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Outline

� Approach for algorithmic biospecimen selection & matching 

� Overview of updated PD omics data collection

� Integrated meta-analysis of PD GWAS and transcriptomics data
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GOAL: Find a selection for a given number of IPD patients and controls,  such that

� Genders are matched and balanced

� Age distributions are matched

� BMI distributions are matched

� Occurrence of hypertension / use of arterial medication is balanced

� Occurrence of other comorbidities is reduced and approx. balanced

� Further optional criteria,  e.g. focus on de novo patients or early treatment period

Algorithmic biospecimen selection & matching

BENEFITS:    � Reduces influence of confounding factors on omics analyses

� Removes unwanted sources of variance
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Matched sample selection (LuxPARK blood profiling study)

���� Gender representation: PD (20 females,  20 males),  controls (20 females,  20 males)

���� Arterial medication: PD (7),  controls (6 + 2 unknown)

� Medication for other symptoms: PD (6 unknown), controls (1 + 2 unknown)

� Maximum number of de novo patients included

Age BMI
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Current collection of human PD datasets

DeNoPa, PPMIGC-MS: PD (44), control (43)Metabolomics (CSF)

DeNoPa, 

GENEPARK, 

GEO

PD (298), control (331)Transcriptomics (Whole blood)* 

Data type Conditions Data source

Transcriptomics (Substantia

nigra)* 
PD (92), control (88) GEO

Metabolomics (Blood plasma)
GC-MS: PD (112), control (65), LC-

MS: PD (89), control (90)

DeNoPa, PPMI,

Cologne/Marburg

Resting-state fMRI + 

FDG/FDOPA PET subsets
PD (149), control (36)

PPMI, 

Cologne/Marburg

Clinical Data
PD (565), control (590), other (96);

PD (159), control (110), other (3);

PD (454), control (215), SWEDD (81);

LuxPARK, 

DeNoPa,

PPMI

GWAS† PD (28,818), control (1,039,955) dbGAP

Exomes PD (391), SWEDD (60), control (178) PPMI

*after filtering out samples failing in ≥ 2 quality tests (ArrayQuality metrics software)  †after quality filtering
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GWAS data overview:

Collection of PD GWAS datasets for meta-analysis

Multiple Illumina 

GWAS platforms
PD (13,708),  control (95,282)

Nalls et al.,  Nat. Genet.,  2014

(pre-processed data from 15 

independent GWAS datasets of 

European descent)

Illumina 

Human660W-Quad 

beadchip

PD (772),  control (2024)LANDSCAPE (Dutch cohort)

NeuroX chip
PD (383),  SWEDD (58),  control

(178)
PPMI

NeuroX chipPD (1, 298),  control (883)TREND

PlatformConditionsStudy
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Mitochondrial genes in the meta-analysis of GWAS data

Determine mitochondrial genes containing SNPs with putative PD associations 

from the meta-analysis of GWAS datasets (p < 1E-05, MitoFDR < 0.3) 

0.239valyl-tRNA synthetaseVARS†‡

0.036ATP-binding cassette,  sub-family B (MDR/TAP),  member ABCB9†‡

0mitochondrial assembly of ribosomal large subunit 1MALSU1

0.15N-acetyl-alpha-glucosaminidaseNAGLU†

0.227Complement C2C2

0.267FK506 binding protein likeFKBPL

0.119palmitoyl-protein thioesterase 2PPT2‡

0.232

0.199

0.101

0.077

0.071

0.012

0.01

0

0

MitoFDR

Tubulin Gamma 1TUBG1‡

farnesyl-diphosphate farnesyltransferase 1FDFT1†

N-ethylmaleimide sensitive factor,  vesicle fusing ATPaseNSF†‡

Glutaminyl-TRNA SynthetaseQARS‡

dynein axonemal heavy chain 17DNAH17

spermatogenesis associated 19SPATA19

NADH dehydrogenase (ubiquinone) complex I,   assembly factor 2NDUFAF2

Solute Carrier Family 25 Member 20SLC25A20

methylcrotonoyl-CoA carboxylase 1 (alpha)MCCC1*†

DescriptionGene Symbol

*previously shown to contain genome-wide significant SNPs, Nalls et al.,  2014

Differentially expressed in transcriptomics meta-analysis: †whole-blood,  ‡brain
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