
Messir: A Text-First DSL-Based Approach for
UML Requirements Engineering (Tool Demo)

Benoît Ries, Alfredo Capozucca and Nicolas Guelfi
University of Luxembourg, Esch-sur-Alzette, Luxembourg

Context

Due to the need for (and absence of)
an integrated requirements engineering tool
centered on a textual specification language,
providing rich coverage of UML, report
generation, and formal simulation to be used
by our students at University of Luxembourg,
in our software engineering project-based
lectures, we have started to develop the
Excalibur workbench and Messir DSLs.

1. Messir & Excalibur

Legend

Messir
Textual
Editor

Messir
Graphical
Viewer

Messir
Grammar

Formal
Specification
Simulation

Req.
Analysis

Document

Excalibur
CoreSirius

XText

Generator
Tool

Generated
Artifact

Messir
Viewer
Config.

Prolog
Engine

Figure 1:Excalibur Architecture

Messir approach’s main characteristics:
• Scientific approach
• Focusing on textual specifications
•Offering a flexible requirements specification
language

•UML-based that provides
• an improved use-case modeling phase
• environment and conceptual modeling
• a declarative executable operation language
• a test specification language

Excalibur [1] has been developed by the authors
as an extension to Eclipse combining the 4 tools,
as shown in Figure 1:

•XText converting an EBNF-like grammar into
a full-fledge textual editor, including syntax
highlighting, auto-completion and validation
rules.

• Sirius displaying the textual files written with
our DSL in UML-like graphical notations.

•Excalibur Core is implemented in Java and
XTend, providing: a dedicated Outline
allowing to navigate through the specification
elements in a tree-view style; a Requirements
analysis document generator; a Formal
specification simulation code generator.

• a Simulator, based on the SICStus prolog
engine, interpreting the prolog code generated
and displaying the simulation results in
Eclipse as tabular-tree view.

Figure 2:Excalibur Workbench

2. Messir Textual DSLs

Messir Constraint
Language

• declarative specification of
operations

• syntax inspired from OCL
• semantics defined as a manual
translation to prolog

• covered concepts include:
navigation, conditional
expressions, messages sending

Figure 3:Messir Constraint Language

Messir
Documentation

Language

• complementary textual
language

• natural language descriptions
used during report generation

• allow documenting Messir
specification elements

• allow documenting Excalibur
views

Figure 4:MessirDoc Language

Validation Rules

•A number of syntactical
validation rules are generated
automatically by the XText
framework based on the
Messir DSL grammar.

•We have implemented 50
additional runtime validation
rules used as educational
means:

•warning rules are meant to
let the end-user know about
future steps to be done, or
particular aspects of the
methodology to not be
overlooked.

• error rules are meant to
block the end-user in his
requirements specification
process.

Figure 5:Warning Validation Rule

Work Summary

Messir is a scientific approach, yet flexible, for the specification of UML requirements. It is supported
by the Excalibur tool, used for software engineering education, since 2012 in numerous institutions
for project-based lectures.
The Excalibur tool provides as an integrated worbench, the possibility to describe rich textual UML
requirements & analysis specifications, to generate a structured report in LATEX, and to formally
simulate, with a prolog engine, the test cases specified in the requirements.

3. Generative Techniques

View Generation

• read-only views
• illustrate certain aspects of
the textual requirements

• supported views are :
use-case, use-case instance,
concept model, environment
model, operation scope, test
case, test-case instance

• their concrete syntax is based
on UML use-case, class and
sequence diagrams

• these views are integrated in
the requirements analysis
document during the report
generation phase.

Figure 6:Some Excalibur Views

Report Generation

•Takes as input :
• requirements elements in Messir
• documentation in MessirDoc of
the elements and views

• actual views created in the
requirements project

•Generates a LATEX document
to be completed, e.g. with
introduction, conclusion, etc.

• Flexible process :
• definition-level mainly contains
natural language descriptions and
documented views.

• specification-level additionally
includes declarative operation
specifications in MCL.

• simulation-level additionally
includes prolog code of the
operations and types semantics.

Figure 7:Generated Report Extract

Simulation

•Takes as input
• test cases and instances of test
cases specified in Messir

•Generates a prolog simulation
project containing
• MESSAM prolog code: the
MESSir Abstract Machine, which
is our prolog implementation of
the Messir DSL metamodel

• and Types specification: all
specified types and actors in
prolog compliantly with
MESSAM.

• Some other parts are
completed manually :
• the operation pre/post
conditions

• and the test cases specification

Figure 8:Excalibur Simulation View
and Sample Prolog Code

Students Feedback

Our students surveys on the lectures using
Messir/Excalibur resulted, out of 90+ answers,
in a majority of students agreeing both on
"recommending the lectures to others", and
that "the learning resources met their needs".
Positive comments were "the integrated hands-on
approach" and "the report generation". Negative
comments were mostly about "the actual presence
of bugs in the tool". . .

Conclusion

This poster presents our solution for a
requirements engineering tool, named Excalibur,
supporting our methodology, that is centered on
the Messir textual DSLs having typical features
of textual editors (thanks to XText) for which
we have developped 50 custom validation rules
to guide the analyst during the requirements
elicitation phase.
Excalibur implements three generative techniques
to make the best use of the textual requirements
specifications, firstly by generating read-only
views in a UML-style (thanks to Sirius), secondly
by generating an extensible requirements analysis
document compiling all textual and graphical
requirements information; lastly by generating
a partial prolog implementation supporting the
DSL metamodel for simulation purpose.

References

[1] Messir and Excalibur website.
https://messir.uni.lu.

[2] N. Mahmud, C. Seceleanu, and O. Ljungkrantz.
ReSA Tool: Structured Requirements Specification and
SAT-based Consistency-checking.
pages 1737–1746, October 2016.

[3] A. da Silva, S. Vlajic, S. Lazarevic, I. Antovic,
V. Stanojevic, and M. Milic.
Preliminary Experience Using JetBrains MPS to
Implement a Requirements Specification Language.
In 9th International Conference on the Quality of
Information and Communications Technology, pages
134–137, Guimaraes, Portugal, 2014. IEEE.

[4] D. Savic, S. Vlajić, S. Lazarević, I. Antović, S. Vojislav,
M. Milić, and A. Silva.
Use case specification using the SilabReq domain
specific language.
Computing and Informatics, 34:877–910, 2015.

[5] V. Hoffmann, H. Lichter, A. Nyßen, and A. Walter.
Towards the Integration of UML- and textual Use Case
Modeling.
The Journal of Object Technology, 8(3):85, 2009.

[6] Ed Seidewitz.
A Development Environment for the Alf Language
Within the MagicDraw UML Tool (Tool Demo).
In 10th ACM SIGPLAN International Conference
on Software Language Engineering, SLE 2017, pages
217–220, Vancouver, BC, Canada, 2017. ACM.

Acknowledgements

The authors would like to thank all the students from
University of Luxembourg (Luxembourg), University of
Rosario (Argentina), Innopolis University (Russia) and St
Petersburg Polytechnic University (Russia) for their help
and support in the usage of the tool and bug reporting
that greatly helped reaching more stable releases.

https://messir.uni.lu

