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ABSTRACT

Recommender systems, which play a critical role in e-business services, are closely
linked to our daily life. For example, companies such as Youtube and Amazon are
always trying to secure their profit by estimating personalized user preferences and
recommending the most relevant items (e.g., products, news, etc.) to each user
from a large number of candidates. State-of-the-art reccommender systems are of-
ten built on-top of collaborative filtering techniques, of which the accuracy perfor-
mance relies on precisely modeling user-item interactions by analyzing massive
user historical data, such as browsing history, purchasing records, locations and so
on. Generally, more data can lead to more accurate estimations and more commer-
cial strategies, as such, service providers have incentives to collect and use more
user data. On the one hand, recommender systems bring more income to service
providers and more convenience to users; on the other hand, the user data can be
abused, arising immediate privacy risks to the public. Therefore, how to preserve
privacy while enjoying recommendation services becomes an increasingly impor-
tant topic to both the research community and commercial practitioners.

The privacy concerns can be disparate when constructing recommender sys-
tems or providing recommendation services under different scenarios. One sce-
nario is that, a service provider wishes to protect its data privacy from the infer-

ence attack, a technique aims to infer more information (e.g., whether a record is
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in or not) about a database, by analyzing statistical outputs; the other scenario is
that, multiple users agree to jointly perform a recommendation task, but none of
them is willing to share their private data with any other users. Security primitives,
such as homomorphic encryption, secure multiparty computation, and differen-
tial privacy, are immediate candidates to address the privacy concerns. A typical
approach to build efficient and accurate privacy-preserving solutions is to improve
the security primitives, and then apply them to existing recommendation algo-
rithms. However, this approach often yields a solution far from the satisfactory-
of-practice, as most users have a low tolerance to the latency-increase or accuracy-
drop, regarding recommendation services.

The PhD program explores machine learning aided approaches to build efhi-
cient privacy-preserving solutions for reccommender systems. The results of each
proposed solution demonstrate that machine learning can be a strong assistant for

privacy-preserving, rather than only a troublemaker.
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Introduction

Recommender system is one of the most frequently used machine learning appli-
cations, which is closely linked to our daily life. For example, a user can always
receive personalized item recommendations (e.g., products, videos, etc.) when
visiting websites like Amazon and Youtube. This is because their reccommender
systems have estimated the user preferences. Collaborative filtering, such as matrix
factorization [64] and neighborhood-based method [25], is the dominant tech-
nique to construct personalized recommender systems [25, 114]). Massive user
historical data, such as browsing records and locations, is indispensable to accu-
rately model user-item interactions, e.g., user-product interactions, user-location
interactions, etc. Generally, the data from a large number of users allows recom-
mender systems to precisely extract the commonality of all the users and items,
thus to estimate user preferences on non-observed items; more data of every sin-

gle user enables the system more precisely capturing each user’s difference from



others, thus to provide more accurate personalized recommendation services. In
addition to this, the user preference is often influenced by social information such
as advertisements and friends’ opinion, and also can be shifted with time [64, 114].
In order to maintain the recommendation accuracy, the recommender systems
have to keep collecting new user activities. All of the facts make the systems ag-
gressive on all kinds of user data.

With recommender systems, users can get preferred products from a vast num-
ber of candidates efficiently. At the same time, the user data is also exposed to the
service provider or a third party. This may result in immediate privacy risks to the
users, especially, when the data contains sensitive information such as locations
and purchase records. How to protect the data privacy while still enjoying accu-
rate recommendation services, it has been an important topic to both the research

community and practitioners.

1.1 PrRivAcY ISSUES IN RECOMMENDER SYSTEMS

Let’s go back to 1987, the year of Robert Bork’s confirmation hearings for the U.S.
Supreme Court. A video store leaked Bork’s movie rental records to a reporter
for the Washington City Paper. Then the paper published the records likely in an
attempt to embarrass Bork [127]. This event directly led to the enactment of the
1988 Video Privacy Protection Act, which was created to prevent what it refers to
as “wrongful disclosure of video tape rental or sale records (or similar audio visual
materials, to cover items such as video games and the future DVD format)” [35].
Removing identifying information, such as social security number, name, and
address, does not guarantee privacy, since exploiting the remaining information,
e.g, zip code, gender, etc., can still identify a person uniquely [115]. Anonymity
techniques, such as k-anonymization [7, 115] and t-closeness [70] have been pro-
posed to prevent de-anonymization from quasi-identifiers. However, these tech-
niques suffer from inference attacks when auxiliary information is available. In fact,
releasing data with these techniques is susceptible to attacks which carry some aux-

iliary information. Machanavajjhala et al. [ 74] showed that leveraging the associa-



tion between one or more quasi-identifier attributes with a sensitive attribute can
reduce the set of possible values for this sensitive attribute. As an instance, they use
the knowledge of heart attacks occurred at a reduced rate in Japanese patients to
narrow the range of values for a sensitive attribute of a patient’s disease. Narayanan
etal. [82] presented a class of robust statistical de-anonymization attacks against
high-dimensional micro-data, such as individual preferences, recommendations,
transaction records and so on, under an assumption that attackers have some back-
ground knowledge.

Leading e-commercial companies sell products covering not only movies and
books, but also various categories of products such as adult toys, health devices,
costume, daily supplies, and also on. In order to construct more accurate and per-
sonalized recommender systems, e-commercial companies have to collect various
kinds of user data, such as demographic information (e.g. age, gender, occupa-
tion, etc.) and user historical information (e.g., purchasing, browsing, location,
etc.) [3]. With these data, they can portray users precisely, inferring their personal
information such as gender, age, consumption habits, health status. For example,
the retail company Target showed that they could accurately predict the pregnancy
of their female customers, recommending personalized coupons to them [31].
Apparently, these kind of techniques can be easily extended to infer the health sta-
tus or financial status of a user. On the one hand, users may be unwilling to dis-
close such kind of information; on the other hand, user data may be abused such
as selling the data to a third party which maylead aloss to users. Therefore, recom-
mender systems can bring immediate risks to the users, due to a privacy breach.

Providing recommendation services without considering privacy-preserving, it
as well brings risks to these e-commercial companies. Since user data can be mon-
etized, and competitors can also analyze user preferences and behaviors to adjust
their business tactics. Deploying a physical security layer, such as firewall, can pre-
vent direct data leakage. However, attackers can still infer user privacy via recom-
mendation results released by a service provider [82]. Users may also give up this

service provider when they realize that their privacy is in risks.



1.2 RELATED WORK AND CHALLENGES

Privacy-preserving machine learning (including recommender systems) can be
generally described as a problem that data owners wish to obtain machine learn-
ing services without directly or indirectly revealing their private data. With this
fact, this dissertation classifies the privacy-preserving solutions for recommender

systems into the following two categories:

« Centralized case. In this case, a trusted server, which can fully access the
user data, wishes to provide recommendations to users in its database, while
protecting user (data) privacy from the inference attack. The inference at-
tack refers to an attack technique which illegitimately gains knowledge about

arecord or database by analyzing statistical outputs.

« Distributed case. In this case, multiple data owners collaboratively perform
arecommendation task, but none of them is willing to disclose their private
data. Normally, the privacy-preserving solutions are constructed without

assuming a (fully) trusted server.

1.2.1 CENTRALIZED CASE

[Case Description] A trusted server provides recommendation services to users whose
data that it can fully access. The users obtain the recommendation results, and their
capability of inferring others’ data privacy is strictly quantified (i.e., the privacy loss of
a user is quantifiable and controllable).

Accurately answering queries and privacy-protection are always two compet-
ing goals at stake, there is no free lunch in terms of accuracy and privacy [26, 59].
Shokri et al. [110] have demonstrated that more information, such as whether a
record is in in a database or not, can be inferred by exploiting prediction or classi-
fication outputs (i.e., via inference attack). Differential privacy [33] is the preva-
lent approach to address such kind of risks. It strictly quantifies and controls the
privacy loss when responding to a query with an asymptotically true answer. In-

tuitively, differential privacy provides a participant a possibility to deny that it par-



ticipated in a computation, by introducing uncertainties. According to the places
where existing differentially private solutions introduced the uncertainties, we can
classify these solutions into five categories: input perturbation, output perturba-

tion, objective function perturbation, gradient perturbation and sampling.

« Input perturbation. The server first adds calibrated noise into training data
directly; and then it can perform any machine learning tasks without com-
promising the privacy guaranteed by the noise, according to the post-processing
theorem [76]. Arnaud et al. [ 9] stated that this simple method can preserve

the accuracy of matrix factorization with a modest privacy budget.

« Output perturbation. The server adds noise into the outputs of a machine
learning model or components decomposed from a model. McSherry et
al. [76] applied differential privacy to recommendation algorithms which
don’trequire a dynamic training process, such as neighborhood-based meth-
ods and global effects. They first factor the algorithms into different compo-
nents, of which the sensitivity [32] can be easily estimated; then they add
noise to the output of each component, based on their sensitivity. Chaud-
huri et al. [21] and Arnaud et al. [9] examined the privacy-accuracy trade-
off of output perturbation regarding logistic regression and matrix factor-
ization, respectively. The two algorithms need a dynamic training process

such as stochastic gradient descent.

« Objective function perturbation. The server bounds the privacy loss by
customizing a noise term into the objective function of a machine learning
model. Chaudhurietal. [21] and Zhangetal. [ 131] analyzed how to deploy
this approach to logistic regression. Arnaud et al. [52] and Phan et al. [95]
extended their solutions to build differentially private matrix factorization

and deep autor-encoder [85 ], respectively.

« Gradient perturbation. The server often guarantees the privacy by adding
noise into the error information used to calculate gradients. Songetal.[112]

presented a general approach to differential-privately update gradients in



each training iteration. Arnaud et al. [9] and Martin et al. [2] analyzed how
to use the gradient perturbation method to build differential privacy into
matrix factorization and deep learning models, respectively. In their solu-
tions, some common tricks, such as clipping error information and reducing
the number of training iterations, are adopted to achieve a better trade-off

between privacy and accuracy.

« Sampling. There are two sub-branches, one is randomly discarding or par-
titioning data points used to learn responses, thus to reduce privacy leak-
age [20, 39, 87]. With this kind of methods, Zhu et al [ 134] suggested ran-
domly selecting neighbors to preserve neighborhood information; Martin
et al. [2] naturally reduced the privacy leakage by a mini-batch stochastic
optimization method [69]. The other is sampling from scaled posterior dis-
tribution [ 124]. Liuetal. [73 ] applied this method to building differentially

private matrix factorization.

1.2.1.1 CHALLENGES

Various methods for applying differential privacy into machine learning tasks have
been practiced in the past years. However, they are still far from reaching the point
that both the privacy and accuracy are sufficiently preserved. The input perturba-
tion method was stated that it was superior than the gradient perturbation and
output perturbation approaches, when building differential privacy into matrix
factorization [9]. But it requires a further evaluation when applying to different
machine learning tasks or training matrix factorization on a larger database, since
the method presented in [9] did not take into consideration (at least) the fact that
gradient perturbation methods allow incorporating sampling methods to amplify
privacy. Moreover, poisoned training data may also bias the ground truth, squeez-
ing the space of accuracy improvements. The output perturbation method is of-
ten applied to building differential privacy into models which do not need a iter-
ative training process, such as neighborhood-based methods using Cosine sim-

ilarity. However, using this method to differential-privately learn models, such



as matrix factorization and deep learning, it often leads to a significant accuracy
loss since the sensitivity bound could be multiplicative-ly amplified by the itera-
tive training process. The gradient perturbation method is a commonly adopted
approach for models learned iteratively. According to the composition theory of
differential privacy [33], sequentially applying differential privacy to a database
leads to a linear increase of privacy loss. Usually, these iterative training meth-
ods require dozens to thousands of iterations for convergences (i.e., to get opti-
mal model parameters). The objective function perturbation method can learn
a model differential-privately, where the privacy loss is independent of the num-
ber of training iterations. However, when a model contains multiple parameter
spaces, it is challenging to analyze the privacy guarantee as the parameter spaces
can impact mutually. As to the sampling method, a recent observation shows that
releasing a sample from the scaled posterior distribution of a Bayesian model can
be sufficiently differential privacy [124]. It allows differential-privately sampling a
model with multiple parameter spaces, of which the privacy guarantee is also inde-
pendent of the number of training iterations. This approach has two assumptions,
the first is that there must be a Bayesian model and the log-likelihood of which
is bounded; the second is that the difference (§) between the distribution where
the sample is from and the true distribution is asymptotically close to zero (i.e.,
§ — 0). The difference § can compromise the privacy at a speed of O(¢®), which
is non-trivial. Though Teh et al. [121] proved that the convergence (i.e., § — o)
can be guaranteed in a large (but finite) number of sampling iterations, there are
two issues cannot be simply ignored, one is that any flaws of engineering imple-
mentation would lead to an un-controllable privacy loss; the other is that Markov

Chain Monte Carlo (MCMC) sampling process is extremely inefficient.

1.2.2 DiISTRIBUTED CASE

[Case Description] There are multiple users (data owners), each of them has a piece
of data D,. They jointly perform a recommendation task on the data set {D;}. Ide-

ally, each user learns only the output (i.e, recommendation results or a reccommendation



model) without leaking any of their private data, as if there is a trusted server. In the
real word, we often assume a semi-honest threat model, where the users always follow
the secure protocol that they agreed on but curious with others’ data. The users are also
allowed to obtain what can be inferred from the outputs.

Cryptographic primitives, such as homomorphic encryption [40], secure mul-
tiparty computation [71] and secret sharing [94], are commonly adopted tools to
prevent private data from being accessed by attackers. Specific privacy-preserving
scenarios/solutions often depend on the data and computational resource distri-
bution. Based on this fact, we can divide existing solutions into two categories:
Each partyjointly and equally participates into a machine learning task, when they
have a similar amount of data and sufficient computational resource; data owners
outsource computations to a third party, such as a cloud service provider which has
a powerful computation infrastructure and broad machine learning knowledge.

For the first category, a machine learning task is often decomposed into a se-
quence of vector-additive operations, turning the privacy-preserving demand to
a problem of secure private aggregations. Canny et al. [17, 18] focused on pri-
vately performing SVD (Singular-value decomposition), where they compute ag-
gregations with resort to homomorphic encryption [40] and secret sharing [94]
techniques. In their solution, they don’t require a central server but assume that
at least half of the computation participants are not corrupted. Duan et al. [30]
assumed that there are a few of servers, where at least one server is uncorrupted.
The data owners (where at least half of them are uncorrupted) secretly share their
data on some of these servers (at least two), where each server learns only random
numbers if without having all the other shares. One of the servers is selected to
perform aggregations (the results of which are often assumed to be public) and
returns the global computation results. Bonawitz et al. [12] proposed a solution
in which each user secretly shares their data to all the other users, a semi-trusted
global server is put to aggregate the users’ intermediate data. A primary contribu-
tion of their work s to efficiently and securely address the problem of user dropout.
Shokri et al. [ 108] proposed a solution for multiple data owners to jointly train a

deep learning model, where they assumed a semi-trusted server allowed to access



intermediate values (gradients). Though they stressed that the private data is not
directly exposed to any others, the gradients carry the error information (i.e., the
difference between the predictions and the ground-truth) computed from the data
of each party, providing rich information to a potential attack. Note that in their
assumption, the semi-trusted server learns not only the aggregations, but also the
exact inputs of each party.

For the second category, users send their encrypted data to the cloud, where
the privacy-preserving task becomes a problem of how to efficiently perform ma-
chine learning tasks on encrypted data. Nikolaenko et al. [86] presented a privacy-
preserving solution for matrix factorization with an assumption of two non-colluding
servers, where one server serves as the cryptography service provider (CSP), the
other (RecSys) evaluates recommendation algorithms (e.g., matrix factorization).
Each user submits encrypted item-rating pairs to the RecSys. The RecSys masks
these pairs and forwards them to the CSP. The CSP decrypts and embeds them in
agarbled circuit which is then sent to the RecSys for evaluation. The garbled values
of the masks are obtained by the RecSys through oblivious transfer [ 100]. Nayak et
al. [83] aim to build a secure computation framework (based on garbled circuits)
that can easily use parallelization programming paradigms, where they assume two
non-colluding cloud providers and both of them have parallel computing architec-
tures. Mohassel et al. [80] further improved the efficiency performance of the se-
cure framework of two non-colluding servers, by using secret sharing. Ohrimenko
etal. [89], Hunt et al. [ 54] and Hynes et al. [56] built general privacy-preserving
solutions based on trusted processors (e.g., Intel SGX-processors [75]), where
they assume attackers cannot manipulate the content in the trusted processors.

Privacy-preserving Machine Learning as a Service (MLaa$S) emerges as MLaa$
has recently become a popular commercial paradigm. Privacy-preserving MLaa$S
is in fact a special case of the second category. It is often a two-party computation
scenario where one party (client) holds data and wishes to get machine learning
services, while the other party (cloud) provides the required service. Usually, they
assume that the cloud has already trained a machine learning model, and obliv-

iously execute the machine learning task by taking as input the the client’s data.



Raphael et al. [14] designed a generic MLaaS$ privacy-preserving framework for a
family of classifiers such as Naive Bayes and decision trees, based on a set of ho-
momorphic encryption schemes. The primary contribution is a bunch of inter-
active protocols for securely computing non-linearities (e.g., comparison) which
are not compatible with homomorphic encryption schemes. Gilad-Bachrach et
al. [43] proposed a privacy-preserving solution for evaluating neural networks on
encrypted data, based on a leveled homomorphic encryption scheme [15]. To
be compatible with the homomorphic encryption scheme, they substitute state-
of-the-art non-linear activation function (e.g., ReLu(x) = max(o,x)) with poly-
nomials. Liu et al. [72] combined homomorphic encryption and garbled circuits
to evaluate neural networks, that non-linearities can be correctly computed. Re-
cently, Hunt et al. [55] introduced using trusted processors to construct privacy-
preserving solutions for MLaa$, which also allows securely performing a model

training phase on the cloud.

1.2.2.1 CHALLENGES

State-of-the-art machine learning algorithms often rely on complex model struc-
tures (e.g., a multiple-layer structure with non-linear transformations) and mas-
sive training data (leading to a large volume of computations). Unfortunately,
mapping messages from a plain-text space into a cipher space often results in a
significant increase of the spatial and computational complexity and a confine-
ment on the types and number of algebraic operations. For example, homomor-
phic encryption schemes support only additions and multiplications. In partic-
ular, partial homomorphic encryption schemes only allow either addition oper-
ations (e.g., Paillier cryptosystem [91]) or multiplication operations (e.g., ElGa-
mal encryption scheme [34]), while cannot satisfy both. Somewhat (fully) ho-
momorphic encryption schemes, such as[ 15, 37, 41], allow performing a limited
number of addition and multiplication operations but pay the cost of efficiency.
Secure multiparty computation [71] and garble circuits [ 130] support various al-

gebraic operation in a cipher space. However, this kind of methods require com-
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putation participants to be online constantly, introducing an additional communi-
cation cost. Privacy-preserving solutions based on these cryptographic primitives
often struggle in the trade-off of utility and privacy, where utility can be accuracy,
efficiency and user experience. Using trusted hardware, such as Intel SGX [75],
to build efficient privacy-preserving solutions recently has attracted a lot of atten-
tions 55, 89]. This approach also suffers from a number of security limitations,

such as SGX page faults, cache timing, processor monitoring and so on [54].

1.3 OUR CONTRIBUTIONS

The research work during the course of PhD program falls into both of the two

categories, centralized case and distributed case, which are summarized as follows,

1. (Centralized case.) We apply the differential privacy concept to neighborhood-
based recommendation methods (NBMs) under a probabilistic framework.
We first present a solution, by directly calibrating Laplace noise into the
training process, to differential-privately find the maximum a posteriori pa-
rameters similarity. Then we connect differential privacy to NBMs by ex-
ploiting a recent observation that sampling from the scaled posterior distri-
bution of a Bayesian model results in provably differentially private systems.
Our experiments show that both solutions allow promising accuracy with a
modest privacy budget, and the second solution yields better accuracy if the
sampling asymptotically converges. We also compare our solutions to the
recent differentially private matrix factorization (MF) recommender sys-
tems, and show that our solutions achieve better accuracy when the privacy
budget is reasonably small. This is an interesting result because MF systems

often offer better accuracy when differential privacy is not applied.

2. (Distributed case — A collaborative task.) Recommender systems provide rec-
ommendations by exploiting the association between individual and popu-

larity. Therefore, it requires massive training data, which in turn demands a
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large number of computations. This fact always leads to a efficiency bottle-
neck when using cryptographic primitives to overcome security concerns.
We use social-context to reduce computational cost while preserving the
accuracy performance. Consider the following illustrative example, a user
would like to know more about a product (e.g., a movie or a mobile phone),
she is more likely to ask opinions from her friends who consumed the prod-
uct. Therefore, a small number of influential friends may play a critical role
in a person’s decision. On the one hand, exploiting friends information
we can significantly reduce the computational complexity. On the other
hand, the privacy protection among friend is even more serious, as friends
know more background information and have more impact to each other.
We first demonstrate that friends have more common interests than ordi-
nary. Then we show that using the data from only the friends and a few of
strangers can result in promising accuracy performance. Lastly, based on
our observations, we build secure recommendation protocols with resort
to homomorphic encryption schemes. Thanks to the significant reduction
of computational complexity, our solution allows efficiently computing rec-

ommendations on encrypted data.

. (Distributed case — Machine Learning as a Service.)State-of-the-art recom-
mender systems often rely on non-linear operations, or require training the
recommendation model with the Client’s data. While improving crypto-
graphic tools (e.g., HE or SMC) is one typical way to improve the efficiency
of privacy-preserving solutions, unfortunately, the improvement is usually
far from satisfactory to make these solutions practical enough. We tackle
this problem from the direction of designing crypto-friendly machine learn-
ing algorithms, so that we can achieve efficient solutions by directly using
existing cryptographic tools. In particular, we propose CryptoRec, a new
non-interactive secure 2PC protocol for Raa$, the key technical innovation
of which is an HE-friendly recommender system. This recommendation

model possesses two important properties: (1) It uses only addition and
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multiplication operations, so that it is straightforwardly compatible with
HE schemes. With this property, CryptoRec is able to complete recom-
mendation computations without requiring the Server and the Client to
be online continuously. Simply put, the Client sends her encrypted rat-
ing vector to the Server, then the Server computes recommendations with
the Client’s input and returns the results in an encrypted form. In addi-
tion to this, there is no other interaction between the two parties; (2) It
can automatically extract personalized user representations by aggregating
pre-learned item features, that we say the model has an item-only latent fea-
ture space. This property allows the Server with a pre-trained model to pro-
vide recommendation services without a tedious re-training process, which
significantly improves the efficiency performance. Note that the Client’s
data is not in the Server’s database which is used for model training. We
demonstrate the efficiency and accuracy of CryptoRec on three real-world
datasets. CryptoRec allows a server with thousands of items to privately an-
swer a prediction query within a few seconds on a single PC, while its pre-
diction accuracy still competitive with state-of-the-art recommender sys-

tems computing over clear data.

The research work we have performed during the course of the PhD program

has lead to the following publications:

« Jun Wang, Afonso Arriaga, Qiang Tang, and Peter YA Ryan. "CryptoRec:
Privacy-preserving Recommendations as a Service.” arXiv preprint arXiv:1802.02432

(2018)

« Jun Wang, and Qiang Tang. “Differentially Private Neighborhood-based
Recommender Systems.” IFIP International Conference on ICT Systems

Security and Privacy Protection. Springer, Cham, 2017.

« Jun Wang, and Qiang Tang. "A probabilistic view of neighborhood-based
recommendation methods.” Data Mining Workshops (ICDMW), 2016 IEEE

16th International Conference on. IEEE, 2016.

13



« Qiang Tang, and Jun Wang. “Privacy-preserving friendship-based recom-
mender systems.” IEEE Transactions on Dependable and Secure Comput-

ing (2016).

« Qiang Tang, and Jun Wang. "Privacy-preserving context-aware recommender
systems: Analysis and new solutions.” European Symposium on Research

in Computer Security. Springer, Cham, 2015.

1.4 ORGANIZATION

The structure of this dissertation is organized as follows. We lay down state-of-
the-art reccommendation methods (e.g., neighborhood-based methods and ma-
trix factorization, etc.) and security primitives (e.g., homomorphic encryption
and differential privacy), in Chapter 2. Next, we design and construct privacy-
preserving solutions for reccommender systems, under different scenarios (i.e., se-
curity models). In Chapter 3, we introduce a new solution to build differential pri-
vacy into neighborhood-based recommender systems. In Chapter 4, we exploit so-
cial context and a homomorphic encryption scheme to build an efficient privacy-
preserving solution for accurately computing recommendations. In Chapter s, we
present a privacy-preserving framework for recommendation as a service, in which
the key technical innovation is our proposed crypto-friendly recommender sys-
tem. In chapter 6, we summarize this dissertation and introduce directions for the
future work. For the sake of readability, each chapter in this dissertation is written
to be as independent as possible, so that readers can dive into the chapters which

interest them most without having to consult other chapters.
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Background

In this chapter, we first introduce notations and frequently used abbreviations.
Then we describe state-of-the-art recommendation algorithms. Lastly, we present

the security primitives used to build privacy-preserving solutions.

2.1  NOTATIONS AND ABBREVIATIONS

The notations and commonly used variables of this dissertation are summarized
in Table 2.0.1. Scalars are denoted in lower-case characters, vectors are denoted in
lower-case bold characters, matrices are denoted in Upper-case bold characters.
We write a <— b to denote the algorithmic action of assigning the value of b to the
variable a. If there is no specific explanation, we will follow this rule. Frequently

used terms and their corresponding abbreviations are summarized in Table 2.0.2.
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n / m number of users / items

R € N | rating matrix

i rating given by user u for item i
Tui estimation of r;

r, € N | rating vector of user u : {r,}7,

r; € N | rating vector of item i : {r,;}"_,
7, /7 mean rating of user u / item i
ui ¢, = 1if r,; exists, otherwise ¢ . = o.
S general form of model parameters
[] encryption of x

[x] {lx], ], [0, }

pk/sk public key / secret key

S addition between two ciphertexts
or a plaintext and a ciphertex
® multiplication between
a plaintext and a ciphertex
® multiplication between two ciphertexts

Table 2.0.1: Variables and notations

2.2 STATE-OF-THE-ART RECOMMENDER SYSTEMS

Recommender systems have experienced a rapid development in the past decade.
State-of-the-art recommender systems are often built upon collaborative filtering
techniques which directly model user-item interactions. A number of reviews have
comprehensively investigated this area [3, 25, 114, 132]. In order to introduce
recommender systems clearly and briefly, as show in Figure 2.2.1, we classify ex-
isting recommendation algorithms into two branches, conventional approach and
deep approach, according to the evolution of algorithms. In the conventional ap-
proach, neighborhood-based methods (NBMs) and matrix factorizaiton (MF) are
two representative algorithms; With the success of deep learning in multiple ar-
eas such as computation version [ 116, 117] and speech recognition [51], applying
deep learning to build recommender systems have been emerging, refer to as deep
approach. Generally, there are two directions in the deep approach, one is using a

single neural network such as autoencoder [ 106], convolutinal neural network to
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CF Collaborative Filtering

NBM Neighborhood-based Method

MF Matrix Factorization

SGD Stochastic Gradient Descent

MCMC | Monto Carlo Markov Chain

SGLD | Stochastic Gradient Langevin Dynamics
GC Garbled Circuits

HE Homomorphic Encryption

Table 2.0.2: Abbreviations

build recommender systems; the other is a hybrid method which combines either
different deep models or deep models and conventional recommendation mod-
els. In this section, we introduce typical recommendation models under the con-
ventional approach and deep approach. It is worthy stressing that both the two
approaches are important to recommender systems. We refer interested readers

to investigations [25, 114, 132] for more details.

Recommender System / Collaborative Filtering
[

l l

Conventional Approach Deep Approach
[ [

l l l l

Neighborhood | | Matrix factorization | | Neural network | | Hybrid methods
based based based

Figure 2.2.1: Recommender System

2.2.1 NEIGHBORHOOD-BASED METHODS

Neighborhood-based methods (NBM:s) estimate a user’s rating on a targeted item
by taking the weighted average of a certain number of ratings of the user or of the

item. The similarity between items or users often serve as the weights. Formally,
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we can describe an item-based NBM as follows,

~

. S si(ryi — 1)
Po= T+ Z;ex\/u(l) UANRY j

Zjef\fu(i) sil

: (2.1)

where 7; is the mean rating of item i, s; € $"*" represents the similarity between
itemiandj,and \V, (i) denotes a set of items rated by user u that are the most similar
to item i according to the similarity matrix § € R™ ™. Itis clear that the similarity
plays a critical role in the recommendation computation. Pearson correlation is

one of the most widely used similarity metrics [114]:

o Zueu,j(rui —7)(ry — 7))
j — —
\/ZuEuﬁ (rui - ri)z\/zuéu,j (ruj - 7'))2

) (2'2')

where Uf; denotes the set of users that rated both items i and ;.

Another approach is using regression method to learn similarity from data di-
rectly, which often leads to more accurate prediction results but pays the cost of
computational complexity. In this approach, we first define an objective function
as follows, o

L= (=) +2-[ISIP (23)
where 7, is defined in Equation (2.1). The optimal similarity can be learned by
minimizing the objective function.

User-based NBM (U-NBM) is the symmetric counterpart of -NBM. Normally,
I-NBM is more accurate and robust than U-NBM [114].

2.2.2 MATRIX FACTORIZATION

Let R be a sparse rating matrix formed by n users and m items, in which each
user rated only a small number of the m items, and the missing values are marked

with zero. Matrix factorization (MF) decomposes the rating matrix R into two
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low-rank and dense feature matrices [64]:

R~ PQ’, (2.4)

where P € R"*? is the user feature space, Q € R™*? is the item feature space
and d € NT is the dimension of user and item features. To predict how user u
would rate item i, we compute 7,; = p,q., where p.*¢ C P and ¢"*? C Qdenote
the learned features vectors of user u and item i, respectively. A standard way of

optimizing P and Q is to minimize a regularized squared objective function

P.Q ) (p,al —ra)”+ MRl + [lall): (2.5)

(u,i)ER

by using the stochastic gradient descent (SGD) optimization method [64], but
only based on observed ratings (rating matrix R is sparse). The constant 1 is a

regularization factor.

2.2.3 NEURAL NETWORK BASED RECOMMENDER SYSTEMS

In addition to the success of neural networks in visual recognition and speech
synthesis tasks is widely diffused, many works also focus on constructing neural
recommender systems. (We refer to the reader to [132] for an overview.) Au-
toRec [ 106] is a notable example, built on top of Autoencoders [85]. Item-based

AutoRec (I-AutoRec) reconstructs the inputs r; by computing

£ =f(W-g(Vr; + b(‘)) + b(z)), (2.6)

1

1+-e
ReLu function (max(o, x)). Non-linear activation functions are crucial to the suc-

where g(-) and f(-) are activation functions, e.g. the Sigmoid function (—=) or

cess of neural networks. Model parameters are defined as follows: ® = {W,V,b® b®},

where W € R and V € R¥*" are for ‘transformations, and b") € R%** and

b® € R"™" are for “bias” terms. @ is learned by using the SGD to minimize the
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regularized square objective function

W,V b by ([ — xf[* + A([WIP + |IVI[?). (2.7)
i€R
where the gradient of each model parameter is computed by only observed rat-
ings [106]. Equation (2.7) defines I-AutoRec. The user-based AutoRec (U-AutoRec)
is defined symmetrically in the obvious way. Experimental results show that I-
AutoRec outperforms U-AutoRec in terms of accruracy [106].

Back-propagation [65] is a standard method used in neural networks to calcu-
late a gradient that is needed in the calculation of the values of parameters in the
network. Simply put, we first compute the predictions given the input data (i.e.,
a forward pass); and then we calculate the total error according to the objective
function. Lastly, we compute the gradient of each trainable parameter using the

error back-propagated through the network layers (i.e., a backward pass).

2.2.4 TRAINING

In this section, we first introduce a general form of machine learning training pro-

cess, then we present a specific training case that training matrix factorization using
SGD.

2.2.4.1 A GENERAL FOrRM

A machine learning training process often refers to that, given an objective function

(e.g., Equation (2.3) and (2.5)) with regard to a specific machine learning model,

using an iterative method to optimize the model parameters (a.k.a, weights) by
minimizing the objective function, where the model parameters are often randomly
initialized.

In machine learning tasks, the problem of minimizing an objective function of-
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ten has the form of a sum:
1 n
g Q)=- (C/’i o .8
© =235 (:9)

The parameter © is optimized by minimizing £(©). Each summand function
&:(0) is typically associated with the i-th example (or a batch of examples) in the
training set. In this case, £;(©) is the value of the objective function at i-th example,
and £(O) is the empirical risk.

A standard approach of minimizing the objective function is to iteratively up-
date the model parameter © in the opposite direction of their corresponding gra-

dients,

O+ 00—y i AE(©) (2.9)

n

where 7 is the learning rate which decides the speed of updates, AE;(©) =
685_599) is gradient calculated from the i-th examples (or a batch of examples). As the
training process sweeps through the whole training set, it performs the above up-
date for each training example. Algorithm 1 outlines the training process. Based on
this general form, stochastic gradient descent (SGD) and its variants, such as mo-
mentum SGD [61] and Adam [61], are the most commonly used machine learn-

ing training methods.
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Algorithm 1 The outline of a typical training process

Input: training data D, initial parameters ©', learning rate 7
Output: optimized @

1: procedure Train(D, ©, 1)

2: forj < {1,2,--- , T} do > T # of training iterations
3: Randomly shuftle examples in the training set D.

4 fori < {1,2,--- ,n} do

5: O« @ — A& (O)

6: return ©7

2.2.4.2 A SPECIFIC TRAINING CASE

In this section, we take matrix factorization as an intuitive example to show how
to learn optimal user and item features via SGD.

Recalling the definition of matrix factorization in section 2.2.2, a sparse rating
matrix R is decomposed into two dense low-rank metrics, the user features P and
item features Q. The optimal features can be learned via SGD by minimizing the
regularized squared objective function (also described in Equation (2.5)) as fol-

lows,

P.Q Y (pa —ra) +2a(lp,/+llall), (2.10)

(u,i)ER

We first compute gradient with regarding to each model parameters as follows,

Aq; = e.p, — Aq;
Ap, = e,q, — Ap,

(2.11)

where A is the regularization parameter.

The update rule of parameters is to move along the opposite direction of gradi-
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Train set

Predict

Data set

Figure 2.2.2: A typical cross validation process

ents. Therefore, we have

q; < q, — nAq;
(2.12)
P, < P, — 1Ap,

The training process keeps updating the model parameters (P, Q) until the model
converges (see Algorithm 1). The convergence is often evaluated by cross valida-

tion, which will be introduced in section 2.2.4.3.

2.2.4.3 CROSS VALIDATION

In a prediction task, a machine learning model is usually trained on a dataset of
known data (ie., training dataset), and tested by a dataset of unknown data (i.e.,
test dataset). Cross validation is one of the most widely adopted methods to assess
how the results of a statistical analysis generated from the training set will general-
ize to the test dataset, as shown in Figure 2.2.2.

Among various cross validation methods, K-fold cross validation is a simple and
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widely used approach, summarized as follows,

1. Randomly dividing the original dataset into K equal-sized subsets. One of
the K subset is selected as the test set and the other K-1 subsets serve as the

training set.

2. Repeating the validation process K times, with each of the K subset used

exactly once as the test data.

3. Computing and reporting the average error (regarding a specific metric)

across all K trials.

The advantage of this method is that all observations are used for both training

and validation, and each observation is used for validation exactly once.

2.2.§ METRICS

Generally, we can classify various recommendation tasks into two categories, rat-
ing prediction and top-n recommendation. The former estimates a user’s exact
preference on an item. The latter predicts top-n items that a user likes the most.
Using off-line testing to measure the recommendation quality (i.e., accuracy) is
crucial for successfully deploying recommender systems.

For rating prediction tasks, the root-mean-square-error (RMSE) and mean-

absolute-error (MAE) are widely adopted as the accuracy performance metrics.

RMSE.
i ?ui — Ty 2
RMSE = \/Z(“”)GTZ()‘ ) (2.13)

Z(u,i)ED i — 1
D]

MAE = (2.14)

where D is the testing set, |D| is the number of ratings in the testing set. The
lower the RMSE (MAE) value, the higher the accuracy performance is.
For top-nrecommendation, precision, recall and normalized-discounted-cumulative-

gain (nDCG) are widely employed to evaluate the accuracy performance.
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precision@k.

# of recommended items Qk that are relevant

# of recommended items Qk (2:15)

precision =

The precision metric indicates the fraction of relevant items among the recom-
mended items.
recall@k.

# of recommended items Qk that are relevant

(2.16)

recall =
# of relevant items

The recall metric is the fraction of relevant items that have been recommended
over the total amount of relevant items.

Beside the accuracy related metrics, there are also some other important criteria
such as diversity and novelty. For more detail, we refer readers to a more compre-

hensive investigation [47].

2.3 HoMOMORPHIC ENCRYPTION

Homomorphic encryption (HE) is a form of encryption that allows computa-
tions to be carried over ciphertexts. The result, after decryption, is the same as
if the operations had been performed on the plaintexts [42]. As an illustrative
example, consider two plaintexts x, and x, and their corresponding ciphertexts
[.] < Enc(x,, pk) and [x,] <= Enc(x,, pk). An encryption scheme is additively
homomorphic if it satisfies x, + x, = Dec([x,] & [«,], sk) or multiplicatively ho-
momorphic if we have x, X x, = Dec([[x,] ® [«,], sk), where @ and ® represent
the homomorphic addition and homomorphic multiplication operations, respec-
tively.

Some HE schemes are only either additively homomorphic or multiplicatively
homomorphic, suchas [91]. The schemes that fall into this category are know to be
partially homomorphic (PHE). Schemes that support both additions and multipli-
cations, but only a limited number of times, are known as somewhat homomorphic

(SWHE), as opposed to those that allow an unbounded number of homomorphic
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operations, which are called fully homomorphic encryption (FHE) schemes [42].
The efficiency of the schemes in each class is usually related to the expressiveness
of the supported operations, meaning that PHE schemes are more efficient than
SWHE schemes, which in turn are more efficient that FHE schemes. For PHE,
Paillier cryptosystem [91] is an often adopted scheme; For SWHE, leveled ho-
momorphic encryptions are popular approaches [37, 48]. FHE often leads to a
efficiency bottleneck, so that it is not often used in privacy-preserving machine
learning tasks.

In addition to the additively or multiplicatively homomorphic properties of ci-
phertexts, HE schemes also allow additions and multiplications between a cipher-
text and a plaintext, i.e. x, + x, = Dec([[x,] @ «,,sk) and x, X x, = Dec([x,] ®
x,, sk).

SYNTAX.. A homomorphic encryption scheme is a tuple of four ppt algorithms

HE := (Setup, Enc, Eval, Dec) as follows:

« Setup(1*) is the setup algorithm. It takes as input the security parameter A
and outputs a private/public key pair (sk, pk). The public key pk includes

a description of the message space M.

« Enc(m, pk) is the encryption algorithm, which takes as input the public key
pk and a message m € M and outputs a ciphertext c.

. Eval(f,c,, ..., ¢, pk) is the homomorphic evaluation algorithm. It takes as
input a public key pk, a circuit f : M" — M in a class F of supported

circuits and f ciphertexts c,, ..., C;, and returns a ciphertext c.

« Dec(c, sk) is the decryption algorithm that on input a secret key sk and a

ciphertext ¢, it returns a message m or a special failure symbol L.

2.4 DIFFERENTIAL PRIVACY

It is impossible to release information from a private statistical database without

revealing any private information, —there is no free lunch for privacy and util-
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ity [26]. Differential privacy[33] aims to provide rigorous means to maximize the
accuracy of answering the queries of statistical databases, while quantifying and
minimizing the privacy loss resulted to individuals when their private information

are used in the creation of a data product.

Definition 1 (Differential Privacy). A randomized algorithm F with domain NI¥|
is (&, o)-differentially private if for all O C Range(F ) and for any possible database
pair (D,, D, ) satisfies:

Pr(F(D,) € O) <ePr(F(D,)€O)+0c

where databases (D,, D,) differ on only one record.

If ¢ = o, we say that F is e-differentially private. With this definition, the larger
the value of ¢, the larger the privacy loss is. Simply put, differential privacy ad-
dresses the case that when a trusted data curator wants to release some statistical
information over its database without revealing the particular value of a record. It

allows a data owner to deny that he (or she) has participated in a computation.

2.4.1 IMPORTANT PROPERTIES

In this section, we introduce two important properties, Post-processing and Se-
quential Composition Theory, which are fundamental tools to provide theoretical

supports for constructing differentially private machine learning models.

2.4.1.1 POST-PROCESSING

Theorem 1 (Post-processing). Let F : NI*l — R be an random algorithm that is

(¢, o)-differentially private. Let F' : R — R’ be an arbitrary randomized mapping.
Then F' o F : NI*l — R’ is (¢, o)-differentially private.

This property indicates that a malicious user, withoutlearning additional knowl-
edge about a private database, cannot compute a function of the output of a private

algorithm J, compromising its differential privacy guarantee.
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2.4.1.2 SEQUENTIAL COMPOSITION THEORY

Theorem 2 (Sequential Composition Theory). Let F; : NI¥ — R, be an (&, 09)-
differentially private algorithm, then Fg — [, Reis (3, &, >+, 01)-differentially
private, where Fii) (D) denotes [F,(D), F,(D), - - - , Fx(D)]

With regarding to training a machine learning model, Training methods, such
as SGD, will access training data multiple times before the model converges. The
composition theory, in conjunction with the post-process property, guarantees
that the differential privacy loss linearly increases with the number of accesses to

the training database.

2.4.2 IMPLEMENTATIONS

In this section, we introduce Laplace Mechanism [ 32 ] and Exponential mechanism[77],

which are two typical approaches for implementing differentially private solutions.

2.4.2.1 LAPLACE MECHANISM

Any differentially private mechanism is necessarily randomized, as differential pri-
vacy is a probabilistic concept. Adding noise is a common approach to build ran-
domization into algorithms. The Laplace mechanism, as its name suggests, it adds
noise sampled from Laplace distribution. The Laplace mechanism is defined as

following,

F(D)=fiD) + . ¥ ~ Lap(~) (217

where f is the original real valued query/algorithm we planned to execute on a
statistical database D. With this definition, the output of 7 (D) can be considered

to be a random variable, where for t € R, we have,

0 _ Lap(t—f(D,)
0~ Lap(t—f(D,))

Pr(F(D,)

Pr(]:('Dl) (2.18)
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Since the noise is sampled from Laplace distribution, therefore,

PF(D) =) Laplt—fiD.)

Pr(F(D,)=t)  Lap(t—f(D,))
_ e\f(Do);f(Dx)l (2.19)
< eATf

According to the definition of differential privacy, if et = ¢ (ie, Y <—sLap(— %[ )),
then the Laplace mechanism guarantees e-differential privacy. Af measures the
largest change caused by a single difference between the database D, and D,. In

the Laplace mechanism, Afis captured by [, distance, referred to as [,-sensitivity.

Definition 2 (I,-sensitivity). The L,-sensitivity of a function f: NPl — RF i,
Af = max|[{(D,) — (D)

2.4.2.2 EXPONENTIAL MECHANISM

The Laplace mechanism provides differential privacy to real-valued functions. The
exponential mechanism helps to extend the notion of differential privacy to a more
generic mechanism, that the problem of non-numeric queries can be also addressed.

Consider a general setting which maps a set of finite elements of domain D to a
range R, if each element of the domain D corresponds to the probability distribu-
tion over the range R, the mapping can be randomized. The exponential mecha-
nism is built on this ground truth, and it defines a utility function,qg = D x R —
R, to measure the quality of the pair (d, ), where d € D andr € R. The function
q(d, r) is monotonically increasing with regarding the quality of (d, r).

The exponential mechanism F outputs r € R with probability proportional to

eq(d, r)
2Aq

Pr(r) ~ exp( ) (2.20)

can guarantee (¢, o)-differential privacy, where Aq defines the maximum change

of the function g(d, r) caused by a single difference of the inputs, as known as sen-
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sitivity. It is defined as
Aq=reR|[Ds =Dl <1 [|q(Do;r) = q(Dur)ll; (2:21)

The density of F(d) at r is equal to

exp ( _sqz(i‘;) ) ( )
(1) 2.22

2 exp(5)

Clearly, a single change in D can change q by at most Ag, giving a factor of at
most exp (£ ) in the numerator and atleast exp (£ ) in the denominator, giving exp (¢).

Therefore, the exponential mechanism F is (¢, o)-differentially private.
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Differentially Private Recommender

Systems

3.1 INTRODUCTION

Recommender systems often adopt a client-server model, in which a single server
(or a cluster of servers) holds a database and serves a large number of users. State-
of-the-art recommendation algorithms, such as matrix factorizaiton [ 63 ] and neigh-
borhood based methods (NBMs) [ 114], exploit the fact that similar users are likely

to prefer similar products, unfortunately this property also facilitates effective user
de-anonymization and history information recovery through the recommenda-
tionresults [ 16, 82]. Compared to matrix factorization, NBM is more fragile (e.g. [ 16,
79]), since it is essentially a simple linear combination of user history data which

is weighted by the normalized similarity between users or items. To prevent user
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privacy from inference attack (i.e., analyzing prediction results), differential pri-
vacy [33] is a dominate approach. Intuitively, it offers a participant a possibility
to deny her participation in a computation. Mcsherry et al. [76] built differential
privacy into neighborhood-based recommender system, where they differential-
privately calculate correlation as the similarity between users or items. However,
using correlation as similarity often leads to a solution not as accurate as matrix fac-
torization. Regression-based NBM:s (i.e., learning similarity by regression meth-
ods) are able to improve accuracy. However, the regression-based approach often
brings difficulty in deploying differential privacy, which has been demonstrated in
building other differentially private regression-based models such as matrix factor-
ization [9, 73 ].

Our Contributions. We aim to build differential privacy into regression-based
neighborhood recommendation algorithms, thus to achieve a better trade-off be-

tween accuracy and privacy. Our contributions come from two aspects as follows,

« We present a general probabilistic graphical model for the family of neigh-
borhood based methods, referred to as probabilistic neighborhood-based
method (PNBM). PNBM allows us to explore building differentially pri-

vate neighborhood-based recommender systems in different directions.

— PNBM canlead user preference estimation to a problem of searching
the maximum a posteriori similarity. By this, we can calibrate noise

into the training process (i.e. SGD) to guarantee differential privacy.

- PNBM can link the differential privacy concept to NBMs, by sam-
pling similarity from scaled posterior distribution. For the sake of ef-
ficiency, we employ a recent MCMC method, Stochastic Gradient
Langevin Dynamics (SGLD) [126], as the sampler. In order to use
SGLD, we derive an unbiased estimator of similarity gradient from a

mini-batch.

« We carry out experiments, on two real world datasets, to compare our so-

lutions to the state-of-the-art differentially private solutions for matrix fac-
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torization, and also to compare our solutions between themselves. Our re-
sults show that differentially private matrix factorization are more accurate
when privacy loss is large (extremely, in a non-private case), but differen-
tially private NBMs are better when privacy loss is set in a more reasonable
range. Even with the added noises, both our solutions consistently outper-

form non-private traditional NBMs in accuracy.

3.2 A PROBABILISTIC VIEW OF NEIGHBORHOOD-BASED METHODS

In this section, we extend the family of neighborhood-based methods into a gen-
eral probabilistic graphical model. Before going to the details, we first review a

typical definition of neighborhood-based method as follows,

> ien; () Si(rg — 1)
2 jen; o lsil

A

tui = 1; +

, (3.1)

where 7; is the mean rating of item i, s; € $"*" represents the similarity between
item i and j, and NV, (i) denotes a set of items rated by user u that are the most
similar to item i according to the similarity matrix § € R"*™. It is clear that the
similarity plays a critical role in the recommendation computation. For simplic-
ity, we abstractly describe the above neighborhood-based method definition as a

general function which takes as inputs similarity S and ratings R:

?ui :f(siaru) (32‘)

where s; C S denotes the similarity vector of item i, and r, C Ris the rating vector
of user u.

We assume that observed ratings R”° conditioned on historical ratings with
Gaussian noise G, which leads to a probabilistic graphical model as shown in Fig-

ure 3.2.1. Formally, we define the likelihood function of all the observations R”°
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Figure 3.2.1: The graphical model of PNBM

and the prior of similarity S as

p<R>O‘sv Riv aR) = H H[g(ruilf(sb r;>7 alzl)]Iui (3-3)

i=1 u=1

p(Slas) = Hg(silo,as_‘l) (3.4)

where NV (x|, a™) denotes the Gaussian distribution with mean y and precision
a. R™ indicates that if item i is being modeled then it is excluded from the training
data R”°. f(S;, R, ) denotes any NBM which takes as inputs the S; and R;. I,; is
the rating indicator I,; = 1if user u rated item j, otherwise, I,; = o.

With Equation (3.3) and (3.4), we can get the log of posterior distribution over
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the similarity as follows,

—logp(S|R™°, as, ar) = —logp(R™°|S,R™, ar)p(S|as)

= a_ZR Z Z(rui _f(sia ru))2

i=1 u=1

a m a, g m n
— Silla *1 1 L
+ - ,-ZI(H ) +m’log fm+0gﬁ;;

(3.5)

3.2.1 TRAINING

With the posterior distribution over the similarity (i.e.,, Equation (3.5)), estimat-
ing user preferences becomes of a problem of risk minimization. Generally, we
have two approaches, i.e., learning similarity via Stochastic Gradient Descent and
sampling similarity via Monte Carlo Markov Chain, to solve this problem. There-
fore, we can explore building the differentially private recommender system from

two directions.

« Stochastic Gradient Descent (SGD). In this approach, log p(S|R”°, as, ag)
is treated as an error function. SGD can be adopted to minimize the er-
ror function. In each SGD iteration we update the gradient of similarity

>o
(— %M) with a set of randomly chosen ratings @ by

~ a;'ui
Sij = Sij — n( Z (Fui — ”ui)% + 2Sy) (3.6)
() €® y

where 7 is the learning rate, A = * is the regular parameter, the set ® may
ar
containn € [1, N] users. In Section 3.3, we will introduce how to build the

differentially private SGD to train probabilistic NBM.

« Monte Carlo Markov Chain (MCMC). We estimate the predictive distribu-

tion of an unknown rating by a Monte Carlo approximation. In Section 3.4,
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we will connect differential privacy to samples from the posterior p(S|R”°, as, ag),

via Stochastic Gradient Langevin Dynamics (SGLD) [126].

3.3 DIFFERENTIALLY PRIVATE SGD

In this section, by leveraging the tight characterization of training data, NBM and
SGD, we directly calibrate noise into the SGD training process, via Laplace mecha-
nism, to differential-privatelylearn similarity. Algorithm 2 outlines our differentially-

private SGD method for training probabilistic NBM.

Algorithm 2 Differentially Private SGD

Require: Database R”°, privacy parameter ¢, regular parameter }, rescale param-
eter f3, learning rate 7, the total number of iterations K, initialized similarity
s,
1 S0 =gl B > rescale the initialization
2: fort=1:Kdo
e uniform-randomly sample a mini-batch ® C R~°.

3:

4 AF = 2ep0 ¢ Demax—05+t+,\8\1_>c
S: Cui — mln(max<em; emax) emax) >e, — rm Tyi
6: G =2 (o a§ + L"Pl““UKAf) >y =7
7: St < 8O — 4 (BG + 28Y) D> up-scale the update
g: return S+

According to Equation (3.5) and (3.6), for each user u (in a randomly chosen
mini-batch @) the gradient of similarity is

O i Tui I,
Gi(u) =e,—2 = e (— —7,—L )
z]( ) masij m(silu_ wSiIu_) (3 7)
where ¢,; = r,; — r,. For the convenience of notation, we omit Sij < opartin

Equation (3.7) which does not compromise the correctness of bound estimation.
To achieve differential privacy, we update the gradient G by adding Laplace
noise (Algorithm 2, line 6). The amount of noise is determined by the bound of

gradient gi,.(u) (sensitivity AF) which further depends on e, (ru]- — ?’mluj) and
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|S;|I. We reduce the sensitivity by exploiting the characteristics of training data,
NBM and SGD respectively, by the following tricks.

Preprocessing is often adopted in machine learning for utility reasons. In our
case, it can contribute to privacy protection. For example, we only put users who
have more than 20 ratings in the training data. It results in a bigger |S;|I, thus
will reduce sensitivity. Suppose the rating scale is [f,in, nax), removing “paranoid”

records makes \ru]- — ?'uiIuj| < ¢ hold, where ¢ = 00 — Tin-

5 x10%
—Lower Bound: C=10
+ML1M dataset
150 ©ML100K dataset
g
3 1 1
O
0.5~ 3
0 I —e—— ! ! o)
0 100 200 300 400 500
S|,

Figure 3.3.1: The distribution of |S;|I; (B = 10). In order to have more detail
of the distribution of those points have low |S;|I values, the points |S;|I, >
500 are removed.

Rescaling the value of similarity allows a lower sensitivity. NBM, Equation (3.1),
allows us to rescale the similarity S to an arbitrarily large magnitude such that we
can further reduce the sensitivity ( by increasing the value of |S;|I, ). However,
the initialization of similarity strongly influences the convergence of the training.
Thus, it is important to balance the convergence (accuracy) and the value of sim-
ilarity (privacy). Another observation is that the gradient down-scales when en-
larging the similarity, see Equation (3.7). We can up-scale the gradient monotoni-
cally during the training process (Algorithm 2, line 1 and 7). Fig. 3.3.1 shows, let

B = 10, the lower bound of |S;|I,, denote as C, is 10.
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The prediction error e,; = t,; — r,; decreases when the training goes to conver-
gence such that we can clamp e,; to a lower bound dynamically. In our experi-
ments, we bound the prediction error as |e,;| < 0.5+ % , where t is the iteration
index. This constraint trivially influences the convergence under non-private train-
ing process.

After applying all the tricks, we have the dynamic gradient bound at iteration ¢

as follows

max(|GO)) < (o5 + f;:)% (3.8)

The sensitivity of each iteration is AF = 2max(|G®|) < 2(0.5 + ‘f;l)%

Theorem 3. Uniform-randomly sample L examples from a dataset of the size L, Algo-
rithm 2 achieves e-differential privacy if in each SGD iteration t we set £) = % where

K is the number of iterations and y = %.

Proof. In Algorithm 2, suppose the number of iterations K is known in advance,
and each SGD iteration maintains Kiy-diﬂerential privacy. The privacy enhanc-
ing technique [8, 58] indicates that given a method which is e-differentially pri-
vate over a deterministic training set, then it maintains y¢-differential privacy with
respect to a full database if we uniform-randomly sample training set from the
database where 7 is the sampling ratio. Finally, combining the privacy enhancing
technique with composition theory [33], it ensures the K iterations SGD process

maintain the overall bound of e-differential privacy. ]

3.4 DIFFERENTIALLY PRIVATE POSTERIOR SAMPLING

Sampling from the posterior distribution of a Bayesian model with bounded log-
likelihood has free differential privacy to some extent [ 124]. Specifically, for prob-
abilistic NBM, releasing a sample of the similarity S,

SR
Nim

M N
S ~ p(SIR™°, as, ag) o @xp(z Z(m -

i=1 u=1

YA ISIL) (o)
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achieves 4 B-differential privacy at user level, if each user’s log-likelihood is bounded
toB,ie. mag > ier, (Fui—7u)* < B. Wangetal. [124] showed that we can achieve
e-differential privacy by simply rescaling the log-posterior distribution with -, i.e.
= - logp(S|R™°, as, ag).

Posterior sampling is computationally costly. For the sake of efficiency, we adopt
arecent introduced Monte Carlo method, Stochastic Gradient Langevin Dynam-
ics (SGLD) [126], as our MCMC sampler. To successfully use SGLD, we need
to derive an unbiased estimator of similarity gradient from a mini-batch which is a
non-trivial task.

Next, we first overview the basic principles of SGLD (Section 3.4.1), then we
derive an unbiased estimator of the true similarity gradient (Section 3.4.2), and

finally present our privacy-preserving algorithm (Section 3.4.3).

3.4.1  STOCHASTIC GRADIENT LANGEVIN DYNAMICS

SGLD is an annealing of SGD and Langevin dynamics [ 102 ] which generates sam-
ples from a posterior distribution. Intuitively, it adds an amount of Gaussian noise
calibrated by the step sizes (learning rate) used in the SGD process, and the step
sizes are allowed to go to zero. When it is far away from the basin of convergence,
the update is much larger than noise and it acts as a normal SGD process. The up-
date decreases when the sampling approaches to the convergence basin such that
the noise dominated, and it behaves like a Brownian motion. SGLD updates the

candidate states according to the following rule.

L
Ab, = %(Alogp(é)t) + 7 ZAlogp(xtJHt)) +z; z~N(o,n) (3.10)

i=1

where 7, is a sequence of step sizes. p(x|6) denotes conditional probability distri-
bution, and 0 is a parameter vector with a prior distribution p(0). L is the size of a
mini-batch randomly sampled from dataset X'*. To ensure convergence to a local

optimum, the following requirements of step size 7, have to be satisfied:
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o0 o0
Yon=o00 Y g<oo
t=1 t=1

Decreasing step size 7, reduces the discretization error such that the rejection rate
approaches zero, thus we do not need accept-reject test. Following the previous
works, e.g. [73, 126], we set step size §, = 5,t”%, commonly, § € [0.3,1]. In
order to speed up the burn-in phase of SGLD, we multiply the step size 5, by a
temperature parameter ¢ (o < ¢ < 1) where Vo n, >, [23].

3.4.2 UNBIASED ESTIMATOR OF THE GRADIENT

The log-posterior distribution of similarity S has been defined in Equation (3.5).

The true gradient of the similarity S over R”° can be computed as

G(R™°) = Z 2i(S;R7°) +AS (3.11)
(u,i)ER>°
where g,,(S;R”°) = e, ‘32‘;. To use SGLD and make it converge to true poste-

rior distribution, we need an unbiased estimator of the true gradient which can be
computed from a mini-batch ® C R”°. Assume that the size of ® and R"° are L

and L respectively. The stochastic approximation of the gradient is
G(D) = Lg(S, @) +AS o I[i,j € O] (3.12)

where g(S,®) = 1 Z(w)e@ 2i(S, @). T C B™M js symmetric binary matrix,
and [[i,j € ®] = 1if any item-pair (i,]) exists in @, otherwise o. o presents
element-wise product (i.e. Hadamard product). The expectation of G(®) over all

possible mini-batches is,

Eo[G(@)] = Eo[Lg(S, ®)] + AE¢[S o Il[i,j € D]
= ) gu(SR™) +AEg[SoI[i,j € D] (3.13)

(u,i)€ER>°
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Ee[G(®)]isnotan unbiased estimator of the true gradient G(R”°) due to the prior
term Ep[S o I[i,j € ®]]. Let H = E[l[i,j € ®]], we can remove this bias by
multiplying the prior term with H ™" thus to obtain an unbiased estimator. Follow
previous approach [ 4], we assume the mini-batches are sampled with replacement,

then Hl is,
L||L I Ll _
= B B B (314
where |I;| (resp. |I;|) denotes the number of ratings of item i (resp. j) in the com-

plete dataset R7°. Then the SGLD update rule is the following:

St ¢ g0 %(ﬁg(s@, ®) +18Y o H™) + 2, (3.15)

3.4.3 DIFFERENTIAL PRIVACY VIA POSTERIOR SAMPLING

To construct a differentially private NBM, we exploit a recent observation that
sampling from scaled posterior distribution of a Bayesian model with bounded
log-likelihood can achieve ¢-differential privacy [124]. We summarize the differ-

entially private sampling process (via SGLD) in Algorithm 3.

Algorithm 3 Differentially Private Posterior Sampling (via SGLD)

Require: Temperature parameter g, privacy parameter ¢, regular parameter A, ini-
tial learning rate 7 . Let Klarger than burn-in phase.
1: fort =1: Kdo
2: e Randomly sample a mini-batch ® C R™°.

3: g (SY, 0) = 7 Z(m)e@ eui% > gradient of § (mini-batch)
4 ZfNN(O7Q"7t) | > e, >,
o SUT) e 80 — £ B(Lg(SY, @) +ASW o H ) + 2

6: M = ?7‘

7: return SU)

Now, a natural question is how to determine the log-likelihood bound B? (
max Y . p (7 — r)* < B, and see Equation (3.9)). Obviously, B depends on

u€R>°
the max rating number per user. To those users who rated more than 7 items, we
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randomly remove some ratings thus to ensure that each user at most has 7 ratings.
In our context, the rating scale is [1,5], let 7 = 200, we have B = (5 — 1)* X 200

(In reality, most users have less than 200 ratings [73]).

Theorem 4. Algorithm 3 provides (e, (1 + ¢°)8)-differential privacy guarantee to any
user if the distribution P, where the approximate samples from is §-far away from the
true posterior distribution Py, formally ||P’, — Px||, < §. And § — oifthe MCMC

sampling asymptotically converges.

Proof. Essentially, differential privacy via posterior sampling [ 124] is an exponen-

tial mechanism [77] which protects e-differential privacy when releasing a sample

0 with probability proportional to exp(— 3 zp(X'|0)), where p(X'|0) serves as the
utility function. If p(X'|6) is bounded to B, we have the sensitivity AF < 2B.
Thus, release a sample by Algorithm 3 preserves e-differential privacy. It compro-
mises the privacy guarantee to (e, (1 + €°)§) if the distribution (where the sam-

ple from) is §-far away from the true posterior distribution, proved by Wang et

al. [124]. O

Note that when ¢ = 4B, the differentially private sampling process is identical to
the non-private sampling. This is also the meaning of some extent of free privacy. It
starts to lose accuracy when ¢ < 4B. One concern of this sampling approach is the
distance § between the distribution where the samples from and the true posterior
distribution, which compromises the differential privacy guarantee. Fortunately,
an emerging line of works, such as [ 105, 121], proved that SGLD can converge in
finite iterations. As such we can have arbitrarily small § with a (large) number of

iterations.

3.5 EVALUATION AND COMPARISON

We test the proposed solutions on two real world datasets, ML1ooK and ML1M
[81], which are widely employed for evaluating recommender systems. ML10oK
dataset has 100K ratings that 943 users assigned to 1682 movies. ML1M dataset

contains 1 million ratings that 6040 users gave to 3952 movies. In the experiments,
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we adopt 5-fold cross validation for training and evaluation. We use root mean

square error (RMSE) to measure accuracy performance:

RMSE = 2 (wierr (i = Fui)?
|RT|

where |R”| is the total number of ratings in the test set R”. The lower the RMSE

value the higher the accuracy. As a result of cross validation, the RMSE value re-

ported in the following figures is the mean value of multiple runs.

3.5.1 EXPERIMENTS SETUP

In the following, the differentially-private SGD based PNBM is referred to as DPSGD-
PNBM, and the differentially-private posterior sampling PNBM is referred as DPPS-
PNBM. The experiment source code is available at Github®.

We compare their performances with the following (state-of-the-art) baseline

algorithms.

o non-private PCC and COS: There exist differentially-private NBMs based
on Pearson correlation (PCC) or Cosine similarity (COS) NBMs (e.g. [46,
76,135]). Since their accuracy is worse than the non-private algorithms, we

directly focus on these non-private ones.

« DPSGD-MF: Differentially private matrix factorization from [9], which

calibrates Laplacian noise into the SGD training process.

« DPPS-MF: Differentially private matrix factorization from [73 ], which ex-

ploits the posterior sampling technique.

We empirically choose the optimal parameters for each model using a heuristic

grid search method. We summarize them as follows.

‘https://github.com/lux-jwang/Experiments/tree/master/dpnbm
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« DPSGD-PNBM: The learning rate 7 is searched in {0.1, 0.4}, and the it-
eration number K € |1, 20], the regular parameter A € {0.05, 0.005}, the
rescale parameter f € {10,20}. The neighbor size N, = 500, the lower
bound of |S;|I, : C € {10,15}. In the training process, we decrease K and

increase {7, C} when requiring a stronger privacy guarantee (a smaller ¢).

« DPPS-PNBM: The initial learning rate 7, € {8 -107°,4 -1077,8 - 10~ °},
A€ {0.02, o.ooz}, the temperature parameter 9 = {0.0017 0.006, 0.09},

the decay parameter { = 0.3. N = soo0.

« DPSGD-MF: 5 € {6-10%,8-10 *},K € [10,50] (the smaller privacy
loss ¢ the less iterations), 2 € {0.2, 0.02}, the latent feature dimension d €

{10, 15, 20}.

« DPPS-MF: n € {2:107°%,2-10"%,8:1077,8:10 °},1 € {0.02,0.05,0.1,0.2},
0={1-107%6-10"*%4-1033-10 *},d € {10,15,20},§ = 0.3.

o non-private PCC and COS: For ML1ooK, we set Ny = g9oo. For ML1M,

we set Ny = 1300.

3.5.2 COMPARISON RESULTS

We first compare the accuracy between DPSGD-PNBM, DPSGD-MF, non-private
PCC and COS and show the results in Fig. 3.5.1 for the two datasets respectively.
When ¢ > 20, DPSGD-MF does not lose much accuracy, and it is better than
non-private PCC and COS. However, the accuracy drops quickly (or, the RMSE
increase quickly) when the privacy loss ¢ is reduced. This matches the observa-
tionin [9]. In the contrast, DPSGD-PNBM maintains a promising accuracy when
¢ > 1,and is better than non-private PCC and COS.

DPPS-PNBM and DPPS-MF preserve differential privacy at user level. We de-
note the privacy loss ¢ in form of x X 7 where x is a float value which indicates the

average privacy loss at a rating level, and 7 is the max rate number per user. The
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Figure 3.5.1: Accuracy Comparison: DPSGD-PNBM, DPSGD-MF, non-
private PCC, COS.

comparison is shown in Fig. 3.5.2. In our context, for both datasets, 7 = 200. Both
DPPS-PNBM and DPPS-MF allow accurate estimations when ¢ > 0.1 X 200. It
may seem that ¢ = 20 is a meaningless privacy guarantee. We remark that the
average privacy of a rating level is 0.1. Besides the accuracy performance is better
than the non-private PCC and COS, from the point of privacy loss ratio, our mod-
els match previous works [73, 76], where the authors showed that differentially

private systems may not lose much accuracy when ¢ > 1.
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Figure 3.5.2: Accuracy Comparison: DPPS-PNBM, DPPS-MF, non-private
PCC, COS.

For bandwidth and efficiency reason, mobile service providers may prefer to
store the trained model (e.g. item similarity) in mobile devices directly. Com-
mercial recommender systems often have very large similarity matrix such that the
shortage of memory space in mobile devices may become a bottleneck. In order
to alleviate this issue, we choose the Top-N most similar neighbors only by similar-
ity matrix, by removing the rest neighbors of each item, such that we can sparsely
store the matrix in practice. We compare accuracy with different number of neigh-
bors with ¢ = 1, and summarize the results in Fig. 3.5.3. We stress two observa-
tions. Both DPSGD-PNBM and DPPS-PNBM reach their best accuracy with a
smaller neighbor size. The accuracy of both DPSGD-PNBM and DPPS-PNBM
is less sensitive than PCC and COS, when neighbor size is changed. This helps
mitigate over-fitting problem and enhance system robustness.

DPSGD-PNBM and DPPS-PNBM achieve differential privacy at rating level (a
single rating) and user level (a whole user profile) respectively. Below, we try to
compare them at rating level, precisely at the average rating level for DPPS-PNBM.
Fig. 3.5.4 shows that both solutions can obtain quite accurate predictions with a
privacy guarantee (& &~ 1). With the same privacy guarantee, DPPS-PNBM seems
to be more accurate. However, DPPS-PNBM has its potential drawback. Recall
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Figure 3.5.3: Accuracy comparison with different neighbor sizes

from Section 3.4, the difference § between the distribution where samples from
and the true posterior distribution compromises differential privacy guarantee. In
order to have an arbitrarily small §, DPPS-PNBM requires a large number of it-
erations [105, 121]. At this point, it is less efficient than DPSGD-PNBM. In our

comparison, we assume § — o.

-©-DPSGD-PNBM |- -©-DPSGD-PNBM
& DPPS-PNBM & DPPS-PNBM

Figure 3.5.4: Accuracy comparison between DPSGD-PNBM and DPPS-
PNBM
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3.5.3 SUMMARY

In summary, DPSGD-MF and DPPS-MF are more accurate when privacy loss is
large (e.g. in a non-private case). DPSGD-PNBM and DPPS-PNBM are better
when we want to reduce the privacy loss to a meaningful range. Both our mod-
els consistently outperform non-private traditional NBMs, with a meaningful dif-
ferential privacy guarantee. Note that similarity is independent of NBM itself,
thus other neighborhood-based recommenders can use our models to differential-
privately learn Similarity, and deploy it to their existing systems without requiring

extra effort.

3.6 RELATED WORK

A number of works have demonstrated that an attacker can infer the user sensitive
information, such as gender and politic view, from public recommendation results
without using much background knowledge [ 16, 38, 82, 125].

Randomized data perturbation is one of earliest approaches to prevent user data
from inference attack in which people either add random noise to their profiles or
substitute some randomly chosen ratings with real ones (e.g. [96-98]). While this
approach is very simple, it does not offer rigorous privacy guarantee. Differential
privacy [33] aims to precisely protect user privacy in statistical databases, and the
concept has become very popular recently. [76] is the first work to apply differ-
ential privacy to recommender systems, and it has considered both neighborhood-
based methods (using correlation as similarity) and latent factor model (e.g. SVD).
[135] introduced a differentially private neighbor selection scheme by injecting
Laplace noise to the similarity matrix. [46] presented a scheme to obfuscate user
profiles that preserves differential privacy. [9, 73] applied differential privacy to

matrix factorization, and we have compared our solutions to theirs in Section 3.s.
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3.7 CONCLUSION AND FUTURE WORK

In this chapter, we have proposed two different differentially private NBMs, un-
der a probabilistic framework. We firstly introduced a way to differential-privately
find the maximum a posteriori similarity by calibrating noise to the SGD training
process. Then we built differentially private NBM by exploiting the fact that sam-
pling from scaled posterior distribution can result in differentially private systems.
While the experiment results have demonstrated that our models allow promising
accuracy with a modest privacy budget in some well-known datasets, we consider

it as an interesting future work to test the performances in other real world datasets.
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Social-context Facilitates
Privacy—preserving Recommender

Systems

4.1 INTRODUCTION

The accuracy of recommender systems relies on massive user history data, such
as purchasing records, ratings, locations and so on. Leaking private data to oth-
ers (including recommendation service providers) may arise privacy concerns to
the public. Cryptographic primitives such as homomorphic encryption [42] and
secure multiparty computation [71] are most commonly used tools to guarantee
data security. However, the computational and spatial complexity of algebraic op-

erations in a cipher space conflicts with the fact that accurate recommendations
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require a large number of mathematical operations (i.e., from massive training data
and complicated learning processes). Taking two classes of representative recom-

mendation algorithms as example,

« K-nearest neighborhood based [114]. Firstly, it computes similarities be-
tween any two users (resp. items); Secondly, it selects top-K the most sim-
ilar users (resp. items) as the neighbors of a target user (resp. item). Lastly,

it computes predictions based on the neighbors.

« Matrix factorization based [64]. Firstly, it decomposes a sparse rating ma-
trix into two dense low-dimension feature matrices, where the feature met-
rics are iteratively learned by an optimization method such as stochastic gra-
dient descent. Then it calculates predictions by performing dot-production

over the learned features.

Obviously, executing either of them, in a cipher space, will result in a prohibitive
cost of time and computational resource, especially, when considering another
fact that accurate recommendation computations often rely on massive user data.
Therefore, reducing the user data and simplifying the recommendation computa-
tion process can be a promising approach to improve the efficiency.

Our Contributions. We propose a social-context based recommender system
which allows computing recommendations with only a few users without com-
promising the accuracy performance. We assume that the users have certain social
connections. For convenience, we denote the social connection as friendship, i.e.,
any two users are friends if they have some kind of social connection, otherwise,
we say the two users are strangers to each other. Note that we assume the friend-
ship is public. In fact, in the real world, the friendship information are often public

and can be easily discovered, such as using Facebook, Twitter and so on.

« We experimentally validate the assumption that friends often have similar
interests, by the datasets we collected from Twitter. Besides serving for eval-
uating our recommender protocols, the datasets are also an independent

interests for the community.
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« We proposed a friendship-based recommender system based on a neigh-
borhood method, which computes recommendations to a user with the
data from a few of his/her friends and strangers. This friendship-based rec-
ommender system can significantly reduce the computational complexity

while allowing a promising accuracy performance.

« Based on our friendship-based recommender system and a somewhat (fully)
homomorphic encryption scheme, we construct two secure protocols, one
for single value predictions and the other for Top-n recommendations. The
security of protocol executions is straightforwardly guaranteed by the un-
derlying homomorphic encryption scheme, and we further discuss the in-

formation leakage in algorithm outputs.

« We provide both asymptotic and implementation results for our proposed
protocols. We show that the single prediction protocolis very efficient while
the Top-n protocol is not. We further discuss two relaxations for the top-n

protocol and show that they are quite efficient.

4.2 ASSUMPTION VALIDATION

In this section, we present an intuitive evidence that (1) individuals are highly
socially-connected, (2) individuals with social connections often have similar in-

terests.

4.2.1 DATASET CONSTRUCTION

To validate our assumptions, we construct a new dataset containing social con-
nection information, based on the dataset MovieTweetings[27]. MovieTweetings
(MT) consists of ratings on movies that are extracted from tweets. Such tweets are
originated from the social rating widget available in IMDb apps. We use a snapshot
of the MT dataset which contains 359908 ratings, 35456 users and 20156 items.
Note that in the MT dataset, each user has at least 1 rating, but without any social-

connection information. We crawled the followees of each user ID recorded in the

52



MT dataset from Twitter. Based on the “following” activities in Twitter, we natu-
rally introduce the concept of friendship as follows: if a user x follows user y then
we say user x regards user y as a friend. Note that friendship is not guaranteed to
be bi-directional, namely users x and y may not consider each other as friends at
the same time. We name our new dataset as Friendship MovieTweetings (FMT).
It is worth stressing that, in the new dataset, we only collect the Twitter users who
have explicitly posted their movie ratings. In the other word, the friend list of a user
may be incomplete. In our experiment, we only use a subset of FMT, in which each
user has at least 10 friends and each friend has at least 10 ratings. The rating scale
is regularized to [o,5]. This subset will be referred to as 10-FMT in this chapter.

‘We summarize the basic information of these datasets in Table 4.2.1.

MT FMT | 10-FMT
Ratings Num 359908 | 211954 20316
Users Num 35456 17268 508
Items Num 20156 15682 3481
Matrix Density 0.050% | 0.078% 1.15%
Min Ratings/User 1 1 10
Ave. Ratings/User 10 12 39
Max Ratings/User 856 856 448
Min Friends/User - 1 10
Ave. Friends/User - 6 26
Max Friends/User - 282 109

Table 4.2.1: Datasets
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Figure 4.2.1: Social Graph of FMT Dataset
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We map the FMT dataset into a directed graph in Figure 4.2.1. In the graph, a
node represents a user. If there is a directed edge from user x to user y, then user x
regards user y as a friend. It is clear that almost all users are connected in the social
graph. To enlarge the number of friends of each user, we also count the number of
friends of friends (FoFs), which are used in designing the decentralized protocol.
The number of friends are summarized in Table 4.2.2. Counting the FOFs as a
user’s friends makes sense. For example, saying that user z is a friend of user y,

and the user y is a friend of user x, when the user z posts a tweet which may be
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re-tweeted by the user y, the user x would see the tweet (i.e., be influenced by the

user z directly).

Min Avg Max

Friend | Friend | Friend

Num Num Num
Friends 10 27 109
FoFs 10 203 329

Table 4.2.2: Basic Facts

In order to test the friends often have similar interests, we compute the Cosine
similarities between users in the 10-FMT dataset and plot them in Figure 4.2.2.
We also calculate the similarities between strangers. As shown as in Figure 4.2.2,
averagely, friends share more similar preferences than strangers. Therefore, the ob-
servations match our assumptions. We will show how to construct an accurate and

efficient recommender system while preserving privacy, based on this fact.

4.3 OURAPPROACH

To construct recommender systems based on collaborative filtering techniques [ 114],
there two typical approaches, memory-based approach such as neighborhood-based
methods [25]; model-based approach such as matrix factorization [64]. Our set-

ting is constrained to the following facts,
« The number of friends who agreed to contribute may be very small.
« Alower computational complexity is always more preferable.

We build our recommendation algorithm on a neighborhood-based method. In
contrast, matrix factorization always requires iteratively training the model with

massive user data. On the one hand, it leads to a much higher computational
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Figure 4.2.2: Cosine Similarity of 10-FMT Dataset

complexity; on the other hand, a very limited number of friends are not sufficient

enough to train an accurate factorization model.

4.3.1 OUR RECOMMENDATION MODEL

In our solution, we compute the predicted rating for user u based on inputs from
both his friends F, and some strangers T, for both accuracy and security reasons.
Though friends often have common preferences and more impacts to each other,
in reality, it is common that the number of friends who consumed a target item
can be few. If recommendations are computed solely based on the inputs of user
u’s friends, the accuracy performance can be compromised, and the private infor-
mation of user u’s friends might be leaked through user u’s outputs. Therefore, it is
reasonable to believe that, by taking into account some randomly chosen strangers,
we will mitigate both problems.

Given an active user u, when factoring in the inputs from randomly chosen
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strangers, we will use the simple Bias From Mean (BFM) scheme for the pur-
pose of simplicity. It is worth stressing that there are a lot of different choices for
this task. Nevertheless, as to the accuracy, this scheme has similar performance to
many other more sophisticated schemes, such as Slope One and Pearson/Cosine
similarity-based collaborative filtering schemes [67]. Let the stranger set be T,

the predicted value p,’;h for item b is computed as follows.

P, = Tt ZtETu e - (rep — 7o)
" ’ ZtGTu qt.b

(4.1)

where g, is a binary indicator, where g;;, = 1if a stranger t rated item b, other-
wise, g;, = 0. When factoring in the inputs from the friends, we let the friend set

be F,, the predicted value p;; for item b is computed as follows.

“ _ ooy > e, G+ (i — T7) - wug

wb — Tu (4.2)
ZfEFu ‘vab ’ W“zf

where gy is a binary indicator, where g, = 1if a friend f rated item b, otherwise,
qrp = o. In practice, the similarity between friends means that they tend to prefer
similar items. However, this does not imply that they will assign very similar scores
to the items. For example, a user Alice may be very mean and assign a score 3 to
most of her favorite items while her friends may be very generous and assign a
score 5 to their favorite items. Using the Equation (1), we will likely generate a
score § for an unrated item for Alice, who may just rate a score 3 for the item even

if she likes it. In this regard, Equation (4.2) is more appropriate because 7, reflects
> ser, b (1F=77) Wra
Zf@pu qf,b"Wf,u

the user’s rating style and reflects the user’s preference based on
inputs from his friends.

Based on the inputs from the strangers and friends, a combined predicted value
pu,p foran unrated item b can be computed as p,,, = p-p;; , + (1—p) - p;;’, for some

o < p < 1. Due to the fact that cryptographic primitives are often designed for
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dealing with integers, we rephrase the formula as follows, where a, f are integers.

Pup = py Pyt p Pub (4.3)

It is worth noting that the prediction p, ;, is not deterministic because we assume

the stranger set T, is randomly chosen for the computation.

4.3.2 THREAT MODEL

As to communication, we assume all communications are mediated by a recom-
mender system (RS) server and the communication channels are integrity and
confidentiality protected. Instead of making a general semi-honest assumption on

all participants, we distinguish the following.

« Threat from semi-honest RS server. In the view of all users, the RS server
will follow the protocol specification but it may try to infer their private in-

formation from openly collected transaction records.

« Threat from a semi-honest friend. In the view of a user, none of his friends
will collude with the RS server or another party to breach his privacy. We
believe the social norm deters such colluding attacks, and the deterrence
comes from the fact that once such a collusion is known to the victim user
then the friendship may be jeopardized. Nevertheless, we still need to con-

sider possible privacy threats in two scenarios.

- Intheview of f € F,, user u may attempt to learn his private informa-
tion when running the recommendation protocol. In the view of user

u, his friend f € F, may also try to infer his information as well.

— In the view of f € F,, user u’s output (e.g. a new rated item and pre-
dicted rating value) may be leaked. If another party obtains such aux-
iliary information, then user f’s private information may be at risk. For
example, the Potential Information Leakage through Friends security

issue in Section 3.1 falls into this scenario.
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o Threat from strangers. We consider the following two scenarios.
- In the view of user u and his friends, a stranger may try to learn their
private information.

- Inthe view of a stranger t € T,, who is involved in the protocol exe-

cution of user u, user u may try to learn his private information.

4.4 CENTRALIZED FRIENDSHIP-BASED PROTOCOLS

We generally assume that there is a recommender service provider, which will
maintain the social graph and mediate the executions of recommender protocols

among users. The system structure is shown in Figure. 4.4.1.

&8 Py /8 b
& — ‘i\. ::: bers T
\ &

recommender service provider (social networking
provider)

Figure 4.4.1: System Structure in the View of User u

With respect to the tailored recommender algorithms in Section 4.3, the global
system parameters should be established in advance. Such parameters should in-
clude a, f which determine how a predicted rating value for user u is generated
based on the inputs of friends and strangers, and they should also include the size
of stranger set T,. In the initialization phase, user u generates his public/private
key pair (pk,, sk,) for a somewhat (fully) homomorphic encryption (SWHE)
scheme and sends pk, to the server. We require that the SWHE scheme allows

to encrypt negative integers. In addition, user u maintains a rating vector R,, his
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social graph, and assigns a weight w,, s to each of his friend f € F,.. All other users
perform the same operations in this phase.

Under the centralized setting, we describe two secure protocols, one is for sin-
gle value prediction (Section 4.4.1), the other is for Top-n recommendation (Sec-

tion 4.4.2).

4.4.1  CENTRALIZED SINGLE PREDICTION PROTOCOL

When user u wants to test whether the predicted rating for an unrated item b is
above a certain threshold 7 (an integer) in his mind, he initiates the protocol in
Figure. 4.4.2. Referring to the prediction algorithm from Section 4.3.1, in stage 1
the service provider collects the inputs from the strangers in encrypted form ac-
cording to Equation (4.1), while in stage 2 the service provider collects the inputs
from the friends in encrypted form according to Equation (4.2). In stage 3, user u
learns whether the prediction is above a threshold while the service provider learns

nothing. In more detail, the protocol runs in three stages.
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User u RS Server Friends F,, Strangers T,

(pk, sku) pk,
wyg: Vf € Fy a p
R:,
IIIb]]u
1]
Stage 1
Vte T, Bl.,
|I2 : qt,b]]u
laes - (Re - T — 7)]u
[9t,6- (Re- Xy —7) 1 [2+4¢,5]u
7777777777777777777777777777777777777777777777777777777777777 pk,, Ry, Qs
[[Wu,fﬂu
[wu flu
Stage 2
Vf € Fy, [wu s (W]
la5.6]
lars - Ry -1y — 77) - wugllu
[a7,b- (Rp Ty —77) -wyy gl
<—
[as,6]u
[nr]u = ZtETu [ - (Re - T — 7)]u
[[dT]]u = ZteTu IIZ . "]t,bﬂu
Inelu = > e, lare - Re-To = 7) - wigllu
[de]lu = ZfEFu Eval(-, [[Qf,bﬂuv [[Wu,fﬂu)
st [X]u = [B-nr-dr+a-np-dr]u
age 3
s 4] = [(a+ ) - dr - el
“ COM([X] > [Y]u,r—72)
x 2
Pup = Y 2 T— Ty

Figure 4.4.2: Single Prediction Protocol

1. In the first stage, the participants interact as follows.

(a) User u generates a binary vector I, which only has 1 for the b-th el-

ement, and sends the ciphertext [I,], = Enc(I,, pk,) to the server.
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Let’s assume [I,], = ([[I,(,l)]]u, sy [[I;(,M)]]u>'

(b) The server first sends pk, to some randomly chosen strangers, and see

whether they want to participate in the computation.

(c) After the server has successfully found a viable stranger set T,,, it for-

wards [[I, ], to every user in T,

(d) With pk, and (R;, Q;), every user t from T, can compute the follow-

ing based on the homomorphic properties.

[ gule= Y Eval(- Enclpk,.2- ., [1L)

1<i<M

[Ro-1]u = 3 Eval(: Enclrpk,), [1,].)

1<i<M

[[Qt,b : (Rt I — r_t)]]u
—Eval(-, [q.4], Eval(+, [R; - I],,, Enc(—7, pk,)))

2. Inthe second stage, the participants interact as follows.

(a) For every friend f € F,, user u sends the encrypted weight [w, s, =
Enc(w., pk,) to the server.

(b) The server sends [w, g, and [I,], to user .

(c) Withpk,, [T,]., [wu].and (Rs, Q) userfcan compute the following.

lossle = 37 Eval(: Enclggne,), 111

1<i<M

R L], = Z Eval(-, Enc(ry;, pk,), [[12")]]“)

1<i<M
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[I:qfvh ' (Rf I, — 7f) ’ WuJ]]u :Eval('7 Eval('v [[qf,b]]u? [[Wuf]]u)a
Eval(+, [Ry - L], Enc(—7, pk,)))

3. In the third stage, user u and the server interact as follows.

(a) The server first computes [nr],, [dr]., [#E]. [dE]. as shown in Fig-
ure. 4.4.2, and then computes [X],, [Y], as follows.

temp, = Eval(-, Eval(-, [nr]., [de].), Enc(B, pk,))
temp, = Eval(-, Eval(-, [ng]., [dr].), Enc(a, pk,))
[X]. = Eval(+, temp,, temp,)

[Y]. = Eval(-, Eval(-, [dg]., [dr].), Enc(a + B, pk,))

Referring to Equations (4.1) and (4.2), we have Pup = Tu T 4= and

Py =Tut Z—i. The ultimate prediction p, , can be denoted as follows.

_ ﬂ * + a *%
Pup = a"’ﬂ pu,b a‘i‘ﬁ pu,b
o ﬁ-nT-dp+a~nF'dT

R (a+p)-dr-dr

= 7+

<1 b

(b) Userurunsacomparison protocol COM with the server to learn whether
)—; > 1 — 7, Since X, Y, 7 — 7, are integers, COM is indeed an en-
crypted integer comparison protocol: where user u holds the private
key sk, and , the server holds [X]),, [Y],, and the protocol outputs a
bit to user u indicating whether X > (7 — 7,) - Y.
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4.4.2 CENTRALIZED ToP-N PROTOCOL

When the active user u wants to figure out Top-n unrated items, he initiates the
protocol in Figure. 4.4.3. This protocol shares the same design philosophy as that
of single prediction protocol. The usage of matrix My in the random permutation
of Stage 3 guarantees that the rated items will all appear in the end of the list after
ranking. As a result, the rated items will not appear in the recommended Top-n

items. In more detail, the protocol runs in three stages.
1. In the first stage, the participants interact as follows.

(a) Theserversends pk, to some randomly chosen strangers and see whether
they want to participate in the computation. Suppose that the server
has successfully found T,.

(b) With pk, and (R;, Q;), usert € T, can compute [q; - (rep — 77) ] =

Enc(g:p - (rep —7:), pk,) and [2 - g5 ]. = Enc(2 - gus, pk,) for every
1 < b < M. All encrypted values are sent back to the server.

2. In the second stage, the participants interact as follows.
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Figure 4.4.3: Top-n Protocol

(a) Toevery friend f € F,, user u sends the encrypted weight [w, /], =

65



Enc(w.s, pk,).
(b) With pk,, [w, . and (R, Q), user f can compute [¢y,], and

[are - (rip = 77) - wugll
:Eval(-, Enc(qfvg, : (T'ﬁb - r_f)’ pku)’ [[Wuvf]]“)

forevery1 < b < M. All encrypted values are sent back to the server.
3. In the third stage, user u and the server interact as follows.

(a) Useru generates two matrices My, My as follows: (1) generate a M X
M identity matrix; (2) randomly permute the columns to obtain My;
(3) to obtain My, for every b, if item b has been rated then replace the

element 1 in b-th column with o.

-
o
o
o
-
o

o 1 (¢] 1
— My =
o o 1 1 o o
(¢] 1 (¢]
o (¢] o
— My =
1 o (0]

User u encrypts the matrices (element by element) and sends [My],,, [My].

to the server, which then proceeds as follows.

i. The server first computes [n1]u, [d1.6]w [17,6]w [dE0]w [Xo]w
[Ys]. for every1 < b < M as shown in Figure. 4.4.3, in the
same way as in the previous protocol in Figure. 4.4.2. Referring
to Formula (4.3), we see that 7, appears in p, ;, for every b. For
simplicity, we ignore this term when comparing the predictions for

different unrated items. With this simplification, the prediction
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Pup can be denoted as follows.

ﬁ nryp a NEp
atB dry atp dy
B-nry-dpy+a-npp-drp

(a+B)- dry - dry

Pup =

Xy
Y,

ii. The server permutes the ciphertextsvector (([X,]., [Y.]..), ([2G]., [Y2].),

-+, ([Xm]us [Ym].)) in an oblivious manner as follows.

([[Ul]]uﬂ [[UZ]]W ) [[UM]]u)

:IIMX]]u : ([[Xl]]ua [[Xz]]m Tty HXM]]M)T

(il [Vl -+ [Vi])

:[[MY]]u : ([[Yl]]ua [[Yz]]m Tt [[YM]]u)T

The multiplication between the ciphertext matrix and ciphertext
vector is done in the standard way, except that the multiplication
between two elements is done with Eval(-,, ) and the addition
is done with Eval(+, , ). Suppose item b has been rated before
and ([X,],, [Ys].) is permuted to ([Uj],, [Vi].), then U; = o

since the element 1 in b-th column has been set to o.

(b) Based on some RANK protocol, the server sorts %‘ (1 <i<|B)
in the encrypted form. One straightforward way of constructing the
RANK protocol is to combine an encrypted integer comparison pro-
tocol COM and any standard sorting algorithm. The COM protocol
has slightly different semantics from that in the previous protocol in
Section 4.4.1: user u has the private key and the service provider has
two encrypted integers, at the end of the protocol the service provider

learns the result.
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(c) After the ranking, the server sends the "Top-n” indexes (e.g. the per-
muted Top-n indexes) to user u, who can then recover the real Top-n

indexes based on the permutation he has done.

4.5 DECENTRALIZED FRIENDSHIP-BASED PROTOCOL

In reality, semi-honest service provider is often viewed as a security weakness in
protocol design. This motivates us to investigate privacy-preserving protocols in
fully decentralized setting. Next, we first describe the setting and then present a
decentralized single prediction protocol. Since we can extend the protocol to a
Top-n variant in the same way as we have done in the centralized setting, we skip

the details here.

FoFs

¥ r % T ¥ r % r % Friends

Useru

Figure 4.5.1: Decentralized System Structure

For simplicity, we assume that users are uniquely identified in the recommender
system, and they share their social graph with their friends. In the initialization
phase, user u generates his public/private key pair (pk,, sk, ) fora SWHE scheme.
In addition, user u# maintains a rating vector R,, his social graph, and assigns a
weight w, s to each of his friend f € F,. All other users perform the same oper-
ations in this phase. Before going ahead, we want to point out that we choose a
FoF as stranger in the following solution for the simplicity of description. In the
view of user u, the topology is shown in Figure. 4.5.1. Due to the small world

phenomenon, the population of FoFs can already be very large.
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4.5.1 DECENTRALIZED SINGLE PREDICTION PROTOCOL

Next, we describe a protocol for user u to check whether p,; > 7 according to

Formula (4.3) in Section 4.3. It can be regarded as a decentralized version of the

single prediction protocol from Section 4.4.1.

1. Based on the social graph (particularly his friend set F,), user u chooses a
stranger set T, consisting of his FoFs. He also chooses t* € T,. We further
require that the every f € F, should have at least one friendin T,.

2. User u generates a binary vector I, which only has 1 for the b-th element,
and broadcasts [I,], = Enc(I,, pk,) = ([[Il(,l)]]ua s [[II(JM)]],,) to his friends.
He also sends Enc(w, f, pk,) to every user f € F,.

3. Withpk,, [I;]., [w. . and (Rs, Qs), user fcan compute the [gy,; ], and [g5,-
(Rf- Xy — 77) - w, ] in exactly the same way as in Section 4.4.1. User f then
sends [[Qf,b]]u and [[qﬁb . (Rf -1, — ﬁ) - w, ]|, to one of his friends in T,,. He

also forwards [I,,], and pk, to the chosen friend.

4. Foranyt € T, he should receive [I,], and pk, from at least one of his
friend in F,,. If not, he can ask for such information from his friend. Then,

he does the following.

(a) Validate pk,.

(b) With pk, and (R;, Q;), every user  from T, can compute [q; ], and

l9:s - (R; - I, — 7)], in exactly the same way as in Section 4.4.1.

(c) Suppose thatuserthasreceived [gy;]. and [gy; - (Rp-X, —77) -w,, g, for

f € F, whereF, C F,. He computes ZfeF; lg55]. and ZfeF; lgss-
(Rf . Ib - Ff) . Wuj]]u-

(d) Usertsends H%,b]] us [[qt,b' (Rth_?t)]]u) Zfepu_ [[‘If,b]]u and Zfepu_ [[Qf,b'
(Rf - I, — 77) - wy g, to user £,

5. User t* receives [qip]uw [qep - (Re- Ty —70) ] EfeF; lg55]. and ZfEF; lgss -
(Rf - I = 77) - wyg], from t € T,. He then does the following.
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(a) Compute [nr],, [dr]., [n£]4, [de].and [X]., [Y]. in exactly the same

way as in Section 4.4.1.

(b) Run a comparison protocol COM with user u for the latter to learn

whether )—5 > T — 7,

4.5.2 COMPARISON TO CENTRALIZED PROTOCOL

In contrast to the centralized protocol from Section 4.4.1, the task of the semi-
honest service provider is distributed to the “strangers”, namely FoFs of user u. The
overall computational complexity stays the same. The reason we have chosen the
strangers to handle most of the computations is to reduce the complexity of the
friends. In reality, the number of friends will be very limited, while the number of
FoFs is much larger so that the chance a FoF is chosen is quite low.

If we assume trust can propagate through a chain of friends, then the strangers
can be chosen more freely in the above solution. In comparison to the protocol

from Section 4.4.1, this solution has the following advantages.
« The users do not need to semi-trust the service provider any more.

« User u can select the users (his friends and FoFs) to compute recommenda-
tions for himself. In order to do this, user u needs to maintain a social graph
(at least his friends and FoFs).

However, it also has the following disadvantages.

« User u’s FoFs need to perform more computations. Basically, the workload
of the service provider has been shifted to them. This may become a heavy

burden for the users.

« Users need to put more trust on their friends and FoFs, particularly on the
user t*. The users cannot leverage the service provider to blend their inputs
anymore, and the trust has been shifted to user user t*. In theory, this can
be avoided by a secure multi-party computation protocol, but this will sig-

nificantly increase the complexity.
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Clearly, from the efficiency perspective, the centralized solution from Section
4.4.1ismorerealisticin practice. In order to reduce the trust on the service provider,
we can (at least) add two layers of validations on its behaviors. One is that, before
participating in the protocol execution, a stranger can ask the service provider to
provide a chain of friends so that he can validate the public key pk,. The other is
that user u can ask the service provider to prove that it has performed the required

operations honestly.

4.6 AcCCURACY PROPERTIES OF THE PROPOSED PROTOCOLS

In this section, we investigate the recommendation accuracy of the prediction al-
gorithms from Section 4.3, with respect to both centralized and decentralized set-
tings where strangers are chosen differently therein. Because the 10-FMT dataset
may be biased due to the fact that most of users don’t post their movie ratings to
Twitter, we also use MovieLens 100k dataset [ 45 ] with simulated friendships. In-
terestingly, the results align well in both datasets. In the experiments, we randomly
split each data set into training set (80%) and testing set (20%). Note that in order
to test all the users each time, instead of randomly splitting the original data sets
in form of triplets (user_id, item_id, rating), we randomly split each user’s rating
history into training set (80%) and testing set (20%). In each test, a user’s friends
are randomly selected from his friend-set, the strangers are also randomly chosen.
The MAE values summarized in the following tables are the mean value of their

corresponding 5-fold cross validation.

4.6.1 AcCCURACY IN CENTRALIZED SETTING

With respect to the 10-FMT dataset, the MAE of the proposed recommendation
algorithm, Section 4.3.1, is summarized in Table 4.6.1. Due to the fact that a user

has limited number of friends in the 10-FMT dataset, we only compute MAE up

a

a+p
the possible values of (|F,|, |T,|), where strangers are randomly sampled. Lower

to so friends. The column denotes the possible values of —— and the row denotes

MAE implies more accurate recommendations.
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0.5 0.6 0.7 0.8 0.9 1.0

(10, 10) 0.6178| 0.6197| 0.6192| 0.6299| 0.6362| 0.6388

(20,10) 0.6140| 0.6168| 0.6156| 0.6204| 0.6208| 0.6291

(30, 10) 0.6076| 0.6090| 0.6094| 0.6169| 0.6234| 0.6371

(40, 10) 0.6073| 0.6066| 0.6104| 0.6150| 0.6215| 0.6300

(50,10) 0.6066| 0.6053| 0.6095| 0.6138| 0.6199| 0.6289
Table 4.6.1: MAE on 10-FMT

With respect to the MovieLens 100k dataset, we define friends and strangers as
follows. Given a user u, we first calculate the Cosine similarities with all other users
and generate a neighborhood for user u. Then, we choose a certain number of users
from the top-K; most similar neighbors as the friends (In the experiments, Ky =
250.), and randomly choose a certain number of users from the rest as strangers.
The MAE of the revised TW algorithm from Section 4.3.1 is summarized in Table
4.6.2. According to the accuracy results by Lemire and Maclachlan (in Table 1
of [67] where the values are MAE divided by 4), their smallest MAE is 0.752 =

0.188 X 4. We can get similar or lower MAE when |F,| > 70 by adjusting e 5
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0.5 0.6 0.7 0.8 0.9 1.0

(10, 10) 0.8195| 0.8112| 0.8074| 0.8104| 0.8157| 0.8290

(zo, 10) 0.8115| 0.8002| 0.7964| 0.7937| 0.8028| 0.8086

(30,10) 0.8046| 0.7932| 0.7866| 0.7822| 0.7874| 0.7952

(40, 10) 0.8000| 0.7852| 0.7779| 0.7739| 0.7770| 0.7834

(50, 10) 0.7943| 0.7800| 0.7693 | 0.7666| 0.7658| 0.7728

(60,10) 0.7913| 0.7757| 0.7640| 0.7593| 0.7601| 0.7636

(70, 10) 0.7888| 0.7715| 0.7601| 0.7536| 0.7530| 0.7572

(80, 10) 0.7856| 0.7682| 0.7561| 0.7482| 0.7470| 0.7484

(90,10) 0.7830| 0.7665| 0.7527| 0.7445| 0.7424| 0.7428

(100, 10) 0.7815| 0.7626| 0.7492| 0.7398| 0.7371| 0.7386
Table 4.6.2: MAE on MovielLens 100k

From the numbers in Table 4.6.1 and Table 4.6.2, there is a general trend that
MAE decreases when friends number increases. We plot some columns of both
tables for a better illustration, shown in Fig 4.6.1.

When the numbers of friends and strangers are fixed, the contribution factor

a

a+p
ofboth tables for a better illustration, shown in Fig 4.6.2. The MAE decreases when

also plays arole in determining recommendation accuracy. We plot some rows

ﬁ increases (i.e. friends has more contribution) on the MovieLens 100k dataset,
while the MAE slightly increases when ﬁ grows higher than 0.6 on the 10-FMT

dataset.

4.6.2 AcCCURACY IN DECENTRALIZED SETTING

For the decentralized setting, we compute the MAE on both datasets and present
them in Table 4.6.3 and Table 4.6.4 respectively. The MAE values are very close to
those in Table 4.6.1 and Table 4.6.2, so that we can conclude that the recommen-

dation accuracy is similar in both settings. It implies that sampling strangers from
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FoFs does not bring much accuracy gain with respect to both datasets.

74



0.5 0.6 0.7 0.8 0.9 1.0

(10, 10) 0.6209| 0.6168| 0.6234| 0.6289| 0.6309| 0.6465§

(20,10) 0.6135| 0.6147| 0.6164| 0.6179| 0.6275| 0.6367

(30, 10) 0.6133| 0.6085| 0.6132| 0.6188| 0.6248| 0.6309

(40, 10) 0.6124| 0.6116| 0.6110| 0.6167| 0.6233| 0.6297

(50,10) 0.6104| 0.6084| 0.6104| 0.6147| 0.6214| 0.6301
Table 4.6.3: MAE on 10-FMT (Decentralized)

0.5 0.6 0.7 0.8 0.9 1.0

(10,10) 0.8181| 0.8138| 0.8132| 0.8158| 0.8188| 0.8265

(20, 10) 0.8082| 0.8034| 0.7978| 0.7994| 0.8012| 0.8123

(30, 10) 0.8026| 0.7922| 0.7879| 0.7855| 0.7885| 0.7961

(40,10) 0.7953| 0.7862| 0.7778| 0.7763| 0.7786| 0.7826

(50, 10) 0.7917| 0.7801| 0.7726| 0.7686| 0.7688| 0.7731

(60,10) 0.7862| 0.7747| 0.7638| 0.7625| 0.7620| 0.7664

(70,10) 0.7854| 0.7698| 0.7604| 0.7565| 0.7532| 0.7565§

(80, 10) 0.7799| 0.7663| 0.7578| 0.7502| 0.7488| 0.7489

(90,10) | 0.7781| 0.7647| 0.7524| 0.7447| 0.7407| 0.7430
(100, 10) 0.7758| 0.7603| 0.7497| 0.7406| 0.7379| 0.7377
Table 4.6.4: MAE on MovieLens 100k (Decentralized)

4.6.3 COMPARISON

Jeckmans et al. [ 57] proposed a similar solution, refer to as JPH protocol, in which

only friends’ data is counted in the recommendation computations. The predici-
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ton process of JPH protocol is defined as

Wy f+Wfu
f2 f )

D jer, b 1o

Y er, i - (M)
> er, b+ (Wag & wra)
D per, Qb+ Wy + W)

Pup =

(4.4)

where b denotes the item under prediction. the authors only discussed the secu-
rity properties of their solutions without touching upon the performances. In this
sections, we evaluate its accuracy performance on the two realword datasets.
Since strangers are not considered in the JPH prediction algorithm [57], we
compute the MAEs by only considering friends. For comparison, we assume all
the friends are rational, and let m equal to the Cosine similarity between user
u and friend f. With respect to the 10-FMT and MovieLens 100k dataset, the MAE
results are summarized in Table 4.6.5 and 4.6.6 respectively. Clearly, their accuracy

is much worse than our protocols which is mainly due to two reasons.

« JPH employs a very naive neighborhood-based method which can not cap-
ture users’ rating preference. For example, some users prefer to give high

ratings while some others lean to give low ratings.

o In reality, the data sets are very sparse and imbalanced. It may arise more
serious cold-start problem to collaborative filtering techniques, including

neighborhood-based method, if only using friends’ rating information for

predication.
Friends Num 10 20 30 40 50
MAE 2.5961 2.2464| 2.0690| 1.9677| 1.9072

Table 4.6.5: MAE of JPH on 10-FMT
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Friends Num 20 40 60 80 100

MAE 1.9021| 1.49451 1.2978| 1.1825| 1.1018
Table 4.6.6: MAE of JPH on MoivelLens 100k

4.7 SECURITY ANALYSIS OF THE PROPOSED PROTOCOLS

In the threat model (Section 4.3.2), the service provider is assumed to be semi-
honest, which means it will follow the protocol specification and does not partici-
pate in the protocol as a user. Moreover, a user trusts his friends to be semi-honest.
As to communication channel among users, it is assumed that all communications
are protected with respect to integrity and confidentiality (with forward secrecy).
In the worst-case security model, it is assumed that some friends can be compro-
mised.

The protocols from Section 4.4 and 4.5 are secure in both models based on the
facts that all computations are done in the encrypted form under user u’s public key
and the comparison protocol is secure. It is worth noting that in these protocols
the server does not need to generate any key pair for the SWHE scheme. As a
result, the protocols are immune to key recovery attacks.

Next, we experimentally study the information leakages from recommendation
outputs. We take the centralized protocols (where strangers are involved in the
computation) as an example, and leave out the decentralized protocol which has

similar results.

4.7.1 INFERENCE FROM OUTPUTS

Intuitively, the potential information leakages from recommendations depends on
the global parameters a,  and the sizes of F, and T,. If ﬁ gets larger or the size
of T, gets smaller, then the inputs from friends contribute more to the final output
of user u. This will in turn make inference attacks easier against the friends but

harder against the strangers. In the protocol design, we explicitly prevent user u
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from communicating with the strangers, therefore, user u will not trivially know
whether a specific user t has been involved in the computation. The strangers are
independently chosen in different protocol executions and the same stranger is
unlikely to be involved in more than one executions, so that it is difficult for an
attacker to leverage the accumulated information. Furthermore, we note the fact
that there are many users in recommender systems but only 6 possible rating values
for any item. This means that many users would give the same rating value r, for
the item b. With respect to the single prediction protocol, even if r; j is leaked, user
u will not be able to link it to user ¢.

In our proposed algorithm, a friend fs contribution to p, j is protected by the
inputs from users in F,\f and the strangers in T,. Similarly, a stranger ¢s contri-
bution to p,, is protected by the inputs from users in F, and strangers in T, \¢.
We perform some experiments to show how a single friend or stranger influences
the predicted rating values. We use the both the 10-FMT and MovieLens 100k

a

datasets, and set _- ; = 0.8 For illustration purpose, we only consider two set-

tings, namely (|F,|, |T,|) = (10,10) and (|F,|, |T.|) = (30, 10).

Take the setting (|F,|, |T,|) = (10,10) as an example, we perform the follow-
ing experiment to test a friend’s influence. In the experiment, we run s-fold cross
validation so times. In each 5-fold cross validation, we fix the friends of all users
in the dataset by randomly selecting 11 friends for each user at the beginning, say
each user has a fixed friend list L. Then for each user in the test set, the following

procedure is carried out.

1. Randomly choose 10 strangers.

2. Randomly exclude 1 friendf, from thelist L. Compute the predicted ratings

of user u in the test set. Let the prediction vector be denoted as P,

3. Randomly exclude 1 friend f, (f, # f,) from the list L. Compute the pre-
dicted ratings of user u in the test set. Let the prediction vector be denoted

as P,.
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Figure 4.7.1: Single Friend (Stranger) Influence on 10-FMT Dataset
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Figure 4.7.2: Single Firend (Stranger) Influence on MovieLens 100k Dataset
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4. Compute the prediction difference vector as P, — P,.

Experiments for testing a stranger’s influence and for the (|F,|, |T.|) = (30,10)
setting can be designed in a similar manner. After obtaining all prediction differ-
ence vectors P, — P, in the experiments, we plot the frequency of all difference
values in Figure. 4.7.1 for the 10-FMT dataset and in Figure. 4.7.2 for the Movie-
Lens 100k dataset. From the figures, it is obvious that an individual’s influence to
the output is quite small. In particular, a friend’s influence becomes smaller when
the friend set becomes larger. Another observation is that a stranger’s influence is
much smaller than a friend, but it stays almost the same when the friend set be-
comes larger.

Remark on Figure. 4.7.1. Statistically, >87% and >91% differences fall into the
range [—10%, 107 %] w.rt single friend influence testing and single stranger influ-
ence testing respectively. For clearly presenting those differences that fall out of
the range [—107%, 107 %] and keeping the histogram structure, ~98% of the differ-
ences that fall into the range [—107%, 107%] have been removed.

Remark on Figure. 4.7.2. Statistically, >89% and >81% differences fall into the
range [—10%, 107 %] w.rt single friend influence testing and single stranger influ-
ence testing respectively. For clearly presenting those differences that fall out of
the range [—107%, 10 %] and keeping the histogram structure, we remove ~98%

of the differences that fall into the range [—1075,10%].

4.8 COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, we investigate the computational complexities of the protocols
from Section 4.4.1 and 4.4.2. Since it is easy to infer the complexity of the de-
centralized protocol from the centralized one, we skip the details.

4.8.1  ASYMPTOTIC ANALYSIS

With respect to the computational complexity of the proposed protocols, we first

count the number of different computations required. For the single prediction

8o



protocol, the numbers of SWHE-related operations are listed in Table 4.8.1. COM

will be executed once.

Enc Eval(+,,) Eval(-,,)
Friend 2M+1 oM —1 oM+ 2
Stranger 2M 41 2M—1 2M 41
Server 4 2|T,| + 2|F,| —3 |F,|+ 6
User u M+ |F,| |o o

Table 4.8.1: Complexity of Single Prediction Protocol

For the Top-n protocol, the numbers of SWHE-related operations are listed in
Table 4.8.2. In addition, if we instantiate the RANK protocol with the well-known
Heapsort algorithm, the COM protocol needs to be executed O(M log M) times.

Enc Eval(+,,) Eval(-,,)
Friend 2M ) M
Stranger | 2M o 0
Server 3 2(|T, |+ |F | +M)M—sM | (2M+6+|F,|)M
User u 2M*+|F,| |o 0

Table 4.8.2: Complexity of Top-n Protocol

4.8.2 IMPLEMENTATION RESULTS

We instantiate a COM protocol based on that of Veugen [ 119] and evaluate its per-
formance. In addition to the SWHE scheme based on YASHE [ 13 ], the protocol
also relies Goldwasser-Micali scheme [44]. In both schemes, we set the bit-length
of the prime number to be 512. We implement the Goldwasser-Micali scheme,
which has the timing cost for Enc (1.5 ps), Dec (4.5 ys), based on an Intel(R)
Core(TM) i7-5600U CPU 2.60GHz. In executing the COM protocol, the compu-

tation time for the client and the server is roughly 0.45 ms and 2.82 ms respectively.
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We adopt the MovieLens 100k dataset where M = 1682 and set (|F,|, |T,|) =
(70, 10). We use the Microsoft SEAL library [28] based on YASHE scheme. The
timing information of the SEAL lib is Enc (42 ms), Dec (41 ms), Eval(+,,) (305
ms), Eval(+,, ) (85 ps). The timing information of our protocols is shown in Ta-

ble 4.8.3, and the source code isin [122].

Friend Stranger | Server User u

Single 1.12 1.00 0.72 74.17

Top-n | 141.22 | 140.55 1726446 | 236424
Table 4.8.3: Timing Numbers (Seconds)

Regardless the resource-constrained testing environment, it is clear that the Top-
n protocol is very inefficient. The complexity mainly comes from the fact that we
want to restrict user u to only learn the Top-n recommendations and prevent the
server from learning any information. As such, there are two possible directions

to relax the security guarantee and get better efficiency.

« One is to let user u learn more information (denoted as Relax-1 in Table
4.8.4). Referring to the protocol specification in Section 4.4.2, in stage 3,
user u does not need to generate My, My and the server does not need to
compute ([U,],; [Unlus - -+ [Umw) and ([Vi]u, [Vallus - - - 5 [V]u)- There
is no need to perform the ranking, the server just sends [X, ], [Y]. for ev-
ery1 < b < Mto user u, who can decrypt these ciphertexts and obtain the

Top-n recommendations.

« The otheris to let the server learn how many items user u has rated (denoted
as Relax-2 in Table 4.8.4). In addition, we need to assume that the strangers
will not collude with the server. Referring to the protocol specification in
Section 4.4.2, in stage 1 and 2, user u generates a random permutation for
the items in the item set and share the permutation information with the
friends and strangers. In stage 3, user u does not need to generate My, My

and the server does not need to compute ([U,],,, [U,]., - , [Uu].) and
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(IVillus [Valus - -+ s [Va])- In stage 3, user u tells the server which items
hasbeen rated (the indices of these items have been permuted), and they in-
teractively perform the ranking for the unrated items in the encrypted form

as before.

Friend Stranger | Server | User u

Relax-1 | 141.22 140.55 1562 | 141.58

Relax-2 | 141.22 140.5§ 1610 10.46

Table 4.8.4: Timing Numbers (Seconds)

4.9 RELATED WORK

Existing privacy-protection solutions can be generally divided into two categories.
The cryptographic solutions (e.g. [5, 18, 86, 118]) often aim at securing the pro-
cedure of underlying recommender protocols, namely they do not consider the
information leakage in the outputs. In this category, a typical method is to em-
ploy somewhat homomorphic encryption schemes and let all computations be
done in encrypted form. Unfortunately, this will incur intolerable complexities
and make the solutions impractical. Even though in the neighborhood-based sys-
tems, predictions are computed based on a small subset of users’ data, a secure so-
lution must compute the neighborhood privately in the first place, and this often
introduces a lot of complexity. Moreover, many solutions (e.g. [86]) introduce
additional semi-trusted servers which are difficult to be instantiated in reality. The
data-obfuscation solutions (e.g. [109, 129]) rely on adding noise to the original
data or computation results to protect users’ inputs. These solutions usually do
not incur complicated manipulations on the users’ inputs, so that they are much
more efficient. The drawback is that they often lack rigorous privacy guarantees
and downgrade the recommendation accuracy to some extent.

In order to improve the efficiency of privacy-preserving recommender systems,

one typical approach is to design more efficient cryptographic tools. However,

83



even if the speedup is significant in cryptographic sense, it often does not result
in practical reccommender systems. This is due to the large underlying user popu-
lations, which make model training and neighborhood selection unrealistic even
with efficient cryptographic tools. Recently, Jeckmans et al. proposed an inter-
esting solution direction in [57], where they proposed the concept of friendship-
based recommender system and gave solutions based on somewhat homomorphic

encryption schemes. The rationale behind their concept is the following.

« In order to avoid the computationally-cumbersome neighborhood selec-
tion step in neighborhood-based recommender systems, the solution lever-
ages auxiliary social network information of users. This approach reduces

the amount of data used in computing predictions significantly.

o Trust is a very subtle issue. Friends may trust each other in the sense that
their peers will not collude with a third party to leak their information. If
a collusion is discovered, then their relationship can be broken. Moreover,
some information may be sensitive among friends, but not with strangers.
For instance, if a user has watched a porn movie, then disclosing this to his
friends may make him embarrassed, but disclosing it to a stranger may not
cause any harm. This motivates the adoption of homomorphic encryption

to secure the computation.

4.10 CONCLUSION AND FUTURE WORK

In the chapter, we presented a friendship-based recommender system which al-
lows computing recommendations with the data from a few of users. We first
demonstrated that our proposed recommender system allows a promising accu-
racy performance, then we implemented a secure protocol based on this system,
with resort to a somewhat (fully) homomoprhic encryption scheme. This rec-
ommender system requires a much fewer number of users (for recommendation
computation) than existing recommendation algorithms do, significantly improv-

ing the efficiency performance. We have also provided detailed analysis to rec-
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ommendation accuracy, inference attacks, and computational complexities. The
idea of introducing randomly selected strangers to prevent information leakages
from the output share some similarity with the differential privacy based approach
[76] and the differential identifiability approach [66]. A more rigorous compari-
son remains as an interesting future work, particularly in the line of the works from
[11, 29]. With respect to accuracy analysis, it is an interesting future work to per-

form a study on an unbiased real-world dataset.
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CryptoRec: Privacy-preserving

Recommendation as a Service

5.1 INTRODUCTION

Machine Learning as a Service (MLaa$) has become increasingly popular, with
the progress of cloud computing. As the reccommender system is always one of the
most important machine learning tasks, deploying cloud based recommendation
service is definitely an important topic. In fact, commercial applications of Rec-
ommendation as a Service have existed, such as Amazon [6] and Recombee [ 101 ].
On the one hand, a user can efficiently get preferred products from a vast number
of items due to the recommender system; on the other hand, the user data is ex-
posed to the service provider and can be abused [31, 82]. As such, it results in

immediate privacy risks to the user. In this chapter, we study how to obtain efh-
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cient and accurate recommendation services while preserving data privacy. As an
illustrative example, consider the following scenario:

A user (client) with some private data (e.g., ratings) would like to buy a recom-
mendation service to efficiently figure out the most favorable products from alarge
number of potential candidates. A service provider (e.g., Amazon) has already col-
lected a large database of ratings given by its users on sold items and wishes to
monetize its data by selling Recommendation as a Service (Raa$). Different from
existing recommender systems, in our scenario the client is unwilling to expose
her data to the service provider due to the worries of privacy leakage. At the same
time, commercial concerns or requirements may prevent the service provider from
releasing its trained recommendation model to the public. In addition, releasing
a trained model may also bring privacy risks to the users in the service provider’s
database.

We can formalize the above scenario as a secure two-party computation (2PC)
protocol. We first describe the Recommendation as a Service (RaaS) as a 2PC
protocol, where on one side we have the Server (service provider) with its training
data and on the other side the Client with her input. When the protocol termi-
nates, the Client learns a prediction for her input. For obvious reasons, the pro-
tocol is only as useful to the Client as the accuracy of the predictions. Then we
define the security of the 2PC protocol from two aspects: (1) the Client should
only learn the predictions (including what can be inferred from the predictions);
(2) the Server should not learn anything about the Client’s input. General cryp-
tographic primitives such as secure multi-party computation (SMC) and homo-
morphic encryption (HE) are immediate candidates to overcome these security
concerns.

State-of-the-art recommender systems often rely on non-linear operations, or
require training the recommendation model with the Client’s data [64, 78, 132,
133]. Generic solutions usually come at a prohibitive cost in terms of efficiency.
While improving cryptographic tools (e.g., HE or SMC) is one typical way to
achieve more efficient privacy-preserving solutions, unfortunately, the improve-

ment is usually far from satisfactory to make these solutions practical enough. Re-
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cently, CryptoNets [43 ] and MiniONN [72] have been proposed for privacy pre-
serving neural networks based MLaaS, the scenario of which is similar to ours.
Moreover, they assume machine learning models have been pre-trained (the Client’s
data is not required to be existing in the training set). The primary contribution
of CryptoNets and MiniONN is how to efficiently compute non-linear operations
on encrypted data. Instead of using state-of-the-art non-linear activation functions
such as ReLu (relu(x) = max(o, x)), CryptoNets proposed using a square activa-
tion function (f(x) = x*) to avoid non-linear operations, to facilitate evaluating
neural networks on encrypted data. This approach may result in a significant ac-
curacy loss [72]. MiniONN introduced a multi-round interactive protocol based
on HE and garbled circuits [62], in which non-linear operations were computed
by interactions between the Server and the Client. This method requires the two
parties to be online constantly, which may increase the difficulty of using MLaaS.
Our contributions. We tackle this problem from the direction of designing crypto-
friendly machine learning algorithms, so that we can achieve efficient solutions by
directly using existing cryptographic tools. In particular, we propose CryptoRec,
a new non-interactive secure 2PC protocol for RaaS, the key technical innovation
of which is an HE-friendly recommender system. This recommendation model
possesses two important properties: (1) It uses only addition and multiplication
operations, so that it is straightforwardly compatible with HE schemes. With this
property, CryptoRec is able to complete recommendation computations without
requiring the Server and the Client to be online continuously. Simply put, the
Client sends her encrypted rating vector to the Server, then the Server computes
recommendations with the Client’s input and returns the results in an encrypted
form. In addition to this, there is no other interaction between the two parties;
(2) It can automatically extract personalized user representations by aggregating
pre-learned item features, that we say the model has an item-only latent feature
space. This property allows the Server with a pre-trained model to provide recom-
mendation services without a tedious re-training process, which significantly im-
proves the eficiency performance. Note that the Client’s data is not in the Server’s

database which is used for model training.
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CryptoRec is able to produce recommendations in a direct mode (using only
a pre-trained model learned on the Server’s database which does not contain the
Client’s data) or in a re-training mode (where the model is first re-trained with the
Client’s input before computing recommendations). The re-training mode pro-
duces slightly more accurate predictions. In the direct mode, we can instantiate
our protocol with an additive HE scheme such as the very efficient Paillier cryp-
tosystem [91]. We test both modes of CrytoRec on MovieLens-1M (mlim)[45],
Netflix (netlfix) [84] and Yahoo-R4 (yahoo) [1] public datasets. Experiment re-
sults show that the direct mode allows the Server with thousands of items to pri-
vately answer a prediction query in a few seconds on a single PC. To re-train the
model with the Client’s input, we need a limited number of homomorphic addi-
tive and multiplicative operations. Therefore, we must rely on a Somewhat HE
scheme (SWHE) [37]. Besides the advantage that our solution relies only on lin-
ear operations and converges in a very few numbers of iterations, the accuracy of
the predictions produced by our model is less than 2% away from those achieved
by the most accurate collaborative learning algorithms known to date (depend-
ing on the datasets). In practice, the Client can choose either of the two modes,
according to her preference on the trade-off between accuracy and efficiency.

As a byproduct, the CryptoRec model naturally achieves transferability, in the
sense that we can easily transfer the knowledge learned from one dataset to another
if they share the same item set. We experimentally demonstrate the transferability
of our model and discuss how it facilitates recommendations as a service in terms

of both utility (i.e. accuracy and efficiency) and privacy.

5.2 CRYPTOREC

In this section, we present CryptoRec, a non-interactive secure 2PC protocol built
on top of anew homomorphic encryption-friendly recommender system, referred
to as CryptoRec’s model. In Section 5.2.1, we introduce CryptoRec’s model. In
Section 5.2.2 we explain how to train the model and learn the parameters ©. Fi-

nally, in Section 5.2.3, we combine the prediction procedure of our model with
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homomorphic encryption. This gives rise to our CryptoRec protocol. We also
consider a second variant of the protocol in which the model parameters © are re-
trained before computing recommendations. The re-training occurs in encrypted
form, therefore it results in better accuracy without compromising security. Nat-

urally, the computational cost on the Server side is considerably heavier.

5.2.1 CRYPTOREC’S MODEL

Existing collaborative filtering (CF) technologies require non-linear operations or
re-training with the Client’s data [64, 78, 132, 133]. Directly applying the existing
CFs to encrypted data leads to severe efficiency problems. To address this issue,
we propose CryptoRec’s model, a new homomorphic encryption friendly recom-
mender system. It models user-item interaction behaviors in an item-only latent
feature space. This means that the user features do not exist in the latent feature
space, the model will automatically compute the user features by aggregating pre-
learned item features. This property allows the Server with a pre-trained model
to provide recommendations for the Client without having to re-train the model
with the Client’s data. Algebraic operations in CryptoRec’s model are constrained
to only additions and multiplications, thus CryptoRec’s model is straightforwardly
compatible with homomorphic encryption schemes.

We exploit the fact that a user profile is essentially identified by items that the
user hasrated, to construct personalized user features in an item-only latent feature
space. In particular, we model the personalized user features p, by aggregating pre-

learned item features Q = {q,}"", as follows,

Pu :l‘uQ (51)

therefore we can approximate an observed rating r,; by

Tui ~ ;'ui = (ruQ) ‘LT (52)
——
pu
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Using only a single latent feature space Q to model a large number of ratings
often leads to an information bottleneck. To address this issue, we relax the item
features which were used to construct user features P, and redefine the Equation
(5.2) as

ru ~ (r,A) qf (5-3)

Note that A € R™* is a new item feature space.

We now have the basic form of CryptoRec’s model which has an item-onlylatent
feature space and relies only on addition and multiplication operations. However,
it is not robust enough in practice due to the high variance of individual user or
item behaviors, commonly known as biases. For example, real-world datasets ex-
hibit large systematic tendencies for some users to give higher ratings than others,
and for some items to receive higher ratings than others [64]. To address this is-
sue, a common approach is to identify the portion of these ratings that individual
user or item biases can explain, subjecting only the true interaction portion of the
ratings to latent factor modeling [64]. The user and item biases are often approxi-
mated by

by=u+b,+b (5.4)

Z(u,i)ek Tui

where y = N

is the global rating average, N is the number of observed
ratings. b, and b; approximate user bias and item biases, respectively. To obtain
b, and b;, we can either compute b, = 7, — pand b; = 7; — p [64], or directly
learn their values from a dataset [63]. The former ignores the global effects upon
a single user or item; the latter models both the individual behaviors and global
effects, but sometimes it leads to an early overfitting. To maintain both reliability
and accuracy, we separately model the individual behaviors and global effects as
follows

by =4+ b,+ b+ b+ b (5-5)

where b, and b; are computedas b, = r, — pand b; = r; — p. b} and b are the
parameters directly learned from the dataset to capture only the impact of global

effects upon a single user and item, respectively.
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We combine the biases approximator (Equation (s.5)) and the user-item inter-

action approximator (Equation (5.3)) to formalize the final CryptoRec’s model as

following,
Tui & Ty =+ b, + b + bl + b + (r,A)q (5.6)
~ ~ N —
iases interaction

As such, the user preference estimation is separated into two parts: biases approxi-
mator and user-item interaction approximator. This allows only the true user-item
interaction being modeled by the factor machine (i.e., Equation (5.3)). The model
parameters of CryptoRec’s modelare ® = {A, Q,b], b/} *, where b} = {b}}"_
b7 = (b

5.2.2 TRAINING

The model parameters © = {A, Q. b}, b} are learned by solving the regularized

least squares objective function,

L= |l —r)-l

+4- (1Al + lQl” + by I + (167 [1°)

(5.7)

where 7,; is defined in Equation (5.6), ¢, = {¢,}/~, and (r, — r,) - ¢, denotes
{(ru— ”ui)%,-}:n:r If user urated item i, then ¢ , = 1, otherwise, welet ¢ . = oand
r.i = 0. We use ¢ . to remove the (incorrect) gradients computed on unobserved
ratings. The constant A controls the extent of regularization. When performing
training on plaintext dataset, the Server can compute ¢ . by itself, avoiding the un-
necessary gradient computations on unobserved ratings.

As shown in Equation (5.6), CryptoRec’s model is in fact a two-layer network.
The first layer outputs the user feature vector p, = r,A and the second layer

integrates the user features, item features and biases to estimate the user prefer-

"For the convenience of notation in describing the algorithms later on, we omit {g, b,,b;}
from the model parameters @ in favor of a slightly more succinct notation. Note that {y, b,,b;}
are not learned by training procedure either.
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ences. Back-propagation [65] is a standard method used in neural networks to
calculate a gradient that is needed in the calculation of the values of parameters
in the network. Simply put, we first compute the predictions given the input data
(ie., a forward pass); and then we calculate the total error according to the ob-
jective function (e.g., Equation (13)). Lastly, we compute the gradient of each
trainable parameter using the error back-propagated through the network layers
(i.e., a backward pass). Using the back-propagation method, we have the gradient

of each model parameter of CrypotRec’s model as follows,

oL o

A = — . =4 = (e, - T4+1-A
apu aA [(eu (Pu)Q] ® ru +
oL
Aq, = 8_ =@y (eui : (ruA) +2- qi)
q;
(5-8)
Ab* oL +2A-b
= e
u ab: U(Pu u
oL
A =25 e £2- b
1 8b;|< e (Pl + 1
wheree,; = 7,; — tu, €, = {e,,,-}j”z1 , e = {eui}zzﬂ and e, - P, = {eui K S

® denotes outer product >. We randomly divide the dataset into multiple batches.
In the training phase, we compute gradient by batch and update the model param-
eters by moving in the opposite direction of the gradient (i.e., gradient descent
optimization algorithm). Algorithm 4 outlines the model training procedure. The
learning rate 7 is used to control the speed of model updates. Note that the training

procedure only relies on addition and multiplication operations.

5.2.3 Two SECURE PROTOCOLS

In this section, we introduce two CryptoRec secure protocols. In the first proto-
col, the Server uses pre-trained model parameters © and directly takes as input

the Client’s encrypted rating vector to compute recommendations. In the second

*Given two vectors x'*" and y"*', (x ® y);; = x;;
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Algorithm 4 CryptoRec’s model training procedure 7

Input: Rating R, rating indicator @ , user mean ratings r, = {?u}
@ = {A(O)7 Q—(O) Y b:(O) Y b:k(O)}
Output: Optimized © = {AK®) QX b*®), b

1

n
u=1’

1: procedure 7 ({R, ®,r,},0)
fork <+ {1,2,--- ,K} do
AR Ak AARY) > 7: learning rate

)

3:

4: QS’C) < Q’(kfl) _ ’1 X AQ'(kil)

5t b*(k) pa b*(k—l) —7- Ab*(k_l)

6: bf(k) « b:‘(k—l) - Ab;k(k—l)

7: return © = { AK) Q(K), b:(K)7b7(1<)}

protocol, the Server re-trains the model parameters © before computing recom-
mendations. For the sake of clarity, we denote the Client as v in this section.
Secure protocol with a pre-trained model. Figure §.2.1 describes the security pro-
tocol for prediction with pre-trained model parameters ©. The Client v sends [r, ]
and [[r,] to the Server, which executes the prediction process P (described in Fig-

ure 5.2.1) and returns the encrypted results r,.

User (Input: r,,7,) Server (Input: ©)
[x,] <—s Enc(r,, pk)
[7.] <5 Enc(7,, pk)
[l = {lw], [n.0}

i,

[v.] < P([x]. ©)

[&]

r, + Dec([r,], sk)

Figure 5.2.1: CryptoRec with pre-trained ® = {A,Q,b’, b’}

Y Fur T

We present the prediction process P of CryptoRec’s model in Algorithm §. The
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Algorithm 5 CryptoRec’s model prediction procedure P

Input: Ratings [r,], [r,], ® = {A, Q. b}, b}, 4, b,, b;}

Output: Recommendations [r, ]

1: procedure P({[r,], [7.]}, ©)
2 if b ¢ b} then >bY € b if re-traininng the ©
b Zumb

Ip,] < [r.]A > HE dot-product using ® and &
fori < [1,2,--- ,m| do
[x] « (b +bf + b)) @ [7.] >b, <7, —
[x.] < p,]a/
[[?vi]] — [[xl]] b [[x?-]]
[e.] 1] = 7]

10: return [r,

e ® 3 > R

computation is straightforward since CryptoRec’s model contains only addition
and multiplication operations, as we can observe in Equation (5.6). The inputs of
this algorithm are the Client’s encrypted rating vector [r,], the average rating [r,]
and model parameters ©. Since the Client’s b is unknown to the Server, b] is set
to the average value of b} (line 2-3, Algorithm ).

Secure protocol with re-training. In order to achieve the most accurate predic-
tions, we introduce a re-training process to the CryptoRec protocol, shown in Fig-
ure 5.2.2. Compared to the secure protocol without a re-training step (using only
a pre-trained model, Figure 5.2.1), there are two differences: The first one is that,
besides [r,] and [7,], the user also sends the encrypted indication vector [, ] to
the Server, which will be used in the training procedure 7 . The second one is that,
before computing recommendations using P (Algorithm s), the Server re-trains
the model parameters © with the Client’s inputs.

The training procedure 7 is described in Algorithm 4, takes advantage of ho-
momophic properties of the encryption scheme. It is worth stressing that in the

re-training protocol, we re-train the model parameters © with only the Client’s
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User (Input: r,, ¢ ,7,) Server ( Input: ©)
[x,] <=5 Enc(r,, pk)

[[SDV]] s Enc(‘Pv’ pk)

[7.] s Enc(7,, pk)

[x] < {[x.], [o,1, [%.]}

I,
[0] < T([x].©)
] < {In]. [n]}
[v.] < P(Ix.]. [©])

t, <—s Dec([r,], sk)

Figure 5.2.2: CryptoRec with re-training ® = {A,Q, b}, b’}
data, not the Server’s dataset. For efficiency reasons, the Server should pre-train
the model parameters © on its dataset. Note that after the re-training process, the
model parameters © are encrypted. So the related algebraic operations in the pre-
diction process P should be also updated to their corresponding homomorphic
operations.

The data security and the correctness of algebraic operations are guaranteed by
HE primitives straightforwardly. The client can (always) generate a new pair of se-
cret/public keys to encrypt its data when requiring reccommendation services. The
server trains a randomly initialized CryptoRec model with a stochastic method, so

the learned model is non-deterministic.

5.3 EXPERIMENT SETUP

We evaluate the accuracy and efficiency performances of CryptoRec on the rating
prediction task and compare CryptoRec with several state-of-the-art collaborative
filtering algorithms, including item-based NBM (I-NBM) [25], biased matrix fac-
torization (BiasedMF) [64], user-based AutoRec (U-AutoRec) [106] and item-
based AutoRec (I-AutoRec) [106]. We test these models on three datasets which

are widely used for recommender systems performance evaluation, as shown in
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Table 5.3.1. The dataset mlim [45] contains 1 million ratings; yahoo [1] con-
tains 0.2 1 million ratings; For netflix [ 84] dataset, we select 11, 0oo users who have
given 1.2 million ratings to 4,768 items, where each user has atleast 30 ratings. The
testbed is a single PC with 8 Intel (R) Xeon(R) CPUs running at 3.5 GHz, with
32 GB of RAM, running the Ubuntu 16.04 operating system. All the 8 CPUs are

used in the experiments.

user # | item # | density | scale

netflix | 11,000 | 4,768 | 2.17% | [1,5]

mlim | 6,040 | 3,952 | 4.2% [1,5]
yahoo | 7,637 | 3,791 | 0.72% | [1,5]

Table 5.3.1: Datasets used for benchmarking

5.3.1 DATASET SPLITTING

For each dataset, we randomly split all the users into a training set (80%) and a
validation set (20%), and then we randomly divide each user data vector of the
validation set into a feeding set (90%) and a testing set (10%). The training set
simulates the Server’s dataset, the feeding set simulates the rating data of the Client,
and the testing set is used for accuracy evaluation. In the experiments, the Server
trains recommendation models with its dataset. The Client sends its rating data
vector to the Server, as a query, to get recommendations. For the models which
have to be trained with the Client’s data (the feeding set), we directly append the
feeding set to the training set. These models, which require training from scratch
with the Client’s input, are identified in Section §.3.2. For all the models, we repeat
the accuracy evaluation experiments five times on each dataset. The root mean

square error (RMSE) is adopted as the accuracy metric,

Z(u i)ep(?m‘ — 1)
RMSE = .
\/ D)
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where D is the testing set, | D| is the number of ratings in the testing set. The lower

the RMSE value, the higher the accuracy performance is.

5.3.2 REMARKS ON MODEL TRAINING

NBM MF Neural Network Based
w/o Client | INBM][25] %] U-AutoRec[106],[90, 104, 113 ]
w/ Client | U-NBM[25] | BiasedMF[64],[63,78] | I-AutoRec[106], [50, 60, 123, 133 ]

Table 5.3.2: Remarks on model training

By investigating recommender systems which aim to provide accurate rating
predictions, we informally classify these models into two categories as shown in
Table 5.3.2. the category “w/o Client” contains the models which allow offering
recommendations with a pre-trained model while the Client’s private data is not
in the training set; the category “w/ Client” includes the models which have to be
trained or re-trained with the Client’s data. We refer interested readers to the two
comprehensive reviews [ 114, 132] for more details.

The models which fall into “w/ Client” category often have one or both of the

two following characteristics,

« User and item features are jointly learned in the training phase, such as MF

and its variants [ 63, 64, 78].

« Theinputisanitem rating vector (r;), suchas U-NBM [25] and [-AutoRec [ 106].

The models in the category of “w/o Client” often take as input a user prefer-
ence vector (e.g, r,). The personalized user features are automatically captured in
the prediction phase, such as I-NBM [25], U-AutoRec [106], and our proposed
CryptoRec’s model.

We select -NBM, BiasedMF (the representatives of traditional recommender
systems), and U-AutoRec, I-AutoRec (the representatives of neural network based

recommender systems) as the comparison baselines.
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netflix mlim yahoo
RMSE loss % RMSE loss % RMSE loss %
I-NBM 0.9115+0.007 9.4 0.8872+0.012 6.0 0.9899+0.017 0.2
U-AutoRec | 0.97627F0.012 17.1 0.9526+0.007 13.9 1.06211t0.014 7.5
CryptoRec 0.858610.005% 3.0 0.878110.007 4.9 0.9888+0.011 0.1
I-AutoRec 0.83347+0.006 0 0.8367%0.004 0 0.9880%0.015 0

Table 5.3.3: Accuracy comparison with pre-trained models. I-AutoRec is the
accuracy benchmark.

5.3.3 ACCURACY BENCHMARK

Without considering privacy, the model I-AutoRec achieves state-of-the-art accu-
racy (RMSE) performance [106]. As such, we adopt I-AutoRec as the accuracy
benchmark model and train it from scratch in a standard machine learning set-
ting. Table 5.3.4 presents the accuracy performance of I-AutoRec on the selected

datasets.

netflix mlim yahoo

I-AutoRec 0.9880+t0.015

Table 5.3.4: Accuracy benchmark (RMSE) on plaintext

0.83341+0.006 | 0.836710.004

5.3.4 HYPER-PARAMETER SETTING

To train the CryptoRec’s model, we perform a grid search for each hyper-parameter.
In particular, for the learning rate 77 we search in {0.0001, 0.0002, 0.0004 }; for the
regular parameter A we search in {0.00001, 0.00002, 0.00004 }; for the dimension
of the features {A, Q}, we search in {300, 400, 500, 600}. As a result, we choose
7 = 0.0002, 1 = 0.00002 and the dimension d = so00. To train the baseline
models, we also perform a grid search around the suggested settings given in their
original papers, as the dataset splitting is not the same. By doing so, we have a fair

comparison.
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5.4 PERFORMANCE EVALUATION

In this section, we first evaluate and compare the accuracy and efficiency perfor-
mance of using only a pre-trained model (Subsection 5.4.1). Then we investigate

the accuracy and efficiency performance of are-training process (Subsection 5.4.2).

5.4.1 COMPARISON WITH PRE-TRAINED MODELS

As described in Section 5.3.2, CryptoRec’s model, I'NBM, and BiasedMF allow
computing recommendation with a pre-trained model, and the Client’s private
datais notin their training set. In this section, we first verify and compare the accu-
racy performance by directly using the pre-trained models (without re-training the
models with the Client’s data). Then we analyze and compare the computational
complexity of responding one prediction query in a private manner. Compared
to the complexity of homomorphic operations, algebraic operations in the plain-
text space are trivial. As such, for the computational complexity analysis, we only
count in the operations over encrypted data, i.e., operations between two cipher-
texts (ie., @, ®) and multiplicative operations between a plaintext and a cipher-

text (ie., ®).

5.4.1.1 Accuracy COMPARISON

Table 5.3.3 presents the accuracy performance of each model. Compared to the
benchmark (Table 5.3.4), the accuracy of the three models is compromised to
some extent (column loss% ), and CryptoRec has the least loss. Specifically, Cryp-
toRec loses 3.0% accuracy on netflix, 4.9 % on mlim, and 0.1% on yahoo. Clearly,
CryptoRecis able to provide a promising accuracy guarantee to the Client by using

only a pre-trained model.
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® Sigmoid
[NBM O( m) | o
U-AutoRec | O(md) | O(md) | O(md)
CryptoRec | O(md) | O(md) %)

Table 5.4.1: Computational complexity comparison of using pre-trained mod-
els.

5.4.1.2 CoMPUTATIONAL COMPLEXITY COMPARISON

To respond to a query from the Client, the Server has to predict the Client’s pref-
erences on all the items since it gets only an encrypted rating vector ([r,]). We
analyze each model’s computational complexity of answering one query, as shown
Table 5.4.1. Among the three models, 'NBM consumes more homomorphic ad-
ditions (é0) and multiplications (®); U-AutoRec costs a similar number of & and
® than CryptoRec’s model, but it introduces O(md) non-linear transformations
(ie., Sigmoid). Computing the Sigmoid function often relies on secure multiparty
computation (SMC) schemes or polynomial-approximation [43, 72]. The former
requires the Server and Client to be online constantly and pay the price of extra
communication overhead [14, 72]; the latter leads to the use of a (somewhat)
fully homomorphic encryption scheme since it introduces homomorphic multi-
plications between two ciphertexts (®) [43]. Apparently, CrytoRec yields the

best efficiency performance.

5.4.1.3 EVALUATION OF CRYPTOREC

As shown in Table §.4.1, CryptoRec needs only homomorphic additions &, and
multiplications between ciphertexts and plaintexts ©. As such, any additively ho-
mommorphic encryption can be employed to implement CryptoRec. In this ex-
periment, we adopt the Paillier cryptosystem [91 ] implemented in the library python-
paillier [10]. In the implementation, we scale-up the parameter values to integers,
the Client can obtain correct recommendations by simply sorting the prediction
results. We let secret key size | = 2048. In this setting, the message size of one

encrypted rating [r,;]] is around 512 bytes, or 0.5 KB.
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Following the pruning method proposed by [49], we remove the model param-
eters of which the values are very close to zero (i.e., [—5 X 10 *, 5 X 10~ *]), since
these model parameters don’t contribute to the final predictions. Then we quan-
tify the values of the left model parameters to be 11 bits (2048 shared parameter
values), of which we can reuse most of the related computations. It is worth men-
tioning that this approach does not compromise the accuracy, sometimes, it even
leads to a slightly better accuracy performance. The same phenomenon has been

also observed by some other works such as [49, 88].
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Figure 5.4.1: CryptoRec’s model trained on dataset mllm: the distribution
of parameter values after pruning (left panel); the distribution of the reuse ra-
tio of each row of model parameters A and Q7 after the quantification (right
panel).

The left panel of Figure s.4.1 intuitively describes the model parameter values
distribution after the pruning, and the right panel of Figure 5.4.1 is the reuse ratio
distribution of each row of model parameters A and Q” after the quantification,
the model here is trained on dataset ml1m. Table 5.4.2 presents the pruning ratio

and overall reuse ratio of the CryptoRec’s model trained on each dataset, where

# of pruned parameter

T of all the parameier? and compute the reuse ratio as

we define the pruning ratio as

7 of unique parameter

1= # of all parameter *

According to Table 5.4.2, we know that reusing computations on the shared pa-

rameter values is able to significantly reduce the computational complexity. For
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netflix | mlim | yahoo

pruning ratio | 7.1% 9.2% 29.4%

reuse ratio 90.7% | 90.5% | 91.5%

Table 5.4.2: Parameter pruning ratio and computation reuse ratio of Cryp-
toRec’s models

example, when computing [r,] OA; = {[r.l ©A;, [r.l OA;,, -, Ir.] @Ajd},
we only need to compute © operations on each shared parameter value of A;; (j-th

row of A), and then reuse the results at the other places of A,.

netflix | mlim | yahoo

Communication (MB) 4.8 3.86 3.72

Server time cost (s) 14.2 10.9 7.3
Client time cost (s) 7.1 5.8 5.6

Table 5.4.3: The communication (MB) and time (s) cost of CryptoRec with
a pre-trained model

We summarize the communication and time cost of the Client and Server in
Table 5.4.3. To elaborate the prediction process and the costs, we take the experi-
ment on dataset ml1m as an example (We ignore the time cost of a public key pair

generation, as it is trivial to the overall time cost),

« Client: Encrypting the rating vector [r***] takes 4.5 seconds. The mes-

sage size of [[r;X”SZ]] is 0.5 X 3952 KB, or 1.93 MB.

« Server: Executing CryptoRec on [[r****] takes 10.9 seconds. The message

size of the output [r}****] is 1.93 MB.

1X3952

173952] takes 1.3 seconds.

« Client: Decrypting [x

We also implement the prediction process of -ZNBM with the Paillier cryptosys-
tem, where the item-item similarity matrix is pre-computed. Selecting the most
similar N items to a targeted item from a user’s rating history is a typical approach

used in I-NBM to compute recommendations. However, this approach introduces
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netflix mlim yahoo
RMSE loss% | iter# RMSE loss% | iter# RMSE loss% | iter#
I-NBM 0.9061+0.005 8.7 1 0.8815+t0.007 5.4 1 0.9853+0.014 | -0.3 1
U-AutoRec | 0.8849740.007 6.2 35 0.8739+0.009 4.4 30 1.0583%0.016 7.1 26
I-AutoRec 0.8334+0.006 0 140 | 0.8367+t0.004 ) 110 | 0.9880%0.015 o 12§
BiasedMF | 0.858740.007 3.0 85 0.8628+0.009 3.1 80 | 0.9980710.022 1.0 72
CryptoRec | 0.839140.006 | 0.7 12 | 0.85431+0.007 | 2.1 15 | 0.98211+0.013 | -0.6 22

Table 5.4.4: Accuracy comparsion with a re-training step, |-AutoRec is the
accuracy benchmark.

anumber of extra non-linear operations (i.e., comparisons) which are not straight-
forwardly compatible with homomorphic encryption schemes. To address this is-
sue, for each entry of the similarity matrix, we remove a certain number (e.g., 30%)
of elements which have the least values. The predictions computed on the sparsi-
fied similarity matrix are asymptotically close to the true predictions. In fact, using
all the items for the prediction may lead to a significant accuracy loss. In our im-
plementation, for one query, I-NBM requires 491 seconds, 335 seconds and 306
seconds on netflix, mlim, yahoo datasets, respectively. We noted that Shmueli
at al. [107] used an additional mediator (i.e., a non-colluding global server) to
achieve a more efficient solution. However, we focus on the 2PC protocol with-
out using any third party, and in their setting, participants know which item to
predict while in our case the Server doesn’t know it. It is not necessary to include
U-AutoRec in the comparison, because Sigmoid transformations it contains will
result in a much worse efficiency performance.

CryptoRec’s model allows providing accurate recommendations by a pre-trained
model (the Client’s data is not in the training set). So, the Server can provide rec-
ommendation services with a high throughput. In contrast, for the models which
fall into category “w/ Client”, the time cost of the training process should be also
counted, which leads to a notorious efficiency problem. For example, privately
training matrix factorization on the dataset mlim needs around 20 hours per iter-

ation (more details are in Section 5.4.2.4).
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D ® © div | Sigmoid | sqrt
I-NBM O(m) O(m*) O(m) O(m*) %) O(m)
U-AutoRec | O(K(m + N,)d) | O(K(m+ N.)d) | O(Krzd + md) @ | OKmd)| @
I-AutoRec | O(K(mn + N)d) | O(K(m + N)d) O(Kmzd) %) O(Knd) %)
BiasedMF O(Kmnd) O(K(m+ N)d) O(md) %) 1) %)
CryptoRec | O(K(m + N,)d) | O(K(m + N,)d) | O(Krzd + md) %) %] %]

Table 5.4.5: Computational complexity comparison with a re-training step. K
is the number of training iterations. N is the number of all observed ratings in
the Server's dataset. N, is the number of observed ratings of the T randomly
selected users. z is the rating scale (z = 5 in this experiment).

5.4.2 COMPARISON WITH A RE-TRAINING STEP

In this section, we investigate the accuracy and efliciency performances of using
the Client’s data to re-train a pre-learned CryptoRec’s model. We first describe the
details of re-training CryptoRec’s model, then introduce a one-iteration training
method for the sake of efficiency.

5.4.2.1 RE-TRAINING CRYPTOREC’S MODEL

Avoiding Overfitting. Using a single user’s data to fine-tune a machine learning
model learned from a large dataset may lead to an early overfitting. To address
this issue, we re-train CryptoRec’s model using the Client’s data together with 7
randomly selected users’ data, where the 7 users serve as a regularization term. We
empirically set 7 = 10,and 7 < 1 (nis the number of users in the Server’s dataset).

Stopping Criterion. Identifying the stopping point of a training process over
encrypted data is not as straightforward as doing that on clear data. This is because
the Server gets only an encrypted model, that the accuracy performance at each
training iteration cannot be observed. To address this issue, the early-stopping
strategy [99] can be a choice. Fortunately, we have also observed that, for the re-
training process, the first several training iterations contribute most to the accuracy
increase (RMSE decrease), as shown in Figure 5.4.2 and Table 5.4.6. Specifically,

the first training iteration leads to a big step towards the optimal accuracy perfor-
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Figure 5.4.2: Re-training CryptoRec with different iteration#

mance. With 3 to s iterations, the accuracy performance can be asymptotically
close to the best accuracy. Therefore, we can conservatively re-train CryptoRec’s
model (e.g, 4 iterations) while still leading to a nearly consistent accuracy opti-

mization.

5.4.2.2 ACCURACY COMPARISON

We summarize the accuracy performance of each modelin Table 5.4.4, experiment
results show that the accuracy performance of CryptoRec is competitive with the
benchmark (as described in Table 5.3.4) and consistently outperforms the other
baseline models. Specifically, compared to the benchmark, CryptoRec loses 0.7%
accuracy on netflix; loses 2.1% accuracy on mlim; on yahoo, CryptoRec slightly

outperforms the benchmark. Note that Table 5.4.4 presents the optimal accuracy
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w/o retrain retrain-full retrain-once
(RMSE) | RMSE | inc% | RMSE | inc%
netflix 0.8586 0.8391 | 2.3 0.8485 | 1.18

mlim 0.8781 0.8543 | 2.7 0.8680 | 1.15§

yahoo 0.9888 0.9821 | 0.7 0.9874 | 0.14

Table 5.4.6: CryptoRec accuracy comparison: without retraining (w/o re-
train) - retrain until convergence (retrain-full) - retrain only once (retrain-
once). “inc%" denotes the percentage of the accuracy increase.

performance of each model. In practice, the Server may achieve a suboptimal ac-
curacy performance, due to the stopping point selection strategy or the constraint
of computational resource. Roughly, predictions using only a pre-trained model
reach the lower-bound of accuracy, the re-training process leads to a better accu-
racy performance. The optimal accuracy performance can guide users to perform

the trade-off between efficiency and accuracy.

5.4.2.3 COMPUTATIONAL COMPLEXITY COMPARISON

Table 5.4.5 presents the computational complexity of each model. Among all the
models, only MF and CryptoRec’s model can be trained without using non-linear
operations. However, MF has to be trained on the whole dataset which results
in a serious efficiency issue. In contrast, re-training CryptoRec needs only the
Client’s data and the data of several randomly selected users (for regularization).
We have noted that some researchers proposed incremental matrix factorization
training methods such as [53, 111, 120]. Unfortunately, these incremental train-
ing methods either require the Server to collect partial data of the Client [53, 120]
(we assume that the Server has no prior knowledge of the Client’ rating data), or
introduce extra non-linear operations [ 111]. Therefore, we don’t include these in-
cremental matrix factorization training methods in the comparison. As presented
in Table 5.4.5, CryptoRec shows a significant advantage in the efliciency perfor-

mance.
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5.4.2.4 EvALUATION OF CRYPTOREC

Re-training CryptoRec’s model needs a (somewhat) fully homomorphic encryp-
tion scheme (SWHE) since homomorphic addition () and multiplication (®)
are both required. Some of the more significant advances in implementation im-
provements for SWHEs have come in the context of the ring-learning-with-error
(RLWE) based schemes, such as Fan-Vercauteren scheme [37]. RLWE-based ho-
momorphic encryption schemes map a plaintext message fromring R} := 7Z,[x] / (x"+
1) to ring R} 1= Z,[x]/(«* + 1) (ciphertext). The security level depends on
the plaintext modulus ¢, the coeflicient modulus g, the degree p of the polynomial
modulus. In this implementation, we adopt the Fan-Vercauteren scheme, a real-
number-supported version of which is implemented in the SEAL library [22]. We
set the polynomial degree p = 4096, the plaintext modulus t = 65537, q is auto-
matically selected by the SEAL library given the degree p. To encode real numbers,
we reserve 1024 coefficients of the polynomial for the integral part (low-degree
terms) and expand the fractional part to 16 digits of precision (high-degree terms).
The circuit privacy is guaranteed by using relinearization operations [22, Section
8]. We refer interested readers to the paper [22] for more detail of the settings.

Compared to partial homomorphic encryption schemes such as the Paillier cryp-
tosystem, using an SWHE scheme results in a much larger ciphertext, which in turn
leads to a higher computational complexity for a homomorphic operation. In this
experiment, the polynomial degree p = 4096. Each coefficient of the polynomial
costs 24 bytes (using SEAL) [43]. So the size of a ciphertext is 4096*24 bytes or
96 KB. Taking the re-training process on dataset mlim as an example, the item
features [Q¥5*5°°] need 3952*500%96 KB or 181 GB RAM. Though it is not in-
feasible for a commercial server, it is too expensive to respond to a single query
while the accuracy improvement is limited.

By exploiting the fact that the first re-training iteration contributes a big por-
tion to the accuracy increase (Table 5.4.6), we introduce an efficient one-iteration

re-training method, described in Algorithm 6°. The gradients of parameters are

3For simplicity, we omitted from Algorithm 6 the bias terms and the 7 number of randomly

108



Algorithm 6 Re-train CryptoRec’s model with one iteration
1: procedure Re-TRAIN([r,], [¢,], AL Q) 2, 1)

[y,] < [r.JA"
[e.] « [r] & [r.] = [y,]Q® & [r.]

©

3:

¢ [xm] < ([e]®[e])Q”

s5: forj < {1,2,---,d} do

6: [AA] < (=[] @ [xf]) @A - A:()-O) > gradient
7: [A;] A:(jo) O (n© [AAy]) > updates A,
8: [[pu]] [/] — [[ru]] [[A;j]] D> computes user features
9: release [A,], [x.][j]

10: release [r,]

11 fori < {1,2,---,m} do

12: [aq] + [9,]li ® ([e]l] © [y,]) ®2-q)

13 [a] < 4 © (1 © [Aq]) > updates g,
14: [0l < [p,]lq,] > computes the prediction 7,
15: release [q.], [e.][{], [¢,][i]

16: return [r,]

presented in Equation (5.8). The basic idea of this method is to timely release the
model parameters which will not be used in the future (line 9, 10, 15, Algorithm
6). For example, we immediately release [A;;] and [x,][j] after computing [p, ] j
(line 9), where A;; denotes j-th column of matrix A. Q" and A® are pre-trained
model parameters. [x] * [y] denotes { [x;] * [[y:] } ., and x* [[y] denotes {x; * [[y:] } .
, where * can be any operator such as @, ®. © is homomorphic subtraction which
can be implemented by @. With Algorithm 6, we can complete the one-iteration
training process (including computing the predictions) with less than 2 GB RAM.

We summarize the communication and time costs of the Client and Server in
Table 5.4.7. We take the experiment on dataset mlim as an example to introduce

the cost on the two sides, respectively,

chosen users (Section 5.4.2.1). Note that the gradients computed from the data of the 7 users and
the pre-trained model parameters are plaintext. Therefore, all the operations related to the 7 users
are in plaintext, and have a trivial impact on the efficiency performance.
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netflix | mlim | yahoo
Communication (GB) | 1.31 1.08 1.04
Server time cost (H) 9.4 7.8 7.5
Client time cost (s) 14.3 11.8 11.4

Table 5.4.7: The communication and time cost of CryptoRec with one-
iteration re-training process

« Client: Encrypting the rating vector r},***** and indication vector ¢ *35
takes 9.6 seconds. The message size of [r,“****] and [¢.*3***] is 96 x 3952 X 2
KB, or 741 MB.

« Server: Executing CryptoRec on [[r*3%*] takes 7.8 hours. The message size

of the output is [r,***] is 370.5 MB.
« Client: Decrypting [t} **] takes 2.2 seconds.

In contrast, the models which fall into “w/ Client” category lead to a much
higher time cost. For example, a recent work, GraphSC [83], shows that a single
iteration of training MF (the dimension of user/item features is 10), on the same
dataset ml1m, took roughly 13 hours to run on 7 machines with 128 processors. In
our setting, by making full use of the fact that the Server knows most of the users
data, it still needs around 20 hours for any i-th iteration with 8 processors, where

i > 1. Worse, dozens of iterations are necessary for convergence [64, 86].

5.4.3 DISCUSSION ON PRIVACY AND SCALABILITY

We assume that the Server and Client should always agree upon a set of items, as
it does not make sense to buy a service that the other party doesn’t have, and vice
versa. In fact, this assumption leads to a a trade-off between privacy and scalability.
Informally, the more items that the two sides agreed on, the more privacy can be
preserved. An online service provider (e.g., Youtube) may have millions of prod-
ucts, it is a notoriously challenging problem to provide recommendations from
such a large corpus, even on clear data. A typical approach is to generate a small

set of candidates, then compute recommendations from the candidates [24]. For



our scenario, context information can be used to guide candidate generation, but
still depending on whether such a context information is a privacy issue that the
Client cares about (different users may have different concerns about privacy).
The Server can train different recommendation models over datasets generated by
different criteria such as children-friendly, place-of-origin, time-of-produce and so
on. The Client can choose a criterion which doesn’t violate her privacy concern,
or choose multiple criteria at a time. How to design these criteria requires a further

investigation of user preferences on privacy.

5.5 KNOWLEDGE TRANSFERRING

Knowledge transferring, a.k.a transfer learning [92], has recently attracted many
attentions from machine learning community [19]. In recommender systems, it
is a challenging and still largely under-explored field [19]. For example, the ex-
isting researches focus on cold start problem and generation of recommendations
from multiple domains [ 19, 68, 93]. But the efficiency performance, which is cru-
cial to the applications on encrypted data, is rarely taken into their consideration.
As a byproduct, thanks to its user-free latent feature space, CryptoRec’s model
naturally achieves transferability. As such, it can easily transfer the knowledge
learned from one database (source) to another (target) if they share the same item
set. This transferability facilitates both efficiency and accuracy performance, and
it also provides a concrete evidence that the Server is able to provide reliable rec-
ommendation services to diversified customers, e.g., the customers from different
e-commercial websites or who bought products from different shops. We will also

discuss how the transferability can facilitate privacy-protection.



source | target no transfer learning transfer learning
RMSE iteration# RMSE iteration#
mlim*, | yahoo* | 0.866410.024 122 0.8312+0.016 32
yahoo* | mlim*, | 0.8460+0.008 120 0.8463+t0.011 55
neflix* | mlim*, | 0.8527+0.003 118 0.84211t0.004 26
mlim*, | neflix* | o0.8005+0.004 95 0.7981+t0.005 28

Table 5.5.2: Transfer learning helps both accuracy (RMSE) and efficiency (#
of iterations)

item intersection | dataset | user# | item# | density

mlim*, | 6040 | 2715 | 5.6%

mlim ahoo
Ny yahoo* | sso7 | 2715 | 0.5%

mlim*, | 6040 | 2718 | 5.1%

mlim () neflix

netflix* | 10000 | 2718 | 9.2%

Table 5.5.1: New datasets resulting from the intersections other datasets

To evaluate the transferability of CryptoRec, we have constructed four new datasets,
Table s.5.1, where mlim*, and yahoo* are two item-entry shared datasets which
are created from the datasets m1lm and yahoo, respectively; and mlim*, and net-
flix* are another two item-entry shared datasets which are extracted from the datasets
m1lm and netflix, respectively.

The knowledge transferring process is simple and straightforward. Firstly, we
pre-train CryptoRec’ model on one dataset (e.g,, mlim*,), and then use the pre-
trained CryptoRec model to initialize the training of CryptoRec’s model on an-
other dataset (e.g., yahoo*). The accuracy performance is presented in Table s.5.2.
The results show that using the knowledge learned from a relatively dense dataset,
we canimprove both the accuracy and efficiency performance of CryptoRec’s model
on a relatively sparse dataset. For example, the density of dataset mlim*, and ya-
hoo* are 5.6% and 0.5% respectively. We take dataset mlimx, as the source and
yahoo* as the target. By using the knowledge learned from mlim*,, CryptoRec’s
model achieves 4.1% accuracy increase, and the number of training iterations is

also significantly reduced (from 122 to 32). Transfering the knowledge learned



from a relatively sparse dataset does not always increase the accuracy performance
of CryptoRec’s model on a relatively dense dataset, but it consistently reduces the
number of training iterations. We again take datasets ml1mx, and yahoo* as exam-
ple, the accuracy performance is slightly different, but the number of training iter-
ations is reduced from 120 to 55. The two observations are not counter-intuitive.
The optimization problem, i.e., minimizing the objective function (e.g., Equation
(5.7)), is often non-convex. So a good initialization for the model parameters
© can facilitate the searching of a better local optimum [36]. A relatively dense
dataset may contain more information than a relatively sparse dataset, so using
the knowledge learned from this dataset as the source can improve both efficiency
and accuracy. Using the knowledge learned from a relatively sparse dataset as the
source may also result in a good initialization, thus to improve the efficiency per-
formance.

Privacy-preserving solutions can also benefit from the reduction of training it-
erations. For users who hold some data and want to jointly train a model to ob-
tain recommendation service, they can collect some public data to pre-train Cryp-
toRec’s model. No matter what privacy-preserving frameworks they use, e.g., [80,
86, 108], reducing the training iterations will lead to an immediate efficiency per-
formance improvement, e.g., lower communication overhead and computation
cost. For a server who wants to provide differential privacy guarantee [33] to its
recommender system, this transferability can facilitate a better trade-off between
accuracy and privacy. For example, iteratively training a model accumulates the
privacy loss, which is theoretically discussed by the composition theory of differ-
ential privacy ([33, Section 3]). So reducing the number of training iterations

immediately reduces the privacy loss.

5.6 RELATED WORK

Some recent works, such as [43, 72, 103 ], focused on neural network based Ma-
chine Learning as a Service (MLaaS$), the scenario of which is similar to ours. Their

primary contribution is how to efficiently compute non-linear operations (e.g.,
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comparison or Sigmoid function) on encrypted data. Gilad-Bachrach et al. [43]
substituted state-of-the-art activation functions such as ReLu (relu(x) = max(o, x))
with a simple square activation function (f(x) = «), this avoid the use of secure
multiparty computation schemes. However, this approach often leads to a signifi-
cant accuracyloss [72, 103 ]. To preserve the accuracy performance, Liu et al. [72 ]
and Rouhani et al. [103] proposed to evaluate neural networks with resort to se-
cure multiparty computation schemes. Unfortunately, this approach requires the
Client and Server to be online constantly. State-of-the-art recommendation algo-
rithms often require jointly learning personalized user features and item features. It
means that we cannot assume a pre-trained model to compute recommendations
based on existing recommendation algorithms. Therefore, we cannot directly ap-
plying the above solutions to Recommendation as a Service (Raa$).

There are some solutions allowing securely training machine learning models.
For example, Canny et al. [ 18] introduced a privacy-preserving solution for train-
ing collaborative filtering models (e.g., Singular Value Decomposition) in a peer-
to-peer manner without assuming any trusted server. Nikolaenko et al. [86] pro-
posed a garbled circuits [62] based secure protocol to allow multiple users jointly
train matrix factorization (MF), in which they assume two non-colluding servers.
Shmueli et al. [107] discussed that multi-party privately learn a neighborhood-
based recommendation model by assuming a mediator that performs intermediate
computations on encrypted data supplied by each party. Nayak at al. [ 83] brought
parallelism to the secure implementation of oblivious version of graph-based algo-
rithms (e.g., MF). Mohassel et al. [ 80] further improved the efficiency of a secure
framework with two non-colluding servers. Different from these solutions, we aim
to build a secure two-party computation protocol for RaaS, without involving any
third party (e.g., an additional non-colluding server).

An orthogonal line of work focuses on constructing differentially private ma-
chine learning models, e.g., [ 73, 76, 108]. In their security models, a trusted server
has full access to all the user data. It wishes to prevent adversaries from breaching
the user privacy by exploiting the prediction results (i.e., inference attack). In our

security model, the Server learns nothing about client inputs; at the same time, the
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Client only learns what she can learn from the recommendation results. Our work

and differential privacy [33] can be complementary to each other.

5.7 CONCLUSION AND FUTURE WORK

With the rising interest in machine learning from both academia and industry,
providing recommendations as a service has great potential impact in the years
to come. However, confidentiality concerns have to be considered.

In this chapter, we proposed CryptoRec: a two-party protocol where a server
with large dataset provides recommendations to a client, based on the client’s pref-
erences. Our protocol encompasses a crypto-friendly recommender system that
is able to produce recommendations without having to re-train the model with the
client’s preferences. Together with homomorphic encryption, we obtain a secure
protocol where the server learns nothing about the client’s preferences, and the
client learns only the computed recommendation and nothing about the server’s
pre-computed model parameters (beyond, obviously, what the client can infer
from the returned recommendation itself).

The efficiency of CryptoRec results from two remarkable properties of its un-
derlying recommender system that: (1) requires only addition and multiplica-
tion operations, making it straightforwardly compatible with homomorphic en-
cryption schemes; (2) computes recommendations without having to re-train the
model parameters with the client’s preferences.

Using standard metrics (RMSE), benchmarks on public datasets of movies rat-
ings show that CryptoRec suffer from less than 5% accuracy loss when compared
with the state-of-the-art recommender system computing over clear data. This ac-
curacy loss can be further reduced if we allow the server to re-train the model pa-
rameters with the client’s input, but the computational cost of computing a recom-
mendation becomes considerable for regular computers. Further improvements
on the prediction accuracy without compromising security and without signif-
icantly affecting the efficiency of the protocol may require new ideas and tech-

niques.
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Summary

6.1 CONCLUSIONS

State-of-the-art recommender systems directly capture user preferences from his-
torical user behaviours (e.g., user-location, user-product, etc), and a clear tendency
is that more and more user data will be adopted to construct new recommender
systems [3, 132]. This fact would result in more privacy risks to users, which in
turn may lead to a crisis of trust to recommendation services. Naturally, privacy-
preserving recommendation services (and also other machine learning services)
becomes a necessary and serious topic. A remarkable progress has been achieved
for privacy-preserving in the last ten years. At the meanwhile, it also has formed
a pattern that machine learning and privacy-preserving are two competing goals
at stake. In this dissertation, we explored the possibility of facilitating privacy-

preserving recommender systems from the machine learning side. We show that,
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in the setting of privacy-preserving, machine learning can be thought of as an ally
rather than a foe.

We firstly investigated privacy-preserving recommender systems under the cen-
tralized case. In this case, A trusted server provides recommendation services to
the users whose data that it can fully access. The users obtain the recommendation
results, while the privacy loss of any of them is strictly controlled. In particular,
we proposed a probabilistic neighborhood-based method, which enables a flexi-
ble approach to apply differential privacy to neighborhood-based methods, either
by adding carefully calibrated noise into each training step or by sampling from
the scaled posterior distribution over similarities between any two items. The ex-
periment results shows that our proposed privacy-preserving solutions allows a
priming accuracy performance with a meaningful differential privacy guarantee.

Then, we investigated privacy-preserving recommender systems under the dis-
tributed case. In this case, multiple data owners wish to jointly perform a machine
learning task without leaking any of their private data. We looked into two direc-
tions, the first one is how to efficiently computation with social connections; the
second one is how to build crypto-friendly recommender systems. In the first
direction, we presented a social-context based recommender system. It allows
computing accurate recommendations based on a few users who share certain so-
cial connections. We implemented a secure protocol with this system, with re-
sort to a somewhat (fully) homomorphic encryption scheme. This recommender
system requires a much fewer number of users (for recommendation computa-
tions) than existing recommendation algorithms do, significantly improving the
efficiency performance. In the second direction, we proposed an HE-friendly rec-
ommender system. This recommendation model possesses two important proper-
ties: (1) It uses only addition and multiplication operations, so that it is straight-
forwardly compatible with HE schemes. With this property, CryptoRec is able
to complete recommendation computations without requiring the Server and the
Client to be online continuously; (2) It can automatically extract personalized user
representations by aggregating pre-learned item features. This property allows the

Server with a pre-trained model to provide recommendation services without a te-
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dious re-training process, which significantly improves the efficiency performance.
Note that the Client’s data is not in the Server’s database which is used for model
training. Experiment results show that the proposed model allows the Server with
thousands of items to privately answer a prediction query in a few seconds on a
single PC.

In summary, this dissertation aims to use machine learning to improve the privacy-
preserving solutions for recommender systems. We developed different solutions
according to different security models. The results of each proposed solution demon-
strated that privacy-protection and machine learning can be two allies rather than

two comp eting boxers.

6.2 FUTURE WORKS

Privacy and utility (e.g., efficiency and accuracy) have been long-term considered
as two competing goals at stake. Though designing sophisticated secure protocols
or improving cryptographic primitives is a typical approach and attracting a lot of
attentions, it is still far from the satisfactory of practice. Our future work will fol-
low the direction of using machine learning to solve the privacy issues of machine

learning, as we believe that privacy and utility can be two allies in the same trench.

« Privacy Transfer. Iteratively training a machine learning model may lead
to an additive increase of differential privacy loss, which is a bottleneck of
that building differential privacy into state-of-the-art machine learning al-
gorithms. Reducing the number of training iterations directly reduces the
privacy loss. However, straightforwardly reducing the training iterations
may result in a significant accuracy loss. In one of our work, we demon-
strated that the number of training iterations (on the targeted database)
can be significantly reduced without losing any accuracy, by transferring the
knowledge from a (public) source database, where we assume that the two
databases share the same items-entries. In practice, the requirement of two

databases sharing the same item-entries is too strict. Therefore, it will be an
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exciting topic to design a new knowledge transferable recommender system
which allows transferring knowledge from a source database which doesn’t
share the same item-entries with the target database. Note that different
from existing cross-domain recommender systems, the training process of
this new recommender system have to converge with a much fewer training

iterations, by using the knowledge transferred from other databases.

Privacy Incentive. Profits incentive commercial companies to be aggressive
on various kinds of user data, such as locations, browsing history and even
call records, providing high-quality recommendation services. Privacy has
been long-time treated as a competing goal to the commercial profits, which
discourages investments in privacy-preserving. The overuse of personal data
may also devastate the user experience of recommendation services. To ad-
dress this issue, a new recommendation algorithm with a privacy-incentive
mechanism can be a promising direction. The keyidea is to identify the con-
tribution of each input (a kind of user data) to the preference estimation
of an item, or which inputs result in an antipathy to recommended items.
This means that the recommender system can estimate the privacy concern
of a user, intelligently avoiding collecting or using the data conflicted with
the user’s privacy concern. By this, the system can improve user experience
while mitigating privacy loss, thus to incentive commercial companies to
preserve user privacy. Attention mechanism [128] is a possible solution to
design such a privacy-incentive recommender system, deserving a further

investigation.

Next Generation (encryption-aware) Recommender Systems. Traditional rec-
ommendation methods, such as neighborhood-based methods and matrix
factorization, fall short in expressiveness. They are also difficult in jointly
modeling various inputs for estimating user preferences. It is foreseeable
that more complex algorithms, such as deep models with non-linear trans-
formations, will be used to construct next generation recommender sys-

tems. More user data may also be required to feed the new models. Simply
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adopting existing privacy-preserving solutions, or applying cryptographic
primitives to these complicated recommender systems, would result in an
efficiency bottleneck. Designing new algorithms which have a competitive
performance with state-of-the-art reccommender systems while still friendly

to encrypted data, can be a direction deserves more effort to work on.
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