Chapter 1

Krichever—Novikov type algebras. Definitions
and Results

1.1. Introduction

The study of infinite dimensional (associative or Lie) algebras and their represen-
tations is a huge and rather involved field. Additional structures like a grading or
additional informations about e.g. their origin will be indispensable to obtain insights
and results.

Krichever-Novikov (KN) type algebras are an important class of infinite dimen-
sional algebras. Roughly speaking, they are defined as algebras of meromorphic ob-
jects on compact Riemann surfaces, or equivalently on projective curves. The non-
holomorphicity is controlled by a fixed finite set of points where poles are allowed.
A splitting of this set of possible points of poles into two disjoint subsets will induce
an “almost-grading” (see Definition 1.5.1 below). It is a weaker concept as a grading,
but still powerful enough to act as a basic tool in representation theory. For example,
highest weight representations still can be defined. Of course, central extensions of
these algebras are also needed. They are forced, e.g. by representation theory and by
quantization.

Examples of KN type algebras are the well-known algebras of Conformal Field
Theory (CFT) the Witt algebra, the Virasoro algebra, the affine Lie algebras (affine
Kac-Moody algebras), etc. They appear when the geometric setting consists of the
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Riemann Sphere, i.e. the genus zero Riemann surface, and the points of possible
poles are {0} and {oo}. The almost-grading is now a honest grading.

Historically, starting from these well-known genus zero algebras, in 1986 Krichever
and Novikov [KRI 87a], [KRI 87b], [KRI 89] suggested a global operator approach
via KN objects. Still they only considered two possible points where poles are al-
lowed and were dealing with the vector field and the function algebra. For work on
affine algebras Sheinman [SHE 90] should be mentioned.

From the applications in CFT (e.g. string theory) but also from purely mathe-
matical reasons, a multi-point theory is evident. In 1990 the author of the current
review developed a systematic theory valid for all genus (including zero) and any
fixed finite set of points where poles are allowed [SCH 90b], [SCH 90c], [SCH 90a],
[SCH 90d]. These extensions were not at all straight-forward. The main point was
to introduce a replacement of the graded algebra structure present in the “classical”
case. Krichever and Novikov found that the already mentioned almost-grading (Def-
inition 1.5.1) will be enough to allow for the standard constructions in representation
theory. In [SCH 90a], [SCH 90d] it was realized that a splitting of the set A of points
where poles are allowed, into two disjoint non-empty subsets A = I U O is crucial
for introducing an almost-grading. The corresponding almost-grading was explicitly
given. In contrast to the classical situation, where there is only one grading, we will
have a finite set of non-equivalent gradings and new interesting phenomena show up.
This is already true for the genus zero case (i.e. the Riemann sphere case) with more
than two points where poles are allowed. These algebras will be only almost-graded,
see e.g. [SCH 93], [FIA 03], [FIA 05], [SCH 17].

Also other (Lie) algebras were introduced. In fact most of them come from a
Mother Poisson Algebra, the algebra of meromorphic form, see Section 1.4.2. This
algebra carries a (weak) almost-grading which gives the almost-grading for the other
algebras. For the relevant algebras almost-graded central extensions are constructed
and classified. In the case of genus zero in this way universal central extensions are
obtained.

KN type algebras have a lot of interesting applications. They show up in the
context of deformations of algebras, moduli spaces of marked curves, Wess-Zumino-
Novikov-Witten (WZNW) models, Knizhnik-Zamolodchikov (KZ) equations, inte-
grable systems, quantum field theories, symmetry algebras, and in many more do-
mains of mathematics and theoretical physics. The KN type algebras carry a very
rich representation theory. We have Verma modules, highest weight representations,
Fermionic and Bosonic Fock representations, semi-infinite wedge forms, b — ¢ sys-
tems, Sugawara representations and vertex algebras.
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In 2014 the author published the book Krichever—Novikov type algebras. Theory
and applications [SCH 14b] which collects all the results, proofs and some applica-
tions of the multi-point KN algebras. There also a quite extensive list of references
can be found, including articles published by physicists on applications in the field-
theoretical context. For some applications in the context of integrable systems see also
Sheinman, Current algebras on Riemann surfaces [SHE 12].

Recently a revived interest in the theory of KN type algebras appeared again in
mathematics. The goal of this review is to give a gentle introduction to the KN type
algebras in the multi-point setting, and to collect the basic definitions and results so
that they are accessible for an interested audience not familiar with them yet. For the
proof and more material we have to refer to the original articles and the correspond-
ing parts of [SCH 14b]. There is a certain overlap with a previous survey of mine
[SCH 16].

I acknowledge partial support by the Internal Research Project GEOMQ15, Uni-
versity of Luxembourg, and in the frame of the OPEN scheme of the Fonds National
de la Recherche (FNR) with the project QUANTMOD 013/570706.

1.2. The Virasoro Algebra and its Relatives

These algebras supply examples of non-trivial infinite dimensional Lie algebras.
They are widely used in Conformal Field Theory. For the convenience of the reader
we will start by recalling their conventional algebraic definitions.

The Witt algebra VV , sometimes also called Virasoro algebra without central
term !, is the Lie algebra generated as vector space over C by the basis elements
{en | n € Z} with Lie structure

[en,em] = (M —n)entm, n,m € Z. (1.2.1)

The algebra )V is more than just a Lie algebra. It is a graded Lie algebra. If we set
for the degree deg(e,,) := n then

W=EPWa,  Wa=(ene (1.2.2)

neZ

Obviously, deg([en, e]) = deg(e,) + deg(em).

Algebraically WV can also be given as Lie algebra of derivations of the algebra of
Laurent polynomials C|z, 27 1].

1. For some remarks what would be a correct naming, see the book [GUI 07].
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Remark 1.2.1. In the purely algebraic context our field of definition C can be replaced
by an arbitrary field K of characteristics 0.

For the Witt algebra the universal one-dimensional central extension is the Vira-
soro algebra}). As vector space it is the direct sum V = C&W. If we set forz € W,
% := (0,2), and ¢t := (1, 0) then its basis elements are é,,, n € Z and ¢ with the Lie
product 2,

[ny m] = (M —1)énqm + %(nS —n)d, ™t [én,t] = [t,t] = 0, (1.2.3)
forall n, m € Z. By setting deg(é,,) := deg(e,) = n and deg(¢) := 0 the Lie algebra
V becomes a graded algebra. The algebra Y will only be a subspace, not a subalgebra
of V. But it will be a quotient. Up to equivalence of central extensions and rescaling
the central element ¢, this is beside the trivial (splitting) central extension, the only
central extension of W.

Given g a finite-dimensional Lie algebra (e.g. a finite-dimensional simple Lie alge-
bra) then the tensor product of g with the associative algebra of Laurent polynomials
Clz, 27| carries a Lie algebra structure via

[r® 2" y® 2" = [z,y] ® 2"T™. (1.2.4)

This algebra is called current algebra or loop algebra and denoted by g. Again we
consider central extensions. For this let S be a symmetric, bilinear form for g which is
invariant (i.e. S([z,y],2) = B(x, [y, 2]) for all z,y, z € g). Then a central extension
is given by

[T®@20,y®2zm] = [:my}/@)\z"*m — B(z,y) -mé,™ -t (1.2.5)

This algebra is denoted by g and called affine Lie algebra. With respect to the clas-
sification of Kac-Moody Lie algebras, in the case of a simple g they are exactly the
Kac-Moody algebras of untwisted affine type, [KAC 68], [KAC 90], [MOO 69].

To complete the description let me introduce the Lie superalgebra of Neveu-Schwarz

type. The centrally extended superalgebra has as basis (we drop the ™)

1
en, N E 7, gom,meZ—l-i, t (1.2.6)

2. Here 52 is the Kronecker delta which is equal to 1 if & = [, otherwise zero.
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with structure equations

e, em] = (M —n)emin + i( P —n)d, ",

12
n
[%Nﬂm} = (m - 5) Pm+n, (1.2.7
1,5 1
ny Pm| = Cn+m — % — =)o, "t.
(P ] = e — (02 = 1),

By “setting t = 0” we obtain the non-extended superalgebra. The elements e,, (and
t) are a basis of the subspace of even elements, the elements ¢,,, are a basis of the
subspace of odd elements.

These algebras are Lie superalgebras. For completeness I recall their definition
here.

Remark 1.2.2. ( Definition of a Lie superalgebra). Let S be a vector space which is
decomposed into even and odd elements S = S5 @ S7, i.e. S is a Z/2Z-graded vector
space. Furthermore, let [.,.] be a Z/2Z-graded bilinear map S x S — S such that for
elements z, y of pure parity

[z, 9] = —(=1)"[y, 2. (1.2.8)
Here Z is the parity of x, etc. These conditions say that
[So:So] € S, [So, ST S St [S1,81) € Sy (1.2.9)

and that [z, y] is symmetric for z and y odd, otherwise anti-symmetric. Now S is a
Lie superalgebra if in addition the super-Jacobi identity (for z, y, z of pure parity)

(1) [z, [y, 2]] + (=1)""[y, [z, 2] + (=1)*Y[2, [z, y]] = 0 (1.2.10)

is valid. As long as the type of the arguments is different from (even, odd, odd) all
signs can be put to +1 and we obtain the form of the usual Jacobi identity. In the
remaining case we get

[, [y; 2]] + [y, [z, 2]) = [z, [, y]] = 0. (1.2.11)

By the definitions Sy is a Lie algebra.

1.3. The Geometric Picture

In the previous section I gave the Virasoro algebra and its relatives by purely alge-
braic means, i.e. by basis elements and structure equations. The full importance and
strength will become more visible in a geometric context. Also from this geometric
realization the need for a generalization as obtained via the Krichever—Novikov type
algebras will become evident.
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1.3.1. The geometric realizations of the Witt algebra
A geometric description of the Witt algebra over C can be given as follows.

Let W be the algebra of those meromorphic vector fields on the Riemann sphere
S? = P!(C) which are holomorphic outside {0} and {oo}. Its elements can be given
as

v(z) = ﬁ(z)dii

where 7 is a meromorphic function on P*(C), which is holomorphic outside {0, co}.
Those are exactly the Laurent polynomials C[z, z~!]. Consequently, this subalgebra
has the set {e,,n € Z} withe, = z"*! % as vector space basis. The Lie bracket of
vector fields calculates as

.d_ . _d_\d
[v,u] = (Udzu - udz”) o (1.3.2)

(1.3.1)

Evaluated for the basis elements e,, this gives (1.2.1) and the algebra can be identified
with the Witt algebra defined purely algebraically.

The subalgebra of global holomorphic vector fields is the 3-dimensional subspace
(e—1,€0,€1)c. Itis isomorphic to the Lie algebra sl(2, C).

Similarly, the algebra C|[z, 2~!] can be given as the algebra of meromorphic func-
tions on S = P1(C) holomorphic outside of {0, 00}.

1.3.2. Arbitrary genus generalizations

In the geometric setup for the Virasoro algebra the objects are defined on the Rie-
mann sphere and might have poles at most at two fixed points. For a global op-
erator approach to conformal field theory and its quantization this is not sufficient.
One needs Riemann surfaces of arbitrary genus. Moreover, one needs more than
two points were singularities are allowed3. Such a generalizations were initiated
by Krichever and Novikov [KRI 87a], [KRI 87b], [KRI 89], who considered arbi-
trary genus and the two-point case. As far as the current algebras are concerned see
also Sheinman [SHE 90], [SHE 92], [SHE 93], [SHE 95]. The multi-point case was
systematically examined by the current author [SCH 90b], [SCH 90c], [SCH 90a],
[SCH 90d], [SCH 93] [SCH 96], [SCH 03b], [SCH 03a]. For some related approach
see also Sadov [SAD 91].

3. The singularities correspond to points where free fields are entering the region of interaction or
leaving it. In particular from the very beginning there is a natural decomposition of the set of points into
two disjoint subsets.
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Figure 1.1. Riemann surface of genus zero with one incoming and one outgoing point.

Figure 1.2. Riemann surface of genus two with one incoming and one outgoing point.

For the whole contribution let X be a compact Riemann surface without any re-
striction for the genus g = g(X). Furthermore, let A be a finite subset of . Later we
will need a splitting of A into two non-empty disjoint subsets I and O, i.e. A = TUO.
Set N := #A, K := #I, M := #0, with N = K 4+ M. More precisely, let

I:(P17...7PK), and O:(Ql,...7QM) (133)

ELINT3

be disjoint ordered tuples of distinct points (“marked points”, “punctures”) on the
Riemann surface. In particular, we assume P; # @Q; for every pair (¢, 7). The points
in [ are called the in-points, the points in O the out-points. Occasionally, we consider
I and O simply as sets.

Sometimes we refer to the classical situation. By this we understand
Y=PC)=5% TI={2=0}, O={z=o00}, (1.3.4)

and the situation considered in Section 1.3.1.

The figures should indicate the geometric picture. Figure 1.1 shows the classical
situation. Figure 1.2 is genus 2, but still two-point situation. Finally, in Figure 1.3
the case of a Riemann surface of genus 2 with two incoming points and one outgoing
point is visualized.
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Figure 1.3. Riemann surface of genus two with two incoming points and one outgoing point.

Remark 1.3.1. We stress the fact, that these generalizations are needed also in the
case of genus zero if one considers more than two points. Even in the case of genus
zero and three points interesting algebras show up. See also [SCH 17].

1.3.3. Meromorphic forms

To introduce the elements of the generalized algebras (later called Krichever-
Novikov type algebras) we first have to discuss forms of certain (conformal) weights.
Recall that ¥ is a compact Riemann surface of genus g > 0. Let A be a fixed finite
subset of ¥. In fact we could allow for this and the following sections (as long as
we do not talk about almost-grading) that A is an arbitrary subset. This includes the
extremal cases A = for A = 2.

Let = Ky be the canonical line bundle of Y. Its local sections are the local
holomorphic differentials. If P € ¥ is a point and z a local holomorphic coordinate at
P then a local holomorphic differential can be written as f(z)dz with a local holomor-
phic function f defined in a neighborhood of P. A global holomorphic section can be
described locally in coordinates (U;, z;);c.s by a system of local holomorphic func-
tions (f;):cs, which are related by the transformation rule induced by the coordinate
change map z; = z;(%;) and the condition f;dz; = f;dz;. This yields

=g () (1.35)
J — Jr dZZ . o

A meromorphic section of /C, i.e. a meromorphic differential is given as a collection of
local meromorphic functions (h;);c.; with respect to a coordinate covering for which
the transformation law (1.3.5) remains true. We will not make any distinction between
the canonical bundle and its sheaf of sections, which is a locally free sheaf of rank 1.

In the following A is either an integer or a half-integer. If A is an integer then
(1) K*:=K®*for >0,
(2) KV := O, the trivial line bundle, and
3) K*:=(K*2EN for A < 0.
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Here K* denotes the dual line bundle of the canonical line bundle. This is the holo-
morphic tangent line bundle, whose local sections are the holomorphic tangent vector
fields f(2)(d/dz).

If A is a half-integer, then we first have to fix a “square root” of the canonical line
bundle, sometimes called a theta characteristics. This means we fix a line bundle L
for which L®2? = K. After such a choice of L is done we set K* := K} := L®?*. In
most cases we will drop the mentioning of L, but we have to keep the choice in mind.
The fine-structure of the algebras we are about to define will depend on the choice.
But the main properties will remain the same.

Remark 1.3.2. A Riemann surface of genus g has exactly 229 non-isomorphic square
roots of K. For g = 0 we have L = O(—2), and L = O(—1), the tautological bundle,
is the unique square root. Already for g = 1 we have four non-isomorphic ones. As
in this case I = O one solution is Ly = . But we have also other bundles L;,
1 = 1,2, 3. Note that L has a nonvanishing global holomorphic section, whereas this
is not the case for Ly, Ly and L3. In general, depending on the parity of the dimension
of the space of globally holomorphic sections, i.e. of dim H(X, L), one distinguishes
even and odd theta characteristics L. For g = 1 the bundle O is an odd, the others
are even theta characteristics. The choice of a theta characteristic is also called a spin
structure on > [ATI 71].

We set

FXA) := {f is a global meromorphic section of X |
f is holomorphic on 3 \ A}. (1.3.6)

Obviously this is a C-vector space. To avoid cumbersome notation, we will often drop
the set A in the notation if A is fixed and clear from the context. Recall that in the
case of half-integer A everything depends on the theta characteristic L.

Definition 1.3.3. The elements of the space F*(A) are called meromorphic forms of
weight A\ (with respect to the theta characteristic L).

Remark 1.3.4. In the two extremal cases for the set A we obtain F*({)) the global
holomorphic forms, and F*(X) all meromorphic forms. By compactness each f €
FA(X) will have only finitely many poles. In the case that f # 0 it will also have only
finitely many zeros.

If f is a meromorphic A-form it can be represented locally by meromorphic func-
tions f; via f = f;(dz;)®*. If f # 0 the local representing functions have only finitely
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many zeros and poles. Whether a point P is a zero or a pole of f does not depend on
the coordinate z; chosen. We can define for P € X the order

ordp(f) :=ordp(f:), (1.3.7)

where ord p(f;) is the lowest nonvanishing order in the Laurent series expansion of f;
in the variable z; around P. It will not depend on the coordinate z; chosen.

The order ord p( f) is (strictly) positive if and only if P is a zero of f. It is negative
if and only if P is a pole of f. Moreover, its value gives the order of the zero and pole
respectively. By compactness our Riemann surface 3 can be covered by finitely many
coordinate patches. Hence, f can only have finitely many zeros and poles. We define
the (sectional) degree of f to be

sdeg(f) := Z ordp(f). (1.3.8)

pPex

Proposition 1.3.5. Let f € F*, f # 0 then

sdeg(f) =2X(g —1). (1.3.9)

For this and related results see [SCH 07b].

1.4. Algebraic Structures

Next we introduce algebraic operations on the vector space of meromorphic forms
of arbitrary weights. This space is obtained by summing over all weights

Fi= P F (14.1)

AeSZ

The basic operations will allow us to introduce finally the algebras we are heading for.

1.4.1. Associative structure

In this section A is still allowed to be an arbitrary subset of points in 3. We will
drop the subset A in the notation. The natural map of the locally free sheaves of rang
one

KX x KV = K@K 2 KM (s,t) = s ®t, (1.4.2)
defines a bilinear map

Y N A (1.4.3)
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With respect to local trivialisations this corresponds to the multiplication of the local
representing meromorphic functions

(sdz* tdz") v sdz™ - tdz" = s -t dz2M. (1.4.4)

If there is no danger of confusion then we will mostly use the same symbol for the
section and for the local representing function.

The following is obvious

Proposition 1.4.1. The space F is an associative and commutative graded (over %Z)
algebra. Moreover, A = F° is a subalgebra and the F» are modules over A.

Of course, A is the algebra of those meromorphic functions on ¥ which are holo-
morphic outside of A. In case that A = (), it is the algebra of global holomorphic
functions. By compactness, these are only the constants, hence A()) = C. In case
that A = X it is the field of all meromorphic functions M (X).

1.4.2. Lie and Poisson algebra structure

Next we define a Lie algebra structure on the space F. The structure is induced by
the map

FA x FV o FrvEl (e, f) — le, f], (1.4.5)

which is defined in local representatives of the sections by

(ed2?, fdz") v [ed2?, fdz"] = ((—)x)ejj; + iji) d ML (1.4.6)

and bilinearly extended to F. Of course, we have to show the following

Proposition 1.4.2. [SCH 14b, Prop. 2.6 and 2.7] The prescription ., .| given by (1.4.6)
is well-defined and defines a Lie algebra structure on the vector space JF.

Proposition 1.4.3. [SCH 14b, Prop. 2.8] The subspace L = F ' is a Lie subalgebra,
and the F’s are Lie modules over L.

Definition 1.4.4. An algebra (5, -, [.,.]) such that - defines the structure of an asso-
ciative algebra on B and [.,.] defines the structure of a Lie algebra on B is called a
Poisson algebra if and only if the Leibniz rule is true, i.e.

VevageB:[e7f'g]:[evf]'g+f'[eag]' (1.4.7)
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In other words, via the Lie product [.,.] the elements of the algebra act as deriva-
tions on the associative structure.

Theorem 1.4.5. [SCH 14b, Thm. 2.10] The space F with respect to - and [.,.] is a
Poisson algebra.

Next we consider important substructures. We already encountered the subalge-
bras .4 and L. But there are more structures around.

1.4.3. The vector field algebra and the Lie derivative

First we look again on the Lie subalgebra £ = F~!. Here the Lie action respect
the homogeneous subspaces F*. As forms of weight —1 are vector fields, it could
also be defined as the Lie algebra of those meromorphic vector fields on the Riemann
surface 3 which are holomorphic outside of A. For vector fields we have the usual Lie
bracket and the usual Lie derivative for their actions on forms. For the vector fields
we have (again naming the local functions with the same symbol as the section) for

e,feL

el =l S = (L@ - FOFE@) £ a4
For the Lie derivative we get
V= Lg) = oo = (LML) 1. 149

Obviously, these definitions coincide with the definitions already given in (1.4.6). But
now we obtained a geometric interpretation.

1.4.4. The algebra of differential operators

If we look at F, considered as Lie algebra, more closely, we see that FOis an
abelian Lie subalgebra and the vector space sum F° @ F~! = A @ L is also a Lie
subalgebra. In an equivalent way it can also be constructed as semidirect sum of .4
considered as abelian Lie algebra and £ operating on .4 by taking the derivative.

Definition 1.4.6. The Lie algebra of differential operators of degree < 1 is defined as
the semidirect sum of A with £ and is denoted by D*.

In terms of elements the Lie product is
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Using the fact, that 4 is an abelian subalgebra in F this is exactly the definition for
the Lie product given for this algebra. Hence, D' is a Lie algebra.

The projection on the second factor (g,e) — e is a Lie homomorphism and we
obtain a short exact sequences of Lie algebras

0 A D! L 0. (1.4.11)
Hence, A is an (abelian) Lie ideal of D' and £ a quotient Lie algebra. Obviously, £

is also a subalgebra of D!.

Proposition 1.4.7. The vector space F* becomes a Lie module over D' by the oper-
ation

(9,€).f =g - f+ef, (g.€) € D'(A),feFNA). (14.12)

1.4.5. Differential operators of all degree

We want to consider also differential operators of arbitrary degree acting on F*.
This is obtained via some universal constructions. First we consider the universal
enveloping algebra U (D). We denote its multiplication by ® and its unit by 1.

The universal enveloping algebra contains many elements which act in the same
manner on F*. For example, if hy and ho are functions different from constants then
hy - hy and hy ® hy are different elements of U(D"). Nevertheless, they act in the
same way on F*.

Hence, we will divide out further relations
D =U(D")/J, respectively Dy =U(D"')/Jy (1.4.13)
with the two-sided ideals
J=(a®b—a-b,1—-1]abeA),
Ihi=(a®b—a-b,1-1,a0e—a-e+Are.a|labe Aec L).

We can show that for all A the 7> are modules over D, and for a fixed A the space F*
is a module over D,

Denote by Diff (F*) the associative algebra of algebraic differential operators as
defined in ((GRO 71, 1V,16.8,16.11] and [BER 75]). Let D € D and assume that D is
one of the generators

D=ay®e10a1®e® - Oanp_1e,®an (1.4.14)

with e; € £ and a; € A (written as element in U(D?)) then
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Proposition 1.4.8. [SCH 14D, Prop. 2.14] Every element D € D respectively of Dy

of the form (1.4.14) operates as (algebraic) differential operator of degree < n on F.
In fact, we get (associative) algebra homomorphisms

D — Diff(F?*), Dy, — Diff(F}) . (1.4.15)

In case that the set A of points where poles are allowed is finite and non-empty the
complement X \ A is affine [HAR 77, p.297]. Hence, as shown in [GRO 71] every
differential operator can be obtained by successively applying first order operators,
i.e. by applying elements from U(D!). In other words the homomorphisms (1.4.15)
are surjective.

1.4.6. Lie superalgebras of half forms
Recall from Remark 1.2.2 the definition of a Lie superalgebra.

With the help of our associative product (1.4.2) we will obtain examples of Lie
superalgebras. First we consider

CFTWVR F2 L, Fl = (1.4.16)
and introduce the vector space S with the product

S=LoF 2 (le,9),(f,0)] = (e, fl+ @ tye.o— ). (1L4IT)
The elements of £ are denoted by e, f, ..., and the elements of F~ /2 by ¢, 1), . . ..

The definition (1.4.17) can be reformulated as an extension of [.,.] on £ to a super-
bracket (denoted by the same symbol) on S by setting
dp 1 de
= — =e.p=(e== — —p—)(dz) /2 1.4.18
[e;¢] = ~lp el i=c.0= (e — 59)(d?) (1.4.18)
and
[ 0] ==t (1.4.19)

1/2

We call the elements of £ elements of even parity, and the elements of 7~/ elements

of odd parity. For such elements = we denote by Z € {0, 1} their parity.

The sum (1.4.17) can also be described as S = S; @® S, where S is the subspace
of elements of parity 1.
Proposition 1.4.9. [SCH 14b, Prop. 2.15] The space S with the above introduced
parity and product is a Lie superalgebra.
Remark 1.4.10. The choice of the theta characteristics corresponds to choosing a spin

structure on . For the relation of the Neveu-Schwarz superalgebra to the geometry
of graded Riemann surfaces see Bryant [BRY 90].
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1.4.7. Jordan superalgebra

Leidwanger and Morier-Genoux introduced in [LEI 12] a Jordan superalgebra in
our geometric setting. They put

T =FoF'V?2=Fa. (1.4.20)

Recall that A = FV is the associative algebra of meromorphic functions. They define
the (Jordan) product o via the algebra structures for the spaces F* by

fogi=f-g €F,
fop:=f-¢ €F 12 (1.4.21)
potp:=[p,h] € FO

By rescaling the second definition with the factor 1/2 one obtains a Lie anti-algebra
as introduced by Ovsienko [OVS 11]. See [LEI 12] for more details and additional
results on representations.

1.4.8. Higher genus current algebras

We fix an arbitrary finite-dimensional complex Lie algebra g. Our goal is to gen-
eralize the classical current algebra to higher genus. For this let (X, A) be the geo-
metrical data consisting of the Riemann surface ¥ and the subset of points A used to
define A, the algebra of meromorphic functions which are holomorphic outside of the
set A C X,

Definition 1.4.11. The higher genus current algebra associated to the Lie algebra g
and the geometric data (2, A) is the Lie algebra g = g(A) = g(3, A) given as vector
space by g = g ®c A with the Lie product

[z® fiy@g]l=[r,yl® f-g, r,yeg, fgeA (1.4.22)

Proposition 1.4.12. g is a Lie algebra.

As usual we will suppress the mentioning of (X, A) if not needed. The elements
of g can be interpreted as meromorphic functions 3 — g from the Riemann surface X
to the Lie algebra g, which are holomorphic outside of A.

Later we will introduce central extensions for these current algebras. They will
generalize affine Lie algebras, respectively affine Kac-Moody algebras of untwisted

type.
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For some applications it is useful to extend the definition by considering differen-
tial operators (of degree < 1) associated to g. We define Dé := g @ L and take in the
summands the Lie product defined there and put additionally

[,z ®@g]:=—[xr®g,¢e] =2 (e.g). (1.4.23)
This operation can be described as semidirect sum of g with £ and we get

Proposition 1.4.13. [SCH 14b, Prop. 2.15] Dé is a Lie algebra.

1.4.9. Krichever—-Novikov type algebras

Above the set A of points where poles are allowed was arbitrary. In case that A is
finite and moreover #A > 2 the constructed algebras are called Krichever—-Novikov
(KN) type algebras. In this way we get the KN vector field algebra, the function
algebra, the current algebra, the differential operator algebra, the Lie superalgebra,
etc. The reader might ask what is so special about this situation so that these al-
gebras deserve special names. In fact in this case we can endow the algebra with
a (strong) almost-graded structure. This will be discussed in the next section. The
almost-grading is a crucial tool for extending the classical result to higher genus. Re-
call that in the classical case we have genus zero and #A = 2.

Strictly speaking, a KN type algebra should be considered to be one of the above
algebras for 2 < #A < oo together with a fixed chosen almost-grading, induced by
the splitting A = I U O into two disjoint non-empty subset, see Definition 1.5.1.

1.5. Almost-Graded Structure
1.5.1. Definition of almost-gradedness

In the classical situation discussed in Section 1.2 the algebras introduced in the
last section are graded algebras. In the higher genus case and even in the genus zero
case with more than two points where poles are allowed there is no non-trivial grading
anymore. As realized by Krichever and Novikov [KRI 87a] there is a weaker concept,
an almost-grading, which to a large extend is a valuable replacement of a honest grad-
ing. Such an almost-grading is induced by a splitting of the set A into two non-empty
and disjoint sets I and O. The (almost-)grading is fixed by exhibiting certain basis
elements in the spaces F* as homogeneous.

Definition 1.5.1. Let £ be a Lie or an associative algebra such that £ = @,,czL,, is a
vector space direct sum, then £ is called an almost-graded (Lie-) algebra if

(i) dim £,, < oo,
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(ii) There exists constants L1, Ly € Z such that

n+m-+Lo
Lo LmC B Ln, nmel

h=n+m-—1L,

The elements in L,, are called homogeneous elements of degree n, and L,, is called
homogeneous subspace of degree n.

If dim £,, is bounded with a bound independent of n we call L strongly almost-
graded. 1f we drop the condition that dim £,, is finite dimensional we call £ weakly
almost-graded.

In a similar manner almost-graded modules over almost-graded algebras are de-
fined. We can extend in an obvious way the definition to superalgebras, respectively
even to more general algebraic structures. Note that this definition makes complete
sense also for more general index sets J. In fact we will consider the index set
J = (1/2)Z in the case of superalgebras. The even elements (with respect to the
super-grading) will have integer degree, the odd elements half-integer degree.

1.5.2. Separating cycle and Krichever-Novikov pairing

Before we give the almost-grading we introduce an important structure. Let C; be
positively oriented (deformed) circles around the points P; in [, =1,..., K and C7
positively oriented circles around the points Q; in O, j =1,..., M.

A cycle Cg is called a separating cycle if it is smooth, positively oriented of mul-
tiplicity one and if it separates the in-points from the out-points. It might have more
than one component. In the following we will integrate meromorphic differentials on
Y without poles in X\ A over closed curves C. Hence, we might consider C and C” as

equivalent if [C] = [C'] in H1 (X \ A,Z). In this sense we write for every separating
cycle
K M
(Cs] = [Ci]==>_[C;). (15.1)
i=1 j=1

The minus sign appears due to the opposite orientation. Another way for giving such
a Cg is via level lines of a “proper time evolution”, for which I refer to [SCH 14b,
Section 3.9].

Given such a separating cycle C's (respectively cycle class) we define a linear map

2mi

1
FloC  we 7/ w. (152)
Cs
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The map will not depend on the separating line C's chosen, as two of such will be
homologous and the poles of w are only located in I and O.

Consequently, the integration of w over C's can also be described over the special
cycles C; or equivalently over C7. This integration corresponds to calculating residues

K
w Z resp, (
27

i=1 =1

resg, (w). (1.5.3)

p'qi

Definition 1.5.2. The pairing

FAXFASC, (fo9) = (fhg) = L f g, (1.5.4)

2mi

between A\ and 1 — )\ forms is called Krichever-Novikov (KN) pairing.

Note that the pairing depends not only on A (as the 7 depend on it) but also
critically on the splitting of A into I and O as the integration path will depend on it.
Once the splitting is fixed the pairing will be fixed too.

In fact there exit dual basis elements (see (1.5.9)) hence the pairing is non-degenerate.

1.5.3. The homogeneous subspaces

Given the vector spaces F* of forms of weight £ we will now single out subspaces
F2, of degree m by giving a basis of these subspaces. This has been done in the 2-
point case by Krichever and Novikov [KRI 87a] and in the multi-point case by the
author [SCH 90b], [SCH 90c], [SCH 90a], [SCH 90d], see also Sadov [SAD 91]. See
in particular [SCH 14b, Chapters 3,4,5] for a complete treatment. All proofs of the
statements to come can be found there.

Depending on whether the weight A is integer or half-integer we set J, = Z or
Jx = Z + 1/2. For F* we introduce for m € J subspaces F;, of dimension K,
where K = #:I, by exhibiting certain elements f, p €F A p =1,...,K which
constitute a basis of 7. The elements are the elements of degree m. As explained
in the following, the degree is in an essential way related to the zero orders of the
elements at the points in /.

Let [ = (Py, Pa,..., Px) then we require for the zero-order at the point P; € T
of the element f) |

77

ordp,(fp,)=(n+1-X) =0 i=1,... K. (1.5.5)
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The prescription at the points in O is made in such a way that the element frét,p is
essentially uniquely given. Essentially unique means up to multiplication with a con-
stant4. After fixing as additional geometric data a system of coordinates z; centered
at P, forl =1,..., K and requiring that

r)f,p(zp) = Z;L_/\(l + O(zp))(dzp)A (1.5.6)
the element f,, ,, is uniquely fixed. In fact, the element f;l\,p only depends on the first
order jet of the coordinate z),.

Example. Here we will not give the general recipe for the prescription at the points in
O. Just to give an example which is also an important special case, assume O = {Q}
is a one-element set. If either the genus g = 0, 0or g > 2, A # 0, 1/2, 1 and the points
in A are in generic position then we require

ordg(fr,)=—K-(n+1-X)+(2Ax—1)(g—1). (1.5.7)
In the other cases (e.g. for ¢ = 1) there are some modifications at the point in O
necessary for finitely many n.

Theorem 1.5.3. [SCH 14b, Thn. 3.6] Set
B :={fy,In€lxp=1,... K} (1.5.8)
Then (a) B is a basis of the vector space F.

(b) The introduced basis B> of F* and B~ of F'~* are dual to each other with
respect to the Krichever-Novikov pairing (1.5.4), i.e.

(frp fody=0r6m, vnmely, rp=1,.. K. (1.5.9)
In particular, from part (b) of the theorem it follows that the Krichever-Novikov

pairing is non-degenerate. Moreover, any element v € F'~ acts as linear form on
F via

D, F* = C, wr Oy(w) = (v,w). (1.5.10)

Via this pairing 72~ can be considered as restricted dual of 7. The identification
depends on the splitting of A into I and O as the KN pairing depends on it. The full
space (F*)* can even be described with the help of the pairing in a “distributional
interpretation” via the distribution ®; associated to the formal series

K
b= 3> ampfiys @mp€C. (1.5.11)

me]y p=1

4. Strictly speaking, there are some special cases where some constants have to be added such that the
Krichever-Novikov duality (1.5.9) is valid.
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The dual elements of £ will be given by the formal series (1.5.11) with basis ele-
ments from F2, the quadratic differentials, the dual elements of A correspondingly
from F!, the differentials, and the dual elements of F~'/2 correspondingly from
F3I2,

It is quite convenient to use special notations for elements of some important
weights:

-1 /2. 0
np = fap  Pnp = Sop / Anp = fop

) ) (1.5.12)
np = o s QP .— ffn,p
In view of (1.5.9) for the forms of weight 1 and 2 we invert the index n and write it as
a superscript.

Remark 1.5.4. It is also possible (and for certain applications necessary) to write
explicitely down the basis elements fﬁ,p in terms of “usual” objects defined on the
Riemann surface X. For genus zero they can be given with the help of rational func-
tions in the quasi-global variable z. For genus one (i.e. the torus case) representations
with the help of Weierstrall ¢ and Weierstrall o functions exists. For genus > 1 there
exists expressions in terms of theta functions (with characteristics) and prime forms.
Here the Riemann surface has first to be embedded into its Jacobian via the Jacobi
map. See [SCH 14b, Chapter 5], [SCH 90c], [SCH 93] for more details.

1.5.4. The algebras

Theorem 1.5.5. [SCH 14b, Thm. 3.8] There exists constants Ry and Ry (depending
on the number and splitting of the points in A and on the genus g) independent of A
and v and independent of n, m € J such that for the basis elements

A v v r
fn,p “Jmgr = f71+7n r5p
n+m+R, K

A+ (h s)
Y YA e it a(men €C
h=n+m+1 s=1

A A
[fiops Fomr] = (=Am +vn) fnirl;jrl(;;
n+m+Rs K

(h,s) A+u+1 (hss)
Y Db et b € C
h=n+m+1 s=1

(1.5.13)
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In generic situations and for N = 2 points one obtains R; = g and Re = 3g.

The theorem says in particular that with respect to both the associative and Lie
structure the algebra F is weakly almost-graded. The reason why we only have
weakly almost-gradedness is that

@ m, with  dim F) = K, (1.5.14)
meEJx

and if we add up for a fixed m all A we get that our homogeneous spaces are infinite
dimensional.

In the definition of our KN type algebra only finitely many As are involved, hence
the following is immediate

Theorem 1.5.6. The Krichever-Novikov type vector field algebras L, function alge-
bras A, differential operator algebras D', Lie superalgebras S, and Jordan superal-
gebras J are all (strongly) almost-graded algebras and the corresponding modules
F* are almost-graded modules.

We obtain with n € J,

dim £,, = dim A, = dim F) = K

(1.5.15)
dim S, = dim J, = 2K, dimD} =3K.
If U is any of these algebras, with product denoted by [, ] then
n+m+R;
UnUn) C D Un, (15.16)
h=n+m

with R; = Ry ford = A and R; = R, otherwise.

For further reference let us specialize the lowest degree term component in (1.5.13)
for certain special cases.

Anvp 'Am,"" = An—‘rm,rap + hdt
Anp e = Foymne O + hadt.

[enps€myr] = (M —n)- €pim,0F + hdt.

(1.5.17)

enp-fog = (Mm+An) - for,, 0 + hdt

Here h.d.t. denote linear combinations of basis elements of degree between n+m+1
andn +m + R;,
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Finally, the almost-grading of A induces an almost-grading of the current algebra
g by setting g,, = g ® A,,. We obtain

=37, dimg, =K dimg. (1.5.18)
nez

1.5.5. Triangular decomposition and filtrations

Let U be one of the above introduced algebras (including the current algebra). On
the basis of the almost-grading we obtain a triangular decomposition of the algebras

U= U & Uy ©U, (1.5.19)
where
m=0
Uy = P Um, U= P Un, U= P Un. (1.5.20)
m>0 m=—R; m<—R;

By the almost-gradedness the [+] and [—] subspaces are (infinite dimensional) subal-
gebras. The [0] spaces in general not. Sometimes we call them critical strips.

With respect to the almost-grading of F* we introduce a filtration

Foy = D T

m>n (1.5.21)
2 Foeny 2 Fhy 2 Fhn

Proposition 1.5.7. [SCH 14b, Prop. 3.15]

Foy={feF ordp(f)=n—-AVi=1,...,K}, (1.5.22)

1.6. Central Extensions

Central extension of our algebras appear naturally in the context of quantization
and regularization of actions. Of course they are also of independent mathematical
interest.

1.6.1. Central extensions and cocycles
For the convenience of the reader let us repeat the relation between central exten-

sions and the second Lie algebra cohomology with values in the trivial module. A
central extension of a Lie algebra W is a special Lie algebra structure on the vector
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space direct sum W = Ca& W. If we denote & := (0,z) and ¢ := (1,0) then the Lie
structure is given by

—

3,9 = [t 9] + ¥(z,y) - £, [HW] =0, z,yeW, (1.6.1)

with bilinear form . The map « — & = (0, z) is a linear splitting map. W will be
a Lie algebra, e.g. will fulfill the Jacobi identity, if and only if 1) is an antisymmetric
bilinear form and fulfills the Lie algebra 2-cocycle condition

0= d2¢(x,y7z) = ¢([$7y]a2> + wqy?ZLx) + w([z’w}vy) (1.6.2)

Two central extensions are equivalent if they essentially correspond only to the
choice of different splitting maps. A 2-cochain % is a coboundary if there exists a
linear form ¢ : W — C such that

Y(x,y) = ¢([z,y]). (1.6.3)

Every coboundary is a cocycle. The second Lie algebra cohomology H? (W, C) of W
with values in the trivial module C is defined as the quotient of the space of 2-cocycles
modulo coboundaries. Moreover, two central extensions are equivalent if and only if
the difference of their defining 2-cocycles 1) and ¢’ is a coboundary. In this way the
second Lie algebra cohomology H?(W,C) classifies equivalence classes of central
extensions. The class [0] corresponds to the trivial central extension. In this case the
splitting map is a Lie homomorphism. We construct central extensions of our algebras
by exhibiting such Lie algebra 2-cocycles.

Clearly, equivalent central extensions are isomorphic. The opposite is not true. In
our case we can always rescale the central element by multiplying it with a nonzero
scalar. This is an isomorphism but not an equivalence of central extensions. Never-
theless it is an irrelevant modification. Hence we will be mainly interested in central
extensions modulo equivalence and rescaling. They are classified by [0] and the ele-
ments of the projectivized cohomology space P(H? (W, C)).

In the classical case we have dim H?(W, C) = 1, hence there are only two essen-
tially different central extensions, the splitting one given by the direct sum C & W
of Lie algebras and the up to equivalence and rescaling unique non-trivial one, the
Virasoro algebra V.

1.6.2. Geometric cocycles
The cocycle of the Witt algebra

3 _ ) (1.6.4)

2"
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to define the Virasoro algebra is very special. Obviously it does not make any sense
in the higher genus and/or multi-point case. We need to find a geometric description.
For this we have first to introduce connections.

1.6.2.1. Projective and affine connections

Let (Ua,2a)acs be a covering of the Riemann surface by holomorphic coordi-
nates with transition functions zg = fga(za)-

Definition 1.6.1. (a) A system of local (holomorphic, meromorphic) functions R =
(Ra(24)) is called a (holomorphic, meromorphic) projective connection if it trans-
forms as

. B3 R 2
RoGen) (fy)? = FalGa) #5(f). wi 5= "3 (57) . 0169)

the Schwartzian derivative. Here ’ denotes differentiation with respect to the coordi-
nate z,.

(b) A system of local (holomorphic, meromorphic) functions T = (T, (z,)) is
called a (holomorphic, meromorphic) affine connection if it transforms as

f//’a

Tﬁ(zﬁ)'(fé,a)=Ta(za)+f, .
B,a

(1.6.6)

Every Riemann surface admits a holomorphic projective connection [HAW 66],[ GUN 66].
Given a point P then there exists always a meromorphic affine connection holomor-
phic outside of P and having maximally a pole of order one there [SCH 90d].

From their very definition it follows that the difference of two affine (projective)
connections will be a (quadratic) differential. Hence, after fixing one affine (projec-
tive) connection all others are obtained by adding (quadratic) differentials.

Next we introduce in a geometric way by integration of certain differentials, as-
sociated to pairs of Lie algebra elements, over arbitrary smooth curves. For the
proofs that the following expressions are indeed 2-cocycles we refer to [SCH 90d]
(and [SCH 14b]).

1.6.2.2. The function algebra A

We consider it as abelian Lie algebra. Let C be an arbitrary smooth but not neces-
sarily connected curve. We set

1
VE(g,h) = —./gdh, g,h €A (1.6.7)
2mi Jo
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1.6.2.3. The current algebra g

For g = g ® A we fix a symmetric, invariant, bilinear form 3 on g (not necessarily
non-degenerate). Recall, that invariance means that we have 5([z, y], z) = B(z, [y, 2])
for all z,y, z € g. Then a cocycle is given as

1
U p(z ® g,y @ h) = B(x,y)-%/gdlu r,yeg, ghe A  (1.6.8)
C

1.6.2.4. The vector field algebra L

Here it is a little bit more delicate. First we have to choose a (holomorphic) pro-
jective connection R. We define

1 1
3 mn " / !
= - — -R- — dz . 1.6.9
donte )= i [ (3T —er =R @i -er))ds. (169)
Only by the term coming with the projective connection it will be a well-defined dif-
ferential, i.e. independent of the coordinate chosen. Another choice of a projective
connection will result in a cohomologous one. Hence, the equivalence class of the
central extension will be the same.

1.6.2.5. The differential operator algebra D"

For the differential operator algebra the cocycles of type (1.6.7) for A can be ex-
tended by zero on the subspace L. The cocycles for £ can be pulled back. In addition
there is a third type of cocycles mixing A and L:

Vérle g) : (eg” + Teg')dz, ecL,gc A, (1.6.10)

© 247 S
with an affine connection 7', with at most a pole of order one at a fixed point in O.
Again, a different choice of the connection will not change the cohomology class.

1.6.2.6. The Lie superalgebra S

Here we have to take into account that it is not a Lie algebra. Hence, the Jacobi
identity has to be replaced by the super-Jacobi identity. The conditions for being a
cocycle for the superalgebra cohomology will change too. Recall the definition of
the algebra from Section 1.4.6, in particular that the even elements (parity 0) are the
vector fields and the odd elements (parity 1) are the half-forms. A bilinear form c is a
cocycle if the following is true. The bilinear map c will be symmetric if both x and y
are odd, otherwise it will be antisymmetric:

clz,y) = —(=1)"c(x,y). (1.6.11)
The super-cocycle condition reads as

(—=1)2c(a, [y, 2]) + (=1)%c(y, [z, 2]) + (=1)e(z, [z,y]) = 0. (1.6.12)



36 Encyclopedia in Algebra

With the help of ¢ we can define central extensions in the Lie superalgebra sense. If
we put the condition that the central element is even then the cocycle ¢ has to be an
even map and c vanishes for pairs of elements of different parity.

By convention we denote vector fields by e, f, g, ... and -1/2-forms by ¢, ¥, ¥, ..
and get

cle,p) =0, e€L, pcF 12 (1.6.13)

The super-cocycle conditions for the even elements is just the cocycle condition for
the Lie subalgebra £. The only other nonvanishing super-cocycle condition is for the
(even,odd,odd) elements and reads as

0(67 [80,1/)]) - C(%@-lﬂ) - CW&-@) = 0. (1614)
Here the definition of the product [e, )] := e . ¢ was used.

If we have a cocycle ¢ for the algebra S we obtain by restriction a cocycle for the
algebra L. For the mixing term we know that c(e, 1)) = 0. A naive try to put just
anything for ¢(¢, 1) (for example 0) will not work as (1.6.14) relates the restriction of
the cocycle on £ with its values on F~1/2,

Proposition 1.6.2. [SCH 13] Let C be any closed (differentiable) curve on 3 not
meeting the points in A, and let R be any (holomorphic) projective connection then
the bilinear extension of

1 1
Por(e, f) = 27 /o (2(6”/f —ef”")=R-(e'f - €f/)> dz
1 " " (1.6.15)
e r(p, 7)) :=—24m/c(<p Y+ —Rop-9)dz
Oc (e, p) =0

gives a Lie superalgebra cocycle for S, hence defines a central extension of S. A
different projective connection will yield a cohomologous cocycle.

Note that the ®¢ g restricted to L gives \I/3C I

A similar formula was given by Bryant in [BRY 90]. By adding the projective
connection in the second part of (1.6.15) he corrected some formula appearing in
[BON 88]. He only considered the two-point case and only the integration over a
separating cycle. See also [KRE 13] for the multi-point case, where still only the
integration over a separating cycle is considered.

In contrast to the differential operator algebra case the two parts cannot be pre-
scribed independently. Only with the same integration path (more precisely, homol-
ogy class) and the given factors in front of the integral it will work. The reason for
this is that (1.6.14) relates both.
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1.6.3. Uniqueness and classification of central extensions

The above introduced cocycles depend on the choice of the connections R and 7T'.
Different choices will not change the cohomology class. Hence, this ambiguity does
not disturb us. What really matters is that they depend on the integration curve C'
chosen.

In contrast to the classical situation, for the higher genus and/or multi-point situa-
tion there are many essentially different closed curves and hence many non-equivalent
central extensions defined by the integration.

But we should take into account that we want to extend the almost-grading from
our algebras to the centrally extended ones. This means we take deg & := degx and
assign a degree deg(t) to the central element ¢, and still we want to obtain almost-
gradedness.

This is possible if and only if our defining cocycle v is local in the following
sense (the name was introduced in the two point case by Krichever and Novikov in
[KRI 87a]). There exists My, My € Z such that

Yn,m: Y(W,,W,)#0 = M; <n+m< M. (1.6.16)

Here W stands for any of our algebras (including the supercase). Very important,
“local” is defined in terms of the almost-grading, and the almost-grading itself depends
on the splitting A = I U O. Hence what is “local” depends on the splitting too.

We will call a cocycle bounded (from above) if there exists M € Z such that
Yn,m: YW, W,)#0 = n+m< M. (1.6.17)

Similarly bounded from below can be defined. Locality means bounded from above
and from below.

Given a cocycle class we call it bounded (respectively local) if and only if it con-
tains a representing cocycle which is bounded (respectively local). Not all cocycles
in a bounded class have to be bounded. If we choose as integration path a separating
cocycle Cg, or one of the C; then the above introduced geometric cocycles are local,
respectively bounded. Recall that in this case integration can be done by calculating
residues at the in-points or at the out-points. All these cocycles are cohomologically
nontrivial. The theorems in the following concern the opposite direction. They were
treated in my works [SCH 03b], [SCH 03a], [SCH 13]. See also [SCH 14b] for a
complete and common treatment.

The following result for the vector field algebra £ gives the principal structure of
the classification results.
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Theorem 1.6.3. [SCH 03b], [SCH 14b, Thm. 6.41] Let L be the Krichever—Novikov
vector field algebra with a given almost-grading induced by the splitting A = I U O.
(a) The space of bounded cohomology classes is K-dimensional (K = #1). A basis is
given by setting the integration path in (1.6.9)to C;, i = 1, ..., K the little (deformed)
circles around the points P; € I.

(b) The space of local cohomology classes is one-dimensional. A generator is given
by integrating (1.6.9) over a separating cocycle C, i.e.

Vs rle f) ! <1(e”’f —ef"Y—R-(f— ef’)> dz. (1.6.18)

~ 247 Jo, \2

(c) Up to equivalence and rescaling there is only one non-trivial one-dimensional
central extension L of the vector field algebra L which allows an extension of the
almost-grading.

Remark 1.6.4. In the classical situation, Part (c) shows also that the Virasoro algebra
is the unique non-trivial central extension of the Witt algebra (up to equivalence and
rescaling). This result extends to the more general situation under the condition that
one fixes the almost-grading, hence the splitting A = I U O. Here I like to repeat the
fact that for £ depending on the set A and its possible splittings into two disjoint sub-
sets there are different almost-gradings. Hence, the “unique” central extension finally
obtained will also depend on the splitting. Only in the two point case there is only one
splitting possible. In the case that the genus g > 1 there are even integration paths
possible in the definition of (1.6.9) which are not homologous to a separating cycle of
any splitting. Hence, there are other central extensions possible not corresponding to
any almost-grading.

The above theorem is a model for all other classification results. We will always
obtain a statement about the bounded (from above) cocycles and then for the local
cocycles.

If we consider the function algebra A as an abelian Lie algebra then every skew-
symmetric bilinear form will be a non-trivial cocycle. Hence, there is no hope of
uniqueness. But if we add the condition of L-invariance, which is given as

¥(e.g,h) +¥(g,e.h) =0, Vee L, gheA (1.6.19)

things will change.

Let us denote the subspace of local cohomology classes by HZ, , and the subspace
of local and L-invariant cohomology classes by H%,zoc- Note that the conditions are
only required for at least one representative in the cohomology class. We collect a part
of the results for the cocycle classes of the other algebras in the following theorem.
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Theorem 1.6.5. [SCH 14b, Cor. 6.48]
(a) dimHZ, (A C)=1,

(b) dimH2

loc

(L£,C) =1,

(¢) dimH?

loc

(Dl, C)=3,
(d) dimH? (§,C) =1 for g a simple finite-dimensional Lie algebra,

(e) dimTH?

loc

(S,C) =1,

A basis of the cohomology spaces are given by taking the cohomology classes of the
cocycles (1.6.7), (1.6.9), (1.6.10), (1.6.8), (1.6.15) obtained by integration over a sep-
arating cycle Cyg.

Consequently, we obtain also for these algebras the corresponding result about
uniqueness of almost-graded central extensions. For the differential operator alge-
bra we get three independent cocycles. This generalizes results of [ARB 88] for the
classical case.

For results on the bounded cocycle classes we have to multiply the dimensions
above by K = #1. For the supercase with odd central element the bounded cohomol-
ogy vanishes.

For g a reductive Lie algebra and if the cocycle is L-invariant if restricted to the
abelian part, a complete classification of local cocycle classes for both g and Dé can
be found in [SCH 03a], [SCH 14b, Chapter 9].

I like to mention that in all the applications I know of, the cocycles coming from
representations, regularizations, etc. are local. Hence, the uniqueness or classification
result above can be used.

1.7. Examples and Generalizations
1.7.1. The genus zero and three-point situation
For illustration let us consider the three-point KN type algebras of genus zero. We

consider the Riemann sphere S? = P! and a set A consisting of 3 points. Given any
triple of 3 points there exists always an analytic automorphism of P* mapping this
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triple to {a, —a, 0o}, with a # 0. In fact a = 1 would suffice. Without restriction we
can take

I:={}, O:={a,—a}.
Due to the symmetry of the situation it is more convenient to take a symmetrized basis
of A (with k € Z)
Agp, = (2 — a)* (2 + a)*, Agpir = 2(2 — a)*(z + a)*, (1.7.1)

for £ (with k € Z)

d d
Vai i= 2(z —a)*(z + a)ka7 Vaka1 = (z—a)* (2 + a)kH% , (1.7.2)

and for the —1/2-forms

_ d._
)72, Pok+1/2 1= 2(z—a)*(z+a)k ()72,

d
(s \E ko @
Pok—1/2 = (z—a)" (z+a)"( az

dz
(1.7.3)

Also we inverted the grading. By straight-forward calculations we obtain for the alge-
bras the following structures.

The function algebra.

A, A, = Aptm, ) n or m even, (1.7.4)
Apsm +a0* ® Apym—2, nandm odd.

The vector field algebra.

(m - n)Vnerv n,m odd,
Vo, Vinl = § (m = n) (Vo + @*Vipm—2), n,m even, (1.7.5)
(m —n)Vosm + (m —n—1)a?V,1m_2, nodd, m even.

The current algebra.

[T®A,, yRA,] = (1.7.6)

[z, Y] ® Antm, n or m even,
[37’ y] ® Aptm + a? [ZH y} ® Aptm—2, nandm odd
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The structure equations for the superalgebra look similar and can be easily calcu-
lated.

The central extensions can be given by determining the cocycle values by calcu-
lating the residues of the integrand at co. For example the local cocycle wés for the
function algebra calculates as (see [FIA 05, A.13 and A.14])

1 —nd,", n, m even,
o AndA,, = 0, n, m different parity, (1.7.7)
™
s —né,;" + a?(—n +1)5,,""2, n, m odd.

The affine algebra is now given as the almost-graded central extension gg s of the
current algebra given by the cocycle

1
w%’s,ﬁ(l‘(@Anay@Am) = B(z,y)- 2ri c AndAm = B(z,y) .wés(A”’Am)'
s

(1.7.8)

Three-point s[(2, C)-current algebra for genus 0.
Given a simple Lie algebra g with generators and structure equations the relations
above can be written in these terms. An important example is sl(2, C) with the stan-
dard generators

(3 8) e ()

We set e, := e ® A,,,n € Z and in the same way f,, and h,,. Recall that the invariant
bilinear form 8(x,y) = tr(x - y). We calculate

h’ﬂ m» )

[ens fn] = 4™ ot even (1.7.9)
hptm + @ hptm—2, mnandm odd,

[, €] = 2en4m, ) T Or m even, (1.7.10)
2€n+m + 2a%€p4+m—2, nand m odd,
-2 n+m; )

s fon] = fnt . n or m even (1.7.11)
—2fntm — 20 futm—2, mand m odd.

For the central extension we obtain

—n+2

lens fon] Pt — 16" n or m even,
€nyJm| =
Bt + a2y ym—2 — 8" —a?(n — 1)6,,"*2, nand m odd,
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(1.7.12)
and
—2nd,", n, m even,
(Fns him] = 0, n, m different parity, (1.7.13)
—2nd," + 2a%(—n + 1)0,"*2,  n, m odd.

For the other commutators we do not have contributions to the center.

1.7.2. Genus zero multi-point algebras — integrable systems

Already the Witt and Virasoro algebra in genus zero with two points where poles
are allowed are mathematically highly interesting objects which have e.g. a non-trivial
representation theory. If we remain on the Riemann sphere but now allow more than
two poles we obtain an even more demanding mathematical theory. For the multi-
point case the related systems are important. For example the classical Knizhnik-
Zamolodchikov models of Conformal Field Theory (CFT) are of this type, see e.g.
[KNI 84]. Integrable systems show up.

Due to the connection between CFT and statistical mechanics it is not a surprise
that the genus zero multi-point Krichever—Novikov algebras turn out to be related to
algebras appearing in statistical mechanics. For example the Onsager algebra ap-
pears as subalgebra of the three-point, g = 0, s[(2, C)-Krichever—Novikov algebra. In
this context see e.g. the work of Terwilliger and collaborators [HAR 07], [BEN 07],
[ITO 08].

For the genus zero multi-point situation quite a number of publications appeared.
Some references are [SCH 90c], [FIA 03], [FIA 05], [FIA 07], [BRE 91], [BRE 95],
[SCH 07a], [ANZ 92], [COX 08]. Recently, the author [SCH 17] gave a thorough and
unified treatment of universal central extensions of the genus zero algebras.

From the point of view of symmetries of integrable systems the concept of auto-
morphic Lie algebras shows up. It was e.g. developed by Lombardo, Mikailov, and
Sanders in [LOM 05a], [LOM 05b], [LOM 10]. Invariant objects under finite sub-
groups of PGL(2,C), the symmetry group of the Riemann sphere, are studied. Of
course, there are relations to the g = 0, multi-point Krichever—-Novikov type algebras.
Chopp [CHO 11] obtained some results for the genus one multi-point setting.

1.7.3. Deformations

As the second Lie algebra cohomology of the Witt and Virasoro algebra in their
adjoint module vanishes [SCH 11], [FIA 12], [FIA 90] both are formally and infinites-
imally rigid. This means that all formal (and infinitesimal) families with special fiber
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these algebras are equivalent to the trivial one. If we consider the examples of Sec-
tion 1.7.1 parameterized by a variable a, then they are non-trivial (even locally non-
trivial) families which have themselves as special elements for a = 0 the classical
algebras. The geometric context is clear: the two points a and —a move together. By
Fialowski and Schlichenmaier [FIA 03], [FIA 05], [FIA 07] the above algebras and
similar families of algebras on tori, were used to exhibit the fact, that e.g. the Witt and
Virasoro algebra despite their formal rigidity allow non-trivial algebraic-geometric
deformations. This is an effect that cannot appear in the finite-dimensional algebra
setting. For families on tori see the above quoted results, respectively [SCH 14b,
Chapter 12]. See also [SCH 90c], [BRE 90], [BRE 94], [DEC 90], [RUF 92].

1.8. Lax Operator Algebras

Recently, a new class of current type algebras appeared, the Lax operator algebras.
As the naming indicates, they are related to integrable systems [SHE 11]. The algebras
were introduced by Krichever [KRI 02], and Krichever and Sheinman [KRI 07]. Here
I will report on their definition. See the book [SHE 12] of Sheinman for more details.

Compared to the KN current type algebra we will allow additional singularities
which will play a special role. The points where these singularities are allowed are
called weak singular points. The set of such points is denoted by

W={y,eX\A|s=1,...,R}. (1.8.1)

Let g be one of the classical matrix algebras gl(n), sl(n), so0(n), sp(2n). We assign to
every point v, a vector gy € C™ (respectively € C?" for sp(2n)). The system

T :={(ys,a5) €2 xC"|s=1,...,R} (1.8.2)
is called Tyurin data.

Remark 1.8.1. In case that R = n - g and for generic values of (s, ) with as # 0
the tuples of pairs (vs, [as]) with [as] € P"~1(C) parameterize semi-stable rank n
and degree n g framed holomorphic vector bundles as shown by Tyurin [TJU 65].
Hence, the name Tyurin data.

We consider g-valued meromorphic functions 5

L:Y — g, (1.8.3)

5. Strictly speaking, the interpretation as function is a little bit misleading, as they behave under differ-
entiation like operators on trivialized sections of vector bundles.
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which are holomorphic outside WU A, have at most poles of order one (respectively of
order two for sp(2n)) at the points in TV, and fulfill certain conditions at W' depending
on 7. To describe them let us fix local coordinates w; centered at v, s = 1,..., R.
For gl(n) the conditions are as follows. For s = 1,..., R we require that there ex-
ist B3 € C™ and ks € C such that the matrix-valued function L has the following
expansion at vy, € W

Ls —1 k
L(wg) = == . 8.
(wy) o Lot > Logwt, (1.8.4)
k>0
with
Ls_1= asB, tr(Ls—1) = Blag, =0, Lsoas = Ksa. (1.8.5)

In particular, if Ly _; is non-vanishing then it is a rank 1 matrix, and if o5 # O then
it is an eigenvector of L, o. The requirements (1.8.5) are independent of the chosen
coordinates w;.

It is not at all clear that the commutator of two such matrix functions fulfills again
these conditions. But it is shown in [KRI 07] that they indeed close to a Lie algebra
(in fact in the case of gl(n) they constitute an associative algebra under the matrix
product). If one of the vy = 0 then the conditions at the point 4 correspond to the
fact, that L has to be holomorphic there. If all ar,’s are zero or W = () we obtain back
the current algebra of KN type. For the algebra under consideration here, in some
sense the Lax operator algebras generalize them. In the bundle interpretation of the
Tyurin data the KN case corresponds to the trivial rank n bundle.

For sl(n) the only additional condition is that in (1.8.4) all matrices L j, are trace-
less. The conditions (1.8.5) remain unchanged.

In the case of so(n) one requires that all Ly j in (1.8.4) are skew-symmetric. In
particular, they are trace-less. Following [KRI 07] the set-up has to be slightly mod-
ified. First only those Tyurin parameters « are allowed which satisfy a‘as = 0.
Then, (1.8.5) is changed in the following way:

L 1= Ofsﬂi - ,BSOéZ,, tr(Ls,—l) = Bzas =0, Lsoas=~rsas. (1.8.6)

For sp(2n) we consider a symplectic form & for C?" given by a non-degenerate
skew-symmetric matrix o. The Lie algebra sp(2n) is the Lie algebra of matrices X
such that X*o + 0 X = 0. The condition tr(X) = 0 will be automatic. At the weak
singularities we have the expansion

Le_o Ly k
L(ws) = Sor e Lo+ Lsws + ,; L pwh. (1.8.7)



Krichever—Novikov type algebras 45

The condition (1.8.5) is modified as follows (see [KRI 07]): there exist 8, € C?",
Vs, ks € C such that

Ls,—2 = Vsasago'y Ls,—l = (asﬂi+ﬂsai)ga ﬁsto'as =0, Ls,O Qs = RsOs.
(1.8.8)

Moreover, we require ato L 1 s = 0. Again under the point-wise matrix commutator
the set of such maps constitute a Lie algebra.

It is possible to introduce an almost-graded structure for these Lax operator alge-
bras induced by a splitting of the set A = I U O. This is done for the two-point case
in [KRI 07] and for the multi-point case in [SCH 14a]. From the applications there is
again a need to classify almost-graded central extensions.

The author obtained this jointly with O. Sheinman in [SCH 08] for the two-point
case. For the multi-point case see [SCH 14a]. For the Lax operator algebras associated
to the simple algebras sl(n), s0(n), sp(n) it will be unique (meaning: given a splitting
of A there is an almost-grading and with respect to this there is up to equivalence and
rescaling only one non-trivial almost-graded central extension). For gl(n) we obtain
two independent local cocycle classes if we assume L-invariance on the reductive part.
Both in the definition of the cocycle and in the definition of £-invariance a connection
shows up.

Remark 1.8.2. Recently, Sheinman extended the set-up to G5 [SHE 14] and moreover
gave a recipe for all semi-simple Lie algebras [SHE 15].

1.9. Fermionic Fock Space
1.9.1. Semi-Infinite forms and fermionic Fock space representations

Our Krichever-Novikov vector field algebras £ have as Lie modules the spaces
F?. These representations are not of the type physicists are usually interested in.
There are neither annihilation nor creation operators which can be used to construct
the full representation out of a vacuum state.

To obtain representation with the required properties the almost-grading again
comes into play. First, using the grading of F* it is possible to construct starting
from F?, the forms of weight \ € 1/27Z, the semi-infinite wedge forms H’s.

The vector space H* is generated by basis elements which are formal expressions
of the type

(I):fél)/\f(/\i2)/\f()%3)/\"” (1.9.1)
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where (i1) = (mq,p1) is a double index indexing our basis elements. The indices
are in strictly increasing lexicographical order. They are stabilizing in the sense that
they will increase exactly by one starting from a certain index which depends on ®.
The action of £ should be extended by Leibniz rule from F* to #*. But a problem
arises. For elements of the critical strip Lo) of the algebra £ it might happen that they
produce infinitely many contributions. The action has to be regularized (as physicists
like to call it), which is a well-defined mathematical procedure.

Here the almost-grading has another appearance. By the (strong) almost-graded
module structure of F* the algebra £ can be embedded into the Lie algebra of both-
sided infinite matrices

gl(00) := {A = (aij)ijez | Ir = r(A), such that a;; = 0if |i—j| > r}, (1.9.2)

with “finitely many diagonals”. The embedding will depend on the weight A. For
gl(00) there exists a procedure for the regularization of the action on the semi-infinite
wedge product [DAT 82], [KAC 81], see also [KAC 87]. In particular, there is a
unique non-trivial central extension é\l(oo) If we pull-back the defining cocycle for
the extension we obtain a central extension L » of £ and the required regularization
of the action of £, on H*. As the embedding of £ depends on the weight \ the
cocycle will depend too. The pull-back cocycle will be local. Hence, by the classifica-
tion results of Section 1.6.3 it is the unique central extension class defined by (1.6.9)
integrated over C's (up to a rescaling).

In H* there are invariant subspaces, which are generated by a certain “vacuum
vectors”. The subalgebra £[+] annihilates the vacuum, the central element and the
other elements of degree zero act by multiplication with a constant and the whole
representation space is generated by £(_) @& L|o) from the vacuum.

As the function algebra A operates as multiplication operators on F* the above
representation can be extended to the algebra D! (see details in [SCH 90d], [SCH 14b])
after one passes to central extensions. The cocycle again is local and hence, up to
coboundary, it will be a certain linear combination of the 3 generating cocycles for the
differential operator algebra. In fact its class will be

ox - [+ %27_1[%5] —Wb], exi=—2(6A2—6A+1).  (1.93)

Recall that 93 is the cocycle for the vector field algebra, ¢! the cocycle for the function
algebra, and 1% the mixing cocycle. Note that the expression for c, appears also in
Mumford’s formula [SCH 07b] relating divisors on the moduli space of curves.

For £ we could rescale the central element. Hence essentially, the central extension
L did not depend on the weight. Here this is different. The central extension D1
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depends on it. Furthermore, the representation on 7* gives a projective representation
of the algebra of D, of differential operators of all orders. It is exactly the combination
(1.9.3) which lifts to a cocycle for D) and gives a central extension D).

For the centrally extended algebras g in a similar way fermionic Fock space repre-
sentations can be constructed, see [SHE 01], [SCH 99].

1.9.2. b- csystems

Related to the above there are other quantum algebra systems which can be realized
on H*. On the space H* the forms F* act by wedging elements f* € F* in front of
the semi-infinite wedge form, i.e.

s fAND. (1.9.4)

Using the Krichever-Novikov duality pairing (1.5.4) and by contracting the elements
in the semi-infinite wedge forms, the forms f1=* € F1=* will act on them too. For
® a basis element (1.9.1) of H* the contraction is defined via

oo

N = DD T LD S Aoy A Ry (193

=1
Here fé,) indicates as usual that this element will not be there anymore.

Both operations create a Clifford algebra like structure, which is sometimes called
a b— c system, see [SCH 14b, Chapters 7 and 8§].

1.10. Sugawara Representation

In the classical set-up the (two-dimensional) Sugawara construction relates to a
representation of the classical affine Lie algebra g a representation of the Virasoro
algebra, see e.g. [KAC 90], [KAC 87]. In joint work with O. Sheinman the author
succeeded in extending it to arbitrary genus and the multi-point setting [SCH 98]. For
an updated treatment, incorporating also the uniqueness results of central extensions,
see [SCH 14b, Chapter 10]. Here we will give a very rough sketch.

We start with an admissible representation V' of a centrally extended current alge-
bra g. Admissible means, that the central element operates as constant x identity, and
that every element v in the representation space will be annihilated by the elements in
o of sufficiently high degree (which depends on the element v).

For simplicity let g be either abelian or simple and 3 the non-degenerate symmetric
invariant bilinear form used to construct g (now we need that it is non-degenerate). Let
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{u;}, {u’} be a system of dual basis elements for g with respect to 3, i.e. 8(u;, u/) =
&7. Note that the Casimir element of g can be given by >, u;u’. Forz € g we consider
the family of operators z(n,p) given by the operation of x @ A,, , on V. We group
them together in a formal sum

K
Q) =YY z(npw™r(Q), QeI (1.10.1)

n€eZ p=1

Such a formal sum is called a field if applied to a vector v € V' it gives again a formal
sum (now of elements from V') which is bounded from above. By the condition of
admissibility Z(Q) is a field. It is of conformal weight one, as the one-differentials
w™P show up.

The current operator fields are defined as ©

Ti(Q) = w(Q) = Y ui(n, pw™(Q). (1.10.2)

n,p

The Sugawara operator field 7'(Q) is defined by

T(Q) = %Z (Q)T(Q): . (1.10.3)

fields again a field. The standard normal ordering is defined as
<
:x(n’p)y(m77,): = I(TL?p)y(m?T)? (n7p) — (m7,r) (].10.4)
y(m,r)z(n,p), (n,p) > (m,r)

where the indices (n, p) are lexicographically ordered. By this prescription the anni-
hilation operator, i.e. the operators of positive degree, are brought as much as possible
to the right so that they act first.

As the current operators are fields of conformal weights one the Sugawara operator
field is a field of weight two. Hence we write it as

K
T@Q) =Y Liy QF*(Q) (1.10.5)

keZ p=1

with certain operators Ly, ,. The Ly, ,, are called modes of the Sugawara field T or just
Sugawara operators.

6. For simplicity we drop mentioning the range of summation here and in the following when it is clear.
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Let 2k be the eigenvalue of the Casimir operator in the adjoint representation. For
g abelian x = 0. For g simple and /3 normalized such that the longest roots have square
length 2 then & is the dual Coxeter number. Recall that the central element ¢ acts on
the representation space V' as ¢ - id with a scalar ¢. This scalar is called the level of
the representation. The key result is (where z(g) denotes the operator corresponding
to the element z ® g)

Proposition 1.10.1. [SCH 14b, Prop. 10.8] Let g be either an abelian or a simple Lie
algebra. Then

(L 2(9)] = —(c+ k) - 2(eryp.9) - (1.10.6)

[Lip T(Q)] = (¢ + k) - (erp - T(Q)) - (1.10.7)

Recall that ey, ,, are the KN basis elements for the vector field algebra L.

In the next step the commutators of the operators Ly, , can be calculated. In the
case the c+x = 0, called the critical level, these operators generate a subalgebra of the
center of gl(V). If ¢ + x # 0 (i.e. at a non-critical level) the Ly, can be replaced by
rescaled elements Ly = C;—lﬁLk,p and we denote by T7[..] the linear representation
of £ induced by

Tlekp] = Li p- (1.10.8)

The result is that 7" defines a projective representation of £ with a local cocycle. This
cocycle is up to rescaling our geometric cocycle 92, <.z With a suitable projective
connection’ R. In detail,

cdimg

Tlle, f1} = [T1e], TU1) + = Vs rle fid. (1.10.9)
Consequently, by setting
Tle] :=Tle], T[] := Ccdim: id . (1.10.10)

we obtain a honest Lie representation of the centrally extended vector field algebra
L given by this local cocycle. For the general reductive case, see [SCH 14b, Section
10.2.1].

7. The projective connection takes care of the “up to coboundary”. It is induced by the normal ordering
prescription
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1.11. Application to Moduli Space

This application deals with Wess-Zumino-Novikov-Witten models and the Knizhnik-
Zamolodchikov Connection. Despite the fact, that it is a very important applica-
tion, the following description is very condensed. More can be found in [SCH 99],
[SCH 04]. See also [SCH 14b], [SHE 12].

Wess-Zumino-Novikov-Witten (WZNW) models are defined on the basis of a fixed
finite-dimensional simple (or semi-simple) Lie algebra g. One considers families of
representations of the affine algebras g (which is an almost-graded central extension of
g) defined over the moduli space of Riemann surfaces of genus g with K + 1 marked
points and splitting of type (K, 1). The single point in O will be a reference point. The
data of the moduli of the Riemann surface and the marked points enter the definition of
the algebra g and the representation. The construction of certain co-invariants yields
a special vector bundle of finite rank over moduli space, called the vector bundle of
conformal blocks, or Verlinde bundle. With the help of the Krichever Novikov vector
field algebra, and using the Sugawara construction, the Knizhnik-Zamolodchikov (KZ)
connection is given. It is projectively flat. An essential fact is that certain elements
in the critical strip L{g) correspond to infinitesimal deformations of the moduli and to
moving the marked points. This gives a global operator approach in contrast to the
semi-local approach of Tsuchia, Ueno, and Yamada [TSU 89].
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