Messir: A Text-First DSL-Based Approach for
UML Requirements Engineering (Tool Demo)

Due to the need for (and absence of)
an integrated requirements engineering tool
centered on a textual specification language,

providing rich coverage of UML, report
generation, and formal simulation to be used
by our students at University of Luxembourg,
in our software engineering project-based

lectures, we have started to develop the
Excalibur workbench and Messir DSLs.

1. Messir & Excalibur

/7 N\ : 7N
Messir ’ N Messir / brol N Formal
Grammar —»| XText |—» Textual | Ezgigg Specification
N\ / Editor { ~ ‘ Simulation
N / 7/
— N— _t_/
. \ TN . \/— N
Messir / N Messir {E Lib N Req.
Viewer —»| Sirius |——® Graphical ! x%aorle vy Analysis
Config. N\ / Viewer { N ‘ Document
N / 7/
—_—— e —
Legend
VRN
7 N
| Generator | Generated
| Tool Artifact
N /
N —

Figure 1:Excalibur Architecture

Messir approach’s main characteristics:

e Scientific approach
e Focusing on textual specifications

e Offering a flexible requirements specification
language
e UML-based that provides

e an improved use-case modeling phase

e environment and conceptual modeling

e a declarative executable operation language
e a test specification language

Excalibur [1] has been developed by the authors
as an extension to Eclipse combining the 4 tools,
as shown in Figure 1

o XText converting an LBNF-like grammar into
a tull-fledge textual editor, including syntax
highlighting, auto-completion and validation
rules.

e Sirius displaying the textual files written with
our DSL in UML-like graphical notations.

o Fxcalibur Core is implemented in Java and
XTend, providing: a dedicated Outline
allowing to navigate through the specification
elements in a tree-view style; a Requirements
analysis document generator; a Formal
specification simulation code generator.

e a Simulator, based on the SICStus prolog
engine, interpreting the prolog code generated
and displaying the simulation results in
Eclipse as tabular-tree view.

usecase-suDeployAndRun.msr £ usecase-oeSollicitateCrisisHandling.msrd envirenment-actActivator-geSollicita
1 package icrash.usecases.suDeployAndRun {
2 import icrash.concepts.primarytypes.datatypes import icrash.environment import
3 Use Case Model {
4 use case system summary suDeployAndRun() {
5 actor actAdministrator[primary,active]
6 actor actMsrCreator[secondary,active]
7 actor actCoordinator[secondary,active,multiple]
8 actor actActivator[secondary,proactive]

9 actor actComCompany[secondary,active]
10 step a: actMsrCreator executes oeCreateSystemAndEnvironment
11 step b: actAdministrator executes ugAdministrateTheSystem
12 step c: actComCompany executes oeAlert
13 step d: actActivator executes oeSetClock
14 step Ae: actActivator executes oeSollicitateCrisisHandling
15 step f: actCoordinator executes suGlobalCrisisHandling
16 ordering constraint "step (a) must be always the first step.”
17 ordering constraint "step (f) can be executed by different actCoordinator a
18 ordering constraint "if (e) then previously (d)." }
Bl 19 use case instance uciSimpleAndComplete : suDeployAndRun {
20 actors { |
27¢ use case steps {
28 theCreator executed instanceof subfunction oeCreateSystemAndEnvironment("4"){}
29 theClock executed instanceof subfunction oeSetClock("2017:11:24 - ©3:20:00"){}
s 3@ bill executed instanceof subfunction oelLogin("icrashadmin”,"7WXC1359"){
31 ieMessage('You are logged ! Welcome ...') returned to bill 1}
e 32¢ bill executed instanceof subfunction oeAddCoordinator("1","steve","pwdMessirExca
s 33 ieCoordinatorAddedreturned returned to bill
A Rl

uei-suDepl dRUN-UGT df pl 101 3
Bl o D w2 o ® S[17s% B @
System

::::::::

System theCreator theClock bill tango
1 : actMsrCreator : actActivator : actAdministrator : actComCompany

I I
1 oeCreateSystemAndEnvironrpent("4“)
v out01

l
LoeSetCIock("201 7:11:24 - !120300")
i 1

Iout02

1 I

: oeLogin("icrashadmin“,"7WX¢:1 358") X

a X X Iout03

: ieMessage(You are logged ! \'Nelcome) :

...

: in01

I

! I [}

: oeAddCoordinator("1","steve","pwdMessirExcalibur2017")

_— 1 1

" ! ! out04

: ieCoordinatorAddedreturned:() :

... i
in02

m.ao oy

Figure 2:Excalibur Workbench

+ Bl R0 G & XXX
=8

Benoit Ries, Alfredo Capozucca and Nicolas Guelfi

University of Luxembourg, Esch-sur-Alzette, Luxembourg

2. Messir Textual DSLs

Messir Constraint Messir Validation Rules

Language

Documentation
Language

e A number of syntactical
validation rules are generated
automatically by the XText
framework based on the
Messir DSL grammar.

e declarative specification of

operations e complementary textual

e syntax inspired from OCL language
e semantics defined as a manual

translation to prolog

e natural language descriptions

used during report generation ® We have implemented 50

additional runtime validation

e covered concepts include: .
rules used as educational

navigation, conditional
expressions, messages sending

e allow documenting Messir

specification elements
means:

e allow documenting Excalibur o warning rules are meant to

VIEWS

let the end-user know about

¥ icras ¥ refere o2 BModel = 8 (B B 2
°°°°°°°°°°° w OB 14-operation: actActivator.outactActivator.oeSollicitateCrisisHandling():ptBoolean{
2 preP{
= let TheSyst S
let AvpStarted: ptBool
let ColctCrisisToHandle: Bag(ctCrisis) in B = uture Ste S tO e One Or
self.rnActor.rnSystem = TheSystem 1-@@Use Case Subfunction icrash.usecases.subfunctions.oeSollicitateCrisisHandling)
2-@description
21 /* PrePol */ 3 "the actActivator's goal is to decrease the number of unhandled crisis."”

1
22 and TheSystem.vpStarted 4-@protocolCondition
5 "the iCrash system has been deployed."

6-@protocolCondition
7 "t i

particular aspects of the
methodology to not be
overlooked.

ere exist some crisis still pending and for which no solicitation has been sent to the
8 @endProtocolConditions

7 and ColctCrisisToHandle->size().geq(1)

}
29 preF{true}
30 postF{
31- let TheSystem: ctStat

1
12-@postCondition
e in "a si

32- let AMessageForCrisisHandlers: dtComment in

13 simple text message ieMessage('There are alerts not treated since
. 14-@postCondition
33 let ColctCrisisToAllocateIfPossible:Bag(ctCrisis) in e "y

15 "the reminder period for the concerned crisis is initialized."
34 self.rnActor.rnSystem = TheSystem S 16 @endPostConditions
B =
36 /* PostFOl */ witatle == 10:7 @
" ston 37 and TheSystem.rnctCrisis->select(maxHandlingDelayPassed()) eoce report.SIM.p
38 = ColctCrisisToAllocateIfPossible [EmD IE=D report SiMpaf LS
39 and ColctCrisisToAllocateIfPossible->forAll(isAllocatedIfPossible()) B = Q ® O »/x | B 2 . 67/)7“0 7/) Tu 68 are I I I ea)n O

40

41 /* PostF@2 */ Q

42 and TheSystem.rnctCrisis->select(handlingDelayPassed()) = ColctCrisisToHandle Use-Case D R N a . .

43 and ColctCrisisToHandle->msrColSubtract(ColctCrisisToAllocateIfPossible) Name oeSollicitateCrisisHandling

44 = ColctCrisisToRemind Scope system K O C e en - u Ser l n l S

45 | Level ubfuncti 5

46- and if (ColctCrisisToRemind->size().geq(1)) Primary actor(s) N

47¢ then (AMessageForCrisisHandlers.value 1 acthctivator [proactive] = . . .

48 ='There are alerts pending since more than the defined delay. Please REACT !'

49 and TheSystem.rnactAdministrator. S dary actor(s) re ulre I I I ent S S eClﬁcat lon

50 rnInterfaceINAieMessage(AMessageForCrisisHandlers) 1 actCoor dinator [passive, mu ltiple]

51 and TheSystem.rnactCoordinator 2 actAdministrator [passive 1

52 ->forAll(rnInterfaceINAieMessage(AMessageForCrisisHandlers)) Goal(s) description 2

53) the actActivator’s goal is to decrease the number of unhandled crisis. I'O CeSS

54 else true — E

55 endif Protocol condition(s) . p .

56 3 1 the iCrash system has been deployed. =]

57 postP{ % 2 there exist some crisis still pending and for which no solicitation has been sent to the 10

58< let TheSystem: ctState in administrator and the coordinators for more than a predefined maximum delay. P

59- let TheClock: dtDateAndT: Pre-condition(s) L

g? elf.rnActor.rnSystem = TheSystem 1 _ none 118€ actor actActivator[proactive] role rnactActivator cardinality [1..1]{

62 and TheSystem.clock = TheClock Main post-condition(s) 119

63 and TheSystem@post.vplLastReminder = TheClock 1 a simple text message i‘eMessage(’There are alerts not treated since more than the defined B120 operation init({):ptBooclean

64 } delay. Please REACT!) is sent to the system administrator and to all the coordinators of the 121 o - - -

65 prolog{"src/Operations/Environment/OUT/outactActivator-oeSollicitateCrisisHandling.pl"} environment for each crisis that is known to be not handled and for which no solicitation has 1; . output int % The operation is not defined in any Operation Model.

66 } been sent to the administrator and the coordinators for more than a predefined maximum ;‘T ot +Bool

— delay.’) 123 proa F 2$ lean tool
2 the reminder period for the concerned crisis is initialized. 1fi } proact e --—--—-——--AndTime):ptBoolean

Figure 3:Messir Constraint Language

Figure 4:MessirDoc Language Figure 5:Warning Validation Rule

Work Summary

Messir is a scientific approach, yet flexible, for the specification of UML requirements. It is supported
by the Excalibur tool, used for software engineering education, since 2012 in numerous institutions
for project-based lectures.

The Excalibur tool provides as an integrated worbench, the possibility to describe rich textual UML
requirements & analysis specifications, to generate a structured report in EIEX, and to formally
simulate, with a prolog engine, the test cases specified in the requirements.

3. Generative Techniques

View (Generation Report Generation Simulation

e Takes as input

® test cases and instances of test
cases specified in Messir

e Generates a prolog simulation

project containing

o MESSAM prolog code: the
MESSir Abstract Machine, which
is our prolog implementation of
the Messir DSL metamodel

e and Types specification: all
specified types and actors in
prolog compliantly with
MESSAM.

e Some other parts are
completed manually :
e the operation pre/post
conditions
e and the test cases specification

e Takes as input :
e requirements elements in Messir
e documentation in MessirDoc of
the elements and views
e actual views created in the
requirements project

e Generates a IXTEX document
to be completed, e.g. with
introduction, conclusion, etc.

e Flexible process :

e definition-level mainly contains
natural language descriptions and
documented views.

e specification-level additionally
includes declarative operation
specifications in MCL.

e simulation-level additionally
includes prolog code of the

e read-only views

e illustrate certain aspects of
the textual requirements

e supported views are :
se-case, use-case instance,
concept model, environment
model, operation scope, test
case, test-case 1nstance

e their concrete syntax is based
on UML use-case, class and
sequence diagrams

e these views are integrated in
the requirements analysis
document during the report
generation phase.

t b d t t : [] @ | release - Simulation - lu.uni.lassy.icrash.spec.messir.reference.simulation/src/Operations/Environment/OUT/outact Activatt icitateCrisisHandling.pl - /Users/benoit.ries/ warksp...
operatlons an ypeEs SEmalltics. O 0B @ G B F D o Ko on B & X XIX
o | & em ® outactComCompany-oeh 3 @ ou
B 80
" e DmE o B 2z 81 (msrNav(ColctCrisisToRemind,
i 82 [msrSize,geq, [[ptInteger,1]]],
2 83 [[ptBoolean ,truell)
[SUDaployAndRuN() actMsrCreator 3.7 ACTORS AND INTERFACES DESCRIPTIONS 30 :; -> (meruv(Eel:i::;geForCr1515Hund1er5],
: <<primary>> 86 [CptS ,'The e al d more than the defined delay. Please REACT !']]),
- <<pactivey>> Figure 3.6 shows a global view for all actors with their relationships with ctState 87
oeCreateSystemAndEnvironment 33 msrNav([TheSysten],
1 actAuthenticated f actCoordinator & [rnactAdninist InterfaceIN
2 4 - 90 ieMessa ge, [AMessa, geForCrisisHandlers]
® init(): ptBoolean ® init(): ptBoolean 91 1,
primary> [0..*] rnactAuthenticated [0..*] rnactCoordinator 9z [CptBoolean, truell),
ive>>
1 rnSystem 1 rnSystem 5 System Types ¥ System Relations ¥ Simulation Steps ¥ Simulation Evolution 33 | TestResults ' TestPlan [/ Problems &) ErrorLog & Progress [Conscle
i lassy.icrash.sj i i a -
actCoordinator i e A;i:w ; i;ﬁi
cepts.primarytypes.classes) 1] su ¥ actauthenticated 52 @inactautnenticated
p ry> [¥] su % act i o uthen
ive>> 2 nextValueForAlertID : dtlnteger :j::
o nextValueForCrisisID : dtnteger /] Su
@ clock @ dtDateAndTime] su
‘@ crisisReminderPeriod : dtSecond /] su
primary>> % maxCrisisReminderPeriod : dtSecond | ek
>> @ vplLastReminder : dtDateAndTime o 1 B T
& ypStarted : ptBoolean 1-12 | [/] Su
init(AnextValueForAlertID: dtinteger, AnextValueForCrisisID: dtinteger, Aclock: [s
primary ® dtDateAndTime, AcrisisReminderPeriod: dtSecond, AmaxCrisisReminderPeriod: s
proactive>> ctAdministrator dtSecond, AvplastReminder: dtDateAndTime, AvpStarted: ptBoolean): ptBoolean E::
1 rnSystem 7
actActivator 1rmS 'st]e'enr"l1 System v :j i:
- (.1 M actComCompany J[L.llmactActvetor [e e e e
. o el D B ¥ actMsrCreator * actComCompany T actActivator
® init(}: ptBoolean @ init(): ptBoolean ® init(): ptBoolean
faceOU -
©_ outactAdministrator
® oeAddCoordinator(AdtCoordinatorID: dtCoordinatorID, AdtLogin: dtLogin, AdtPassword: dtPassword): ptB F | I 8 ° E X 1 b l l S [[I l l 1 t [l \ / ‘N 7
1m o oeDeleteCoordinator(AdtCoordinatorID: dtCoordinatorID): ptBoolean Figure 3.6: Environment Model - Global View 01. em-gv-01 environment model global view.]- re . Ca]- r]- aJ 10].e
%ac dmini
o init(): ptBoolean = S 1 P 1 C
inactAdministrator
’ . and Sample Prolog Code
o ieCoordinatorAdded(): ptBoolean 3.7 Actors and Interfaces Descriptions
ieCoordinatorDeleted(): ptBoolean
We provide for the given views the description of the actors together with their associated input and
output interface descriptions.
1 minterfaceOUT ©_ outactAuthenticated P P
® oelogin(AdtLogin: dtLogin, AdtPassword: dtPassword): ptBoolean 3.7.1 actActivator Actor
E @ oelLogout(): ptBoolean
¥ actAuthenticated
® init(): ptBoolean = Acror
© inactAuthenticated -
1 mActdr - - actActivator
1 minterfacelN ieMessage(AMessage: ptString): ptBoolean represents a logical actor for time automatic message sending based on system’s or environment status.
OutputInterfaces
OuT 1 [proactive] oeSollicitateCrisisHandling():ptBoolean
used to avoid crisis to stay too long in an not handled status.
ouT 2 [proactive] oceSetClock (AcurrentClock:dtDateAndTime) :ptBoolean

used to update the system’s time

Figure 6:50me Excalibur Views

Figure 7:Generated Report Extract

Students Feedback

Our students surveys on the lectures using
Messir /Excalibur resulted, out of 90+ answers,
in a majority of students agreeing both on
'recommending the lectures to others', and
that "the learning resources met their needs’.
Positive comments were 'the integrated hands-on
approach"' and "the report generation'. Negative
comments were mostly about "the actual presence
of bugs in the tool". ..

Conclusion

This poster presents our solution for a
requirements engineering tool, named Excalibur,
supporting our methodology, that is centered on
the Messir textual DSLs having typical features
of textual editors (thanks to XText) for which
we have developped 50 custom validation rules
to guide the analyst during the requirements
elicitation phase.

Eixcalibur implements three generative techniques
to make the best use of the textual requirements
specifications, firstly by generating read-only
views in a UML-style (thanks to Sirius), secondly
by generating an extensible requirements analysis
document compiling all textual and graphical
requirements information; lastly by generating
a partial prolog implementation supporting the

DSL metamodel for simulation purpose.

References

1] Messir and Excalibur website.
https://messir.uni.lu.

2] N. Mahmud, C. Seceleanu, and O. Ljungkrantz.
ReSA Tool: Structured Requirements Specification and

SAT-based Consistency-checking.
pages 1737-1746, October 2016.

3] A. da Silva, S. Vlajic, S. Lazarevic, I. Antovic,
V. Stanojevic, and M. Milic.
Preliminary Experience Using JetBrains MPS to
Implement a Requirements Specification Language.
In 9th International Conference on the Quality of
Information and Communications Technology, pages

134-137, Guimaraes, Portugal, 2014. IEEE.

4] D. Savic, S. Vlaji¢, S. Lazarevi¢, I. Antovi¢, S. Vojislav,
M. Mili¢, and A. Silva.
Use case specification using the SilabReq domain
specific language.
Computing and Informatics, 34:877-910, 2015.

5] V. Hoffmann, H. Lichter, A. NyBen, and A. Walter.
Towards the Integration of UML- and textual Use Case
Modeling.

The Journal of Object Technology, 8(3):85, 2009.

6] Ed Seidewitz.
A Development Environment for the Alf Language
Within the MagicDraw UML Tool (Tool Demo).
In 10th ACM SIGPLAN International Conference

on Software Language Engineering, SLE 2017, pages
217-220, Vancouver, BC, Canada, 2017. ACM.

Acknowledgements

The authors would like to thank all the students from
University of Luxembourg (Luxembourg), University of
Rosario (Argentina), Innopolis University (Russia) and St
Petersburg Polytechnic University (Russia) for their help
and support in the usage of the tool and bug reporting
that greatly helped reaching more stable releases.

UNIVERSITE DU
LUXEMBOURG

https://messir.uni.lu

