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Outline

» Approach for algorithmic biospecimen selection & matching
» Overview of updated PD omics data collection

> Integrated meta-analysis of PD GWAS and transcriptomics data



Algorithmic biospecimen selection & matching

GOAL: Find a selection for a given number of IPD patients and controls, such that

* Genders are matched and balanced

* Age distributions are matched

* BMI distributions are matched

* Occurrence of hypertension / use of arterial medication is balanced
* Occurrence of other comorbidities is reduced and approx. balanced

* Further optional criteria, e.g. focus on de novo patients or early treatment period

BENEFITS: - Reduces influence of confounding factors on omics analyses

- Removes unwanted sources of variance
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Matched sample selection (LUuxPARK blood profiling study)

e Gender representation: PD (20 females, 20 males), controls (20 females, 20 males)

e Arterial medication: PD (7), controls (6 + 2 unknown)

* Medication for other symptoms: PD (6 unknown), controls (1 + 2 unknown)

* Maximum number of de novo patients included
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Current collection of human PD datasets

Data type

Conditions

Data source

Transcriptomics (Whole blood)*

Transcriptomics (Substantia
nigra)*

Metabolomics (Blood plasma)

Metabolomics (CSF)

Resting-state fMRI +
FDG/FDOPA PET subsets

Clinical Data

GWAST

Exomes

PD (298), control (331)

PD (92), control (88)

GC-MS: PD (112), control (65), LC-
MS: PD (89), control (90)

GC-MS: PD (44), control (43)

PD (149), control (36)

PD (565), control (590), other (96);
PD (159), control (110), other (3);
PD (454), control (215), SWEDD (81);

PD (28,818), control (1,039,955)

PD (391), SWEDD (60), control (178)

DeNoPa,
GENEPARK,
GEO

GEO

DeNoPa, PPMI,
Cologne/Marburg

DeNoPa, PPMI

PPMI,
Cologne/Marburg

LuxPARK,
DeNoPa,
PPMI

dbGAP

PPMI

*after filtering out samples failing in = 2 quality tests (ArrayQuality metrics software) Tafter quality filtering
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Collection of PD GWAS datasets for meta-analysis

GWAS data overview:

Study Conditions Platform

TREND PD (1, 298), control (883) NeuroX chip
lllumina

LANDSCAPE (Dutch cohort)

PPMI

Nalls et al., Nat. Genet., 2014
(pre-processed data from 15
independent GWAS datasets of
European descent)

PD (772), control (2024)

PD (383), SWEDD (58), control
(178)

PD (13,708), control (95,282)

Human660W-Quad
beadchip

NeuroX chip

Multiple lllumina
GWAS platforms
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Mitochondrial genes in the meta-analysis of GWAS data

Determine mitochondrial genes containing SNPs with putative PD associations
from the meta-analysis of GWAS datasets (p < 1E-05, MitoFDR < 0.3)

Gene Symbol Description MitoFDR
MCCC1*t methylcrotonoyl-CoA carboxylase 1 (alpha) 0
MALSU1 mitochondrial assembly of ribosomal large subunit 1 0
SLC25A20 Solute Carrier Family 25 Member 20 0
NDUFAF2 NADH dehydrogenase (ubiquinone) complex |, assembly factor 2 0.01
SPATA19 spermatogenesis associated 19 0.012
ABCB9t# ATP-binding cassette, sub-family B (MDR/TAP), member 0.036
DNAH17 dynein axonemal heavy chain 17 0.071
QARSH# Glutaminyl-TRNA Synthetase 0.077
NSFi# N-ethylmaleimide sensitive factor, vesicle fusing ATPase 0.101
PPT2# palmitoyl-protein thioesterase 2 0.119
NAGLUT N-acetyl-alpha-glucosaminidase 0.15
TUBG1# Tubulin Gamma 1 0.199
Cc2 Complement C2 0.227
FDFT11 farnesyl-diphosphate farnesyltransferase 1 0.232
VARST# valyl-tRNA synthetase 0.239
FKBPL FK506 binding protein like 0.267

previously shown to contain genome-wide significant SNPs, Nalls et al., 2014
Differentially expressed in transcriptomics meta-analysis: fwhole-blood, *brain
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