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Abstract

Krichever-Novikov type algebras are generalizations of the Witt, Virasoro, affine
Lie algebras, and their relatives to Riemann surfaces of arbitrary genus and/or the
multi-point situation. They play a very important role in the context of quantiza-
tion of Conformal Field Theory. In this review we give the most important results
about their structure, almost-grading and central extensions. Furthermore, we ex-
plain how they are used in the context of Wess-Zumino-Novikov-Witten models,
respectively Knizhnik-Zamolodchikov connections. There they play a role as gauge
algebras, as tangent directions to the moduli spaces, and as Sugawara operators.

1 Introduction

Krichever-Novikov (KN) type algebras are higher genus and/or multi-point gen-
eralizations of the nowadays well-known Virasoro algebra and its relatives. These
classical algebras appear in Conformal Field Theory (CFT) [3], [51]. But this is
not their only application. At many other places, in- and outside of mathematics,
they play an important role. The algebras can be given by meromorphic objects
on the Riemann sphere (genus zero) with possible poles only at {0,00}. For the
Witt algebra these objects are vector fields. More generally, one obtains its central
extension the Virasoro algebra, the current algebras and their central extensions
the affine Kac-Moody algebras. For Riemann surfaces of higher genus, but still
only for two points where poles are allowed, they were generalized by Krichever
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and Novikov [24], [25], [26] in 1986. In 1990 the author [31], [32], [33], [34] extended
the approach further to the general multi-point case.

These extensions were not at all straight-forward. The main point is to intro-
duce a replacement of the graded algebra structure present in the “classical” case.
Krichever and Novikov found that an almost-grading, see Definition 4.1 below,
will be enough to allow for the standard constructions in representation theory.
In [33], [34] it was realized that a splitting of the set A of points where poles are
allowed, into two disjoint nonempty subsets A = I U O is crucial for introduc-
ing an almost-grading. The corresponding almost-grading was explicitly given. A
Krichever-Novikov (KN) type algebra is an algebra of meromorphic objects with
an almost-grading coming from such a splitting. In the classical situation there
is only one such splitting possible (up to inversion). Hence, there is only one
almost-grading, which is indeed a grading.

An important feature forced by quantization is the construction and classifica-
tion of central extensions. In the classical situation (i.e. the Virasoro case) there is
only one nontrivial central extension. This is not true anymore in the higher genus
and/or multi-point situation. The author classified [37], [38] bounded cocycles and
showed uniqueness of nontrivial almost-graded central extensions.

Quite recently the book Krichever-Novikov type algebras. Theory and applica-
tions [43] written by the current author appeared. It gives a more or less complete
treatment of the state of the art of the theory of KN type algebras including some
applications. For more applications in direction of integrable systems and descrip-
tion of the Lax operator algebras see also the recent book Current algebras on
Riemann surfaces [50] by Sheinman.

The goal of this review is to give an introduction to the KN type algebras in
the multi-point setting, their definitions and main properties. Proofs are mostly
omitted. They all can be found in [43], beside in the original works. KN type
algebras carry a very rich representation theory. We have Verma modules, highest
weight representations, Fermionic and Bosonic Fock representations, semi-infinite
wedge forms, b — ¢ systems, Sugawara representations and vertex algebras. As
much as these representations are concerned we are very short here and have to
refer to [43] too. There also a quite extensive list of references can be found,
including articles published by physicists on applications in the field-theoretical
context. As a special application we consider in the current review the use of KN
type algebras in the context of Wess-Zumino-Novikov-Witten (WZNW) models
and Knizhnik-Zamolodchikov (KZ) equations, [47], [48], respectively [43]. There
they play a role as gauge algebras, as tangent directions to the moduli spaces,
and as Sugawara operators. Our construction works in a more general setting
as e.g. the Tsuchiya-Ueno-Yamada approach [51]. But we have to admit the
fact that our construction up to now only works on the open dense subset of the
moduli space, whereas the Tsuchiya-Ueno-Yamada connection can be extended to
the compactified moduli space. Also in higher genus (or even in the elliptic case)
our introduced connection still has to be compared with the existing Knizhnik-
Zamolodchikov-Bernard connection [4], [5], [8], [9], [10], [18].

There are other applications which we cannot touch here. I only recall the fact
that they supply examples of nontrivial deformations of the Witt and Virasoro
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algebras [11], [12], [13] despite the fact that they are formally rigid, see e.g. [40].

This review extends and updates in certain respects the previous reviews [42],
[44] and has consequently some overlap with them.

It is a pleasure for me to thank the Institut Mittag-Leffler in Djursholm, Sweden
and the organizers Lizhen Ji and Shing-Tung Yau of the very inspiring workshop
“Uniformization, Riemann-Hilbert Correspondence, Calabi-Yau Manifolds, and
Picard-Fuchs Equations” for the invitation and hospitality.

My thanks also go to Oleg K. Sheinman for a long-term collaboration. The
parts on the Sugawara operators, WZNW models and KZ equations is based on
joint work with him. I acknowledge partial support in the frame of the OPEN
scheme of the Fonds National de la Recherche (FNR) with the project QUANT-
MOD 013/570706.

2 The geometric set-up for our algebras

2.1 The geometric data

In the following let 3 = 3, be a compact Riemann surface without any restriction
on its genus g = ¢g(X). Furthermore, let A be a finite subset of points on ¥. Later
we will need a splitting of A into two nonempty disjoint subsets I and O, i.e.
A=1TUO. Set N :=#A, K :=#I, M := #0, with N = K+ M. More precisely,
let

I:(Pl,...,PK) and OZ(Ql,...,Q]w) (21)

be disjoint ordered tuples of distinct points (“marked points”, “punctures”) on
the Riemann surface. In particular, we assume P; # Q; for every pair (i,5). The
points in I are called the in-points, the points in O the out-points. Occasionally,
we consider I and O simply as sets?.

Sometimes we refer to the classical situation. By this we understand

Yo=PC)=5% TI={2=0}, O={z=o00} (2.2)

The figures should indicate the geometric picture. Figure 1 shows the classical
situation. Figure 2 is the genus 2 two-point situation. Finally, in Figure 3 the case
of a Riemann surface of genus 2 with two incoming points and one outgoing point
is visualized.

2.2 Meromorphic forms

To introduce the elements of our KN type algebras we first have to discuss forms
of certain (conformal) weights. Recall that ¥ is a compact Riemann surface of
genus g > 0 and A is a fixed finite subset of ¥. In fact we could allow for this and
the following sections (as long as we do not talk about almost-grading) that A is
an arbitrary subset. This includes the extremal cases A = () or A = 3.

n the interpretation of CFT, the points in A correspond to points where free fields either
are entering or leaving the region of interaction. In particular, there is from the very beginning
a natural decomposition of the set of points A into two disjoint subsets I and O.
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Figure 1: Riemann surface of genus zero with one incoming and one outgoing
point.

Figure 2: Riemann surface of genus two with one incoming and one outgoing point.

Figure 3: Riemann surface of genus two with two incoming points and one outgoing
point.

Let K = Ky, be the canonical line bundle of ¥. A holomorphic (meromorphic)
section of K, i.e. a holomorphic (meromorphic) differential is given as a collection
of local meromorphic functions (h;);e; with respect to a coordinate covering for
which the transformation law

dz;\ " dz
hj=hi-cl, with ¢ ;< 'Zﬂ) . (2.3)

is true. We will not make any distinction between the canonical bundle and its
sheaf of sections, which is a locally free sheaf of rank 1.
In the following A is either an integer or a half-integer. If A is an integer then
(1) K* = K& for A > 0,
(2) K% = O, the trivial line bundle, and



Krichever-Novikov Type Algebras and WZNW Models 331

(3) KA = (K*)® for X < 0.

Here K* denotes the dual line bundle of the canonical line bundle. This is the
holomorphic tangent line bundle, whose local sections are the holomorphic tangent
vector fields f(z)(d/dz).

If A is a half-integer, then we first have to fix a “square root” of the canonical
line bundle, sometimes called a theta characteristics. This means we fix a line
bundle L for which L®? = K. After such a choice of L is done we set K* :=
IC% := L®?*_ In most cases we will drop the mentioning of L, but we have to keep
the choice in mind. The fine-structure of the algebras we are about to define will
depend on the choice. But the main properties will remain the same.

Remark 2.1. A Riemann surface of genus ¢ has exactly 229 nonisomorphic square
roots of . For g = 0 we have £ = O(-2), and L = O(—1), the tautological
bundle, is the unique square root. Already for g = 1 we have four nonisomorphic
ones. As in this case K = O one solution is Lo = O. But we have also other
bundles L;, + = 1,2,3. Note that Ly has a nonvanishing global holomorphic
section, whereas this is not the case for Lq, L and L3. In general, depending on
the parity of the dimension of the space of globally holomorphic sections, i.e. of
dim H%(X, L), one distinguishes even and odd theta characteristics L. For g = 1
the bundle O is an odd, the others are even theta characteristics. The choice of a
theta characteristics is also called a spin structure on X, [2].

We set

FMA) := {f is a global meromorphic section of K™ | (2.4)
f is holomorphic on ¥\ A}.

Obviously this is a C-vector space. To avoid cumbersome notation, we will often
drop the set A in the notation if A is fixed and/or clear from the context. Recall
that in the case of half-integer A everything depends on the theta characteristics
L.

Definition 2.2. The elements of the space F*(A) are called meromorphic forms
of weight A (with respect to the theta characteristics L).

Remark 2.3. In the two extremal cases for the set A we obtain F*()) the global
holomorphic forms, and F*(X) all meromorphic forms. By compactness each
f € FME) will have only finitely many poles. In the case that f # 0 it will also
have only finitely many zeros.

For sections of K with A € Z the transition functions are ¢y = (cl)A, with ¢;
from (2.3). The corresponding is true also for half-integer . In this case the basic
transition function of the chosen theta characteristics L is given as ¢;/5 and all
others are integer powers of it. Symbolically, we write /dz; or (dz)'/? for the local
frame, keeping in mind that the signs for the square root is not uniquely defined
but depends on the bundle L.

If f # 0 is a meromorphic A-form it can be represented locally by meromorphic
functions f;. We define for P € ¥ the order

ordp(f) := ordp(fi), (2.5)
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where ordp(f;) is the lowest nonvanishing order in the Laurent series expansion of
fi in the variable z; around P. The order ordp(f) is (strictly) positive if and only
if P is a zero of f. It is negative if and only if P is a pole of f. Its value gives the
order of the zero and pole respectively. By compactness our Riemann surface X,
f can only have finitely many zeros and poles. We define the (sectional) degree of
f to be

sdeg(f) := Y _ ordp(f). (2.6)

rex

Proposition 2.4. Let f € F», f #0 then
sdeg(f) =2X(g —1). (2.7)

For this and related results see [39].

3 Algebraic structures

Next we introduce algebraic operations on the vector space of meromorphic forms
of arbitrary weights. This space is obtained by summing over all weights

F=p 7 (3.1)

€Lz

The basic operations will allow us to introduce finally the algebras we are heading
for.

3.1 Associative structure

In this section A is still allowed to be an arbitrary subset of points in . We will
drop the subset A in the notation. The natural map of the locally free sheaves of
rang one

KX x KY - K@KV =2 MY, (s,t) = s @, (3.2)

defines a bilinear map

CFAXF s P (3.3)
With respect to local trivialisations this corresponds to the multiplication of the
local representing meromorphic functions

(sdz* tdz") — sdz* - tdz" = s -t d2 . (3.4)

If there is no danger of confusion then we will mostly use the same symbol for the
section and for the local representing function.
The following is obvious.

Proposition 3.1. The space F is an associative and commutative graded (over
%Z) algebra. Moreover, A= F° is a subalgebra and the F* are modules over A.

Of course, A is the algebra of those meromorphic functions on ¥ which are
holomorphic outside of A. In case that A = (), it is the algebra of global holomor-
phic functions. By compactness, these are only the constants, hence A(f)) = C. In
case that A = ¥ it is the field of all meromorphic functions M(X).
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3.2 Lie and Poisson algebra structure

Next we define a Lie algebra structure on the space F. The structure is induced
by the map

FAXF = FAHL (e, f) e e, /], (3.5)
which is defined in local representatives of the sections by
d d
(edz?, fdz") v [edz?, fd2"] == ((—)\)ed—f + l/fd—e) AR (3.6)
z z

and bilinearly extended to F.

Proposition 3.2 [43, Propositions 2.6 and 2.7]. The prescription |.,.] given by
(3.6) is well-defined and defines a Lie algebra structure on the vector space F.

Proposition 3.3 [43, Proposition 2.8]. The subspace L = F~! is a Lie subalgebra,
and the F*’s are Lie modules over L.

Theorem 3.4 [43, Theorem 2.10]. The space F with respect to - and [.,.] is a
Poisson algebra.

Next we consider important substructures. We already encountered the subal-
gebras A and L. But there are more structures around.

3.3 The vector field algebra and the Lie derivative

First we look again at the Lie subalgebra £ = F~!. Here the Lie action respect the
homogeneous subspaces F*. As forms of weight —1 are vector fields, it could also
be defined as the Lie algebra of those meromorphic vector fields on the Riemann
surface ¥ which are holomorphic outside of A. For vector fields we have the usual
Lie bracket and the usual Lie derivative for their actions on forms. For the vector
fields e, f € £ we have (again naming the local functions with the same symbol as
the section)

d d df de ) d (3.7)

e = [ 1] = (L) - 1)

For the Lie derivative we get

V) = Lo = e = (L +MEEE) 6

Obviously, these definitions coincide with the definitions already given above. But
now we obtained a geometric interpretation.

3.4 The algebra of differential operators

If we look at F, considered as Lie algebra, more closely, we see that F° is an
abelian Lie subalgebra and the vector space sum F° @ F~! = A@ L is also a Lie
subalgebra. In an equivalent way this can also be constructed as semidirect sum of
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A considered as abelian Lie algebra and £ operating on 4 by taking the derivative.
It is called Lie algebra of differential operators of degree < 1 and denoted by D!.
In terms of elements the Lie product is

[(g,€),(h, )] = (e-h—[f.g, [e, f]). (3.9)

The projection onto the second factor (g,e) — e is a Lie homomorphism and we
obtain a short exact sequences of Lie algebras

0 A D! L 0. (3.10)

Hence A is an (abelian) Lie ideal of D! and £ is a quotient Lie algebra. Obviously,
L is also a subalgebra of D'.

Proposition 3.5. The vector space F* becomes a Lie module over D' by the
operation

(g.€).f =g -f+ef, (ge) €D (A), feFNA. (3.11)
3.5 Differential operators of all degree

Differential operators of arbitrary degree acting on F* can be obtained via uni-
versal constructions. See [43] for more details.

3.6 Lie superalgebras of half forms

With the help of our associative product (3.2) we will obtain examples of Lie
superalgebras. First we consider

GFTVR Y2 gl = (3.12)

and introduce the vector space S with the product
S=LoF % ep), (o) :=(e/l+¢-vep—fv).  (313)
The elements of £ are denoted by e, f, ..., and the elements of F~/2 by ¢, v, .. ..
The definition (3.13) can be reformulated as an extension of [.,.] on £ to a

super-bracket (denoted by the same symbol) on S by setting

le, @] :=—[p,e] i=e.p= <ej—<§ — %gﬁ%) (dz)71/2 (3.14)
and
[o. 9] == -9 (3.15)

We call the elements of £ elements of even parity, and the elements of F~1/2

elements of odd parity.
The sum (3.13) can also be described as S = Sy @ S1, where S; is the subspace
of elements of parity 7.

Proposition 3.6 [43, Proposition 2.15]. The space S with the above introduced
parity and product is a Lie superalgebra.
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Remark 3.7. For the relation of the superalgebra to the geometry of graded
Riemann surfaces see Bryant [7]. Also Jordan superalgebras can be constructed in
the above setting, see e.g. Leidwanger and Morier-Genoud [28]. This superalgebra
is the so-called Neveu-Schwarz superalgebra. In physics literature there is another
superalgbra of importance, the Ramond superalgebra. To define it additional
geometric data consisting of pairs of marked points and paths between them is
needed. On the relation to moduli space problems see the recent preprint of
Witten [52].

3.7 Higher genus current algebras
We fix an arbitrary finite-dimensional complex Lie algebra g.

Definition 3.8. The higher genus current algebra associated to the Lie algebra
g and the geometric data (X, A) is the Lie algebra g = g(A4) = g(X, A) given as
vector space by g = g ®c A with the Lie product

[$®fay®g]:[xay]®fga T,y €y, fagEA' (316)
Proposition 3.9. g is a Lie algebra.

As usual we will suppress the mentioning of (X, A) if not needed. The elements
of g can be interpreted as meromorphic functions ¥ — g from the Riemann surface
Y to the Lie algebra g, which are holomorphic outside of A.

For some applications it is useful to extend the definition by considering differ-
ential operators (of degree < 1) associated to g. We define Dé =g @ L and take
in the summands the Lie product defined there and set additionally

[,z ®¢]:=—-[r®g,e] :=z® (e.g). (3.17)

This operation can be described as semidirect sum of g with £. We get

Proposition 3.10 [43, Proposition 2.15]. Dé is a Lie algebra.

3.8 Krichever-Novikov type algebras

Above the set A of points where poles are allowed was arbitrary. In case that
A is finite and moreover #A > 2 the constructed algebras are called Krichever-
Novikov (KN) type algebras. In this way we get the KN vector field algebra, the
function algebra, the current algebra, the differential operator algebra, the Lie
superalgebra, etc. The reader might ask what is so special about this situation
so that these algebras deserve special names. In fact in this case we can endow
the algebra with a (strong) almost-graded structure. This will be discussed in the
next section. The almost-grading is a crucial tool for extending the classical result
to higher genus. Recall that in the classical case we have genus zero and #A = 2.

Strictly speaking, a KN type algebra should be considered to be one of the
above algebras for 2 < #A < oo together with a fixed chosen almost-grading
induced by the splitting A = I U O into two disjoint nonempty subset, see Defini-
tion 4.1.
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3.9 The classical algebras

If we use the above definitions of the algebras for the classical setting g = 0,
A = {0,000} we obtain the well-known classical algebras. For further reference we
will already introduce their classical central extensions.

3.9.1 The Witt algebra

In the classical situation the vector field algebra L is called Witt algebra VV, some-
times also called Virasoro algebra without central term. It is the Lie algebra
generated as vector space over C by the basis elements {e, = 2"*'L | n € Z}
with Lie structure

[en,em] = (M —n)eptm, n,m € Z. (3.18)

Here z is the quasi-global coordinate on P!. By setting the degree deg(e,) := n it
will become a graded Lie algebra.

3.9.2 The Virasoro algebra

For the Witt algebra the universal central extension is the Virasoro algebra V. As
vector space it is the direct sum V = C® W. If we set for z € W, & := (0, z), and
t := (1,0) then its basis elements are é,, n € Z and t with the Lie product 2.

[en, ém] = (M — 1)enym + 1_12(n3 —n)OTMt, et = [ =0.  (3.19)

By setting degt := 0 we extend the grading of W to V.

3.9.3 The affine Lie algebra

In the classical situation the algebra A of functions corresponds to the algebra
of Laurent polynomials C[z,271]. Given g a finite-dimensional Lie algebra (i.e.
a finite-dimensional simple Lie algebra) then the tensor product of g with the
associative algebra A = C[z, 27 !] introduced above writes as

[t ® 2", y® 2" = [z,y] @ 2" (3.20)

This algebra g is the classical current algebra or loop algebra. Also in this case
we consider central extensions. For this let 8 be a symmetric, bilinear form for g
which is invariant (e.g. 8([z,y],2z) = B(x, [y, 2]) for all z,y, z € g). Then a central
extension is given by

[E® 2,5 ® 2] = [2,y] ® 2+ — B(z,y) -m ;™ - t. (3.21)

This algebra is denoted by g and called affine Lie algebra. With respect to the
classification of Kac-Moody Lie algebras, in the case of a simple g they are exactly
the Kac-Moody algebras of affine type, [19], [20], [29)].

2Here 62 is the Kronecker delta which is equal to 1 if k = [, otherwise zero.
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3.9.4 The Lie superalgebra

Also the classical Lie superalgebra of Neveu-Schwarz type shows up by the above
constructions. It has as basis elements

1
en=2""Hd2)"\, n€Z, @m=2"T2d2)"V2 meZ+ 5 (3.22)

To avoid doubling I give the structure equations already for the central extension.
Here ¢ is an additional central element.

1
[ens em] = (M = n)emin + = (n° —n) 6, ¢,

12
n
[ena(Pm] = (m - 5) Pm+n, (323)
1 5 1 —m
(ension] = enm = 5 (- 1) 670

3.9.5 Generalisations

Our classical algebras had certain important features which we like to recover at
least to a certain extend in our general KN type algebras. They are graded algebra.
They have a certain system of basis elements which are homogeneous with respect
to this grading. A generalisation of this is obtained by the almost-grading discussed
in Section 4.

Furthermore, we have central extensions, which indeed are forced by the appli-
cations, e.g. by the quantization of field theories and their necessary regularisation.
In the classical situation they are essentially unique (up to equivalence). For the
generalised algebras we will discuss this in Section 5.

Let me point out here that a special central extension of the function algebra
A will be the (infinite dimensional) Heisenberg algebra.

4 Almost-graded structure

4.1 Definition of almost-gradedness

In the classical situation discussed in Section 3.9 the algebras introduced in the
last section are graded algebras. In the higher genus case and even in the genus
zero case with more than two points where poles are allowed there is no nontrivial
grading anymore. As realized by Krichever and Novikov [24] in the two point case
there is a weaker concept, an almost-grading, which to a large extend is a valuable
replacement of a honest grading.

Definition 4.1. Let £ be a Lie or an associative algebra such that £ = ®,czL,
is a vector space direct sum, then £ is called an almost-graded (Lie-) algebra if

(i) dim£,, < oo,
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(ii) there exists constants L1, Lo € Z such that

n+m-+Lo
Lo LmC @ Ln, Inmel
h=n+m-—1L1

The elements in £,, are called homogeneous elements of degree n, and £,, is called
homogeneous subspace of degree n.

If dim £,, is bounded with a bound independent of n we call L strongly almost-
graded. If we drop the condition that dim £,, is finite we call £ weakly almost-
graded.

Note that in [24] the name quasi-grading was used instead.

In a similar manner almost-graded modules over almost-graded algebras are
defined. We can extend in an obvious way the definition to superalgebras, respec-
tively even to more general algebraic structures. This definition makes complete
sense also for more general index sets J. In fact, we will consider the index set
J = (1/2)Z in the case of superalgebras. The even elements (with respect to the
super-grading) will have integer degree, the odd elements half-integer degree.

4.2 Separating cycle and Krichever-Novikov pairing

Before we give the almost-grading we introduce an important geometric struc-
ture. Let C; be positively oriented (deformed) circles around the points P; in
I, i =1,...,K and C} positively oriented circles around the points @; in O,
j=1,...,M.

A cycle Cg is called a separating cycle if it is smooth, positively oriented of
multiplicity one and if it separates the in-points from the out-points. It might
have more than one component. In the following we will integrate meromorphic
differentials on ¥ without poles in ¥\ A over closed curves C. Hence, we might
consider C' and C” as equivalent if [C] = [C’] in H1 (X \ A,Z). In this sense we
write for every separating cycle

K

M
[Cs] =Y [Ci] == _[C;). (4.1)

i=1 j=1

The minus sign appears due to the opposite orientation. Another way for giving
such a Cg is via level lines of a “proper time evolution”, for which I refer to [43,
Section 3.9].

Given such a separating cycle Cs (respectively cycle class) we define a linear
map

1 1
F' — C, w —/ w. (4.2)
1 Cs

The map will not depend on the separating line C's chosen, as two of such will be
homologous and the poles of w are only located in I and O.
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Consequently, the integration of w over Cg can also be described over the spe-
cial cycles C; or equivalently over C7. This integration corresponds to calculating
residues

K
w o lzzlresa l_zlresQl (4.3)
Definition 4.2. The pairing
_ 1
]:)\Xfl A*)Ca (fvg)'_)<fvg> % f 9, (44)

between A and 1 — A forms is called Krichever-Novikov (KN) pairing.

Note that the pairing depends not only on A (as the F* depend on it) but also
critically on the splitting of A into I and O as the integration path will depend
on it. Once the splitting is fixed the pairing will be fixed too.

In fact, there exit dual basis elements (see (4.9)) hence the pairing is nonde-
generate.

4.3 The homogeneous subspaces

Given the vector spaces F* of forms of weight £ we will now single out subspaces
F2 of degree m by giving a basis of these subspaces. This has been done in the 2-
point case by Krichever and Novikov [24] and in the multi-point case by the author
[31], [32], [33], [34], see also Sadov [30]. See in particular [43, Chapters 3,4,5] for
a complete treatment. All proofs of the statements to come can be found there.
Such an almost-grading is induced by a splitting of the set A into two nonempty
and disjoint sets I and O.

Depending on whether the weight A is integer or half-integer we set Jy = Z or
Jr» = Z +1/2. For F* we introduce for m € J, subspaces F,, of dimension K,
where K = #I, by exhibiting certain elements f%,p € F*, p=1,...,K which
constitute a basis of F,,. Recall that the spaces F* for A € Z+1/2 depend on the
chosen square root L (the theta characteristic) of the bundle chosen. The elements
are the elements of degree m. As explained in the following, the degree is in an
essential way related to the zero orders of the elements at the points in I.

Let I = {P1,P,,..., Pk} then we have for the zero-order at the point P; € T
of the element f,i‘m

ordp,(fp,)=n+1-X) -6, i=1,...K. (4.5)

The prescription at the points in O is made in such a way that the element f,’,\%p
is essentially uniquely given. Essentially unique means up to multiplication with
a constant®. After fixing as additional geometric data a system of coordinates z
centered at P, for [ = 1,..., K and requiring that

Fap(zp) = 257 (1 + O(z))(dzp)* (4.6)

3Strictly speaking, there are some special cases where some constants have to be added such
that the Krichever-Novikov duality (4.9) is valid.
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the element f, , is uniquely fixed. In fact, the element fap only depends on the
first jet of the coordinate z,.

Here we will not give the general recipe for the prescription at the points in O.
Just to give an example, which is also the important special case appearing in the
case of WZNW models discussed later, assume O = {Q} is a one-element set. If
either the genus g =0, or g > 2, A # 0, 1/2, 1 and the points in A are in generic
position then we require

ordg(fn,)=—K-(n+1-X)+2x—1)(g—1). (4.7)

In the other cases (e.g. for g = 1) there are some modifications at the point in O
necessary for finitely many m.

Theorem 4.3 [43, Theorem 3.6]. Set
B :={fy,In€lx, p=1,...,K}. (4.8)

Then (a) B is a basis of the vector space F.
(b) The introduced basis B of F* and B~ of F'=* are dual to each other
with respect to the Krichever-Novikov pairing (4.4), i.e.

<f7)1‘7p, i;f:»:(;;(szn, vnomely, rnp=1,..., K. (4.9)

In particular, from part (b) of the theorem it follows that the Krichever-Novikov
pairing is nondegenerate. Moreover, any element v € F1~* acts as linear form on
FA via

D, : FA s C, wis By (w) == (v,w). (4.10)

Via this pairing 71~ can be considered as restricted dual of F*. The identification
depends on the splitting of A into I and O as the KN pairing depends on it. The full
space (F*)* can even be described with the help of the pairing in a “distributional
interpretation” via the distribution ®; associated to the formal series

K
0= Z Zam,p ﬁgp’\, amp €C. (4.11)

meJy p=1

The elements of the dual space of vector fields £ will be given by the formal
series (4.11) with basis elements from F2, the quadratic differentials; the elements
of the dual of A correspondingly from F*!, the differentials; and the elements of
the dual of F~1/2 correspondingly from F3/2.

It is quite convenient to use special notations for elements of some important

weights:

1 . p—1/2 . £0
En,p = n,p’ Pn,p = fn,p ’ Anap T Jn,p

4.12
WP = fin,pv QP = fzn,p' ( )

In view of (4.9) for the forms of weight 1 and 2 we invert the index n and write it
as a superscript.
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Remark 4.4. It is also possible (and for certain applications necessary) to write
explicitly down the basis elements f,ip in terms of “usual” objects defined on the
Riemann surface Y. For genus zero they can be given with the help of rational
functions in the quasi-global variable z. For genus one (i.e. the torus case) repre-
sentations with the help of Weierstrass o and Weierstrass p functions exists. For
genus > 1 there exists expressions in terms of theta functions (with characteris-
tics) and prime forms. Here the Riemann surface has first to be embedded into its
Jacobian via the Jacobi map. See [43, Chapter 5], [32], [35] for more details.

4.4 The almost-graded algebras

Theorem 4.5 [43, Theorem 3.8]. There exists constants Ry and Ry (depending
on the number and splitting of the points in A and on the genus g) independent of
A and v and independent of n,m € J such that for the basis elements

n+m+R; K

A v v 5T (h,s) )\+1/ (h,s)
Fop Frow = Fafimsby 30 D apemnas’s Gpomm €€
h=n+m+1 s=1

g Pl = (=Am +vn) frL0ELS) (4.13)

n+m+Rs K

(h s) A+u+1 (hss)
D D Vit B € C
h=n+m+1 s=1

This says in particular that with respect to both the associative and Lie struc-
ture the algebra F is weakly almost-graded. In generic situations and for N = 2
points one obtains R; = g and Ry = 3g.

The reason why we only have weakly almost-gradedness is that

Y= F with dimF), =K, (4.14)

meJx

and if we add up for a fixed m all A we get that our homogeneous spaces are
infinite dimensional.

In the definition of our KN type algebra only finitely many As are involved,
hence the following is immediate.

Theorem 4.6. The Krichever-Novikov type vector field algebras L, function alge-
bras A, differential operator algebras D', Lie superalgebras S, and Jordan superal-
gebras J are (strongly) almost-graded algebras and the corresponding modules F
are almost-graded modules.

We obtain with n € J
dim £, = dim A, = dim F,, = K

) (4.15)
dim S, =2K, dimD, =2K.
If U is any of these algebras, with product denoted by [.,.] then
n+m+Rl
UnUn) & €D Un, (4.16)

h=n+m
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with R; = Ry for Y = A and R; = Ry otherwise.
The lowest degree term component in (4.13) for certain special cases reads as

App - Amy = Apims6? + hdt.

An,P'f7>r\L,r = 7)1\+m77‘671‘) + h.d.t. (4 17)
[enps€ma] = (M —n)-enymnso? + hdt. '

en,p.f,j\w = (m+An) - f 0% 4+ h.d.t.

n+m,r -r
Here h.d.t. denote linear combinations of basis elements of degree between n +
m+1and n+m+ R;.
Finally, the almost-grading of A induces an almost-grading of the current al-
gebra g by setting g,, = g ® A,. We obtain

=7, dimg, =K dimg. (4.18)
nez

4.5 Triangular decomposition and filtrations

Let U be one of the above introduced algebras (including the current algebra).
On the basis of the almost-grading we obtain a triangular decomposition of the
algebras

U=Uy & U U, (4.19)
where 0
Uy = P, U= P Un, U= P Un (4.20)
m>0 m=—R; m<—R;
By the almost-gradedness the [+] and [—] subspaces are (infinite dimensional)

subalgebras. The [0] spaces in general not. Sometimes we will use critical strip for
them.
With respect to the almost-grading of F* we introduce a filtration

f()‘n) = @ f,i‘”

©2 Fluen) 2 Floy 2 Flugny 2

Proposition 4.7 [43, Proposition 3.15].
Foy={feF lodp(f)zn—A Vi=1,...,K }. (4.22)

In case that O has more than one point there are certain choices, e.g. numbering
of the points in O, different rules, etc. involved in defining the almost-grading.
Hence, if the choices are made differently the subspaces ;' might depend on them,
and consequently also the almost-grading. But by this proposition the induced
filtration is indeed canonically defined via the splitting of A into I and O.

Moreover, different choices will give equivalent almost-grading. We stress the
fact, that under a KN type algebra we will mostly understand one of the introduced
algebras together with an almost-grading (respectively equivalence class of almost-
grading, respectively filtration) introduced by the splitting A =1 U O.
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5 Central extensions

Central extension of our algebras appear naturally in the context of quantization
and regularization of actions. Of course they are also of independent mathematical
interest.

5.1 Central extensions and cocycles

Recall that equivalence classes of central extensions of a Lie algebra W are classified
by the elements of the Lie algebra cohomology H2(W, C) with values in the trivial
module C. The central extension W decomposes as vector space W=CeaW.If
we denote & := (0,z) and ¢ := (1,0) then its Lie structure is given by

—

[2,9] = [z,9] + ¥(z,y) - t, [LW]=0, z,yeW. (5.1)

Here 1) € [¢)] where [¢] € H?(W,C).
Recall that the Lie algebra 2-cocycle condition reads as

0= daotp(,y, 2) = P([2,9], 2) + ¢ ([y, 2], 2) + P([2, 2], y)- (5:2)

This condition is equivalent to the fact, that W fulfills the Jacobi identity.

5.2 Geometric cocycles

For the Witt algebra (i.e. the vector field algebra in the classical situation) we
have dim H2(W,C) = 1. Hence there are only two essentially different central
extensions, the splitting one given by the direct sum C @ W of Lie algebras, and
the up to equivalence and rescaling unique nontrivial one, the Virasoro algebra
V. For V we already gave the algebraic structure above (3.19). Recall that the
defining cocycle reads as
1 3 —m

Y(en, em) = 1—2(n —n)d, ™. (5.3)
Obviously it does not make any sense in the higher genus and/or multi-point
case. We need to find a geometric description. For this we have first to introduce
connections.

5.2.1 Projective and affine connections

Let (Ua, Za)acs be a covering of the Riemann surface by holomorphic coordinates
with transition functions z3 = fga(2a)-

Definition 5.1. (a) A system of local (holomorphic, meromorphic) functions
R = (Ru(za)) is called a (holomorphic, meromorphic) projective connection if
it transforms as

R . B 3 /R 2
Ro(s0) - () = Ralea) + SUpa) vtk 500 =52 -3 (5) + 6)
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the Schwartzian derivative. Here ' denotes differentiation with respect to the
coordinate zg,.

(b) A system of local (holomorphic, meromorphic) functions T = (T, (24)) is
called a (holomorphic, meromorphic) affine connection if it transforms as

Ts(28) - (f,0) = Ta(za) +

e (5.5)
Every Riemann surface admits a holomorphic projective connection [16],[14].
Given a point P then there exists always a meromorphic affine connection holo-
morphic outside of P and having maximally a pole of order one there [34].
From their very definition it follows that the difference of two affine (projec-
tive) connections will be a (quadratic) differential. Hence, after fixing one affine
(projective) connection all others are obtained by adding (quadratic) differentials.

5.2.2 The function algebra A

We consider it as abelian Lie algebra. In the following let C' always be an arbitrary
smooth not necessarily connected curve not meeting A. We obtain the following
cocycle

| - L/
Ye(g, h) = 5 ngh, g, h e A (5.6)

5.2.3 The current algebra g

For g = g ® A we fix a symmetric, invariant, bilinear form 8 on g (not neces-
sarily nondegenerate). Recall, that invariance means that we have 3([z,yl,2) =
B(x, [y, z]) for all z,y,z € g. Then a cocycle is given by

1

Wpla g yeh) = Awy) o= [ gdh cycs ghed ()

5.2.4 The vector field algebra £

Here it is a little bit more delicate. First we have to choose a (holomorphic)
projective connection R. We define

dale) = 5= [ (37 -erm - R @l -ep)ds 68)

Only by the term coming with the projective connection it will be a well-defined
differential, i.e. independent of the coordinate chosen. It is shown in [34] (and
[43]) that it is a cocycle. Another choice of a projective connection will result in
a cohomologous cocycle. Hence, the equivalence class of the central extension will
be the same.
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5.2.5 The differential operator algebra D!

For the differential operator algebra the cocycles of type (5.6) for A can be ex-
tended by zero on the subspace £. The cocycles for £ can be pulled back. In
addition there is a third type of cocycles mixing A and L:

ver(e.0) = gpz | (ed" + Teg)dz ecLlige A, (5.9)

with an affine connection 7', with at most a pole of order one at a fixed point in O.
Again, a different choice of the connection will not change the cohomology class.
For more details on the cocycles see [37], [43].

5.2.6 The Lie superalgebra S

The Lie superalgebra S has the vector field algebra £ as Lie subalgebra. In partic-
ular, every cocycle of S will define a cocycle of L. It is shown in [41], [43] that for
C' as above and R any (holomorphic) projective connection the bilinear extension

of
D rle, f) =g grle, f),
benlot) =~z [ (@0t v —Rog)ds (510)

Qo r(e, @) =0

gives a Lie superalgebra cocycle for S, hence defines a central extension of S. A
different projective connection will yield a cohomologous cocycle.

A similar formula was given by Bryant in [7]. By adding the projective con-
nection in the second part of (5.10) he corrected some formula appearing in [6].
He only considered the two-point case and only the integration over a separating
cycle. See also [23] for the multi-point case, where still only the integration over a
separating cycle is considered.

In contrast to the differential operator algebra case the two parts cannot be
prescribed independently. Ounly with the same integration path (more precisely,
homology class) and the given factors in front of the integral it will work. The
reason for this is that there are cocycle conditions relating vector fields and (—1/2)-
forms.

5.3 Uniqueness and classification of central extensions

The above introduced cocycles depend on the choice of the connections R and T'.
Different choices will not change the cohomology class. Hence, this ambiguity does
not disturb us. What really matters is that they depend on the integration curve
C chosen.

In contrast to the classical situation, for the higher genus and/or multi-point
situation there are many nonhomologous different closed curves inducing nonequiv-
alent central extensions defined by the integration.

But we should take into account that we want to extend the almost-grading
from our algebras to the centrally extended ones. This means we take degz :=
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degx and assign a degree deg(t) to the central element ¢, and still we want to
obtain almost-gradedness.

This is possible if and only if our defining cocycle ¥ is “local” in the following
sense (the name was introduced in the two point case by Krichever and Novikov
in [24]). There exists My, Ms € Z such that

Vn,m: YU, Un) #0 = My <n+m < M. (5.11)

Here U stands for any of our algebras (including the supercase). It is very impor-
tant that “local” is defined in terms of the almost-grading, and the almost-grading
itself depends on the splitting A = I U O. Hence what is “local” depends on the
splitting too.

We will call a cocycle bounded (from above) if there exists M € Z such that

Vn,m:  YUn,Uyn) #0 = n+m <M. (5.12)

Similarly bounded from below can be defined. Locality means bounded from above
and from below. Given a cocycle class we call it bounded (respectively local) if
and only if it contains a representing cocycle which is bounded (respectively local).
Not all cocycles in a bounded (local) class have to be bounded (local).

If we choose as integration path a separating cocycle C's, or one of the C; then
the above introduced geometric cocycles are local, respectively bounded. Recall
that in this case integration can be done by calculating residues at the in-points or
at the out-points. All these cocycles are cohomologically nontrivial. The theorems
in the following concern the opposite direction. They were treated in my works
[37], [38], [41]. See also [43] for a complete and common treatment.

The following result for the vector field algebra £ gives the principal structure
of the classification results.

Theorem 5.2 [37], [43, Theorem 6.41]. Let L be the Krichever-Novikov vector
field algebra with a given almost-grading induced by the splitting A =1U O.

(a) The space of bounded cohomology classes is K-dimensional (K = #I). A
basis is given by setting the integration path in (5.8) to C;, i = 1,..., K the little
(deformed) circles around the points P; € I.

(b) The space of local cohomology classes is one-dimensional. A generator is
given by integrating (5.8) over a separating cocycle Cg, i.e.

Vg rle f) ! (l(e”’f —ef")—R-(f — ef’)> dz. (5.13)

T 2mi Jo, \2
(c) Up to equivalence and rescaling there is only one nontrivial one-dimensional

central extension L of the vector field algebra L which allows an extension of the
almost-grading.

Remark 5.3. In the classical situation, Part (c) shows also that the Virasoro
algebra is the unique nontrivial central extension of the Witt algebra (up to equiv-
alence and rescaling). This result extends to the more general situation under the
condition that one fixes the almost-grading, hence the splitting A = I UO. Here I
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like to repeat the fact that for £, depending on the set A and its possible splittings
into two disjoint subsets, there are different almost-gradings. Hence, the “unique”
central extension finally obtained will also depend on the splitting. Only in the
two point case there is only one splitting possible. In the case that the genus g > 1
there are even integration paths possible in the definition of (5.8) which are not
homologous to a separating cycle of any splitting. Hence, there are other central
extensions possible not corresponding to any almost-grading.

The above theorem is a model for all other classification results. We will always
obtain a statement about the bounded (from above) cocycles and then for the local
cocycles. The cocycles will be explicitely given as geometric cocycles introduced
above with integration over the C; and Cg respectively.

If we consider the function algebra A as an abelian Lie algebra then every
skew-symmetric bilinear form will be a nontrivial cocycle. Hence, there is no hope
of uniqueness. But if we add the condition of L-invariance, which is given as

P(e.g,h) +1(g,e.h) =0, VYeeLl, ghe A (5.14)

things will change.

Let us denote the subspace of local cohomology classes by H? , and the sub-
space of local and L-invariant cohomology classes by H% 10c- Note that the condi-
tion is only required for at least one representative in the cohomology class. We
collect a part of the results for the cocycle classes of the other algebras in the
following theorem.

Theorem 5.4 [43, Corollary 6.48].
(a) dimH%,,.(A,C) =1,

(b) dimH} (L£,C) =1,

(¢) dimH} (D!,C) =3,

(d) dimH? _(§,C) =1 for g a simple finite-dimensional Lie algebra,
(e) dimH? .(S,C)=1.

A basis of the cohomology spaces are given by taking the cohomology classes of the
cocycles (5.6), (5.8), (5.9),(5.7), (5.10) obtained by integration over a separating
cycle Cg.

Consequently, we obtain also for these algebras the corresponding result about
uniqueness of almost-graded central extensions. For the differential operator alge-
bra we get three independent cocycles. This generalizes results of [1] valid for the
classical case.

For the results on the bounded cocycle classes we have to multiply the dimen-
sions above by K = #I. In the supercase the central element which we consider
here is of even parity. For the supercase with odd central element the bounded
cohomology vanishes [41].

For g a reductive Lie algebra and if the cocycle is L-invariant if restricted to
the abelian part, a complete classification of local cocycle classes for both g and
D, can be found in [38], [43, Chapter 9].
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I like to mention that in all the applications I know of, the cocycles coming
from representations, regularizations, etc. are local. Hence, the uniqueness or
classification results presented above can be used.

Remark 5.5. I classified in [45] for the multi-point genus zero situation all 2nd
cohomology for the above algebras. In particular, we showed that all classes are
geometric. This is done by showing that all classes are bounded classes with respect
to the “standard splitting” of NV — 1 points in I and one point in O. Hence, from
[37], [38] they can be explicitly given as geometric cocycles. In such a way the
universal central extensions can be obtained. This chain of arguments do not
work in higher genus as there are cocycle classes which will never be bounded with
respect to any splitting.

6 Sugawara representation

In the classical set-up the Sugawara construction relates to a representation of the
classical affine Lie algebra g a representation of the Virasoro algebra, see e.g. [20],
[21]. In some sense it assigns to a gauge symmetry a conformal symmetry.

In joint work with O. Sheinman the author succeeded in extending it to arbi-
trary genus and the multi-point setting [46]. For an updated treatment, incorpo-
rating also the uniqueness results of central extensions, see [43, Chapter 10].

We will need the Sugawara operators to define the Knizhnik-Zamolodchikov
(KZ) connection. Hence, we will give a very rough sketch of it here.

We start with an admissible representation V' of a centrally extended current
algebra g (i.e. the affine Lie algebra of KN type). Admissible means, that the
central element operates as constant X identity, and that every element v in the
representation space will be annihilated by the elements in g of sufficiently high
degree (the degree might depend on the element v).

For simplicity let g be either abelian or simple and 8 the nondegenerate sym-
metric invariant bilinear form used to construct g (now we need that it is nonde-
generate). Note that in the case of a simple Lie algebra every symmetric, invariant
bilinear form § is a multiple of the Cartan-Killing form.

Let {w;}, {u'}, 4,5 = 1,...,dimg be a system of dual basis elements for g
with respect to 3, i.e. B(u;,u’) = &!. Note that the Casimir element of g can be
given by >, u;u’. For x € g we consider the family of operators x(n,p) given by
the operation of x ® A, , on V. Recall that the {4, ,}, n € Z, p=1,...,K is
the collection of basis elements introduced above of the algebra A. We group the
operators together in a formal sum

K
Q) =YY z(npw™r(Q), QeI (6.1)

n€eZ p=1

Such a formal sum is called a field if applied to a vector v € V, i.e.,

K
Q). vi=Y > (x(n,p) . v)w™P(Q), QEX, (6.2)

nezZ p=1
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it gives again a formal sum (now of elements from V) which is bounded from
above. By the condition of admissibility Z(Q) is a field. It is of conformal weight
one, as the one-differentials w™? show up.

The current operator fields are defined as 4

Ji(Q) = @(Q) = Y ui(n, p)w""(Q). (6.3)
The Sugawara operator field T(Q) is defined by
1 i
=5 3 T@TQ): (6.4)
Here :...: denotes some normal ordering, which is needed to make the product of
two fields again a field. The standard normal ordering is defined as
xn7pym7,r7 n7p g m,’r
x(n,p)y(m,r): = (. p)y(m, ), (n,p) < (m,7) (6.5)
y(m,r)z(n,p), (n,p) > (m,r)

where the indices (n,p) are lexicographically ordered. By this prescription the
annihilation operator, i.e. the operators of positive degree, are brought as much
as possible to the right so that they act first.

As the current operators are fields of conformal weights one the Sugawara
operator field is a field of weight two. Hence we write it as

K
=3 Liyp- QP(Q) (6.6)

keZ p=1

with certain operators Ly ,. The Ly, are called modes of the Sugawara field T' or
just Sugawara operators. In fact we can express them via

1
Lip,=— T
=35 [, T(@ers(@)
== ZZZ ug(n, r)ut (m, t): l](c pr)(m’t), (6.7)
nm rt 1
. n,r)(m, 1 n,r m
with l,(cﬂp Ymt) o Csw T(Q)w ’t(Q)ekm(Q)-

Let 2k be the eigenvalue of the Casimir operator in the adjoint representation.
For g abelian x = 0. If g simple and 8 normalized such that the longest roots
have square length 2 then k is the dual Coxeter number. Recall that the central
element ¢ acts on the representation space V as c¢ - id with a scalar c. This scalar
is called the level of the representation. The key result is (where x(g) denotes the
operator corresponding to the element z ® g)

4For simplicity we drop mentioning the range of summation here and in the following when
it is clear.
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Proposition 6.1 [43, Proposition 10.8]. Let g be either an abelian or a simple
Lie algebra. Then
[Lip, 2(9)] = —(c + k) - z(exp - 9), (6.8)

[Lip: T(Q)] = (¢ + K) - (erp - T(Q)) - (6.9)

Recall that ey ), are the KN basis elements for the vector field algebra L.

In the next step the commutators of the operators Ly, can be calculated. The
case ¢ + £ = 0 is called the critical level. In this case these operators generate a
subalgebra of the center of gl(V'). If ¢+ k # 0 (i.e. at a noncritical level) the Ly,
can be replaced by rescaled elements Lj , = er—l’{Lk,p and we denote by T'[-] the
linear representation of £ induced by

Tleny) = Li - (6.10)

From (6.8) we obtain
[Te], u(9)] = ule. g)- (6.11)

Let V be an admissible representation of g of noncritical level, then the Sug-
awara operators define a projective representation of £ with a local cocycle. This
cocycle is up to rescaling our geometric cocycle 1/%5, g With a projective connec-
tion® R. In detail,

cdimg

Tlle, fll = [Tle], TN+

Vs rle, fid. (6.12)

Consequently,
Theorem 6.2. In the noncritical level, by setting

T(d = T[], T[] := Ccdimﬁg id . (6.13)

we obtain a honest Lie representation of the centrally extended vector field algebra
L given by the local cocycle Yoy Rr.

For the general reductive case, see [43, Section 10.2.1].

7  Wess-Zumino-Novikov-Witten models and
Knizhnik-Zamolodchikov connection

Wess-Zumino-Novikov-Witten models (WZNW) are important examples of mod-
els of two-dimensional conformal field theories and their quantized versions. They
can roughly be described as follows. The gauge algebra of the theory is the affine
algebra associated to a finite-dimensional gauge algebra (i.e. a simple finite-
dimensional Lie algebra). The geometric data consists of a compact Riemann
surface (with complex structure) of genus g and a finite number of marked points

5The projective connection takes care of the “up to coboundary” and of different normal
orderings.
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on this surface. Starting from representations of the gauge algebra the space of
conformal blocks can be defined. It depends on the geometric data. Varying the
geometric data should yield a bundle over the moduli space of the geometric data.

In [22] Knizhnik and Zamolodchikov considered the case of genus 0 (i.e. the Rie-
mann sphere). There, changing the geometric data consists in moving the marked
points on the sphere. The space of conformal blocks could completely be found
inside the part of the representation associated to the finite-dimensional gauge al-
gebra. On this space an important set of equations, the Knizhnik-Zamolodchikov
(KZ) equations, were introduced. In a geometric setting, solutions are the flat
sections of the bundle of conformal blocks over the moduli space with respect to
the Knizhnik-Zamolodchikov connection.

For higher genus it is not possible to realize the space of conformal blocks inside
the representation space associated to the finite-dimensional algebra. There exists
different attacks to the generalization. Some of them add additional structure on
these representation spaces (e.g. twists, representations of the fundamental group,
...). A very incomplete list of names are Bernard [4], [5], Felder, Wieczerkowski,
Enriquez [9], [10], [8], Hitchin [17], and Ivanov [18].

An important approach very much in the spirit of the original Knizhnik-
Zamolodchikov approach was given by Tsuchiya, Ueno and Yamada [51]. The
main point in their approach is that at the marked points, after choosing local
coordinates, local constructions are done. In this setting the well-developed the-
ory of representations of the traditional affine Lie algebras (Kac-Moody algebras
of affine type) can be used. It appears a mixture between local and global objects
and considerable effort is necessary to extend the local constructions to global
ones.

Oleg Sheinman and the author presented in [47] and [48] a different approach
to the WZNW models which uses global objects. These objects are the Krichever-
Novikov algebras and their representations. A crucial point is that a certain sub-
space of the Krichever-Novikov algebra of vector fields is identified with tangent
directions on the moduli space of the geometric data. Conformal blocks can be
defined. Finally, with the help of the global Sugawara construction given in Sec-
tion 6 it is possible to define the higher genus multi-point Knizhnik-Zamolodchikov
connection (see (11.6)). This connection is well-defined on the vector bundle of
conformal blocks at least for those representations of the higher genus multi-point
affine algebras which fulfill certain conditions. These conditions are fulfilled e.g.
for Verma modules induced by representations of the finite-dimensional Lie algebra
g at the marked points [43, Section 9.9], or for fermionic Fock space representations
[43, Section 9.10]. It turns out that the connection is projectively flat.

This global operator approach to WZNW models will be presented in the fol-
lowing. Complete proofs appeared in [47], [48]. More details (and an improved
presentation) can be found in [43, Chapter 11] and [50].

I like to point out that up to now the global construction works only over an
open dense subset of the moduli space. This is in contrast to the approach of
Tsuchiya, Ueno and Yamada [51] which gives a theory valid for the compactified
moduli space and hence includes stable singular curves. In this way they were
able to proof the Verlinde formula. Also in our case for a full theory the behavior
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at the boundary will be important. Of course also the relation to the Knizhnik-
Zamolodchikov-Bernard connection and approach needs further investigation [4],
[5], 18], [9], [10], [18].

8 Moduli space of curves with marked points

We will switch to the point of view that we consider compact Riemann surfaces
as smooth projective curves C' over C. For simplicity we call them just curves but
will continue to use also the symbol ¥ for them. Without further explanations we
will use the language of algebraic geometry here. Using the fact that for compact
Riemann surfaces all global holomorphic objects will be algebraic we will allow
ourselves, if needed, to switch between the two languages.

Our set A where poles are allowed will be separated into

I:= {Pl,Pg,...,PN}, 0 := {Poo} (81)

In particular, our usual K will be N and our usual N will be N + 1. This change
of notation reflects the fact the point P, will play a special role as reference point.

Ignoring for the moment the necessary reference point P, our principal moduli
space object is the moduli space Mg n of genus g curves with N marked points.
A point b € My n is given as

b=[%,P,..., Py (8.2)

where [...] denotes equivalence with respect to algebraic isomorphisms ¢ : ¥ — ¥’
with ¢(P;) = P/. We will work over a generic open subset W of M, y and hence
there will be an universal family of curves Y — W.

We will need an additional reference point, hence we should consider My n 1.
Furthermore we will need (at least) first order jets of coordinates at the points in
I and for technical intermediate reasons also some jets of coordinates at the point
P,. Recall that a k-jet of coordinates at P; is an equivalence class of coordinates
where two coordinates z; and z; are identified if they coincide up to order k in
their power series expansion. This says z}(z;) = z; + O(2F). Note that the zero
order term of a coordinate is always fixed by the point itself and consequently a
0-jet says that we ignore the coordinates at the point P;.

We start rather general and denote by M(glfﬁll the moduli space of smooth
projective curves of genus g (over C) with N + 1 ordered distinct marked points
and fixed k-jets of local coordinates at the first IV points and a fixed p-jet of a

local coordinate at the last point. The elements of M(g]f]’\z,)ll are given as

p5P) =[S, Py,..., Py, Po, 2P, 20 20)] (8.3)
where Y is a smooth projective curve of genus g, P;, i = 1,..., N, 00 are distinct
points on X, z; is a coordinate at P; with z;(P;) = 0, and zi(l) is a [l-jet of z;

(I € No). Here [...] denotes an equivalence class of such tuples in the following
sense. Two tuples representing b*?) and b(*:?)’ are equivalent if there exists an
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algebraic isomorphism ¢ : ¥ — ¥/ which respects the points and the corresponding
jets of coordinates. For the following two special cases we introduce the notation

0,0 1,0
Mgnsr =M, and MON = MU (8.4)

Also we will use b := b1 In the first case there will be no coordinates at
all, in the second case only the first jets of coordinates at the points in I appear.
These elements will be given by

B:[E,Pl,.-.,PN,POO] € M{],N-{-la

~ (8.5)
b(l):[Z,Pl,...,PN,POO,Zgl),..., ](\})] < MgNJrl

By forgetting either coordinates or higher order jets we obtain natural projections
k,
M MG = Mg v (8.6)

or more generally Mékj\?zrl — M;k;\}i)l for any k' < kand p’ <p

Here we deal with the situation in the neighborhood of a moduli point corre-
sponding to a generic curve ¥ with a generic marking (Pl, Py,...,Pn,Px). Let
1% C M, n+1 be an open subset around such a generic point b= [Z P, P, ..., Py,
P]. A generic curve of g > 2 admits no nontrivial infinitesimal automorphism,
and we may assume that there exists a universal family of curves with marked
points over W. In particular, this says that there is a proper, flat family of smooth

curves over W .
T U—-W, (8.7)

such that for the points b = [Z, P1, Py, ..., Py, Ps] € W we have 7 1(b) = ¥ and
that the sections defined as
oi:W—U, oib)=P, i=1,...,N, o0 (8.8)

will not meet and are algebraic.

The subset W can be pullbacked via % to ./\/l(k]’f;zrl and we obtain W*?) as
open subset. Now the sections (8.8) can additionally be complemented by choosing
infinitesimal neighbourhoods of the order under consideration. As cases of special
importance we obtain the subsets

WO = W00 € M0y, WD € MO, 59)

There is another relation to be taken into account. If we “forget” the last point
P, the reference point, we obtain maps

M97N+1 - M{LN’ Mg?}\p;z,-l - Mg,N; Mf]k]\?zl_l M(k) (810)

Let us fix an algebraic section 7 of the universal family of curves (without mark-
ing). In particular, for every curve there is a point chosen in a manner depending
algebraically on the moduli. The subset

W ={b=[%,P,Ps...., Py, Px] | P =0([Z])} C W (8.11)
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can be identified with the open subset W of M, y via

b= [(E,Pl,Pg,...,PN,/U\OO([E]))] — b= [(E,Pl,Pg,...,PN)] . (812)

By genericity, the map is one-to-one.
By choosing not only a section ¢+, but also a p-th order infinitesimal neighbor-
hood of this section we even get an identification of the open subset W of M,

with an analytic subset W (®) of WP of M(O}@rl It is defined in a similar way
as W',

All constructions done below for the N 4+ 1 point situation will yield results for
the NV point situation. But it is important to keep in mind that the results will in
general depend on the chosen section 0+, yielding the reference points Pa.

All these considerations can be extended to the case where we allow mﬁmte
jets of local coordinates at P,,. In this way we obtain the moduli space M oN Jr)l

Next we consider the tangent space at the moduli spaces. Recall that our
moduli point is generic, hence the moduli space there is smooth. The Kodaira-
Spencer map for a versal family of complex analytic manifolds Y — B over the
base B at the base point b € B,

Ty(B) — H' (Y3, Ty,) (8.13)

is an isomorphism. Here Tj(B) denotes the tangent space of B at the point b,
Y}, is the fiber over b and Ty, the (holomorphic) tangent sheaf of Y;. The space
HY(Y}, Ty,) is also sometime called Kuranishi tangent space.

We are in the local generic situation where we have a universal family. Hence
we can employ (8.13). Let X be the curve fixed by b, b, respectively bk2) . We
obtain

T (Myo) = HY(®, Tx) . (8.14)

Denote by S the divisor S = Zf;l P; on X. Then the Kodaira-Spencer map gives

TyMg N1 2 HY(Z,Ts(—S — Px)), (8.15)
Ty MW, 2 HY (S, Te(~25 — (p+1)Px)), (8.16)
Tj00m MU, 2 HY(E, T (—(k + 1)8 — (p+ 1) Pa)). (8.17)

With the help of Riemann-Roch and Serre duality the dimension of the moduli
spaces can be calculated. The following cases will be of importance for us.

dimpz) (Mg,0) = 4 1, g=1 (8.18)
0, g =0,

and for N #£ 0
3g—3+ N, g=>1

8.19
max(0, N —3), g=0, (8.19)

dimb(Mg,N) = {
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and correspondingly for dim;(Mgy n41). Finally

39 — 2+ 2N +p, g=1

(8.20)
max(0,—2+ 2N +p), ¢g=0.

. 1,
dimg ) (Mf,ﬁ)ﬂ) = {

Remark 8.1. For genus 0 and 1 the situations are in certain sense special. In
this case it is better to work with the configuration space. For illustration let us
consider g = 0. There is only one isomorphy type. By an automorphism of P! it is
always possible to move three distinct points to the triple (0,1, 00). If this is done
there are no further automorphisms. Hence the moduli space Mg x has a nonzero
dimension exactly for N > 4. Its dimension is min(0, N — 3) in accordance with
the formula (8.19). In this case one usually works with the configuration space of
N points which reads as

W i={(Py,Ps,...,Py) | P € C, P # Py, fori# j}

and studies the remaining invariance at the end to pass to the moduli space. It is
quite useful to map the reference point P, always to co.

9 Tangent spaces of the moduli spaces and the
Krichever-Novikov vector field algebra

In this section we will relate the tangent spaces at a moduli point of the above
introduced moduli spaces with certain parts of the Krichever-Novikov vector field
algebra associated to the corresponding curve. This is done by showing that the
above identified cohomology spaces can be identified with elements of the critical
strips of the Krichever-Novikov vector field algebra. Hence the elements of the
latter can be identified with tangent vectors to the moduli spaces.

To do this we first have to recall the triangular decomposition of Section 4.5
of the vector field algebra £ (and will do it for later use also already for A and
hence for g).

L=L DL DL,
A:AJFGBA(O)EBA,.

These decompositions are defined with the help of the Krichever-Novikov basis
elements.

Recall that due to the almost-grading the subspaces A4, and L4 are subalge-
bras but the subspaces A(g), and L g in general are not. We used the term critical
strip for them.

Note that A, respectively £; can be described as the algebra of functions
(vector fields) having a zero of at least order one (two) at the points P;,i =
1,..., N. These algebras can be enlarged by adding all elements which are regular
at all P;’s. This can be achieved by moving the set of basis elements {Ag;,i =
1,..., N}, respectively {egpq,e_14,4=1,...,N} from the critical strip to these
algebras. We denote the enlarged algebras by A7, respectively by L7 .

(9.1)
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On the other hand A_ and £_ could also be enlarged such that they contain
all elements which are regular at P,,. We obtain A* and L£* respectively.

In the same way for every p € Ny let E(_p) be the subalgebra of vector fields

vanishing of order > p + 1 at the point P, and A®) the subalgebra of functions
vanishing of order > p at the point P,,. We obtain decompositions

£:£+@£(§§@L‘(_p), for p >0,
A=A+@A(O)@A, , forp>1,

(9.2)

with “critical strips” EEP ) and .A(p ) which are only subspaces.

Of particular interest to us is Lgég which we call reduced critical strip. For
g = 2 its dimension is

dim L{) = N+ N+ (39— 3)+1+1=2N+3g— 1. (9.3)
The first two terms correspond to Ly and £_1. The intermediate term comes from
the vector fields in the basis which have poles at least at one the P;,i =1,...,N
and a pole at Py,. The “1 + 1”7 corresponds to the vector fields in the basis with
exact order zero respectively one at P,,. Also a special role will be played by the
reduced reqular subalgebras

A=AD car =9 cr, (9.4)

containing the function respectively the vector fields vanishing at P..
Recall that the almost-grading extends to the higher genus current algebra g
by setting deg(z ® A, ,) := n, and we obtain a triangular decomposition as above

ﬁzﬁ-i- @ﬁ(o)@ﬁ—a with ﬁﬁ :g®ABa ﬁe {_5(0)’+} (95)

In particular, g, are subalgebras. The corresponding is true for the enlarged
subalgebras. Among them, g’ := ﬁ(,l) =gQ® A(,l) is of special importance. It is
called the reduced reqular subalgebra of g.

Remark 9.1. All these subalgebras can be considered as subalgebras of the cor-
responding almost-graded central extensions A E and g respectively. This is
obvious as the defining cocycles which are integrated over a separating cycle Cg
can be calculated by calculating residues either at the points Py, ..., Py or at P.
But the elements of the subalgebras are holomorphic at one these sets. Also note
that the finite-dimensional Lie algebra g via  — x® 1 can naturally be considered
as subalgebra of g. As 1 = Zp Ayp,p it lies in the subspace gj.

Let X be the Riemann surface we are dealing with and let U, be a coordinate
disc around Py, such that Py,..., Py ¢ Ux. Let Uy = ¥\ {Px}. Because U;
and Us are affine (respectively Stein) [15, p.297] we get H'(U;, F) =0, j = 1,00
for every coherent sheaf F'. Hence, the sheaf cohomology can be given as Cech
cohomology with respect to the covering {Uy,Us}. Set U = U NUysp = U \
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{Px}. The Cech two-cocycles are given by s1.00 € F(UL) (50,0 = Sco,00 = 0),
hence by arbitrary sections over the punctured coordinate disc UZ . We recall
that it does not make any difference whether we calculate the Cech cohomology
in the algebraic-geometric category or in the complex-analytic category.

Coming back to the holomorphic (algebraic) tangent bundle Tx. For every
element f of the Krichever-Novikov vector field algebra its restriction to UZ is
holomorphic and indeed algebraic as the poles (outside of UX) are of finite order.
Hence, it defines an element of H*(X, T%). Note that it defines also an element of
HY(X,Tx(D)), where D is any divisor supported outside of U% . We introduce the
map

Op:L — H'(X,Te(D)), [~ 0o(f):=[fu] (9.6)

If the divisor D is clear from the context we will suppress it in the notation. For
us only the divisors

Dyp:=(k+1)S+(p+1)Px, kp€Z kp>-1 (9.7)

are of importance and we set 0, = 0p, .

Theorem 9.2 [43, Theorem 11.6]. Let g > 2 and k,p > —1 then there is a
surjective linear map from the Krichever-Novikov vector field algebra L to the
cohomology space

0=0r,: L — HE,Ts(—(k+1)S—(p+1)Px) (9.8)
such that 6 restricted to the following subspace gives an isomorphism

L1 @@ gggg o Hl(z Ts(—(k +1)S — (p+1)Px)

b(k p)Mglj\I[)Jrl (99)
Moreover,
ker Oy, = @ Lo & £, (9.10)
n>k

For g =1 the same is true if at least k or p is > 0. For g = 0 it is true except for
some small values N, k, or p.

This can be specialized to the following important cases:

Lo® Loy ® LY = H (S, T(=25 = (p+1)Poc) = Ty n MU,
L& E(p) = HY(Z, Ts(=S = (p+ 1)Px)) = Tyom Mg v 41, (9.11)

ngg =~ HY (S, Te(—(p+ 1)Py) = T[E,Po(g’)]M_E]I,)i-

For the infinite jets we obtain

T, M)Mg N+1 = hm H' (3, Ts(—2S — pPx)) = Loy ® L. (9.12)
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Remark 9.3. The spaces ker 0y, are invariantly defined. They neither depend
on the ordering of the points, nor on any special recipe for fixing the Krichever-
Novikov basis elements. Because the vector fields in ker § C £ are not correspond-
ing to deformations in the moduli we sometimes call this vector fields vertical vector
fields. They should not be confused with the sections of the relative tangent sheaf
of the universal family. The following should also be kept in mind. The definition
of the critical strip, hence of the complementary subspace to ker 6, is only fixed
by the order prescription for the basis. A different prescription (which involves
changing the required orders) will yield a different identification of tangent vectors
on the moduli space with vector fields in the fiber.
The inverse of the map 0, we will denote by

— 1, —

i ThupMUT = L, X = p(X) (9.13)
where strictly speaking the image should lie in the subspace Lx_1 & -+ P Eggg. In
fact we could also describe p in a more natural manner as a composition of the

canonical map to £/ ker 8y, with a noncanonical identification with the critical
strip.

P Thum MWLy — L/kerOpy 2 L 1 @@ L), (9.14)

In this more natural description p(X) is an element of the critical strip modulo
vertical vector fields which does not depend on choices. For the equation (9.14)
we could instead of the critical strip take any complement of ker 6y, ,,. The map p
is the Kodaira-Spencer map.

Remark 9.4. In genus 0 and 1 there are global holomorphic vector fields. Hence
the decomposition of the critical strip and its identification in (9.9) are not valid

anymore. The space Lo @® L1 and L{;, £ have a nontrivial intersection. This
is in complete conformity with the corrected dimensions of the moduli space.

10 Sheaf versions of the Krichever-Novikov type
algebras

Let W be a generic open subset of My ny41 which we consider here. Let
b=[%, Py, Py,..., Py, Ps) (10.1)
be a point of W. For each b we construct the Krichever-Novikov objects
A Ly Ly, Bjo 850 F et (10.2)
with respect to the splitting I = {Py, P»,..., Py} and O = {P}.

We sheafify these objects over W. This is done with the help of the universal
family. For details we have to refer to [43, Chapter 11.3].
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This construction can be extended to the affine algebra situation. Given a
finite-dimensional Lie algebra g, the sheaf of the associated current algebras @y
and the sheaf of the associated affine algebra g gy are defined as

Oy = ‘AW X g, ﬁw =05 D OW - T, (10.3)

where the Lie structure is given by the naturally extended form of Section 5 (re-
spectively without its central term for gg;).

Clearly, these are Oj-sheaves. Furthermore, let b e W and let Oy ; be the

local ring at b and M be its maximal ideal. Set C; = OW i/ Mj, then we obtain
the following canonlcal isomorphisms of localizing

C; ® A = A;, C; ® A = A;, C; @ 8y = 0 Cg@ﬁwgﬁg.

Definition 10.1. A sheaf U of O;-modules is called a sheaf of representations
for the affine algebra gy if the B(U) are modules over gy (U) for all open subsets

of W.

For a sheaf of representations U we obtain that 2; is a module over gj for

every point in W. We already introduced the moduli space
= a 1,0
W cmiy =m0 (10.4)

containing first order jets of coordinates at P;. Let n: /\/l(q?\,_Irl — My n+1 be the
surjective analytic map obtained by forgetting the coordinates. It is a surjective
analytic map.

Proposition 10.2 [43, Proposition 11.11]. The sheaves over W1

Aways Lo Lirars Birars B ]'—%/(1) (10.5)

are free sheaves of Oy -modules of infinite rank.

wa

The reason for this is that if the first order jets of the coordinates at the points
in I are fixed, then the basis elements of the corresponding algebras are uniquely
fixed, not only up to a scalar. By their explicite expressions valid for generic points
as described in [32] it is clear that they constitute a basis over wo,

Pulling back a sheaf of representation U over W we obtain a sheaf of repre-
sentation B = n*Y of Fyray. More generally, we can define sheaves of repre-
sentations over W) directly. In particular for these sheaves of representations,
operators depending on the Krichever-Novikov basis are well-defined.

With the help of the Krichever-Novikov basis elements also an almost-grading
was introduced for the algebraic objects. Hence, clearly the sheaves (10.5) carry
an almost-grading too and the homogeneous subspaces globalize immediately to
the sheaf version. The definition of the homogeneous subspaces does not depend
on a rescaling of the basis elements. Hence, already the sheaves (10.3) over W
carry an almost-graded structure. This allows to define a sheaf of admissible
representations to be a sheaf of representations either over W or over W ), where
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all fiber-wise representations are admissible. In addition we will usually require (if
nothing else is said) that the central element ¢ operates as ¢ - id with ¢ a function
on W. This function is called the level function. Usually one assumes ¢ to be a
constant, which is just called the level of the representation.

Remark 10.3. Sheaf version of the Sugawara construction.

Recall from Section 6 the Sugawara construction which is well-defined for ad-
missible representations of the affine Lie algebra g associated to a finite dimensional
reductive Lie algebra g. The construction again can be sheafified. Hence let U
be an admissible representation sheaf of the sheaf ﬁW(l)' For simplicity let g be
either abelian or simple. Let 2k be the eigenvalue of the Casimir in the adjoint
representation of the finite Lie algebra and let ¢ be the level of the representation
under consideration. Assume that the level function ¢ obeys ¢ + k # 0 for the
moduli points we are considering. For every sheaf of admissible representations
over W) or W the Sugawara operators

Tle] := -1 1

C— T 10.6
e ) (10.6)
are well-defined. But note that the individual T'[e, ] = L;, , will depend on the
first order jet of the coordinates.

Recall the definition of the reduced regular subalgebras A", L™ and " = g® A".
as consisting of those elements vanishing at P,,. Denote by ETW’ T_ etc. the

. 1%
corresponding sheaves.

Definition 10.4. Let Uy be a sheaf of (fiber-wise) representations of g The
sheaf of conformal blocks (associated to the representation Ug) is defined as the
sheaf of coinvariants

Ci = Cw(m) = %W/ﬁfwmw (10.7)

Here ﬁL‘Bﬁ; should mean that we take the sheaf of point-wise vector spaces
generated by these elements. Of course, we can define also conformal blocks for
representation sheaves over W) and even more generally.

For a general representation sheaf the sheaf of conformal blocks will only be
a sheaf. For the examples given by the Verma modules (at least for simple Lie
algebras g) and for certain fermionic Fock modules the sheaf of conformal blocks
will be locally free of finite rank over W), For more information see (48], [50],
[43].

11 The Knizhnik-Zamolodchikov connection

For the following let U be a locally free representation sheaf of g over W or
more generally over W1 = (y(l’l))’l(W). To simplify the presentation we
restrict ourselves on W. We assume that for U the fiber-wise representations are
admissible. Furthermore we assume that the sheaf of conformal blocks is locally
free of finite rang. This is e.g. the case for the Verma module sheaf and the
fermionic module sheaf. We repeat that our results in this section are only shown
on the open dense subset W over which a universal family of curves exists.
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11.1 Variation of the complex structure

We will now sketch how our objects behave under variation of the moduli point
(moduli parameter) 7 € M. Let A, be the stalk of the sheaf Ay at the moduli
point 7. This says that elements are functions on .. If we differentiate e.g. an g €
A, with respect to moduli parameters it will not be a Krichever-Novikov function
on the same ¥, anymore. But it can be given as infinite series with respect to the
expansion at the point P,,. To take care of this, we have to consider completions
of the algebras at P, by allowing (infinite) Laurent series of Krichever-Novikov
basis elements. These series are only defined locally in a neighbourhood of P,
and might have algebraic poles there. The appearing sums are of the type

n<M N

F=30 anpf,- (11.1)

n=—oo p=1

In this way we obtain the algebra of local functions .Z, local vector fields E, and
local currents g.

Our cocycles for the above algebras can be obviously extended as cocycles to the
algebra of local elements, as they are calculated via residues at Pu,. Furthermore,
they define sheaves Ay, L7, and gy over W.

To avoid cumbersome notations we will sometimes drop the mention of the
space if we talk about a sheaf. For example A could mean one special copy of the
algebra A or the sheaf over W, etc.

In the following we will need the action of u(g) and T'[e] on a representation
U not only for honest Krichever-Novikov elements g and e, but for local elements.
To make this well-defined we have to complement the representation space U in
negative degree direction (or equivalently in positive degree direction with respect
to the P, degree). This completion is denoted by U. For those representation
which we are considering here such a completion is possible. By the almost-
gradedness the above operators will be well-defined and the important result (6.11)
stays valid for local objects. Indeed, only finitely many terms of the expansions
(of the operator and of the corresponding element in U) contribute in the result to
the component of a given degree. See [48] and [50] for more details. We will define
the Knizhnik-Zamolodchikov connection further-down anyway only for conformal
blocks

C(V) =T/g"V =V/g"V = C(V), (11.2)

and low negative degrees will be truncated, see e.g. [43, Lemma 11.19]. Next
we deal with the variation of the complex structure. Above we introduced UZ
and made via Cech cohomology the identification of the vector field with tan-
gent vectors on moduli. Choose a generic point in the moduli space with moduli
parameters 79 in M.

In particular, ¥, has a fixed conformal structure representing the algebraic
curve corresponding to the moduli parameters 7p. For 7 lying in a small enough
neighbourhood of 7y, the conformal structure on 3, can be obtained by deforming
the conformal structure ¥;,. Roughly speaking we cut a coordinate patch at P,
deform the gluing function and re-glue it back again. This is exactly the way the
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Kodaira-Spencer cocycle is constructed. If X is an infinitesimal direction on the
moduli space /\/l(glz\l,)Jr1 then via the Kodaira—S[/)Sncer cocycle map p we can assign
to it a local vector field p(X) (lying in £.) on W. By adding suitable coboundary

terms (which corresponds to taking a different local coordinate at Py,) we could
even obtain that p(X) € £. Furthermore, with (9.14) we get

p(X) €L/ kerby, = L, (11.3)

where £ is a fixed chosen complement. For example we can take the corresponding
critical strip.

11.2 Defining the connection

Let U be a locally free representation sheaf of the sheaf gi;. In the following we
will ignore the fact, that we temporary have to use the completion 8. By passing
to the conformal blocks it will disappear again.

Consider a sheaf of operators on the local sections of the sheaf . Assume B
to be a local section of it. Then its derivative is defined as

c’)XB.v:[QX,B].v:(?X(B.v)—B(c’)XU), (11.4)

where v denotes a local section of the sheaf . We have to deal with the following
cases

1. B =u(g) where u € g and g € A.
2. B =Tl[e] =: T(e), the Sugawara operator associated to e € £.5

Recall that we extended the operation to the local objects. To avoid cumbersome
notation we already used A, L, etc. but meant of course the sheaves, and the
elements are supposed to be sections of the sheaves. We will use this simplified
notation also in the following.

We assume now that for the derivative of the operators u(g) on U we have

Ixu(g) = u(dxg). (11.5)

As it is shown in [48] that this is fulfilled both for the fermionic representation
and for the Verma module representations.

Given an X we choose the local vector field p(X) as described above and define
the first order differential operator on local sections of U

szax—l—T(p(X)). (11.6)

The operator Vx on U will depend on the pullback of p(X), i.e. on the coordinate
at P.
The following statements are the key results.

61n this section we choose to denote the Sugawara operator by T'(e) to avoid confusion with
the Lie bracket.
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Proposition 11.1 [48, Proposition 4.4]. The operator Vx is well-defined on
conformal blocks C () and does not depend on a choice of the pull-back p(X) of
X.

Now all relations in the following should be understood with respect to con-
formal blocks.

Proposition 11.2 [48, Proposition 4.6]. Let U be either an irreducible represen-
tation of g or a fermionic representation then for every X € TW we have

axT(e) = T(Bxe) + A -id,

where A = A X, e) € C.
Proposition 11.3 [51, Lemma 1.3.8].

p([X,Y]) = [p(X), p(Y)] + 0xp(Y) — Oy p(X). (1L.7)

Theorem 11.4 [48, Theorem 4.8], [50, Theorem 3.14]. The operator Vx is a
projectively flat connection on the vector bundle of conformal blocks, i.e.

[Vx,Vy| = V[X,y] +AX,Y)-id, AX,Y)eC. (11.8)

11.3 Knizhnik-Zamolodchikov equations

Let U be a sheaf of admissible representations of the affine algebra g over W or
WD as introduced above. We assume the level ¢ to be constant and obeying
the condition (¢ + k) # 0. Moreover, let all the additional assumptions be fulfilled
which are needed in the previous section to define the Knizhnik-Zamolodchikov
connection on conformal blocks.

Definition 11.5 [47]. The Knizhnik-Zamolodchikov equation are the equations
Vx® = (0x + T(p(X))® =0, X e H(W,TM,n41), (11.9)

respectively HO (W(l’l), T/\/l(g%}\l,lrl) where ® is a section of the sheaf of conformal
blocks C().

Hence, the Knizhnik-Zamolodchikov equations are the equations which have as
solutions the horizontal sections of the connection Vx.

After fixing 0, and a first order infinitesimal neighbourhood of it we can again
formulate this over the moduli space Mg n. This says that we do not consider the
point P, as a moving point, hence there is no tangent direction corresponding to
this.

Denote the tangent vectors by Xy, k=1,...,3g — 3+ N and set e = p(Xx)
for the corresponding element of the critical strip.

We set 0f, := Ox, . and define for sections ® of ¥ and for every k the operator

Vi® = (ak + T[ek]) D. (11.10)
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Then the Knizhnik-Zamolodchikov equations read as

Vid=0, k=1,...,3g—3+N. (11.11)
Using (6.7) and
n,p)(m,s 1 n m,s
jmp)ms) . %/C WP ™Sy, (11.12)

we rewrite this as

1 (n,p)(m.s) N . a N
Ok P ; I, ; g (n, p)u®(m,s): | =0, (11.13)

P,

k=1,...,3¢g—3+ N.

Here the summation over a is a summation over a system of dual basis elements in
g. The coeflicients l,in’p )(m:9) encode the geometric information about the complex

structure and the positions of the points.

Remark 11.6. If we pass over to the Kodaira-Spencer class p(X) we obtain the
Knizhnik-Zamolodchikov equations in terms of a fixed critical strip. By Theorem
9.2 the elements of the standard critical strip correspond to tangent vectors along
the moduli space M, . For example the N equations related to e_i,, p =
1,..., N, correspond to moving the points, and the other ones corresponding to
the 3g — 3 elements e € D(ko) (for g > 2) are responsible for changing the complex
structure of the curve. Without further assumptions on the representations under
consideration, respectively additional conditions on the solutions of the Knizhnik-
Zamolodchikov equations the equations (with (X)) will depend on the critical
strip chosen. One such assumption guaranteeing independence is that we require
from the solutions ® that g, ® = 0. But this might be too restrictive for certain
applications.

Remark 11.7. In genus zero the only relevant variations are moving the points.
Let z;, i =1,..., N be the N moving points and fix the reference point z,, to be
oo. It is shown in [48] and in the book [50] that in the Verma module case the
equation

it

0 2
- —— | ®=0  =1,...,N 11.14
(G eSSy ) o= it a1

a

will be obtained. This is exactly the usual form of the rational Knizhnik-Zamolod-
chikov equation found in [22].
Here u, is a self-dual basis of g and the action of u4(0,7) = u4(Ap;) can be
described as
ua(0,1) ® = t2 @,

K2

where ¢ indicates the point P;. We get

ua(0, j)ua(0,7) ® = 157 & = t]t; &, for j#i.
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In genus zero, the conformal blocks can be realized in degree zero. Finally, we
obtain the expression (11.14). The degree zero property is not true anymore for
higher genus, see e.g. already the genus g = 1 case in the above mentioned
references.

Remark 11.8. Essentially by construction on the open dense subset of moduli
space W the Tsuchiya-Ueno-Yamada connection [51] coincides with our connection
(in the case of the Verma module sheaf considered by them). What is still missing
(and is needed) in our approach is to extend it to the compactified moduli space.
Also in higher genus (or even in the elliptic case) our introduced connection still
has to be compared with the existing Knizhnik-Zamolodchikov-Bernard connection
[4], [5], 8], [9], [10], [18].
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