt vV ={7)tt. In this example, the absence of the law of excluded middle is necessary for the
existence of a formula distinguishing these processes in OM.

The absence of de Morgan dualities discussed above complicates the construction of distinguish-
ing formulae for processes that are not open bisimilar. For example, 7 and [a = c]7 are not open
bisimilar, so there should be a formula distinguishing these processes. Such a formula is (), for
which 7 | (7)tt and [a = c]r £ (r)tt. This particular construction has a bias towards 7. In the
classical setting of modal logic for late bisimilarity, given such a distinguishing formula, we can
dualise it to obtain another distinguishing formula —(7)tt that has a bias towards [a = c]7, i.e.,
[a = c]t E =(r)tt but 7 ¢ —{r)tt. This dual construction fails in the case of our intuitionistic
modal logic characterising open bisimilarity. In the intuitionistic setting, we have both 7 £ —(7)tt
and [a = c]r £ —(7)tt. To address this problem, our algorithm (c.f. Section 3) simultaneously
constructs two distinguishing formulae, that are not necessarily dual to each other.

The precise semantics is presented in the body of this paper. The techniques are clean and
modular, so results extend to open bisimilarity for more expressive process calculi.

Outline

Section 2 introduces the semantics of Open Milner—Parrow—Walker logic (OM) and states the sound-
ness and completeness results. Section 3 presents the proof of the correctness of an algorithm for
generating distinguishing formulae, which is used to establish completeness of the logic with respect
to open bisimilarity.

2 Open Milner-Parrow—Walker logic (OM)

We recall the syntax and labelled transition semantics for the finite 7-calculus (Fig. 1). All features
are standard: the deadlocked process that can do nothing, the v quantifier that binds private names,
the output prefix that outputs a name on a channel, the input prefix that binds the name received
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Figure 1 Syntax and semantics of the n-calculus, plus symmetric rules for choice and parallel composition,
where n(x(y)) = n(x(y)) = n(xy) = {x,y}, bn(x(y)) = bn(x(y)) = {y} and n(r) = bn(r) = bn(xy) = 0; and
a-conversion is such that vx.P, z(x).P and Z(x).P bind x in P.

on a channel, the silent progress action 7, the name match guard, parallel composition and non-
deterministic choice. There are four types of action ranged over by &, where a free output sends a
free name, whereas a bound output extrudes a v-bounded private name. Stylistically, the semantics
is the late labelled transition system for the m-calculus, where the name on the input channel is a
symbolic place holder for a name that is not chosen until after an input transition.

Histories are used to define both the intuitionistic modal logic and open bisimilarity. Histories
represent what is known about free variables due to how they have been communicated previously
to the environment. There are two types of event to record in a history: The output of a fresh private
name, using action a(x), which is denoted x’; and a (symbolic) input, using action a(z), which is
denoted z'. The only thing that matters about the order of events in the history is the alternation
between the bound outputs and symbolic inputs, since an input variable can only be instantiated
with private names that were output earlier in the history. E.g., for history x° - z/, input variable z
may be instantiated with private name x; in contrast, for history 7 x°, input variable z may not be
instantiated with private name x. This is reflected by the constraints on substitutions in the following
inductive definition.

» Definition 1 (o respecting /). A substitution o invariant on names not in fv(h) is respecting a
history & according to the following inductive definition.
o respecting h x ¢ dom(o) U fv(ho) o respecting h

o respecting € o respecting h - x! o respecting A - x°

Note that the above inductive definition fulfils the role of sets of inequality constraints called dis-
tinctions in the original work on open bisimilarity [13]. The definition above also captures the
alternations between nominal and universal quantifiers in embeddings of open bisimilarity in the
intuitionistic logic LINC [16, 3]. Although distinctions are more general than histories, it is shown
in [16] that given a history 4 and its corresponding distinction D, the corresponding definitions of
open bisimilarity coincide.

2.1 The semantics of the intuitionistic modal logic OM

The semantics of the modal logic OM is defined in terms of the late labelled transitions system
(Fig. 2) and history respecting substitutions (Definition 1). Intuitively, each judgement must hold for
all possible respectful substitutions, which explains the asymmetry between the box and diamond
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PE"w always holds. hi=e (empty)
PE'"¢n¢y iff PE"¢ and P E" ¢,. h- x;’ (na@e)
PE" ¢V b iff PR ¢ or P Eh . h-x (variable)
PE"(x=x)¢p iff PE"¢. ¢ = 1t (true)

P E" (a)¢ if 30, P2 Qand QE"¢. ig (false)
PE"(a@))¢ iff 30, P Qand Q M ¢. ¢A¢  (and)
PE"(a@)¢ iff 30, PL% Qand Q' 9. oV (on)
PE"[x=y]¢ iff Vo respecting h, xo = yo = Po ' ¢o. (x=y)¢ (dia-match)
P E" [a]g iff Vo respecting 1,VQ, Po %% Q = QK" ¢o. (m)¢  (dia-action)

PE'[a@]¢ iff Vo respecting h, YO, Po ZE 0 = Q Mo gg. ¥ =719 (box-match)
PE"[a@)]¢ iff Vo respecting h,VQ, Po 9 0 = Q K< ¢o. (7l (box-action)

Figure 2 Syntax and semantics of the modal logic OM, where « is T or ab; and z is fresh for P, h, and o

modalities. For the diamond modality (), a 7 transition must be possible regardless of the substi-
tution. It is sufficient to consider the identity substitution because applying a respectful substitution
cannot prevent a transition. For the box modality [r] there may exist substitutions o~ other than the
identity substitution enabling a 7o transition, hence we should consider all respectful substitutions.

» Definition 2 (satisfaction). Process P satisfies formula ¢ with history 4, written P " ¢, according
to the inductive definition in Fig. 2. Satisfaction, written P |= ¢, is satisfaction with a history of inputs
xh - ...+ xi, where fv(P) C {xo, ..., x,}.

2.1.1 Why an intuitionistic modal logic?

In the open bisimulation game, every transition step is closed under respectful substitutions. Modal
logic OM reflects in its semantics the substitutions that can be applied to a process. A natural
semantics would be a Kripke-like semantics, where worlds are process-history pairs and the access-
ibility relation relates instances of such world. More precisely, consider a relation on worlds as
follows: (P, h) < (Q, 1) iff there exists a substitution o respecting & such that Po- = Q and ho = I'.
The pair (P, <), where P is the set of worlds, forms a Kripke frame that is reflexive and transitive.
Consequently, we obtain a semantics for an intuitionistic logic, where implication is closed under
respectful substitutions as follows.
PE"¢ D¢ iff Vo respecting h, Po " ¢,0 = Po E' ¢oo

Intuitionistic negation —¢ can then be defined as ¢ D ff.

Recall the example from the introduction ab || ¢(x) £ ()t V =(7)tt, demonstrating that the law
of excluded middle is invalid. Neither ab || ¢(x) E ()t nor ab || c¢(x) E =(7)tt hold. The former
holds only if ab || c(x) is guaranteed to make a 7 transition; but such a transition is only possible
assuming a = ¢, hence ab || ¢(x) £ (r)t. For the latter, we should consider all substitutions which
enable a 7 transition; and, since such a substitution {$} exists, ab || ¢(x) ¢ —(7)tt. Notice that the
satisfaction would hold by forcing the assumption a # c. Of course, for open bisimilarity we make
no a priori assumption about whether a = c or a # ¢, since both are variables that may, or may not,
be instantiated with the same value.

The intuitionistic implication and negation above are used only to explain the origin of OM
and for contrast with properties expected of classical modal logics. The distinguishing formula
algorithm, considered in subsequent sections, does not depend on these connectives.
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2.2 Open bisimilarity, soundness and completeness

We recall the definition of open bisimilarity. Open bisimilarity is a greatest fixed point of symmet-
ric relations closed under all respectful substitutions and labelled transitions actions at every step.
Notice that a symbolic input or output of a fresh private name updates the history.

» Definition 3 (open bisimilarity). Open bisimilarity with history # is the greatest symmetric rela-
tion such that: if P ~" Q then, for all substitutions o respecting &, the following hold, where « is a
7 or ab action and x is fresh for Po, Qo and ho:

Pr%% P = 3Q, Q0% Q@ and P~ Q.
Po @9 P = 30, Qo T 0 and P~ Q.
Po Y9 P = 30/, Qo Y O and P’ ~TE

Open bisimilarity, written P ~ Q, is defined to be open bisimilarity with a history x} - ... - x/, such
that fv(P) U fv(Q) C {xo, ..., X,}.

2.2.1 Soundness and completeness results

The main result of this paper is that, for finite 7-calculus processes open bisimilarity (~) coincides
with the relation between processes with no distinguishing formula (<).

» Definition 4 (logical equivalence). P~ Q is defined whenever, for all ¢, P = ¢ iff Q | ¢.
» Theorem 5 (soundness). For n-calculus processes (including replication), P ~ Q implies P~ Q.
» Theorem 6 (completeness). For finite n-calculus processes, P~ Q implies P ~ Q.

The proof of soundness has been mechanically checked in the proof assistant Abella [2] using
the two-level logic approach [4] to reason about the -calculus semantics specified in AProlog [ 1].
The proof of soundness proceeds by induction on the structure of the logical formulae in the defini-
tion of logical equivalence. The proof of completeness is explained in detail in Section 3. Soundness
extends to infinite m-calculus processes with replication, but completeness holds for decidable frag-
ments such as Fig. 1.

Firstly, we provide examples demonstrating the implications of Theorems 5 and 6. Due to sound-
ness, if two processes are bisimilar, we cannot find a distinguishing formula that holds for one pro-
cess but does not hold for the other process. Due to completeness, if it is impossible to prove that two
process are open bisimilar, then we can construct a distinguishing formula that holds for one process
but does not hold for the other process. Thus Theorems 5 and 6 guarantee that an OM formulae can
be used to characterise non-bisimilarity.

2.2.2 Example processes distinguishable by postconditions

All modalities are essential for the soundness and completeness of OM. Perhaps the least obvious
modality is {x = y). When prefixed with a box modality it indicates a postcondition that always holds
after an action. To see, this consider the process [x = y]r. The judgement [x = y|r E [t[{x = y)tt
holds since for any @ such that ([x = y]7)6 =» 0 it must be the case that xf = y6. Hence, by definition
of diamond, 0 E (x6 = yo)tt iff 0 E tt. In contrast, 7 }£ [7]{x = y)tt since, taking the identity
substitution in the definition of box, 7 5 0, but 0 | {(x = y)tt cannot be proven in general. The
formula [7]{x = y)tt is therefore a distinguishing formula satisfied by [x = y]r but not 7.

The use of {(x = y) as a postcondition contrasts to the use of [x = y] as a precondition. Consider
the same process as above with the formula [x = y](7)tt. Observe that, for substitutions @ such that
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x0 = y0, ([x = y]r)0 5> 0 and O E tt holds, hence ([x = y[r)8 E (r)tt; and thereby the judgement
[x = y]7 E [x = y]{7)tt holds. In contrast, 0 }£ [x = y](T)tt.

We will return to the above two formulae shortly, as they are critical for the algorithm for gener-
ating distinguishing formulae.

2.3 Sketch of algorithm for generating distinguishing formulae

The completeness proof in Section 3 relies on an algorithm for generating distinguishing formulae
for non-bisimilar processes. Here, we provide a sketch of the algorithm executed on key examples.

2.3.1 Example requiring intuitionistic assumptions

The algorithm proceeds over the structure of a tree of moves that show two processes are non-
bisimilar. In base cases, we have a pair of processes where, under a substitution, one process can
make a transition, but the other process cannot match the transition. We revisit two examples of base
cases, discussed previously:

[x = y]r » 0 : The left process leads by ([x = y]r){%x} = 0, but 0 cannot make a 7 transition, under
any substitution; hence [x = y|r £ [x = y|{7)tt and O [ [7]£f are distinguishing formulae.

[x = y]r » 7 : The right process leads by 7 =» 0, but [x = y]r6 can make a 7 transition only when
x0 = y0; hence [x = y]r E [t]{x = y)tt and 7 | (7)1t are distinguishing formulae.

In an inductive case, the two processes cannot be distinguished by an immediate transition.
However, under some substitutions, one process can make a 7 transition to a state, say P’, that, under
the same substitution the other process can only make a corresponding  transition to reach states Q;
that are non-bisimilar to P’. This allows a distinguishing formula to be inductively constructed from
the distinguishing formulae for P’ paired with each Q.

For example, consider how the algorithm would find distinguishing formulae for P and Q below.

P 2r[x=ylt+1+77T + T+77= Q T
T

P £[x=y|r 0= Q) T2 Q)

The first step in the strategy for non-bisimilarity is to show that P can make a 7 transition to
a state that is not bisimilar to any state reachable by a 7 transition from the other process. One
possibility is the transition to P’ as illustrated above. In reply, Q may attempt a corresponding 7
transition either to Q] or Q5. Inductively, we require that P* » O} and P* » Q). Both are instances
of the base case discussed above where we discovered distinguishing formulae for each of them.

This enables us to construct distinguishing formulae for the inductive case. The distinguishing
formula satisfied by P is a diamond followed by the conjunction of the left distinguishing formulae
that is satisfied by P’ in the base cases: 7.[x = y|t + 7+ 7.7 | (7)([7]{x = y)tt A [x = y[()tt). The
distinguishing formula satisfied by Q is a box followed by the disjunction of the right distinguishing
formulae from the base cases: 7 + 7.7 = [7]((T)t&t V [7]H).

To confirm that they are indeed distinguishing formulae for P and Q, swap the processes and
formulae above to observe that each process fails to satisfy the other formula. To be precise, assume
for contradiction that T+7.7 | {(T)([7]{x = y)tt A [x = y|[{T)tt) holds. By definition of (r), this holds
iff either 0  [7]{x = y)@t A [x = y{T)tL or 7 = [7]{x = y)tt A [x = y|(7)tt holds. Now observe that
0 E [x = y]{r)tt holds iff we make the additional assumption in the meta framework that x and y are
persistently distinct, i.e., for all o, xo # yo. In addition, observe that T = [7]{x = y)tt holds iff we
make the additional assumption in the meta framework that x and y are persistently equal, i.e., for
all o, xo = yo. In fact, by these observations we are able to mechanically prove the following in
intuitionistic framework Abella: 7+ 7.7 E (T)([7[{x = y)tt A [x = y|{(T)tt) iff Yx,y. (x =y V x # y).
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Notice that Vx,y. (x =y V x # ) is an instance of the law of excluded middle; hence, assuming the
law of excluded middle, the formula for Q also holds for P; and vice versa. Indeed there would be
no distinguishing formulae for these processes; and hence in a classical framework the modal logic
would be incomplete. Fortunately, since intuitionistic logics do not assume the law of excluded
middle, as long as we evaluate the semantics in an intuitionistic framework, we are able to establish
that Q £ (t)([7]{x = y)tt A [x = y{T)1t), as required.

2.3.2 Example involving private names that are distinguishable

The alternation between inputs and outputs in the history affects what counts as a respectful substi-
tution. Intuitively, respectful substitutions ensure that a private name can never be input earlier than
it was output. Consider the following processes: P £ vx.ax.a(y).t + vx.ax.a(y).[x = y]t £ Q.

These processes are not open bisimilar because P can make the following three transition steps:
vx.ax.a(y).T 2o, a(y).t 40 ¢ I, 0. However, Q can only match the first two steps. At the third
step, a base case of the algorithm for waxy [x = y]r applies. In this case, any substitution @
respecting a'x’y’ where [x = y]t@ Z» 0 is such that y§ = x, x ¢ dom() and af # x, which is
satisfiable. Thus [x = y]r E“*Y [r](x = y)tt and T E“*Y (r)tt. By applying inductive cases, we
obtain vx.ax.a(y).t E (a(x)a)X)tt and vx.ax.a®y).[x = y]r E [a()][a®)][T]{x = y)tt.

2.3.3 Example involving private names that are indistinguishable

In contrast to the previous example, consider the following processes where a fresh name is output
and compared to a name already known: vx.ax ~ vx.ax.[x = a]t.

These processes are open bisimilar, hence by Theorem 5 there is no distinguishing formula. The
existence of a distinguishing formula of the form {(a(x))[x = a]{r)tt is prevented by the history.
Both vx.ax.[x = a]t E {(a(x))[x = a]{(r)tt and vx.ax E {(a(x))[x = a]{T)tt hold. The latter holds
since vx.ax ¢ (a(x))[x = a](r)tt holds if and only if vx.ax %% 0 and 0 £~ [x = al(z)tt. By
definition of [x = a], this holds if only if for all 6 respecting a'x and such that x6 = a6, 0 E** (r)tt.
Clearly O cannot make a 7 transition, hence 0 LS (7)1t does not hold. However, fortunately, there
is no substitution 6 respecting a'x° such that xf = af. By the definition of respecting substitution, 6
must satisfy x ¢ dom(6) and x # a6, contradicting constraint xf = af. Thereby 0 E** [x = a](t)tt
holds vacuously; hence vx.ax £ (@(x))[x = a](r)tt holds as required.

3 Completeness of open bisimilarity with respect to OM

There is a constructive definition of non-bisimilarity. Since bisimilarity is defined in terms of a
greatest fixed point of relations satisfying a certain closure property, non-bisimilarity is defined in
terms of a least fixed point satisfying the dual property. This leads to the following constructive
definition of non-bisimilarity from which a non-bisimilarity algorithm can be extracted. Since non-
bisimilarity is defined in terms of a least fixed point, there is a finite winning strategy, consisting of
a finite tree of moves such that in each branch eventually a pair of processes and a history is reached
such that one process can make a move that the other cannot always match.

» Definition 7 (non-bisimilarity). Firstly, we inductively define the family of relation +", for n € N.
The base case is when, for some respectful substitution one player can make a move, that cannot be
matched by the other player without assuming a stronger substitution. The class of all such pairs of
processes form the base case for the construction of the non-bisimilarity relation, say P +’5 Q. More
precisely, the relation +g is the least symmetric relation such that for any P and Q, P +g QO whenever
there exist process P’, action & and substitution o respecting #, such that the following holds.

Po ™% P, for x € bn(r), x is fresh for Po, Qo and ho, and there is no Q’ such that Qo %% Q’.
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Inductively, +", | is the least symmetric relation extending +! such that P +" O whenever for
some substitution o~ respecting h, one of the following holds, where « is 7 or ab:

Po %% P’ and for all Q; such that Qo %» Q;, P’ +' Q,.

Po 229, P’ and for all Q; and x fresh for Por, Qo and hor, such that Qo- 2% Q;, P’ +17¥ ;.

Po %29, P and for all Q; and x fresh for Po-, Qo and ho, such that Qo o), 0, P +z‘7'-"i 0;.

Thereby, the relation P +/ Q contains all processes that can be distinguished by a strategy with depth
at most n, i.e., at most n moves are required to reach a pair of processes in +g, at which point there
is an accessible world in which a process can make a move that the other process cannot match.
The relation +", pronounced non-bisimilarity with history A, is defined to be the least relation
containing +” for all n € N, i.e. [,y +". Similarly to open bisimulation, P + Q is defined as

P 451 Q where fv(P) U fv(Q) C {x1, ... xu,}.

3.1 Preliminaries
We require the following terminology for substitutions, and abbreviations for formulae.

» Definition 8. Composition of substitutions ¢~ and 0 is defined such that P(o - ) = (Po), for all
processes P. For substitutions o and 6, o < 6 whenever there exists o such that o-0” = 6. For a finite
substitution o= = {%4,} - {%4,} the formula [o"|¢ abbreviates the formula [x, = z,]...[x; = z/]é.
Similarly, {o")¢ abbreviates (x, = z,)...{x; = z1)¢. For finite set of formulae ¢;, formula \/; ¢;
abbreviates ¢; V...V ¢,, where the empty disjunction is ff. Similarly /\; ¢; abbreviates ¢; A ... A @y,
where the empty conjunction is tt.

We require the following technical lemmas. The first (image finiteness, as used in [5]) ensures
that there are finitely many reachable states in one step, up to renaming. The second extends the
definition of the box-match modality to finite substitutions. The third is required in inductive cases
involving bound output and input. The fourth is a monotonicity property for satisfaction. The fifth
is a monotonicity property for transitions ensuring names bound by label are not changed by a
substitution.

» Lemma 9. For process P and action r there are finitely many P; such that P Z» P;.

» Lemma 10. Iffor all 0 respecting h and o < 6, it holds that PO =" ¢6, then P " [o|¢ holds.
» Lemma 11. [f o - 6 respects h, then 0 respects ho.

» Lemma 12. If P =" ¢ holds then PO ="’ ¢ holds for any 0 respecting h.

» Lemma 13. If P Z» Q then PO % Q6, for all 8 such that if x € bn(r) and y8 = x then x = y.

3.2 Algorithm for distinguishing formulae

The constructive definition of non-bisimilarity gives a tree of substitutions and actions forming a
strategy showing that two processes are not open bisimilar. The following proposition shows that
OM formulae are sufficient to capture such strategies. For any strategy that distinguishes two pro-
cesses, we can construct distinguishing OM formulae. A distinguishing formula holds for one pro-
cess but not for the other process. Furthermore, there are always at least two distinguishing formulae,
one biased to the left and another biased to the right, as in the construction of the proof for the fol-
lowing proposition. As discussed in the introduction, the left bias cannot be simply obtained by
negating the right bias and vice versa; both must be constructed simultaneously and may be unre-
lated by negation.
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» Proposition 14. If P » Q then there exists ¢, such that P = ¢; and Q £ ¢;, and also there exists
¢r such that Q = ¢g and P £ ¢g.

Proof. Since +" is defined by a least fixed point over a family of relations +", if P +" Q, there exists
n such that P+ Q, so we can proceed by induction on the depth of a winning strategy.

In the base case, assume that P +g 0, hence by definition, for substitution o respecting A,
Po %% P, for x € bn(n), x is fresh for Po, Qo and ho, such that there is no Q' such that Qo X%
Q’, up to symmetry of +". There exist finitely many pairs of variables x; and yj, selected from
fv(P)Utv(Q) Ufv(r) such that x ;o # y;o, and, for any R and substitution 6 respecting h, if Q6 =6,
there exists j such that x;6 = y;6. To see why, assume for contradiction that there is some 6 respecting
h such that QG R but there is no x and y in fv(P) U fv(Q) U fv(xr) such that xo- # yo and x60 = y#f.
Stated otherwise, for all x and y in fv(P) U fv(Q) U fv(rr) if x6 = y0 then xo = yo, which is precisely
the definition of a function, i.e. substitution, say €', defined on fv(P6) U fv(Q68) U fv(n6) such that
6" maps z6 to zo~. In that case, 6 - ' = o on fv(P) U fv(Q) U fv(n); and hence, by Lemma 13, since
for x € bn(n), x is fresh, 000’ 2% R¢’ contradicting the initial assumption for the base case that no
transition Qo % Q' exists for any Q.

In this case, there are two distinguishing formulae [o"[{m)tt and [x]\/ {(x; = y;)tt biased to P
and Q respectively. There are four cases to check to confirm that these are distinguishing formulae.

Case P E" [o](n)tt: Consider all 6 respecting i such that o < 6. By definition there exists ¢
such that o - @ = 0, so since Po- 2% P’, by Lemma 13, P9 . Pe. Thereby, since P’¢’ E
holds, P " (n6)tt. Hence, by Lemma 10, P " [o[(r)tt.

Case Q " [o](x)tt : Assume Q E" [o]{(n)tt for contradiction. Now, since o respects h and
o < o, by Lemma 10, Q " [o](n)tt holds only if Qo- E" (no)tt holds; which holds only if
there exists Q' such that Qo ™ Q’, contradicting the assumption that no such Q’ exists. Thereby
Q" [o(m)tt.

Case Q E" [n]V;{x; = y;)tt: Consider substitutions @ respecting 7 and Q" such that Q6 %% Q'.
It must be the case that there exists j such that x;6 = y;6, thereby Q' E" (x;6 = y;6)tt holds;
hence clearly Q" " (\/j(xj = yj)tt)G holds. Hence Q " [7]\/ (x; = y)tt.

Case P |£" [r]V {x; = y;)tt : Assume for contradiction P " [r]\/ (x; = y;)tt. This holds iff
for all processes S and substitutions 6 respecting s, P % S implies S E" (\/j(xj =y j)tt)ﬁ.
Since we know that o respects h and Po- ™% P’, we have P’ " (\/ Kxj = y_,-)t)o-. This holds
only if for some j, P’ E" (x;o = y;o)tt; hence, xjo = y;o for some j, which contradicts the
assumption that x;o- # y;o. Thereby P " [x]V/ ;(x; = y)tt.

Now consider the inductive cases. Given P, Q, if P +Z +1 @, up to symmetry of Apz .1 there are
three cases to consider, for some substitution o respecting h, where « is either 7 or ab:

Po %% P’ and for all Q; such that Qo %% Q;, P’ +'" Q;.

Po 9, P and for all Q; and x fresh for Po, Qo- and ho, such that Qo C& 0, P/ 7 Q.

Po %29, P’ and for all Q; and x fresh for Por, Q- and hor, such that Qo 2% Q;, P’ +17* Q.
We consider the second case above involving bound output only, the other two cases are similar —
differing only in the accounting for respectful substitutions according to Def. 1.

For Po- “Z%, P’ by Lemma 9, there exist finitely many Q; such that Qo “Z%% ;. For each i,
since P’ #!7*" (;, by the induction hypothesis, there exist ¢" and ¢¥ such that P’ """ ¢Lo and

Q; " ¢to and P ' ¢Ro and Q; E" ¢Ro. Furthermore, assume that o is minimal with

af(x)

respect to the order over substitutions in the sense that, if 6 < ¢ is such that P === P”, where x is

fresh for P§, 06 and A, and for all Q" such that Q8 “%s 0, P +10%" (" then 6 = o
By a similar argument to the base case, there are finitely many pairs of variables x; and y; selected
from fv(P) U fv(Q) U {a} such that x;jo- # y;o and, for any substitution 6 respecting #, if, for some
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S, 00 %9, S then either: there exists some J such that x;6 = y;6; or both o < § and 6 < ¢ hold and
hence there exist i and ¢ such that o - ¢ = 8 and S;0’ = S. Notice cases where 6 < ¢ are eliminated
by minimality of 0.

From the above, distinguishing formulae [o"[(@(x)) \; ¢+ and [a(x)](\/; ¢F v/ j(x; = y;)) can be
constructed. There are four cases to consider to verify these are indeed distinguishing formulae.

Case P E" [o]{a(x))\; ¢l{‘ : Consider all 8 such that o < 6, 6 respects h, and without loss of
generality x is fresh such that x ¢ dom(6) and x ¢ fv(h6). By definition, there exists " such that
o -8 = 6. Now since o - 6 respects h, by Lemma 11, 8’ respects ho hence since x ¢ dom(6’)
and x ¢ fv(ho¢'), 6 respects ho - x°. Thereby since ¢ respects ho - x° and also P’ " Plo
holds, by Lemma 12, it holds that ¢’ ="*" ¢~6. The above holds for all i, hence it holds that

PO E"Y A, ¢k6. Now, since Por 47, pP’, by Lemma 13, since x is fresh, PO W0 prg’ holds:

and hence PO " ((@(x))\; ¢ )0 holds. Thereby, by Lemma 10, P E" [o|(@(x))\; ¢ holds.
Case Q " [o](a(x))\; ¢iL : Assume for contradiction that Q E" [o](a(x))\; ¢*. Since o re-

spects h and o < o, by Lemma 10, the above assumption holds only if Qo " ((E(x)) Ni ¢iL)0'

holds. Now Qo E"" (ac(x))\; ¥ holds only if there exists Q' such that Qo “ZY% (' and
Q' E"¥ N, ¢Lo, which holds only if Q" E"*" ¢ko for all i. Notice that Q" = Qy for some &,
and therefore Qx "7 ¢Lo; but it was assumed that Qx ¥ ¢Lo leading to a contradiction.
Therefore Q " [o]{a(x)) N\, ¢

Case Q E" [a(x)]( Viq)fz V V;{x; = yj)tt): Fix Q" and 6 respecting h such that Q6 CLEY
and without loss of generality assume x is fresh such that x ¢ dom(f) and x ¢ fv(h6). There
are two sub-cases to consider. Firstly consider where for some k, x;0 = y;0, in which case it
holds that Q" " (x;6 = yy0)tt, and hence Q" K" (\/;¢% v \/ j(x; = y;)tt)6, by definition
of disjunction. Secondly consider where there exists 6 such that o - 8 = 6 and for some ¢,
Qo a7, Q¢ such that Q8" = Q'. Now since o - 6 respects h, by Lemma 11, 6 respects ho,
hence by definition of respectful substitutions, since x ¢ dom(6) and x ¢ fv(h6), 8’ respects ho - x°.
Thereby, by Lemma 12, since Q¢ E"7 ¢Ro- and ¢’ respects ho - x°, Q8 E"**" ¢R0 holds. Hence
Q" EM (/6% v \/ {x; = y;)1t)0, by definition of disjunction. Thus by definition of [a(x)], we
can conclude that Q " [a(x)](\/; ¢% v V/ {x; = y;)tt) holds.

Case P [£" [a(x)](Vi¢] Vv V(x; = y;)tt): Assume P E" [a(0)](V;¢f v V (x; = yj)tt) for
contradition. Since o respects h and Po- %29 P’| the previous assumption can hold only if
P EYY (ViR vV (xj = yj)tt)o. This holds only if, for some i, P’ E""* ¢Ro, or, for
some j, P’ MY (xjo = yjo)ytt. However, for all i, P’ "7 ¢Ro; and also, for all j, we
have x;o # y;o and P’ " (x;0 = y;o)tt, leading to a contradiction in either case. Thereby

PR [a@)]( Vi ¢f v V (x; = yj)tt).

By induction we have established that, for any history &, processes P and Q, and any n, if P +" Q
then there exists ¢, such that P ! ¢ and Q " @1, and also there exists ¢g such that O " ¢r and
P " ¢r. The result then follows by observing that +" is the least relation containing all +”; and,
furthermore, P +» Q holds simply when P +%-% O holds, where fv(P) U fv(Q) C {x’i, LX) -

Since open bisimilarity is decidable for finite m-calculus processes, the constructive non-bisimilarity
in Definition 7 coincides with the negation of open bisimilarity.

» Lemma 15. For finite processes, P + Q holds, according to constructive non-bisimilarity in
Definition 7, if and only if P ~ Q does not hold.

Combining Proposition 14 with Lemma 15 yields immediately the completeness of OM with
respect to open bisimilarity. Completeness (Theorem 6) establishes that the set of all pairs of pro-



K.Y. Ahn, R. Horne and A. Tiu

cesses that have the same set of distinguishing formulae is an open bisimilarity. The proof can now
be stated as follows.

Proof of Theorem 6: Assume that for finite processes P and Q, for all formulae ¢, P = ¢ iff
0 E ¢. Now for contradiction suppose that P ~ Q does not hold. By Lemma 15, P » Q must hold.
Hence by Proposition 14 there exists ¢; such that P = ¢, but Q [~ ¢, but by the assumption above
0 E ¢1, leading to a contradiction. Thereby P ~ Q. <

Notice that soundness (Theorem 5) and the non-bisimilarity algorithm (Proposition 14) also hold
for infinite mr-calculus processes (using replication for instance). However, for infinite -calculus pro-
cesses, open bisimilarity is undecidable; hence additional insight may be needed to justify whether
Lemma 15 holds for infinite processes. Thereby in the infinite case, while it is impossible that P ~ Q
and P + Q holds, it may be the case that neither holds. A possibility is that a more expressive logic
is required to completely characterise open bisimilarity for infinite processes.

3.3 Example runs of distinguishing formulae algorithm

We provide further examples of non-bisimilar processes that illustrate subtle aspects of the algorithm.
In particular, these examples illustrate the need for disjunctions of postconditions in both the base
case and inductive steps.

3.3.1 Multiple postconditions and postconditions in an inductive step

The following example leads to multiple postconditions. Consider the following non-bisimilar pro-
cesses: [x=y]r + [w = z]t » 7. Observe that clearly 7 5 0 but ([x = y]r + [w = z]7)0 5> only
if x0 = y0 or wd = z0. Thus, [x = y]r + [w = z]t E [7]((x = y)tt vV (w = 2)tt) is a distinguishing
formula biased to the left process, while 7 | (7)1t is biased to the right.

Now consider an example where postconditions are required in the inductive case. Firstly ob-

serve that aa + bb + Ga are distinguished since aa + bb 25 0, but process aa can only make a
bb transition under a substitution such that @ = b. Hence we have the distinguishing formulae
Ga + bb = (bb)tt and da = [bb)(a = b)it.

For the inductive case, consider P £ 7.(aa + bb) + [x = y|r.aa + 7.(aa + bb) + r.aa £ Q. Let us
lead by Q > @a, which can only be matched by P %» aa + bb. By the above observation, we have
distinguishing formulae for @a + bb + aa. Furthermore, P <> for substitutions @ such that x = y6.

This leads to the following distinguishing formula for the left side, consisting of a box 1 followed
by a disjunction of the left distinguishing formula for aa + bb + Ga, and the postcondition for any
additional 7 transitions. 7.(@a + bb) + [x = y|r.aa E [t]((bb)tt V {x = y)tt).

The distinguishing formula for the right process is diamond 7 followed by the right distinguish-
ing formula for @a + bb + @a, as follows: 7.(@a + bb) + t.aa E (7)[bb]{a = b)tt.

As a further example involving post conditions generated by the inductive case, consider the
following two non-bisimilar processes: [x =y]r.t + T + 7.T + 7. We can devise the following
distinguishing formula biased to the left process: [x = y|r.Tr + 7 E [7][r]{x = y)tt. However, this
is different from the left-biased formula generated by the algorithm: [x = y]r.t + 7 E [7]([r]&# V
{x = y)tt). Thus, there may exist alternative distinguishing formulae other than those generated by
the algorithm in the completeness proof.

3.3.2 Formulae generated by substitutions applied to labels

In some cases substitutions applied to labels play a role when generating distinguishing formulae.
For a minimal example consider the following non-bisimilar processes: aa + ab. A distinguish-
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ing strategy is where process ab makes a ab transition, which cannot be matched by aa. How-
ever, (aa)o % 0 for any substitution such that aoc = bo, leading to distinguishing formula
[ab]{a = b)tt biased to aa. Notice substitution o~ is applied to both the process and the label.

For a trickier example consider the following: vb.ab.a(x).[x = b]lxx + vb.ab.a(x).xx. After two
actions, the problem reduces to base case [x = b]xx +47"*
but [x = b]xx cannot. However, ([x = b]xx){%} %, 0 does hold, and furthermore {%]} respects
a' - b° - x'. From these observations we can construct a distinguishing formula biased to the left as
follows: vb.ab.a(x).[x = blxx E [a(b)][a(x)][xx]{x = D)tt.

xx, where Xxx can perform a xx action,

3.3.3 An elaborate example demanding intuitionistic assumptions

For a more elaborate example consider the following.
T(t+rr+1lx=yllw=zlr)2P + Q=rv(r+1rr+71[x=ylr)+P
P o

A non-bisimilarity strategy is as follows: firstly, lead by transition Q <» Q’ on the right, matched by
transition P %> P’; secondly, lead by P’ 5 [x = y][w = z]7 on the left, matched in three possible
ways by Q' 5 0, Q' 5 tand Q' 5 [x = y]r. To distinguish 0 from [x = y][w = z]r observe
that ([x = y][w = z]1){%H%,} = 0 but 0 can make no 7 transition; hence distinguishing formulae for
0 and [x = y][w = z]lt are 0  [7]f and [x = y][w = z]t E [x = y][w = z]{(r)tt. To distinguish
[x = y]r from [x = y][w = z]r, observe that ([x = y]t){%} = 0, but ([x = y][w = z]7){%} can only
make a 7 transition under a substitution such that also w = z; hence [x = y]r E [x = y[{r)t and
[x = yllw = z]7 E [t[{w = z)tt are distinguishing formulae. The same formulae also distinguish T
from [x = y][w = z]7. Thereby the algorithm in the completeness proof generates the following:

PE[tID(rlw =t A [x=y]llw=zKn)t) Ok @OI7l(r]& Vv [x = yn)r)
The strategy explained above is not unique. An alternative strategy can generate different distin-
guishing formulae: P E [7][7]((r)tt V [tTKw = 2)tt) and O E (*){7)([x = y|{T)tt A [7[{x = y)tt).
Note if we assume the law of excluded middle, both processes above become equivalent to 7.(t+7.7).
Fortunately, we do not assume the law of excluded middle.

4 Related work

We consider the relationship between the intuitionistic modal logic for open bisimilarity presented
in this work and established classical logics. We also compare this work to existing work claiming
to characterise open bisimilarity for the 7-calculus.

4.1 Comparison to classical logics for late bisimilarity

The late Milner-Parrow-Walker logic, called LM [9] for “(L) late modality with (M) match” differs
from the logic presented in this paper in three significant ways: firstly, free names are a priori
assumed to be distinct; secondly, LM is classical, that is, the law of excluded middle for name
equalities is assumed; and thirdly the late input box modality is defined differently as follows —
involving an existential quantification over substitutions:

P EL [a(x)]"¢ iff for all Q such that P %% Q there exists name z such that Q{4} EX ¢{4).

To see that logical equivalence for LM does not define a congruence, consider the processes
[x = y]xx and 0. These processes satisfy the same set of late formulae (any formula equivalent to
1), since, for LM, x and y are a priori assumed to be distinct names. However, a(y).[x = y]xx and
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a(y).0 have distinguishing formulae a(y).[x = yJxx L [a(y)]"(Zx)tt biased to the left and its de
Morgan complement a(y).0 E* {a(y))[xx]ff biased to the right.

Between open bisimilarity and late bisimilarity there is late congruence, which is the greatest
congruence relation contained in late bisimilarity. Late congruence must contain open bisimilarity,
since open bisimilarity is contained in late bisimilarity and open bisimilarity is a congruence. Late
congruence also has a simpler characterisation: P and Q are late congruent whenever for all substitu-
tions o, and Po is late bisimilar to Qo. The quantification over all substitutions, combined with the
law of excluded middle, has the effect that we check late bisimilarity with respect to all combinations
of equalities and inequalities between free names.

As for open bisimilarity, [x = y]xx and O are not late congruent. This is because for substitution
{%), ([x = y]xx){%} and 0{%} are clearly not late bisimilar. This illustrates that late congruence is
strictly finer than late bisimilarity. However, open bisimilarity is still strictly finer than late con-
gruence, since 7 + 7.7 + 7.[x = y|r and T + 7.7 are late congruent. Late congruence holds since,
for any substitution 6, (7 + 7.7)0 and (7 + 7.7 + 7.[x = y]7)0 are late bisimilar. In contrast, we know
these processes are not open bisimilar; and furthermore, have distinguishing formula that rely on the
absence of the law of excluded middle.

4.2 Other embeddings into intuitionistic nominal logic

Tiu and Miller [16] studied embeddings of the m-calculus into the logic LINC, as well as late and
open bisimilarity and their respectful modal logics. This is the most closely related work since our
encodings in Abella were adapted from their work. In their encoding, both late and open bisimilarity
are encoded by essentially the same modalities, differing only in the the law of the excluded middle
for names and the quantification of free variables. However, no examples of distinguishing formulae
for open bisimilarity were provided; and, critically, the proof made flawed assumptions about the
existence of a syntactic negation of a formula, which we observe in this work is not permitted.

A problem with the approach of Tiu and Miller is the reuse of the input box modality from LM,
which involves an existential quantification over substitutions. In contrast, our input box modality in
OM involves universal quantification over all respectful substitutions. Our choice in OM is critical
for generating distinguishing formulae. For example, the following processes are not open bisimilar:
a(x).t + a(x) + a(x).[x = a]t + a(x).T + a(x).

For the above processes, the algorithm for distinguishing formulae in Proposition 14, correctly
generates the following OM formula biased to the right: a(x).7 + a(x) E [a(x)]({T)& V [7]£).

However, using only late modalities, as in Tiu and Miller, there is no distinguishing formula
for these processes biased to the right: e.g., the formula with a late modality [a(x)]“((z)tt V [7]£F)
succeeds for both processes, even when rejecting the law of excluded middle; also the formula
[a()]“({x = a)[7]# V {7)[x = a] ) fails for both processes, despite being distinguishing in clas-
sical LM. The choice of modalities we make in OM make sense, since in open bisimilarity the
choice of substitution is deferred as late as possible — possibly several transitions later.

4.3 A generic formalisation using nominal logic

Recently, Parrow et al. [12] provided a general proof of the soundness and completeness of lo-
gical equivalence for various modal logics with respect to corresponding bisimulations. The proof
is parametric on properties of substitutions, which can be instantiated for a range of bisimulations.
Moreover, their proof is mechanised using Nominal Isabelle. The conference version [12], sketches
how to instantiate the abstract framework for open bisimilarity in the n-calculus without input pre-
fixes only. However, we understand from communication with the authors that open bisimilarity for
the mr-calculus with input prefixes will be covered in a forthcoming extended version.
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Stylistically, our intuitionistic modal logic is quite different from an instantiation of the abstract
framework of Parrow et al. for open bisimilarity. Their framework, is classical and works by syn-
tactically restricting “effect” modalities in formulae, depending on the type of bisimulation. Their
effects represent substitutions that reach worlds permitted by the type of bisimulation. In contrast,
the modalities of the intuitionistic modal logic OM in this paper are syntactically closer to long
established modalities for the m-calculus [V]; differing instead in their semantic interpretation and in
the absence of classical negation. An explanation for the stylistic differences is that for every intu-
itionistic logic, such as the intuitionistic modal logic in this work, there should be a corresponding
classical modal logic based on an underlying Kripke semantics. Such a Kripke semantics would re-
flect the accessible worlds, as achieved by the syntactically restricted effect modalities in the abstract
classical framework instantiated for open bisimilarity.

5 Conclusion

The main result of this paper is a sound and complete logical characterisation of open bisimilarity
for the m-calculus. To achieve this result, we introduce modal logic OM, defined in Fig. 2. The
soundness of OM with respect to open bisimilarity, Theorem 5, is mechanically proven in Abella.
The details of the completeness, Theorem 6, are provided in Section 3.

There are several novel features of OM compared to established modal logics for mr-calculus,
such as LM characterising late bisimilarity. Firstly, as demonstrated in Examples 2.3.1 and 3.3.3,
the absence of the law of excluded middle is essential for the existence of distinguishing formulae in
OM for certain processes that are not open bisimilar (but are late congruent). The absence of the law
of excluded middle is an intuitionistic assumption; and, as explained in the introduction, OM can
indeed be considered to be a conservative extension of intuitionistic logic. Furthermore, in contrast
to classical modal logics such as LM, diamond and box modalities have independent interpretations,
not dual to each other. These properties are expected under criterion set out for intuitionistic modal
logics [14]. The absence of de Morgan dualities over modalities complicates the construction of
distinguishing formulae.

The completeness proof involves an algorithm, Proposition 14, that constructs distinguishing for-
mulae for non-bisimilar processes. To use this algorithm, firstly attempt to prove that two processes
are open bisimilar. If they are non-bisimilar, after a finite number of steps, a distinguishing strategy,
according to Def. 7, will be discovered. The strategy can then be used to inductively construct two
distinguishing formulae, biased to each process. A key feature of the construction is that there are
restricted versions of absolute truth by preconditions ([o"](r)tt restricted from (r)tt) and, dually,
there are relaxed versions of absolute falsity by postconditions ([7]{o-)tt relaxed from [r]ff), as
demonstrated in Examples 2.2.2 and 3.3.1.

Our logic OM is suitable for formal and automated reasoning; in particular, it has natural encod-
ings in Abella for mechanised reasoning, used to establish Theorem 5, and Bedwyr [3] for automatic
proof search. All bisimulations and satisfactions in examples have been automatically checked in
Bedwyr and are available online: https://github.com/kyagrd/NonBisim2DF. In addition, our distin-
guishing formulae generation algorithm is implemented in Haskell [1].

Future work includes justifying whether or not OM is complete for infinite processes with rep-
lication or recursion, as discussed around Lemma 15. A related problem is to extend OM with fixed
points, as in the u-calculus [7]. Such an extension could lead to intuitionistic model checkers in-
variant under open bisimulation, where the call-by-need approach to inputs is related to symbolic
execution. We are also interested in extensions of OM for open bisimulation in the spi-calculus [15].
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APPENDIX

A Mechanized Proofs in Abella

We developed two versions of the proofs: first with no free variables and second with two free
variables. The first helps to grasp the overall structure of our proofs and the second demonstrates
that our proofs will generalize for any number of free variables. In general, there are countably many
instances of the following theorems to consider, where X is the list of n free variables in processes P
and Q:

Theorem bisim_sat,:VP Q,[P(x) ~ Q(X)]— [P(X) 3 o] .
Theorem sat_bisim,:¥YP Q,[PXE & Q@]— [PF) ~ Q)] .

These are the soundness and completeness theorems (Theorems 5 and 6) in Section 2 transcribed
in Abella. We can develop fully mechanized proofs for bisim_sat, (Section A.1) and partially
mechanized proofs for sat_bisim, (Section A.2). The missing part of the proof for sat_bisim,
corresponds to Proposition 14 in Section 3.

We use the notation [-] for the encoding of the concepts defined in Sect. 2 into Abella’s logic.
More specifically,

11>

[P(®) ~ QI = Vx, bisim ([PIx) ([Q]%)

[P O@I = VF, [PX)E FE) = 0 F F®I

YFE, [P EFXOI = [0K) E F()]
A IO E F(OI — [PX) F F(D]

[P(X) EF®I = Vx, sat ([PIx) ([F]x)

11>

where X are the free variables of P, O, and F and the definitions for bisim and sat are provided
in Fig. 4. The free variables X are encoded as universally quantified variables and applied to as
arguments for higher-order syntax encodings of P, O, and F. Both the bisimulation and satisfaction
defined in Aballa’s reasoning logic refer to the AProlog [ ] specification of the finite m-calculus
(Fig. 3), which are surrounded by curly braces (e.g., {one P A P;}). Abella supports two-level logic
approach [4] of having a computational specification in AProlog as an object logic and using Abella’s
reasoning logic to describe and reason about the properties of the specification.

A.1 Bisimulation implies Logical Equivalence

We prove bisim_sat@ by splitting it into two lemmas:
bisim_sat®_L:YPQF, [P~ Q] - [PEF] - [QFFI

bisim_sat®@_R:VPQOF,[[P~Q] » [QEFI = [PEFI

Once we prove one of them, the other is proved simply by instantiating P with Q and Q with P. We
prove bisim_sat®_L by induction on the second argument [P = F1.

Then, it is easy to prove bisim_sat, for any n because the proofs for the lemmas bisim_sat,_L
and _R are straightforward corollaries of the lemmas bisim_sat®_L and _R. For instance, when
n = 2, the proof script for bisim_sat2_L is as simple as follows:

Theorem bisim_sat2_L : VP Q (F : n—>n —0),
(VW XY, bisim (P X Y) (Q X Y)) % HI
— (VY XY, sat (P X Y) (F X Y)) % H2
- (V XY, sat (Q X Y) (F X Y)).
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sig finite-pic. % file: finite-pic.sig
kind n type. % names

kind p type. % processes

type null p.

type taup p—Dp.

type plus, par p—=>p—0Dp.

type match, out n—-n->p-op.
type in n— (n—>p) > p.
type nu (n > p) > p.

kind a type. % actions (transition labels)
type tau a.
type up, dn n—n- a.

% one step for free transitions

type one p— a - p —o.
% one step for binding transitions
type oneb p—> (—>a) —» (n—>p) = o.

module finite-pic. % file: finite-pic.mod

oneb (in X M) (dn X) M. % bound input
one (out X Y P) (up X Y) P. % free output
one (taup P) tau P. % tau

% match prefix

one (match X X P) A Q —one P A Q.
oneb (match X X P) A M :— oneb P A M.
% sum

one (plus P Q) AR :—one P AR
one (plus P Q) AR:-one Q AR
oneb (plus P Q) A M :— oneb P A M
oneb (plus P Q) A M :— oneb Q A M

% par
one (par P Q) A (par P, Q) — one P A P.
one (par P Q) A (par P Q) :— one Q A Q.
oneb (par P Q) A (x\ par (M x) Q) — oneb P A M.
oneb (par P Q) A (x\ par P (N x)) — oneb Q A N.
% restriction
one (nu x\ P x) A (nu x\ Q x) — pi x\ one (P x) A (Q x).
oneb (nu x\ P x) A (y\ nu x\ Q x y) = pi x\ oneb (P x) A (y\ Q x y).
% open
oneb (nu x\M x) (up X) N :— pi y\ one (M y) (up X y) (N y).
% close
one (par P Q) tau (nu y\ par (M y) (N y))
— oneb P (dn X) M , oneb Q (up X) N.
one (par P Q) tau (nu y\ par (M y) (N y))
— oneb P (up X) M , oneb Q (dn X) N.
% comm (interaction)
one (par P Q) tau (par (M Y) T) :— oneb P (dn X) M, one Q (up X Y) T.
one (par P Q) tau (par R (M Y)) — oneb Q (dn X) M, one P (up X Y) R.

Figure 3 AProlog specification of the finite 7-calculus operational semantics. (Adopted from one of the
examples distributed with Abella.)
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Specification

CoDefine bisim

by bisim P Q :

Kind o

Type tt,

Type
Type
Type
Type

Y, A
=2, &
o, ¢
ol o ol ¢!

type.

ff

Define sat

by

sat
sat
sat
sat
sat
sat
sat
sat
sat

P

ja~2a v B v e v B o B v B v

P

basic

sat

P

tt
(v
(A
(=
(&
(o
© X
(a'x
©'x

Lol - -

input modality

A

A

P

"finite-pic".

P —p — prop
one P A P} -
1 Q, {one Q A Q}
{oneb P (dn X) M} —

vV X

= (VY A P,

M,
i N,

vV X M,

E|

N,

{

{oneb Q (dn X) N}

% load the finite pi-calc. spec. in

A bisim P, Q)

A Y w, bisim (M

{oneb P (up X) M} —

{oneb Q (up X) N}

AV w, bisim (M

(VW AQ, {one Q A Q} —
A bisim Q P)
{oneb Q (dn X) N} —

v X

vV X

— 0

B) =
B) =
Y A)
Y A)
A) =
A)I:
A) =
A) =

E|

— prop % semantics of

P,

N,
am,

N,
in,

’

o .

{one P A P}

{oneb P (dn X) M}

AY bisim (N

=

{oneb Q (up X) N} —

{oneb P (up X) M}

AV w, bisim (N

% syntax of the modal logic

o >0 —>0.

n—->n-o —>o.

a—o —>o.
n— (n—-o) - o.

Q’

(o'X A) =V Q,
late input modality
sat P (O'X A) =3 Q, {oneb P (dn X) Q} A VY w, sat (Q

P
P

A A sat
A V sat
Y — sat
Y A sat
{one P X P} — sat
{one P X P} A sat
{oneb P (up X) Q}
{oneb P (up X) Q}

‘U W U U
> > W w

{oneb P (dn X) Q}

the modal logic

P A
P A

- V w, sat (Q
A V w, sat (Q

- VY w, sat (Q

w) (N

w) (N

w) (M

w) (M

w) (A
w) (A

w) (A

w) (A

Fig. 3

w))

w))

w))

w)) .

w)
w)

w)

w) .

Figure 4 A coinductive definition of the bisimulation and an inductive definition of a modal logic for the
finite calculus in Abella. (Adopted from one of the examples distributed with Bedwyr [3], which implements
[16], and modified for two-level logic style in Abella.)
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Theorem bisim_sat® : V P Q F,

bisim P Q —» ((sat P F —» sat Q F) A (sat Q F - sat P F)).
Theorem sat_bisim® : V P Q,

(VW F, (sat P F » sat Q F) A (sat Q F —» sat P F)) — bisim P Q.

Theorem sateq_one _exists _L® : V P Q A P,
(VY F, (sat P F - sat Q F) A (sat Q F -» sat P F)) —
{one P A P} —
4 Q, {one Q A Q}.
Theorem sateq_one_L® : V P Q A P,
(V F, (sat P F - sat Q F) A (sat Q F -» sat P F)) —
{one P A P} —
1 Q, {one Q A Q} A (V F, (sat P F —» sat Q F) A (sat  F — sat P F)).

Theorem bisim_sat2 : VP Q (F : n—>n —>0o),
(VW XY, bisim (P X Y) (Q X Y)) —
((VXY, sat (PXY) (FXY)—> VXY, sat (Q X Y) (F X Y))
A XY, sat (QXY) (FXY)—> VXY, sat (P XY) (F X Y)) ).
Theorem sat_bisim2 : V (X : n) (Y : n) P Q,
(WF, (WXY, sat (PXY) (FXY)—> VXY, sat (Q X Y) (F X Y))
AW XY, sat (QXY) (FXY)—> VXY, sat (P X Y) (FXY) )—
bisim (P X Y) (Q X Y).

Theorem sateq_one _exists _L2 : V (X : n) (Y : n) P Q A P,
(VF, (WXY, sat (P XY) (FXY)—> VXY, sat (Q X Y) (F X Y))
A((WXY, sat (QXY) (FXY)—> VXY, sat (P XY) (FXY))
— {one (P XY) (AXY) (X VY)}>dQ, {one (QXVY) (AXY) (X YV}
Theorem sateq_one_L2 : V (X : n) (Y : n) P Q A P,
(VF, (WXY, sat (P XY) (FXY)—> VXY, sat (Q X Y) (F X Y))
A((WXY, sat (QXY) (FXY)—> VXY, sat (P XY) (FXY)))
— {one (P XY) (AXY) (X YY)} —
(3dQ, fone (QXY) (AXY) (@ X Y)}A
VF, (WXY, sat (P XY) (FXY)—> VXY, sat (qQ X Y) (F X Y))
A XY, sat (@XY) (FXY)—> VXY, sat (P, X Y) (F X Y)) ).

Figure 5 Two versions of main theorems and lemmas stated in Abella: one for closed processes and the
other for processes with two free-variables.
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% Proof.
intros.
assert bisim (P X Y) (Q X Y). backchain H1.
assert sat (P X Y) (F X Y). backchain H2.
backchain bisim_sat®_L. % Q.E.D.

The proof script for bisim_sat,_L would be structurally identical to above, only differing in the
number of free variables (i.e., X; --- X, instead of just two variables X Y). Therefore, the proof of
(~ € %) can be fully mechanized in Abella for any given instance of 7.

A.2 Logical Equivalence implies Bisimulation

We can prove sat_bisim® assuming six lemmas, which state a closedness property of logical equi-
valence with regards to a commonly labeled transition step between two processes. Each of these six
closedness lemmas discharges one of the six cases in the coinductive definition of bisim (see lines
3-15 in Fig. 4). Here is one of the six lemmas:

Theorem sateq_one_L® : YPQAP,, [PRQ]
- [P Pl - 30, 104 Qi A PR Qi

Another lemma sateq_one_R® is a symmetric counterpart of above, where Q leads the transition
rather than P. This pair of lemmas, sateq_one_L0® and _R@, states that for two logically equivalent
processes, if one of them has a transition step, then the other also has a transition step with the same
label such that the resulting pair of processes at next step are logically equivalent as well. Addition-
ally, there are two more pairs of closedness lemmas: sateq_oneb_dn_L® and _RO for bounded inputs
and sateq_oneb_up_LO® and _RO for bounded outputs.

It is difficult to directly prove the six closedness lemmas. So, we first prove six existence lemmas,
which have weaker conclusions than the closedness lemmas. Here is an existence lemma weakened
from sateq_one_LO:

Theorem sateq_one _exists _LO : YPQAP,,
[PX QN - [P Pl - 30, Q-4 Qi

We prove this by case analysis over [P 2 P,]|. For each case, we show [Q E (A)tt] from [P = (A)tt]],
which is obvious from [P 2+ P,]. From [Q [ (A)tt]], 3Q;,[Q 2> Q0,1 is immediate. The proofs for
the other five lemmas are similar.

The only gap we need to fill is from the existence lemmas to their corresponding closedness
lemmas. This gap can be filled by two conditions: (1) the image finiteness of transition steps and (2)
the existence of a pair of distinguishing formulae for logically inequivalent processes. The former is
usually assumed by definition of the labeled transition system and the latter would usually be obliged
to be derived using the former.

The first condition, image finiteness, means that a process can only have finitely many next
step process configurations for each label. Using image finiteness for labeled transition systems are
fairly standard. For instance, it is also assumed in proofs for the adequacy of Hennessy—Milner
logic (HML) for CCS [5]. In our context of proving the closedness lemma sateq_one_L, image
finiteness amounts to the existence of finitely many Q;s such that [Q < Q;]l. Assuming this, we can

exhaustively enumerate all such instances as Q1, Oz, , Op-
The remaining proof for sateq_one_L is to show that at least one of P; ~ Oy, -+, P; & Q,, holds,
that is, it is impossible to fail all of them. Let us assume that it all fail, that is, P % Qy, -+ , P % Q.

If we can find a formula ¢; for each P; % Q; such that P, | ¢; holds but Q; E ¢; does not hold, then
it contradicts the assumption P ~ Q because we can build a formula ¢ = (@) A;=; . ¢i» which makes
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P E ¢ hold but not Q | ¢. Thus, the essence of the closedness lemma proof is whether we can
always find a formula ¢; such that Py = ¢; holds but Q; E ¢; does not hold, given that P; % Q;.

Having the second condition below guarantees that we can always find such ¢;. There are two
reasons for P, % Q;:

d ¢, such that Py = ¢; holds but Q; E ¢; does not.
¢ such that Q; & ¢; holds but P; | ¢ does not.

Thus, Py % Q; guarantees the existence of either ¢; or ¢:. However, the existence of one of them may
not necessarily guarantee the other. In cases of HML for CCS and MPW for late bisimulation in
the m-calculus we know that both ¢; and ¢ exists because the negation of formulae can be defined
syntactically. However, the encodings of the input box and diamond modalities for OM (o‘and ¢+ in
Fig. 3) are not logically dual; only if one of the ¥ w in lines 35 and 37 were 3 w could the modalities
be classically dual to each other. Therefore, syntactic negation for OM formulas cannot be defined
in general, even before taking free variables and the intuitionistic framework into consideration.

We would need even more careful argument to establish the existence of the pair of formulae
¢; and ¢! in the presence of free variables. That is, we need to establish the following: for any
processes P and Q such that P~ Q fails, that is P % Q, we can find a pair of formulae that is satisfied
by P or Q respectively but fails for the other process, despite the absence of syntactic negation. Our
key observation in establishing this is to use open bisimulation instead of logical equivalence. From
(~ € &), which is established in Section A.1, we get (* C +) by de Morgan’s law. Therefore, it
suffices to find a pair of formulae for P + Q, instead of P% Q. In Section 3, we show how to find
this pair of distinguishing formulae (Proposition 14).

A.3 Encoding of the history in direct semantics

So far we have only considered universal quantification, which encodes free variables and also in-
puts. Free variables are modeled as inputs from the top-level environment both in direct semantics
and in Abella encoding. It is sufficient to consider universal quantifications only while formalizing
the soundness and completeness theorems. More generally, during the internal steps of bisimulation
and satisfaction evaluation, fresh names from bounded outputs may be generated. These names are
encoded as V-quantified variables in Abella.

For instance, [F(x,y,z) E* ¢ P(x,y,2)]1 £ Vx,Vy,¥z,sat ([Fllxyz) ([P xyz). The V-
quantified variables are distinct from the other variables already in scope, hence, x = y is false.
However, y = z is not necessarily false because z is introduced afterwards so that there exists a
substitution 6 ={%} such that y§ = z6. This exactly coincides with the restriction on respectful
substitutions due to bound outputs in histories according to Def. 1.

In Section 4.2, we discuss related work on this style of encoding the 7-calculus and its properties
within a logic that supports higher-order abstract syntax and V-quantifiers.

A.4 Formalized example on excluded middle

Theorem excl_middlel
(VW (x :n) (y : n), x =y V (x =y > false)) —
(VY xy, sat [[tr+77]] (©® tau (v (O tau (& x y tt)) (E x y (© tau tt))))).

Theorem excl_middle2
(VY x y, sat [[tr+77]] (©® tau (v (O tau (& x y tt)) (B x y (O tau tt))))) —
(VW (x :n) (y : n), x =y V (x =y — false)).

7:21

CONCUR 2017



7:22

A Characterisation of Open Bisimilarity using an Intuitionistic Modal Logic

The judgement 7 + 7.7 E (T)([7]{x = y)tt A [x = y[{T)tt) is not satisfiyable in OM. This judgement
is in fact necessary and sufficient to the exluded middle over names, which is formally justified by
proving the two theorems above in Abella.

B Automatic testing of the examples in Bedwyr

Manually verifying examples involving open bisimilarity can be additionally tedious and error prone
than prior notions of bisimulation because we must consider all possible substitutions in each trans-
ition step. To avoid such mistakes we tested every example in this paper using Bedwyr [3], which
is a system that automatically searches for proofs in a logic that is closely related to the reasoning
logic of Abella. That is, Bedwyr can automatically decided a certain subset of the judgements in
Abella. Since Bedwyr does not support two-level logic approach of reasoning about AProlog spe-
cifications, both the semantics of the n-calculus and the modal logic must be defined by the same
logic in Bedwyr, which corresponds to the reasoning logic level in Abella.

Bedwyr definitions for testing examples are very similar to the Abella definitions in the previous
section, except for few definitions with different names (e.g., the null process in Abella corresponds
to z in Bedwyr). Here, we list the output of test runs of the examples. Further details of the Bedwyr
source code can be found ounline at https://github.com/kyagrd/NonBisim2DF.

First example in Section 1

| @bl e # (1)t v []£ |

?= forall a b c,
sat (par (out a b z) (in c x\ z)) (disj (diaAct tau tt) (boxAct tau ff)).
No solution.

(@bl e # () |

?= forall a b c, sat (par (out a b z) (in c x\ z)) (diaAct tau tt).
No solution.

[@bll e ¢ [7]£ |

?= forall a b c, sat (par (out a b z) (in c x\ z)) (boxAct tau ff).
No solution.

Further example in Section 1

0 £ t.(ab.a(x) + a(x).ab + 1) + 1.(ab.c(x) + c(x).ab) P2 Q+1.(ab | c(x))
(Q and P corresponds to R and S in the further example in Section 1.)

?= ABCx = a\b\c\ out a b (in c x\z) /\ CxAB = a\b\c\ in c x\out a b z /\
ABAx = a\b\ out a b (in a x\z) /\ AxAB = a\b\ in a x\out a b z /\
Q = a\b\c\ plus (taup (plus (ABCx a b c¢) (CxAB a b c)))
(taup (plus (plus (ABAx a b) (AxAB a b)) (taup z))) /\
P = a\b\c\ plus (taup (par (out a b z) (in c x\z))) (Q a b c) /\
forall a b ¢, bisim (Pab<c) (Qabc).
No solution.
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QF [r](n)w v [r]f)

?= ABCx = a\b\c\ out a b (in c x\z) /\ CxAB a\b\c\ in c x\out a b z /\
ABAx = a\b\ out a b (in a x\z) /\ AxAB = a\b\ in a x\out a b z /\
Q = a\b\c\ plus (taup (plus (ABCx a b c) (CxAB a b c)))
(taup (plus (plus (ABAx a b) (AxAB a b)) (taup z))) /\
P = a\b\c\ plus (taup (par (out a b z) (in c x\z))) (Q a b c) /\
forall a b c, sat (Q a b ¢) (boxAct tau (disj (diaAct tau tt) (boxAct tau ff))).
Found a solution:
P = x1\x2\x3\
plus (taup (par (out x1 x2 z) (in x3 (x4\ z2))))
(plus (taup (plus (out x1 x2 (in x3 (x4\ 2z))) (in x3 (x4\ out x1 x2 z))))
(taup (plus (plus (out x1 x2 (in x1 (x4\ z))) (in x1 (x4\ out x1 x2 z))) (taup z))))

Q = x1\x2\x3\
plus (taup (plus (out x1 x2 (in x3 (x4\ z))) (in x3 (x4\ out x1 x2 z))))
(taup (plus (plus (out x1 x2 (in x1 (x4\ 2z))) (in x1 (x4\ out x1 x2 z))) (taup z)))

AxAB = x1\x2\ in x1 (x3\ out x1 x2 z)

ABAx = x1\x2\ out x1 x2 (in x1 (x3\ 2))

CxAB = x1\x2\x3\ in x3 (x4\ out x1 x2 z)

ABCx = x1\x2\x3\ out x1 x2 (in x3 (x4\ z))

More [y] ?

No more solutions (found 1).

P [rl(ye v []#) |

= ABCx = a\b\c\ out a b (in c x\z) /\ CxAB = a\b\c\ in c x\out a b z /\
ABAx a\b\ out a b (in a x\z) /\ AxAB = a\b\ in a x\out a b z /\
Q = a\b\c\ plus (taup (plus (ABCx a b c) (CxAB a b ©)))
(taup (plus (plus (ABAx a b) (AxAB a b)) (taup z))) /\
P = a\b\c\ plus (taup (par (out a b z) (in c x\z))) (Q a b c) /\
forall a b c, sat (P a b ¢) (boxAct tau (disj (diaAct tau tt) (boxAct tau ff))).
o solution.

N

=

Last example in Section 1
T+ la=c]t

?= forall a c, bisim (taup z) (match a c (taup z)).
No solution.

TE (Mt

?= forall a c, sat (taup z) (diaAct tau tt).
Found a solution.

More [y] ?

No more solutions (found 1).

l[a =clr it ()&

?= forall a c, sat (match a c (taup z)) (diaAct tau tt).
No solution.

T [7]&

?= forall a c, sat (taup z) (boxAct tau ff).
No solution.

7]

=)
RN

la=c]

?= forall a c, sat (match a c (taup z)) (boxAct tau ff).
No solution.
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Examples in Section 2.2.2 and the base cases of Section 2.3.1

[x=ylt*T1

?= forall x y, bisim (match x y (taup z)) (taup z).
No solution.

[l =yl E [ = e |

?= forall x y, sat (match x y (taup z)) (boxAct tau (diaMatch x y tt)).
Found a solution.

More [y] ?

No more solutions (found 1).

T [r){(r =yt

?= forall x y, sat (taup z) (boxAct tau (diaMatch x y tt)).
No solution.

Tk [x =yt

?= forall x y, sat (taup z) (boxMatch x y (diaAct tau tt)).
Found a solution.

More [y] ?

No more solutions (found 1).

[1x = vtk [x = YKoyt |

?= forall x y, sat (match x y (taup z)) (boxMatch x y (diaAct tau tt)).
Found a solution.

More [y] ?

No more solutions (found 1).

[x =yt ()t

?= forall x y, sat (match x y (taup z)) (diaAct tau tt).
No solution.

TE (Ot

?= forall x y, sat (taup z) (diaAct tau tt).
Found a solution.

More [y] ?

No more solutions (found 1).

[x=y]r+0

?= forall x y, bisim (match x y (taup z)) =z.

=
(o]
2]
o
—
c
+
.
o
=]

0 [x=y[(Dt

?= forall x y, sat z (boxMatch x y (diaAct tau tt)).
No solution.

0F [fx =yt

?= forall x y, sat z (boxAct tau (diaMatch x y tt)).
Found a solution.

More [y] ?

No more solutions (found 1).
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0k [r]f

?= forall x y, sat z (boxAct tau ff).
Found a solution.

More [y] ?

No more solutions (found 1).

?= forall x y, sat z (diaAct tau tt).
No solution.

The inductive case example of Section 2.3.1

‘thzyk+7+tT+T+tT

?=T =taup z /\ TT = taup T /\
P = (x\ y\ plus (taup (match x y T)) Q /\ Q = plus TT T /\
forall x y, bisim (P x y) Q. % (t.[x=y].t + t.t + t) /~ (t.t + t)
No solution.

t[x=ylr+ v+ 17 E @O([T{x = ) A [x = y[{7)tr)

?=T =taup z /\ TT = taup T /\
P = (x\ y\ plus (taup (match x y T)) Q /\ Q = plus TT T /\
forall x y, sat (P x y) (diaAct tau (conj (boxAct tau (diaMatch x y tt))

(boxMatch x y (diaAct tau tt)))).

Found a solution:
Q = plus (taup (taup z)) (taup z)
P = x1\x2\
plus (taup (match x1 x2 (taup z))) (plus (taup (taup z)) (taup z))
TT = taup (taup z)
T = taup z
More [y] ?
No more solutions (found 1).

T+ 7.7 (D)([7(x =y A fx = yn)w)

?=T taup z /\ TT = taup T /\
P (x\ y\ plus (taup (match x y T)) Q) /\ Q = plus TT T /\
sat Q (diaAct tau (conj (boxAct tau (diaMatch x y tt))
(boxMatch x y (diaAct tau tt)))).

No solution.

RO =y A lx=yKnw)

?=T =taup z /\ TT = taup T /\

P = (x\ y\ plus (taup (match x y T)) Q /\ Q = plus TT T /\

forall x y, sat Q (boxAct tau (disj (diaAct tau tt) (boxAct tau ff))).
Found a solution:
Q = plus (taup (taup z)) (taup z)
P = x1\x2\

plus (taup (match x1 x2 (taup z))) (plus (taup (taup z)) (taup z))

TT = taup (taup z)
T = taup z
More [y] ?
No more solutions (found 1).

7:25
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[x = ylr + v+ .1 (O([r){x = y)te A [x = y{T) 1)

?7=T taup z /\ TT = taup T /\

P (x\ y\ plus (taup (match x y T)) Q /\ Q = plus TT T /\

forall x y, sat (P x y) (boxAct tau (disj (diaAct tau tt) (boxAct tau ff))).
No solution.

“x=ﬂ7+r+t7~r+tr

?=T = taup z /\ TT = taup T /\
P = (x\ y\ plus (match x y T) Q /\ Q = plus TT T /\
forall x y, bisim (P x y) Q. % ([x=y].t + t.t + t) ~ (t.t + t)
Found a solution:
Q = plus (taup (taup z)) (taup z)
P = x1\x2\ plus (match x1 x2 (taup z)) (plus (taup (taup z)) (taup z))
TT = taup (taup z)
T = taup z
More [y] ?
No more solutions (found 1).

Example involving private hames in Section 2.3.2

P 2 yx.ax.a(y).t + vxaxa(y).[x =yt 2 Q0 ‘

?7=P a\ nu x\ out a x (in a y\ taup z) /\
Q = a\ nu x\ out a x (in a y\ match x y (taup z)) /\
forall a, bisim (P a) (Q a).

No solution.

vxara). k @o)a@)ot |

?= P = a\ nu x\ out a x (in a y\ taup z) /\

Q = a\ nu x\ out a x (in a y\ match x y (taup z)) /\

forall a, sat (P a) (diaOut a x\ diaInL a y\ diaAct tau tt).
Found a solution:
Q = x1\ nu (x2\ out x1 x2 (in x1 (x3\ match x2 x3 (taup z))))
P = x1\ nu (x2\ out x1 x2 (in x1 (x3\ taup z)))
More [y] ?
No more solutions (found 1).

vx.ax.a(y).[x =yt I (@(x)){a(y)){T)tt ‘

?= P = a\ nu x\ out a x (in a y\ taup z) /\

Q = a\ nu x\ out a x (in a y\ match x y (taup z)) /\

forall a, sat (Q a) (diaOut a x\ diaInL a y\ diaAct tau tt).
No solution.

vx.ax.a(y).r  [a(0)][am)][tx = y)t

?= P = a\ nu x\ out a x (in a y\ taup z) /\

Q = a\ nu x\ out a x (in a y\ match x y (taup z)) /\

forall a, sat (P a) (boxOut a x\ boxIn a y\ boxAct tau (diaMatch x y tt)).
No solution.
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vx.ax.a(y).[x = y]r E [a)][aO)][7{x = y)tt

?= P = a\ nu x\ out a x (in a y\ taup z) /\
Q = a\ nu x\ out a x (in a y\ match x y (taup z)) /\
forall a, sat (Q a) (boxOut a x\ boxIn a y\ boxAct tau (diaMatch x y tt)).
Found a solution:
Q = x1\ nu (x2\ out x1 x2 (in x1 (x3\ match x2 x3 (taup z))))
P x1\ nu (x2\ out x1 x2 (in x1 (x3\ taup z)))
More [y] ?
No more solutions (found 1).

Example involving private hames in Section 2.3.3

vx.ax ~ vx.ax.[x = a|t

?= P =a\ nu x\ out a x z /\ Q = a\ nu x\ out a x (match x a (taup z)) /\
forall a, bisim (P a) (Q a).

Found a solution:

Q = x1I\ nu (x2\ out x1 x2 (match x2 x1 (taup z)))

P = x1\ nu (x2\ out x1 x2 z)

More [y] ?

No more solutions (found 1).

Examples in Section 3.3.1

‘[xzy]7'+[w=z]r+7"

?=T = taup z /\ forall x y u v, bisim (plus (match x y T) (match u v T)) T.
No solution.

[l =yl + v = alr F [FJx = e v w = o)1)

?=T = taup z /\
forall x yu v,
sat (plus (match x y T) (match u v T)) (boxAct tau (disj (diaMatch x y tt) (diaMatch u v tt))).
Found a solution:
T = taup z
More [y] ?
No more solutions (found 1).

[TE = v =) |

?=T = taup z /\

forall x y u v,

sat T (boxAct tau (disj (diaMatch x y tt) (diaMatch u v tt))).
No solution.

?=T = taup z /\ forall x y u v, sat T (diaAct tau tt).
Found a solution:

T = taup z

More [y] ?

‘[x=y]‘r+[w=z]‘rbé(r>tt‘

?=T = taup z /\
forall x y u v, sat (plus (match x y T) (match u v T)) (diaAct tau tt).
No solution.

CONCUR 2017
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P 2 1.(Ga + bb) + [x = ylraa + 7.(aa +bb) +t.da = Q

?= R = a\b\ taup (plus (out a a z) (out b b z)) /\ S = a\b\ taup (out a a z) /\
P = a\b\x\y\ plus (R a b) (match x y (S a b)) /\ Q = a\b\ plus (R a b) (S ab) /\
forall a b x y, bisim (P ab xy) (Q ab).

No solution.

7.(@a + bb) + [x = y|r.da e [t)((bb)tt V {x = y)tt)

?= R = a\b\ taup (plus (out a a z) (out b b z)) /\ S = a\b\ taup (out a a z) /\
P = a\b\x\y\ plus (R a b) (match x y (S a b)) /\ Q = a\b\ plus (R ab) (Sab) /\
forall a b xy, sat (P a b x y) (boxAct tau (disj (diaAct (up b b) tt) (diaMatch x y tt))).
Found a solution:
Q = x1\x2\ plus (taup (plus (out x1 x1 z) (out x2 x2 z))) (taup (out x1 x1 z))
P = x1\x2\x3\x4\ plus (taup (plus (out x1 x1 z) (out x2 x2 z))) (match x3 x4 (taup (out x1 x1 z)))
S = x1\x2\ taup (out x1 x1 z)
R = x1\x2\ taup (plus (out x1 x1 z) (out x2 x2 z))
More [y] ?
No more solutions (found 1).

7.(@a + bb) + t.aa i [t)((bb)tt V (x = y)it)

?= R = a\b\ taup (plus (out a a z) (out b b z)) /\ S = a\b\ taup (out a a z) /\

P a\b\x\y\ plus (R a b) (match x y (S a b)) /\ Q = a\b\ plus (R ab) (Sab) /\
forall a b x y, sat (Q a b) (boxAct tau (disj (diaAct (up b b) tt) (diaMatch x y tt))).
No solution.

7.(@a + bb) + [x = y|r.aa ¥ (t)[bb)(a = b)tt

?= R = a\b\ taup (plus (out a a z) (out b b z)) /\ S = a\b\ taup (out a a z) /\
P = a\b\x\y\ plus (R a b) (match x y (S a b)) /\ Q = a\b\ plus (R a b) (S ab) /\
forall a b xy, sat (P a b x y) (diaAct tau (boxAct (up b b) (diaMatch a b tt))).
No solution.

7.(@a + bb) + t.aa k= (t)[bb){a = b)tt

?= R = a\b\ taup (plus (out a a z) (out b b z)) /\ S = a\b\ taup (out a a z) /\
P = a\b\x\y\ plus (R a b) (match x y (S a b)) /\ Q = a\b\ plus (R a b) (S ab) /\
forall a b x y, sat (Q a b) (diaAct tau (boxAct (up b b) (diaMatch a b tt))).

Found a solution:

Q = x1\x2\ plus (taup (plus (out x1 x1 z) (out x2 x2 z))) (taup (out x1 x1 z))

P = x1\x2\x3\x4\ plus (taup (plus (out x1 x1 z) (out x2 x2 z))) (match x3 x4 (taup (out x1 x1 z)))

S = x1\x2\ taup (out x1 x1 z)

R = x1\x2\ taup (plus (out x1 x1 z) (out x2 x2 z))

More [y] ?

No more solutions (found 1).
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Examples in Section 3.3.2

aa + ab

?= forall a b, bisim (out a a z) (out a b z).
No solution.

‘ﬁa E [abl(a = b)t \

?= forall a b, sat (out a a z) (boxAct (up a b) (diaMatch a b tt)).
Found a solution.

More [y] ?

No more solutions (found 1).

‘Eb E [abl(a = b)t

?= forall a b, sat (out a b z) (boxAct (up a b) (diaMatch a b tt)).
No solution.

‘ vb.ab.a(x).[x = b]xx + vb.ab.a(x).xx

?=P a\ nu b\ out a b (in a x\ match x b (out x x z)) /\
Q a\ nu b\ out a b (in a x\ out x x z) /\
forall a, bisim (P a) (Q a).

No solution.

vb.ab.a(x).[x = b]xx E [a(b)][a(x)][xx]{x = b)tt

?= P = a\ nu b\ out a b (in a x\ match x b (out x x z)) /\
Q = a\ nu b\ out a b (in a x\ out x x z) /\
forall a, sat (P a) (diaOut a b\ diaInL a x\ boxAct (up x x) (diaMatch x b tt)).
Found a solution:
Q = x1\ nu (x2\ out x1 x2 (in x1 (x3\ out x3 x3 z)))
P = x1\ nu (x2\ out x1 x2 (in x1 (x3\ match x3 x2 (out x3 x3 z))))
More [y] ?
No more solutions (found 1).

vb.ab.a(x).xx £ [a(b)][a(x)][xx]{x = b)tt

?=P a\ nu b\ out a b (in a x\ match x b (out x x z)) /\

Q = a\ nu b\ out a b (in a x\ out x x z) /\

forall a, sat (Q a) (diaOut a b\ diaInL a x\ boxAct (up x x) (diaMatch x b tt)).
No solution.

CONCUR 2017
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Example in Section ??

’szhJ+T+tT+T

?= forall x y, bisim (plus (match x y (taup (taup z))) (taup z)) (plus (taup (taup z)) (taup z)).
No solution.

[[x = yler+ 7k [rllr(r = e |

?= forall x vy,
sat (plus (match x y (taup (taup z))) (taup z)) (boxAct tau (boxAct tau (diaMatch x y tt))).
Found a solution.
More [y] ?
No more solutions (found 1).

w7 [l = ) |

?= forall x vy,
sat (plus (taup (taup z)) (taup z)) (boxAct tau (boxAct tau (diaMatch x y tt))).
No solution.

[[x =ylrr + 7 E [l v (x = y)) |

?= forall x vy,
sat (plus (match x y (taup (taup z))) (taup z)) (boxAct tau (disj (boxAct tau ff)

(diaMatch x y tt))).

Found a solution.
More [y] ?
No more solutions (found 1).

|t T [T V (= )|

?= forall x vy,
sat (plus (taup (taup z)) (taup z)) (boxAct tau (disj (boxAct tau ff)
(diaMatch x y tt))).
No solution.

Elaborate example in Section 3.3.3

OQ2tr(r+rr+r[x=yllw=zlr) » r.(t+77+1[x=y]lr)+ Q= P| (PandQ are swapped in Section 3.3.3.)

?=T =taup z /\ TT = taup T /\
Q = x\y\u\v\ taup (plus (plus T TT) (taup (match x y (match u v T)))) /\
P = x\y\u\v\ plus (taup (plus (plus T TT) (taup (match x y T)))) (Q x y u v) /\

forall x yuv, bisim Pxyuv) (Qxyuv).
No solution.

P E @I E V [x = y)()) |

?=T = taup z /\ TT = taup T /\
Q = x\y\u\v\ taup (plus (plus T TT) (taup (match x y (match u v T)))) /\
P = x\y\u\v\ plus (taup (plus (plus T TT) (taup (match x y T)))) (Q x y u v) /\
forall x y u v,
sat (P x y u v) (diaAct tau (boxAct tau (disj (boxAct tau ff)
(boxMatch x y (diaAct tau tt))))).

Found a solution:
P = x1\x2\x3\x4\
plus
(taup (plus (plus (taup z) (taup (taup z))) (taup (match x1 x2 (taup z)))))
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(taup (plus (plus (taup z) (taup (taup z))) (taup (match x1 x2 (match x3 x4 (taup z))))))
Q = x1\x2\x3\x4\
taup (plus (plus (taup z) (taup (taup z))) (taup (match x1 x2 (match x3 x4 (taup z)))))
TT = taup (taup z)
T = taup z
More [y] ?
No more solutions (found 1).

Q¥ I Y [x = yi(D)w) |

?=T =taup z /\ TT = taup T /\
Q = x\y\u\v\ taup (plus (plus T TT) (taup (match x y (match u v T)))) /\
P = x\y\u\v\ plus (taup (plus (plus T TT) (taup (match x y T)))) (Q x y u v) /\
forall x y u v,
sat (Q x y u v) (diaAct tau (boxAct tau (disj (boxAct tau ff)
(boxMatch x y (diaAct tau tt))))).

No solution.
O F [t ) ([rKw = )t A [x = y][w = z(T)1t)

?=T taup z /\ TT = taup T /\
Q = x\y\u\v\ taup (plus (plus T TT) (taup (match x y (match u v T)))) /\
P = x\y\u\v\ plus (taup (plus (plus T TT) (taup (match x y T)))) (Q x y u v) /\
forall x y u v,
sat (Q x y u v) (boxAct tau (diaAct tau (conj (boxAct tau (diaMatch u v tt))
(boxMatch x y (boxMatch u v (diaAct tau tt)))))).

Found a solution:
P = x1\x2\x3\x4\
plus
(taup (plus (plus (taup z) (taup (taup z))) (taup (match x1 x2 (taup z)))))
(taup (plus (plus (taup z) (taup (taup z))) (taup (match x1 x2 (match x3 x4 (taup z))))))
Q = x1\x2\x3\x4\
taup (plus (plus (taup z) (taup (taup z))) (taup (match x1 x2 (match x3 x4 (taup z)))))
TT = taup (taup z)
T = taup z
More [y] ?
No more solutions (found 1).

| P [T ETIow = 2 A [x = y]lw = o)) |

?=T = taup z /\ TT = taup T /\
Q = x\y\u\v\ taup (plus (plus T TT) (taup (match x y (match u v T)))) /\
P = x\y\u\v\ plus (taup (plus (plus T TT) (taup (match x y T)))) (Q x y u v) /\
forall x y u v,
sat (P x y u v) (boxAct tau (diaAct tau (conj (boxAct tau (diaMatch u v tt))
(boxMatch x y (boxMatch u v (diaAct tau tt)))))).

No solution.
| P E@@(x = YKot A [t = )|

?=T taup z /\ TT = taup T /\
Q = x\y\u\v\ taup (plus (plus T TT) (taup (match x y (match u v T)))) /\
P = x\y\u\v\ plus (taup (plus (plus T TT) (taup (match x y T)))) (Q x y u v) /\
forall x y u v,
sat (P x y u v) (diaAct tau (diaAct tau (conj (boxMatch x y (diaAct tau tt))
(boxAct tau (diaMatch x y tt))))).

Found a solution:

CONCUR 2017
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P = x1\x2\x3\x4\
plus
(taup (plus (plus (taup z) (taup (taup z))) (taup (match x1 x2 (taup z)))))
(taup (plus (plus (taup z) (taup (taup z))) (taup (match x1 x2 (match x3 x4 (taup z))))))
Q = x1\x2\x3\x4\

taup (plus (plus (taup z) (taup (taup z))) (taup (match x1 x2 (match x3 x4 (taup z)))))
TT = taup (taup z)
T = taup z
More [y] ?
No more solutions (found 1).

| Q  ((x = YKoy A [Tl = )|

?=T = taup z /\ TT = taup T /\
Q = x\y\u\v\ taup (plus (plus T TT) (taup (match x y (match u v T)))) /\
P = x\y\u\v\ plus (taup (plus (plus T TT) (taup (match x y T)))) (Q x y u v) /\
forall x y u v,
sat (Q x y u v) (diaAct tau (diaAct tau (conj (boxMatch x y (diaAct tau tt))
(boxAct tau (diaMatch x y tt))))).

No solution.

0 F [rl=l(D) v [7){w = )1t)

?=T =taup z /\ TT = taup T /\
Q = x\y\u\v\ taup (plus (plus T TT) (taup (match x y (match u v T)))) /\
P = x\y\u\v\ plus (taup (plus (plus T TT) (taup (match x y T)))) (Q x y u v) /\
forall x y u v,
sat (Q x y u v) (boxAct tau (boxAct tau (disj (diaAct tau tt)
(boxAct tau (diaMatch u v tt))))).

Found a solution:
P = x1\x2\x3\x4\
plus
(taup (plus (plus (taup z) (taup (taup z))) (taup (match x1 x2 (taup z)))))
(taup (plus (plus (taup z) (taup (taup z))) (taup (match x1 x2 (match x3 x4 (taup z))))))
Q = x1\x2\x3\x4\
taup (plus (plus (taup z) (taup (taup z))) (taup (match x1 x2 (match x3 x4 (taup z)))))
TT = taup (taup z)
T = taup z
More [y] ?
No more solutions (found 1).

P [r][r]((nyw v [t (w = )

?=T = taup z /\ TT = taup T /\
Q = x\y\u\v\ taup (plus (plus T TT) (taup (match x y (match u v T)))) /\
P x\Y\u\v\ plus (taup (plus (plus T TT) (taup (match x y T)))) (Q x y u v) /\
forall x y u v,
sat (P x y u v) (boxAct tau (boxAct tau (disj (diaAct tau tt)
(boxAct tau (diaMatch u v tt))))).

No solution.
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Examples in Section 4.1

a(y).[x = yJxx E* [a()]“(x)t

?= nabla a x, lsat (a :: x :: nil) (in a y\match x y (out x x z)) (boxInL a y\diaAct (up x x) tt).
Found a solution.

More [y] ?

No more solutions (found 1).

|40 - a0yt |

?= nabla a x, 1lsat (a :: x :: nil) (in a y\z) (boxInL a y\diaAct (up x x) tt).
No soulution.

[ a).0 E* at)[Fr] £

?= nabla a x, lsat (a :: x :: nil) (in a y\z) (diaInL a y\boxAct (up x x) ff).
Found a solution.

More [y] ?

No more solutions (found 1).

a(y).[x = yJxx " (a()[xx] £

?= nabla a x, lsat (a :: x :: nil) (in a y\match x y (out x x z)) (diaInL a y\boxAct (up x x) ff).
No solution.

Examples in Section 4.2

a(x).t + a(x) + a(x).[x = a]t * a(x).T + a(x)

?=T = taup z /\
Q = a\x\ plus (in a x\T) (in a x\z) /\
P = a\x\ plus (Q a x) (in a x\match x a T) /\
forall a x, bisim (P a x) (Q a x).

No solution.

a(x).7 + a(x) + a(x).[x = a]t ¥ [a(0)]|((TH)te Vv [7]£)

?=T = taup z /\

Q a\x\ plus (in a x\T) (in a x\z) /\

P = a\x\ plus (Q a x) (in a x\match x a T) /\

forall a x, sat (P a x) (boxIn a x\disj (diaAct tau tt) (boxAct tau ff)).
No solution.

a(x).7 + a(x) E [a0)](1)tt v [7]£)

?=T taup z /\
Q a\x\ plus (in a x\T) (in a x\z) /\
P = a\x\ plus (Q a x) (in a x\match x a T) /\
forall a x, sat (Q a x) (boxIn a x\disj (diaAct tau tt) (boxAct tau ff)).
Found a solution:
P = x1\x2\
plus (plus (in x1 (x3\ taup z)) (in x1 (x3\ 2)))
(in x1 (x3\ match x3 x1 (taup z)))
Q = x1\x2\ plus (in x1 (x3\ taup z)) (in x1 (x3\ z2))
T = taup z
More [y] ?
No more solutions (found 1).

CONCUR 2017



7:34 A Characterisation of Open Bisimilarity using an Intuitionistic Modal Logic

a(x).T + a(x) + a(x).[x = alt =L [a(x)]L((T)tt Vv [7]£)

?=T = taup z /\

Q a\x\ plus (in a x\T) (in a x\z) /\

P = a\x\ plus (Q a x) (in a x\match x a T) /\

nabla a x, 1lsat (a :: x :: nil) (P a x) (boxInL a x\disj (diaAct tau tt) (boxAct tau ff)).
Found a solution:
P = x1\x2\

plus (plus (in x1 (x3\ taup z)) (in x1 (x3\ 2)))
(in x1 (x3\ match x3 x1 (taup z)))

Q = x1\x2\ plus (in x1 (x3\ taup z)) (in x1 (x3\ z))
T = taup z
More [y] ?

No more solutions (found 1).

a(x).7 + a(x) EX [a0)] (o)t Vv [7] )

?=T taup z /\
Q a\x\ plus (in a x\T) (in a x\z) /\
P = a\x\ plus (Q a x) (in a x\match x a T) /\
nabla a x, 1lsat (a :: x :: nil) (Q a x) (boxIn a x\disj (diaAct tau tt) (boxAct tau ff)).
Found a solution:
P = x1\x2\
plus (plus (in x1 (x3\ taup z)) (in x1 (x3\ 2)))
(in x1 (x3\ match x3 x1 (taup z)))
Q = x1\x2\ plus (in x1 (x3\ taup z)) (in x1 (x3\ 2))
T = taup z
More [y] ?
No more solutions (found 1).
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