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ABSTRACT

Thermodynamics has a long history. It was established during the 19
century as a phenomenological theory grasping the principles underlying
heat engines. In the 20" and 21% centuries its range of applicability was
extended to nonequilibrium stochastic and chemical processes. However a
systematic procedure to identify the thermodynamic forces at work in these
systems was lacking. In this thesis, we provide one by making use of conser-
vation laws. Of particular importance are the conservation laws which are
broken when putting the system in contact with different reservoirs (ther-
mostats or chemostats). These laws depend on the internal structure of the
system and are specific to each system. We introduce a systematic proce-
dure to identify them and show how they shape the entropy production (i.e.
the dissipation) into fundamental contributions. Each of these provides pre-
cious insight on how to drive and control the system out of equilibrium. We
first present our results at the level of phenomenological thermodynamics.
We then show that they can be systematically derived for various dynamics:
Markov jump processes used in stochastic thermodynamics, also including
the chemical master equation, and deterministic chemical rate equations
with and without diffusion, which are used to describe chemical reaction
networks. Generalized nonequilibrium Landauer principles ensue form our
theory. They predict that the minimal thermodynamic cost necessary to
transform the system from an arbitrary nonequilibrium state to another can
be expressed in terms of information metrics such as relative entropies be-
tween the equilibrium and nonequilibrium states of the system.

vil






CONTENTS

Introduction 1
I THERMODYNAMIC SYSTEMS FAR FROM EQUILIBRIUM 13
1 PHENOMENOLOGICAL DESCRIPTION 15
1.1 Equilibrium States 15
1.2 Fundamental Laws of Thermodynamics 16
1.2.1 The First Law 17
1.2.2 The Second Law 17
1.3 Conservation Laws: Illustrative Examples 18
1.3.1 Example 1. System in contact with one reservoir 18
1.3.2 Example 1+1/2. Driven System in contact with one
reservoir 19
1.3.3 Example 2. System in contact with multiple reser-
voirs 20
1.3.4 Example 3: System-specific description: conservation
laws 21
1.4 Systems in contact with multiple reservoirs 22
1.5 System-specific Thermodynamics 24

II

1.5.1 Cyclic Transformations and Broken Conservation Laws
1.5.2 System-specific Energy and Entropy balance 25

1.5.3 Isothermal Processes 27

1.5.4 Adiabatic Processes 28
1.6 Nonequilibrium Landauer Principle 28
1.7 Equilibrium States of Extensive Systems 29
STOCHASTIC DESCRIPTION 31

Article: [New Journal of Physics 20, 023007 (2018)] 37
Article: [Entropy 20, 635 (2018)] 71

CHEMICALLY REACTING SYSTEMS FAR FROM EQUILIBRIUM 99
PHENOMENOLOGICAL DESCRIPTION 101
3.1 Chemical Reaction Networks 101
3.2 Thermodynamics 102
3.3 System-specific Thermodynamics 103
3.3.1 Stoichiometric Cycles and Broken Conservation Laws
3.4 Example 105
STOCHASTIC DESCRIPTION 107
Preprint: [arXiv 1805:12077] 111
DETERMINISTIC DESCRIPTION 139
5.1 Spatially Homogeneous Processes 139
5.2 Spatially Inhomogeneous Processes 140
5.3 Coarse-grained Processes 141
Article: [Physical Review X 6, 041064 (2016)] 145
Article: [The Journal of Chemical Physics 143, 244903 (2015)] 171
Article: [Physical Review Letters 121, 108301 (2018)] 185
Article: [New Journal of Physics 20, 042002 (2018)] 201

Conclusions 219
Author Contributions 221
Acknowledgements 223

24

104

ix






Thermodynamics is a funny subject. The first time you go through it, you do not
understand it at all. The second time you go through it, you think you understand
it, except for one or two points. The third time you go through it, you know you do
not understand it, but by that time you are so used to the subject, it doesn’t bother

you anymore.

— Arnold Sommerfeld

INTRODUCTION

Understanding the detailed functioning of life and its distinctive features
is one of the greatest challenges of contemporary science. This is clearly the
consequence of the enormous complexity that living systems have achieved
through billions of years of evolution. It is also clear, however, that the
functioning of these systems is based on energy and information process-
ing. The former allows living organisms to sustain themselves, the latter
to evolve. We aim at understanding these processings, as we believe it is
important to understand life. To do so, nonequilibrium thermodynamics is
the well suited, but systematic and rigorous descriptions are necessary to
tame the complexity of living organisms.

In this thesis, we provide a generic and systematic description of arbitrary
nonequilibrium processes. This is achieved using conservation laws, as they
carry information about the topological structure of the process and allow
more informative descriptions. This framework is also specialized to two
relevant classes of processes: stochastic Markov jump processes, and chemi-
cal processes modelled as chemical reaction networks. We also demonstrate
how thermodynamics of information processing naturally fits in our descrip-
tion.

We start by introducing thermodynamics and its recent developments
from a historical perspective, and then summarize and motivate further the
contributions of this thesis.

THERMODYNAMICS: A HISTORICAL PERSPECTIVE

The development of heat engines, namely machines able to perform work
by extracting power from heat, indisputably triggered the industrial revolu-
tion [1]. The major improvement regarding their performances was made
by J. Watt, who had the idea of spatially separating the cooling system (the
cold reservoir) from the heat source (the hot reservoir). Hence, at the turn of
the 19 century, engines had reached a high level of sophistication, but the
fundamental principles underlying their functioning were still unknown. In
1824, S. Carnot publishes his celebrated work Reflections on the Motive Power
of Fire and on Machines Fitted to Develop that Power [2], thus overturning the
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situation. Rarely in the history of science, technological innovation was the
spark of a new scientific theory: thermodynamics, as it would have been later
called by W. Thomson.

Carnot managed to abstract the functioning of heat engines, by conceiv-
ing an ideal set of operations, the Carnot cycle, describing a systematic ex-
traction of work. He realized that this extraction requires the transfer of heat
between two reservoirs, at least: a heat source (the hot reservoir) and a heat
sink (the cold reservoir), as they produce the necessary fall of caloric, akin to
a fall of water powering hydraulic engines. We recall that his argument was
based on the theory of caloric, according to which heat is a mass-less, inde-
structible, and hence conserved substance exchanged by systems at different
temperatures. Driving his engine in a reversible manner, i.e. quasi-statically
between equilibrium states, he derived the maximum efficiency that any
heat engine can achieve: that in which no caloric flows in the sink without
performing work, the Carnot’s efficiency. Notably, his derivation was based
mainly on one uncontested observation: it must be impossible to create per-
petual motion of any kind.

The First Law

At Carnot’s times, the most endorsed theory of heat was that of caloric,
which was put forward by Lavoisier and Laplace during the prior century.
In the past, some people questioned this theory in favour of kinetic theories
of heat, according to which mechanical energy and heat are equivalent and
can be converted one into the other'. However, their argument were merely
based on empirical observations, e.g. the heat continuously produced by
friction during the boring of cannons. In contrast, the caloric theory could
still qualitatively, and somehow quantitatively, explain many phenomena
like that of latent heat or the expansion of materials when their temperature
is increased.

It was thanks to the subtle but sound theoretical argument put forward by
J.R. von Mayer, and the exceptional experimental measurements obtained
by J.P. Joule that equivalence between mechanical energy and heat was fi-
nally recognized. Like many before him, Mayer was guided to his conclu-
sion by empirical observations, the most intriguing of which regarded the
heat which had to be produced by animals to keep their body tempera-
ture constant. In contrast to others, he put his argument in a mathematical
framework and derived a quantitative value for the mechanical equivalent
of one unit of heat: it was calculated as the difference between the spe-
cific heat at constant pressure and that at constant volume. On the other
hand, Joule quantitatively measured this value. His idea was to evaluate
the increase of temperature of some system when some controlled and re-
producible amount of mechanical work was spent to heat the system. In
his first experiment, work was spent to produce an electric current which
subsequently heated a surrounding vessel filled with water. In his second
experiment, work was spent to produce motion in a vessel of water, and the
heat was released by friction.

H. von Helmholtz theoretically extended the equivalence of mechanical
energy and heat to electromagnetic phenomena, thus establishing the prin-
ciple of conservation of energy [3], i.e. the first law of thermodynamics

AU=Q+W (1)

1 The most prominent scholar sustaining this novel theory Count Rumford.



INTRODUCTION |

where AU are internal energy changes of a thermodynamic system, W is
the work that the system does on its environment, e.g. lifting a weight or
charging a battery, whereas Q is the heat exchanged with the environment.

The Second Law

It thus became clear that Carnot’s idea of work production in terms of
caloric transfer had to be revised and reconciled with the equivalence of
heat and mechanical energy. W. Thomson, also known as Lord Kelvin, made
the first step by unveiling a subtle constraint on the overall flow of heat in
reversible cyclic operations

Z%:m (2)

where Q; is the heat reversibly exchanged with the r-th reservoir. In doing
so, he introduced the absolute scale of temperatures, T > 0, i.e. a scale which
is independent from any property of the working substance. Using Thom-
son’s results, R. Clausius made the two decisive steps. First, he understood
that heat transfer between reservoirs and heat conversion into work happen
at the same time in heat engine, and can be both regarded as heat transforma-
tion. In irreversible cyclic processes, the heat transferred between reservoirs
always exceeds that converted in work, and he called the difference between
the two uncompensated heat, nowadays called total entropy change or entropy
production. Second, he introduced the concept of entropy 8§ to describe the
thermal content and the molecular arrangement of the thermodynamic sys-
tem. In this way he could go beyond cyclic transformations, and generalize
Eq. (2) to

a=y Fix, G)

T

where Z > 0 is the entropy production, which vanishes solely for reversible
transformations. This equation is a mathematical formulation of the second
law of thermodynamics,

Heat can never pass from a colder to a warmer body without
some other change, connected therewith, occurring at the same
time.

Chemical and Irreversible Processes

During the early development of thermodynamics, chemical processes
were left quite aside. J.W. Gibbs first introduced the chemical potential to
quantify the energetic content of a molecule in a mixture of chemicals, and
used it to define the thermodynamic potentials ruling these mixtures [4].
Several decades later, this enabled T. de Donder to approach the study of
chemical reacting mixtures from a thermodynamic standpoint. He proposed
the concept of affinity to characterize the chemical force irreversibly driving
chemical reactions and related it to the uncompensated heat established
by Clausius [5]. In the meantime, L. Onsager gave a first formulation of
nonequilibrium thermodynamics for small perturbations close to equilib-
rium, the so called linear regime. He thus established his celebrated reciprocal
relations, which are universal symmetries that the phenomenological coeffi-
cients coupling currents to thermodynamic forces (e.g. electrical currents to

3
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voltage drops, chemical currents to affinities, heat currents to thermal gra-
dients) must obey [6, 7]. These relationships and the ensuing theory of irre-
versible processes, were later extended by H. Casimir, ]J. Meixner, P. Mazur,
S. de Groot, and L. Prigogine [8]. The last, who perpetuated the Brussels
School founded by de Donder, introduced the assumption of local equilib-
rium to describe irreversible processes in terms of equilibrium quantities [9,
10]. In doing so, he pioneered the connections between thermodynamics
and kinetics of chemical reacting mixtures [11].

Thermodynamics of Computation

The development of thermodynamics was clearly followed by new ques-
tions and paradoxes. Among the most remarkable, J.C. Maxwell conceived
the existence of an intelligent being who was able to exploit thermal fluctu-
ations to violate the second law of thermodynamics. For a gas in two boxes
separated by a tiny gate, this demon would do so by opening the gate in such
a way that fast—and thus hot—molecules are gathered on one side and slow
ones—cold molecules—on the other. Later, L. Szilard designed an engine in
which Maxwell’s demon could extract work from a single heat reservoir. But
he also realized that the acquisition of information regarding the fluctuat-
ing state of the system should come at the same cost as that extracted by
the engine, hence not violating the second law [12]. L.N. Brillouin indeed
conceived a measurement apparatus which would work at the same cost as
that extracted, but he used a specific model rather than an abstract argument
[13]. The crucial intuition of Szilard and Brillouin was that information is
not unrelated from thermodynamics.

In 1961, R. Landauer showed that information processing has an intrinsic
thermodynamics cost [14, 15]. He demonstrated that the erasure of a bit
of information changes the system entropy and hence entails a release of
heat. Therefore, in agreement with the first law, erasure must have an intrin-
sic thermodynamic cost—at least for isoenergetic bit states. This principle
was named after Landauer, as well as the aforementioned bound. Several
decades later, C. Bennett revisited the Szilard’s engine at the light of Lan-
dauer’s result [16] and argued that: since the demon needs to erase the
information previously acquired in order perform the next one, the work
spent in the erasure compensates for that acquired, and the second law is
not violated. His argument was based on the fact that he could conceive
some specific conditions for which measurement was costless.

Chemical Reaction Network Theory and Stochastic Thermodynamics

During the second half of the 20" century, biological processes drew a
significant part of the attention, which increased and diversified the studies
on chemical kinetics and thermodynamics.

One the one hand, the first unsuccessful attempt to establish general
dynamical and thermodynamic principles for systems of reacting chemi-
cal species [17, 18] triggered the interest of mathematicians. Feinberg [19],
and Horn and Jackson [20], formulated a rigorous mathematical description
of deterministic chemical reaction networks, i.e. systems of arbitrary number
of chemically reacting species whose concentrations are described by deter-
ministic rate equations. In doing so they established chemical reaction network
theory, an applied mathematical theory which aims at modelling chemical
processes and understanding what are the connection between the topo-
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logical properties of the network of reactions and its dynamical behaviour.
Indeed, their major result was the discovery of a large class of chemical net-
works whose dynamics is completely determined by their topology, which
they called complex-balanced networks.

On the other side, the interest toward bio-chemical processes also required
the development of stochastic descriptions, since many of these processes
involve low number of molecules, and hence they are highly fluctuating.
These are well described in terms of master equation or chemical master equa-
tion [21—23], which describe, for instance, the probability of observing a
molecule in a certain chemical state or the probability of observing a certain
population of molecules. Among the first, T.L. Hill and coworkers investi-
gated bio-catalysts as small fluctuating machines and introduced the con-
cept of free energy transduction to describe the average work performed by
a chemical force to drive another flow of chemicals against its spontaneous
direction [24, 25]. Networks of bio-chemical reactions were investigated by
Oster and coworkers [26-28], but all these studies were limited to steady-
state processes described in terms of linear chemical reaction networks. The
stochastic as well as the deterministic dynamics of these networks is de-
scribed by linear rate equations for either probabilities or concentrations.

Inspired by these seminal works, J. Schnakenberg understood the crucial
role played by cycles—i.e. cyclic sets of transitions or reactions—for charac-
terizing the steady-state thermodynamics of generic Markov jump processes.
Based on a graph-theoretical approach, he provided the first systematic cy-
cle decomposition of the average entropy production rate [29]—which has
been recently extended to nonsteady-state regimes in Ref. [30]. Beyond
linear networks, the Brussels school, as well as many others, addressed
the thermodynamics of nonlinear chemical reaction networks described by
chemical master equation [31, 32]. Yet, they were mainly focused on steady
states and on the relationship between the stochastic and deterministic de-
scription [33-35].

Nevertheless, these works played a seminal role during the first decade of
the 215 century for the development of Stochastic Thermodynamics [36-39],
which is a rigorous nonequilibrium thermodynamic description for systems
obeying Markovian stochastic dynamics. Within this framework, the first
and second law of thermodynamics could be formulated for stochastic tra-
jectories of systems subject to large fluctuations [40—42]. Remarkably, the
entropy production need not be always positive at this level [43, 44]. This
is manifest in fluctuation theorems, for which stochastic thermodynamics pro-
vided a unifying framework, see e.g. Ref. [38, 45, 46] and references therein.
These relations express fundamental symmetries that the fluctuations of
some thermodynamic observables satisfy arbitrarily far from equilibrium.
For instance, the detailed fluctuation theorem for the entropy production
reads

P(Z)
PT(—I)

=expl, (4)

where P(Z) is the probability of observing X entropy production in a given
process, and PT(—Z) is that of observing —X in a conjugated process, e.g.
the time-reversed one, see Sec. [3.4, p. 78]. Hence, observing negative en-
tropy production is possible, but these fluctuations are exponentially hard
to observe.

Stochastic thermodynamics also provided a fresh view on many aspects of
thermodynamics. It enabled to formulate the first thermodynamic descrip-
tions of stochastic chemical reaction networks [47—49], as well as to study

5



6

| INTRODUCTION

their fluctuations at the steady state [50, 51]. The performance of molecular
machines like pumps, motors, enzymes, and information-handling systems
could be systematically analysed [52-56], thus extending the seminal works
by Hill. The fluctuations of efficiency in generic stochastic processes were
addressed, thus showing that Carnot’s efficiency can be reached in nonre-
versible processes, but its probability is the smallest among all possible val-
ues [57-60]. Since stochastic thermodynamics naturally encompasses infor-
mation theory, thermodynamics of computation found the ideal framework
in which its concept could be systematically formulated [61—69]. In this way,
clearer—if not definite—answers could be given to the apparent violation of
the second law of Szilard’s engine [70]. General thermodynamic principles
of information processing at the cellular level could also be investigated [71-

75]-

CONSERVATION LAWS AND THERMODYNAMICS

Despite these huge advances, the role of conservation laws in nonequi-
librium thermodynamics remained thus far ignored. Conservation laws
identify quantities which are conserved during the interaction between the
system and its environment. These globally conserved quantities are spe-
cific for each thermodynamic system, and carry information about how the
system globally exchanges system quantities, e.g. energy and particles, with
its environment. In other words, they carry information about the detailed
topological structure of the system plus reservoirs. As we will show, their im-
portance is manifold. On a theoretical level, they enable to formulate generic
yet system-specific nonequilibrium thermodynamic descriptions. Indeed, by
combining conservation laws with the first and second law of thermody-
namics one can provide informative descriptions about the way in which the
system exchanges energy and dissipates. These laws allow to identify the
maximal set of independent nonconservative forces, which are gradients of
intensive fields created by the coupling with multiple reservoirs, e.g. differ-
ences of temperature or chemical potential. These forces are the fingerprint
of nonequilibrium processes, i.e. processes not relaxing to thermodynamic
equilibrium. When these forces vanish, conservation laws determine the po-
tential which is maximized at equilibrium. On a practical level, the analysis
of conservation laws for specific systems fosters a deeper understanding of
these. For instance, let us regard a thermodynamic system as an engine fu-
elled by some forces, e.g. temperature or chemical potential gradients, and
performing work against other load forces. A clearer comprehension of the
fundamental thermodynamic forces coupled to the system thus simplifies
the recognition of fuel and load forces, and hence simplifies performance
analyses. This is especially important for large biochemical processes, e.g.
metabolic ones, whose complexity prevents a first-sight understanding.

In this thesis, we introduce a systematic procedure to identify conserva-
tion laws, we reformulate nonequilibrium thermodynamics by making use
of them, and we demonstrate their importance. This program will be first
carried out at a phenomenological level of description, and then for two
classes of systems: generic systems described by Markov jump processes
and chemical reaction networks. The phenomenological level will enable us
to appreciate the role of conservation laws in absolute terms, since no spe-
cific dynamics will be considered. This level provides the fundamental the-
oretical structure that any thermodynamic system must be compatible with.
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Markov jump processes allow us to introduce conservation laws in the large
class of systems described by stochastic thermodynamics: e.g. molecular mo-
tors, pumps, and small quantum devices. For chemical reaction networks,
we will show that conservation laws are necessary to establish a rigorous
nonequilibrium thermodynamic description, and to relate this description
to chemical reaction network theory.

We have already mentioned that information processing can be regarded
as a thermodynamic process. Since our description is highly general, we will
be able to generalize Landauer’s bound to arbitrary information processing
and for arbitrary dynamics. For chemical reaction networks, this paves the
way for thermodynamics of information in chemical computing, namely
chemical systems designed for computational purposes [76-78].

This thesis is structured in two parts. In the first one, we address the role
of conservation laws in generic nonequilibrium thermodynamic processes.
In Ch. 1, we introduce the fundamental laws of thermodynamics as well as
a phenomenological thermodynamic description based on conservation laws.
In Ch. 2, we consider stochastic Markov jump processes. This chapter con-
sists of two reprinted Articles: Refs. [79, 80]. In the second part of this thesis,
we specialize the aforementioned description to chemical reaction networks.
In Chs. 3, 4, and 5, we formalize the phenomenological, stochastic, and sev-
eral form of deterministic descriptions, respectively. The last two chapters
consists of several reprinted Articles: Refs. [81-85].
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Part1

THERMODYNAMIC SYSTEMS FAR FROM
EQUILIBRIUM






PHENOMENOLOGICAL
DESCRIPTION

In this chapter, we establish a phenomenological formulation of nonequi-
librium thermodynamics that accounts for conservation laws. This formula-
tion provides the fundamental structure that we will recover in the stochas-
tic description discussed in the next chapter.

The plan of this chapter is as follows, we first review equilibrium thermo-
dynamics, Sec. 1.1, the fundamental laws of thermodynamics, Sec. 1.2, and
illustrate the importance of conservation laws using a series of very simple
examples, Sec. 1.3. In Sec. 1.4, we describe systems coupled to multiple
reservoirs without using conservation laws, while in Sec. 1.5, we introduce
a systematic procedure to identify these laws and reformulate our thermo-
dynamic description. In Sec. 1.6, we provide the connection between ther-
modynamics and information processing by generalizing the Landauer’s
bound to arbitrary isothermal processes. Finally, in Sec. 1.7, we discuss
equilibrium states in extensive systems.

NOoTATION All nonexact one-forms are denoted using d. The Boltzmann
constant kg as well as the gas constant R are set to 1 throughout the thesis.

1.1 EQUILIBRIUM STATES

Equilibrium states of thermodynamic systems are completely determined
by the values of some system quantities, U and {X* } for k = 1,...,N, and
do not depend at all by the history of the system. Among these quantities,
the internal energy U plays a prominent role in our discussion, whereas
typical instances of others system quantities are the volume V and number
of particles N. In addition to U and { X"}, we postulate the existence of
a quantity, the entropy 8, which takes its maximum value at equilibrium.
Its equilibrium value, denoted by S, is solely determined by the system
quantities, S = S (U,{X*}), and has the following property: Equilibrium
entropy changes due to internal energy changes at fixed { X* } are always
positive and define inverse temperatures:

1 oS
—=p:= ) >0. (5)

This property allows us to write the entropy as function of the internal
energy, U = U(S,{X*}). The thermodynamic description having S, resp.
U, as main quantity is referred to as the entropy representation, resp. energy
representation, of thermodynamics [1]. We will use both in this chapter, as
we will see that the former better describes the phenomenology related to
the first law whereas the latter that related to the second law.

We now imagine that the equilibrium system undergoes a process which
infinitesimally changes its system quantities. The changes of internal energy
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system quantity, X* energetic intensive field, g«

volume, V (negative) pressure, —p
particles number, N chemical potential, p
magnetization, M magnetic field, H

Table 1: Examples of system quantity—intensive field conjugated pairs.

(resp. equilibrium entropy) define the energetic (resp. entropic) intensive
fields { g« } (resp. { —P g« }):

ds = pdU — By gxdX" ©)
dUu=TdS+ > , g«dX"*, 7)
where
ou ) 0S )
gk == =-T . (8)
K aXK S,{XK/ }KI%K aXK u/{XK/}Kr#

They quantify the amount of energy (resp. entropy) that needs to be sup-
plied externally to vary X* while keeping all other system quantities un-
changed. Table 1 summarizes some g«—X" conjugated pairs.

1.2 FUNDAMENTAL LAWS OF THERMODYNAMICS

We now introduce the phenomenological laws of thermodynamics. To
do so, we consider a system exchanging energy U and {X* } with with N,
reservoirs, which we label by r. Reservoirs are regarded as large equilibrium
system whose properties are unaffected by the coupling with the system.
The system is not necessarily at equilibrium, but the conservation of system
quantities requires that the following balance equations hold

du=ou+d&Uu+ Y du (92)
dX* = oX"* + & X  + Y .d.X*, forallk. (9b)

where the exact derivative, d:, denotes the overall changes in the system.
For each balance, the first term on the rhs, 0-, quantifies the variations due to
external driving, namely purely mechanical manipulations. The second term,
d;-, denote the changes due internal transformations, which transform some
system quantities into some other, e.g. chemical reactions. Finally, the third
term, d,-, are the variations due to the exchange with the r-th reservoir.
The first contribution in the internal energy balance is the work due to
the external driving,

AU = oW, (10)

which might also be determined by the manipulations of some other system
quantities. For instance, in macroscopic systems, the mechanical work follows
from controlled changes of volume, 0Wyech = {0U/0VIOV = prechdV. We
will refer to this type of work as driving work contributions.

Regarding the reservoirs, their thermodynamic properties in the intensive
fields, B+ (or equivalently T;) and { g, ) }. They may possibly change due
to external driving, and their variations are denoted using 0. Processes occur-
ring without any form of external driving, 0- = 0, are said undriven.
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1.2.1  The First Law

Since each reservoir is at equilibrium, Eq. (7) holds for the changes of
system quantities in the reservoirs,

d:U=d,Q+ Y gcdrX" (11)
where
d,;Q =T;d;S (12)

is minus the heat flow in the r-th reservoir. Inserting this equation in the
energy balance (9a) we obtain the traditional expression of the first law of
thermodynamics

du =ow+ ) d&W*+dQ (13)
T,K
where
dQ:=3Y ,d:Q (14)
is the overall heat flow, and
d-W* = g rydr X* (15)

are autonomous work contributions [2]. This type of work accounts for energy
changes due to autonomous exchanges of system quantities with the reser-
voirs. The chemical work is a contribution of this type, dWchem = 2 1rd+N,
see Ch. 3, [1, Eq. 2.9]. We also emphasize that in our general setting dQ
does not account solely for thermal heat (i.e. the heat exchanged with ther-
mal reservoirs), but also other form of heat exchanged with other types
of reservoirs, see for instance Eq. [(64) and (65), p. 118] in the context of
chemical reaction networks. In this respect, we remark that the common
identification of heat as solely the thermal energy exchanged with a ther-
mal reservoir is no more than a point of view. On the one hand, it is already
clear that the definition of heat flow in nonequilibrium thermodynamics is
not unique [3, Sec. IIL.3]. On the other hand, if one conceive thermodynam-
ics as a science of symmetries rather than of mere transformation of energy,
one can build thermodynamic systems in which internal energy plays no
role and nonetheless heat is well defined [4].

1.2.2 The Second Law

In addition to the balance of system quantities, thermodynamics estab-
lishes the unbalance of entropy,

4 =d$S—08—Y Brd,Q=dS—03S+ 5 ,d,S>0, (16)

where dX is the entropy production. It is the sum of the entropy change
in the system not due to driving, (d —9)8, plus the sum of heat flows in
the reservoirs times their inverse temperatures. Similar to the internal en-
ergy, entropy changes due to driving might be caused by manipulations of
other system quantities. According to the second law of thermodynamics, &~
is always non-negative and vanishes only for reversible processes. Since
all reservoirs are constantly at equilibrium, we can use Eq. (11)—or equiva-
lently (6)—to recast the last term

df =d8—08—3 | |BrdrU—Br) (i rdrX"| > 0. (17)
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Reservoir

1

System

Figure 1: Schematic illustration of the system considered in the Example 1.

In this form, the dissipation is related to the changes of system quantities in
the reservoirs.

1.3 CONSERVATION LAWS: ILLUSTRATIVE EXAM-
PLES

We now introduce and illustrate the role of conservation laws using a
series of three examples.

1.3.1  Example 1. System in contact with one reservoir

Let us consider an undriven system exchanging internal energy and par-
ticles with a reservoir at inverse temperature (3, and chemical potential p,
see Fig. 1. For the sake of simplicity, the related system quantities U and
N are subject to neither internal transformations nor external driving, and
hence their balance equations read

du=d,u, and dN =d;N. (18)

By combining these balances and using the equilibrium properties of the
reservoir, Eq. (11), we obtain

dH = d.Q (19)
where
H:=U—uN (20)

is reminiscent of the thermodynamic potential obtained as a Legendre trans-

form of U wrt N. It is however a nonequilibrium potential, since the system

in not necessarily at equilibrium. This potential can be understood as the

portion of internal energy which is not attributed to its chemical composi-

tion, and its changes quantify the heat flow during the process [2].
Dissipation is quantified by the entropy production, Eq. (17),

dr =d8— B, (d:U — prdi:N) , (21)
which combined with the other balances, Eq. (18), gives

dr =do, (22)
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where
®:=8— B (U—puN), (23)

is reminiscent of the Massieu potential corresponding to the grand poten-
tial. We recall that Massieu potentials are thermodynamic potentials in the
entropy representation [1, Secs. 5-4 and 19-1] [5, Sec. 3.13]. In our case, @
can be regarded as the part of entropy which is attributed to neither its ther-
mal nor chemical composition. In other words, it quantify the entropy freely
produced, as its variations determine the entropy production.

At equilibrium, dX = 0 implies that d®eq = 0. Since the system is at
equilibrium, its entropy changes reads as in Eq. (6), and we obtain

0=d®eq = (B —Br)dU— (n—pr) dN. (24)

Since the changes of U and N are independent, this equation requires that
B = Br and p = p, namely the system temperature and chemical potential
equal those of the reservoirs.

In this first example, we recovered traditional equilibrium thermodynam-
ics from a nonequilibrium description.

1.3.2 Example 14+1/2. Driven System in contact with one reservoir

For the sake of illustrating the effect of driving, let us imagine that the
internal energy and the chemical potential of the reservoirs are manipulated
by an (not clearly identified) external agent: dU # 0, 98 # 0, and Oy, # O.
The balance of energy now reads

du =ou+d,u, (25)
and by combining it with the balance for N and Eq. (11) we obtain
dH = 0H + &.Q, (26)

where we have used Eq. (20) and the identity d (u:N) = 0prN + pdN. The
second term on the rhs is distintive of driving,

0H =0oU —ouN, (27)

as it accounts for the manipulation of energy and chemical potential of the
reservoir. It is clear, though, that these contributions have completely differ-
ent nature: The first accounts for direct changes of energy, while the second
changes the energy indirectly by changing the thermodynamic properties of
the reservoir. Despite this important difference, we will refer to both terms
as driving work.

Analogously, for the entropy balance we obtain

dX =do—-00, (28)
where @ is given as in Eq. (23) and teh second term on the rhs reads
00 =08 — 30U+ 0N, (29)

The latter term accounts for the dissipation due the driving mechanisms.

In this example we showed that driving introduces a new work and dis-
sipative contributions. It is clear that they must vanish at equilibrium, else
the entropy production would be different from zero.
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Figure 2: Schematic illustration of the system considered in the Example 2.

1.3.3 Example 2. System in contact with multiple reservoirs

Let us consider the same system as in Example 1 (no driving), but now ex-
changing energy and matter with three reservoirs, each with its own fields,
as in see Fig. 2. The balance equations for these quantities read

3 3
du=)> dU,and dN=) dN. (30)

r=1 r=1

By combining these equations and using the equilibrium properties of the
reservoirs, we get

3
d3 =) (ur—m1)deN+dQ (31)
r=2
where
H:=U—-uN. (32)

is a nonequilibrium potential similar to those discussed in the previous ex-
ample. We used the first reservoir as a reference, and its chemical potential
appears in this potential. The first term on the rhs of Eq. (31) vanishes in
presence of only one reservoir, c¢f. Eq. (19), and quantifies the energetic cost
of transferring particles between the first and the other two reservoirs. In
Eq. (31), dQ = }_,d,Q is the total heat flow.

Concerning the entropy balance, the entropy production now reads

3
dZ =dS— ) Br(dilU—prd:N), (33)

r=1

which combined with the other balances gives

3 3
dr =d®+ ) (B1—Br)drU+ )Y (Brir—Brur)diN, (34)
r=2 r=2
where
O:=8—-B7(U-puN), (35)

is the nonequilibrium Massieu potential corresponding to the grand poten-
tial. The first term is the dissipative contribution due to overall changes of
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Figure 3: Schematic illustration of the system considered in the Example 3.

system quantities and uses the thermodynamic properties of first reservoirs
as a reference. Since the system is coupled to three reservoirs and each of
them tries to impose its own equilibrium, four nonconservative force—flow
contributions arise. They quantify the dissipation due to the flow of thermal
and chemical energy between the first reservoir and the other two.

For the system to be at equilibrium, d~ = 0, all nonconservative forces
need to vanish independently, which follows when 37 = 3, = 3 and
uy = p2 = u3. The changes of Massieu potential also need to vanish, which
entails that the system intensive fields equal those of the reservoirs: 3 = 34
and p = py.

In this second example we saw that in presence of multiple reservoirs, en-
ergetic and dissipative contributions due to exchanges of system quantities
with the reservoirs arise. We now remark that we said nothing about the
properties of the system, which has been treated as a black box. The question
which we will answer in the next section is in which way the knowledge of
its specifications improves this thermodynamic description.

1.3.4 Example 3: System-specific description: conservation laws

We now consider the system described in the previous example, but a
detailed inspection inform us that the system is divided into an upper and
a lower part, see Fig. 3. The former exchanges energy and particles with the
first reservoir, while the latter with the other two reservoirs. Only thermal
energy can be transferred between these parts as particle transfers are for-
bidden. This revealed constraint introduces a new balance equation since
the number of particles in the upper and lower part of the system, N and
N¢ respectively, are now separately conserved:

3
dN" =d;N", and dN9 =3 &N (36)
r=2

The total number of particles is clearly recovered as N = N" + N9. Upon
combination of these balances with the energy balance and the first law of
thermodynamics, Eq. (13), we obtain

dH = (n3 — p2)dsN +d:Q, (37)
where

H o= U—py N — N9 (38)
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is a system-specific nonequilibrium potential. Notice that we have now used
the chemical potentials of the first and the second reservoir as a reference.
The first term on the rhs is the energetic cost associated to the transfer of
particle between the second and the third reservoirs.

Analogously, the knowledge of the additional balance allows to recast the
entropy production into

3
dL =d®—3d+ Y (By —Br)drU+ (B3ps — B2ma)dsN, (39)
r=2
where
D=8~ (B1U— B N"— BapaNY), (40)

is the nonequilibrium Massieu potential corresponding to a system-specific
grand potential. By comparing Egs. (34) and (39) we notice that the Massieu
potential contains an additional term, which comes from the additional bal-
ance. In contrast, the number of nonconservative dissipative contributions
is decreased by one, since the additional constraint prevents some particle
flows. In summary, one nonconservative contribution is recognized as a
conservative one and it is included in the potential.

For the system to be at equilibrium, the three nonconservative forces must
independently vanish, which implies that: 31 = 3, = 33 =: 3; and pp = p3.
Notice that now that we have more information about the system, we learn
that 1y need not be equal to py and p3. Finally, d®eq = O, implies that
B =PB1, tu = p1 and pg = p2. In other words, the system temperature
equals that of the reservoirs, the upper part of the system is characterized
by a chemical potential equilibrated with that of the first reservoir, and the
lower part by one equilibrated with the second and third reservoir.

We now argue that the system quantities U, N, and N4 can be regarded
as a particular class of conserved quantities in two respects. First, they are
system-specific—not all systems are split in two parts. Second, they do not
change due to internal transformations. Hence, if the system were isolated,
d;- = 9=0, they would be constants, but the driving or the coupling with
the reservoirs breaks them. We will refer to the conservation laws corre-
sponding to these type of conserved quantities as broken conservation laws.
The benefit of identifying these laws is clear from this example: they allow
us to clearly separate the nonconservative energetic and dissipative contri-
butions from the conservative ones. Additionally, they allow to accurately
determine what are the conditions so that the system is at equilibrium.

1.4 SYSTEMS IN CONTACT WITH MULTIPLE RESER-
VOIRS

We now proceed to construct a formulation of nonequilibrium thermody-
namics which generalizes the observations drawn in the previous examples.
In this section, we generalize the case of the second example, in which the
system is treated as a black box and no system-specific conservation law is
used. For the purpose of identifying the different energetic and dissipative
contributions, we will combine the balances of system quantities with the
first and second law of thermodynamics.
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Choosing the first reservoir as a reference, we can rewrite Eq. (9b) as

di XS =dXS —0X* — X  — ) dpX~. (41)
T#1

Since
d (g(K,r)XK) = dg(K,r]XK + g(K,r)dXK = ag(K,r)XK =+ g(K,r]dXK ’ (42)

the previous equation can be combined with the energy balance, Eq. (9a), to
give

dH =3 +030+ Y (g — 91,0 ) deX*+dQ. 43)
K,T#]1

where we introduced the nonequilibrium generalized enthalpy,

f}fZ:U*ZKg(K,])XK. (44)

Indeed, 7 recalls the thermodynamic potential obtained as a Legendre
transform of U wrt all other system quantities. It is clearly defined up
to a closed zero-form ¢, d¢ = 0, which we omit for brevity. Equation (43)
combines the changes of all system quantities in one balance. The first term
on the rhs quantifies the overall nonequilibrium enthalpy changes due to
internal transformations, whereas the second those due to external manipu-
lations. The third term accounts for the transfer of X* from the first reservoir
to the r-th, and the last one is the overall heat flow.

As for the energy balance, we now combine the entropy balance with
all other balances. By choosing again the first reservoir as a reference, we
obtain

L =d®—di®— 30+ (B1—Br)dU+ Y (Brgjer —B1g(en ) diX*,
T T,K

(45)

where
® =8~ B1 (U= T g1/ X") =8~ B13¢ (46)

is reminiscent of a Massieu potential obtained as a Legendre transform of
the entropy with respect to all other system quantities. In contrast to the
terms appearing in Eq. (43), those in Eq. (45) are dissipative contributions
rather than enthalpic changes. The first two terms quantify the dissipation
due to overall changes of system quantities and those due to internal trans-
formations, respectively. The third term characterizes the dissipation corre-
sponding to the external manipulations, whereas the fourth and fifth term
quantify that due to the exchange of thermal energy and X* between the
first and the r-th reservoir. These nonconservative force—flow contributions
are the distinctive feature of systems coupled to multiple reservoirs. Since
each of them tries to impose its own equilibrium the system is in general
prevented from reaching equilibrium.

At this level of description, equilibrium (dZ = 0) is reached when the
following conditions are satisfied. (i) all reservoirs have the same intensive
fields, B+ = P71 and g(«r) = g(«,1) for all 7, since in this way all non-
conservative force—flow contribution vanish. (ii) external manipulations are
stopped 00 = 0. (iii) the changes of ® due to internal transformations van-
ish, dj®eq = 0. Finally, (iv) the overall changes of @ vanish, d®eq = 0. At
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equilibrium, system entropy changes can be written as in Eq. (6), and hence
the latter requirement reads

0= d®eg = (B—B1)dU— T, (9x —9(x1)) dX*, 47)

where 3 and { g« } are the intensive fields of the system at equilibrium. Since
the changes of all system quantities are independent, this equation implies
that 3 = 1, and g« = g(,,1) for all k. In other words, all system fields
become well defined and equal to those of the reservoirs. We notice that
the requirement (iii) is not written in terms of properties of the intensive
fields—as for the conditions (i) and (iv)—, but rather as a condition on the
internal state of the system, which cannot be elucidate further. This is a
consequence of treating the system as a black box.

We described in this section a black-box description of nonequilibrium ther-
modynamics: we made no mention of the properties of the system. Combin-
ing the balances of system quantities give us incomplete information about
both the nature of the different energetic and dissipative contributions, and
the conditions for equilibrium, which cannot be completely characterized in
terms of properties of the reservoirs.

1.5 SYSTEM-SPECIFIC THERMODYNAMICS

In this section, we will reconsider the problem of identifying the energetic
and dissipative contributions characterizing a given process, but we will
make use of the properties of the system. These properties are encoded in
its topological structure and determine its broken conservation laws. We
will thus introduce a systematic procedure to identify them. But to do so,
we first rewrite the laws of thermodynamics in a more compact way.

We define the index y := (1, &) as that labelling the system quantity & ex-
changed with the reservoir r. The index & labels all system quantities including
the internal energy. The changes of each system quantity due to each reser-
voir can be thus encoded in a vector of exchange one-forms { XY := d. X~ }.
Similarly, we collect all intensive fields in a vector, { gy := g(r )}, where
g(r,u) = —1. We denote by 3, the inverse temperature of the reservoir cor-
responding to y: By = By for y = (r,&). First and second law, Egs. (13) and
(16), can be thus recast into

0=dQ+ W+ 3, gydX¥ (48)
dZ = dS — 38 + 3, BygydX¥ > 0. (49)

1.5.1  Cyclic Transformations and Broken Conservation Laws

We define instantaneous cyclic transformations, denoted by v, as any system
transformation which does not involve driving, 3. = 0, and in which the
microscopic state of the system is overall unchanged. It is clear that all
exact one-forms vanish along these transformations, i.e.

1; dO =0, for any state observable O. (50)
v

For instance, a cyclic transformation for the system in Sec. 1.3.4 is one in
which n molecules enter in the lower part part of the system from the second
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reservoir and then exit from the third one. Notice that cyclic transformations
encode the topological structure of the system.
We introduce broken conservation laws, as y-space vectors £y, satisfying

Zyﬂng dX¥ =0, forallvy. (51)
Y

Broken conservation laws identify broken conserved quantities, whose balance
is given by

dL =L+ ¥, £,dXY. (52)

These equations can be understood as follows. Equation (51) identifies a
combination of exchange terms which leaves the internal state of the system
unchanged upon any instantaneous cyclic transformation. This combination
must correspond to an exact one-form, dL := dey dXY, which generalizes
to Eq. (52) when L is externally manipulated. Clearly, L is defined up to a
zero-form. Notice that the changes of L are due to either external manip-
ulations or the coupling with the reservoirs, and not to internal transfor-
mations. If the system were isolated, L would be conserved in the system,
dL = 0, which motivates a posteriori the name broken conserved quantity.

A complete set of broken conservation laws is defined as a maximal set
of independent vectors in the y-space which satisfy Eq. (51), and we denote
it by {E;,‘ }, for A =1,...,N,. The corresponding conserved quantities are
denoted by { L, }. System quantities that are not subject to internal transfor-
mations are trivial cases of broken conserved quantities. Their balance is
recovered for 6'(2;’@ = 5%’

1.5.2 System-specific Energy and Entropy balance

We now proceed to reformulate the laws of thermodynamics using the
broken conserved quantities. Since {£7} are linearly independent, it is al-
ways possible to identify Nj exchanged quantities, labelled by yp, such that
the matrix whose row vectors are {(’,ﬁp }, for A = 1,...,N,, is nonsingular.

We denote by {f?\p L, for A=1,...,N;, the column vector of the correspond-
ing inverse matrix. All other exchanged quantities are denoted by y¢. There-
fore, Eq. (52) can be recast into

dXYP = 30 (dLy —dLy) — X, X, ) dXYr, (53)

ie. the changes of yp can be related to the changes of the set of conserved
quantities, {dL, } and {0L, }, and the remaining exchange terms, { &XYf}.
Using this equation, the first law, Eq. (48), can be recast into

d3 = 9% + 3, Ky, dXY1 +dQ, (54)
where

H:=—=2 aonla (55)
is a system-specific nonequilibrium generalized enthalpy,

0 = Xy, 9y, (56)

are the energetic intensive fields conjugated to the conservation laws, and

Ky, = Gy; — L AN, - (57)
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are differences of intensive fields. Concerning the second law, Eq. (49), using
Eq. (53), we obtain

df =d® —0d + 3} , FydXYt (58)
where

®:=8— Afala (59)
is a system-specific nonequilibrium Massieu potential, and

= =2y, BupGup (60)

are the entropic intensive fields conjugated to the conservation laws. The
nonconservative forces read

Fyp = By + Z)\fk%\f . (61)

Equations (54) and (58) are the main result of this chapter. The funda-
mental enthalpic and dissipative contributions, i.e. internal, driving, and
transport between reservoirs, are completely separated, thanks to the use
of conservation laws. The driving term 03 (resp. —0®) quantifies the en-
thalpic cost (resp. dissipation) of external manipulations, and vanish in
nondriven systems. The nonconservative force—flow terms Xy dX¥f (resp.
JFy,dX¥f) quantify the enthalpic cost (resp. the dissipation) of transporting
system quantities from some reservoir to some other. Finally the conserva-
tive term d® appearing in the entropy balance accounts for the dissipation
due to internal transformations. Wrt Eq. (43) and (45) we notice that: (i) the
contributions due to internal transformation are disappeared; (ii) the terms
appearing in the potentials H and ® now account for broken conservation
laws, which are invariant under internal transformations; (iii) the noncon-
servative forces now account for both the presence of constraints prevent-
ing the flow between some reservoirs (as seen in the illustrative example)
and the possibility that internal transformations create pathways between
reservoirs of different system quantities (see example in Part ii). In this
respect, { Fy, } is a set of fundamental nonconservative forces as they are max-
imal and independent: if and only if they all vanish, the system can relax
to equilibrium when undriven. Indeed, since all contributions in Eq. (58)
are independent one another, they must independently vanish at thermody-
namic equilibrium, dZ = 0. Specifically, F,;, = 0 for all y¢, means that the
reservoirs do not develop gradients of intensive fields which create flows
across the system. 00 = 0 requires that the system is not manipulated, and
d®¢q = 0 implies that all system intensive fields {3 } are well defined and
equilibrated with those of the reservoirs { f; }.

We point out that the relationship between the fundamental forces { J, }
and { Xy, }, Egs. (57) and (61), is nontrivial:

7Y
Fye =2y, [Byf - Byp} Gyp ALY + By Ky, (62)

This entails that F,, = 0 < Xy, = 0, and therefore { X, } cannot be inter-
preted as fundamental forces: they could vanish in a system prevented from
reaching equilibrium, as well as be finite in a system relaxing to equilibrium.

We finally emphasize that Egs. (54) and (58) hold for arbitrary systems
and arbitrarily far from equilibrium. They are based on the laws of ther-
modynamics, on the fact that the reservoirs are at equilibrium, and on the



1.5 SYSTEM-SPECIFIC THERMODYNAMICS \

possibility of attributing system quantities and entropy to the overall system.
In Chs. 2, 4, and 5 we will discuss several classes of micro- and macro-scopic
dynamics for which these results are recovered.

We conclude our main discussion with two important remarks and then
consider some specific classes of processes.

REMARK The decompositions in Egs. (54) and (58) are not unique since
they depend on the partitioning of y in yp and y¢. We recall that not all
partitioning are allowed since %‘p needs to be nonsingular, but Ny = Nj
and Ny, = Ny —Nj.

REMARK A detailed inspection of the system could reveal that the system
is characterized by some constants of motion, or unbroken conservation laws,
namely a set of closed zero-forms {L,, } forv =1,...,Ny, such that dL,, = 0.
We have already mentioned that all conservation laws are defined up to a
closed zero-form. Let us therefore consider the following gauge transforma-
tion of the conserved quantities

Ly = L+ 3,001 (63)
where { Q7 } are real coefficients. It is clear that
dL — dL,, (64)

but the changes of system-specific potentials are not left unchanged
d3 - 3~ ¥ \0ga Y, Ly
dO — dd — 3,0 Y ,Q)L,.

Crucially, the extra gauge terms appearing on the rhs disappear in the en-
ergy and entropy balances, Egs. (54) and (58), since it cancels with term
arising from the driving terms. We have thus shown that the potentials and
the related driving terms are defined up to a gauge, which overall does not
affect any balance equation. Notice also that the gauge term disappears
from the energy and entropy balances, Egs. (54) and (58), for nondriven
systems as well as under cyclic transformations.

(65)

1.5.3 Isothermal Processes

For isothermal processes all reservoirs are characterized by the same in-
verse temperature, 3;, and hence the entropy balance, Eq. (49), can be writ-
ten as

dr =d8+Br)_,gydXy > 0. (66)
By making use of conservation laws, we obtain

df =d® —0d + B, Ky, dXYF, (67)
where the system-specific Massieu potential becomes

O =8—-pKH. (68)

Indeed, the entropic intensive fields conjugated to conservation laws can be
written in terms of the energetic ones,

fa = —Bror, (69)

and Eq. (62) guarantees that Jy, = 3,Xy,. Therefore, only for isothermal
processes Fy, = 0 < Ky, = 0, which implies that also { Ky, } can be regarded
as fundamental forces.
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1.5.4 Adiabatic Processes

In adiabatic processes no heat is exchanged, dQ = 0, and hence the energy
balance reads

2y gydX¥ =dIH -9 — 3 |, Ky, dXYF =0 (70)
whereas the entropy one
dr =ds. (71)

Since heat is not exchanged, all kind of thermal and chemical reservoirs
do not appear. The exchanged system quantities are restricted to purely
mechanical ones like for instance the volume.

1.6 NONEQUILIBRIUM LANDAUER PRINCIPLE

We now reconsider Eq. (58) from an information theoretical perspective,
and for the sake of simplicity we consider isothermal processes, Eq. (67).
We have already mentioned that when all fundamental forces vanish and
the variations of intensive fields are stopped, the overall dissipation is d~ =
d® > 0 and it vanishes at equilibrium, d®eq = 0. Therefore, we can assume
that @ is maximized at equilibrium, and we rewrite it as

o= (Deq_D/ (72)

where @ is the equilibrium potential maximizing ®, and the generalized
relative entropy D > 0 quantifies the deviation of ® from equilibrium: the
larger D is, the further the system is from equilibrium, and it vanishes solely
at equilibrium. By combining this equation with Eq. (67), we can recast the
latter into

—0Dirr + BrY Ky XY = dD +d5 > dD, (73)
where
—3Diy = dDeq — D = d (Deq — D) (74)

is an irreversible driving dissipative contribution—notice its gauge invariance.
In the last equality, d®eq = 0®eq, accounts for the fact that the equilibrium
state changes because of the external manipulation.

Equation (73) is an important result which relates the dissipative cost
of transforming the system via either external driving or nonconservative
forces, to its deviation from equilibrium, D. Since the total entropy change
is always positive, dD determines the minimal dissipative cost of this trans-
formation. It is negative (entropy released by the system) when approach-
ing equilibrium, and positive (entropy flowing in the system) when moving
away from it. If we multiply both sides by T, and integrate Eq. (73) over a
process, we obtain

—T: J 0D + ny JKyde‘Jf =T,AD+ T, J dr > T,AD. (75)
In this form, the lhs represents the work, either due to driving or nonconser-

vative mechanisms, that is spent to transform the system from two arbitrary
nonequilibrium states. The difference T,AD thus quantifies the minimal
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thermodynamic cost of transforming the system. For systems starting at
equilibrium, T,AD = T, D, > 0 quantifies the minimal cost of structuring
the final nonequilibrium state. In contrast, for system relaxing to equilib-
rium, T,AD = =T, Dinitia < 0 quantifies the maximum amount of work that
can be extracted during the relaxation. For transformations between equilib-
rium states (K, = 0 for all ys), we recover the classic result, —T; [ 9®j, > 0.

We will refer to the bound on the work contributions expressed in Eq. (75)
as nonequilibrium Landauer principle, but we postpone the justification for
this name to the next chapter, where we specialize it to stochastic processes.
We finally remark that a generalization of this principle to nonisothermal
processes is possible but requires care, as we explain in the reprinted article

at p. 37.

1.7 EQUILIBRIUM STATES OF EXTENSIVE SYSTEMS

We conclude this section by discussing the equilibrium Massieu potential
for those systems whose equilibrium entropy is extensive: if the system is
scaled by a, then the equilibrium entropy scales by a as well. In other words,
S satisfies Euler equation

S{alat{alv ) =aSH{La},{Lv}), foranya. (76)

where {L,, } is a set of unbroken conserved quantities, i.e. system quantities
which are not exchanged with the reservoirs: dL,, = 0. Taking the derivative
wrt a and imposing a = 1, we recover Euler theorem,

S AL D = LA+ 2o lo - (77)

Since the system is at equilibrium with its reservoirs, { f§ } must be equal to
those in Eq. (60). We can thus write the system-specific equilibrium Massieu
potential as

Deg =2 pfblv - (78)

In conclusions, when assuming that the equilibrium entropy is extensive
the equilibrium Massieu potential becomes a combination of unbroken con-
served quantities.
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2 STOCHASTIC DESCRIPTION

In Ch. 1 we established a phenomenological description of generic ther-
modynamic systems far from equilibrium. We made no mention of the mi-
croscopic dynamics which determines the evolution of the system. Nonethe-
less, conservation laws enabled us to clearly separate the various types of
energetic and dissipative contributions.

We have already introduced stochastic thermodynamics as a nonequilib-
rium thermodynamic description for systems whose stochastic dynamics
is Markovian. In the following reprinted Article, we present the first gen-
eral formulation of stochastic thermodynamics for Markov jump processes
which makes full use of conservation laws. In this setting, the microscopic
configurations of the system are described as states { n} whereas the transi-
tions from one state to another, { e}, are stochastic events. The evolution in
time of the probability of finding the system in the state n, py, is ruled by
the master equation, Egs. [(1), p. 38] and [(5), 73], whose timeless expression
reads

dpn =3 .DPdC., (79)

where the incidence matrix D encodes how the states are connected by tran-
sitions, and {d(. } are the extent of transitions that count their occurrence.
At an average level, the values of the system quantities are replaced by their
averages, €.9. X =Y XXpn, where X§ is the value of the system quantity
in the state n. Their balance equations, Eq. (9), can be thus written as

dX® =3 dXipn+2 .2 XyDedle
= Znaxflpﬂ + Ze (61Xg + Zr5rX§) die

where dX}; = 09X} are changes due to driving, while $;X§ and 6.X§ encode
the changes due to internal transformations and exchanges with the reser-
voir r along the transition e, see Egs. [(5), p- 39] and [(62), p. 83]. The average
system entropy is given by Gibbs—Shannon expression

S= ann (Sn—Inpn), (81)

where S, is the internal entropy of the state n, Eq. [(78), p. 87]. The con-
nection between the stochastic dynamics (79) and thermodynamics (80) lies
the local detailed balance property, Egs. [(6) and (7), p. 40] and [(65) and (66),
p- 84]. In its timeless formulation, it relates the ratio of forward and back-
ward extent of transition to the entropy production along the latter, i.e. the

affinity, see Egs. (17) and (49),

(80)

d¢
In dc_ee =Y BygydXE + X, (Sn —pn) D = 8% = A, (82)
where 5X¥ = 5,X% follows the notation introduced in Sec. 1.5. Once the

fundamental laws of thermodynamics are built on top of the stochastic dy-
namics, we can use the procedure described in Sec. 1.5.1 to identify bro-
ken conservation laws, Egs. [(10) and (11), p. 41] and [(63) and (64), p. 84].
Using the balances of the corresponding conserved quantities we are thus
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Figure 4: Schematic illustration of the erasure of one bit of information. The bit is
modeled as a double-well potential, in which each well correspond to a
logic state. We have no prior knowledge of the information stored in the
bit, and hence the probability to find it in 0 or 1 is equally likely. Since the
wells have the same energy and shape, the system is at equilibrium. At
the end of the erasure procedure, the system is in a nonequilibrium state,
as it is in 0 (or equivalently 1) with probability 1.

Energy

able to reproduce the phenomenological description discussed in Sec. 1.5,
see Sec. [5.1—2 p. 49]. Importantly, our stochastic formulation provides
us with a clearer understanding of the dissipative entropy production con-
tributions in Eq. (58). Indeed, we show that each of them is distinctive
for a class of processes: d® for relaxation to equilibrium, —0® for time-
dependently driven processes, and { F,dXVf} for nonequilibrium steady
states, see Tab. [3, p. 46].

The stochastic thermodynamic formulation of the nonequilibrium Lan-
dauer principle discussed in Sec. 1.6 is also derived, Sec. [5.3-4 p 50]. Here,
the generalized relative entropy introduced in Eq. (72) assumes an informa-
tion theoretical significance, as we show it to be a relative entropy [1]

D =D(plpe) = Y puln Pl > 0. (83)
n pn

This quantity can be regarded a measure of the dissimilarity between the
nonequilibrium probability mass function p, and py!, which is the equilib-
rium probability mass function obtained when turning off the fundamental
forces, Jy, = 0 for all y¢, stopping the driving, —0® = 0, and letting the
system relax to equilibrium.

We now mention that the specialization of Eq. (75) to closed isothermal
stochastic processes (no matter exchange) first appeared in the framework of
stochastic thermodynamics as a generalization to nonequilibrium conditions
of the Landauer principle [2, 3]. In its original formulation, this principle
quantifies the minimal cost of erasing a bit of information, which can be
regarded as a process of transforming a bit from an equilibrium state (bit
equally likely to be found in o or 1) to a nonequilibrium state (bit found
with probability one in o), see Fig. 4. Equations (73) and (75), generalize
this principle to any form of isothermal information processing, and for this
reason we keep calling it nonequilibrium Landauer principle. In Egs. [(74) and
(76), p- 50], this principle is specialized to arbitrary isothermal stochastic
processes.

We also formulate our nonequilibrium thermodynamic description at the
level of single stochastic trajectories. At this level, all thermodynamic quan-
tities described in Ch. 1 can be regarded as fluctuating quantities rather than
averages Sec. [3.1—2, p. 45]. The importance of our entropy production de-
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composition, Egs. (58) and [(36), p. 45], will be emphasized as we show that
the fluctuating expressions of —0® and { F,,dXVYf } satisfy a fluctuation the-
orem, Eq. [(55), p. 47]. We recall that these relations are symmetries that the
fluctuations of some thermodynamic observables obey arbitrarily far from
equilibrium, see Eq. (4).

We further elaborate on fluctuation theorems in the second reprinted Ar-
ticle, p. 71, in which a unifying perspective on several of these relations
is presented. This unification hinges on the following entropy production
decomposition

4% = Y AR + Y pndUi —dD(pp™) (84)
= dZnc =dZy

[(14)-(19), pp. 75-76], which is achieved when introducing a reference prob-

ability mass function, p™f = exp —'¢f, and the related affinities

desf | dee

Af— ]
S T A Tan

+ %y (W5 —Inpn ) D2 (85)

[(12) and (13), p. 74]. As we demonstrate, several known entropy produc-
tion decompositions follow when considering specific references, p'f. For
instance, the decompositions in Egs. (16) and (49) ensue when choosing
the equilibrium probability mass function of the isolated and open system,
Secs. [7-8, pp. 86-89]. As a major result, we show that when (i) the system is
initially prepared in p'f, and (ii) p*f is determined solely by the parameters
controlling the dynamics, then dX4 and dZ, satisfy a fluctuation theorem,
Eq. [(32), p. 77]. The fluctuation theorem for —0® and { F,,dXY¢ } Eq. [(55),

p- 47] is recovered as a special case.

REFERENCES FOR CHAPTER 2

[1] T. M. Cover and J. A. THOMAS, Elements of Information Theory, Wiley-
Interscience, 2006.

[2] K. Takara, H.-H. Hasecawa and D. DrIEBE, “Generalization of the
second law for a transition between nonequilibrium states”, Phys. Lett.
A 375.2 (2010), 88-92.

[3] M. Esposito and C. VAN DEN BRrOECk, “Second law and Landauer
principle far from equilibrium”, Europhys. Lett. 95.4 (2011), 40004.

33


http://dx.doi.org/10.1002/0471200611
http://dx.doi.org/10.1016/j.physleta.2010.11.002
http://dx.doi.org/10.1016/j.physleta.2010.11.002
http://dx.doi.org/10.1209/0295-5075/95/40004
http://dx.doi.org/10.1209/0295-5075/95/40004




The following article is reprinted from

[R. Rao and M. Esrosrito, New J. Phys. 20.2 (2018), 023007]

under the conditions of the Creative Commons Attribution 3.0 Unported
Licence®.

The page numbers placed in the outer margins provide a continuous pagi-
nation throughout the thesis.

1 https://creativecommons.org/licenses/by/3.0/


https://creativecommons.org/licenses/by/3.0/




I0P Publishing

@ CrossMark

OPENACCESS

RECEIVED
7 September 2017

REVISED
3 December 2017

ACCEPTED FOR PUBLICATION
13 December 2017

PUBLISHED
5 February 2018

Original content from this
work may be used under
the terms of the Creative
Commons Attribution 3.0
licence.

Any further distribution of
this work must maintain
attribution to the
author(s) and the title of
the work, journal citation
and DOL

New J. Phys. 20 (2018) 023007 https://doi.org/10.1088/1367-2630/aaal5f

H eutsche Physikalische Gesellscha Published in partnership
New journal Of PhYSlcs st M(I)DPG with: Deutsche Physikalische
0P Institute of Physics | Gesellschaftand the Institute

The open access journal at the forefront of physics i
of Physics

PAPER

Conservation laws shape dissipation

Riccardo Rao® and Massimiliano Esposito
Complex Systems and Statistical Mechanics, Physics and Materials Science Research Unit, University of Luxembourg, L-1511, Luxembourg

E-mail: riccardo.rao@uni.lu and massimiliano.esposito@uni.lu

Keywords: stochastic thermodynamics, network, fluctuation theorem, conservation law, entropy production, cycles, graph theory

Abstract

Starting from the most general formulation of stochastic thermodynamics—i.e. a thermodynamically
consistent nonautonomous stochastic dynamics describing systems in contact with several reservoirs
—we define a procedure to identify the conservative and the minimal set of nonconservative
contributions in the entropy production. The former is expressed as the difference between changes
caused by time-dependent drivings and a generalized potential difference. The latter is a sum over the
minimal set of flux-force contributions controlling the dissipative flows across the system. When the
system is initially prepared at equilibrium (e.g. by turning off drivings and forces), a finite-time
detailed fluctuation theorem holds for the different contributions. Our approach relies on identifying
the complete set of conserved quantities and can be viewed as the extension of the theory of generalized
Gibbs ensembles to nonequilibrium situations.

1. Introduction

Stochastic thermodynamics provides a rigorous formulation of nonequilibrium thermodynamics for open
systems described by Markovian dynamics [1-4]. Thermodynamic quantities fluctuate and the first and second
law of thermodynamics can be formulated along single stochastic trajectories. Most notably, entropy-
production fluctuations exhibit a universal symmetry, called fluctuation theorem (FT). This latter implies,
among other things, that the average entropy production is non-negative. Besides being conceptually new, this
framework has been shown experimentally relevant in many different contexts [5]. It also provides a solid
ground to analyze energy conversion [3, 6, 7], the cost of information processing [8—12], and speed-accuracy
trade-offs [ 13, 14] in small systems operating far from equilibrium.

In stochastic thermodynamics, the dynamics is expressed in terms of Markovian rates describing transition
probabilities per unit time between states. The thermodynamics, on the other hand, assigns conserved quantities
to each system state (e.g. energy and particle number). This means that transitions among states entail an
exchange of these conserved quantities between the system and the reservoirs. The core assumption providing
the connection between dynamics and thermodynamics is local detailed balance. It states that the log ratio of
each forward and backward transition rate corresponds to the entropy changes in the reservoirs caused by the
exchange of the conserved quantities (divided by the Boltzmann constant). These changes are expressed as the
product of the entropic intensive fields characterizing the reservoirs (e.g. inverse temperature, chemical
potential divided by temperature) and the corresponding changes of conserved quantities in the reservoirs, in
accordance to the fundamental relation of equilibrium thermodynamics in the entropy representation.
Microscopically, the local detailed balance arises from the assumption that the reservoirs are at equilibrium [15].

In this paper, we ask a few simple questions which lie at the heart of nonequilibrium thermodynamics. We
consider a system subject to time-dependent drivings—i.e. nonautonomous—and in contact with multiple
reservoirs. What is the most fundamental representation of the EP for such a system? In other words, how many
independent nonconservative forces multiplied by their conjugated flux appear in the EP? Which
thermodynamic potential is extremized by the dynamics in absence of driving when the forces are set to zero?
How do generic time-dependent drivings affect the EP? Surprisingly, up to now, no systematic procedure exists
to answer these questions. We provide one in this paper based on a systematic identification of conserved

© 2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft
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quantities. While some of them are obvious from the start (e.g. energy and particle number) the others are
system specific and depend on the way in which reservoirs are coupled to the system and on the topology of the
network of transitions.

The main outcome of our analysis is a rewriting of the EP, equation (36), which identifies three types of
contributions: a driving contribution caused by the nonautonomous mechanisms, a change of a generalized
Massieu potential, and a flow contribution made of a sum over a fundamental set of flux-force contributions.
For autonomous systems relaxing to equilibrium—all forces must be zero—the first and the third contributions
vanish and the dynamics maximizes the potential. This amounts to a dynamical realization of the maximization
of the Shannon entropy under the constrains of conserved quantities, which is commonly done by hand when
deriving generalized Gibbs distributions. For (autonomous) steady-state dynamics, the first two contributions
vanish and we recover the results of [ 16], showing that conservation laws reduce the number of forces created by
the reservoirs. The key achievement of this paper is to demonstrate that conservation laws are essential to achieve
a general and systematic treatment of stochastic thermodynamics.

Important results ensue. We show that system-specific conservation laws can cause the forces to depend on
system quantities and not only on intensive fields. We derive the most general formulation of finite-time detailed
FT's expressed in terms of measurable quantities. This result amounts to make use of conservation laws on the FT
derived in [17]. We identify the minimal cost required for making a transformation from one system state to
another one. In doing so we generalize to multiple reservoirs the nonequilibrium Landauer’s principle derived in
[18-20]. We also apply our method to four different models which reveal different implications of our theory.

This paper is organized as follows. In section 2 we derive an abstract formulation of stochastic
thermodynamics. We then describe the procedure to identify all conserved quantities, which we use to rewrite
the local detailed balance in terms of potential and (nonconservative) flow contributions. In section 3 we use the
above decomposition to establish balance equations along stochastic trajectories, which allow us to formulate
our finite-time detailed FT, section 4. In section 5 we discuss the ensemble average description of our EP
decompositions, as well as the nonequilibrium Landauer’s principle. Four detailed applications conclude our
analysis in section 6. The first is referenced systematically throughout the paper to illustrate our results. It
describes two quantum dots coupled to three reservoirs. The second describes a quantum point contact tightly
coupled to a quantum dot and shows that thermodynamic forces can depend on system features. The third is a
molecular motor exemplifying the differences between conservative and nonconservative forces in relation to
the topology of the network used to model it. The last one is a randomized grid illustrating that our formalism
becomes essential when analyzing more complex systems.

2. Edge level descpription

After formulating stochastic thermodynamics for continuous-time Markov jump processes from a graph-
theoretical perspective, we describe the general procedure to identify conservative and nonconservative
contributions to the local detailed balance.

2.1. Stochastic dynamics

We consider an externally driven open system characterized by a discrete number of states, which we label by n.
Allowed transitions between pairs of states, n &£ m, are described by directed edges, e = (nm, v). The index

v = 1, ...1abels different types of transitions between the same pair of states, e.g. transitions due to different
reservoirs. The time evolution of the probability of finding the system in the state 1, p, = p, (¢), is governed by
the master equation

dip, = > D' (J), )
e
which is here written as a continuity equation. Indeed, the incidence matrix D,

. e
+1 if —n
n-_
Dy = 1 f <o @

0 otherwise

associates each edge to the pair of states that it connects. It thus encodes the network topology. On the

graph identified by {#n} and {e}, it can be thought of as a (negative) divergence operator when acting on edge-
space vectors—as in the master equation (1)—or as a gradient operator when acting on state-space vectors. The
ensemble averaged edge probability currents,

<]e> = Wepu(e)) 3)
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Table 1. Summary of the indices used throughout the paper and the

object they label.
Index Label for Number
n State N,
e Transition N,
K System quantity N,
r Reservoir N,
y = (k, )  Conserved quantity Y* from reservoir r N,
e Cycle N,
A Conservation law and conserved quantity Ny
% ‘Potential’ y Ny
Y ‘Force’ y N, — Ny
p Symmetry N,
n Fundamental cycle N, — N,
=N, — N,

Table 2. Examples of system quantity-intensive field
conjugated pairs in the entropy representation [21,
sections 2 and 3]. 3, := 1/T; denotes the inverse
temperature of the reservoir. Since charges are carried
by particles, the conjugated pair (Q,, — 03, V;) is usually
embedded in (N;, — 0, 1,), see e.g. [22, section

Particles number, N,,

1.7.2,23].
System quantity Y* Intensive field f,,
Energy, E, Inverse temperature, (3,

Charge, Q,, Electric potential, — 3, V,
Displacement, X,, Generic force, — 3, k,
Angle, 0, Torque, — 3,7,

Chemical potential, — 3, 1,

RRao and M Esposito

are expressed in terms of the transition rates, {w, = w;,(¢)}, which describe the probability per unit time of
observing a transition along the edge e. The function

e
o(e) :=m, for «— m,

(C))

maps each edge into the state from which it originates. For thermodynamic consistency, each transition
e = (nm, v) with finite rate w, has a corresponding backward transition —e = (mn, v) with a finite rate w._,.
The stochastic dynamics is assumed to be ergodic at any time.

Notation. From now on, upper—lower indices and Einstein summation notation will be used: repeated upper—
lower indices implies the summation over all the allowed values for those indices. The meaning of all the indices
that will be used is summarized in table 1. Time derivatives are denoted by ‘d,” or ‘0,” whereas the overdot - ’is
reserved for rates of change of quantities that are not exact time derivatives. We also take the Boltzmann constant

kg equalto 1.

2.2. Stochastic thermodynamics

Physically, each system state, n, is characterized by given values of some system quantities, { Y,;'}, for

k = 1, ..., Ny, which encompass the internal energy, E,,, and possibly additional ones, see table 2 for some
examples. These must be regarded as conserved quantities in the total system, as their change in the system is
always balanced by an opposite change in the reservoirs. Indeed, when labeling the reservoirs with {r}, for

r =1, ..., N,, the balance equation for Y" can be written as

Yy - Ya=YiDl = 6y,

system " reservoir r

()

where Y™ quantifies the flow of Y* supplied by the reservoir r to the system along the transition e. For the
purpose of our discussion, we introduce the index y = (k, r), i.e. the conserved quantity Y* exchanged with the
reservoir r, and define the matrix §Y whose entries are { Y = §Y™"}. Enforcing microscopic reversibility, one
concludes that 6Y) = —6Y 7. As a first remark, more than one reservoir may be involved in each transition, see
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Figure 1. Pictorial representation of a system coupled to several reservoirs. Transitions may involve more than one reservoir and
exchange between reservoirs. Work reservoirs are also taken into account.

figure 1 and the application in section 6.2. As a second remark, the conserved quantities may not be solely { Y*},
since additional ones may arise due to the topological properties of the system, as we will see in the next
subsection.

Each reservoir ris characterized by a set of entropic intensive fields, { f . )} for k = 1, ..., N, which are
conjugated to the exchange of the system quantities { Y} [21, sections 2 and 3]. A shortlistof Y~ f
conjugated pairs is reported in table 2. The thermodynamic consistency of the stochastic dynamics is ensured by
the local detailed balance property,

w,
In =

= 8+ D) Q
It relates the log ratio of the forward and backward transition rates to the entropy change generated in the
reservoirs, i.e. minus the entropy flow { — fy 0Y/'}. The second term on the rhs is the internal entropy change
occurring during the transition, since S, denotes the internal entropy of the state #. This point is further
evidenced when writing the entropy balance along a transition

Wepu 2 R,T n
9 = Z{—Zf(n,r)éYé ’ )} + S, — Inp, 1D}, %)

W*‘-’po(—e) r

In

which expresses the edge EP, the lhs, as the entropy change in each reservoir r plus the system entropy change,
the rhs. See section 6.1.1 for explicit examples of 6Y and {f }.

In the most general formulation, the internal entropy S, the conserved quantities { Y*} (hence {§Y/}), and
their conjugated fields { fy}, change in time. Physically, this modeling corresponds to two possible ways of
controlling a system: either through { Y*} or S which characterize the system states, or through { fy} which
characterize the properties of the reservoirs. Throughout the paper, we use the word ‘driving’ to describe any of
these time-dependent controls, while we refer to those systems that are not time-dependently driven as
autonomous.

2.3. Network-specific conserved quantities

We now specify the procedure to identify the complete set of conserved quantities of a system. In doing so, we
extend the results of [16]. For this purpose, let { C, } for & = 1,...,N,, be an independent set of network cycles.
Algebraically, { C,} is a maximal set of independent vectors in ker D,

D! Ci =0, forall n, ®)

in which at most one entry in each forward—backward transition pair is nonzero. Since Dis { — 1, 0, 1}-valued,
{C} . can always be chosen in such a way that their entries are {0, 1}. In this representation, their 1-entries
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identify sets of transitions forming loops. In the examples, we will represent cycles using the set of forward
transitions only, and negative entries denote transitions along the backward direction. We denote the matrix
whose columns are {C,} by C = {C:}.

By multiplying the matrices 6Y and C, we obtain the M-matrix [16]:

M/ = §Y! C. ©)

This fundamental matrix encodes the physical topology of the system. It describes the ways in which the
conserved quantities { Y*} are exchanged between the reservoirs across the system, as its entries quantify the
influx of {y} along each cycle, . The physical topology is clearly build on top of the network topology encoded
inC.

The basis vectors of the coker M, are defined as the system conservation laws. They are denoted by {#*} for
A =1, ..., Nywhere N, := dim coker M and satisfy

£ 6Y) Co=1¢) M) =0, forall o (10)

From (8), this implies that £26Y € (ker D)" . Since (ker D) = coim D, one can introduce a set of states-space
vectors { L'} —i.e. state variables in the states space—which are mapped into {#* §Y} by the transpose of D:

Ly Dl =¢) 8Y) = Z{Z Enr 51@’%“}. (11)

r K

The properties of the incidence matrix guarantee that each L* is defined up to a reference value, see e.g. [24,
section 6.2]. We thus confirm that { L} are conserved quantities since equation (11) are their balance equations:
the lhs identifies the change of { L'} in the system, while the rhs expresses their change in the reservoirs. The
thermodynamic implications of shifting the reference values of { L'} are discussed in section 3.

Importantly, the vector space spanned by the conserved quantities, { L'}, encompasses the system quantities
{Y"}. They correspond to £} = £ ;) = 0}, so that the balance equation (5) are recovered. The remaining
conservation laws arise from the interplay between the specific topology of the network, C, and its coupling with
the reservoirs, §Y, and we will refer to them as nontrivial. Only for these, the row vector £ may depend on time
since M is a function of time, see section 6.1.2 and the application in section 6.2.

Variations in time of the system quantities { Y*} induce changes in the matrix M. If these changes cause a
modification of the size of its cokernel, i.e. a change in the number of conserved quantities, we say that the
physical topology was altered. We emphasize that these changes are not caused by changes in the network
topology since this latter remains unaltered. An example of physical topology transformation is given in
section 6.1.2 and in the application in section 6.4, while one of network topology is discussed in section 6.3.

Remark. The introduction of the conserved quantities is akin to that of scalar potentials for irrotational fields in
continuous space. Indeed, the vector £*§Y replaces the field, D' plays the role of the gradient operator, and L*
becomes the potential. The condition expressed by equation (10) is that of irrotational fields, as it tells us that
£8Y vanishes along all loops.

2.4. Network-specific local detailed balance
We now make use of the conserved quantities, { L}, to separate the conservative contributions in the local
detailed balance (6) from the nonconservative ones. This central result will provide the basis for our EP
decomposition in section 3.

We start by splitting the set {y} into two groups: a ‘potential’ one { b and a “force’ one {y;}. The first must be

constructed with N elements such that the matrix whose entries are {f; } is nonsingular. We denote the entries
P

of the inverse of the latter matrix by {#. /\y" }. Crucially, since the rank of the matrix whose rows are {£} is N,, itis
always possible to identify a set of { ) }. However, it may not be unique and different sets have different physical
interpretations, see sections 6.1.3 and 6.1.6 as well as the following sections. The second group, {}, is
constructed with the remaining N, — N, elements of {y}.

With the above prescription, we can write the entries { §Y."} as functions of {§Y/t} and {L,}} by inverting
{ Lﬂ;}: }in equation (11),

8Y; = 2 L) DI — 237 6Y L. (12)

The local detailed balance (6) can thus be rewritten as
We

In— = ¢,D}' + F,6Y.". (13)

W_e
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Figure 2. Schematic representation of our local detailed balance decomposition, which we summarize as follows. On the one hand, the
system is characterized by those system quantities which are exchanged with the reservoirs along transitions, as well as by the
topological properties of its network of transitions. The former is accounted for by the matrix of exchanged conserved quantities ¢Y,
while the latter by the incidence matrix, D, equation (2), which determines the matrix of cycles, C, equation (8) These two matrices
combined give the M-matrix, equation (9), which encodes the physical topology of the system and whose cokernel identifies the
complete set of conservation laws and conserved quantities, equations (10) and (11). On the other hand, the reservoirs are
characterized by entropic intensive fields, { f,}, which combined with the matrix of exchanged conserved quantities, §Y, gives the
local detailed balanced, equation (6). Having identified all conservation laws, the variables y can be split into ‘potential’ y, { Wb and

‘force’ y, {y;}. The first group identifies a Massieu potential for each state 1, ¢,, equation (14), while the second one identifies the

n’>
fundamental forces, equation (16). These two set of thermodynamic quantities are thus combined in the local detailed balanced, (13).

The first contribution is conservative since it derives from the potential
A
¢, =Sy — E\L;, (14
where

B = fypf{v (15)

is alinear combination of entropic intensive fields. Since ¢, is the entropy of the state n minus a linear
combination of conserved quantities, it can be viewed as the Massieu potential of the state n. (We recall that
Massieu potentials are the thermodynamic potentials of the entropy representation, see e.g. [21, section 5-4]. In
contrast, the nonconservative fundamental forces,

—7 A
F = fypf’/\l’fyf _fyf’ (16)

are caused by the presence of multiple reservoirs. As we will show, they control the currents of system quantities
through the system. Importantly, ‘fundamental’ must be understood as a property of the set of these forces, since
they are independent and in minimal number.

The identification of ¢, and { 7} } and their relation with the local detailed balance, equation (13), is the key
result of our paper and we summarize the procedure we used in figure 2. The complete set of conservation laws
played an essential role in this identification.

We saw that driving in the system quantities { Y*}, may induce changes in the physical topology, whereas the
driving in the reservoir properties, { f }—as well as in the entropy, S—is unable to do so. Since these changes
modify the cokernel of M, ¢, and { 7}, } are modified as well: when conservation laws are broken new

6
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fundamental forces emerge, and vice versa the emergence of conservation laws breaks some fundamental forces
and creates additional terms in ¢, , see section 6.1.3.

Even in absence of topological changes, the form of ¢, and { 7, } may change in presence of driving. Itis clear
that ¢, changes when S, { Y*}, or { fyp} change, see equation (14). In turn, each fundamental force F,, depends on

both fyf and { fyp}, see equation (16). Butin presence of nontrivial conservation laws, they may also depend on

the system quantities { Y*} via the vectors { £} , see section 6.1.3 and the application in section 6.2. Notice that
while driving not caused by temperatures solely affects a given intensive field, driving via temperature, say 3./,
affects all the fields associated to r’, namely { f(w,)} fork = 1, ---, N,, see table 2.

2.5. Fundamental cycles
We now express our conservative—nonconservative forces decomposition of the local detailed balance in terms
of cycle affinities. This provides the basis on which our potential-cycle affinities EP decomposition hinges on,
section 3.3.

The thermodynamic forces acting along cycles are referred to as cycle affinities. Using the local detailed
balance (13), they read
WE

Ay = Cln

= F, M} (17)
W,
As observed in [16], different cycles may be connected to the same set of reservoirs, thus carrying the same cycle

affinity. These are regarded as symmetries and they correspond to bases of ker M, {},} for
p=1,..,N, = dimker M,

M) 1/)2 =0, forall y, (18)

as their entries identify sets of cycles which, once completed, leave the state of the reservoirs unchanged. A
notable consequence is that the affinities corresponding to these sets of cycles are zero irrespective of the fields
{ fy}. The rank-nullity theorem applied to the matrix M allows us to relate the number of symmetries to the
number of conservation laws [16]

N, — Ny =Ny — N,. (19)

Notice that, while the N, and N, are fixed for a given system, Ny, and hence N,, can change due to changes in the
physical topology. From equation (19) we thus learn that for any broken (resp. created) conservation law, a
symmetry must break (resp. be created), see section 6.1.4 and the application in section 6.4.

The symmetries given by equation (18) lead us to identify N, :== N, — N, cycles, labeled by, which
correspond to linearly independent columns of M. These cycles can be thought of as physically independent,
since they cannot be combined to form cycles that leave the reservoirs unchanged upon completion. In other
words, they are the minimal subset of cycles whose affinity is nonzero for a generic choice of the fields { f }
(specific choices of { f,} can always make any cycle affinity equal to zero). We refer to these cycles as fundamental
cycles and to their affinities as fundamental affinities. The fact that the matrix whose entries are { M} is square
and nonsingular, see appendix A, allows us to see the one-to-one correspondence between fundamental forces,
equation (16), and these affinities,

Ty =AMy, (20)
where { M }Z } are the entries of the inverse matrix of that having { M/} as entries. In terms of {.A,)}, the local

detailed balance, equation (13), reads

W,
In—

= ¢nDen + Ar]Cga 21

W,

where
(l= M, 6Y/ (22)

quantifies the contribution of each transition e to the current along the fundamental cycle 7 as well as all those
cycles which are physically dependent on 7. Algebraically, the row vectors of ¢, { ("} , are dual to the physically
independent cycles, {C,},

— M ) — M -
¢ICyy = M) 6YCly = M) M)j = 67, (23)

Equation (21) is another key result of our paper, which expresses the conservative—nonconservative local
detailed balance decomposition in terms of fundamental affinities. Importantly, the affinities {.4, } depend on
time both via {f, y} and { Y*}, where the latter originates from the M-matrix, equation (17). Differently from
{F},}, they always have the dimension of an entropy.

7
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Remark. Our set of fundamental cycles differs from that constructed with spanning trees and discussed by
Schnakenberg in [25]. Algebraically, our set is not merely in ker D, but rather in ker D\ ker M. Furthermore, it
is not constructed from the spanning trees of the graph.

2.6. Detailed-balanced networks
We now focus on a specific class of dynamics called detailed balanced. These dynamics are such that either there
are no forces ({);} = ) or these are zero,

2% oA
‘a :,fypf)\l fy[ - fyf = 0’ (24)

— equivalently the affinities are zero, see equation (17). A driven detailed-balanced dynamics implies that the
driving must keep the forces equal to zero at all times, while changing the potential ¢,. An autonomous detailed-
balanced dynamics will always relax to an equilibrium distribution [26, 27]

p;q = eXP{an - ®eq}> (25)

defined by the detailed balance property: w;, p°

0(‘1) = w_ eP:f,e) ,forall e. The last term, @, is the logarithm of the
partition function

Peq = In {Z exp{¢m}}, (26)

and can be identified as an equilibrium Massieu potential [21, sections 5-4 and 19-1, 28, section 3.13].

We now point out that one can transform a nondetailed-balance dynamics with the potential ¢, into a
detailed-balanced dynamics with the same potential, if one can turn off the forces—set them to zero—without
changing the potential. This is is always possible through an appropriate choice of the fields { fyf }, viz.

fy[ =, £ ;" fﬁf , except for the following cases: when there are fyf such that fyf = By (ie. fyf is the field conjugated
P

with the exchange of energy with the reservoir r') and r’ is among the reservoirs involved in {y }, then turning off
the corresponding force 7, via fyf will modify { fyp} and in turn ¢,. Due to their importance for our FT,

section 4, we label these fields by {;'}, to discriminate them from the other ones, denoted by {y;”}. We finally
observe that for isothermal processes all thermal gradients vanish beforehand, and one realizes that F, 7 =0 for
all y;/, see e.g. sections 6.3 and 6.4. Therefore, turning off the forces never changes the potential.

Remark. The equilibrium distribution, equation (25), is clearly the same one would obtain using a maximum
entropy approach [28, section 3.17, 29]. Indeed, the distribution maximizing the entropy functional constrained
by given values of the average conserved quantities { (L) = L},

Sipl =>_p,[Sy — Inp,] — a[Z b, — 1) - aA(anLn* - LA), (27)

is given by

P =exp{S, — oL, — a}. (28)

This is the equilibrium distribution, equation (25), when the Lagrange multipliers are givenby a = &.q and
ay, = F,, see equations (14) and (26).

3. Trajectory level description

We now bring our description from the level of edges to trajectories. A stochastic trajectory of duration ¢, n;, is
defined as a set of transitions {e;} sequentially occurring at times {¢;} starting from n at time 0. If not otherwise
stated, the transitions index i runs from i = 1 to the last transition prior to time #, N;, whereas the state at time
7 € [0, t]is denoted by n,. The values of S, { Y*}, and { fy} between time 0 and an arbitrary time tare all encoded
in the protocol 7., for 7 € [0, t].

We first derive the balance for the conserved quantities, equation (11). The conservative and
nonconservative contributions identified at the level of single transitions via the local detailed balance,
equations (13) and (21), are then used to decompose the trajectory EP into its three fundamental contributions.
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3.1. Balance of conserved quantities
Since the conserved quantities are state variables their change along a trajectory for a given protocol reads

AL = L0 — L) = [ dr {01 Olimy, + LD ). (29)
0

The first term on the rhs accounts for the instantaneous changes due to the time-dependent driving, while the
second accounts for the finite changes due to stochastic transitions, since

J(r) = 30 6567 — 1) (30)

are the trajectory-dependent instantaneous currents at time 7. Using the edge-wise balance, equation (11), we
can recast the above equation into

t
AR = [ AT (L) (Dl + 6O P (D), (31)
0
where the physical currents
D (7) = 6Y] (1) J(7), (32)
quantify the instantaneous influx of y at time ¢.

3.2. Entropy balance
The trajectory entropy balance is given by

p,,(®)

! . we(7) _ ! .
Sn,) = fo dr @l 2E 5~ n RO fo dr £,(1)6Y(MJ*(T) + | (Sn, — Su) — In

P, ()
2, O [
(33)

As for the edge-wise balance, equation (7), the lhs is the EP, while the first and second term on the rhs are the
entropy change of the reservoirs and the entropy change of the system [25, 30]. Using our decomposition of the
local detailed balance, equation (13), we can recast the latter equality into

Sind = —n 2 [ 40,0002 )+ F o) i) (34)
tl — pnu (O) o n e Y .
Since ¢, is a state variable, its variations along the trajectory can be written as
t
Ajlm] = 6,(0) = 6,0 = [ dT{,OIDLI() + 0:6,(M)luc, ) (35)
By combining equations (34) and (35), we can recast the trajectory EP in
X[n] = v[n] + AP[n,] + Z ay[n], (36)
Y%
where
t
viml == [ 0, (D, (37)
0
A®[n,] = @, (1) — P, (0), (38)
t
A fo dr F (1) L (7), (39)
with
®n = (bn - lnpn‘ (40)

Equation (36), is the major result of our paper. It shows the EP decomposed into a time-dependent driving
contribution, a potential difference, and a minimal set of flux-force terms. The first term only arises in presence
of time-dependent driving. It quantifies the entropy dissipated when ¢, is modified and we refer to it as the
driving contribution. The second term is entirely conservative as it involves a difference between the final and
initial stochastic Massieu potential, equation (40) The last terms are nonconservative and prevent the systems
from reaching equilibrium. Each o), [n;] quantifies the entropy produced by the flow of {y;}, and we refer to
them as flow contributions.

To develop more physical intuition of each single term, we now discuss them separately and consider some
specific cases. When writing the rate of driving contribution explicitly, equation (37), one obtains

—0,¢, = —8,S, + 0,F\ L) + F, ,L). (41)
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Table 3. Entropy production for common processes. ‘0’
denotes vanishing or negligible contribution, NESS is the
acronym of nonequilibrium steady state.

Dynamics v AD o
Autonomous 0

NESS 0 0

Driven detailed-balanced 0
Autonomous detailed-balanced 0 0

Whenall {#"} areindependent from system quantities, the terms, {9, Fy Ly ,}, account for the entropy
dissipated during the manipulation of the intensive fields { fy }, equation (15). In contrast, { F\ 0,L) ,} and
P

—0;S, characterize the dissipation due to the direct manipulation of the system quantities. Clearly, the changes
of those fields that do not appear in ¢, do not contribute to v[n,].
For autonomous processes, the EP becomes

Eln] = A®[n,] + F,TV%[n.], (42)

where
t
Thn,] = f dr Di(r), (43)
0

are the currents of {;} integrated along the trajectory. The difference between the final and initial stochastic
Massieu potential captures the dissipation due to changes of the internal state of the system. For finite-
dimensional autonomous processes, it is typically subextensive in time and negligible with respect to the
nonconservative terms for long trajectories

Sl =7 F, D0, (44)

The nonconservative flow contributions, equations (39) and (44), quantify the dissipation due to the flow of
conserved quantities across the network. Finally, for autonomous detailed-balanced systems, the nonconserva-
tive terms vanish, in agreement with the fact that these systems exhibit no net flows, and the EP becomes

Yn] = Ad[n,]. (45)

Table 3 summarizes the contributions of the EP for these common processes. We now proceed with three
remarks.

Remark. We have already discussed the possibility of physical topology modifications due to driving, which
consequently alter ¢, and {7}, }. For protocols crossing points in which these modifications occur, the trajectory
must be decomposed into subtrajectories characterized by the same physical-topology. For each of these, our
decomposition (36) applies.

Remark. The contributions of the EP in equation (36) depend on the choice of { yp} and {y;}. When aiming at
quantifying the dissipation of a physical system, some choices may be more convenient than others depending
on the experimental apparatus, see e.g. section 6.1.6. This freedom can be thought of as a gauge of the EP. In the
long time limit, it only affects the flow contributions and it can be understood as a particular case of the gauge
freedoms discussed in [31, 32], which hinge on graph-theoretical arguments.

Remark. The driving contribution v and the nonequilibrium Massieu potential ®, are defined up to a gauge.
This is evidenced when transforming the state variables { L} according to
LM — UY LY (1) + w1, (46)

where { UA’\/} identify a nonsingular matrix, {#*} are finite coefficients, and { 1, } a vector whose entries are 1. The
first term can be considered as a basis change of cokerM,

£ — Uy t), (47)
while the second as a reference shift of L*. Under the transformation (47), the fields (15) transform as
Ey(t) = Fu(t) T3, (48)

where U U3y = U U}y = 63, thus guaranteeing that scalar products are preserved. As a consequence, the
stochastic Massieu potential, equation (40), and the rate of driving contribution, equation (41), transform as

10
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D,(t) — D,(t) — f(t)1,, and — 0,9, (t) — —0:,(t) + O, f()1,, (49)

where
f(t) = Fv(t) Oy uh (50)

Crucially, neither the local detailed balance (13) nor the EP (69) are affected, as the physical process is not altered.
If only a basis change is considered, {u* = 0}, then §(t) = 0,and both &, and v are left unvaried. Finally, for
cyclic protocols, one readily sees that the driving work over a period is gauge invariant, since f(¢) is
nonfluctuating.

The above gauge is akin to that affecting the potential-work connection and which led to several debates, see
[33] and references therein. The problem is rooted in what is experimentally measured, as different experimental
set-ups constrain to different gauge choices [33]. We presented a general formulation of the gauge issue, by
considering reference shifts of any conserved quantity, and not only of energy.

3.3. Entropy balance along fundamental cycles
An equivalent decomposition of the EP, equation (33), can be achieved using the potential-affinities
decomposition of the local detailed balance, equation (21)

S[nd = vind + A®[n,] + > ylnl. (51)
7

Here,
lmd = [ dr Ay € T, (52)

quantify the dissipation along the fundamental cycles, as {(, , J*(7)},for n = 1, ..., N;, are the corresponding
instantaneous currents, equation (22) For autonomous processes, the EP becomes

E[n] = A®[n] + A, Z"[n], (53)

where
Z[n,] = fo Cdr ¢V () (54)

measure the total circulation along {n}.

4, Finite-time detailed FT

The driving and flow contributions of the EP, equation (36), are now shown to satisfy a finite-time detailed FT.
This constitutes another crucial result of our paper which generalizes previous FT formulations expressed in
terms of physical currents.

We consider a forward process of duration t defined as follows. The system is initially prepared in an
equilibrium state characterized by ¢7%, equation (25). The latter state corresponds to the equilibrium protocol 7
inwhich ¢, (m) = ¢} and naturally { F,,(7;) = 0}. Attime 7 = 0 the protocol 7., for 0 < 7 < ¢, isactivated.
Itis arbitrary except at the boundaries, 7 = 0 and ¢, where the following requirements must be satisfied: at time
0, the Massieu potential corresponding to 7y must be the same as that of the initial equilibrium state, i.e.
¢,(m) = ¢;%i. Asaconsequence, the fields { fyf () } can take arbitrarily values (i.e. they can be different from
{ fyf,, (m)}), while the other ones cannot: { fyf, (m) = fyf;(’]‘q) }. This implies that { 7, (1) } can be nonzero while

{F}(m) = 0}. Analogously, the protocol at time t must be such that 7, (m) = 0 forall 3’ while {F}} canbe
arbitrary. This condition guarantees that the Massieu potential ¢, (7;) identifies the equilibrium state
corresponding to the equilibrium protocol 7i;: ¢, (77) = ¢, = ¢, () and vanishing forces { F,, () = 0}. We
can thus introduce the backward process as that in which the system is initially prepared in the equilibrium state
given by 7, and which is driven by the time-reversed protocol, 7 := m_, see figure 3.

The finite-time detailed FT states that the forward and backward process are related by

B, [0,))
2 epdv+ Yo, + Ayt (55)
Bl (—v, (—o ) p{ -7 q}

where E (v, {0, }) is the probability of observing a driving contribution of the EP equal to v, and flow ones {0, }
along the forward process. Instead, P, (—v, {— 0, }) is the probability of observing a driving contribution equal
to —v, and flow ones { —0,, } along the backward process. The difference of equilibrium Massieu potentials,
equation (26),

11
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(T (m0) = 0) (T (1) = 0)
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forward protocol: 7, o noneq. p, (t)

relaxation:
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eq; eq; AN
Pn o exp{qﬁn } >m
B<

equilibrium ¢
pa o exp(gy")

backward protocol: 7, = m,_,
et ¢ 4§ ¢ -_

Figure 3. Schematic representation of the forward and backward processes.

A(I)eq - (I)eqf - q)eqi; (56)

refers to the final and initial equilibrium distributions. When averaging over all possible values of vand { o, }, the
integral FT ensues

expy —v — Y oy = exp{A®}. (57)
%

We prove equation (55) in appendix B using a generating function technique which is new to our knowledge.
We now discuss insightful special cases of our general FTs. We first consider those processes in which
F,r = Oforall y{ and atall times—isothermal processes are a notable instance—the protocol can terminate
without restrictions since ¢, () always identifies an equilibrium state. If, in addition, the protocol keeps the

potential ¢, constant, viz. v = 0, the FT (55) reads

B({o,)
—_— = eX O'f . (58)
FREE DY

Yet a more detailed case is when the process is autonomous, for which we have

P({Z7})
LA e A %Y,
BT exp{F, 1%} (59)

written in terms of integrated currents of {;}, equation (43). The latter FT can be seen as the result of having a
constant protocol with nonvanishing the fundamental forces { 7, »}—but vanishing { 7, /}—operating on a
system initially prepared at equilibrium. Since nothing distinguishes the forward process from the backward
one, the lhs is the ratio of the same probability distribution but at opposite values of { Z* }, see application in
section 6.3.

Instead, for detailed-balanced systems we recover a Jarzynski—Crooks-like FT [34, 35] generalized to any
form of time-dependent driving

% =exp{v + Ad}. (60)

To provide a physical interpretation of the argument of the exponential on the rhs of equation (55), let us
observe that once the protocol terminates, all fundamental forces can be switched off and the system relaxes to
the equilibrium initial condition of the backward process. During the relaxation, neither vnor { g, } evolve and
the EP isequal to &g, — ®,,, equation (45). Therefore, the argument of the exponential can be interpreted as the
dissipation of the fictitious composite process ‘forward process + relaxation to equilibrium’.

Remark. As we discussed in equation (41), the driving contribution consists of several subcontributions, one for
each time-dependent parameter appearing in ¢,,. We formulated the finite-time FT (55) for the whole v, but it
can be equivalently expressed for the single subcontributions, see section 6.1.8.

FT for flow contributions along fundamental cycles
The FT (55) can also be expressed in terms of the flow contributions along the fundamental cycles {’yn} instead of

{0,}
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P(v, {'77]})
_—nethll ) Ad, ¢ 61
P (=, (=) exP{H < q} o

Its proofis discussed in appendix B. The restrictions on 7 and 7, that we expressed in terms of {7, } can be re-
expressed in terms of {.A, } via equation (20). For autonomous processes one can write the FT for the integrated
currents along fundamental cycles, equation (54),

r{z")

Bz ortAE (62)

see equation (59).

5. Ensemble average level description

We now discuss our results at the ensemble average level and derive a general formulation of the nonequilibrium
Landauer’s principle.

5.1. Balance of conserved quantities
Using the master equation (1) and the edge-wise balance (11), the balance equation for the average rates of
changes of conserved quantities reads

%me]dﬂv<M+@W% (63)

where (L’\> = Zn&Lg\ p, is the average change due to the driving, and
() = 6Y7 {J°) (64)

are the average currents of {y}, see equations (3) and (32). Hence, the second term in equation (63),

Z{Z oy Y Ie>} (65)

accounts for the average flow of the conserved quantities in the reservoirs. Obviously, the balances (63) can also
be obtained by averaging the trajectory balances (31) along all stochastic trajectories.

5.2. Entropy balance
In contrast to conserved quantities, entropy is not conserved. The EP rate measures this nonconservation and is
always non-negative

WePo(e)
Zwep,,(e> p” > 0. (66)
Wog o(—e)

The EP decomposition in driving, conservative and flow contributions at the ensemble level, can be obtained by
averaging equation (36). Alternatively, one can rewrite equation (66) as

(X) = =f, (") + [Sy — Inp, 1D/ (J°), (67)

where we used the local detailed balance property (6) and the definition of average physical current (64). The first
term is the average entropy flow rate, while the second is the rate of change of the average system entropy. Using
the splitting of the set {y} explained in section 2, the physical currents of {),} can be expressed as

(1) = Zhd L) — (1Y) — £, (68)
where we partially inverted equation (63). When combined with equation (67), the EP rate can be written as
(3) = () + de(@) + > (5y) (69)
Y%
where (v) = —37 0,4, p, is the driving contribution, (7, ) = F, (I,,) the flow contributions, and
=2 0% (70)

the nonequilibrium Massieu potential.
Following a similar reasoning, and using the local detailed balance decomposition in terms of fundamental
affinities, equation (21), we obtain the EP rate decomposed as
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(£) = () + di(@) + 2 {3 (71)
U
where (5,) = A,(, . (J°)are the flow contributions along the fundamental cycles.
5.3. Nonequilibrium massieu potential

In detailed-balanced systems, the nonequilibrium Massieu potential takes its maximum value at equilibrium,
equation (25), where it becomes the equilibrium Massieu potential, equation (26). Indeed,

Deq — (P) = (g — ) = D(p[[p*) > 0, (72)
where
D(pllped) =) p,In % (73)

is the relative entropy between the nonequilibrium distribution and the equilibrium one which quantifies the
distance from equilibrium.

Remark. For autonomous detailed-balanced networks, the difference of equilibrium and nonequilibrium initial
Massieu potential, equation (72), gives the average dissipation during the relaxation to equilibrium,

(X) = D(p(to) [lp.,) = 0.Onthe one hand, this shows how the MaxEnt principle mentioned in section 2.6 is
embedded in the stochastic thermodynamic description (see also [36]). On the other hand, it underlines that its
validity is limited to detailed-balanced systems.

5.4. Nonequilibrium Landauer’s principle

We now express equation (69) in terms of a well defined equilibrium distribution, obtained by turning off the
forces without modifying the potential ¢,. We already discussed that this procedure is always well defined for
isothermal systems but requires more care for nonisothermal systems. Combining equations (69) and (72), one
finds that

() = (i) — dD(pllpd) + {0y, (74)

%

where we introduced the average irreversible driving contribution
(Vier) = (V) + d¢Peq. (75)

Notice that the above contribution is not affected by the gauge discussed in section 3. Integrating equation (74)
over time we get

(virr) + D {0y,) = AD(pllpg) + (X)- (76)

Ye

This relation generalizes the nonequilibrium Landauer’s principle, which is typically derived for driven detailed-
balance systems, (0,,) = 0, [20]—see also [18, 19, 36]—and which is used as the basis to study thermodynamics
of information processing [11]. It shows that not only driving but also flow EP must be consumed to move a
system away from equilibrium, as depicted in figure 4, and that the minimal cost for doing so is precisely
measured by the change in relative entropy. For driven detailed-balanced protocols connecting two equilibrium
states, we recover the classical result that (v,;) = (3) > 0.

5.5. Relation with previous EP decompositions
We now briefly comment on the differences between our EP rate decomposition and other decompositions
found in the literature.

In [17], the obvious conserved quantities { Y*} are used to express the EP rate in terms of a driving, a
conservative, and a nonconservative term. The first two are expressed in terms of a Massieu potential based on
the N,; obvious conserved quantities, { Y}, while thelastisasum of N, — N, flux-force contributions. A finite-
time FT solely expressed in terms of physical observable ensues. In our work, by taking all N, conserved
quantities—trivial and nontrivial—into account, the nonconservative term is reduced to a sum of N, — Ny
fundamental flux-force contributions, and the new Massieu potential entering the driving and conservative
contribution takes all conservation laws into account. This has two crucial consequences for the ensuing FT: (i)
our class of equilibrium distributions is broader since it is determined imposing a lower number of constraints,
equation (24) (i.e. N, — N, vanishing forces instead of N, — N,); (ii) the final value of the protocol must be
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Figure 4. Schematic representation of the transformation between two nonequilibrium probability distributions. The protocol must
leave the potential ¢, unchanged upon turning off of the forces at all times. This ensures that ¢, always identifies an equilibrium
distribution (green curve) obtained by turning off the forces, shutting down the driving and letting the system relax (dashed gray
curves). The nonequilibrium transformation—the blue curve—can be thus compared with the equilibrium one.

constrained as discussed in section 4 since the new Massieu potential does not always identifies an equilibrium
distribution.

In [16] the authors analyzed the reduction of flux-force contributions for systems at steady state, where the
conservative contribution is absent. Our decomposition (69) generalizes these results to nonautonomous
systems in transient regimes.

In [25, 37], decompositions based on graph-theoretic techniques are proposed, and the ensuing FTs are
studied in [38, 39], respectively. The nonconservative term of the EP rate is expressed as the sum of N,, cycle flux—
affinity contributions. These are typically in large number, see e.g. sections 6.3 and 6.4. Our decomposition (71)
demonstrates that only asubset of N, — N, = N, — N, fundamental cycle flux—affinity contributions are
necessary and sufficient to characterize the aforementioned term, where N, is the number of symmetries.

Yet a different EP decomposition is the adiabatic—nonadiabatic one [40—44]. Here, the driving and
conservative terms arise from the stochastic potential W, := —In{p, /p’"}, which accounts for the mismatch
between the actual and the steady-state probability distribution. Instead, the nonconservative contribution
quantifies the break of detailed balance of the steady state. Hence, the steady-state probability distribution plays
the role of a reference distribution in the same way that the equilibrium one (obtained by setting the forces to
zero) does for our decomposition. This is particularly clear when comparing [40, equation (21)] to equation (74).
Naturally, the equilibrium distribution is much more accessible than the steady-state one and implies that our
decomposition is expressed in terms of physically measurable quantities.

6. Applications

We now analyze four model-systems: a double quantum dot (QD), a QD coupled to a quantum point contact
(QPC), amolecular motor, and a randomized grid.

6.1. Double QD
This model has been extensively used in the past [45—47] and we will analyze it step by step following the order of
the main text to illustrate of our formalism and our main results.

6.1.1. Setup
The two single-level QDs is depicted in figure 5(a), whereas the energy landscape and the network of transitions
are shown in figures 5(b) and (c), respectively. Electrons can enter empty dots from the reservoirs but cannot
jump from one dot to the other. When the two dots are occupied, an interaction energy, u, arises.

The network topology is encoded in the incidence matrix, whose representation in terms of the forward
transitions reads

+1 42 +3 +4 45 +6
w (-1 -1 -1 0 0 0
_ 10 1 0 0 0 -1 —1
D=y 01 1 -1 0 o 77)
1 0 0 0 1 1 1
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Figure 5. Double QD coupled to three reservoirs and coupled with each other via a capacitor. Transitions related to the first reservoir
are depicted in blue while those related to the second and third one by green and red, respectively. (a) Pictorial representation of the
system. The upper dot u is coupled to the first reservoir, while the lower dot d is coupled to the second and third reservoir. The
reservoirs exchange energy and electrons with the dots, which cannot host more than one electron. (b) Energy landscape of the dot.
Importantly, when both dots are occupied, 11, a repulsive energy u adds to the occupied dots energies, ¢, and ¢4. (c) Transition
network of the model.

Energy, E,,, and total number of electrons, N,,, characterize each system state:

Ep =0, Noo = 0,
Eo1 = e Nor =1,
Eyo = e Ny =1,
En=¢e+ €+ u, Nn=2, (78)

where the first entry in n refers to the occupancy of the upper dot while the second to the lower. The entries of the
matrix 8Y corresponding to the forward transitions are

+1 42 +3 44 +5 +6
E, 1) €y 0 0 €+ u 0 0
N, 1) 1 0 0 1 0 0
(E, 2) 0 e O 0 6+ u 0
=) 01 0 0 1 o | 79)
(£ 3) 0 0 g 0 0 €+ u
™ o 01 o0 0 1

see figure 5(c), whereas the entries related to backward transition are equal to the negative of the forward. For
instance, along the first transition the system gains ¢, energy and 1 electron from the reservoir 1. The vector of
entropic intensive fields is given by

(E 1 (N, 1) (&2 N2 (E3) O3

f= (51 by B2 —Bapy B3 —53M3)- (80)

Since the QDs and the electrons have no internal entropy, S, = 0 for all , the local detailed balance property,
equation (6), can be easily recovered from the product —f6Y . From a stochastic dynamics perspective, the latter
property arises when considering fermionic transition rates: w, = I.(1 + exp{f,6Y} y! and

w_, = [exp{ fyéYe)’ (1 + exp{ fy 8Y2})~! for electrons entering and leaving the dot.

6.1.2. Conservation laws
We now illustrate the identification of the full set of conservation laws. An independent set of cycles of this
network, figure 5(c), is stacked in the matrix

1 2 3

o (1 0 o

2 o 1 0

43 |-1 -1 0
C_+4 10 ol (81)

> 0 0 1

ol o0 -1

and corresponds to the cycles depicted in figure 6. The negative entries denote transitions performed in the
backward direction. The matrix encoding the physical topology, M, readily follows from the product of Y and C,
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Figure 6. The independent set of cycles corresponding to the columns of Cin equation (81) The first corresponds to the sequence
‘electron in u— electron in d— electron out of u— electron out of d’, in which the lower QD is populated by the third reservoir. The
second and third cycle correspond to the flow of one electron from the second reservoir to the third one, when the upper QD is empty
and filled, respectively.

S}
w

(E D —u 0 0
(N, 1) 0 0 0
Gy 0 &g ea+u
M= N, 2) 0 ] ] (82)
(E, 3) U —€ —€ — U
w3y Lo -1 -1
Its cokernel is spanned by
ED N (B2 N2 B3 N3
2F=( 0 10 10 (83a)
ED N (B2 N2 (E3 N3
2" = (0 1 o 0 0 0, (83b)
G N B2 N2 (B3 (N3
9= (0 0 0o 1 0 1. (83¢)
The first vector identifies the energy state variable, E,,,
+1 42 43 +4 +5 +6
CEY = (6 €4 €4 €u+u e+ u ea+u)y = {E,D!}. (84)
The other two, instead, give the occupancy of the upper and lower dots, N and N,
+1 42 43 +4 45 46
£%Y=(1 0 0 1 0 0 = {N/D},
+1 42 43 4 45 46
£4%Y=0 1 1 0 1 1 = (ND}. (85)

A posteriori, we see that these conservation laws arise from the fact that no electron transfer from one dot to the
other is allowed. The total occupancy of the system, N,,, is recovered from the sum of the last two vectors. Despite
£ and #9 are nontrivial conservation laws, they do not depend on any system quantity, equation (78)".

Let us now imagine that the interaction energy between the two dots is switched off, i.e. u — 0. Two
conservation laws emerge in addition to those in equation (83):

(E 1) (N, 1) (E2) (N,2) (E3) (N,3)

£ED = (o 0 1 0 1 0), (86a)
(E,1) (N,1) (E,2) (N,2) (E,3) (N,3)
2= (0 0 -1 & 0 0). (86b)

The firstis related to the upper—lower QD decoupling, as it corresponds to the conservation of energy of the
lower dot

F142 +3 44 +5 +6
£EDY =0 eq ea 0 @ @) = {ESD}. (87)

The conservation of energy in the upper dot is obtained as the difference between equations (83a) and (86a), and
reads

1 . .

One may argue that the above statement might be due the fact that we fixed the electron occupancy of each QD to one, equation (78).
However, the same conclusion is reached when assuming: Ny = 0, No; = 14, Njg = 1y, and Nj; = 1, + 14, for some positive integer
values v, and 1.
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1 42 43 44 45 +6
tEVSY =6, 0 0e 0 0 = {E'D!}. (88)
The second one, equation (86b), arises from the tight coupling between the transport of energy and matter
through the second dot. Since #* is in coker§Y,
+1 42 43 44 45 46

%Y =0 0 000 0 = (LD}, (89)

the conserved quantity L, is a constant for all i, which can be chosen arbitrarily. Notice the dependence on the
system quantity ¢4 of the nontrivial conservation law (860). We thus showed that changes of system quantities (u
in our case) can modify the properties of M, and hence the set of conservation laws—without changing the
network topology.

6.1.3. Massieu potential and fundamental forces

We now provide the expressions of ¢), and F, for the generic case u = 0. Therefore, we split the set {y} in

{yp} ={(E, 1), (N, 1), (N, 2)}and {y;} = {(E, 2), (E, 3), (N, 3)}. From equation (83) we see the validity of
this splitting, as the matrix whose entries are { f}z } is an identity matrix. The fields conjugated with the complete
set of conservation laws, equation (15), are

Fp=0, FK=-0bip, k=—05wp, (90)
from which the Massieu potential of the state 1, equation (14), follows
$u = —BiEn + BN, + B2, N, )
Instead, the fundamental forces, equation (16), are given by
FE2 =01 — Ba (92a)
FE3 =0 — Bs (92b)
Fng) = Bsps — Bapiye (92¢)

The first two forces rule the energy flowing into the first reservoir from the second and third one, respectively,
whereas the third force rules the electrons flowing from the third to the second reservoir.
Concerning the way the changes of ¢, and {.’/T-'),f } are intertwined, we see that the former depends on 3, 11,

f4> and (35, which arises from f ,,. Therefore, while the changes of f ; ;) = (s and f ;) = — 35, onlyaffect

N,2)°

the related forces, the changes of f( £ = B, affect both Fg 5 and ¢,. Since the vectors of conservation laws

(83¢) do not depend on either E, or N, see section 6.1.2, the forces do not depend on system quantities.
Alternatively, one may split the set { y} in {yp} = {(N, 1), (E, 2), (N, 3)}and

= {(E, 1), (N, 2), (E, 3)}. With this choice, we obtain

$5 = —B2En + BuuNy + B3Ny, (93)
and
Feny = B2 — B (94a)
Finoy = Batty — Bapis (94b)
FE3) = B2 — Bs. (94c¢)

With respect to the previous decomposition, we here consider the forces ruling the energy flow from the first and
third reservoir, and the electrons flow from the second reservoir.

Let us now reconsider the case of vanishing interaction energy, u = 0, as in section 6.1.2. The five
conservation laws that we consider are E,,, E,f, N, N,‘li, L}, and we choose to split { y} as

{)/p} ={(E 1), (N, 1), (E, 2), (N, 2), (E, 3)}and {3} = {(N, 3)}. The potential follows
Gy = —BiEw + BNy + [Baps, — (B2 — Bs)ealNy — (s — BDE; — (Bs — Bo)L, (95)

whereas the only force is

Fvn = Bs(us — €0) — Balpy — €a). (96)

We see that the creation of two conservation laws destroyed two nonconservative forces, equations (92a) and
(92b), whose expression can be spotted in the new potential, equation (95). Notice also how the emergence of the
nontrivial conservation law (860) makes the fundamental force dependent on the system quantity ¢g.

6.1.4. Symmetries and fundamental cycles
The two single-level QD has no symmetries for u = 0, since its M-matrix (82) has empty kernel. Its three cycle
affinities, equations (81) and (17), are thus fundamental and read
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A= B — Bsu, (97a)
Ay = B3(ea — p3) — Baled — o), (97b)
As = Bs(ea+ u — ps) — Baléa + u — py), (97¢)

while the matrix relating fundamental cycles to edges, equation (22), is given by

+1 +2 +3  +4 45 +6

1 0 & €4 0 e@+u €6+ u

CZZZ 0 —6qg —€q—u 0 —g—u —eg—ul|—. (98)
310 ¢ €d 0 ectu €d “

In sharp contrast with the fundamental forces, equation (92), the fundamental affinities depend both on the
fields and the system quantities.
As the interaction energy is turned off, two symmetries emerge:

1 2 3
Y= 0 0), (99a)
1 2 3
v, =(0 1 =1, (99b)

in agreement with the creation of two conservation laws, see equations (19) and (86). They inform us that since
the QDs are decoupled: (i) the cycle 1 does not produces changes in the reservoirs, i.e. its affinity is zero
irrespective of the entries of f; (ii) the cycle 2 and 3 are physically dependent since the flow of electrons from the
second to the third reservoir is the same with empty and filled upper dot. Choosing the third cycle as the
fundamental one, its affinity reads as 37-'( N,3) in equation (96), whereas the matrix of cycle contributions, see
equation (22) and section 6.1.3, becomes

41 42 43 +4 45 +6
G=0 0-1 0 0 -0 (100)

Notice that both the transition +3—which belongs to the cycle 2—and +6—which belongs to the cycle 3—
contribute to the current along the fundamental cycle 3.

6.1.5. Detailed-balance dynamics
From equation (92), we see that the dynamics of the two QDs is detailed balanced when 3; = 3, = (33and
, = [15. Inthis case the Massieu potential of state 11, equation (91), is given by

¢, = —Bi(Ey — Ny — 1, ND. (101)

The only element distinguishing the latter from that in equation (91) is the fact that 3, = (;, which arises from
Fig,2) = 0. Therefore, a nondetailed-balanced dynamics described by the decomposition (91) and (92) can
become detailed-balance without changing ¢, aslongas Fg 5y = 0. Instead, the decomposition in equations (93)
and (94c) requires both Fg 1y and Fg 3, to be zero.

6.1.6. EP decomposition

For the sake of illustrating our EP decomposition let us assume that only E,,, 11,, and 35 change in time.
According to the expressions of ¢, and { 7, } derived in section 6.1.3, we can distinguish two driving
contributions of the EP, equations (37) and (41):

vn:] = veln] + vvplndd, (102)

where the first term,
t
velni = By fo 478, Ep(7)n. (103)
is usually referred to as mechanical work in stochastic thermodynamics (up to 3;), while the second,

t
v, [ne] = —521; dr arﬂz(T)N,i, (104)

is the entropy dissipated due to the change of the chemical potential of the second reservoir. The flow
contributions, equation (39), are instead given by

t
ool = Feo j; d7 Ipa(7), (105a)

t
o(E,3)[1:] :fo dr Fg,3(7) IE,3(7), (105b)
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t
ol = j; dr Finsy () 3)(7), (105¢)
where, the forces are given in equation (92), while the instantaneous currents of y; are
Igy =™ —J 1+ (@a+wli"” -7, (106a)
Igs =&l =T+ (e +wJ™ —J 6, (106b)
Ingy =] = ]2+ ] — " (106¢)

We thus see that the first and the second flow contribution, equations (1054) and (105b), quantify the dissipation
due to the energy flowing from the second and third reservoir to the first, respectively. Analogously, the third
contribution, equation (105¢), characterizes the EP due to the flow of electrons from the third reservoir to the
second. The EP is thus the sum of the terms in equations (102) and (105) plus a difference of stochastic Massieu
potential, equations (91) and (40). We notice that the change in time of (3; is accounted for by the second and
third flows, equations (105b) and (105¢), while not by a driving contribution, as 35 does not contribute to ¢,
equation (91)

It is worth noting that, from an experimental point of view, the driving contribution demands information
on the states of the trajectory. Instead, the flow contributions require the measurement of the energy flow in the
second and third reservoir and the electron flow in the third. Let us now compare the above decomposition with
that based on a different choice of { Yo Vb8 the second one made in section 6.1.3. In this case the driving
contribution reads,

vin] = veln] + vg 3 nd, (107)

where
t
Vsl = — i, j; dr 0,Bs(r)NZ.. (108)

The flow contributions read as in equation (102) with forces given in equation (94¢) and other expressions for
the currents. Now, the measurement of the energy flow in the first and third reservoir, as well as the electron flow
in the second reservoir, are required to quantify these terms in experiments.

To make the difference between the two choices even sharper, one can easily see that if the only quantity
changingin time s p,, the driving contribution of the second choice vanishes while that of the first does not.
Therefore, depending on the physical system and the experimental apparatus, one choice may be more
convenient than another when it comes to estimating the dissipation.

6.1.7. EP decomposition along fundamental cycles
For the scenario described in the previous subsection, section 6.1.6, the flow contributions along fundamental
cycles (52) read

yin] = fo dr A(r) G I (), (109a)
t

vl = j; dr Ay(r) G, JE(7), (109b)

yalm,] = j; dr As(1)C, JE(1), (109¢)

where the affinities are given in equation (97) and the cycle-edge coupling matrix ( in equation (98). Concerning
their physical interpretation, the first contribution corresponds to the flow of energy from the third reservoir to
the first, while the last two to the entropy dissipated when transferring electrons from the second reservoir to the
third with empty and filled upper dot, respectively.

6.1.8. Finite-time detailed FT
We now illustrate the conditions under which our FT applies to the coupled QDs. The process must start from
equilibrium, equation (25): all forces vanish and the potential is given in equation (101). As the protocol is
activated, it must leave the fields appearing in ¢,,, equation (91), (31, 3, (=01), p1;> and p,) unchanged, but all
the others can be set to arbitrary values. Subsequently, all fields and system quantities controlled by 7, for
0 < 7 < t,can change arbitrarily, until time ¢, in which the force in equation (92a) must be turned off. This
condition guarantees that the potential at time ¢is of the form in equation (101), thus identifying a new
equilibrium state. When the above force vanishes at all times, one can formulate FTs like those in equations (58)
and (59).

To simplify the application of the FT let us consider the conditions described in section 6.1.6, with the
further simplification that all temperatures are equal and constant: only E, and y, change in time. Since 5, = 5
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Figure 7. Model of QD coupled with a thermal reservoir and a pair of particle reservoirs modeling a QPC. The electron can jump to the
excited state following either a phononic interaction with the first reservoir or an interaction with the QPC. The latter involves an
electron current from the second to the third reservoir.

atall times, we do not need to worry about how the protocol terminates and the FT reads

P.(ve, vin2) O(N,3))

n = exp{ve + viv,2) + o3 + Ay, (110)

B (—vE, —viN,2»y —ON,3)
where the different contributions are given in equations (103), (104), and (105¢). Notice that the contributions of
vappear separately in the above expression, but one can equivalently express the FT in terms of the full driving
work v, equation (102), as in the main discussion.

6.1.9. FT for flow contributions along fundamental cycles
We saw in the previous example that the force Fg ), equation (92a), must be zero at time 0 and ¢ for the validity
of the FT (55), and at all times for the FTs (58) and (59). Using equation (20) in combination with the inverse of
the submatrix of (82) whose entries are { M)},
(E2 (E3) O3
(1 0o,
M=2 |-1 0 —e—ul|—, (111)
3 1 0 €d u

we conclude that the above requirement becomes
A= A+ A5 =0, (112)

in terms of fundamental affinities, equation (97). Once identified the above condition, the application of the FT
readily follows.

6.2. QD coupled to a QPC
We now consider a simplified description of a two levels QD coupled to a thermal reservoir and a QPC, figure 7.
For a detailed analysis of this class of systems we refer to [48]. The interest of this model is twofold, it shows how
single transitions can trigger exchanges involving multiple reservoir, and it also provides a further instance of a
fundamental force which depends on system quantities due to nontrivial conservation laws.

The two states of the QD, 1 for ‘low’ and h for ‘high’, are characterized by different energies but the same
number of electrons

EE=0, Ey=¢ N=1, N,=1 (113)

The transition between these states can occur following either a phononic interaction with the first reservoir, £1,
or following electron tunneling from the second to the third reservoir, £2. Along the latter transition, an
electron with energy u + ¢ leaves the second reservoir and enters the third with energy u. The matrix of
exchanged conserved quantities, §Y, thus reads

+1 +2
E, 1) € 0
E2 |0 u+e€
5Yy=w2 |o 1 | (114)
E3» |0 —u
A
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while the vector of intensive fields is

(E, 1) (E 2) (N, 2) (E,3) (N,3)

f= (ﬁl B =By, B3 —ﬁaug)- (115)
The nontrivial local detailed balance property for the second transition follows from —f6Y, and reads
w
= =G €= )+ Ba(u = ). (116)
2
The M-matrix,
1
E 1 €
E2 |—u—c¢€
M = N, 2) -1 (117)
(& 3) u
(N, 3) 1

follows from the product of §Y, equation (114), and the matrix of cycles,
1

C:ii(h) (118)

Its four-dimensional cokernel is spanned by

(E, 1) (E, 2) (N,2) (£ 3) (N, 3)
F = (1 1 0 1 0), (119a)

(E, 1) (E,2) (N, 2) (E, 3) (N, 3)
N = (0 0 1 0 D, (119b)

(E,1) (E,2) (N,2) (E,3) (N,3)
= (0 1 —u—e 0 0) (119¢)

(E, 1) (E,2) (N,2) (E 3) (N, 3)
=0 0 u 1 0). (119d)

The first two conservation laws are clearly the energy and the number of particles, equation (113), since

ESY = (€, €)and #N8Y = (0, 0). For the other two, £36Y = £45Y = (0, 0) implies that the related conserved
quantities are constants, i.e. they do not depend on #. Mindful of the gauge freedom described in section 3 we
can set the conserved quantities related to £V, #3, and #* to zero. When (E, 1) is set as ‘force’ y, the field related
to the energy conservation law

Fp=1[(e+u— Nz)/BZ —(u — M3)53]/5) (120)
determine the values of the nonequilibrium Massieu potential, ¢, = —FyE,. Concerning the nonconservative
contributions, the fundamental force and the fundamental affinity read

Fen=Fg — b= eA. (121)
Due to the emergence of nontrivial conservation laws, equations (119¢) and (1194), the fundamental force
depends on a system quantity. In detailed balance dynamics, Fg, 1) = 0, and we readily recover ¢, = — 3, E,,.

6.3. Molecular motor

We now turn to the thermodynamic description of a molecular motor moving along a single dimension, see

[49, 50]. Beside providing an instance of a work reservoir, this model also illustrates how changes in the topology
of the network can convert a conservative force into a nonconservative one.

The motor conformations and transitions are described in figure 8. It can step against a mechanical force k
thanks to the chemical force produced by the hydrolysis of ATP into ADP, which are exchanged with reservoirs
at chemical potential y1,p and 1, ,p. Welabel each state of the process by n = (1, x), while each transition by
en,wheree € {1, 2, 3, 4, 5, 6, 7} refers to the transitions at a given position x € Z. The system quantities are
the internal energy, E, = ¢, the total number of ATP plus ADP molecules attached to the motor, N, = N,,
and the position, X,, = xI where lis the size of a step. Importantly, each internal state is characterized by an
internal entropy S, = sy,
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Figure 8. Network of transitions describing the chemomechanical stepping of the motor, where x denotes the generic position along the
stepping support. The molecular motor has six internal conformations distinguished by the state of the trailing, |-|, and leading, |-), motor
foot: ATP-bound (T), ADP-bound (D), or unbound (&). Yellow arrows denote stepping transitions, {+1, = |D|T)y — |T|D)yx1}»
along which the mechanical force k acts (positive value drive the system toward increasing x). Internal transitions may entail the exchange
of ATP and ADP molecules with particle reservoirs (green arrows) or the hydrolysis of ATP into ADP (blue arrows). The latter only
exchange energy with the thermal reservoir at inverse temperature /3.

The matrix of exchanged conserved quantities for the transitions at given position x is written as

+1, + 2 + 3 + 4, + 5¢ + 64 + 7
(E) €TD — €DT €Ty — €TD €Dy — €Ty €DT — €Dy €T — €DT €D — €T €TD — €gD
5Y. — (N, ATP) 0 0 0 1 0 0 1
7 (N, ADP) 0 -1 0 0 -1 0 0 ’
X) I 0 0 0 0 0 0

(122)

whereas the full matrix is given by §Y = ( O0Y,_1 60 OYy1, ) On the other side, the row vector of
intensive variables reads

(E) (N, ATP) (N, ADP)  (X)

f:(ﬁ —Buate —Blapp _5]‘)- (123)

Differently from all previous cases, the local detailed balance of the step transitions involves the work reservoir,
(X > T 6 k) >

% = —Bl(etp — epr) — kIl + (stp — sp1). (124)
71)(

In

Notice that the interpretation of the first term as minus entropy flow still holds: g , = (et — epr) — kl is the
heat of transition, since the last term is minus the work that the mechanical force exerts on the system [51, 52].
Itis easily shown that the subnetwork at given x contains exactly one cycle c,,

Cx

+1x
+2y
+3x
Cx = +4;
+5x
+6x
+7x

(125)

S VU V)

which entails the intake of two ATP molecules and the release of two ADP ones
G
(E) 0
(N, ATP) | 2
T (N,ADP) | —2F
X) 0

M, = 8Y, Cy (126)

irrespective of the position x. The full M-matrix has thus an infinite-number of columns equal to equation (126),
and its three-dimensional cokernel is spanned by

(E) (N, ATP) (N, ADP) (X)

=01 o 0 0), (127a)

(E) (N, ATP) (N, ADP) (X)
N=0 1 1 0), (127b)
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(E) (N, ATP) (N, ADP) (X)
X=0 o o D (127¢)

which clearly corresponds to the three system quantities, E,;, N,,, and X,,, respectively. As far as the symmetries
are concerned, the intersection between its infinite-dimensional column vector space and its (infinite-
dimensional) kernel is one-dimensional, in agreement with the observation that all cycles {c,} are physically
dependent on one. In other words, there is an infinity of symmetries and all cycles carry the same cycle affinity

A = 28(uste — Happ)> (128)
which is thus regarded as the fundamental one.
To illustrate our EP decomposition, we use (N, ATP) as set of y, while leaving {(E), (N, ADP), (X)}as Yy
Guided by equations (14) and (15), the potential reads

Gy = wn + PkXy, (129)
where
Wy = Sn - 6En + ﬁp’ADPNﬂ’ (130)

is the Massieu potential corresponding to the grand potential. The fundamental forces, equation (16), consist
solely of

Fv,atey = B(late — Happ)- (131)
The EP along a stochastic trajectory with autonomous protocol, equation (36), is
Eln] = B(uare — Happ) Zatelni] + AP[n], (132)

where

0

Tareln] == fo dr SYNAT ey = ) j; Cdrlt ) — ) T - RO (133)

X=—00
is the total number of ATP molecules flowing into the system, while @ is the stochastic Massieu potential related
to equation (129). Since there is only one fundamental force, the EP in terms of fundamental affinities reads
exactly as equation (132)
To illustrate the finite-time detailed FT, let us imagine a system with a finite number of positions

x =1, ..., Ny. Thepotential (129) thus defines a physical equilibrium state, equation (25), achieved when the
forceis turned off: i, 1p = f1ypp- Attime 0, the autonomous protocol with j1,1p = 1 pp (but with the same g4,
as at equilibrium) is activated and the system moves far from equilibrium. Notice that any change of 11, ., leaves
¢, unaltered and the process can be stopped at any time. Hence, the probability of observing the intake of Zy1p
ATP molecules up to time ¢ satisfies

P (Zarp)

—Pt (—ZLorw) = exp{0 (uarp — Happ)Zate}, (134)

see equation (59).

To formulate a FT which explicitly counts the number of steps, we have to make a step backward and regard
the conservative term [kl in the local detailed balance, equation (124), as an additional force contribution,
rather than as part of the potential one. Under this condition the EP can be recast into

Bln] = B(are — Happ)Zateln:] + SkXn] + AQ[n], (135)
where
Q, = w, — Inp, (136)
is the stochastic Massieu potential corresponding to equation (130), while
X[n] = X, — X, (137)

the total distance traveled by the motor. If the system is initially prepared in the grandcanonical equilibrium state
—achieved by turning off both the external force k and the fundamental force Fy atp)—the FT reads
B (Zatp, X)

T ) exp {3 (tiarp — Happ)Zate + Sk} (138)

Tightly coupled model. As an example of change of network topology, we now consider the tightly coupled
description in which the transitions {5, 6, 7} are absent, and the network becomes a one-dimensional chain of
states. Since there are no cycles the whole row space of §Y spans the conservation laws, which can thus be written as
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Figure 9. Alternative description of the chemomechanical stepping process in figure 8. The kinetics and thermodynamics of the
internal transitions is unchanged, while the step transitions reset the internal motor state.

(E) (N, ATP) (N, ADP) (X)

P=1 o0 0 0), (139q)
(E) (N, ATP) (N, ADP) (X)

£ATP = (o 1 0 0), (139b)
(E) (N, ATP) (N, ADP) (X)

£ADP — (q 0 1 0), (139¢)

(E) (N, ATP) (N, ADP) (X)
=0 o 0 D. (1394)

With respect to the previous model, the number of ATP and ADP molecules are separately conserved quantities,
equations (139b) and (139¢). The set of fundamental forces is empty while the potential reads

Gy = S — BEn = iyrpNy " — pappNy T — kX,), (140)

thus making the dissipation equal to
Y[n] = Ad®[n,]. (141)

Therefore, the change of network topology achieved by removing transitions creating cycles, prevents the
reservoirs from creating forces. The potential will be thus described with the maximum amount of conserved
quantities, one for each y.

Alternative description. An alternative description of the chemomechanical process is obtained when
periodic boundary conditions are imposed, figure 9. One additional cycle is created,

c a
o (01
2 (11
+3 11
C=+4+ |1 1}, (142)
+5 1 O
+6 10
7 A1 o
see equation (125), and the M-matrix now reads
C a
(B) 0 o0
_W,ATP) |2 1
T (N, ADP) | -2 —1f (143)
&) 0o I

As a consequence, the spatial conservation law, (127¢), is lost and the nonequilibrium Massieu potential
becomes w;,, equations (130) and (136). However, the set of fundamental forces gains one element,
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Figure 10. [llustration ofa3 x 3 grid with nearest-neighbor transitions triggered by a reservoir chosen at random among five. The
color of each transition corresponds to a different reservoir: 1, yellow; 2, green; 3, purple; 4, blue; and 5, red.

Fxy = Bk, (144)

which is conjugated to the traveled distance:
t t
Mm) = [ dr sy® jem =1 [ dryter) = L (145)
0 0

Hence, the expression of the EP and the formulation of the finite-time detailed FT read as in equations (135) and
(138), respectively.

In conclusion, the periodic boundary condition can be viewed as a change of network topology in which one
conservation law is lost and a fundamental force emerges.

6.4. Randomized grid

As a final illustration, we consider a particle hopping between states positioned at the nodes of a two-
dimensional grid, n = (x, z) for x, z = 1, ..., N. The transitions along the edges are triggered by randomly
distributed work reservoirs. This model provides an example of systems which could not be analyzed
thermodynamically without resorting to our systematic procedure. It also shows how physical topological
alterations may give rise to symmetry changes which in turn affects the thermodynamics.

The states are characterized by a spatial coordinate X,, = ayx + a,z,and jumps are only allowed between
nearest neighbors: x — x + lor z — z £ 1. The system is isothermal and each transition is ruled by a force
fx,y = —Bky, whichis initially drawn randomly from a set of N, reservoirs. The 6Y -matrix relating transitions
to reservoirs is given by

+ay ife=x—>x+1

r__
oYe = +a, fe=z—sz+1

0 otherwise

(146)

i.e. ifeis triggered by the work reservoir r, then 6Y; is equal to +ay or £4a, depending on the direction of the
transition.

As an example, we consider the 3 x 3 grid coupled to 5 reservoirs depicted in figure 10. We omit to report
the matrices 0Y and Cas they can be easily inferred form equation (146) and the picture, and move on to the M-
matrix, which reads

1 2 3 4
1) ax —ay 0 ax
(X, 2) 0 ax a4, —ax  —a,

M= x,3) 0 0 —a, 0 . (147)
&, 4 —a, 0 0 0
& 3) a, —ay 0 ay a, — dy

Its one-dimensional cokernel is spanned by the vector

X, 1) X,2) X3) X, 4 (X,5)
X = 11 1D (148)

which corresponds to the global conserved quantity X,,. In contrast, its kernel is empty denoting the absence of
symmetries. Setting — Ok; as ‘potential’ field, Y the nonequilibrium potential reads
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(0,0) (1,0) (2,0)

Figure 11. [llustration of the randomized grid in figure 10 for a, = a, = a. The grid is split into three groups of states by the
transitions corresponding to the third (purple) and fifth (red) reservoir: {(0, 0), (1, 0), (0, 1), (2, 0)}, {(1, 1), (0, 2), (2, 1), (1, 2)},
and {(2, 2)}.

o, = Bk X,, (149)

while the fundamental forces are equal to

Fxy = Bk, — k), forr=2, .. 5. (150)
The trajectory EP can be thus expressed as
5
S[nd =vind + > o[n] + A®[n,], (151)
r=2
where
t
vimd = =4 [ dr Ok @)X, Dl (152a)
t
ol =3 [ drik() — k@ILE) (152b)

In order to show the emergence of a symmetry following a change of physical topology, let us now assume
that ay, = a4, = a and carry on the same analysis as before. The M-matrix now becomes,

1 2 3 4
X, 1

a —a 0 a
X, 2) 0 a 0 —a
M= (X, 3) 0 0 —a 0| (153)

X, 4 |-a 0 0 o0
X, 5) 0 0 a O
whose kernel and cokernel are one and two-dimensional, respectively. The symmetries are given by
123 4
=010 1), (154)
and tell us that the second and fourth cycles are not physically independent, as they are coupled to the same
reservoirs and all displacements are the same. The basis of coker M,
KD KD K3 KD K5

=0 1 1 1 D (155a)
X1 (X,2) (X3) (X, 4) X,5)
V=0 0 1 0 1 (155b)
identifies two state variables, the first of which is the global conserved quantity, X,,, whereas the second is
0,00 (1,0 ©, 1) @, 0) a1 ©,2) @l 1,2 2,2
V.=1(0 0 0 0 a a a a 2a) (156)

whose interpretation is not obvious. It arises from the fact that x- and z-transitions are indistinguishable and the
reservoirs 3 and 5 split the states into three groups, see figure 11, which are identified by different values of V,,,
equation (156). We can set (X, 1) and (X, 3) as the reservoirs of the set { yp}, according to which the Massieu
potential of the state n reads

¢, = BlkX, + (ks — k) Vil (157)
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The number of fundamental forces is thus reduced,

Fix = Bl — Bk, (158a)
Foxa = Bka — Pl (158b)
Fix,5) = Bks — Pks. (158¢)

The EP can be easily written.

This model exemplifies the emergence of nontrivial conservation laws whose identification is not
straightforward, and motivates the need for a systematic procedure capable of separating the conservative
contributions to the EP from the nonconservative ones.

7. Conclusions and perspectives

The central achievement of this paper is to show that the EP of an open system described by stochastic
thermodynamics is shaped by the way conserved quantities constrain the exchanges between the system and the
reservoirs. Some of these conserved quantities are the obvious ones which do not depend on the system details
(e.g. energy, particle number). But we provide a systematic procedure to identify the nontrivial ones which
depend on the system topology. As a result, we can split the EP into three fundamental contributions, one solely
caused by the time-dependent drivings, another expressed as the change of a nonequilibrium Massieu potential,
and a third one which contains the fundamental set of flux and forces. Table 3 indicates which of these
contributions play a role in different known processes. We also showed how to make use of this decomposition
to derive a finite-time detailed FT solely expressed in terms of physical quantities, as well as to asses the cost of
manipulating nonequilibrium states via time-dependent driving and nonconservative forces.

We believe that this work provides a comprehensive formulation of stochastic thermodynamics. Our
framework can be systematically used to study any specific model (as we illustrated on several examples) and
demonstrates the crucial importance of conservation laws in thermodynamics, at, as well as out of, equilibrium.
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Appendix A. Proof of the one-to-one correspondence between fundamental forces and
fundamental affinities

We need to prove that that the matrix whose entries are { M) } is nonsingular given the following hypotheses: (i)
the vectors labeled by n whose entries are { M}, for y = 1, ..., Ny, are linearly independent; (ii)

f?{ M+ fy’\ M2 = 0 forall \and o, where the matrix whose entries are { z,”}j: } is nonsingular. Let us now assume
P

by contradiction that { M) } is singular, and let us denote by {x"} the entries of a non-null vector such that
M;ix" = 0 forall y;. We can thus construct a vector {x“} having as entries corresponding to 7, {x"}, and zero for
the others. Hence, M/fx® = 0 forall y. From the equation in the second hypothesis, we get

¥, %,
£y Max® + £, Mlix® = £, Myx = 0.

Since the matrix whose entries are {z,”y)‘ } is nonsingular, we must conclude that Mﬁ’" x" = 0 forall Yo and thus
P
M, x" = 0 forally, in contradiction with the hypothesis (i).

Appendix B. Proof of the finite-time detailed FT's
We now give the proof of the finite time detailed FTs (55) using moment generating functions. Alternatively, it

can be proved using the approach developed in [53]. For our purposes, we change our notation for a bracket
operatorial one.
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Let B(n, v, {0, }) be the joint probability of observing a trajectory ending in the state n along which the
driving contribution is v while the flow ones are {ny }. The above probabilities, one for each n, are stacked in the
ket|B (v, {0, D). The time evolution of the moment generating function of the above probabilities,

A (€, 1) = [dT] doy, expl—€av = €03 RO, (03, )), (B1)
b
is ruled by the biased stochastic dynamics
dIAEp (€,1) = Wilep (6, DIAE (£,)), (B2)
where the entries of the biased generator are given by
Wimi(Ep 16,1 = D welexp{ =€ F.8Y, e} Sno—e0mote) + Snmdmote} + €40 bnm. (B3)
Because of the local detailed balance (13), the stochastic generator satisfies the following symmetry
Wip (6,D) = B Wiée (1 = €, By, (B4)
where the entries of 3, are given by
Bum,e = exp{,,} bn.m- (B5)
Also, the initial condition is given by the equilibrium distribution (25), which reads
[Ao(&y {fyf}» = |Peqi> = Bo/Zo|1>> (B6)

where Z; = exp { $cq } is the partition function. The ket | 1) refers to the vector in the state space whose entries
areall equal to one.

In order to proceed further, it is convenient to first prove a preliminary result. Let us consider the generic
biased dynamics, e.g. equation (B2),

di|A(©) = W OIA(E), (B7)

whose initial condition is |A¢(€)) = |p(0)). A formal solution of equation (B7) is |A,(§)) = U,(&) |p(0)), where
the time-evolution operator reads U, (§) = 7, exp { j(; “dr W,(€) }, 7. being the time-ordering operator. We
clearly have d,U,(&) = Wi(§)U,(&). Let us now consider the following transformed evolution operator

UE) = X U(E) X, (B8)
X, being a generic invertible operator. Its dynamics is ruled by the following biased stochastic dynamics
dl(€) = diX UE) Xo + X 1A Ko = {deX X, + X WO XU = WO Th(),  (BY)

which allows us to conclude that the transformed time-evolution operator is given by
~ t ~
1o =Toe { [ ar o} (510)
0
From equations (B8)—(B10) we deduce that

XU Xy = Tyexp { f t dr[d, X 'X, + XWX } (B11)
0

We can now come back to our specific biased stochastic dynamics (B2). The moment generating function of
B (v, {0y,}) is thus given by
)2,
Zo

(B12)

At(fd) {fyf}) = <1|At(§d’ {fyf}» = <1|ut(£d) {fyf})BO/ZO|1> = <1 ‘ %Bflut(fd, {S%}) BO

where U (&, {€ e }) is the time-evolution operator of the biased stochastic dynamics (B2). The requirement
imposed on m,—discussed in the main text—ensures that (1| B,/Z, with Z, == exp {®eq, } is the equilibrium
initial distribution of the backward process (p, o |- Using the relation in equation (B11), the above term can be
rewritten as

- <pe<Jf

where A®., = InZ, /Z,. Since 0.8 7'B, = diag{—0,¢,} the first term in square bracket can be added to the
diagonal entries of the second term, thus giving

T, exp {f: dr[0.B,'B, + B;' W.(&,, {fyf}) B, } ’ 1> exp{Ad}, (B13)
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= <p€CIf

The symmetry (B4) allow us to recast the latter into
t
_ <peqf T.exp {f drWig, — 1, (1 - 5%})} ‘ 1> exp{Ady }. (B15)
0

The crucial step comes as we transform the integration variable from 7to 7" = ¢ — 7. Accordingly, the time-
ordering operator, 7, becomes an anti-time-ordering one 7_, while the diagonal entries of the biased
generator, equation (B3), become

Wt~ (g 18, 1) = D2 welt = 7) Smote) + &4 Oe—7) [0, (¢ — 7]

= Z we(t — TT) 6m,o(e) - gd 87"'[¢m(t - TT)]) (B16)

T exp {fot dr B W€, — 1, {fyf})BT]} ‘ 1>exp{A<I>eq}. (B14)

from which we conclude that
an,tfr‘\(gd’ {f)’t}) = an,t—ﬁ(fgd: {Eyf}) = W;:mﬁ'r(ffd) {fyf}) (B17)

Above, W;(g » 1€ W }) is the biased generator of the dynamics subject to the time-reversed protocol, 7', i.e. the
dynamics of the backward process. Equation (B15) thus becomes

= <ple

Upon a global transposition, we can write

T exp {ft dr' WLT(I =& {1 — gy })} ‘ 1> eXP{A(I)eq}~ (B18)
0 i

= <1 ‘ T, exp {f;t dr W;(l —&p {1 — Syf})} ‘ peqf> exp{Adyq}, (B19)

where we also used the relationship between transposition and time-ordering

T
T+(H Al ) = (T IT Ati] , (B20)
i i
in which A, is a generic operator. From the last expression, we readily obtain

= (UL~ £y 11— €, Dlpeg,) P (ABq) = Al(1 — &g {1 — €, ) exp(Ay), (B21)
where AI({ FIRES " }) is the moment generating function of P (v, { 0y, }). Summarizing, we have the following
symmetry
Ay (6, D) = Al(1 = & {1 = &, D) exp{Ady), (B22)

whose inverse Laplace transform gives the FT

P, {o,})
R o Ay b B23
Fm— exp{v + ny: Ty + q} (B23)

B.1. Fundamental cycles

The finite-time detailed FT for flow contributions along fundamental cycles, equation (61), follows the same
logic and mathematical steps described above. The moment generating function which now must be taken into
account is

A€ 16,D) = [dv]] dyyexpl=&v — MRy (3)), (B24)
n

which is ruled by the biased generator whose entries are
an,t(gd) {57]}) = Z We {eXP{ _gnArJCme} 6?1,0(76)6711,0(6) + 6n,m6m,o(e)} + gd 8t¢m 6n,m- (BZS)
The symmetry of the latter generator—on top of which the proof is constructed—is based on the expression of
the local detailed balance given in equation (13),
W 16,) = B W€y, (1 = €,D) By, (B26)

where the entries of B, are given in equation (B5). Following the steps from equation (B12) to equation (B22),
with the above definitions and equations, equations (B24)—(B26), proves the FT in equation (61).
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Abstract: We present a general method to identify an arbitrary number of fluctuating quantities which
satisfy a detailed fluctuation theorem for all times within the framework of time-inhomogeneous
Markovian jump processes. In doing so, we provide a unified perspective on many fluctuation
theorems derived in the literature. By complementing the stochastic dynamics with a thermodynamic
structure (i.e., using stochastic thermodynamics), we also express these fluctuating quantities in terms
of physical observables.

Keywords: stochastic thermodynamics; fluctuation theorem; Markov jump process; entropy
production; graph theory; conservation laws

PACS: 02.50.Ga; 05.70.Ln

1. Introduction

The discovery of different fluctuation theorems (FI5s) over the last two decades constitutes a major
progress in nonequilibrium physics [1-6]. These relations are exact constraints that some fluctuating
quantities satisfy arbitrarily far from equilibrium. They have been verified experimentally in many
different contexts, ranging from biophysics to electronic circuits [7]. However, they come in different
forms: detailed fluctuation theorems (DFTs) or integral fluctuation theorems (IFTs), and concern
various types of quantities. Understanding how they are related and to what extent they involve
mathematical quantities or interesting physical observables can be challenging.

The aim of this paper is to provide a simple yet elegant method to identify a class of finite-time
DFTs for time-inhomogeneous Markovian jump processes. The method is based on splitting the
entropy production (EP) in three contributions by introducing a reference probability mass function
(PMF). The latter is parametrized by the time-dependent driving protocol, which renders the dynamics
time-inhomogeneous. The first contribution quantifies the EP as if the system were in the reference
PME, the second the extent to which the reference PMF changes with the driving protocol, and the
last the mismatch between the actual and the reference PMFE. We show that when the system is
initially prepared in the reference PMF, the joint probability distribution for the first two terms always
satisfies a DFT. We then show that various known DFTs can be immediately recovered as special cases.
We emphasize at which level our results make contact with physics and also clarify the nontrivial
connection between DFTs and EP fluctuations. Our EP splitting is also shown to be connected to
information theory. Indeed, it can be used to derive a generalized Landauer principle identifying
the minimal cost needed to move the actual PMF away from the reference PMF. While unifying,
we emphasize that our approach by no means encompasses all previously derived FTs and that other
FT generalizations have been made (e.g., [5,8-11]).

Entropy 2018, 20, 635; d0i:10.3390/e20090635 www.mdpi.com/journal/entropy
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The plan of this paper is as follows. Time-inhomogeneous Markov jump processes are introduced
in Section 2. Our main results are presented in Section 3: We first introduce the EP as a quantifier of
detailed balance breaking, and we then show that by choosing a reference PMF, a splitting of the EP
ensues. This enables us to identify the fluctuating quantities satisfying a DFT and an IFT when the
system is initially prepared in the reference PMF. While IFTs hold for arbitrary reference PMFs, DFTs
require reference PMFs to be solely determined by the driving protocol encoding the time dependence
of the rates. The EP decomposition is also shown to lead to a generalized Landauer principle.
The remaining sections are devoted to selecting specific reference PMFs and showing that they give rise
to interesting mathematics or physics: In Section 4 the steady-state PMF of the Markov jump process
is chosen, giving rise to the adiabatic-nonadiabatic split of the EP [12]. In Section 5 the equilibrium
PMF of a spanning tree of the graph defined by the Markov jump process is chosen, and gives rise to
a cycle—cocycle decomposition of the EP [13]. Physics is introduced in Section 6, and the properties
that the Markov jump process must satisfy to describe the thermodynamics of an open system are
described. In Section 7 the microcanonical distribution is chosen as the reference PMF, leading to the
splitting of the EP into system and reservoir entropy change. Finally, in Section 8, the generalized Gibbs
equilibrium PMF is chosen as a reference and leads to a conservative-nonconservative splitting of the
EP [14]. Conclusions are finally drawn, and some technical proofs are discussed in the appendices.

2. Markov Jump Process

We introduce time-inhomogeneous Markovian jump processes and set the notation.
We consider an externally driven open system described by a finite number of states, which we
label by n. Allowed transitions between pairs of states are identified by directed edges,

e=(nm,v), forn < m, (1)

where the label v indexes different transitions between the same pair of states (e.g., transitions due
to different reservoirs). The evolution in time of the probability of finding the system in the state n,
Pn = pau(t), is ruled by the master equation (ME):

dtpn = menmpmr 2)

where the elements of the rate matrix are represented as

Wim = LeWe {5}’[,{(6)51’”,0(8) - (Sﬂ,mém,o(e)} : (©)
The latter is written in terms of stochastic transition rates, { w, }, and the functions
o(e):=m, and t(e):=mn, fore= (nm,v), 4)

which map each transition to the state from which it originates (origin) and to which it leads (target),
respectively. The off-diagonal entries of the rate matrix (the first term in brackets) give the probability
per unit time to transition from m to n. The diagonal ones (second term in brackets) are the escape
rates denoting the probability per unit time of leaving the state m. For thermodynamic consistency,
we assume that each transition e = (nm, v) is reversible, namely if w, is finite, the corresponding
backward transition —e = (mn, v) is allowed and additionally has a finite rate w_,. For simplicity,
we also assume that the rate matrix is irreducible at all times, so that the stochastic dynamics is
ensured to be ergodic. The Markov jump process is said to be time-inhomogeneous when the transition
rates depend on time. The driving protocol value 7; determines the values of all rates at time ¢,

{we = we(my) }.
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The ME (2) can be rewritten as a continuity equation:

dipn = X.D¢ (), ©)

where we introduced the averaged transition probability fluxes,

<]-e> = WePo(e)s (6)

and the incidence matrix D,

+1 if S5,
D} := 08y 4(e) = Ono(e) = § —1 if <, )

0 otherwise,

which couples each transition to the pair of states that it connects, and hence encodes the network
topology. On the graph identified by the vertices { n } and the edges { e}, it can be viewed as a
(negative) divergence operator when acting on edge-space vectors—as in the ME (5)—or as a gradient
operator when acting on vertex-space vectors. It satisfies the symmetry D" , = —D}.

Example

Let us consider the Markov jump process on the network in Figure 1, in which only the six forward
transitions are depicted. It is characterized by four states, { 00,01, 10,11 }, connected by transitions as
described by the incidence matrix:

0
D pr—
01 0 1 1 -1 0 ®)
11 o 0o o 1 1 1
Backward transitions are obtained from D", = —D}.
S 11
w57 A \+4
// ,/'% \
/L 01
e 27 A
10 743
~ /

Figure 1. Illustration of a network of transitions.

Notation

From now on, upper—lower indices and Einstein summation notation will be used: repeated
upper-lower indices implies the summation over all the allowed values for those indices.
Time derivatives are denoted by “d;” or “9;”, whereas the overdot “ * ” is reserved for rates of
change of quantities that are not exact time derivatives of state functions. We also take the Boltzmann
constant kg equal to 1.

3. General Results

This section constitutes the core of the paper. The main results are presented in their most
general form.
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3.1. EP Decomposition at the Ensemble Average Level

After defining the ensemble-averaged EP, we will show how to generically decompose it in terms
of a reference PMFE.
A PMF p,, satisfies the detailed-balance property if and only if

WePo(e) = W—ePo(—c) s for all transitions e. ©9)

This implies that all net transition probability currents vanish: (j°) — (j~¢) = 0. The central
quantity that we will consider is the EP rate:

(E) =3 A [(7) = (7] = A() 2 0, (10)
where the affinities are given by
A —1 WePoe)
e=In—2 (11)
wfﬁ‘po(—e)

It is a measure of the amount by which the system breaks detailed balance or, equivalently,
time-reversal symmetry. Indeed, its form ensures that it is always non-negative and vanishes if and
only if Equation (9) holds. Notice that A_, = —A,. As we will see in Section 7, in physical systems the
EP quantifies the total entropy change in the system plus environment [15].

We now decompose the EP rate into two contributions using a generic PMF p'f = p'f(t) as a
reference. We make no assumption about the properties of p™f at this stage, and define the reference

potential and the reference affinities as

W= —Inpy (12)
and ;
w pre
AFf = 1In _Telg) :e(fe) =In Zzu—e +yrefp?, (13)
wfgpo(ie) —e

respectively. The former can be thought of as the entropy associated to pi**—i.e., its self-information—,

whereas the latter measures the extent by which p'*f breaks detailed balance. By merely adding and

n
subtracting D! from the EP rate, the latter can be formally decomposed as

(X) = (Enc) +(Xc) 20, (14)
where the reference nonconservative contribution is an EP with affinities replaced by reference affinities:
(Enc) = AFH(), (15)
and the reference conservative contribution is
<ZC> = =), dipnIn {Pn/P;ﬂef} . (16)
Using the ME (5), it can be further decomposed as
(Ee) = —dD(plp™) + (£a), (17)

where the first term quantifies the change in time of the dissimilarity between p,, and p:ef, since

D(pllp™) == Lupuln {pu/p’} (18)
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is a relative entropy, whereas the second term,

(£4) == —Lupude Inpiet = ¥, pudiypr, (19)

accounts for possible time-dependent changes of the reference state, and we name it the driving
contribution. The reason for this name will become clear later, as we will request p™f to depend
parametrically on time only via the driving protocol (i.e., pief(t) = pref (7).

Using these equations, one can easily rearrange Equation (14) into
(Za) + (Enc) > dD(pllp™). (20)

When pef(t) = pi*f(71;), one can interpret this equation as follows. The lhs describes the EP
contribution due to the time-dependent protocol, (¥4), and to the break of detailed balance required
to sustain the reference PMF, (). When positive, the rhs thus represents the minimal cost (ideally
achieved at vanishing EP) to move the PMF further away from the reference PMF. When negative,
its absolute value becomes the maximal amount by which the two EP contributions can decrease,
as the PMF approaches the reference PMF. This result can be seen as a mathematical generalization of
the Landauer principle, as it provides a connection between an information-theoretical measure of the
dissimilarity between two PMFs and the driving and break of detailed balance needed to achieve it.
Its precise physical formulation, discussed in detail in [14], is obtain when expressing Equation (20) in
terms of the reference PMF used in Section 8.

3.2. EP Decomposition at the Trajectory Level

We now perform the analogue of the EP decomposition (14) at the level of single stochastic
trajectories.

A stochastic trajectory of duration ¢, ny, is defined as a set of transitions {e; } sequentially occurring
at times {t;} starting from n at time 0. If not stated otherwise, the transitions index i runs from i = 1
to the last transition prior to time ¢, N;, whereas the state at time 7 € [0, t] is denoted by #.. The whole
trajectory is encoded in the instantaneous fluxes,

F(T) i= Libee,6 (T — 1), 1)

as they encode the transitions that occur and their timing. Its corresponding trajectory probability
measure is given by

N; N;
{B[nt} nt} = H We; (nti) 1_[ exp {_ ftiiﬂ dr Zewe (nr)(snf,o(e) } ’ (22)
i=1 i=0

where the first term accounts for the probability of transitioning along the edges, while the second
accounts for the probability that the system spends { t; 1 — t; } time in the state { 1, }. When averaging
Equation (21) over all stochastic trajectories, we obtain the averaged fluxes, Equation (6),

(°(0)) = JDm: Pns; 7] pag (0) j* (1), (23)

where [Dn; denotes the integration over all stochastic trajectories.
The change along n; of a state function like (!*f can be expressed as

] = yi) ~ i) = ['ar{ [y

Ty (r) D j“(T)}. 1)

n=nr
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The first term on the rhs accounts for the instantaneous changes of pfff, while the second accounts
for its finite changes due to stochastic transitions. Analogously, the trajectory EP—which is not a state
function—can be written as

L[n; ) = /Otdffe(T) In zfee((t;)) hn Z:; E(t))) a

Adding and subtracting the terms of Equation (24) from the EP, we readily obtain the fluctuating
expressions of the nonconservative and conservative contributions of the EP,

Z[nt; 7‘[1}] = Yinc [nt; 7(,5] + 2 [nt]. (26)
The former reads

Snclng ] = [ydT A®(T) (1), 27)

while for the latter
Zc[nt] = —AD[flt} + Zd[nt], (28)

where 0

AD[n¢] :=1n p:eff(t) —In prneof( ) (29)

pm (t) Pno (0)

and

Tl i= [ dv [y (o) (30)

n=nr

ref

We emphasize that Equation (26) holds for any reference PMF pj** exactly as it was for its
ensemble-averaged rate counterpart, Equation (14).

3.3. Fluctuation Theorems

We proceed to show that a class of FTs ensue from the decomposition (14)—(26). To do so, we
now need to assume that the reference PMF depends instantaneously solely on the protocol value
pref (1) = pref(7r;). In other words, p™f at time T is completely determined by { w,(7;) }. This justifies
a posteriori the name driving contribution for Equation (19). Various instances of such PMFs will be
provided in the following sections. We define a forward process where the system is initially prepared in
pn(0) = pief(71y) at a value of the protocol 77y and then evolves under the Markov jump process driven
by a protocol 71, for T € [0, t]. The corresponding backward process, denoted with “*”, is defined as
follows: the system is initially prepared in the reference PMF corresponding to the final value of the
forward process, p}(0) = pref
forward protocol reversed in time,

(71¢), and then evolves under the Markov jump process driven by the

mti=m ., forTel0,t], (31)

see Figure 2.

e >

forward protocol: 7.
P » @ noneq. p,(t)

Pa(0) = expy¥i(o)
reference: 7,

-

-~ reference: 7,
7 pi(0) =expy ()

~
-

Figure 2. Schematic representation of the forward and backward processes related by our detailed
fluctuation theorem (DFT).
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Our main result is that the forward and backward process are related by the following
finite-time DFT:
Pi(E4,Enc)

—_—— = Xg +Znct- 32
P (~Tg, T PR 2

Here P;(X4,Xnc) is the probability of observing a driving contribution to the EP L4 and a
nonconservative one X,. along the forward process. Instead, P;f (—X4, —Znc) is the probability
of observing a driving contribution equal to —X4, and a nonconservative one —X,. along the
backward process.

We now mention two direct implications of our DFT. First, by marginalizing the joint probability,
one easily verifies that the sum of nonconservative and driving EP contributions also satisfies a DFT:

Pt(Zd + ch)

_— = Y4+ 2nct- 33

Second, when averaging Equation (32) over all possible values of 4 and X, an IFT ensues:
(exp{—24 —Znc}) =1 (34)

The proofs of Equations (32)—-(34) are given in Appendix A, and use the generating function
techniques developed in References [12,14].

We note that the IFT holds for any reference PMF regardless of the requirement that
pref(t) = pf(m;) (see Appendix A). In contrast, this requirement must hold for the DFT,
else the probability Pf(Z4,Xnc) would no longer describe a physical backward process in which
solely the protocol function is time reversed. Indeed, if one considers an arbitrary pt*f, the backward
process corresponds to not only reversing the protocol, but also the stochastic dynamics itself
(see Equation (A23)).

Another noteworthy observation is that the fluctuating quantity X4 + X can be seen as the ratio
between the probabilities to observe a trajectory n; along the forward process, Equation (22), and the
probability to observe the time-reversed trajectory along the backward process:

Plne; 7] pret (7o)

b [I’lt,' 7Tt] + Zd [nt; 7Tt] =In . (35)
b Plaf; ] pis ()
The latter trajectory is denoted by n/. It starts from 1, and it is defined by:
JHO(T) 1= Libe, e, 0(t— T — ty). (36)

This result follows using Equation (22) and the observation that the contribution due to the
waiting times vanish in the ratio on the rhs. It can also be used to prove the DFT in two alternative
ways, the first inspired by Reference [16] and the second using trajectory probabilities (see Appendix B).
These proofs rely on the fact that both the driving and the nonconservative EP contributions satisfy the
involution property:

ch[n;r; n;r] = —Ync[ns; 1], and Zd[nf; nf] = —Xgq[ns; ], (37)

viz. the change of 4 and Xy, for the backward trajectory along the backward process is minus the
change along the forward trajectory of the forward process. This result follows from direct calculation
on Equations (27) and (30) (see Appendix B).

Finally, let us get back to the generalized Landauer principle for systems initially prepared in
the reference state, as we did in this subsection for the FTs to hold. Using Equation (20), we see that
the arguments of the FTs (33) and (34) (i.e., the driving and the nonconservative contribution to the
EP) can be interpreted, on average, as the cost to generate a dissimilarity (or a lag) between the actual
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and the reference PMF at the end of the forward protocol. A special case of this result is discussed in
Reference [17].

3.4. EP Fluctuations

We now discuss the properties of the fluctuating EP and its relation to the previously derived FTs.
An IFT for the EP always holds

(exp{-2Z}) =1, (38)

regardless of the initial condition [18]. In our framework, this can be seen as the result of choosing the
actual p,(T) as the reference for the IFT (34).

In contrast, a general DFT for the EP does not hold. This can be easily understood at the level of
trajectory probabilities. Indeed, the fluctuating EP can be written as the ratio of forward and backward
probabilities as in (35), but the initial condition of the forward process is arbitrary and that of the
backward process is the final PMF of the forward process,

_ 1 Blnt; 7] pug (0)

Liny; 11y Binl; 7l pn, (t)

(39)

As a result, the involution property is generally lost, £[n}; 7] # —X[ns; 1], since p;O (t) # pny(0),
and hence the DFT is also lost [18].

However, in special cases the fluctuating quantity Xy + X, which satisfies a DFT can be
interpreted as an EP. This happens if at the end of the forward (respectively backward) process,
the protocol stops changing in time in such a way that the system relaxes from p;, to an equilibrium
pzetf (respectively from pf (t) to an equilibrium p™f(719)) and thus without contributing to either £y or
to L (even at the trajectory level). In such cases, X4 + X can be seen as the EP of the extended process
including the relaxation. On average, it is greater or equal than the EP of the same process without the

relaxation, since the non-negative EP during the relaxation is given by D(p(t)||p™f (7)) > 0.

3.5. A Gauge Theory Perspective

We now show that the decomposition in Equation (14) can be interpreted as the consequence of
the gauge freedom discussed by Polettini in Reference [19]. Indeed, in this reference he shows that the
following gauge transformation leaves the stochastic dynamics (5) and the EP rate (10) unchanged:

Pn = PneXpiy,,  We = Weexp—Y,,y, D = Diexpyp,, and Y, = Y, exp—y,.  (40)

When considering a gauge term ¢, changing in time, one needs also to shift the time
derivative as:
d; — dy — 94, (41)

where 9; behaves as a normal time derivative but it acts only on 1,,. Let us now consider the EP rate

rewritten as
We

W—e

(£) = (f)In

One readily sees that the transformation(40)—(41) changes the first term into the nonconservative
term, Equation (15), whereas the second into the conservative one, Equation (16). We finally note that
connections between gauge transformations and FTs were also discussed in References [8,20].

This concludes the presentation of our main results. In the following, we will consider various
specific choices for p"f which solely depend on the driving protocol and thus give rise to DFTs. Each of
them will provide a specific meaning to > and .. Table 1 summarizes the reference potential, affinity,

and conservative contribution for these different choices.

+deY o pn [~ Inpa]. (42)
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Table 1. Summary of the reference potentials, affinities, and conservative EP contributions for the
specific references discussed in the text. The nonconservative EP contribution follows from (Xpc) =
Arf(j¢), whereas the driving one from (34) = ¥, padipief. Overall, (X) = (Znc) + (Ze) = (Enc) +
(X4) — diD(p||p*ef), where D is the relative entropy.

Decomposition pret Aref (Ze)
wﬁPZS(E) e
adiabatic—nonadiabatic —Inp® In WSS() —(j°)Dg In{pn/py
o(—e
0, ifeeT,
cycle—cocycle —In{TTer,we — Z} {Ae CfeeT Yo (Te) Ae
system-reservoir Smec — S 08t = —f,0XY [Sw — Inpy] DY (%)
conservative-nonconservative = ®gg — [Sn — F,\Lﬂ fyféXg f [Sn —FL}—In pn] D} {(j%)

4. Adiabatic—-Nonadiabatic Decomposition

We now provide a first instance of reference PMF based on the fixed point of the Markov
jump process.
The Perron-Frobenius theorem ensures that the ME (5) has, at all times, a unique instantaneous
steady-state PMFF
YW (70) s (71¢) = 0, for all n and ¢. (43)

When using this PMF as the reference, p™f = p%5, we recover the adiabatic—nonadiabatic EP
rate decomposition [12,16,21-24]. More specifically, the nonconservative term gives the adiabatic
contribution which is zero only if the steady state satisfies detailed balance, and the conservative
term gives the nonadiabatic contribution which characterizes transient and driving effects. A specific
feature of this decomposition is that both terms are non-negative, as proved in Appendix C: (Xpc) > 0
and (X.) > 0. In turn, the nonadiabatic contribution decomposes into a relative entropy term and a
driving one.

Provided that the forward and backward processes start in the steady state corresponding to
the initial value of the respective protocol, the general DFT and IFT derived in Equation (32) and
Equation (34) hold for the adiabatic and driving contributions of the adiabatic-nonadiabatic EP
decomposition [12,21].

In detailed-balanced systems, the adiabatic contribution is vanishing, <Za> = 0, and we obtain a
FT for the sole driving contribution:

P (Zq)

——— =expXy. (44)
Pr(-Zq) P

The celebrated Crooks” DFT [25-27] and Jarzynski’s IFT [28] are of this type.

4.1. Additional FTs

Due to the particular mathematical properties of the steady-state PMF, additional FTs for the
adiabatic and driving terms ensue. These are not covered by our main DFT, Equation (32), and their
proofs are discussed in Appendix D.

For the former, the forward process is produced by the original dynamics initially prepared in an
arbitrary PMF. The backward process instead has the same initial PMF and the same driving protocol
as the forward process, but the dynamics is governed by the rates

We 1= w,gpis(_e)/psos(e). (45)
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At any time, the following DFT relates the two processes,

P (Z
D) oy, (46)
Pi(—Xa)
where P (—X,) is the probability of observing —X, adiabatic EP during the backward process.
The Speck-Seifert IFT for the housekeeping heat is the IFT version of this DFT [29].

For the driving term, the forward process is again produced by the original dynamics, but now
initially prepared in a steady state. The backward process is instead produced by the rates (45) with
time-reversed driving protocol and the system must initially be prepared in a steady state. Under these
conditions, one has

P (Xq)
= ——— = exply, (47)
Pf(—Z4)
where Pf(—Xy) is the probability of observing —X4 driving EP during the backward process.
The Hatano—-Sasa IFT [30] is the IFT version of this DFT.

5. Cycle—Cocycle Decomposition

We proceed by providing a second instance of reference PMF based on the equilibrium PMF for a
spanning tree of the graph defined by the incidence matrix of the Markov jump process.

We partition the edges of the graph into two disjoint subsets: 7 and 7 *. The former identifies a
spanning tree, namely a minimal subset of paired edges, (e, —e), that connects all states. These edges
are called cochords. All the other edges form 7*, and are called chords. Equivalently, T is a maximal
subset of edges that does not enclose any cycle—the trivial loops composed by forward and backward
transitions, (e, —e), are not regarded as cycles. The graph obtained by combining 7 and e € T*
identifies one and only one cycle, denoted by C,, for e € T*. Algebraically, cycles are characterized as:

Yy Di=Y DiC{ =0, foralln, (48)
E/

e'eC,

where {C¢' }, fore € T*, represent the vectors in the edge space whose entries are all zero except for
those corresponding to the edges of the cycle, which are equal to one.

We now note that if 7 were the sole allowed transitions, the PMF defined as follows would be an
equilibrium steady state [15]:

piltm) i= 7 T] welm), )
4 e€Ty

where Z = Y, [1,c7;, we is a normalization factor, and 7, denotes the spanning tree rooted in 1, namely
the set of edges of T that are oriented towards the state 7. Indeed, p5t would satisfy the property of
detailed balance, Equation (9):

w w_
wepf]t(e) = Z€ H Wy = —— H Wy = w_gpit(ie) , forallee T. (50)
z , zZ
e E'TO((,) [4 67’0(,‘,)
We now pick this equilibrium PMF as a reference for our EP decomposition, pr¢f = pst. However,
in order to derive the specific expressions for (¥nc) and (%), the following result is necessary: the edge
probability fluxes can be decomposed as

()= Y (T)ei+ ) (Te)C, (51)
eeT eeT*

where { & } denotes the canonical basis of the edge vector space: g = & [31]. Algebraically,
this decomposition hinges on the fact that the set { Ce },c7+ U { & },c7 is a basis of the edge vector
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space [13]. Note that for e € 7%, the only nonvanishing contribution in Equation (51) comes from
the cycle identified by e, and hence (j°) = (J.). The coefficients { (J.) } are called cocycle fluxes for
the cochords, e € T, and cycle fluxes for the chords, e € 7*. They can be understood as follows [13]:
removing a pair of edges, ¢ and —e, from the spanning tree (¢, —e € 7T) disconnects two blocks of states.
The cocycle flux { () } of that edge is the probability flowing from the block identified by the origin
of e, o(e), to that identified by the target of e, t(e). Instead, the cycle flux { (J.) } of an edge, e € T,
quantifies the probability flowing along the cycle formed by adding that edge to the spanning tree.
Graphical illustrations of cocycle and cycle currents, (J¢) — (J ~¢), can be found in Reference [13].
We can now proceed with our main task. Using Equations (48) and (49), we verify that

preipn — —In{w,/w_.}, ifecT, (52)
—In{w./w_}+Ae, ifecTH
where
A = ZE/CS/ In{wy/w_p}, forecT* (53)
is the cycle affinity related to C,. It follows that
0, ifeeT,
AR =1In % 4 gDl = e (54)
W A., ifecT¥,
from which the nonconservative contribution readily follows:
<2nc> = Z A6<j€> = Z Ae<~7e>- (55)

ecT™ ecT*

In the last equality, we used the property of cycle fluxes discussed after Equation (51). Hence,
the nonconservative contribution accounts for the dissipation along network cycles. In turn, combining
Equation (16) with Equations (51) and (52), one obtains the conservative contribution

(o) = ) Al Te), (56)

ecT

which accounts for the dissipation along cocycles. Using these last two results, the EP
decomposition (14) becomes the cycle—cocycle decomposition found in Reference [13]:

()= ) Aclje) + Y Ae(Te).- (57)
ecT* ecT

As for all decompositions, the conservative contribution—here the cocycle one—vanishes at
steady state in the absence of driving. The cycle contribution instead disappears in detailed-balanced
systems, when all the cycle affinities vanish. This statement is indeed the Kolmogorov criterion for
detailed balance [32,33].

The fluxes decomposition Equation (51) is also valid at the trajectory level, where the cycle and
cocycle fluxes become fluctuating instantaneous fluxes, { 7. }. Obviously, the same holds true for
the cycle—cocycle EP decomposition. Therefore, if the system is in an equilibrium PMF of type (49)
at the beginning of the forward and the backward process, a DFT and an IFT hold by applying
Equations (32) and (34). Note that the fluctuating quantity appearing in the DFT, X4 + Xy, can be
interpreted as the EP of the extended process in which, at time ¢, the driving is stopped, all transitions
in 7 are shut down, and the system is allowed to relax to equilibrium—which is the initial PMF of the
backward process.
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It is worth mentioning that one can easily extend the formulation of our DFT by considering
the joint probability distribution for each subcontribution of ¥4 and X, antisymmetrical under time
reversal. This can be shown using either the proof in Appendix B [16], or that in Appendix A [14].
In the case of the cycle—cocycle decomposition, it would lead to

Py(Za, { Ae (e — j—e) Yeer+) = exp {
)

i i X4+ Aeje ¢, 58
PH(—Za A=A (je = j-e) Yoer at ) J} (58)

ecT*

which is a generalization of the DFT derived in Reference [34] to time-inhomogeneous systems. In turn,
the latter is a generalization of the steady-state DFT derived by Andrieux and Gaspard in Reference [35]
to finite times.

Example

A spanning tree for the network in Figure 1 is depicted in Figure 3a. The cycles defined by the
corresponding chords are depicted in Figure 3b. Algebraically, these cycles are represented as

—4 +2 +5

+1 1 0 0

+2 0 1 0

+3 -1 -1 0
€= wal =1 0 0 | 9

+5 0 0 1

+6 1 0 -1

where the negative entries must be regarded as transitions performed in the backward direction.
The corresponding affinities, which determine the nonconservative contribution (55), hence read:

Wi 1WLeW_4W_ WyowW_ WisW_
A_4:11'1 +14+6 4 3 A+2:h’1 +2 3 +5 6

, ,and Ays =1In . (60)
W 1W—_pW4W43 W_2Wy3 W_5W-t6
The affinities corresponding to the cycles taken in the backward direction follow from A_, = —A,.
Regarding the expression of the cocycle fluxes, it can be checked that they are equal to
(T) = (i) = (a) o (Tra) = (a) = (-2) = () {Tve) = {ve) = {s) = ma)r )

(T1) = (1) = Gwa), (T-8) = (-3) = (42) = (a), (T-6) = (o) = (j45) = (sa)

by expanding Equation (57) into Equation (10).

11
A
+6
01
10 - - 74 11 11 11
\ *3 +5‘ \'4 /+5 6
/ /
+1 (74)\‘91 ¢ o/ +5) o1
10 3 10 JrS 10*
i //
00° \oo‘ ofy‘/ 00
(a) Spanning Tree (b) Cycles

Figure 3. (a) Spanning tree, and (b) corresponding cycles for the network in Figure 1.
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6. Stochastic Thermodynamics

The results obtained until this point are mathematical and have a priori no connection to physics.
We now specify the conditions under which a Markov jump process describes the dynamics of an
open physical system in contact with multiple reservoirs. This will enable us to introduce physically
motivated decompositions and derive DFTs with a clear thermodynamic interpretation.

Each system state, 7, is now characterized by given values of some system quantities, { X },
forx =1, ..., Ny, which include the internal energy, E;;, and possibly additional ones (see Table 2 for
some examples). These must be regarded as globally conserved quantities, as their change in the system
is always balanced by an opposite change in the reservoirs. When labeling the reservoirs with { r },
forr =1,...,Ny, the balance equation for X* along the transition e can be written as:

DY = 5X5 + Y,0X") (62)
Table 2. Examples of system quantity—intensive field conjugated pairs in the entropy representation.

Br := 1/T, denotes the inverse temperature of the reservoir. Since charges are carried by particles,
the conjugated pair (Qy, —B+V;) is usually embedded in (N, — Bty ).

System Quantity X*  Intensive Field f, ,)

energy, E, inverse temperature, 3,
particles number, N,  chemical potential, — B,
charge, Qy electric potential, —f,V;
displacement, Xj, generic force, — Bk,
angle, 0, torque, —B; Ty

The lhs is the overall change in the system, whereas 6; X} denotes the changes due to internal
transformations (e.g., chemical reactions [36,37]), and (SXék’r) quantifies the amount of X* supplied by
the reservoir r to the system along the transition e. For the purposes of our discussion, we introduce
the index y = (x, r)—i.e., the conserved quantity X* exchanged with the reservoir —and define the matrix
5X whose entries are { X7 = (5X£K’r) }. All indices used in the following discussion are summarized
in Table 3. Microscopic reversibility requires that X7 = —4X” ,. Note that more than one reservoir

may be involved in each transition (see Figure 4).

p n
reservoi_rs [
i 1| e
B N e '
I
5 l ﬂm»/ /
- system
ks | Bs
r____15X§E’2) | us
| M2 ' |

Figure 4. Pictorial representation of a system coupled to several reservoirs. Transitions may involve

more than one reservoir and exchange between reservoirs. Work reservoirs are also taken into account.
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Table 3. Summary of the indices used throughout the paper and the object they label.

Index Label for Number
n state Nn
e transition Ne
K system quantity Ny
r reservoir Ny
y=(x,7) conserved quantity X* from reservoir r Ny
A conservation law and conserved quantity N
Yp “potential” y N,

Y “force” y Ny — Ny

In addition to the trivial set of conserved quantities { X* }, the system may be characterized by
some additional ones, which are specific for each system. We now sketch the systematic procedure to
identify these quantities and the corresponding conservation laws [14,38]. Algebraically, conservation
laws can be identified as a maximal set of independent vectors in the y-space, { yZ8 forA=1, ..., Ny,
such that

(3 6X5C¢ =0, forallcycles, ie., foralle € 7. (63)

Indeed, the quantities { %\ 5Xg },forA =1, ..., N, are combinations of exchange contributions
{6X7},fory =1, ..., N), which vanish along all cycles. They must therefore identify some state
variables, { A },forA =1, ..., Ny, in the same way curl-free vector fields are conservative and
identify scalar potentials:

L)D} = )XY =¥, {):KZ(AK/,) 5X§"">} . (64)

This equation can be regarded as the balance equation for the conserved quantities. In the absence
of internal transformations, ; X}, trivial conservation laws correspond to é; = K’(‘K,,r) = J1,, so that the
balance Equations (62) are recovered. Notice that each L* is defined up to a reference value.

Each reservoir r is characterized by a set of entropic intensive fields conjugated to the exchange
of the system quantities { X* }, { f(,) } forx =1, ..., Ni (e.g., [39] § 2-3). A short list of X"~f(, .
conjugated pairs is reported in Table 2. The thermodynamic consistency of the stochastic dynamics is
ensured by the local detailed balance,

We

In = —f,6X¢ + SyD!. (65)

W—e

It relates the log ratio of the forward and backward transition rates to the entropy change in
the reservoirs resulting from the transfer of system quantities during that transition. This entropy
change is evaluated using equilibrium thermodynamics (in the reservoirs), and reads { S} = — fy(SX;Z }.
The second term on the rhs is the internal entropy change occurring during the transition, as S,
quantifies the internal entropy of the state n. This term can be seen as the outcome of a coarse-graining
procedure over a finer description in which multiple states with the same system quantities are
collected in one single n [40]. Using Equation (65), the affinities, Equation (11), can be rewritten as:

Ae =Ty [~Efixn0X| + [8u — npa] DY (66)

This relation shows that the affinity is the entropy change in all reservoirs plus the system entropy
change. In other words, while Equation (64) characterizes the balance of the conserved quantities
along the transitions, Equation (66) characterizes the corresponding lack of balance for entropy, namely
the second law.

As for the transition rates, the changes in time of the internal entropy S, the conserved quantities
{ X*} (hence { 6X }), and their conjugated fields { f, }, are all encoded in the protocol function 7.
Physically, this modeling describes the two possible ways of controlling a system: either through
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{ X*} or S which characterize the system states, or through { f, } which characterize the properties of
the reservoirs.

Example

We illustrate the role of system-specific conservation laws by considering the double quantum
dot (QD) depicted in Figure 5a [41-43], whose network of transition and energy landscape are drawn
in Figures 1 and 5b, respectively. Electrons can enter empty dots from the reservoirs, but cannot jump
from one dot to the other. When the two dots are occupied, an interaction energy, u, arises. Energy, E;,
and total number of electrons, Nj;, characterize each state of the system:

Eqw =0, Eip=¢€u, Epn=¢€q, Ei1=e€uteqtu,

(67)
N =0, Np=1, Npmp=1, N;=2
where the first entry in n refers to the occupancy of the upper dot, and the second to the lower.
The entries of the matrix 6 X for the forward transitions are:
+1 +2 43 +4 +5 +6
(E1) € 0 0 eyu+u 0 0
(N,1) 1 0 O 1 0 0
(E2) 0 e O 0 eqtu 0
0X = 68
(N,2) 0 1 0 0 1 0 (68)
(E3) 0 0 €4 0 0 €q+u
(N,3) 0 0 1 0 0 1
(see Figure 1), whereas the entries related to backward transition follow from XY . = —6XY.

For instance, along the first transition the system gains €, energy and 1 electron from the reservoir 1.
The vector of entropic intensive fields is given by

(E1) (N1 (E2) (N2) (E3) (N3

f= (/31 =B B2 —Bapz Bz —Bsys ) (69)

11 €Eqtetu

——>
>

=
——o0
—L
1 j—_l_
T R
(@)Y

N - 01 XA €4
1 i 10 — €,
2 i ——————— o] e <1 B T -
_______________ . p !
¢ D dr [ +142 43
_ [ 0 00 | I
(a) Scheme (b) Energy Landscape

Figure 5. Double coupled quantum dot (QD) in contact with three reservoirs. Transitions related to the
first reservoir are depicted using solid lines, while those related to the second and third ones using
dashed and dotted lines, respectively. The graphical rule was applied to the network of transitions in
Figure 1. (a) Pictorial representation of the system. The upper dot u is in contact with the first reservoir,
while the lower dot d with the second and third reservoirs. Energy and electrons are exchanged, but
the dots cannot host more than one electron. (b) Energy landscape of the dot. When both dots are
occupied, 11, a repulsive energy u adds to the occupied dots energies, €, and e4.
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Since the QDs and the electrons have no internal entropy, S, = 0 for all n, the local detailed balance
property, Equation (65), can be easily recovered from the product — f6X. From a stochastic dynamics
perspective, this property arises when considering fermionic transition rates, namely w, = T.(1 +
exp{fy6X¢})' and w_, = T.exp{f,0X, }(1 + exp{f,6X7})~! for electrons entering and leaving
the dot.

A maximal set of independent vectors in y-space satisfying Equation (63) is composed of

(E,l) (N,]) (E,Z) (N,Z) (E,3) (N,3)
oF — ( 1 o 1 0 1 0 )
(E,]) (N,]) (E,Z) (N,Z) (E,3) (N,3)

3“:(010000), 70

(E,l) (N,l) (E,Z) (N,Z) (E,3) (N,3)
ol — ( o o o0 1 0 1 )

The first vector identifies the energy state variable, Ey;:

+1 42 43 +4 +5 +6
55X = (eu €4 €4 €utUu €eqtu ed—i—u)E{EnD?}. (71)

The other two instead give the occupancy of the upper and lower dots, NY and N¢:

+1 +2 43 +4 45 +6
095X = ( 1 0 0 1 0 0 )E{N;;D;‘},
(72)
+1 42 43 +4 45 46
045X = ( 0 1 1 0 1 1 )E{N;jD;‘}.

A posteriori, we see that these conservation laws arise from the fact that no electron transfer from
one dot to the other is allowed. The total occupancy of the system, N, is recovered from the sum of
the last two vectors.

Now that a nonequilibrium thermodynamics has been built on top of the Markov jump process,
we can proceed by considering two physical relevant pref.

7. System—Reservoirs Decomposition

We start by considering a microcanonical PMF as reference:
Pt = P = exp {Sy = Simc}, (73)

where
Smc =InY, exp Sy (74)

is the Boltzmann’s equilibrium entropy. With this choice, the reference affinities become sums of entropy
changes in the reservoirs
ARt = 6S) = — f,6XY, (75)

and hence the nonconservative contribution becomes the rate of entropy change in all reservoirs

(Zne) = (Sr) = —fy0XL(j°). (76)
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For the conservative contribution, one instead obtains:
<26> =[Sy — Inpa] DZ(j). (77)

Using Equation (17), it can be rewritten in terms of the Gibbs—Shannon entropy,

(S) = Lupn [Sn —Inpy] (78)
and the Boltzmann entropy. Indeed,
D(pllp™) = Sme = (S) (79)
and
<Zd> = d¢Sme — LnPndiSn, (80)
so that
(Zc) = di(S) = LypndiSn. (81)

The conservative contribution thus contains changes in the system entropy caused by the
dynamics and the external drive.

The EP decomposition (14) with Equations (76) and (81) is thus the well-known system—reservoir
decomposition (i.e., the traditional entropy balance). Since the same decomposition holds at the trajectory
level, if the initial PMF of the forward and backward processes are microcanonical, the DFT and IFT
hold by applying Equations (32) and (34). When the driving does not affect the internal entropy of
the system states { S, }, the DFT and IFT hold for the reservoir entropy alone. Finally, the fluctuating
quantity appearing in the DFT, ¥4 + Xp, can be interpreted as the EP of the extended process in which,
at time ¢, the driving is stopped, all temperatures are raised to infinity, f; — 0, and the system is
allowed to relax to equilibrium—the initial PMF of the backward process.

8. Conservative-Nonconservative Decomposition

We now turn to a reference PMF which accounts for conservation laws: the generalized Gibbs PMF.
To characterize this PMFs, we observe that since { £} } are linearly independent (otherwise we
would have linearly dependent conserved quantities), one can always identify a set of y’s, denoted by
{yp }, such that the matrix whose rows are { E;\P },forA =1, ..., N),is nonsingular. We denote by

{#P }for A =1, ..., Ny, the columns of the inverse matrix. All other y’s are denoted by { y; }. Using
the splitting { yp }—{ y¢ } and the properties of { EQP }, in combination with the balance equation for
conserved quantities, Equation (64), the local detailed balance (65) can be decomposed as

We

In " = Fy 0X¥ + [Sy — BALY| DI, (82)

W—e

where
Fy = fyp by (83)

are the system-specific intensive fields conjugated to the conserved quantities, and
A
Fye = Fxly, — fy, (84)

are differences of intensive fields called nonconservative fundamental forces. Indeed, these nonconservative
forces are responsible for breaking detailed balance. When they all vanish, 7, = 0 for all y, the system
is indeed detailed balanced and the PMF
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p%g = exp {Sn — FAL;} — dDgg}, (85)

with ®@g; := In}y, exp {S, — F;\L,’}}, satisfies the detailed balance property (9). The potential
corresponding to Equation (85), §8, is minus the Massieu potential which is constructed by using
all conservation laws (e.g. [39] §§ 5-4 and 19-1, [44] § 3.13). Choosing the PMF (85) as a reference,
pref = pB8, the reference affinity straightforwardly ensues from Equation (82),

At = A% = F,oxY". (86)
Hence,
<>:nC> = fyf<1yf>/ (87)
where
(1¥) = 6X7(j°) (88)

are the fundamental currents conjugated to the forces. For the conservative contribution, one obtains
(£) = [Su = FaLl —Inpy| DI (). (89)
When written as in Equation (17), its two contributions are:

D(p||p88) = @gg — Lypu [Sn — Falsy —Inpal, (90)

which relates the equilibrium Massieu potential to its averaged nonequilibrium counterpart; and
(L4} = digg — Tupads [Sn — Ly —Inpa), 1)

which quantifies the dissipation due to external manipulations of { S, }, the fields { F, }, and the
conserved quantities { L* }. We emphasize that since 3% encompasses all conserved quantities, (X.)
captures all dissipative contributions due to conservative forces. Hence, (X} consists of a minimal
number, Ny — N,, of purely nonconservative contributions. The EP decomposition Equation (14)
with Equations (87) and (89) is the conservative—nonconservative decomposition of the EP obtained in
Reference [14].

The conservative-nonconservative splitting of the EP can also be made at the trajectory level.
Hence, if the initial condition of the forward and backward process is of the form (85), the DFT and
IFT given by Equations (32) and (34) hold.

Here too, the fluctuating quantity appearing in the DFT, 24 + Xy, can be interpreted as the EP
of an extended process including relaxation, but for nonisothermal processes the procedure can be
significantly more involved. The details of this discussion can be found in Reference [14].

Example

We now provide the expressions of ¢f and A for the double QD discussed in the previous
example (Figure 5). Therefore, we split the set {y } in {yp } = {(E,1),(N,1),(N,2) } and {y;} =
{(E,2),(E,3),(N,3) }, which is valid since the matrix whose entries are { KyAP } is an identity matrix
(see Equation (70)). The fields conjugated with the complete set of conservation laws, Equation (83), are:

Fg = B1, F. = —Bip1, and Fq = —Bopa, (92)

from which the reference potential of the state n, Equation (85), follows

B8 = B8 — [—ﬁlEn + B NY + ﬁzyzN,ﬂ . 93)
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Instead, the fundamental forces, Equation (84), are given by

Fez) = B1— B2, F(e3) = B1— Pz, and F(Ng3) = Btz — P2z, (94)

from which the reference affinities follow (Equation (86)). The first two forces drive the energy flowing
into the first reservoir from the second and third ones, respectively, whereas the third force drives the
electrons flowing from the third to the second reservoir.

9. Conclusions

In this paper, we presented a general method to construct DFTs for Markov jump processes.
The strategy to identify the fluctuating quantities which satisfy the DFT consists of splitting the EP
in two by making use of a reference PMF. The choice of the reference PMF is arbitrary for IFTs, but
must solely depend on the driving protocol for DFTs. Out of the infinite number of FTs that can
be considered, we tried to select those that have interesting mathematical properties or that can be
expressed in terms of physical quantities when the Markov jump process is complemented with a
thermodynamic structure. Table 1 summarizes the terms of to the EP for each of our choices. We also
emphasized that the EP always satisfies an IFT but generically not a DFT. Connections to information
theory were also made by formulating a generalized Landauer principle.

We do not claim to have been exhaustive, and many other reference PMFs may be interesting.
We can mention at least two more interesting cases. By considering the steady-state PMF which is
obtained when removing some edges from the graph (but not all chords as in Section 5), the marginal
thermodynamic theory presented in References [45,46] emerges. One can also consider a reference
PMF in between the microcanonical PMF, which takes no conserved quantity into account, and the
generalized Gibbs one, which takes them all into account. This happens for instance when only the
obvious conserved quantities are accounted for, { X* }, as discussed in Reference [47]. In this case,
one uses the fields of a given reservoir to define the reference equilibrium potential

;lef = — [Sn — ZKf(Kfl)éxﬂ !

where @ is determined by the normalization. The number of nonconservative forces appearing in
<ch> will be Ny — Ni. However, in case additional conservation laws are present (N > Ny), some of
these forces are dependent on others and their number will be larger than the minimal, Ny — Nj.
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Appendix A. Moment Generating Function Dynamics and Proofs of the FTs

We describe the moment generating function (MGF) technique that we use to prove the finite
time DFTs (32) [14].

Appendix A.1. MGF Dynamics

Let P;(n,00) be the joint probability of observing a trajectory ending in the state n along which
the change of a generic observable, O, is 0. The changes of O along edges are denoted as { 5O, },
whereas the changes due to time-dependent driving while in the state 1 as O,. In order to write an
evolution equation for this probability, let us expand it as:

Py ar(1,60) = Y wed,y () P (o(e), 30 — 60, — Oo@dt) dt + [1 - Zewgénm(e)dt] Pi(n,00 — Oudt). (A1)

The first term accounts for transitions leading to the state n and completing the change of O,
whereas the second describes the probability of completing the change of O while dwelling in the
state  (and not leaving it). When keeping only the linear term in d¢ and performing the limit d¢ — 0,
we get:

dtPt(Vl, 50) = Zeweén,t(g) Pt (0(6), 60 — 503) — Eewﬁén,a(e) Pt(n, 50) — Ona(gopt(n, 50) (AZ)

Rather than working with this differential equation, it is much more convenient to deal with the
bilateral Laplace transform of p;(n,0), that is, the MGF up to a sign,

Ant(q) == [,d 60 exp {—q60} Pr(n,50), (A3)
since its evolution equation is akin to an ME, Equation (2):

deAnt(q) = EonWam,t(9) Am,t(q), (A4)

where the biased rate matrix reads
WHM,f(q) = YWe {exp {_qéoﬁ’} 571,{(6)6171,0(8) - 5n,m5m,o(5)} —q Oﬂ(sﬂ,m' (A5)

The field q is usually referred to as a counting field. This equation is obtained by combining
Equations (A2) and (A3), and its initial condition must be A, o(60) = p,(0). Note that Equation (A4)
is not an ME, since }_,,A;; +(6O) is not conserved.

For later convenience, we recast Equation (A4) into a bracket notation:

de [As(g)) = Wi(q) [Ae(q)), (A6)

and we proceed to prove a preliminary result. A formal solution of Equation (A4) is |A¢(q)) =
U;(gq) |P(0)), where the time-evolution operator reads U;(q) = T exp fot dt We(q), T+ being the
time-ordering operator. We clearly have d:;(q) = W;(q) Us(q). Let us now consider the following
transformed evolution operator:

U (q) := X Us(q) Xo, (A7)

X} being a generic time-dependent invertible operator. Its dynamics is ruled by the following
biased stochastic dynamics:

dilli(q) = deX, Uy (9) Xo + X, diti(9) X = {thlet + Xlet(q)Xt}at(Q) = Wi(q) Ur(q), (A8)
which allows us to conclude that the transformed time-evolution operator is given by

U(q) = T+exp [ydt We(q). (A9)
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From Equations (A7), (A8), and (A9), we deduce that
XU (q) X = Ty exp [ydt [dTX;b'vT + X;lwf(q)xf} . (A10)

Appendix A.2. Proof of the DFT

To prove the DFT (32), we briefly recall its two assumptions: (i) the reference PMF depends on
time solely via the protocol function; (ii) for both the forward and backward processes, the system is
initially prepared in a reference PMF. Let P; (11, L4, £nc) be the joint probability of observing a trajectory

ending in the state n along which the driving contribution is X4, while the nonconservative one is Xp_.

The above probabilities, one for each 1, are stacked in the ket |P;(X4, Xnc)). The time evolution of the
related MGF,

|A+(9d, qnc)) = ffooodz'ddz'nc exp {—q4Zd — qncZnc} [Pr(Zg, Znc)) (A11)
is ruled by the biased stochastic dynamics, Equation (A4),
d [At(94,Gnc)) = Wi(qa, qnc) [A+(qd, Gnc)) (A12)

where the entries of the biased generator are given by

Wi (4, Gne) = Zgwe{ exp {—qncAEEf} 5n,t(e)5m,o(e) — 5”,m5m,a(e)} — gqdePmdn,m- (A13)

Using the definition of reference affinity, Equation (13), one can see that the rate matrix satisfies
the following symmetry:

W (@d,Gne) = Py Wi(34,1 = Gnc) P, (A14)

where the entries of P are given by
an,t = exp {— ;;ff(ﬂt)} 5n,mz (A15)
and “ T ” denotes the transposition. Additionally, the initial condition is given by the reference PMF:

|A0(Gd, Gnc)) = |pET) = Po|1). (A16)

|1) denotes the vector in the state space whose entries are all equal to one.
Using the formal solution of Equation (A12), the MGF of P;(X4, Xnc) can be written as:

At(qd,Gne) = (UA(qd,9nc)) = (U (94, Gnc)Pol1) = <1|7Dt73t_l Ut (4, Gnc) Pol1), (A17)

where U; (g4, gnc) is the related time-evolution operator. Using the relation in Equation (A10), the last
term can be recast into

At(a nc) = (PEMITy exp { fjdt [dePr ' Pr+ P Welqa o) o) 1), (A19)

Since d P Ip. = diag {dT ﬁef }, the first term in square brackets can be added to the diagonal
entries of the second term, thus giving

At nc) = (P T4 exp { fodt | Pe! Welga = 1,gn0) Px] | 11). (A19)

The symmetry (A14) allows us to recast the latter into

At(da,ne) = (PEfIT 4 exp { JydT W] (g0 =11 =) } 1) (A20)
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The crucial step comes as we time-reverse the integration variable: T — t — 7. Accordingly, the
time-ordering operator, T, becomes an anti-time-ordering one, T_, while the diagonal entries of the
biased generator become

Winm,t—7(9d, Gnc) = —LeWe (7Tt—7) 5m,a(e) — 44 dt—rlpiﬁf(n’t—l')

(A21)
= _Zewe(ﬂ;{) 5m,o(e) + 44 dTlpil;ff(ﬂi)/

from which we conclude that

Wim,t—(9d, Gnc) = W;Im,r(—Qd/ Gnc)- (A22)

Crucially, the assumption that ¥"*f depends on time via 7r; ensures that Wi (gq,qnc) can

be regarded as the biased generator of the dynamics subject to the time-reversed protocol

(i.e., the dynamics of the backward process). If we considered an arbitrary p™f (i.e., the forward process
Yy p Y Pn p

would start from an arbitrary PMF), then W;r (44, gnc) would be the rate matrix of the time-reversed
stochastic dynamics:

0= Zm [(snmdtfr - an(ntfl')] Pm = Zm [*5nmdr - an(nj;)} Pm, (AZS)

which is unphysical. Equation (A20) thus becomes

re. T
At(a,0ne) = (PET-exp { fydt Wi (1=g4,1—gnc) } 11). (A24)

Upon a global transposition, we can write

At(dasn) = (U4 exp { [dT WE (1= g0, 1= gnc) | [5), (A25)

where we also used the relationship between transposition and time-ordering

T (Mmal) = (T-1m4:) ", (A26)

in which Ay is a generic operator. From the last expression, we readily obtain the symmetry that we
are looking for:
At(qa,qne) = Af (1= qa,1 = Gnc) (A27)

where AI (94, Gnc) is the MGF of P;r (X4, Znc)- Indeed, its inverse Laplace transform gives the DFT in
Equation (32).

Appendix A.3. Proof of the DFT for the Sum of Driving and Nonconservative EP

Let us define X5 := X4 + Xy as the sum of the driving and nonconservative EP contributions.
A straightforward calculation leads from (32) to the DFT for X5, Equation (33):

Pi(%s) = [dEqdEnc Pi(Zq, Zne) 6 (Bs — Zq — Zne) = [dZq Pt (Zg, Zs — Zg)

t + (A28)
=expXs [dEgq P/ (—Xq,Zg — Xs) = P} (—Zs) exp Zs.

Appendix A.4. Proof of the IFT

We now prove the IFT (34) using the MGF technique developed in Reference [12]. We have already
mentioned that the dynamics (A12) does not describe a stochastic process, since the normalization is
not preserved. However, for 44 = gnc = 1, the biased generator (A13) can be written as:

1

Wim(1,1) = [Zeweprae(fe) {5n,a(e)(sm,t(6) - 5”/m5m,o(e)} + dfpfqefén,m} F/ (A29)
m
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from which it readily follows that
de [p) = W(1,1) [p) (A30)

viz. pref is the solution of the biased dynamics (A12) for gg = gnc = 1. The normalization condition
thus demands that

1= (1|A¢(1,1)) = ffooodzddznc exp {—2Zg — Znc} (1|P(Zg, Znc)) = (exp{—Zgq — Znc}), (A31)

ref

which is the IFT in Equation (34). Note that we do not assume any specific property for py
this context.

Appendix B. Alternative Proofs of the DFT

We here show two alternative proofs of the DFT (32) which rely on the involution
property (37). For the nonadiabatic contribution, this property can be proved as follows. By time-reversing
Equation (27), T — t — T, we obtain

e [ne; 7] fo dt A% () j°( fo dr A () jo(t — 7). (A32)

Since AIf is solely determined by the state of protocol at each instant of time, the reference
affinities correspond to those of the backward process, A™f(7r;_;) = A (7}). Using the property that
j°(t — 1) = jT~¢(1), see Equation (36), and A%f = Aref we finally obtain

Snclng ] = — [ydt AR () (1) = —Znc[nl; 7l (A33)

Concerning the driving contribution, Equation (30), we obtain

t
Salns; i) = / dr [deyif(mo)]| = [ar [~deyif(mo)] (A34)
n=nr 0 n=nt
It is here again crucial that "¢ depends solely on the protocol value, so that ¢ (7r;_.) = pref(rt).
Therefore,
Sl ) = / dr [deyief(eh)]| | = —Sqlnfi ], (A35)

Appendix B.1. Alternative Proof 1

Inspired by Reference [16], we here use an alternative approach to derive the symmetry of the
MGEF which underlies our DFT, Equation (A27). In terms of trajectory probabilities, the MGF (A11) can
be written as:

At(Gd, nc) = [ DneBns; 1] il (710) exp {—qaZalne; 71t — GneZne[me; 7]} - (A36)

Using the relation between the EP contributions and the stochastic trajectories in forward and
backward processes, Equation (35), we can recast the MGF into

At(qd, ne) f On P "t/ ”t] P;rftf(”t) exp {(1—qq) Zalns; 7te] + (1 — gnc) Znc[ns; 7]}, (A37)

so that using the property of involution, Equation (37), we get

At(qd,9nc) f@”tq3 "tr ”t] Pfaetf(”t) exp {_ (1-4q4) Zd[";rr' 77?] — (1= gnc) ch{";r} ”;r]} . (A38)
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Hence, changing and renaming the integration variable, n; — n}, and using the fact that the
Jacobian determinant of this transformation is one, we finally get

At(arine) = [ Oy Bl f] piet () exp { = (1= qa) Zalms; 7] = (1= nc) Enclns; 7f] |
:At (1*97d/1*4nc)/

(A39)

which proves Equation (A27). With respect to the previous proof, this one is based on Equation (35) and
on the property of involution, which follow from the specifications of forward and backward processes.

Appendix B.2. Alternative Proof 2
The joint probability distribution P;(X4,Xnc) written in terms of trajectory probabilities,
Equation (22), reads
Pi(S4,Ene) = [ O Blns; 7] py (710) 8 (Zalme; 71t] — Za) 6 (e 7] — Ene) - (A40)
Using Equation (35) and then the involution property (37), we finally obtain the DFT (32):

Pi(S4,Znc) = exp {Zq + Enc} [ Dny Blnf; 7f] picf(710) 6 (Za[me; 7] — Za) 8 (Tnelne; 7] — Tnc)
= exp {Zq + Znc} [ D Blnf; 7l it () 6 (—Talnf; ) = Ta ) 6 (~Zaclnf; ) —Tnc)  (Ad1)
=exp{Zq + Znc} Pt (=24, —Zne)-

Appendix C. Adiabatic and Nonadiabatic Contributions

We now prove that both the adiabatic and nonadiabatic EP rates are non-negative. Concerning
the adiabatic contribution, using the log-inequality, —Inx > 1 — x, one obtains

_ WePyie ]
SS
WePo(e)

=) _Diwepyy, [—p} =

Potey e pr

Xa) = Zwepo(e) wapo

ePo( e e

= Z [wepa - epo }

(A42)

The last equality follows from the definition of steady-state PMF, Equation (43). For the
nonadiabatic, instead, using the same inequality and similar algebraic steps, one obtains:

Zna Zwepa )h’l pO(@)PO > Zwepo e) [1 o o(e) p:;—e)]
po( )p (- ) po(e)po(,e) (A43)
Po
- ; [wePiS(E) - w—ePis(—e)} pi{:; =0

Appendix D. Proofs of the DFTs for the Adiabatic and Driving EP Contributions

We here prove the DFTs in Equations (46) and (47) using the same MGF technique described in
Appendix A.

Appendix D.1. Proof of the DFT for the Adiabatic Contribution

The biased generator ruling the sole adiabatic term reads:

Wim (qa) = Y We {exp {_qugS} 5n,t(3)5m,o(e) - §n,m5m,o(6)} : (A44)
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It satisfies the following symmetry:

W(ga) = W(1 - gqa), (A45)

where W(q,) is the biased generator of the fictitious dynamics ruled by the rates in Equation (45).

Crucially, p? is also the steady state of this dynamics:

ZeDn we‘pa (e) — Z‘fm ZEZUE { n,t e)5m o(e) — 5”,m5m,o(e)} ans =0, forall n (A46)

This fact guarantees that the escape rates of the fictitious dynamics coincide with those of the
original ones:
Zewe§n m&m 0 Eew€§n ﬂlém 0( ) 7 fOI‘ all n. (A47)

We can now proceed to prove the FT (46):

A(ga) = (UA(32)) = (1 (q0)lp) = (1T exp { fydT We(ga) } [p) As8)
= (1T exp { [d We(1 - ) } Ip).

In the last equality, we made use of the symmetry in Equation (A45). Following the same
mathematical steps backward, we readily get

At(qa) = Ar(1 = qa), (A49)
from which the DFT in Equation (46) ensues.

Appendix D.2. Proof of the DFT for the Driving Contribution

Concerning the DFT of the driving term, Equation (47), the generator of the related biased
dynamics reads:

an(Qd) =D We {5n,t(e)5m,o(e) - 5Vl,m5m,o(e)} - Qddtwfrf%m/ (A50)
and it satisfies the following symmetry:

W (@d,Gne) = P Wi(34,1 = Gnc) P, (A51)

where P; := diag {exp —¢5; }. The finite-time DFT ensues when following the mathematical steps of
the main proof and using Equation (A51) at the step at Equation (A20).
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Part II

CHEMICALLY REACTING SYSTEMS FAR FROM
EQUILIBRIUM






PHENOMENOLOGICAL
DESCRIPTION

We now specialize the phenomenological description discussed in Ch. 1
to chemical reactions networks. As for the previous part, this description
provides the theoretical structure underlying the thermodynamics of any
chemical reaction networks. This structure will indeed be recovered in the
stochastic and deterministic dynamics introduced in the following chapters.

The plan of the chapter is as follows. In Sec. 3.1, chemical reaction net-
works are introduced, while in Sec. 3.2, we present a black-box thermody-
namic description. Broken conservation laws are introduced in Sec. 3.3,
which contains the main result of this chapter. We conclude with an exam-
ple, Sec. 3.4.

3.1 CHEMICAL REACTION NETWORKS

We consider an isobaric and isothermal dilute solution of reacting chem-
ical species, which we label by o and whose abundances are denoted by
{N©}. The chemical reaction network is described by

Zsipo%’ Y 89,0, (86)
o o

where the stoichiometric coefficients S, and S%, quantify the amount of
species participating in each reaction. Notice that all reactions are reversible,

and for each pair \% , +p (resp. —p) denotes the forward (resp. backward)
reaction. Among all species, we distinguish the internal ones, x, from the
external ones, also called chemostatted, y: o = {x,y}. The abundances of the

internal species can only change due to reactions, and hence their balance
equations read

dN* = &N* =} Sy déE,, (87)
where
Sg:=5,-59, (88)

denotes the stoichiometric matrix of the chemical reaction network. Crucially,
5 encodes the coupling between species and reactions, and hence the topo-
logical properties of the chemical reaction network. The extent in which
each reaction occurs is quantified by the extents of reaction {d&, }. In con-
trast to x, each chemostatted species y is exchanged with a chemical reservoir,
called chemostat, and the balance equations for their abundances read

dNY = diNy + drNy = Zpsg d&p + drNy ’ (89)

where { d;NVY } quantify the changes due to particle exchanges. We denote
by { uy } the chemical potentials of the reservoirs, i.e. the energetic intensive
fields conjugated to NY. Their variations due to external manipulations are
again denoted by du, = opy.
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Since the solution is isobaric and isothermal, pressure and temperature
do not change, dp; = 0T, = 0. External driving in internal energy, volume,
and particle abundances are also absent, U = 0V = 9N = 0 for all 0. The
hypothesis of diluteness guarantees that the changes of abundances do not
affect the overall volume, which is determined only by the solvent and can
be considered as almost constant, dV ~ 0.

3.2 THERMODYNAMICS

We first discuss a phenomenological nonequilibrium thermodynamic de-
scription in which only the balances of energy, volume and chemical abun-
dance are taken into account. Therefore, by combining the balances of en-
ergy and volume, the first law, Eq. (13), can be rewritten as

dH = dQ + d\/Vchem ’ (90)
where
H=U+pV (91)

is the system enthalpy, and

dWehem = Zy Wy d.NY (92)

is the chemical work, which quantifies the free energy exchanged with the
chemostats. Concerning the second law, Eq. (16), we obtain

dr = _f’rdG + Brdwchem ’ (93)
where
G=H-T.8 (94)

is the Gibbs potential. By combining these laws with the balances of chemostat-
ted species abundances, we obtain

d [H_Zy HyNy} ==X (Zy “ysg) d&p — 2 yOuyNY +d:Q (95)
dr = —fd {G - ZyHyNy} —BL, (Zy ”ysg) dép — By ouyN" > 0.
(96)

We recognize these expressions as special cases of Eqs. (43) and (45), respec-
tively, in which the nonconservative contributions are absent. This is clearly
a consequence of considering only one reservoir per chemostatted species,
as well as only one thermal and volumetric reservoir. Notice the presence
of the terms involving internal reactions, which account for the energy and
entropy changes as these occur.

For the system to be at equilibrium, the driving must be stopped oy, = 0
for all y, and all terms conjugated to the extents of reaction must vanish
independently, 3, ny, S = 0 for all p. We notice that at this level of descrip-
tion, the internal conditions for equilibrium is specified by N, conditions.
As previously done for generic thermodynamic systems, we will reduce the
number of this conditions using conservation laws.
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3.3 SYSTEM-SPECIFIC THERMODYNAMICS

We now identify the broken conservation laws and derive a system-specific
nonequilibrium thermodynamic description for chemical reaction networks,
like in Sec. 1.5.

For chemical reaction network, broken conservation laws are defined as a
maximal set of independent vectors, {Eg‘ }for A =1,...N,, satisfying

Zy (’,13 f{; d:N¥Y =0, for any instantaneous cyclic transformation vy, (97)
Y

see Eq. (51). The fact that d;U and d;V do not appear, follows from the fact
that we are considering thermal exchanges and volume changes as disen-
tangled from the reaction dynamics. Concerning thermal changes, we are
neglecting, for instance, relativistic effects in which chemostatted species
disintegrate into thermal energy. Concerning volume changes, we have al-
ready mentioned that since the solution is dilute, changes of abundances do
not change the volume. Therefore, the related conserved quantities follow
from

dLy = 3, dNY (98)

as for the general case, Eq. (52).

We now follow the same procedure detailed in Sec. 1.5 and decompose
the chemostatted species into potential y, {yp }, and force y, {y¢}. The first
law, Eq. (95), can be thus rewritten as

dH = 0H + Ky, d:NYf +dQ, (99)
where
H=H-— ZypuypZ}\@J\pLA (100)

is a nonequilibrium semi-grand enthalpy, and
7Y
Kyp = My — Hy, DAL, (101)

are fundamental nonconservative forces. The second law, instead, reads

4% = By |[—dG + 0% + nyxyfdrNUf} >0, (102)
where
G=H-T;8 (103)

is a nonequilibrium semi-grand Gibbs potential [1]. Semi-grand stands for the
fact that the system is open wrt a restricted set of species: the chemostatted.

Equations (99) and (102) specialize Egs. (54) and (58) to chemical reaction
networks. They are the major result of this chapter. In the entropy balance,
the conservative contribution, —3,dS, quantifies the dissipation due to over-
all chemical free energy changes in the system. In both balances, instead,

0H = *ZypallypZ)\@J\p]—A (104)

is the chemical free energy spent by the external agent to manipulate the
chemical potentials of the chemostatted species, which we called driving
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work. To fully understand the physical meaning of { Xy, d,N¥f}, for y¢ =
1,...,Ny — N, we need to observe that chemical reactions may give rise to
cyclic transformations which allow some chemostatted species to be trans-
formed into some others. In other words, chemical reactions may create
pathways between reservoirs of different external species. The stoichiom-
etry of a maximal independent set of these pathways is captured by the
coefficients multiplying the chemical potentials in Eq. (101),

1 if y =y,
vy, = — . (105)
ot {—ery\%f ifye{ypt,

where the sign determines whether the species enters (+) or leaves (-) the
system. Therefore, { Ky, d,N¥f} quantify the work spent by the reservoirs
to sustain flows of chemicals across the system. We emphasize that these
nonconservative terms can be identified solely thanks to conservation laws,
cf. Eq. (96).
At equilibrium, the chemical reaction network is nondriven duy = 0 for
all y, and all fundamental forces must vanish, which implies that
Hy, = uypzxf;fpfgf, for all ys. (106)
These Ny, conditions replace those N, > Ny, expressed for internal reac-
tions, Eq. (96). The requirement dSeq = 0 and Eq. (6) implies that

0=2y, (FLZP - “yp) TAGIdLy, (107)

which in turn constrains the chemical potentials of the yp, species in the
systems, { Hyp }, to be equal to those of the chemostats.

3.3.1  Stoichiometric Cycles and Broken Conservation Laws

The stoichiometric structure of chemical reaction networks allows to iden-
tify broken conservation laws in a way simpler than Eq. (97) [2]. We now
prove that that if and only if £, # O satisfies Eq. (97), than it exists an x-
species-space vector £y such that

2y lySE+ 2S5 =0. (108)

viz. (€x,£y) € cokerS. In order to do so, we first prove some preliminary
results.

We define stoichiometric cycle of the instantaneous cyclic transformation
v, denoted by ¢, as the p-space vectors whose entries quantify the overall
extent of reactions along v,

= i/ dé, . (109)

Let {¢y} form = 1,...,N; be a maximal set of independent stoichiomet-
ric cycles. By taking the cyclic transformations of the balance of chemical
abundances, Egs. (87) and (89), along {1 } we obtain

Zpsgcﬁ =0

ZpSgCﬁ = _i;ﬂ d:NY,

(110)
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Figure 5: Chemical reaction network taken as an example.

from which we deduce that { ¢, } is a basis of ker $*—otherwise the set { ¢, }
would not be either maximal or independent. Combining this equation with
the definition of broken conservation law, Eq. (97), the latter can be recast
into

> tyS¥ch =0, foralln. (111)
y,p

We can now proceed to prove that Eqs. (97) and (111) are equivalent to
Eq. (108).

On the one hand, if £ # 0 satisfies Eq. (97)—(111), than the vector Zy,pﬂy Sh
belongs to (ker $¥)* = coim SX. Therefore, there exists a x-species-space vec-
tor { —€y } such that

2y lySY =2 S5 (112)

which is equivalent to Eq. (108). Clearly, £« is defined up to a linear combi-
nation of vectors in coker 5*.
On the other hand, if Eq. (108) is true, then

0= €,SYch+ > 6:Sych =) ,SYch, foralln, (113)
y,p x,p Y,

as in Eq. (111).

In conclusion, since Eq. (97) and (108) are equivalent, and ¢y in Eq. (108)
is defined up to a vector in coker 5%, an independent set of broken conser-
vation laws, {£2}, for A = 1,...,N,, can be determined as a basis of the
quotient space coker S/ coker S*.

3.4 EXAMPLE

To illustrate the main results of this chapter, let us consider the enzy-
matic chemical reaction network in Fig. 5. The chemical species are parti-
tioned into internal, the enzyme complexes {E,E*,E** }, and external, the
substrates { A, B}. The stoichiometric matrix reads

+1 42 43 +4
E -1 1 =1 1

1T =1 1. (114)
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This chemical reaction network is characterized by one broken conservation
law

A B
e= (1 1), (115)

which can be intuitively understood as follows: for any given amount of
A injected along a cyclic transformation, §drNA, the same amount of B
must be expelled, § d&;NB = — § d&,N4, see Eq. (97). The related conserved
quantity L is the total amount of molecules A and B present in the chemical
reaction network, where we need to account for those present in the enzyme
complexes E* and E**, too: L = NA 4+ NB 4+ NE* 4 NE™. Indeed one can
readily check using Eq. (114) that dL = &;L +d,;L = d,;L = dNA + d,.NB.

We mention that broken conservation laws can also be identified from the

cokernel of S, as discussed in Sec. 3.3.1, and illustrated in the examples [1
and 3, pp. 113 and 115] and [1, 3, and 4, pp. 146 and 148].

By regarding the species A as yp, whereas B as ys, the system-specific

expression of the first and second law, Egs. (99) and (102), can be formulated.
The nonequilibrium semi-grand enthalpy (100) reads

H=H-—puusL, (116)

whereas the nonconservative work contribution is

K drNP = (np — pa) dNB. (117)

The latter quantifies the cost of maintaining the flow of chemical across
the network induced by the gradient of chemical potentials. The driving
work 97 as well as the nonequilibrium semi-grand Gibbs potential § readily
follow, and the overall entropy production reads

ds = B, [—dg —dual + Kp dNB] . (118)

The illustration of this decomposition for a slightly more complex chemi-

cal reaction network is discussed in Sec. [VIIL, p. 131].
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4 STOCHASTIC DESCRIPTION

In the previous chapter, we established a phenomenological thermody-
namic description of chemical reaction networks. In the following preprinted
article, we will show the connection between this description and a stochas-
tic one based on the chemical master equation [1, 2], which is crucial for
describing biochemical processes occurring at low particle numbers, like
many cellular processes. From a theoretical point of view, connecting phe-
nomenological and stochastic description shows that the laws of chemical
kinetics are consistent with thermodynamics at a very fundamental level of
description.

To provide the link between the phenomenological and stochastic descrip-
tion, we observe that timeless expression of the chemical master equation
[(11), p. 113] reads

dpn =3, [dCip(n—54p) —dC p(n) —dCip(n) +dC p(n+S1p)], (119)

where 1 is a vector counting the number of molecules of each species, pn
is the probability of observing n, and {d(4,(n) } are the extents of reaction
from each state n. The species abundances, { N°}, can be regarded as the
average numbers of molecules, which in vectorial form read N = } , npnq,
and their balance, Egs. (87) and (87), can be recovered as follows. We pre-
liminary observe that using the chemical master equation, one obtains

dN =3 ndpn =3 ;Sp) ; [dCipn) —dl o(n)]. (120)

We now distinguish those internal reactions which do not entail any exchange
of chemostatted species, { p; }, from those exchange reactions which model the
exchange of each chemostatted species with its corresponding chemostat,
{pet {p}={pitU{pi}, see Sec. [IIA, p. 112]. We thus recover Egs. (87) and
(89) when replacing

dapi = Zn [dC+Pi (n)— dC*Pi (n)] and

ENY = 3, ST, (44 pu (1) — AT, ()] o=y

in the previous equation. As for generic Markov jump processes, the con-
nection between stochastic dynamics and thermodynamics lies in the local
detailed balance property, which—in a timeless formulation—relates the ra-
tio of forward and backward stochastic extent of reaction, to the entropy
production along the reaction, i.e. the affinity. As we will show, this rela-
tion is true for elementary reactions, and—in a timeless formulation—can
be written either using the Eq. (93) (Eq. [(53) and (56), p. 117]),

dCip(n)

N s )~ P [AeSm)+ Iy hyS3] (122)

in terms of differences of Gibbs free energy along reactions { A, G(n) }, see
Eq. [(47), p. 117], or using Eq. (16) (Eq. [(75), p- 119])

dip(n)

1 [ AL
N+ S1p)

= —B,dQM + B,dQM™ + A,S(n), (123)
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where dQ™" and dQM™ are the heat exchanged with the thermal and chem-
ical reservoirs, while A,S(n) is the internal entropy change.

By introducing conservation laws, we will thus reproduce the semigrand
enthalpy and entropy balance, Eqs. (99) and (102), both at the level of
stochastic trajectories, Egs. [(101), p. 122] and [(115), p. 123], and ensem-
ble averages, Egs. [(174), p. 129] and [(175), p- 130]. We further emphasize
the importance of our formulation as we show that the driving and noncon-
servative work contributions, 0} and {JX,dN¥f}, satisfy a FT, Eq. [(156),
p- 128], in contrast to other forms of work like the chemical one, dWchem,
Eq. (92), see Sec. [VD, pp. 119—-120]. We finally specialize the nonequilibrium
Landauer principle to stochastic chemical reaction networks, Egs. [(178) and
(180), p. 130].
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Conservation Laws and Work Fluctuation Relations in Chemical Reaction Networks

Riccardo Rao and Massimiliano Esposito
Complex Systems and Statistical Mechanics, Physics and Materials Science
Research Unit, University of Luxembourg, L-1511 Luxembourg, G.D. Luxembourg
(Dated: May 20, 2018. Rev. of69f70)

We formulate a nonequilibrium thermodynamic description for open chemical reaction networks
(CRN) described by a chemical master equation. The topological properties of the CRN and its
conservation laws are shown to play a crucial role. They are used to decompose the entropy
production into a potential change and two work contributions, the first due to time dependent
changes in the externally controlled chemostats concentrations and the second due to flows maintained
across the system by nonconservative forces. These two works jointly satisfy a Jarzynski and Crooks
fluctuation theorem. In absence of work, the potential is minimized by the dynamics as the system
relaxes to equilibrium and its equilibrium value coincides with the maximum entropy principle. A
generalized Landauer’s principle also holds: the minimal work needed to create a nonequilibrium
state is the relative entropy of that state to its equilibrium value reached in absence of any work.

PACS numbers: 05.70.Ln, 87.16.Yc

I. INTRODUCTION

Nonequilibrium thermodynamic descriptions of
stochastic (bio-)chemical processes have long since been
developed. Among the first, T.L. Hill and coworkers
studied bio-catalysts as small fluctuating machines op-
erating at steady-state. They introduced the concept of
free energy transduction and analyzed how one form of
chemical work can drive another one against its sponta-
neous direction [1, 2]. The importance of decomposing
currents into network cycles (i.e. cyclic sets of tran-
sitions) was already emphasized. These results were
however limited to steady-state systems described by
linear chemical reaction networks (CRN). The stochastic
as well as the deterministic dynamics of these CRNs
is described by the same linear rate equations for, re-
spectively, probabilities or concentrations. They model
for instance conformational changes of an enzyme or
of a membrane transporter. Inspired by these seminal
works, J. Schnakenberg formulated a steady-state ther-
modynamics for generic Markov jump processes and
provided a systematic cycle decomposition for the en-
tropy production (EP) rate [3]. He considered in particu-
lar the stochastic description in terms of the Chemical
Master Equation (CME) [4, 5] of nonlinear chemical reac-
tion networks, i.e. CRNs described at the deterministic
level by nonlinear rate equations for concentrations. The
Brussels school, J. Ross and many others, focused on
the connection between the thermodynamic description
resulting from the stochastic and the deterministic dy-
namics [6—9].

With the advent of Stochastic Thermodynamics [10-
13], the focus moved to the study of fluctuations, rather
then focusing on the first two moments. Gaspard first
showed that EP fluctuations in nonlinear CRNs at steady
state satisfy a fluctuation theorem (FT) [14]. This result

was later expressed in terms of currents along Schnaken-
berg cycles [15, 16]. Fluctuations in complex chemical
dynamics such as bistability was analyzed, amongst oth-
ers, by Qian and coworkers [17-19]. A first formulation
of stochastic thermodynamics for CRNs beyond steady
state was done by Schmied] and Seifert in Ref. [20].

Despite this long history none of these descriptions
made use of the specific topology of the CRN encoded in
its stoichiometric matrix. Mathematicians know however
that the CRN topology plays an important role on its de-
terministic [21, 22] as well as stochastic dynamics [23, 24].
But the question of how it affects the thermodynamic
description was only studied recently: for deterministic
dynamics in Refs. [25, 26], while for stochastic dynamics
at steady state in [27]. In this paper we address this
question in full generality for CRNs whose dynamics is
stochastic. We will do so by presenting a formulation
of stochastic thermodynamics for CRNs which system-
atically makes use of the conservation laws. Doing so
leads to a significantly more informative thermodynamic
description. In particular, we decompose the EP into
three fundamental dissipative contributions: a newly de-
fined potential change, a driving work contribution due
to time dependent changes in the externally controlled
chemostats concentrations, and a nonconservative work
contribution due to a minimal set of flows maintained
across the system by nonconservative forces. In contrast
to the traditional chemical work given by minus the free
energy change in the chemostats, these two new work
contributions are shown to jointly satisfy a finite-time
detailed and integral FT, when the CRN is initially pre-
pared in an equilibrium state. In turn, the importance
of the potential lies in the fact it is minimized by the
relaxation dynamics towards equilibrium in absence of
the first two work contributions, i.e. when the system
is detailed-balanced. It can be seen as a Legendre trans-
form with respect to those conservation laws that are bro-
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ken by the chemostats. At equilibrium it coincides with
the potential obtained from maximizing entropy with
broken conservation laws as constrains. We also discuss
the connection of our findings to absolute irreversibil-
ity [28], to free energy transduction in nonlinear CRNs,
and to cycle decompositions of the entropy production.
Finally, we derive a nonequilibrium Landauer’s prin-
ciple for the driving and nonconservative work which
generalizes the previous ones to nondetailed-balanced
dynamics [29, 30].

Outline The paper is organized as follows. In § II
(Stochastic Dynamics and CRN Topology) we review
the stochastic description of closed and open CRNs and
introduce conservation laws and stoichiometric cycles.
In § III (Stochastic Thermodynamics) the connection
with thermodynamics is made. The stochastic reaction
rates are expressed in terms of Gibbs potentials via the
equilibrium distribution of the closed CRN. Enthalpy
and entropy balance are defined along stochastic tra-
jectories and Jarzynski-like FTs for the chemical work
are discussed. In § IV (CRN-Specific Stochastic Thermo-
dynamics) the EP is partitioned into its three contribu-
tions. In § V (Semigrand Gibbs Potential) we analyze
open detailed balanced CRNs, more specifically their
relaxation to equilibrium as chemostats are successively
introduced. In § VI (Fluctuation Theorems), finite-time
detailed FTs for the driving and nonconservative work
are derived. In § VII (Ensemble Average Rates Descrip-
tion) the ensemble averaged description is presented
and the nonequilibrium Landauer’s principle is derived.
Finally in § VIII, our results are applied on a simple
model which clarify the importance of our formulation
for free energy transduction. Throughout the paper,
our formalism is illustrated using a simple enzymatic
scheme, whereas some technical derivations are given
in appendices.

II. STOCHASTIC DYNAMICS AND CRN TOPOLOGY
A. CRNs

We consider a homogeneous, isobaric, and isothermal
ideal dilute solution made of N, chemical species, encoded
in a vector z. Their integer-valued population n changes
due to internal reactions which we label by {p;} for
Pi = :‘:1,...,:‘:N1,

vpi~zk:v_pi-z. (1)
s

In open CRNs, the population of a subset of species,
named exchanged species and denoted by y where
z = (x,y), varies also due to exchanges with external
chemostats denoted by Y. Their effect is modeled by ex-
change reactions, {pe} for pe = £1,...,£Ny, see Fig. 1,

species symbol number abundance

. X Nx TNy
internal { exchanged 'y Ny ny }n
chemostatted Y Ny Y]

TABLE 1. In the second column the symbols used for the
various species are listed. The corresponding total number of
entries and symbols used to denote their abundance are given
in the third and fourth column, respectively. The first column
summarizes the name used to refer to these species, while the
last one recalls the symbol used to collect the abundances of
the internal species. Internal species, x and y, are characterized
by low populations, n. The population of x can change only
because of reactions, whereas that of y are also exchanged
with chemostats, which are identified by Y, Eq. (1).

Environment

Chemical Network

"A4E

S

FIG. 1. Pictorial representation of an open CRN modeling an
enzymatic scheme. More details are given in Example 1

k
y Pe Y
VooV ﬁ—‘k Voo Y. (2)
—Pe

The non-negative integer-valued vectors {v, = (v§, vy}
for p € {p;} U{pe}, encode the stoichiometric coefficients of
each reaction. Note that each entry of v}, and vy, is
nonzero and equal to one only if it corresponds to the
species exchanged by p.. Note also that all reactions are
assumed elementary and reversible. The different types of
species are summarized in Tab. L
The topology of the CRN is encoded in its stoichiomet-
ric vectors,
Sp =vV_p—V,, and Sg = vzp—vg. (3)
The former quantifies the change of population induced
by a give reaction p, whereas the latter the correspond-
ing amount of chemostatted species that is exchanged.
By definition, S, = —S_, and S} = —SY ;. Collect-
ing the column vectors S, (resp. Sg) corresponding to
arbitrarily-chosen forward reactions defines the inter-
nal (resp. external) stoichiometric matrix denoted by S
(resp. §Y). It is not difficult to see that these can be



decomposed as

s=(8)= (3 ¢ "
and
S¥=(sY s¥)=(0 ). (5)

In closed CRNs all exchange reactions disappear and
the stoichiometric matrix reduces to S;.

Remark Previous works on thermodynamics of
CRNs, e.g. Refs. [20, 25, 26, 31], describe open CRNs
by assuming that the exchanged species y are so abun-
dant that they can be regarded as particle reservoirs
within the system. As a result the exchange reactions
are disregarded, y are treated as chemostatted, and the
stoichiometric matrices read

Sat =S¢, and SY, =S5.

(6)

In the closed CRNs, the stoichiometric matrix becomes
(Sas S;{h)T. As we will see, the two approach are for-
mally very similar, but the former has the advantage
of preserving the number of internal species when the
CRN is chemostatted. This makes it more suitable for a
stochastic description.

Example 1. For the open CRN in Fig. 1,
x = (EE" E™),

Y= (A, B), (7)
Y= (Ae, Be)

and
n= (TLE, Mg+, Np+*, A, nB)T (8)

Internal reactions, p; = *1,...,£4, are distinguished
from the exchange ones, pe = *a, +b. The stoichiomet-
ric matrix reads

+1 +2 +3 +4 +a +b

E /-1 1 =1 1 0 0

E* 1 -1 0 0 0 0
S=pe<| 0 0 1 —=1| 0 0 )

Al -1 0 0 1 1 0

B o 1 -1 0 0 1

and

+1 +2 +3 +4 +a +b

vy _A[0 0 0 0| =10
S_Be<0000 0o -1 ) (10)
O

Henceforth, we will use the following notation

b b;

al'=]l;ai!, a®=]];q;*, and cb = clibi,

for generic vectors a and b, and for a generic constant
c. “In a” must be read as a vector whose entries are the
logarithm of the entries of a. Finally, 1 denotes a vector
whose entries are all equal to 1.

B. Chemical Master Equation

In our stochastic description, n is treated as a fluctuat-
ing variable and all reactions are regarded as stochastic
events. The probability of finding the CRN in the state
N at time t is denoted by pn = pn(t) and its evolution
is ruled by the CME [3, 5, 32]

dipn = Zp{wfp(n“‘ Sp)pn+Sp _Wp(n)pn}

(11)
= menmpm ’
where the stochastic generator reads
Wam = 5 wp(m) {5n,m+Sp - 5n/m} L (12)

Since all reactions are assumed elementary, we consider
mass-action stochastic reaction rates

Vv Y
= kp V'VD [Y] Vp

n (13)

Wolm) n—v,)!

where {k,} denote the rate constants. The dependence on
the volume V ensures the correct scaling when taking the
large particle limit and guarantees that {k,} are the same
as in deterministic descriptions [33]. The chemostats
concentrations [Y] only appear in exchange reactions pe
and quantify the concentration of the exchanged species
in the chemostats. Hence, they are real-valued, nonfluc-
tuating, and unaffected by the occurrence of exchange
reactions. We assume that [Y] can change over time in a
way that is encoded in the driving protocol my. This may
describe for instance, the controlled injection of certain
molecules across a cell membrane. In such situations the
CRN is said to be subjected to a “driving”. In absence
of driving the CRNs is instead said to be autonomous.
Equilibrium probability distributions are of crucial impor-
tance for our discussion. They satisfy the detailed balance

property
Wo ()Pl = w_p(n+ sp)p$f1+5p , forallp,n. (14)

This means that the probability current of any reaction
p occurring from any state n vanishes. Stochastic CRNs
which admit a steady-state probability distribution satis-
fying Eq. (14) are referred to as detailed balanced. Their
stochastic thermodynamics will be analyzed in § V.

Example 2. For the CRN in Fig. 1, the transition rates
are

wip =Kkpmang, w_j =Kk jngs,

wyy =kyongs, w_p =k _ngng,

wi3 =ky3ngng, w-_3 =k _3ng~,

B _ (15)
Wig =Kypgngs, W_g =K 4ngny,
Wia = KyalAel, W_a =K_any,
Wip =Kkyp[Bel,  w_p =k pnp.
O]
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C. Stochastic Trajectories

A stochastic trajectory of duration t, n¢, is defined
as a set of reactions {p;} sequentially occurring at times
{ti} starting from ny at time to. Such trajectories can be
generated by a Stochastic Simulation Algorithm [34]. Given
the initial state, a trajectory is completely characterized
by the counter

jp(an) = Ziéppiénntié('t_ti)/ (16)

that encodes which reaction occurs (p;), from which
state it occurs (n,), and at which time (t;). If not oth-
erwise stated, the transition index i runs from i = 1
to the last transition prior to time t, N¢, and must not

be confused with the label of the internal reactions, “i
The instantaneous reaction currents

Jo(t) =2 nip(M, 1) =3 idppd(T—ti). (17)

quantify the instantaneous rate of occurrence of each
reaction irrespectively of the state from which it occurs.
Additionally, we denote the population of the CRN at
time T € [tp =0, t] by n..

The probability of a trajectory reads

ti

N tit
Plne] = H exp {J ] dTprp(nT,T)}
i=0

N
X pri (nti/ti)/ (18)
i=1

where tn, 41 1=t is the final time of the trajectory. The
first term accounts for the probability that the system
spends {ti; 1 — ti} time in the state {n,}, while the sec-
ond accounts for the probability of transitioning. When
averaging Eq. (16) over all stochastic trajectories, we
obtain the transition rates, Eq. (13),

(ip(n, 7)) = wp(n, T)pn(1). (19)

Changes of state observables O(n) = O(n,t) along
trajectories can be written as

AO[nt] = O(nt/ t) - O(“O/O)

t
= JO dT{ 00, DI, + D Ap0(n,7) jp(an)} - (20
n,p

The first term inside the integral accounts for the con-
tinuous changes due to the time dependent protocol
7y, while the second accounts for finite changes along
reactions, see Fig. 2,

ApO(m, 1) :=0(Mm+S,,T)—0(n, 7). (21)

In contrast, changes of a generic observable read

t
5X[ny] = JO dr{ [X(m, D], + Y 8%, 1) e}
np

A
0 J—
t1 19) t3 ty -t
FIG. 2.  Pictorial representation of the change of a state

variable observable O along a trajectory. The orange dashed
curves represent the changes due to the protocol—first term in
Eq. (20)—while vertical blue lines changes due to reactions—
second term in Eq. (20).

(22)

where X(n, 7)) denotes its change due to driving while
dwelling in the state n, and 6X,(n,7¢) denotes its
change along the reaction p occurring from n. Hence-
forth, we will use the overdot “ " ” to denote rates of
change of observable which are not time derivatives.

D. Conservation Laws

The topological properties of CRNs are encoded in
the matrices S and SY and can be identified via their
cokernels and kernels. Conservation laws £ are defined as
vectors in cokerS,

€-S, =0, forallp. (23)

They identify conserved quantities, called components
[35]

Ly =¢-n. (24)

Despite the fact that L, depends on the stochastic vari-
able n, the probability of observing any particular value
L

P(L) =3 ,,pn dlln, L], (25)

is constant over time, i.e. d¢P(L) = 0. The % is a Kro-
necker delta. More generally, any observable of type
O(Ly) does not fluctuate,

dthPn O(Ln) =0, (26)

as a direct consequence of the fact that A,O(Ln) = 0.
Clearly, P(L) can be deduced from the initial conditions
Pn(0) and only those states for which P(Ly,0) is non-
vanishing have a finite probability of being observed
during the subsequent stochastic dynamics.

In closed CRNSs, conservation laws (23) follow from

-85 + 0.8}, =0, forallp;. (27)



We denote a set of linearly independent conservation
laws of the closed CRN by {¢,}, and the corresponding
components by {L} := ¢, -n}, for A = 1,...,N,. The
choice of this set is not unique, and different choices
have different physical meanings. This set is never
empty since the total mass is always conserved. The
latter corresponds to a £ whose entries are the masses of
each species. Physically, the conservation laws of closed
CRNs can always be chosen so as to correspond to roi-
eties, which are parts of molecules exchanged between
species along reactions or subject to isomerization [36].

For open CRNs, the condition identifying conserva-
tion laws, Eq. (23), becomes

- S5, —|—€y-S¥,i =0, forallp;,
&Sy, =0,

(28a)

for all pe . (28b)
We now recall that for all p, there is one and only one
exchanged species for which the corresponding entry
of 8}, is different from zero. Hence, Eq. (28b) demands
that ¢¥ = 0 and Eq. (28) become ¢* - §F, = 0 for all p;.
Crucially, any set of independent conservation laws
(28), labeled as {€y}, for Ay = 1,...,Nj, < Ny, can be re-
garded as a subset of the conservation laws of the closed
CRN, {€r} = {€r,} U{ly, }, since they satisfy Eq. (27), too.
In view of this, we call them unbroken conservation laws.
The remaining independent conservation laws, labeled
as {€),} and referred to as broken, satisfy Eq. (27) while
not Eq. (28). They involve exchanged species, (’,};\b #0,
hence (Z};\b -8Y. # 0 and the probability distribution of

any set {Lz‘lb =10, -},

P{Lay}) = X nPulTa 0 [L°, L, ] (29)

changes in time.

Summarizing, in open CRNSs, the chemostatting
breaks a subset of the conservation laws of the cor-
responding closed CRN, {€y }. Only the probability

distribution of the unbroken components {LZ{“ =0, N,

PULAY) = Znpnl T8 [LA Lau] (30)

is invariant and completely determined by the initial
probability distribution pn(0). The state space identi-
fied by one particular set of values for {L, } is called
stoichiometric compatibility class.

Example 3. The CRN in Fig. 1 has two conservation
laws,

E E* E* A B

tg= (11 1 00), (31a)
E E* E* A B

= (01 1 11), (31b)

5

among which the second is broken. The unbroken
conservation law identifies the enzyme moiety and cor-
responds to the total number of enzyme molecules pop-
ulating the CRN, LY = ng + ng+ + ng«. Instead, the
broken one identifies the moiety A—or equivalently B—,
Lﬁ’i = Ngx + Ng# +NA + Np. O

E. Stoichiometric Cycles

We can now set the stage for the thermodynamic de-
scription based on a stoichiometric cycle decomposition.
This section, as well as the other ones discussing cycles,
may be omitted at a first reading.

Additional information about the CRN topology is
provided by the stoichiometric cycles ¢ = {c,} as they are
vectors in ker 5. Equivalently, these satisfy

Zpspcp =0, (32)

and at most one entry for each forward-backward transi-
tion pair is nonzero. Since S is integer-valued, any ¢ can
always be chosen non-negative-integer-valued. In this
way, its entries denote the number of times each transi-
tion occurs along a transformation which overall leaves
the state n unchanged. Alternatively, a stoichiometric
cycle can be seen as a set of reactions {pc1, Pc2, -+, PN}
identifying a closed loop in the state space

Ne
n—n+Sy, —>~-~an+ZSpd:n,

i=1

where 2&1 Spe =2 Spcp =0.

We now relate cycles of the closed and open CRNs
as previously done for conservation laws. In the closed
CRN, the stoichiometric cycles are given by

Zpi S}(’icpi =0 (34a)
Y o, Spico, =0. (34b)

All the entries associated to the exchange reactions are
taken equal to 0: cp, = 0, for all pe. Let us denote by
{c*}, for ¢ = 1,...,Ng, a set of independent stoichio-
metric cycles of the closed CRN.

In the open CRN, the condition identifying cycles,
Eq. (32), reads

(33)

Zpi Séicpi =0 (353)
Zpi S}F;icpi + Zpe S}(;ecpe =0. (35b)

Since the cycles of the closed CRN satisfy Eq. (35),
they can be regarded as a subset of an independent set
of cycles for the open CRN, {c%, c"}. We refer to the
additional cycles {c"}, for n = 1,...,Ny,, as emergent.
They are characterized by at least one nonzero entry for
{pe}, and the vectors

Cri= L p(—Sp)ep = L Spec, #0 (36)
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quantify the amount of exchanged species flowing in the
system from the corresponding chemostats upon com-
pletion of c". As the concentrations of the chemostats
are unaffected by the exchange of particles with the sys-
tem, the emergent stoichiometric cycles can be thought
of as pathways transferring chemicals across chemostats
while leaving the internal state of the CRN unchanged.

As first proved in Ref. [25], by applying the rank-
nullity theorem to the stoichiometric matrices of the
open and closed CRNs, one can show that

Ny = Na, +Nq . (37)

In words, for any exchanged species either a conserva-
tion law is broken, or an emergent cycle is created.

Example 4. The CRN in Fig. 1 has one cycle

1 +2 +3 +4 4+a +b
ce= (1 1 1 1 0 0), (38)

and one emergent cycle

+1 +2 43 +4 +a +b
Cot= (1 1 0 0 1 —1). (39)

Negative entries must be interpreted as reactions occur-
ring in the backward direction. The latter cycle corre-
sponds to the injection of one molecule of A, its con-
version into one of B passing via E*, and its ejection,

A B
Cext: (1 —1 ) (40)

We can also check the validity of Eq. (37), as the num-
ber of chemostats, 2, equals the number of broken con-
servation laws, 1, see Ex. 3, plus the number of emergent
cycles, 1, Eq. (39). O

Remark  Stoichiometric cycles must be distinguished
from graph-theoretic cycles, also called loops see e.g.
Ref. [3]. To elucidate this point, we note that the net-
work of transitions of a CRN can be regarded as a semi-
infinite graph whose vertices are the accessible states n,
whereas the directed edges are identified by the possi-
ble reactions—which are encoded in the stoichiometric
matrix, 5. Therefore, loops are recursive appearance of
stoichiometric cycles, as in Eq. (33). However, they may
not be complete at the boundaries of the graph (low n)
due to peculiar topological properties of the CRN, see
e.g. Ref. [27]. These observations will be used later to
relate different approaches for cycle decomposition of
thermodynamic quantities.

III. STOCHASTIC THERMODYNAMICS

We now build a nonequilibrium thermodynamic de-
scription on top of the stochastic dynamics. In addi-
tion to the elementarity of all reactions, our description

hinges on the hypothesis of local equilibrium [37]: if all
reactions could be instantaneously shut down, we would
observe an equilibrium mixture of inert species at all
times. Alternatively, the equilibration of temperature
and spatial distributions of molecules is much faster
than any reaction time scale. Hence, the nonequilib-
rium nature of the CRN is solely due to nonequilibrated
populations of species.

A. Equilibrium of Closed CRNs

Equilibrium statistical mechanics requires that the
equilibrium distribution of a closed CRN with given
values of {L,} reads

e _ EXP{—BQn} A
pImlLA}) = “ZUL) [TA8[La, LA, (41)
where
gn = (u°—1kgTInng) -n+kgTInn! (42)

is the Gibbs free energy of the state n derived in App. A.
The first term quantifies the energetic contribution of
each single molecule: p° = p°(T) is the vector of
standard-state chemical potentials, whereas —TkgT Inns is
an entropic contribution—constant for all species—since
1, is the population of the solvent. The last term is
purely entropic and accounts for the indistinguishability

of molecules of the same species. In Eq. (41),

Z{L\) = Y mexp{—Bgm} [W8[Lh Ia]  (43)

is the partition function, while 3 = 1/(kgT). When
taking into account an ensemble of components, P({L,}),
Eq. (41) allows us to write

Pl = X (1, PIILAY) P(LAY)

— peI(n{LA}) PUTA)), )

which can be regarded as a constrained equilibrium distri-
bution. Hence p®d(n|{L}}) is the conditional probability
of observing n given the stoichiometric compatibility
class it identifies.

Equation (44) can also be written as

pit = exp {~B[gn — Geq(LAN] } , (45)
in terms of the equilibrium Gibbs potential of the CRN
Geg({La}) = kgTInP{L\}) —kgTIn Z({LA}).  (46)

It is worth emphasizing that Geq({LA}) is function solely
of the set of components, and that Geq({L,};}) needs to be

understood as Geq evaluated in {L}}. Invoking the hy-
pothesis of local equilibrium, we extend Geq to arbitrary



probability distributions prn, and we call it stochastic
Gibbs potential,

G(n) :=kgTInpn +gn. (47)

For closed CRNs at equilibrium, using Eq. (44), G(n)
reduces to Geq in Eq. (46). Also, its average value, the
nonequilibrium Gibbs potential

(G) =2 npnlkpTInpn +gnl,
takes its minimum value at equilibrium
(G) =X (1,)PULAN Geq({LA}) = (G — Geq)
= kBTann In %
Pn

= 1T D(p[[p) > 0.

(48)

(49)

In the first equality, we used
2 1, PULAN Geq({LA})
= T 1) | ZaPalTa8 (L3, La]] Geql{La}
=Y 1PnGeqg({IND).

In the last equality of Eq. (49), D(p|p®9) is the relative
entropy of the transient probability distribution p;, with

.1 . eq . .
respect to the equilibrium one py’. It is always posi-
tive and vanishes only when pn = pn. We will see
later (§ VII) that Eq. (49) quantifies exactly the average
dissipation of the relaxation to equilibrium.

(50)

B. Local Detailed Balance

The zero-th of thermodynamics for CRNs requires that
closed CRNs relax to equilibrium. To ensure this, one
combines the dynamical requirement for detailed bal-
ance, Eq. (14), with the equilibrium distribution, Eq. (44).
As a result, the local detailed balance ensues

In— e — BAygn,

W—p; (nJrSPi) (51)

see Eq. (21). In agreement with deterministic descrip-
tions, see e.g. Ref. [26], we recover the relation between
the rate constants and the standard-state chemical po-
tentials

Ko

In —PL = _(_’, (po —kgT1 ln[s]) 'SPi ’
k—p;

(52)
in which [s] := ng/V denotes the concentration of sol-
vent. The local detailed balance (51) should be regarded
as a fundamental property of the stochastic reaction
rates of elementary reactions valid beyond closed CRNs.
This central concept is well known in stochastic thermo-
dynamics because it provides the connection between

7

stochastic dynamics and nonequilibrium thermodynam-
ics.
In open CRNS, the local detailed balance

Wp(n)

_— = — . Y
TS B(Apgn +ny-Sp) (53)
generalizes Eq. (51), where
wy = uy + kg TIn{[Y]/[s]} (54)

are the chemical potentials of the chemostats. The first
contribution accounts for the Gibbs free energy change
of the internal species, while the second one for the
Gibbs free energy exchanged with the chemostats.

We introduce the transition affinities which quantify
the force acting along each transition

W (n)pn
W_p(M+Sp)pnys,

Ap(n) =kpTln (55)
They measure the distance from detailed balance (14),
where they all vanish. Using Eq. (53), they can be rewrit-
ten in terms of differences of stochastic Gibbs potential

(47),

Ap(m) =—A,G(M) +py - (—S}). (56)

This fundamental relation reveals the thermodynamic
nature of the dynamical forces acting along reaction. Its
early formulation for determistic chemical kinetics is
due to de Donder [38].

We will prove in § VII that our theoretical framework
based on Eq. (53) guarantees that closed CRNs described
by a CME (11) relax to equilibrium, Eq. (44): the aver-
age potential (G) is minimized by the dynamics during
the relaxation and hence plays the role of a Lyapunov
function. We now turn our attention to the enthalpy and
entropy balance along stochastic trajectories.

C. Enthalpy and Entropy Balance

The stochastic entropy of the CRNs follows from the
derivative of the stochastic Gibbs potential (47) with
respect to the temperature,

S(n) =(aG> = —kpInpn +sn. (57)

aT

The last term on the rhs is the entropy of the state n,

Sn = — @ = (s°+kglnng) -n—kglnn!. (58)
oT /),

It accounts for both the entropic contribution carried by
each species, i.e. the standard entropies of formation

o_ ou’
== (%),

(59)
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as well as the entropic contribution due to the multiplic-
ity of indistinguishable states. When averaged, the first
term in Eq. (57) gives the Gibbs—Shannon entropy. The
enthalpy follows from

Hn)=GM)+TS(n)=gn +Tsp =h-n, (60)
where
h=u°+Ts°=h° (61)

denotes the vector of standard enthalpies of formation, in
agreement with traditional thermodynamics of ideal
dilute solutions [35]. Likewise, the chemical potentials
of the chemostats, Eq. (54), will be decomposed in terms

J

of enthalpic and entropic contributions,
uy = hy —Tsy, (62)

where hy = hy and sy = sy — kg In{[Y]/[s]}.

To recover the enthalpy balance along stochastic tra-
jectories, we write the change of enthalpy as the sum of
its changes due to reactions,

AH[n¢] = H(ng) —H(nop)

t
:Jo dr ZAPH(n)jp(n,T), (63)
n,p

where

ApHM)=h-Sy =h-S,+hy S +Tsy- (—S))+ny-(—SY), foralln. (64)

_. Othr
= Qp

= Qp

_. 0chm
A Qp

We used Egs. (20), (61) and (62). The first two contri-
butions, Qtp *, account for the heat of reaction, i.e. the
heat reversibly flowing from the thermal reservoir (the
solvent). The third term characterizes the heat reversibly
flowing from the chemostats, Qf)hm. The first three terms,

Q,, integrated along the trajectory quantify the total heat

flow

t
Qi) = | de {Z,QUTol0)+ Tsv(o)- TV} } - (65)
where the instantaneous external currents

IY(1) =3 ,(—S})]o(T) (66)
J

=Wy

(

gives the amount of exchanged species injected in the
CRN at each time, see Eq. (17).

The last term in Eq. (64), W, quantifies the Gibbs free
energy exchanged with the chemostats. Once integrated,
it gives the chemical work

t
Weli] = | drmy(x)-1(x). ©7)

From Egs. (63)-(67), the enthalpy balance along a trajec-
tory follows

AH[ne] = Qne] + Weny] . (68)

To recover the entropy balance along stochastic trajectories, we notice that since the entropy is a state function, its

change along a trajectory reads,

t

AS[ny] = J

0

dr{ [0k Inpn (Tl + Y ApS(M)jp(n, )} (69)
n,p

as seen in Eq. (20). The changes along transitions can be recast into

TApS(1) = TApsn — kpTIn 22tSe

Pn

=h-Sp+hy S +Tsy- (—S))— {ApgnJrkBTlin;;sP] + py

n —_———— (70)

=Qp

ApG(n) P

= Ap(n)

where we have used Eq. (60). As highlighted with underbraces, the first three terms are the heat flow along reactions,
while the last three correspond to the affinity of transition, Eq. (56). When integrating over the whole trajectory, we



recover the entropy balance

AS[n] = +Qln] + Zln], (71)
where the EP (times the temperature) reads
t
TZn = J de{ [-0ckpTInpa(0)ly, + 3 Ap(n, 7 jp(n,7)} (72a)
0 n,p
pno (O) J't . Wp(ﬂ, T)
=kgTIn + | dtjo(n, ) kgTIN —————— 2b
sTin @ T, jo(n, T) kp W+ 8,7 (72b)
= W,Ing — AG[ny]. (72¢)

The second equality follows from the definition of affin-
ity, Eq. (55), when integrating the changes of the proba-
bility distribution. Instead, the third one readily follows
from the relationship between affinity and Gibbs poten-
tial, Eq. (56). Mindful of Eq. (18), the EP can be rewritten
as the ratio of the probability of observing the trajectory
ny under a forward dynamics driven by a protocol 7,
over the probability of observing the backward trajec-

tory ni under a dynamics driven by the time-reversed

protocol ntl such that 7'LTr = Tl_r:

P

Pno (0) E‘nt] ) (73)
'Pnt (t) (P[Ilt, HT]
This central result in stochastic thermodynamics [12,
39] was formulated for CRNs in Ref. [20] and clearly
shows that the EP measures the statistical asymmetry of
a trajectory under time reversal. It implies that the EP
satisfies the following integral FT

(exp{—Z/kg}) =1, (74)

where the ensamble average (-) runs over all trajectories.
It represents a refinement of the second law of ther-
modynamics at the trajectory level. Using the Jensen’s
inequality, the second law ensues: (Z) > 0.

Remark Using Egs. (61) and (62), the local detailed
balance, Eq. (53), can be rewritten as

TZlny = kgTIn

Wp(n)

A St A thr QY
nw_p(n+Sp) BQp" +8y Sy +Apsn. (75)

The first term is the entropy change in the thermal bath,
the second one the entropy change in the chemostats,
whereas the last one the internal entropy change of the
CRN.

Remark Chemical work and Gibbs potential are de-
fined up to a gauge, which accounts for the choice of
the standard state chemical potentials. Indeed, let us
consider the following transformation,

po =+ 3 yaal

(76)
u@ — pg + Z?\ake}},\ ’

(

where the second term is a linear combination of con-
servation laws. This transformation leaves affinities (56)
and EP (73) unchanged, while transforming both the
chemical work (68), and the Gibbs potential (47). The
former changes as

Welnd = Welnd + 35, an 8 -9 [nd, (77)
where
t
7 [ng] :J de1Y(1), (78)
0

are the integrated currents of exchanged species flowing
in the system. Likewise, the Gibbs potential becomes

Gn) — G(n) + X arL}. (79)

Using the properties of conservation laws, § IID, it is
easy to verify that

ALy Ind =0, ALy [nd =& -9[nd,  (80)

which confirms that the gauge terms cancels in the EP,
Eq. (720).

Alternatively, one can apply the transformation (81)
to either (h,hy)T or (so,sg’{)T and investigate how the
terms in the entropy balance (71) change. In the former
case, one can easily verify that both Q[n{] and S(n) are
unaltered. In the latter case, instead,

S(n) = S(n) + Z)\aﬂ_f}

8
Qlned — Qlnd +TX 5, an, 6, - 7 Ine]. (81)

Further discussions on the gauge arising in the work-
potential connection will be given in § VC.

D. FT for the Chemical Work
and comparison with previous results

When combining the EP FT (74) with Eq. (72c) we
immediately obtain the integral FT for the chemical
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work
(exp{—B(W.—AG)}) =1. (82)

However, a Jarzynski-like integral FTs [40—43] for the
chemical work—i.e. expressions such as (exp{—BW,}) =
exp {—BAGeq }—do not ensue. This kind of relation
would require AG to be a nonfluctuating quantity so
that it can be moved out of the average. However, due
to broken conservation laws G fluctuates along any tra-
jectory of open CRNs. Let us consider a generic process
in which the CRNs is initially closed and at equilibrium,
Eq. (44), with a Gibbs free energy Z{LA}P({L;\})GQC{({L;\}).
The CRN is then open and driven according to some
time-dependent protocol, i, for T € [0,t]. At time t the
CRN is closed again, and let to relax to a new equilib-
rium distribution py. Since the chemostatting proce-
dure unavoidably breaks some conservation laws, the
accessible state space suddenly increases. The final dis-
tribution of broken components, P({L, }; t), will thus
have a support broader than that of the initial distribu-
tion, P({L ) 0), see e.g. Fig. 3. This is an instance of
absolute irreversibility [28]. Namely, when the EP (73) is
integrated over all trajectories to obtain the FT (74), there
are some backward trajectories whose corresponding
forward probability is vanishing. These are the trajec-
tories leading to values of the broken components not
in supp {P({L,,};0)}. Since the EP of these trajectories
diverges negatively the expression of the integral FTs
(74), as well as (82), is invalidated, but can be replaced
by (exp{—Z/kp}) = 1—Ag, where 0 < Ag < 1 measures
the probability of those backward trajectories whose
forward one has zero probability [28].

Hence, let us assume that supp {P({L,,};0)} spans
all possible values of {L,,}, so that no absolute irre-
versibility occurs. By conditioning the average in Eq. (82)
upon observation of specific initial and final components

(<'>{LA},{L5\}) we obtain

2125y PULAL0) P{LAL 1)
exp {B[Geqt ({Li}) - Geqo ({L)\})]}
<9XP {_BWC}>{L)\},{L;\} =1. (83)

However, this equation cannot be simplified further:
since the Gibbs potential depends on the broken compo-
nents, it fluctuates during the transient dynamics and
an average over all components must be taken. As a
resut, no Jarzynski FT for the chemical work in the Gibbs
ensemble can be derived.

We now mention that the Authors of Ref. [20] derive
a Jarzynski relation for the chemical work by using the
grandcanonical ensemble [20, Eq. (61)]. Translated into
our notation, their result reads

(exp{—BWe —A(pu®1-n)]}) = exp {—BASq} , (84)
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FIG. 3. Illustration of the evolution of the probability distribu-
tion of the broken components associated to Eq. (31b) in the
CRNs in Fig. 1. As the CRN evolves, the state space enlarges,
as the stochastic dynamics explores states corresponding to
different broken components, L. The four distribution are
obtained by means of 10° trajectories simulated using the
stochastic simulation algorithm. All rate constants are equal
to 1, whereas the concentrations of the chemostatted species
are [A.] =17 and [B.] = 10. The value of the enzyme moiety
is Lg = 5.

where the initial and final equilibrium states are grand-
canonical:

Pl = exp {B [Geq —gn + 19 1]} . (85)
The grand potential is defined as

6:=G—p*l-n, (86)
and p®d are implicitly defined by

T Sp, + p§q -8%. =0, forallp;, (87)

[20, Eq. (27)]. The absence of the exchange transition is
due to a different form of chemostatting, see remark in
§ ITA. Concerning Eq. (84), we observe that the grand-
canonical potential is more suitable to describe CRNs
in which all species are chemostatted and p®d are their
chemical potentials. However, in the vast majority of real
CRNs, only a restricted set of species needs to be mod-
elled as chemostatted. On top of that, the physical inter-
pretation of the contribution —A(u®l-n) remains unclear.
In our next sections we will show that a systematic use
of conservation laws leads to the identification of the
potential which best describes the equilibrium of CRNs
in which not all species are treated as chemostatted. It
will also ensue the definition of new work contributions,
whose physical interpreation is transparent.



IV. CRN-SPECIFIC STOCHASTIC
THERMODYNAMICS

We now proceed with our main results. Making use
of the conservation laws identified in section § 11D,
we decompose the EP into three fundamental contri-
butions: a potential difference, a contribution due to
time-dependent driving, and a minimal set of contribu-
tions due to nonconservative chemical forces. To do so,
we first decompose the local detailed balance and then
proceed with the EP.

A. Entropy Production

We start our EP decomposition by partitioning the
set of chemostatted species Y into two groups, denoted
by Y, and Y;. Likewise, the corresponding exchanged
species are denoted by y, and yy, respectively. The for-
mer group is composed by a minimal set of chemostatted
species which—when starting from the closed CRN—
break all broken conservation laws. In other words,
each entry of Y}, breaks exactly one distinct conserva-
tion law. The remaining chemostatted species form the
latter group. For a given CRN, our partitioning is not
unique but the number of y, and yy is uniquely defined:
Ny, = Nj, and Ny, = Ny — N, respectively, see Ex. 5.

We now notice that the linear independence of {€,}
implies that the matrix whose rows are {Ei‘;} is nonsin-

gular. We will denote by {@;\};} the column vectors of the
inverse of the latter matrix. By making use of this crucial
property, we can recast the identity

AL =0y, -Sp =6, -SE+ 67 - SFP + 6 - Sif (88)
into
Y Y Y
Sy =AMy — Z)\bexi { );\b -Sp +e§\fb -S%’,‘} , (89)
where
N A
MY = 35 By (90)

Mindful that S§ = —Sj and €& -Sj, = 0 for all pe,
one can use Eq. (89) to rewrite the chemical work along
reactions as

Y
—uySE =4 [uy, - MF| =Ty, Y, (on)
where
Fy; = py; — by, - bea\ieifb . (92)

A reformulation of the local detailed balance Eq. (53)
readly ensues

Wo(n
In—welt) —B(Apon +Fy, - S},

W_o(n+S,) (93)
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where

(94)

We now argue that the expression of the latter poten-
tial is reminiscent of a Legendre transform of g, with

gn = gn — fty, - My{.

respect to M3P, in which My, are the conjugated inten-

sive fields. To reveal the physical meaning of M3f, let
us consider the case in which the broken conservation
laws correspond to moieties, see § II D, and hence each
species can be thought of as a composition of these.
Through y;,, some combinations of these moieties are

exchanged with the environment. The entries of MXE’
quantify the total abundance of these combinations in
state 1, hence we refer to M as the moieties population
vector. In view of this and the fact that (in general) not
all moieties are exchanged, one can interpret gn as a
semigrand Gibbs free energy [35]. Note also that, from the
definition of broken conservation law, Eq. (27), it follows
that A, M%;P =0, for all p;—uviz. internal reactions never
create or destroy moieties—whereas only for p. we have
that A, M3F £ 0—viz. exchange reactions introduce or
remove moieties. We also mention that an alternative
interpretation of gn, can be given once we rewrite it as

A
gn = gn — Z}\bfAbLnb ’ (95)
where
f)\b = qu . E};\i . (96)

In this form gr, is reminiscent of a Legendre transform

with respect to the broken components (L}, in which
{fa,} are the conjugated intensive fields.

In contrast to the first term appearing on the rhs of
Eq. (93), the second one is composed by an independent
and minimal set of nonconservative terms: if and only
if 7y, =0, for ys = 1,...,Ny,, then the rhs of Eq. (93) is
conservative. In this case, the CRN is detailed-balanced
since the steady-state probability distribution defined by
Pt X exp{—Pgn} satisfies the detailed balance property,
Eq. (14). In physical terms, each Jy, identifies a chemi-
cal potential gradient imposed by some chemostats on
the CRN which prevent the latter from relaxing to equi-
librium. Hence we refer to {Fy,} as fundamental chemical
forces. Equation (93) is our first major result.

To proceed with our EP decomsposition, we combine

Egs. (72b) and (93),

T5[ng = kT In Pe(®)

p‘I’Lt (

t
- L Aty Apgn (1) jp(m, 1) + Xy Wiklned,  (97)
PN

where
t

Wy == Jo dt Fy, (1) Iy, (1). (98)

121
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{Iy;(T)}, for y¢ = 1,...,Ny,, denote the entries of the
instantaneous external currents corresponding to Yj,
Eq. (66). We now recall that gy, is a state function, hence

Aglne] = Wylni] JdTZApgn Tjp(n, 1), (99)
where

t
Wd[ﬂt] = JO dt [aTgn(TmnT

¢ (100)
= | dr [Foony, (0 M|
Therefore, combining Egs. (97) and (99) we obtain
TZ[ng = —ASGne +Walne + 3 Witlndd, (101)

where the first term is the difference of the stochastic
semigrand Gibbs potential

Equation (101) is the main result of our paper. The
first term on the rhs constitutes the conservative force
contribution of the EP. The second term, Eq. (100), arises
in presence of time-dependent driving and quantifies
the work spent to manipulate the free energy landscape
of the CRN via the chemical potentials My, - We refer to
it as driving work. Finally, for each exchanged species Y,
a nonconservative force contribution (98) arises. Each
Wﬂ‘; [n¢] quantifies the work spent by the chemostats to
sustain a flow of chemicals across the CRN, and we refer
to them as nonconservative chemical work contributions.
Equation (101) holds for an arbitrary CRN, yet it is CRN-
specific, as it accounts for the topological properties
of the CRN, i.e. the conservation laws. To gain more
intuition, we now focus on specific classes of CRNS,
whose resulting decomposition is summarized in Tab. II.
In Secs. VI and VII we will further explore the physical
consequences of Eq. (101), whereas in Ex. 5 and in § VIII
we evaluate Wy and {W(} for specific models.

Autonomous Detailed-Balanced CRNs: The CRN is au-
tonomous and all fundamental forces vanish. The trajec-
tory EP becomes minus a potential difference,

TZ[ne] = —ASGny]. (103)

We will prove in § VII that this is the class of open CRNs
which relax to equilibrium and in which the average po-
tential () is minimized at equilibrium by the dynamics
described by CME (11).

Unconditionally Detailed-Balanced CRNs: The set of
species Y; is empty—i.e. each exchanged species breaks
a conservation law—and no force arises. Hence, these
CRNss are detailed-balanced irrespective of the values of
uy, but the time-dependent driving prevents them from
reaching equilibrium, and their EP reads

TZn] = —AGnd + Wyln].

(102)

(104)
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dynamics —AG§ W3 W™

autonomous detailed-balanced v 0 0
unconditionally detailed-balanced v v 0
autonomous Vv o) v
NESS o 0 v

TABLE II. Entropy production for specific processes. “0” (resp.

“v”) denotes a vanishing (resp. a finite) contribution. NESS is
the acronym for nonequilibrium steady state.

Autonomous CRNs: The driving work vanishes and
the forces are constant in time. Hence, the EP becomes

TEn = ~AGn + 3 Ty, Jy, ). (105)

The nonconservative chemical work display a typical
current—force structure. In the long time limit, AG[n] is
typically subextensive in time, and we obtain

TElng "2 Y Ty Jy,Ind. (106)

In other words, the EP is dominated by the dissipative
flows of chemicals across the CRN.

Remark For CRN with infinite number of species and
reactions—e.g. aggregation—-fragmentation and polymer-
ization processes [44—46]—the CRN may undergo steady
growth regimes in which A is not subextensive in time
and cannot be neglected in long-time limit.

Remark Our EP decomposition is not unique and dif-
ferent expressions for gn and JFy, correspond to different
choices for the paritioning of Y, and Y.

Example 5. For the open CRN in Fig. 1, the chemostat-
ted species can be splitted into Y, and Y; in two
possible—and trivial—ways: either A is regarded as
the species breaking the conservation law (31b), or B.
We consider the former choice, y, = (A) and y¢ = (B).
Since (} = 1, the only entry of the moiety vector reads,

MTAI = Ng* —+ TUp** —+ na + ng = Lg ’ (107)

which is equal to the total abundance of the A-B moi-
ety. The intensive variable conjugated to the broken
conservation law is equal to the chemical potential of
A

e’

fb = Ha, - (108)
The potential thus readily follows from Eq. (94)—or
equivalently Eq. (95)—,

gn = gn —HAMa. (109)
The instantaneous driving work rate associated to any
manipulation of the latter potential is

Waln) = —dua, M4 (110)
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FIG. 4. Pictorial illustration of the work contributions. The
driving one arises when the chemical potential of the chemo-
stat A, changes in time. The nonconservative chemical work,
instead, characterizes the sustained conversion of A into B.

Once integrated over a trajectory, it gives the driving

work, Eq. (100). Since y; = (B), the conjugated funda-

mental chemical force reads

FB, = UB, — Ha, - (111)

and the instantaneous dissipative contribution due to
this force is

B = IB,IB, , (112)

where Ig, = ], —]_1,- When integrated over a trajectory,

it measures the work spent to sustain a current between

A, and B, across the CRN. A pictorial illustration of the

work contributions is given in Fig. 4. The trajectory EP
thus reads

t
TZIng = L dr[ — 0cpa, (IMA] [, — ASlni]

+E dtFp, (Dl (1). O (113)

B. Energy Balance

In Eq. (101), the CRN-specific work contributions,
Wy and {Wf}, emerge as dissipative contributions. To
strengthen their interpretation as work contributions,
we now show that they can also be described as part of
an energy balance. For this purpose, let

H(n) = H(n) —py, - M =G(n) +TS(n)  (114)
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be the semigrand enthalpy, which can be regarded as a
CRN-specific form of energy. When combining this po-
tential with the enthalpy and entropy balances, Egs. (68),
(71) and (101), we obtain

AHng] = Qlng] + Wylngl + Z WnC . (115)

Now, we clearly see the role of Wy and {W‘y‘?} as work
contributions, as they are opposed to the heat flow, Q.
On the one hand, Wy is the energy spent by an external
agent to manipulate the chemostats and does not involve
an exchange of any extensive quantity between the CRN
and chemostats. On the other hand, {WS?} accounts for
the energy flowing between different chemostats that is
mediated by the CRN.

C. Equilibrium of open CRNs

We have already seen that in absence of fundamental
forces, the rhs of the local detailed balance (93) becomes
a state function difference. The steady-state probability
distribution

eXP{ Bon} Au
WH?\U [Ln /Lku] :

satisfies the detailed balance property (53) and therefore
characterizes the equilibrium of open CRNs. Not acci-
dentally, the relationship between the partition function
Z({L,,}) and that of closed CRNSs, Eq. (43),

Z{IAD) = Zmexp{—Bam} [15,0[Lhs, La,]  (117)
= T, &P {BEr, P ln, J ZULAD, (118)

is akin to that between canonical and grandcanonical
partition functions, see e.g. [47]. With an ensemble of
unbroken components, P({L,_}), the constrained equilib-
rium distribution reads

Pt = X (1, ) Peq(HLAD) PULAD)
= Peq(M{LYH PHLYD,

Peq(Mi{Lr}) = (116)

(119)

where peq(nl{Li‘{‘}) is the probability distribution of ob-
serving the state n given its stoichiometric compatibility
class. Eq. (119) thus generalizes the equilibrium proba-
bility distribution (44) to open CRNSs.

Importantly, the average semigrand Gibbs potential
(102) takes its minimum value at p5}, Eq. (119), where it
reduces to the equilibrium semigrand Gibbs potential,

Geq({La}) = —kpTInZ({Lx,}) + kg TInP({Lx,}), (120)
averaged over P({L,_}). Indeed,
<9> - Z{LAU}P({L?\u})geq({L)\u}) =
=kpT D(pHpeq) > 0.

<9 - 99q>

(121)

123
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The first equality follows from the fact that Geq is non-
fluctuating, since it depends solely on the unbroken
components. As for the Gibbs free energy in closed
CRNs, we will show later (§ VII) that Eq. (121) quan-
tifies the average dissipation during the relaxation to
equilibrium.

D. Dissipation Balance along Stoichiometric Cycles

We can now formulate the EP decomposition in term
of stoichiometric cycles affinities. These are defined as
the sum of the transition affinities along stoichiometric

cycles {€ = pc1,Pct, - -+, PN
A=A, M) +A,2n+S, 1) +...

Ne—1 (122)
T +Achc(n+ Zj:] SpCj) .

Using Eq. (56), and the fact that —A, G(n) vanishes when
summed over the loop ¢, we obtain

Ne
A=—py- ) Spi=—uy ¥ ,Spco. (123)
i=1
Since Zpsgcg‘ = 0, those evaluated along the stochio-
metric cycles of the closed CRN, {c*}, always vanish. In
contrast, those along the emergent cycles, {c"}, do not
vanish in general,
A =py-CY, (124)
see Eq. (36). These affinities can be thus understood
as the chemical potential gradient imposed by the
chemostats on the cycle.
To rewrite the EP (101) in terms {Ay}, let us highlight
their relationship with the fundamental forces,

An = Fy, - CYF, (125)

which is obtained when summing the local detailed
balance (93) along {c"} as in Eq. (122). Since the matrix

Yf . .
whose columns are {Cy,} is square and nonsingular—as
it can be deduced from the linear independence of the
set of emergent cycles—, we can invert it and write
=Y
Iy, =24 Cann , (126)
=Y . . .
where {Cnf } denote the rows of the inverse matrix. This
relation clarifies the one-to-one correspondence which
lies between {Jy,} and {A;}. Inserting the last expression
in the local detailed balance, Eq. (93), we obtain

Wp(n)
In m =—f (Apgn - Zn An Cn,p) , (127)
where the coefficients
—Y
Cnp = —Cp' - Syl (128)

14

quantify how much each reaction contributes to the
emergent cycles. Algebraically, the row vectors {Cy} are
dual to the cycles, {c"},

/ —=Y, Y, / —Yf Y
Gn-ch ==Y ,Cy-Sp'ed =Cy-Clh =8 . (129)

As previously done for Eq. (101), when integrating
the trajectory EP (72b) with the local detailed balance
(127) we obtain

TZng] = —AGng] + Wylne + Zn Mngd. (130)

The stochastic semigrand Gibbs potential and the driv-
ing work read as in Egs. (102) and (100), respectively.
For each emergent stoichiometric cycle,

t
mm:LM&ﬁ[JwMﬂ. (131)

quantifies the chemical work spent to sustain the related
cyclic flow of chemicals. For autonomous CRNs

Tz[nd = *Ag[nt] + Znﬂngn [nt] ’ (132)
where
t
311 ] == JO dt Zan,pIp(T) (133)

quantifies the integrated current along the cycle 1. In the
long-time limit, in which AS[n{] is negligible, we obtain

TElng "2 Y Andnlngd . (134)

When all emergent cycle affinities vanish—as well as
when no emergent cycle is created—, the CRN becomes
detailed-balanced, in agreement with the Kolmogorov—
Wegscheider condition [48-50].

Remark An alternative approach that can be used
for cycle EP decompositions is the graph-theoretic one
based on the identification of the loops appearing in the
network of transitions [3, 51]. Once these loops are iden-
tified, they can be sorted according to the chemostats
they are coupled to, as these determine their affinity, see
Eq. (122). Equivalently, loops are classified according to
the stoichiometric cycle they correspond to. In Ref. [52],
a graph-theoretic approach based on loop affinities led
to the expression analogous to Eq. (134). In contrast, our
cycles EP decomposition is based on a stoichiometric
approach: emergent cycles are directly identified by the
kernels of 5; and S.

This observation points out the redundancy which
is intrinsic in bare graph-theoretic EP decompositions:
many loops may be coupled to the same set of reservoirs
and thus carry the same affinity, while many others
may carry a vanishing affinity—for CRN these latter
are those corresponding to stoichiometric cycles of the



closed network, { ¢* }. For generic networks, a system-
atic way of identifying these so-called symmetries was
derived in Ref. [53], whereas in Ref. [54] they are used
to formulate generic thermodynamic—rather than mere
graph-theoretic—EP decompositions.

Example 6. Trivially, the emergent cycle affinity corre-
sponding to the emergent stoichiometric cycle (39) reads

A =g, —pa, = Is, - (135)

The contributions to the corresponding cycle current
follows from Eq. (128),

+1 +2 +3 +4 +a +b
g'=(0 0 0 0 0 —1). (136)
The entries corresponding to the backward reactions are
minus those of the forward. Notice that, since the CRN
has exactly one emergent cycle, the force and cycle EP
decompositions are identical, see Eq. (125).

V. SEMIGRAND GIBBS POTENTIAL

We here further elaborate on equilibrium distribu-
tions and semigrand Gibbs potentials by addressing
three points: (i) the relationship between Eq. (119), and
the equilibrium distributions as expressed in chemical
reaction network theory; (ii) the role of conservation
laws for characterizing the dissipation of CRNs subject
to sequential introduction of exchanged species; (iii) the
gauge freedom intrinsic to the definition of driving work.
This section can be skipped at a first read.

A. Equilibrium Distributions in
Chemical Reaction Network Theory

In Ref. [23] (see also [55]) equilibrium distributions of
CRNs are proven to be multi-Poissonian

ex n-In [Z]e \'
peq(n‘{LAu}) = £ {n' Z({E)\ })q }}

[ho [ ],

(137)
|

T(E) = ~A(G) = ¥ 1, PoliLa)) [kpT X p(ni{Lr}) In -2
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where [z] eq 1S the equilibrium concentration distribution
of the same CRN described by a set of deterministic
rate equations. Z({L,,}) is again a normalizing factor.
To highlight the relationship between this equation and
Egs. (119) and (85), we need to recall that, for determin-
istic CRNs, thermodynamic equilibrium is defined by
the fact that chemical potential differences along all reac-
tions vanish, Egs. (87) and (A7y). As observed in Ref. [26],
this entails that

utd =3 \fala, (138)
where {f)} are real coefficients depending on py and
{LA.}- Those related to the broken components, {f;, }, are
indeed those appearing in Eq. (96). From Eq. (A7) we
therefore have

In {[zleqV} = —B (u° —kpTInng — 3 yfalr) , (139)
from which

n-In{[zleqV} —Inn! = —p (gn —pud - n)

1
=—B(an — X, FrLAY) (140)
ensues. At this point, Egs. (85), (116), and (137) ap-
pear identical up to Z)\uf;\uLi‘l“. However, since this
term appears both at the nominator of Eq. (137) and in
Z({Ly,J), it cancels. This shows the connection between
the CRN theoretical and thermodynamic expression of
equilibrium distributions.

B. Hierarchies of Equilibriums

We here show that when starting from a closed CRN,
a sequential introduction of exchange reactions that keep
the CRN detailed balanced drives it down in semigrand
Gibbs potential by equilibrating previously constrained
degrees of freedom: the conservation laws, see Fig. 5.
Let us imagine a closed CRN whose initial probability
distribution is pn(0) = 3 (1,3 Po(ni{LA}) Po({LA}), where
Po({La}) = T1a Pé‘ (L)), i.e. different components are
independently distributed. As it relax to equilibrium,
Po({LA}) will not change, while po(nl{L,}) will relax to
Eq. (41). The average dissipation is

(LAY ] _
Peq(MILAY =2 1, PolLa) [-A(GHLAY) |- (141)

This expression is obtained when combining the properties of the Gibbs potential, Eq. (49), with the equilibrium
distribution of closed CRNs, Eq. (44). It shows that the average drop of Gibbs free energy can be expressed as the
weighted average of the drops of Gibbs free energy at given components, —A (G({L»})).

We now open the CRN by chemostatting one species. Hence, one conservation law is broken, e.g. the total mass
€y,, and the CRN relaxes to a new equilibrium, Eq. (119). Clearly, P}(L,), for A # A, will not change during the
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relaxation, and we can rewrite the new equilibrium as

exp—pgn] ZULAD exp {Bfr LN |
Z({L}}) Zx, (LA IAA,)

=peq(M{LY)) = Peq(Li‘l1 HLA A zA,)

(?\1)( ) xp {_[3gn+ﬁf)\] 3\11}
n) =
Peq Zny (LA A,

[T Pdy) =

A£A

[T PoN). (142)

A#£A

The first term is the equilibrium distribution of the closed CRN, while the second can be interpreted as the
equilibrium distribution of the broken component, for given unbroken component. In other words, the final
equilibrium can be understood as a closed CRN equilibrium with an equilibrium probability distribution over the

broken component. Hence, the average amount of semigrand Gibbs free energy, G, (n) = G(n) — fj, LZ}‘ , dissipated
during the relaxation can be written as

PAT(LA)
Peq(La' LA A2, )

upon application of Egs. (121) with the distributions (44) and (142). When rewriting this expression as a sum over
all values of the components and performing the summation over the states of peq(ni{L*}) we finally obtain

—A(Gn,) =kBT ) Peq(m{LA) TTAPS(LY) In (143)

PAT(L
—A(Sxn,) = D PRILA) ZPS“(L)\])kBTlnP (LO|{(LAi) )
b, iy eq A LEATAAN, (144)
= Z PY(LA) [—A(Gr, {Labasn,))] -
{Lahaza,

In the first line we recognize the relative entropy be- transient nonequilibrium state

tween the initial probability of the broken component,
G minimized
closed CN equilibrium

Pé" (La,), and the equilibrium one, Peq(Lx, {LAJAA;)-
It it is equal to the difference of semigrand Gibbs free
energy at given component, as highlighted in the sec-
ond line. We thus see that the dissipation following
the relaxation from one equilibrium to the other is com-
pletely characterized by the equilibration of the initially
constrained degrees of freedom.

This procedure can of course be repeated when a
further species is chemostatted and it breaks another
conservation law. The dissipation is quantified by a dif-
ference of semigrand Gibbs free energy, which accounts
for the relaxation of the degree of freedom which has
been released. When the chemostatting breaks all con-

9, minimized
open CN equilibrium: A; broken

9,1, Minimized
open CN equilibrium: Ay, ..., A;, broken

\ Guarn Minimized
open CN equilibrium: all conservation laws broken

servation laws without generating fundamental forces,
the CRN finally reaches the global minimum of available
semigrand Gibbs free energy, Fig. 5. In this case, the
potential becomes the grand potential used in Ref. [20]
and discussed in § IIID, cf. Egs. (86), (138), (102), and

(95).

C. Wg4-§G Gauge

The driving work and the stochastic semigrand Gibbs
potential are defined up to a gauge—distinct from that

FIG. 5. Pictorial representation of the hierarchy of equilibrium
states and the semigrand Gibbs free energy drops following the
relaxation to equilibrium when conservation laws are broken.

involving G and W.—, which corresponds to the choice
of the components. Let us consider a basis change in the
space of conservation laws

O — 6 = Qb (145)

with QO a, =0 for all Ay, A, so that the unbroken ones
preserve their properties. Accordingly, the conjugated



intensive variables transform as

fa — f;\ = Z)\/f)\/ﬁ)\/)\ , (146)

see Eq. (138), where Q denotes the inverse of Q. We
now notice that when the sum involves only the broken
conservation laws, such a bilinear form becomes

Z}\b f?\bexb — Z)\b f‘}\b e)\b - Z)\uf}\ue?\u ’

where

(147)

=) A QA Qg - (148)

AL

Therefore, the instantaneous driving work rate (the in-
tegrand of Eq. (100) rewritten with Eq. (96)), and the
semigrand potential, become

Wam) = Wam) + 3, defa, La%, (149)
and
S(m) = S(n)+ X5 L, (150)

respectively. In contrast, the nonconservative forces—
and thus the nonconconservative work—is left invariant

Fy, = Ty, + La, B = Ty, (151)

since (ZYf = 0. Crucially, the gauge terms in W4 and —A§
cancel and the EP is unaltered. After all, the physical
process is not modified. Notice also that since the gauge
term is nonfluctuating, it vanishes for cyclic protocols
when integrated over a period.

We thus conclude that driving work and semigrand
Gibbs potential are not univocally defined as they are
affected by a gauge freedom. The gauge affecting the
potential-work connection in stochastic thermodynam-
ics led to debates, see Ref. [56] and references therein. As
observed in the latter reference, the problem is rooted in
what can be experimentally measured as work, as differ-
ent experimental set-ups entail different gauge choices.
In our chemical framework, different choices of the bro-
ken components, involve expressions of the work in
which different species appear and whose abundances
need to be measured to estimate the work.

Example 7. To illustrate the potential-work gauge we
use the CRN in Fig. 1. Let us consider the transformation
of the set conservation laws, Eq. (31), identified by the
matrix

1 -1
a=(s 7). (152)
according to which the conservation laws become
E E* E** A B
== (11 100), (153a)
E E* E* A B
G =0—g= (-1 0 0 11). (153b)
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FIG. 6. Schematic representation of the forward and back-
ward processes. The relaxation to the equilibrium obtained by
shutting down the driving and turning off the forces at time
t (resp. 0) for the forward (resp. backward) process, merely
relates the two processes but it is irrelevant for the FT.

Using Egs. (108), the gauge term reads

fau (7e) = pa(me) (154)

from which we can easily derive the expression for the
new driving work rate
Wy(n) =

(N —na —np)otua - (155)

The semigrand Gibbs free energy easily follows. We can
now highlight the difference between the two definitions
of driving work, Egs. (110) and (155): while the first
entails the measurement of the population of A, B, and
of the activated complexes E* and E**, the latter entails
that of A, B, and of the free enzyme E. The values of
the two expressions will differ but for cyclic protocols
integrated over a period. O

VI. FLUCTUATION THEOREMS

We now proceed to show that the driving work and
the nonconservative chemical work satisfy a finite-time
detailed FT. The FT holds for any process, referred to as
forward, if the open CRN is initially prepared at equilib-
rium, Eq. (119). For the sake of simplicity, and without
loss of generality, we assume that the initial distribution
of unbroken components is P({LY*}) = [T, §[Lx", La, ],
and we denote by 7y the initial value of the protocol,
which corresponds to equilibrium. At time 0, the driv-
ing is activated and the CRN evolves controlled by the
protocol 7, for T € [0,t]. The corresponding backward
process is again initially prepared at the equilibrium—
where all forces vanish—, but the chemical potentials
Hy, must have the same value they have at time t in
the forward process. This guarantees that gn (t) rules
the equilibrium distribution. The backward process is

driven by the time-reversed protocol, 7'rjrc = T_n, for
Tel0,t].
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The finite-time detailed FT establishes the relationship
between the forward and backward process

P (We, (WES))
P (—Wy, {~Wne))

= exp {[5 (Wq + 2y Wy — ASeq)} p

(156)

where P (Wy, {W(}) is the probability of observing Wy
driving work and {Wf} nonconservative contributions
along the forward process, Eqs. (100) and (98). Instead,
TI(—Wd,{—W‘y‘? ) is the probability of observing —Wy
driving work and {—W{}‘;} nonconservative contributions
along the backward process. Finally,

Z (1, {La, 1)
Z(mo LA, 1)

is the difference of equilibrium semigrand Gibbs poten-
tial between the backward and forward initial equilib-
rium states. When integrating this expression over all
possible values of Wy and {W{T} we recover a Jarzynski-
like integral FT

AGeq = —kpTIn (157)

(exp {~B(Wa+ Ly W) }) = exp {~BAGeq} - (159)

The proof of the FT (156) is given in App. B, and it
hinges on the generating function techniques presented
in Ref. [54].

We now investigate some interesting specific cases of
the FT (156). In unconditionally detailed-balance CRNs,
the nonconservative work vanish and we obtain the
Crooks’ FT formulated for CRNSs [57-60],

Pr(Wy)

—_ = W4 — ASe .
e =e® {B(Wa %))

(159)

Instead, for autonomous processes, the FT can be formu-
lated as follows

Pi({(Ty,})
W;;f}) = exp {Bzyﬁwjm} . (160)
The FT in Eq. (156) is inspired by an analogous result
derived in Refs. [54, 61] in the context of generic Markov
jump processes. The importance of our result is mani-
fold. It holds for processes of finite duration t, and it is
expressed in terms of measurable chemical quantities.
Its only constraint is the initial state, which must be
equilibrium. It reveals the most appropriate boundary
conditions under which Jarzynski—Crooks-like FIs can
be formulated for CRNs: equilibrium distribution of
open CRNs. Most important, it evidences the merits of
our stoichiometric approach based on the identification
of conservation laws: it allowed us to characterize the
potential describing the equilibrium distribution of open
CRNs, and to formulate the decomposition of the EP
which supports our FTs, Eq. (101).
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Remark A physical interpretation of the argument of
the exponential, Eq. (156), follows from the following
observation: if, at time t, the driving is stopped and
the fundamental forces (92) turned off—uviz. set to zero
by an appropriate choice of uy, := uy, - ZAb@;\i@’\i —
the CRN relaxes to the initial condition of the back-
ward process. During the relaxation neither W4 nor
{Wg} are performed and the related EP is TX eq =
G(n, me) + kg TIn Z(me, {Lx,}). The argument of the expo-
nential can thus be interpreted as the EP of the fictitious
combined process “forward process + relaxation to the
final equilibrium”.

Remark For autonomous CRNs and arbitrary initial
conditions, the steady-state FT follows

Pl{yd) 100

= 6
P({—dy. ] (x61)

exp {tBL y,Tudui} -

where P({Jy,}) is the probability of observing average
rates of fundamental external currents {1; fé drtly, (T)}
equal to {Jy,}. Eq. (161) can be proved using the large
deviation technique used in Ref. [14] in combination
with the local detailed balance (93).

FT along Stoichiometric Cycles

An alternative yet equivalent formulation of the FT
(156) is that given in terms of nonconservative contri-
butions along emergent stoichiometric cycles, Eq. (131):

PL—Wy, {(—Ty))

where P(Wy,{Iy}) is the probability of observing Wy
driving work and {I3;} nonconservative contributions
along the forward process. We discuss its proof App. B.
Remark As for the fundamental currents, the local
detailed balance (127) can be used to prove a steady-state
FT for currents along emergent stoichiometric cycles
P({dn}

( —o0 :
ﬁ t— exp {tﬁznﬂnan} , (163)

)

)
which is valid for autonomous CRNs and arbitrary
initial conditions. J’({Sn}) is the probability of ob-
serving average rates of emergent cycle currents
{% J"(t) dTZan,p]p(T)} equal to {J,,}. In contrast to the
analogous FT obtained in Ref. [15], Eq. (163) is achieved
using a stoichiometric approach based on the identifica-
tion of stoichiometric cycles. For this reason, it accounts
for the minimal set of nonzero macroscopic affinities.



VII. ENSEMBLE AVERAGE RATES DESCRIPTION

We now summarize our main results for ensemble
average rates and discuss the relaxation to equilibrium
of detailed-balanced CRNs. We also highlight the dif-
ference between an approach that does and does not
take into account the topology of the CRN. We do so by
recapitulating the procedure to decompose the EP into
its fundamental contributions. We end by formulating a
nonequilibrium Landauer’s principle.

A. Traditional Description

Enthalpy Balance The enthalpy balance follows from
the time derivative of the average enthalpy, Eq. (60),

deY ppa(h-n) =defH) = (Q) + (W) . (164)

It characterizes the average rate of change of enthalpy in
the same way Eq. (68) characterizes the enthalpy change
along stochastic trajectories. The average heat flow rate
is given by

(Q) = Q™) +(Q™™). (165)

The first term quantifies the average rate of heat of reac-
tion,

QM) = Lo [n-Sp+ 1 -55](T5), (166)
where (Jp) = >, Wp(n)pn is the average reaction cur-
rent. The second term is the average heat flow in the
chemostats,

(Qhm) = Tsy - (1Y), (167)

where (IY) = Zp(—Sg)Up) are the average external
currents, Eq. (19). and the —the second term on the rhs.
Instead, the ensamble average chemical work rate,

(We) = py - (1Y),

quantifies the average rate of exchange of Gibbs free
energy with the chemostats.

Entropy Production Rate At the ensemble average
level, the second law of thermodynamics manifests itself
in the non-negative average EP rate

(£) = de(S) — 1(Q)

=kp Z Wo(N)pnIn
n,p

(168)

W (n)pn
wp(n+Sp) pnss,

> 0. (169)

where (S) =Y ,, pnS(n), Eq. (57). Using the expression
for the transition affinity, Eq. (56), it can be recast into,

T(Z) = (W) —di(G), (170)
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where the chemical work rate and the average Gibbs
potential are given in Eqs. (168) and (48), respectively.
Equivalently, Egs. (164), (169), and (170) can be obtained
by directly averaging Egs. (68), (72a), and (72c), respec-
tively, over all stochastic trajectories.

For closed CRNs, Eq. (170) reduces to di(G) =
—T(X) < 0. This relation, together with Eq. (49),
shows that: (i) (G) is a Lyapunov function, and hence
that closed CRNs relax to equilibrium, Eq. (44); (ii)
(G) — Z{LA}P({LA})Geq({LA}) = T(X) is the average dis-
sipation during the relaxation to equilibrium.

B. CRN-specific Description

Entropy Production Rate  We now summarize the pro-
cedure to recover the EP decomposition (101) at the
ensemble average level. (i) Identify the broken and un-
broken conservation laws, {5, €x, }, §IID. (ii) Identify a
set of N, exchanged species, yp, for which the matrix

whose rows are {E};\i} is nonsingular. The columns of

its inverse are denoted by {@;\P }. Physically, each species
yp breaks exactly one conservation law. The remaining
exchanged species form the set denoted by yy. (iii) The
nonequilibrium semigrand Gibbs potential follows from the
average of Eq. (102),

(9) =2 npPnlkgTInpn +gnl . (171)

It depends on the vector (MYr) which describes the av-
erage population of the combination of moieties whose
conservation is broken by the chemostats, § IID and
Eq. (90). (iv) The change in time of (g) due to the time-
dependent driving describes the average driving work
rate, Eq. (100),

(Wyq) = —depy, - (M¥P). (172)

It quantifies the average amount of work spent to change
the chemical potentials of the chemostats Y. (v) The
second group of exchanged species, yy, is used to iden-
tify the minimal set of fundamental chemical forces,
Iy, = {Fy}, Eq. (92). The average nonconservative chem-
ical work rate follows from the product of these forces
and their corresponding instantaneous external currents,
Eq. (66)

<WS§> = Fy(lyy) - (173)

They quantify the average work per unit time spent to
sustain a net current of species y¢ across the CRN. (vi)
The average EP rate decomposed as in Eq. (101) finally
follows from Egs. (171), (172), and (173)

T(E) = —de(S) + (Wa) + X, (WES). (174)

Its three fundamental contributions appear: a conserva-
tive force contribution, a time-dependent driving contri-
bution, a minimal set of nonconservative terms.
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For open autonomous detailed-balanced CRNs, Jy, =
0, dtuyp = 0, and hence Eq. (174) reduces to d¢(SG) =
—T(X) < 0. Mindful of Eq. (121), this relation shows
that: (i) (9) is a Lyapunov function, and hence that
these CRNs relax to equilibrium, Eq. (119); (ii) (G) —
Z{L)\u}P({L)\u})geq({L}\u}) = T(X) is the average dissipa-
tion during the relaxation to equilibrium.

Enthalpy Balance By averaging Eq. (115), the CRN-
specific average enthalpy balance also ensues

de(30) = (Q) + (Wq) + L, (W),

which strenghten the interpretation of (Wg) and {(W{}:)}
as average work rate contributions.

(175)

C. Average EP along Stoichiometric Cycles

The average EP decomposition expressed in terms of
emergent cycles currents and affinities can be achieved
through an analogous recipe. (i) Identify broken and
unbroken conservation laws, {€, €.}, as well as stoi-
chiometric and emergent stoichiometric cycles, {c¢*, ¢}
§§ IID and IIE. Steps (ii)—(iv) as above. (v) Identify the
emergent stoichiometric cycles affinities, Eq. (124), as
well as their corresponding average currents ) ,Gn,0(Jp),
Eq. (128). (vi) The average EP rate follows from
Egs. (171), (172), and the emergent stoichiometric cy-
cles currents and affinities,

T(£) = —de(9) + (Wa) + X, (), (176)
where,
<rn> = Anzpcn,p<lp> ’ (177)

as in Egs. (130) and (131).

D. Nonequilibrium Landauer’s Principle

We can now formulate the nonequilibrium Landauer’s
principle for the driving and nonconservative work. We
have already seen that when the driving is stopped and
all forces are turned off, the CRN relaxes to equilibrium
by minimizing the nonequilibrium semigrand Gibbs
potential. Equation (121) can be thus combined with

Eq. (174) to give
(WIT) + 3, (WRS) = kT dD(pl[peq) + T().
where
(WA == (Wq) —deX g1, 1PULANSeq{In, D), (179)

is the irreversible driving work rate. We emphasize that
this work is gauge invariant, see § V C. Integrating over
time, we obtain

(WAT) + 3, (WES) = kgT AD(p|[peq) + T (Z) . (180)

(178)
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FIG. 7. Pictorial representation of the transformation between
two nonequilibrium probability distributions. The nonequilib-
rium transformation (blue line) is compared with the equilib-
rium one (green line). The latter is obtained by shutting down
the driving and turning off the forces at each time (dashed
gray lines).

This fundamental result shows that the minimal cost
for transforming a CRN from an arbitrary nonequilib-
rium state to another is bounded by a difference of
relative entropies, as depicted in Fig. 7. The transfor-
mation may involve either time-dependent driving, or
relaxation to steady states, or both. It generalizes the
early result obtained in Refs. [29, 62, 63] to nondetailed
balanced CRNs (see also Refs. [54, 64]). For uncon-
ditionally detailed-balanced CRNs, we recover the re-
sult first obtained in Ref. [26] for deterministic CRINSs:
(W) = KT AD(p[peg) + T ().

Remark To obtain the Landauer’s principle for (Wy)
and {(WS§>}, the equilibrium states of the open CRN
have been used as reference states, see Fig. 7. Alterna-
tively, one could use the equilibrium states of the closed
CRN, which are obtained by shutting down all exchange
reactions. If one does so and uses Eq. (170), an analo-
gous Landauer’s principle for the chemical work can be
derived,

(W) = kT AD(p|[peq) + T (L) , (181)
where

(WE) 2= (W) = [, PULDGeg (1A)] - (182)

is the irreversible chemical work. The traditional ther-
modynamic work relation (W) > 0 is recovered for
processes whose initial and final condition are equilib-
rium states.

E. Connection with Deterministic Descriptions

For CRNs with very abundant populations of species,
a deterministic dynamical description in terms of non-



linear rate equations is justified. The correspond-
ing nonequilibrium thermodynamics was analyzed in
Ref. [26], where the counterparts of Egs. (164), (170), and
(104), can be found. Following a procedure similar to
that described in this paper, one can also formulate the
deterministic analog of the EP decomposition (174).

One can also recover the deterministic thermodynamic
description from the stochastic one by performing the
limit n > 1 and assuming that pn ~ 0, N, i.e. the
distribution is very peaked around the population that
is solution of the rate equations, N, see App. A.

We thus conclude with two remarks.

Remark Not all results valid for stochastic CRNs hold
for the deterministic ones. An example is provided by
the adiabatic—nonadiabatic EP decomposition introduced in
Ref. [65] for generic stochastic processes: it is valid for
deterministic CRNs only for complex-balanced CRNs, see
Refs. [26, 66].

Remark As briefly mentioned in § I A, there is an
alternative way of modeling open CRNs in which the
exchanged species y are treated as particle reservoir with
very large population. All main results of our paper—
i.e. the EP decomposition (101), the finite-time detailed
FT (156), and the Landauer’s principle (180)—still hold.
The only difference lies in the fact that the different
definitions of stoichiometric matrices, Eq. (6), also en-
tail slightly different definitions of broken conservation
law. Besides that, the recipe described in § VIIB can be
followed in the same way.

VIII. APPLICATION

We now illustrate our EP decompositions (101) and
(130) on a CRN displaying more than one fundamen-
tal force, which thus allows us to introduce the phe-
nomenology of free energy transduction. We consider
the following active catalytic mechanism

Kiq Kis Kig

T+E E+D

Kio  kis (183)
ET+S=—E* = ED+P.

It describes the T-driven catalysis of S into P, having D
as a byproduct, see Fig. 8. All substrates and products
are regarded as exchanged species,

Sk:selpk:\‘Pe/Tk:\Teer:De' (184)

+s +p +t +d
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FIG. 8. Pictorial illustration of the open CRN in Egs. (183)
and (184), from which one can see the more clearly the active
catalytic mechanism.

The stoichiometric matrix of the open CRN reads

+1 42 43 44 45 +s 4p +t +d
/=10 0 1 0] 0 0 0 0
erl 1 -1 0 0 —1] 0 0 0 0
o1 210 0] 0 0 0 o0
|l o 0o 1 =11 0 0 0 0
sl o100 0|1 0 0 0
sl oo 1 0 0/ 0 1 0 0
=10 0 0 0| 0 o0 1 o | (18
bl o o0 1 0ol 0 0 0 1
|00 0 0 0 —10 0 o0
pl 00 0 0 0 0 -10 o0
o o0 0 0 0 0 0 -1 o0
b\Lo 00 00 00 0 —1

)

in which the stoichiometric matrix of the closed CRN is
highlighted.

We now follow the recipe described in § VII, and
characterize all terms of Eq. (101). (i) The closed CRN
has three independent conservation laws:

E ET E*¥ ED S P D T S, P, T, D,

= (111 1000000 0 0), (186a)
EET E*EDSPDTS, P, T, D,

5= (00 1 0110071 10 0), (186b)
EETE*EDSPDTS, P, T, D,

¢r= (011 1001100 1 1). (1860

The first corresponds to the enzyme moiety and it is
unbroken in the open CRN. In contrast, the last two
correspond to the moieties S-P and T-D, which are
broken in the open CRN. (ii) We choose S, and T, as
chemostatted species Y, since the entries of {5 and £r
corresponding to these species identify a nonsingular
matrix—it is an identity matrix. (iii) The moieties popu-
lation vector reads

MYP _ Se Np* +ng +np
n T. \ MgT +Ng*x + Ngp + N1 +Np

) , (187)
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from which the semigrand Gibbs potential G follows,
Egs. (102) and (171). (iv) The driving work rate follows
from the scalar product of the vector above and

S. [ —0
*atHYP = ( t}’LSe )/

188
Te _at UTe ( )

Egs. (100) and (172). (v) The chemostatted species P,
and D, form the set Y and determine the fundamental
forces,

Fy = <9Pe) _ Pe ( Hp, — Hs, >
f I, De \ MWD, —HT, /'

Eq. (92). Together with the instantaneous external cur-

rents
IYf: (IPE> — P, <]+p_]—p)
Ip, Do\ Jya—J-a /)’

they identify the nonconservative contributions, Eq. (98).
The first one, Ip,Ip,, characterizes the work spent to
convert S into P, while the second, Ip_Ip,, that due to
the consumption of T. The sum of these terms and the
driving work integrated over time contribute to the EP
as in Eq. (101).

The similar EP decomposition written in terms of non-
conservative contributions along stoichiometric cycles
follows when these latter are identified. The kernel of
stoichiometric matrix of the closed CRN is empty, while
that of the open is spanned by

(189)

(190)

+1 +2 +3 +4 +5 +s +p +t +d
ci=(1 0 0 1T 1 0 0 1 -1), (1910)

1 +2 +3 +4 +5 +s +p +t +d
cg=(1 1 1 1 0 1 =11 —=1), (191b)

which are regarded as emergent stoichiometric cycles.

Along the first, the enzyme converts one molecule of T
into one of D, while for the second it processes T and S
and produces D and P,

Se PE‘ Te DE‘

Ci=(001-1), (192a)
S. P, T, D,

Cl=(1-11-1). (192b)

At this point we can proceed from step (v) and deter-
mine the affinities,

(193a)
(193b)

as well as the related instantaneous reaction currents,

A1 = pt, — HUp,
Az = p1, + Us, — Up, — HP, ,

(194a)
(194b)

Jv = I+p _J—p _]+d —J-d
d2=J—p—J+p-
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The nonconservative work follows from the products
A1d1 and AJ,, and the decomposition in Eq. (130)
can be thus expressed. The former characterizes the
dissipation due to the futile consumption of T, since S
is not converted into P. The latter, instead, is the work
spent to convert T and S into D and P.

This system can be used to illustrate free energy trans-
duction when one considers the autonomous regime
where Jp, < 0, Fp, > 0, but <WBZ) > —(W{}:) > 0.
Namely, the external current of P, flows towards the
chemostat, (Ip,) < 0 (P, produced), despite the fact that
its force is positive, Fp, > 0. This can happen thanks to
the free energy provided by the conversion of T, into
D., <WBCE> > 0. In Fig. 9 we illustrate the behavior of
the average external currents and work contributions
as function of time when the transducer in Fig. 8 is
smoothly switched from a nontransducing regime to
a transduction one. At early times, S"De =0, CT"pe > 0,
and one observes only a consumption of Pg: (Ip,) > 0
and (Ip,) ~ O (respectively, orange and blue curves in
Fig. 9a). Consequently, the nonconservative work con-
tributions are (W§§> > 0 and <WB‘;> = 0 (respectively,
orange and blue curves in Fig. gb). In contrast, when the
motive fundamental force Ip, is switched on (at large
times), the current (Ip ) turns negative whereas the mo-
tive current (Ip,) allignes itself with its corresponding
force. We thus observe <WB‘;> > —(W{,‘:> > 0. At in-
termediate times, driving work is extracted following
the smooth increase of the motive force (green curve in
Fig. gb).

IX. CONCLUSIONS AND PERSPECTIVES

In this paper we presented a thorough description
of nonequilibrium thermodynamics of stochastic CRNs.
The fundamental results of traditional irreversible chem-
ical thermodynamics (viz. enthalpy and entropy balance)
are formulated at the level of single trajectories, Egs. (60)
and (71). By making use of the CRN topology and by
identifying conservation laws we decompose the EP into
two fundamental work contributions and a semigrand
potential difference, Egs. (101) and (174). The driving
work describes the thermodynamic cost of manipulat-
ing the CRN by changing the chemical potentials of its
chemostats. Instead, the nonconservative work quanti-
fies the cost of sustaining chemical currents through the
CRN. These currents prevent the CRN from reaching
equilibrium, but when the related fundamental forces
vanish (and the chemical potentials of the reservoirs
are kept constant in time), the CRN relaxes to equilib-
rium by minimizing the semigrand Gibbs potential. We
elucidate the relationship between this thermodynamic
potential and the dynamical potentials used in chemical
reaction network theory. Our EP decomposition written
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FIG. 9. (a) average external currents and (b) average work rates vs. time, for the CRN in Fig. 8. The plots are obtained using 10*
trajectories generated via the stochastic simulation algorithm. To simplify the illustration, all substrate and products are treated as
chemostatted species. The concentrations of S, P,, and D, are kept constant [[S,] = 10, [P,] = 70, and [D,] = 10] whereas that of
T, increases according to a logistic function: [T,] = [TeJmax/(1 +exp{—k(t —to)}) [[Telmax = 200, k = 20, ty = 1.5]. This mimics
the process in which the force that sustain the active catalysis, Jp,, is switched on from 0 to a finite value after ty. The change
of chemical potential pr, is plotted in red in the inset. The choice of the rate constants is as follows: k1 = 103; k p = 103;
ki3 =103 kg =103 ko5 = 102; whereas the backward rates are obtained by means of Eq. (52) using the following values for
the standard state chemical potentials: pug = 1; upr = 3; u}%* =4 upp =2 pge =1; ul‘ie =2 p,%e =10; ploje = 1. Since reactions are
unimolecular the constant term —kgT1In[s] is ignored. Finally, kgT = 1 and the value of the enzyme moiety is Lg = 10.

in terms of stoichiometric cycles affinities generalizes
previous decompositions formulated for linear CRNs or
steady-state dynamics.

Two detailed FTs follow from our EP decompositions,
Egs. (156) and (162). They are valid at any time and en-
tirely expressed in terms of physical quantities. Hence,
they offer the possibility of validating experimentally
our findings, and, from a wider perspective, of validat-
ing the foundations of stochastic thermodynamics be-
yond electronic devices or colloidal particles [67, 68]. Fi-
nally, we derive a nonequilibrium Landauer’s principle
for the work contributions, Eq. (180), which quantifies
the minimum thermodynamic cost involved in trans-
formations between arbitrary nonequilibrium states. In
contrast to early formulations of the latter principle, we
consider not only the cost of external manipulations, but
also that related to sustained currents across the system.

Our EP decomposition identifies the fundamental dis-
sipative contributions in CRNs of arbitrary complexity,
and it can be thus used to analyze free energy con-
version in CRNs beyond single biocatalysts, molecular
motors, or sensory systems, which are usually described
by linear CRNs [69—72]. The nonconservative work con-
tributions capture Hill’s idea of free energy transduc-
tion and extend it to nonlinear CRNs with an arbitrary
number of chemical forces. [As illustrated in § VIII,
transduction occurs whenever one contribution becomes
negative, thus requiring the other ones to be positive
and larger than the former in absolute value by virtue

of the second law of thermodynamics.] In turn, the driv-
ing work contribution allows to generalize transduction
to CRNs with reservoirs externally controlled in time.
Hence, our framework can be used to analyze pumping
in CRNSs [73, 74], namely mechanisms whose periodic
external control sustains a chemical current against its
spontaneous direction.

In biochemical information-handling systems [71, 75,
76] and chemical computing [77-79], information is
stored and processed at the molecular level. Early
applications of the nonequilibrium Landauer’s princi-
ple proved successful for characterizing the thermody-
namic cost of information processing in simple mecha-
nisms [80, 81]. Our generalization of the work principle
could be thus used to analyze biochemical information-
handling systems of far greater complexity. This en-
deavor is important in the light of the current under-
standing that biological systems have developed by opti-
mizing the gathering and representation of information
[82, 83].

Noise is known to play an important role in many
biochemical processes. Since a complete stochastic de-
scription remains both analytically and computationally
demanding, developing hybrid stochastic-deterministic
descriptions would be of great importance [26, 84, 85].
Also, many of these processes are regulated by enzymes,
thus extending the present theory beyond mass-action
kinetics, as already done for deterministic CRNs [86], is
also necessary.
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Appendix A: Thermodynamic Potentials

Using equilibrium statistical mechanics, we derive
the equilibrium Gibbs free energy of a CRN in a given
state n. We refer the reader to Refs. [87-89] for similar
approaches.

We regard the reacting species, labelled by o =
1,...,N,, as solutes of a an ideal dilute solution in a
closed vessel. Since the solvent, s, is much more abun-
dant than the solutes, ns > > .ng. As in ideal so-
lutions, interactions among solutes are negligible, and
the partition function of the whole solution Q(T,n, n)
can be written as the product of single species partition

functions, q = {q(T)} and qs, [87, Ch. 9],
(Ms+ > o)l
oTm ) = = rTner e ] Lase a0

q = {q¢(T)} depends on temperature and on solutes—
solvent interactions. The combinatorial term counts the
different distinguishable configurations of molecules,
and can be approximated as

(s +2 ono)! I nee _n (a2)
n![[one! "7 9ng! T !

using Stirling’s formula and the high relative abundance
of the solvent. Using Eq. (A1), the Gibbs free energy of a
given state n is thus given by

gn = —kgTInQ(T,n, ng) (A3)
— (0° —TkgTInng) n+kgTlnnl +gs, = >
where

n° = —kgTln g (Ag)

can be identified as standard chemical potentials. Since
the contribution deriving from the solvent, g5 :=
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—kgT In gs(ns), is constant, it can be set to zero without
loss of generality. Hence, the Gibbs free energy changes
along internal reactions are

Ap;g =
= (u° —TkgTInng) - Sp, +kgTIn{(n+S;,)!/n!} .

(As)
Thermodynamic Limit For V > 1, n > 1, and finite
z] =n/V, the Gibbs potential (A3) becomes

In+s, —9n

gn/V~p-[z] —kpTlz] - 1, (A6)
where
i =1 +kpTIn{[z)/[s]) (A7)

are the chemical potentials of solutes in an ideal dilute
solution, and [s] = ng/V is the concentration of solvent.
We thus recover the Gibbs free energy density of ideal
dilute solutions, see e.g. [47, 90].

When applying the same limit to the Gibbs free energy
differences, Eq. (A5), we recover the Gibbs free energies of
reaction,

Ap;g>~n-Sp, . (A8)

This result also justifies the form of the second term in
the local detailed balance of exchange reactions, Eq. (53).

Summarizing, gn given in Eq. (A3) characterizes the
free energy of each CRN state. In the thermodynamic
limit, the traditional potentials of ideal dilute solutions
are recovered.

Appendix B: Proofs of Detailed Fluctuation Theorems

To prove the finite time detailed FTs (156) we use a
moment generating functions and change the notation
in favor of a bracket one using operators.

Let P¢(n, Wy, {Wyc}) be the joint probability of observ-
ing a trajectory ending in the state n along which the
driving work is W4 while the nonconservative contribu-
tions are {W{ﬁ}. These probabilities, one for each n, are
stacked in the ket IPt(Wd,{W‘y‘?}D. The time evolution
of their moment generating function,

At (B {Ey)) = dednyfdwm exp { —EaWa — Xy, &y Wik P (W, (WASD) , (B1)

is ruled by the biased stochastic dynamics
dt |/\t(£d/ {Esyf})> = Wt (E»d/ {Eyf}) |At(£d/ {E‘yf})> 7

(B2)
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where the entries of the biased generator are given by
Wmn,t(&d/{ Evyf }) = Zpr(Tl) {exp {_nyzvyfgjyf ( - ng)} 6m,n+Sp - 6Tn,'n} - ‘Edatgmén,m . (B3)

We denoted the entries of Sg‘ as {Sp'}. As a consequence of the local detailed balance (93), the stochastic generator
satisfies the following symmetry

W (Eq, &y D) = B We(Eq, {1 — &y ) By, (B4)

where the entries of B are given by

Bnmt == exp {—PBgm(t)} dnm - (Bs)

Introducing the partition function for the generic equilibrium state identified by the protocol at time t, Z: =
Z(me, {La ) = exp{—[SSeqT 1, the initial condition can be written as

N0 (&, {&yeH)) = IPeq,) = Bo/Zo0 1) - (B6)

The ket [1) refers to the vector in the state space whose entries are all equal to one.
In order to proceed further, it is convenient to first prove a preliminary result. Let us consider the generic biased
dynamics, e.g. Eq. (B2),

di [A(8)) = Wi (E) IAL(E)) , (B7)

whose initial condition is |[Ag(&)) = Ip(0)). A formal solution of Eq. (By) is |A¢(&)) = U(&) Ip(0)), where the
time-evolution operator reads U (&) = T4 exp {fé dT W (&) }, T+ being the time-ordering operator. We clearly have
di Ui (&) = Wi (&)Ut (E). Let us now consider the following transformed evolution operator

Ue (&) == X " Ue(E)Xo, (B8)

Xt being a generic invertible operator. Its dynamics is ruled by the following biased stochastic dynamics

el (&) = dey "Ue(8)%0 + ¢ deUe (8)X0 = {2y 0 + 37 Wi (8)X f T (2) = Wi (8) W (2), (Bo)

which allows us to conclude that the transformed time-evolution operator is given by

t
W(E) = T4 exp {Jo dTWT(E,)} ) (B10)

From Egs. (B8), (Bg) and (B1o) we deduce that

t
MU (E)Xo = Ty exp U dr [dej A+ %5 WT(a)xT} } . (B11)
0

We can now come back to our specific biased stochastic dynamics (B2). The moment generating function of
Pt(Wd,{WSf ) is given by

Zt

Zo (B12)

At(&a {&yd) = (MAL(Ea {Ey D) = (U (Ea, {Ey D Bo/Z0lT) = <1I%BI1 Ue(E&q,{&y}) Boll)

where Uy (&g, {&y,}) is the time-evolution operator of the biased stochastic dynamics (B2). Note that (1| B¢/Z+ is the
equilibrium initial distribution of the backward process (peq,|- Using the relation in Eq. (B11), the last term can be
rewritten as

t
= <'Peqt|7+ exp {JO dt [aT‘B;1 Br+ %;] WT(&d/{E»yf}) BT:| } 1) exp {*BAgeq} ’ (B13)
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where AGeq is defined in Eq. (157). Since 6TB;] B = diag{0.gn} the first term in square bracket can be added to
the diagonal entries of the second term, thus giving

t
= <peqt|7+ exp {JO dt [B;] We(&q — 1/{<t—,yf}) BT} } 1) exp {_BAgeq} . (B14)

The symmetry (B4) allow us to recast the latter into

t
= (Peq,|T+ exp {JO dtWr (84 —1,{1 - aw)} 1) exp {—BAGeq} - (B15)

The crucial step comes as we transform the integration variable from 7t to T¥ = t — 1. Accordingly, the time-ordering
operator, T, becomes an anti-time-ordering one T_, while the diagonal entries of the biased generator become

\/\7111111,‘[7'-[1L (E,d, {Evyf}) = prp (m/ t— TT) + E‘d aTTgm(t - TT) (B16)
from which we conclude that

an,tquf (Evdl {E‘yf}) = an,tfrT (_E‘d/ {E‘yf}) = WT

nm,tf

(—&a{&yd) - (B17)

WJLT (&€q,{&y,}) is the biased generator of the dynamics subject to the time-reversed protocol, 7, ie. the dynamics of
the backward process. Equation (B15) thus becomes

t
= (Peq,|T— exp {Jo d<f WLT (1—&q,{1— E,yf})} 1) exp {—BAGeq} - (B18)

Upon a global transposition, we can write

t
=y exp { | ae WL (1 €, 1~ £4.) | pes, ) exp (-G} (B1o)
where we also used the relationship between transposition and time-ordering

-
Tt (HiAIJ = (T-TLiAw) (B20)
in which Ay is a generic operator. From the last expression, we readily obtain

= (U} (1— &4, {1 — £y,}) IPeq, ) exp {—BAGeq }
— Al

(B21)
1 (1=&a, (1= &y,)) exp {—BAGeq}

where /\]: (E,d,{iy f}) is the moment generating function of P][L(Wd,{Wﬂ?}). Summarizing, we have the following
symmetry

At(ad/{ayf}) = /\I (1 - Ed/{] - Eyf}) exp {_BAgeq} ’ (BZZ)

whose inverse Laplace transform gives the FT in Eq. (156).

Fluctuation Theorem for Emergent Stoichiometric Cycles Currents

The finite-time detailed FT for nonconservative contributions along fundamental cycles, Eq. (162), follows the
same logic and mathematical steps described above. The moment generating function which now must be taken
into account is

At (e, (En))) = WAl Tdly exp {~EaWa = Zal }IPeWa (1)) (B23)



which is ruled by the biased generator whose entries are

Winn,t(Ea &0 D) = X wp(m) {exp { L EnAnnp } mnis, —Smn | — £adtomdn,m -
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(B24)

The symmetry of the latter generator—on top of which the proof is constructed—is based on the expression of the

local detailed balance given in Eq. (93),

WY (g, (En}) = By Wi(Eq, {1 — En)) By,

(B25)

where the entries of B¢ are given in Eq. (B5). Following the steps from Eq. (B12) to Eq. (B22), with the definitions
and equations in Egs. (B23)—-(B25), proves the FT in Eq. (162).
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5 DETERMINISTIC DESCRIPTION

In the previous chapter we established a rigorous stochastic thermody-
namic description for chemical reaction networks. This description is im-
portant for those processes involving low particle numbers, but in those
circumstances in which particle numbers are high, e.g. metabolic networks,
stochastic descriptions are either unfeasible or unnecessary. It might be un-
feasible because the CME is both extremely hard to solve analytically and
very demanding to compute numerically. It might be unnecessary because
high particle numbers—n > 1—allow mean field descriptions in terms
of rate equations or reaction—diffusion equations for concentration distri-
butions, which are indeed easier to solve, at least numerically.

In this chapter, we introduce the thermodynamic description for two
fundamental mean field types of dynamics: rate equations and reaction—
diffusion equations, Secs. 5.1 and 5.2. In Sec. 5.3, we introduce a thermody-
namically coarse-graining which enable to simplify descriptions of chemical
reaction networks involving enzymatic reactions.

5.1 SPATIALLY HOMOGENEOUS PROCESSES

In the following reprinted article, p. 145, we present a nonequilibrium
thermodynamic description for deterministic chemical reaction networks
described by rate equations. The timeless expression of these equation is
exactly as in Egs. (87) and (87), where { N* } and { NY } need to be regarded
as concentrations homogeneously distributed in space, see Egs. [(9) and
(10), p. 148]. We mention that with respect to the description in Ch. 3 the
concentrations of the chemostatted species are directly controlled by the
chemostats, i.e. they can be regarded as chemical reservoirs within the sys-
tem. Hence, in contrast to the description in Ch. 4 all reactions are internal,
and those involving chemostatted species also involve a flow of chemostats
which restores their concentrations.

Our approach is inspired by stochastic thermodynamics as we build the
thermodynamic description on top of the dynamics. The connection be-
tween these two lies in the local detailed balance property, which—in a
timeless formulation—relates the ratio of forward and backward extent of
reactions to the overall Gibbs free energy change, Eqs. (93) and [(48) and

(50), p- 153-154],

d&4p(N)

1 _rTvr
N aE_,(N)

= P [Zh (NS} + X iy (NV)SY] (124)
Notice that internal Gibbs free energy changes are quantified as differences
of internal species chemical potential. It is a consequence of the local equi-
librium hypothesis, according to which all spatial and thermal degrees of
freedom are at equilibrium except for the overall concentrations. Hence, we
can characterize the energetic state of the network using well defined chem-
ical potentials, whose expression follows from the theory of ideal dilute
solutions, Eq. [(45), p. 153].

139



140

| DETERMINISTIC DESCRIPTION

In contrast to previous thermodynamic description of chemical processes,
ours is set up on a mathematically rigorous network description. We can
thus formalize the energy and entropy balances (Egs. (90) and (93)) for arbi-
trary chemical networks, Egs. [(68) and (65), p. 155], and, using conservation
laws, we can characterize the thermodynamics of open networks relaxing
to equilibrium in absence of driving, i.e. detailed-balanced networks, Sec. [V,
pp- 158-160]. We also bridge the gap between chemical thermodynamics
and (i) chemical reaction network theory and (ii) information processing.
Concerning the former, we characterize the thermodynamic properties of
complex-balanced networks [1-3], which are a class of networks whose spe-
cific topological properties completely determine their dynamic behaviour,
Sec. [IIE and IV, pp. 151-153 and 157-158]. Regarding the latter, we for first
formulate the nonequilibrium Landauer principle (Egs. (73) and (75)) for de-
terministic descriptions, Egs. [(82) and (101), pp. 156 and 160]. Remarkably,
the generalized relative entropy D, Eq. (72), becomes the Lyapunov function
of detailed- and complex-balanced networks introduced by Shear [3, 4],

N o
D=D(N|[Neg) =) [NIn NG

o eq

see Eq. [(75), p. 156]. It has the same properties of the relative entropy
for probability distributions: it is always positive and vanishes only when
N = Ngq. It thus quantifies the distance from equilibrium, as formalized in
Eq. (72).

In the second reprinted article, p. 171, the technique of analysing con-
servation laws is applied to monomer exchange dynamics [5]. Our aim is
to model the action of a class of enzymes, called disproportionating enzymes,
active in polysaccharides metabolism [6-8]. In these networks the species
are polymers, which can be of any size, and hence the chemical reaction
network is infinite dimensional. This gives rise to dynamical behaviours
usually absent in ordinary chemical reaction networks, like for instance con-
tinuous growth. Conservation laws allow us to clearly identify when these
behaviours manifest.

5.2 SPATIALLY INHOMOGENEOUS PROCESSES

The cases described so far assumed that the concentrations of reacting
species were homogeneously distributed in the reaction vessel. However,
this is not always a good approximation, and when it is not, diffusion
must be taken into account: the rate equations must be replaced by reaction—
diffusion equations. These equations may give rise to interesting phenomenolo-
gies, like for instance Turing patterns and travelling waves, which are sta-
tionary and propagating inhomogeneous spatial distribution of concentra-
tions, respectively [9, Sec. 19.5]. These phenomena appear in several biolog-
ical processes like organs and tissues formation [10], and cellular rhythms
regulations via calcium waves [11].

In the article reprinted at p. 185 we provide a complete nonequilibrium
thermodynamic description of reaction—diffusion systems. The connection
between the phenomenological and dynamical description is understood
once the reaction—diffusion equation, Eq. [(1), p. 185], are formulated in a
timeless fashion

dN?(r) = =V -d=7(r) + 3} ,Sg d&p (1) + d:N(r). (126)
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In this equation, N°(r) is the local concentration and the first term on the
rhs quantifies the rate at which diffusion changes it. The other two terms
on the rhs are the reaction and exchange terms already mentioned, where
the latter is different from zero solely for the chemostatted species and in
those regions of space where the reservoirs are located. The balances of
abundances, Egs. (87) and (89), follows when integrating Eq. (126) over the
volume of the reaction vessel V. Indeed, {N¢ }, {d&, }, and { d;N° } are the
overall abundances, extents of reaction, and exchange terms, respectively,

NU:J' drN°(r), dép:J drdé&y(r), drNG:J drd;N°(r). (127)
\% \% \%

The first therm on the rhs of Eq. (126) vanishes when integrated over all
space. We can thus identify conservation laws Eq. [(8), p. 187], and ex-
hibit the entropy production decomposition in terms of conservative, driv-
ing, and nonconservative contributions, Egs. (102) and [(12), p. 187], where
the details of the derivation are reported in the supplementary material at
p- 191. In this context, the conservative term, —dg, can be interpreted as
the cost of structuring spatial distributions of molecules, the driving work,
0%, that of manipulating them, and finally the nonconservative chemical
works, { Xy, d;NYt}, that of sustaining them. The minimal costs of struc-
turing, manipulating, and sustaining these distributions is quantified by a
nonequilibrium Landauer principle, Egs. (75) and [(14), p. 187]. In this for-
mulation, the generalized relative entropy becomes

N(r)

Ngq

N9(r)In —N?(r)+Ngg| =0, (128)

D =D (N|Neg) = JV dr)

which measures how dissimilar a concentration distribution is from an ho-
mogeneous equilibrium one, Eq. [(4), p. 186].

5.3 COARSE—GRAINED PROCESSES

Elementary reactions is one the assumption underpinning both the stochas-
tic and the deterministic thermodynamic descriptions introduced thus far.
However, it is very well known that the majority of reactions in biochemical
systems are catalysed by enzymes. An accurate description of enzyme catal-
ysed reactions in terms of elementary reactions would require a detailed
description of each individual step. Unfortunately, this is quite unfeasible
for two main reasons. First, all intermediate reaction steps are difficult to
identify for each enzyme. Second, biochemical networks, e.g. metabolic net-
works, typically involve a vast number of different enzymes which overall
catalyse several hundreds of reactions. Including each intermediate elemen-
tary step for each enzymes would enormously raise the complexity of the de-
scription. We thus need a thermodynamically consistent way of accounting
for enzymatic reactions, i.e. a thermodynamically consistent coarse-graining
scheme. In the Article reprinted at p. 201 we provide such a procedure.

The idea of this procedure is as follows (Sec. [2, p. 202], and Fig. [1,
p- 202]). First, the enzymatic scheme is isolated and treated as a chemi-
cal reaction network: all enzyme complexes are regarded as internal species
while all substrates and products as chemostatted. At this point, we observe
that in the same way reactions create pathways between reservoirs in generic
networks, Sec. (3.3), enzymes create pathways transforming substrates into
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products. Therefore, the stoichiometry of these transformations must be
given by Eq. (105)—this emphasizes once more the importance of conser-
vation laws. These overall transformations determine the coarse-grained
reactions which replace the enzymatic steps. Their currents, or extent of
reaction, can be obtained by means of the graph-theoretical method first in-
troduced by Kirchhoff [12, 13], whereas their affinity is given by the funda-
mental forces, Eq. (101). As an important result, we also show that the local
detailed balance as written in Eq. (124), is in general invalid at the coarse-
grained level: it is valid solely for those enzymatic schemes characterized by
one fundamental force, i.e. one pathway between substrates and products.
Importantly, this clarifies previous misconceptions about its validity, cf. [14].

REFERENCES FOR CHAPTER §

[1] F. Horn, “Necessary and sufficient conditions for complex balancing
in chemical kinetics”, Arch. Ration. Mech. An. 49.3 (1972), 172—186.

[2] M. FENBERG, “Complex balancing in general kinetic systems”, Arch.
Ration. Mech. An. 49.3 (1972), 187-194.

[3] F Horn and R. Jackson, “General mass action kinetics”, Arch. Ration.
Mech. An. 47.2 (1972), 81—-116.

[4] D.SHEAR, “An analog of the Boltzmann H-theorem (a Liapunov func-
tion) for systems of coupled chemical reactions”, J. Theor. Biol. 16.2
(1967), 212—228.

[5] P.Krarivsky, S. REDNER and E. BEN-NAM, A Kinetic View of Statistical
Physics, Cambridge University Press, 2010.

[6] G.JonEs and W. WHELAN, “The action pattern of d-enzyme, a trans-
maltodextrinylase from potato”, Carbohydr. Res. 9.4 (1969), 483—490.

[7]1 T.TakanHA and S. M. SMITH, “The functions of 4-x-glucanotransferases
and their use for the production of cyclic glucans”, Biotechnol. Genet.
Eng. Rev. 16.1 (1999), 257—280.

[8] O. KartaL et al., “Carbohydrate-active enzymes exemplify entropic
principles in metabolism”, Mol. Syst. Biol. 7.1 (2011), 542-542.

[9] D. KonpEerub! and 1. PRIGOGINE, Modern Thermodynamics: From Heat
Engines to Dissipative Structures, Wiley, 2014.

[10] D. IBER and D. MENsHYKAU, “The control of branching morphogene-
sis”, Open Biol. 3.9 (2013), 130088.

[11] K. THURLEY et al., “Fundamental properties of Ca2+ signals”, Biochim.
Biophys. Acta 1820.8 (2012), 1185-1194.

[12] G. KircHHOFF, “Ueber die Auflosung der Gleichungen, auf welche
man bei der Untersuchung der linearen Vertheilung galvanischer Strome
gefiihrt wird”, Ann. Phys. 148.12 (1847), 497-508.

[13] E.L.KING and C. ALTMAN, “A Schematic Method of Deriving the Rate
Laws for Enzyme-Catalyzed Reactions”, J. Phys. Chem. 60.10 (1956),
1375-1378.

[14] D. A. BEarp and H. Q1aN, “Relationship between Thermodynamic

Driving Force and One-Way Fluxes in Reversible Processes”, PLoS
ONE 2.1 (2007), €144.


http://dx.doi.org/10.1007/BF00255664
http://dx.doi.org/10.1007/BF00255664
http://dx.doi.org/10.1007/BF00255665
http://dx.doi.org/10.1007/BF00251225
http://dx.doi.org/10.1016/0022-5193(67)90005-7
http://dx.doi.org/10.1016/0022-5193(67)90005-7
http://dx.doi.org/10.1017/CBO9780511780516
http://dx.doi.org/10.1017/CBO9780511780516
http://dx.doi.org/10.1016/s0008-6215(00)80033-6
http://dx.doi.org/10.1016/s0008-6215(00)80033-6
http://dx.doi.org/10.1080/02648725.1999.10647978
http://dx.doi.org/10.1080/02648725.1999.10647978
http://dx.doi.org/10.1038/msb.2011.76
http://dx.doi.org/10.1038/msb.2011.76
http://dx.doi.org/10.1002/9781118698723
http://dx.doi.org/10.1002/9781118698723
http://dx.doi.org/10.1098/rsob.130088
http://dx.doi.org/10.1098/rsob.130088
http://dx.doi.org/10.1016/j.bbagen.2011.10.007
http://dx.doi.org/10.1002/andp.18471481202
http://dx.doi.org/10.1002/andp.18471481202
http://dx.doi.org/10.1002/andp.18471481202
http://dx.doi.org/10.1021/j150544a010
http://dx.doi.org/10.1021/j150544a010
http://dx.doi.org/10.1371/journal.pone.0000144
http://dx.doi.org/10.1371/journal.pone.0000144

The following article is reprinted from

[R. Rao and M. EsrosiTo, Phys. Rev. X 6.4 (2016), 041064]

under the conditions of the Creative Commons Attribution 3.0 Unported
Licence®.

The page numbers placed in the outer margins provide a continuous pagi-
nation throughout the thesis.

1 https://creativecommons.org/licenses/by/3.0/


https://creativecommons.org/licenses/by/3.0/




PHYSICAL REVIEW X 6, 041064 (2016)

Nonequilibrium Thermodynamics of Chemical Reaction Networks:
Wisdom from Stochastic Thermodynamics

Riccardo Rao and Massimiliano Esposito

Complex Systems and Statistical Mechanics, Physics and Materials Science Research Unit,
University of Luxembourg, L-1511 Luxembourg, Luxembourg

(Received 23 February 2016; revised manuscript received 26 October 2016; published 22 December 2016)

‘We build a rigorous nonequilibrium thermodynamic description for open chemical reaction networks of
elementary reactions. Their dynamics is described by deterministic rate equations with mass action
kinetics. Our most general framework considers open networks driven by time-dependent chemostats.
The energy and entropy balances are established and a nonequilibrium Gibbs free energy is introduced.
The difference between this latter and its equilibrium form represents the minimal work done by the
chemostats to bring the network to its nonequilibrium state. It is minimized in nondriven detailed-balanced
networks (i.e., networks that relax to equilibrium states) and has an interesting information-theoretic
interpretation. We further show that the entropy production of complex-balanced networks (i.e., networks
that relax to special kinds of nonequilibrium steady states) splits into two non-negative contributions: one
characterizing the dissipation of the nonequilibrium steady state and the other the transients due to
relaxation and driving. Our theory lays the path to study time-dependent energy and information

transduction in biochemical networks.

DOI: 10.1103/PhysRevX.6.041064

I. INTRODUCTION

Thermodynamics of chemical reactions has a long
history. The second half of the 19th century witnessed
the dawn of the modern studies on thermodynamics of
chemical mixtures. It is indeed at that time that Gibbs
introduced the concept of chemical potential and used it to
define the thermodynamic potentials of noninteracting
mixtures [1]. Several decades later, this enabled de
Donder to approach the study of chemical reacting mixtures
from a thermodynamic standpoint. He proposed the
concept of affinity to characterize the chemical force
irreversibly driving chemical reactions and related it to
the thermodynamic properties of mixtures established by
Gibbs [2]. Prigogine, who perpetuated the Brussels School
founded by de Donder, introduced the assumption of local
equilibrium to describe irreversible processes in terms of
equilibrium quantities [3,4]. In doing so, he pioneered the
connections between thermodynamics and kinetics of
chemical reacting mixtures [5].

During the second half of the 20th century, part of the
attention moved to systems with small particle numbers
which are ill described by ‘“deterministic” rate equations.
The Brussels School, as well as other groups, produced
various studies on the nonequilibrium thermodynamics of
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the published article’s title, journal citation, and DOL
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chemical systems [6—11] using a stochastic description
based on the (chemical) master equation [12,13]. These
studies played an important role during the first decade of
the 21st century for the development of stochastic thermo-
dynamics, a theory that systematically establishes a non-
equilibrium thermodynamic description for systems
obeying stochastic dynamics [14—17], including chemical
reaction networks (CRNs) [18-22].

Another significant part of the attention moved to the
thermodynamic description of biochemical reactions in
terms of deterministic rate equations [23,24]. This is not
so surprising since living systems are the paramount
example of nonequilibrium processes and they are powered
by chemical reactions. The fact that metabolic processes
involve thousands of coupled reactions also emphasized
the importance of a network description [25-27]. While
complex dynamical behaviors such as oscillations were
analyzed in small CRNs [28,29], most studies on large
biochemical networks focused on the steady-state dynamics.
Very few studies considered the thermodynamic properties
of CRNs [30-33]. One of the first nonequilibrium thermo-
dynamic descriptions of open biochemical networks was
proposed in Ref. [34]. However, it did not take advantage of
chemical reaction network theory, which connects the net-
work topology to its dynamical behavior and which was
extensively studied by mathematicians during the 1970s
[35-37] (this theory was also later extended to stochastic
dynamics [38—41]). As far as we know, the first and single
study that related the nonequilibrium thermodynamics of
CRN s to their topology is Ref. [22], still restricting itself to
steady states.

Published by the American Physical Society
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In this paper, we consider the most general setting for the
study of CRNs, namely, open networks driven by chemo-
statted concentrations that may change over time. To the
best of our knowledge, this was never considered before. In
this way, steady-state properties as well as transient ones
are captured. Hence, in the same way that stochastic
thermodynamics is built on top of stochastic dynamics,
we systematically build a nonequilibrium thermodynamic
description of CRNs on top of deterministic chemical rate
equations. In doing so, we establish the energy and entropy
balance and introduce the nonequilibrium entropy of the
CRN as well as its nonequilibrium Gibbs free energy. We
show the latter to bear an information-theoretical interpre-
tation similar to that of stochastic thermodynamics [42-45]
and to be related to the dynamical potentials derived by
mathematicians. We also show the relation between the
minimal chemical work necessary to manipulate the CRNs
far from equilibrium and the nonequilibrium Gibbs free
energy. Our theory embeds both the Prigoginian approach
to thermodynamics of irreversible processes [5] and the
thermodynamics of biochemical reactions [23]. Making full
use of the mathematical chemical reaction network theory,
we further analyze the thermodynamic behavior of two
important classes of CRNs: detailed-balanced networks
and complex-balanced networks. In the absence of time-
dependent driving, the former converges to thermodynamic
equilibrium by minimizing their nonequilibrium Gibbs free
energy. In contrast, the latter converges to a specific class of
nonequilibrium steady states and always allows for an
adiabatic—nonadiabatic separation of their entropy produc-
tion, which is analogous to that found in stochastic
thermodynamics [46-50]. Recently, a result similar to
the latter was independently found in Ref. [51].

A. Outline and notation

The paper is organized as follows. After introducing
the necessary concepts in chemical kinetics and chemical
reaction network theory, Sec. II, the nonequilibrium
thermodynamic description is established in Sec. IIL
As in stochastic thermodynamics, we build it on top
of the dynamics and formulate the entropy and energy
balance, Secs. IIID and III E. Chemical work and non-
equilibrium Gibbs free energy are also defined, and the
information-theoretic content of the latter is discussed.
The special properties of detailed-balanced and of com-
plex-balanced networks are considered in Secs. V and IV,
respectively. Conclusions and perspectives are drawn in
Sec. VI, while some technical derivations are detailed in
the appendixes.

We now proceed by fixing the notation. We consider a
system composed of reacting chemical species X, each
of which is identified by an index ¢ € S, where S is the
set of all indices or species. The species populations
change due to elementary reactions, i.e., all reacting
species and reactions must be resolved (none can be

hidden), and all reactions must be reversible, i.e., each
forward reaction +p has a corresponding backward
reaction —p. Each pair of forward-backward reactions
is a reaction pathway denoted by p € R. The orientation
of the set of reaction pathways R is arbitrary. Hence, a
generic CRN is represented as

+p

> VX, % > VX, (1)

The constants k™ (k™) are the rate constants of the
forward (backward) reactions. The stoichiometric coef-
ficients —V%, and V¢, identify the number of molecules
of X, involved in each forward reaction +p (the
stoichiometric coefficients of the backward reactions have
opposite signs). Once stacked into two non-negative
matrices, V, ={V%,} and V_={V?,}, they define
the integer-valued stoichiometric matrix

V=V_-V,. (2)

The reason for the choice of the symbol “V” will become
clear later.

Example 1.—The stoichiometric matrix of the CRN
depicted in Fig. 1 is

S O = N
|
—_

environment

system

k+1
k—l

be+ XC

X+ Xg

FIG. 1. Representation of a closed CRN. The chemical species
are {X,, ..., X.}. The two reaction pathways are labeled by 1 and
2. The nonzero stoichiometric coefficients are —VE‘H = -1,
Vb, =2, and V¢ =1 for the first forward reaction and
-Ve,=-1, =V, =—1, and V¢, =1 for the second one.

Since the network is closed, no chemical species is exchanged
with the environment.

041064-2
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Physical quantities associated with species and reactions
are represented in upper-lower indices vectorial notation.
Upper and lower indexed quantities have the same physical
values, e.g., 7! = Z., Yi. We use the Einstein summation
notation: repeated upper-lower indices implies the summa-
tion over all the allowed values for those indices—e.g.,
o € S for species and p € R for reactions. Given two
arbitrary vectorial quantities a = {a'} and b = {b'}, the
following notation is used:

aibi = Haib[
i

Finally, given the matrix C, whose elements are {C*}, the

elements of the transposed matrix CT are {C?}.

The time derivative of a physical quantity A is denoted
by d,A, its steady state value by an overbar A, and its
equilibrium value by A, or A®.. We reserve the overdot A

to denote the rate of change of quantities that are not exact
time derivatives.

II. DYNAMICS OF CRNS

In this section, we formulate the mathematical descrip-
tion of CRNs [52,53] in a suitable way for a thermo-
dynamic analysis. We introduce closed and open CRNs
and show how to drive these latter in a time-dependent
way. We then define conservation laws and cycles and
review the dynamical properties of two important classes
of CRNs: detailed-balanced networks and complex-
balanced networks.

We consider a chemical system in which the reacting
species {X,} are part of a homogeneous and ideal dilute
solution: the reactions proceed slowly compared to
diffusion and the solvent is much more abundant than
the reacting species. Temperature 7" and pressure p are
kept constant. Since the volume of the solution V is
overwhelmingly dominated by the solvent, it is assumed
constant. The species abundances are large enough so
that the molecule’s discreteness can be neglected. Thus,
at any time ¢, the system state is well described by the
molar concentration distribution {Z° = N°/V}, where N°
is the molarity of the species X,.

The reaction kinetics is controlled by the reaction
rate functions J**({Z°}), which measure the rate of
occurrence of reactions and satisfy the mass action
kinetics [52,54,55]:

JE = g ({2°)) = k0 7oV (4)

The net concentration current along a reaction pathway p
is thus given by

J=Jt - = ferzeV —kezeVd o (5)

Example 2.—For the CRN in Fig. 1 the currents are

]l — k+lza _ k—l(zb)2zc’
J? = kt2ze78 — k270, (6)

O

A. Closed CRNs

A closed CRN does not exchange any chemical species
with the environment. Hence, the species concentrations
vary solely due to chemical reactions and satisfy the rate
equations

dz° =V3J’, Vo €S. (7)
Since rate equations are nonlinear, complex dynamical
behaviors may emerge [29]. The fact that the rate equations
[Eq. (7)] can be thought of as a continuity equation for the
concentration, where the stoichiometric matrix V [Eq. (2)]
acts as a discrete differential operator, explains the choice
of the symbol “V” for the stoichiometric matrix [56].

B. Driven CRNs

In open CRNSs, matter is exchanged with the environ-
ment via reservoirs that control the concentrations of some
specific species, Fig. 2. These externally controlled species
are said to be chemostatted, while the reservoirs controlling
them are called chemostats. The chemostatting procedure
may mimic various types of controls by the environment.
For instance, a direct control could be implemented via
external reactions (not belonging to the CRN) or via
abundant species whose concentrations are negligibly
affected by the CRN reactions within relevant time scales.
An indirect control may be achieved via semipermeable
membranes or by controlled injection of chemicals in
continuous stirred-tank reactors.

environment

system
k+l
=—=iY, 2X,+ X,
k-l
k+2
X+ Xy _ Y, =
k72

FIG. 2. Representation of an open CRN. With respect to the
CRN in Fig. 1, the species X, and X, are chemostatted, hence,
represented as Y, and Y. The green boxes on the sides represent
the reservoirs of chemostatted species.

041064-3
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Among the chemical species, the chemostatted ones are
denoted by the indices o, € Sy, and the internal ones by
oy € S (8= S8, U S,). Also, the part of the stoichiometric
matrix related to the internal (chemostatted) species is
denoted by VX = {V5} (VY = {V)'}).

Example 3.—When chemostatting the CRN in Fig. 1 as
in Fig. 2 the stoichiometric matrix Eq. (3) splits into

2 0
VX = -1 |, VY_<_1 0) (8)
0 0 1

In nondriven open CRNs, the chemostatted species
have constant concentrations, i.e., {d,Z° = 0}. In driven
open CRNs, the chemostatted concentrations change over
time according to some time-dependent protocol z(r):
{Z° =Z°(#(t))}. The changes of the internal species
are solely due to reactions and satisfy the rate equations

dzo =V}Jr, Vo, €S,. 9)
Instead, the changes of chemostatted species {d,Z%} are
not only given by the species formation rates {V;’J”} but
must in addition contain the external currents {/°},
which quantify the rate at which chemostatted species
enter into the CRN (negative if chemostatted species
leave the CRN),
dzo =V, J’ +1%, Vo, €S,. (10)
This latter equation is not a differential equation since the
chemostatted concentrations {Z°} are not dynamical
variables. It shows that the external control of the
chemostatted concentration is not necessarily direct, via
the chemostatted concentrations, but can also be indi-
rectly controlled via the external currents. We note that
Eq. (10) is the dynamical expression of the decomposi-
tion of changes of species populations in internal-external
introduced by de Donder (see Secs. 4.1 and 15.2
of Ref. [57]).
A steady-state distribution {Z° }, if it exists, must satisfy
VT =0,

Vo, € Sy, (11a)

VyJP+1% =0, Vo, €S,, (11b)

for given chemostatted concentrations {Z% }.

C. Conservation laws

In a closed CRN, a conservation law £ = {Z,,} is a left
null eigenvector of the stoichiometric matrix V [23,25]:

¢,V5=0, VpeR. (12)

Conservation laws identify conserved quantities L = £,Z°,
called components [23,25], which satisfy

dL=¢,dz° =0. (13)

We denote a set of independent conservation laws of the
closed network by {#*} and the corresponding components
by {L* = ¢£%Z°}. The choice of this set is not unique, and
different choices have different physical meanings. This set
is never empty since the total mass is always conserved.
Physically, conservation laws are often related to parts of
molecules, called moieties [58], which are exchanged
between different species and/or subject to isomerization
(see Example 4).

In an open CRN, since only {Z°} are dynamical
variables, the conservation laws become the left null
eigenvectors of the stoichiometric matrix of the internal
species VX. Stated differently, when starting from the
closed CRN, the chemostatting procedure may break a
subset of the conservation laws of the closed network {£*}
[56]. For example, when the first chemostat is introduced
the total mass conservation law is always broken. Within
the set {#*}, we label the broken ones by A, and the
unbroken ones by A,. The broken conservation laws are
characterized by

oy + 2V =0, VpeR, (14)
#0

where the first term is nonvanishing for at least one p € R.

The broken components {L* = szi“Z”} are no longer
constant over time. On the other hand, the unbroken
conservation laws are characterized by

ChNG 4+ VY =0, VpeR, (15)
— ’

=0

where the first term vanishes for all p € R. Therefore, the
unbroken components {L* = L Z°} remain constant over
time. Without loss of generality, we choose the set {¢*}
such that the entries related to the chemostatted species
vanish, £t =0, V A, 0.

Example 4.—For the CRN in Fig. 1, an independent set
of conservation laws is

=21 0 0 0),
=0 0 0 1 1),
A= 1 -1 1 0). (16)

When chemostatting as in Fig. 2, the first two conservation
laws break while the last one remains unbroken. We also
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environment

system

H,0 =—— 2H+0
k-l

FIG. 3. Specific implementation of the CRN in Fig. 2.

note that this set is chosen so that the unbroken conserva-
tion law satisfies #2 = #2 = 0. When considering the
specific implementation in Fig. 3 of the CRN in Fig. 2,
we see that the first two conservation laws in Eq. (16)
represent the conservation of the concentrations of the
moiety H and C, respectively. Instead, the third conserva-
tion law in Eq. (16) does not have a straightforward
interpretation. It is related to the fact that when the species
H or C are produced, also O must be produced and vice
versa. [

D. Detailed-balanced networks

A steady state [Eq. (11)] is said to be an equilibrium state
{Zg,} if it satisfies the detailed-balance property [[57],
§ 9.4], i.e., all concentration currents Eq. (5) vanish:

Joq=I({Z5}) =0. VpeR. (17)
For open networks, this means that the external currents,
Eq. (11b), must also vanish, {I:}i = 0}. By virtue of mass

action kinetics, Eq. (4), the detailed-balance property
Eq. (17) can be rewritten as

ktr

_ 76 V)
PAREE N

VpeR. (18)

A CRN is said to be detailed balanced if, for given
kinetics {k**} and chemostatting {Z°}, its dynamics
exhibits an equilibrium steady state, Eq. (17). For each
set of unbroken components {L* }—which are given by
the initial condition and constrain the space where the
dynamics dwells—the equilibrium distribution is globally
stable [59]. Equivalently, detailed-balanced networks
always relax to an equilibrium state, which for a given
kinetics and chemostatting is unique and depends on the
unbroken components only; see also Sec. V.

Closed CRNs must be detailed balanced. This statement
can be seen as the zeroth law for CRNs. Consequently,
rather than considering Eq. (18) as a property of the
equilibrium distribution, we impose it as a property that

the rate constants must satisfy and call it a local detailed-
balance property. It is a universal property of elementary
reactions that holds regardless of the network state. Indeed,
while the equilibrium distribution depends on the compo-
nents, the rhs of Eq. (18) does not. This point will become
explicit after introducing the thermodynamic structure,
Eq. (88) in Sec. V. The local detailed-balance property
will be rewritten in a thermodynamic form in Sec. III B,
Eq. (50).

In open nondriven CRNSs, the chemostatting procedure
may prevent the system from reaching an equilibrium state.
To express this scenario algebraically, we now introduce
the concepts of emergent cycle and cycle affinity.

A cycle ¢ = {c¢’} is a right null eigenvector of the
stoichiometric matrix [56], namely,

Vocr =0, Ve €S. (19)
Since V is integer valued, ¢ can always be rescaled to
only contain integer coefficients. In this representation,
its entries denote the number of times each reaction
occurs (negative signs identify reactions occurring in
backward direction) along a transformation that overall
leaves the concentration distributions {Z°} unchanged; see
Example 5. We denote by {¢, } a set of linearly independent
cycles. An emergent cycle ¢ = {c¢”} is defined algebrai-
cally as [56]

Vier =0,
Vel #0,

Vo, € S,,

for at least one oy € S. (20)

In its integer-valued representation, the entries of ¢ denote
the number of times each reaction occurs along a trans-
formation that overall leaves the concentrations of the
internal species {Z°} unchanged while changing the
concentrations of the chemostatted species by an amount
VZY c’. These latter are, however, immediately restored to
their prior values due to the injection of —ng ¢” molecules
of Xo, performed by the chemostats. Emergent cycles are,
thus, pathways transferring chemicals across chemostats
while leaving the internal state of the CRN unchanged. We
denote by {c,} a set of linearly independent emergent
cycles.

When chemostatting an initially closed CRN, for each
species that is chemostatted, either a conservation law
breaks—as mentioned in Sec. I C—or an independent
emergent cycle arises [56]. This follows from the rank
nullity theorem for the stoichiometric matrices V and VX,
which ensures that the number of chemostatted species | S|
equals the number of broken conservation laws |4y| plus
the number of independent emergent cycles [e]: |Sy| =
|4,| + |e|. Importantly, the rise of emergent cycles is a
topological feature: it depends on the species that are
chemostatted, but not on the chemostatted concentrations.
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We also note that emergent cycles are modeled as “flux

modes” in the context of metabolic networks [60-62].
Example 5.—To illustrate the concepts of cycles and

emergent cycles, we use the following CRN [56]:

k!
Yi+X, — X,
Ete k2
(21)
L4 kt2
k—S
X, — Yo+ X,

whose Y and Y, species are chemostatted. The stoichio-
metric matrix decomposes as

VX —

10 0 1
vY:(o 1 -1 0)' (22)

The set of linearly independent cycles, Eq. (19), consists of
only one cycle, which can be written as

¢=(1 1 1 1) (23)

As the CRN is chemostatted, one linearly independent
emergent cycle Eq. (20) arises:
c=(1 1 -1 -1~ (24)

We now see that if each reaction occurs a number of times
given by the entry of the cycle Eq. (23), the CRN goes back
to the initial state, no matter which one it is. On the other
hand, when the emergent cycle Eq. (24) is performed, the
state of the internal species does not change, while two
molecules of Y are annihilated and two of Y, are created.
However, since the chemostats restore their initial values,
the overall result of ¢ is to transfer two Y, transformed in
Y,, from the first to the second chemostat.

The closed version of this CRN has two independent
conservation laws,

=0 1 1 1 1),
A=(1 11 0 0), (25)

the first of which, #', is broken following the chemostatting
of any of the two species Y or Y,. The other chemostatted
species, instead, gives rise to the emergent cycle
Eq. (24), so that the relationship |S,| = ||+ |¢| is
satisfied. O

Any cycle ¢, and emergent cycle ¢, bears a cycle
affinity [56],

- J

A, = Ei;RTani’, (26)
-P
p J+/)

A, = cCRTIn =" (27)
-p

From the definition of cycle, Eq. (19), and current, Eq. (5),
and the local detailed balance, Eq. (18), it follows that the
cycle affinities along the cycles Eq. (19) vanish, {A, = 0},
and that the cycle affinities along the emergent cycles
depend on only the chemostatted concentrations

k v
A, = LRTIn 22,7 (28)
-p

Since emergent cycles are pathways connecting different
chemostats, the emergent affinities quantify the chemical
forces acting along the cycles. This point will become
clearer later, when the thermodynamic expressions of the
emergent cycle affinities {A,} is given, Eq. (49).

A CRN is detailed balanced if and only if all the
emergent cycle affinities {.A,} vanish. This condition is
equivalent to the Wegscheider condition [59]. This happens
when the chemostatted concentrations fit an equilibrium
distribution. As a special case, unconditionally detailed-
balanced networks are open CRNs with no emergent cycle.
Therefore, they are detailed balanced for any choice of the
chemostatted concentrations. Consequently, even when a
time-dependent driving acts on such a CRN and prevents it
from reaching an equilibrium state, a well-defined equi-
librium state exists at any time: the equilibrium state to
which the CRN would relax if the time-dependent driving
were stopped.

Example 6.—Any CRN with one chemostatted species
only (|Sy|=1) is unconditionally detailed balanced.
Indeed, as mentioned in Sec. II C, the first chemostatted
species always breaks the mass conservation law || = 1,
and, thus, no emergent cycle arises, |e| = |S,| — || = 0.

The open CRN in Fig. 2 is an example of an
unconditionally detailed-balanced network with two che-
mostatted species, since the chemostatting breaks two
conservation laws; see Example 4. Indeed, a nonequili-
brium steady state would require a continuous injection
of Y, and ejection of Y, (or vice versa). But this would
necessarily result in a continuous production of X, and
consumption of X4, which is in contradiction with the
steady-state assumption. (I

Finally, a tacit assumption in the above discussion is that
the network involves a finite number of species and
reactions, i.e., the CRN is finite dimensional. Infinite-
dimensional CRNs can exhibit long-time behaviors
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different from equilibrium even in the absence of emergent
cycles [63].

E. Complex-balanced networks

To discuss complex-balanced networks and complex-
balanced distributions, we first introduce the notion of
complex in open CRNS.

A complex is a group of species that combines in a
reaction as products or as reactants. Each side of Eq. (1)
defines a complex, but different reactions might involve the
same complex. We label complexes by y € C, where C is the
set of complexes.

Example 7.—Let us consider the following CRN [64]

k+]
X, =Xy,
k!
k+2 k3
X, +X,=2X,=X.. (29)
k2 k3

The set of complexes is C = {X,, Xy, X, + X4, 2Xp, X}
and the complex 2Xj, is involved in both the second and
third reaction. O

The notion of complex allows us to decompose the
stoichiometric matrix V as

Ve =T90;. (30)

We call T'= {I'J} the composition matrix [35,37]. Its
entries I are the stoichiometric number of species X,
in the complex y. The composition matrix encodes the
structure of each complex in terms of species; see Example
8. The matrix 9 = {d} denotes the incidence matrix of the
CRN, whose entries are given by

1 if yis the product complex of + p
o =11

0 otherwise.

if yis the reactant complex of + p (31)

The incidence matrix encodes the structure of the network
at the level of complexes, i.e., how complexes are con-
nected by reactions. If we think of complexes as network
nodes, the incidence matrix associates an edge to each
reaction pathway and the resulting topological structure is a
reaction graph, see, e.g., Fig. 1 and Eqgs. (21) and (29). The
stoichiometric matrix instead encodes the structure of
the network at the level of species. If we think of species
as the network nodes, the stoichiometric matrix does not
define a graph, since reaction connects more than a pair of
species, in general. The structure originating is rather a
hypergraph [56,65] or, equivalently, a Petri net [66,67].

Example 8.—The composition matrix and the incidence
matrix of the CRN in Eq. (29) are

-1 0 O

1 01 0 O 1 0 O
r=fo 11 2 0], o= 0 -1 0 [,

0 0 0 01 0 -1

0 0 1

(32)

where the complexes are ordered as in Example 7.
The corresponding reaction hypergraph is

kT
X X, o—5 X,
a b—" ¢ (33)
kT2
where only the forward reactions are depicted. O

In an open CRN, we regroup all complexes y € C of the
closed CRN that have the same stoichiometry for the internal
species (i.e., all complexes with the same internal part of the
composition matrix Ff,( regardless of the chemostatted part
r }Y) in sets denoted by C;, for j = 1,2, .... Complexes of the
closed network made solely of chemostatted species in the
open CRN are all regrouped in the same complex Cy. This
allows one to decompose the internal species stoichiometric
matrix as

Vo =170 (34)

where {T'* =Ty, for y € C;} are the entries of the com-
position matrix corresponding to the internal species, and
{0) = Zyec/_(‘%} are the entries of the incidence matrix
describing the network of regrouped complexes. This
regrouping corresponds to the—equivalent—CRN made
of only internal species with the effective rate constant
{k*rZ0 V,f;’} ruling each reaction.

Example 9.—Let us consider the CRN Eq. (29) where the
species X, and X are chemostatted. The five complexes of
the closed network, see Example 7, are regrouped as
Co = {Xa. X}, Cp ={Xy, Xy + X}, and C; = {2X,,}. In
terms of these groups of complexes, the composition matrix
and incidence matrix are

which corresponds to the effective representation
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Co
\éb o 'g\ 'sz
% ’\ (36)
¥ L
k

92X, X,

kt2z2

O

A steady-state distribution {Z%} (11) is said to be
complex balanced if the net current flowing in each group
of complexes C ; vanishes, i.e., if the currents {7” } satisfy

opIr =y 050 =0, Vij. (37)

reC;

Complex-balanced steady states are, therefore, a subclass
of steady states Eq. (11a) that include equilibrium ones,
Eq. (17), as a special case:

) 7 . (38)

=0 iff Detailed-Balanced Steady State

=0 iff Complex-Balanced Steady State

=0 for generic steady states

While for generic steady states only the internal species
formation rates vanish, for complex-balanced ones the
complex formation rates also vanish.

For a fixed kinetics ({k*”}) and chemostatting (Sy and
{Z°}), a CRN is complex balanced if its dynamics exhibits
a complex-balanced steady state, Eq. (37) [35,36]. The
complex-balanced distribution Eq. (37) depends on the
unbroken components {L*}, which can be inferred from
the initial conditions, and is always globally stable [68].
Hence, complex-balanced networks always relax to a—
complex-balanced—steady state. Detailed-balanced net-
works are a subclass of complex-balanced networks.

Whether or not a CRN is complex balanced depends on
the network topology (V), the kinetics ({k*}), and the
chemostatting (S, and {Z°}). For any given network
topology and set of chemostatted species Sy, one can

always find a set of effective rate constants {k*’Z% nyﬂ}
that makes that CRN complex balanced [37]. However, for
some CRNS, this set coincides with the one that makes the
CRN detailed balanced [69]. A characterization of the set of
effective rate constants that make a CRN complex balanced
is reported in Refs. [37,69].

Deficiency-zero CRNs are a class of CRNs that are
complex balanced irrespective of the effective kinetics
{ki/’Z"yv“iyﬂ} [35-37]. The network deficiency is a topo-
logical property of the CRN, which we briefly discuss in
Appendix D; see Refs. [22,52,53] for more details.
Consequently, regardless of the way in which a defi-
ciency-zero CRN is driven in time, it will always remain

complex balanced. Throughout this paper, we refer to these
CRNs as unconditionally complex balanced, as in the
seminal work [35].

Example 10.—The open CRN, Eq. (36), has a single
steady state Z° for any given set of rate constants and
chemostatted concentrations Z* and Z¢ [64], defined by
Eq. (11a):

dzb =J' +J* - 2J?
SN SVARY SVARE SeVAVARS VAN
+2k3Z° = 2k+3(ZP)? = 0. (39)

If the stronger condition Eq. (37) holds,

J—T'=0 (group Cp),
J'=J*=0 (group C,),
J*=J =0 (group C,), (40)

which is equivalent to

kHZa _ k—lzb — k+ZZaZb _ k—Z(Zb)Z
=k (Z0)? - k78, (41)

the steady state is complex balanced. Yet, if the steady-state
currents are all independently vanishing,

=P =7 =0 (42)

ie.,, Eq. (41) is equal to zero, then the steady state is
detailed balanced.

When, for simplicity, all rate constants are taken as 1, the
complex-balanced set of quadratic equations, Eq. (41),
admits a positive solution Z° only if Z*=2-Z°
(0 < Z¢ < 2) or Z* = \/Z°. The former case corresponds
to a genuine complex-balanced state, Z® = 1 with currents
J' =J?=J3 =1 - Z°, while the second corresponds to a
detailed-balance state, Z° = \/? with vanishing currents.
When, for example, Z* = 1 and Z° = 4, neither of the two
previous conditions holds: the nonequilibrium steady state
is Z° = +/3 with currents J! =1 —+/3, J2 = =3 + /3,
and J? = —1. O

Example 11.—Let us now consider the following open
CRN [22]:

kt! kt2 kt3
Y.=X,=X. +X,=Y,, (43)
k! k—Z k—3
where the species Y, and Y, are chemostatted. Out of
the four complexes of the closed network,
{Y, Xp, Xo + X4, Y.}, two are grouped into Cy=
{Y,.Y.} and the other two remain C; = {X,} and
Cy, = {X. + X4} The effective representation of this open
CRN is
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0

£ Ex,
N (44)
k—2

Xp

Xe+ Xy

C
\gf‘b
A%
k2

This network is deficiency zero and, hence, unconditionally
complex balanced [22]. Therefore, given any set of rate
constants kT, k%2, and k3, and the chemostatted con-
centrations Z* and Z°, the steady state of this CRN is
complex balanced, i.e., the steady state always satisfies a
set of condition like those in Eq. (40). Indeed, contrary to
Example 10, steady-state currents {J',J? J3} different
from each other cannot exist since they would induce a
growth or decrease of some concentrations. O

III. THERMODYNAMICS OF
CHEMICAL NETWORKS

Using local equilibrium, here we build the connection
between the dynamics and the nonequilibrium thermody-
namics for arbitrary CRNs. In the spirit of stochastic
thermodynamics, we derive an energy and entropy balance,
and express the dissipation of the CRN as the difference
between the chemical work done by the reservoirs on the
CRN and its change in nonequilibrium free energy. We,
finally, discuss the information-theoretical content of the
nonequilibrium free energy and its relation to the dynami-
cal potentials used in chemical reaction network theory.

A. Local equilibrium

Since we consider homogeneous reaction mixtures in
ideal dilute solutions, the assumption of local equilibrium
(Ref. [57], Sec. 15.1, and Ref. [70]) means that the
equilibration following any reaction event is much faster
than any reaction time scale. Thus, what is assumed is that
the nonequilibrium nature of the thermodynamic descrip-
tion is solely due to the reaction mechanisms. If all
reactions could be instantaneously shut down, the state
of the whole CRN would immediately become an equili-
brated ideal mixture of species. As a result, all the intensive
thermodynamic variables are well defined and equal every-
where in the system. The temperature 7 is set by the
solvent, which acts as a thermal bath, while the pressure p
is set by the environment the solution is exposed to. As a
result, each chemical species is characterized by a chemical
potential (Ref. [23], Sec. IIL. 1),

b +RT111 d
- ’
MO’ ﬂﬂ Z

tot

Vo €S, (45)

where R denotes the gas constant and {ug = u;(T)} are the
standard-state chemical potentials, which depend on the
temperature and on the nature of the solvent. The total

concentration of the solution is denoted by Z, =
>°,Z° + Z°, where Z° is the concentration of the solvent.
We assume for simplicity that the solvent does not react
with the solutes. In case it does, our results still hold
provided one treats the solvent as a nondriven chemostatted
species, as discussed in Appendix A. Since the solvent is
much more abundant than the solutes, the total concen-
tration is almost equal to that of the solvent which is a
constant, Z,,, = Z,. Without loss of generality, the constant
term —RT In Z,,, = —RT In Z° in Eq. (45) is absorbed in the
standard-state chemical potentials. Consequently, many
equations appear with nonmatching dimensions. We also
emphasize that standard-state quantities, denoted with “o”,
are defined as those measured in ideal conditions, at
standard pressure (p° = 100 kPa) and molar concentration
(Z2 =1 mol/dm?), but not at a standard temperature
(Ref. [71], p. 61).

Because of the assumption of local equilibrium and
homogeneous reaction mixture, the densities of all
extensive thermodynamic quantities are well defined
and equal everywhere in the system. With a slight abuse
of notation, we use the same symbol and name for
densities as for their corresponding extensive quantity.
For example, S is the molar entropy divided by the
volume of the solution, but we denote it as entropy. We
apply the same logic to rates of change. For example, we
call entropy production rate the molar entropy production
density rate.

B. Affinities, emergent affinities,
and local detailed balance

The thermodynamic forces driving reactions are given
by differences of chemical potential [Eq. (45)],

AI'G/) = Vgﬂa, (46)

also called Gibbs free energies of reaction (Ref. [23],
Sec. III. 2, and Ref. [57], Sec. IX.3). Since these must all
vanish at equilibrium, V5ug! = 0, Vp, we have

Zs
AG, = =RTV;In2&. (47)

The local detailed balance, Eq. (18)] allows us to express
these thermodynamic forces in terms of reaction affinities,

J
A,= RTanL” =-AG (48)

p’
-
which quantify the kinetic force acting along each reaction
pathway (Ref. [57], Sec. IV.1.3).

The change of Gibbs free energy along emergent cycles,

Ag = —CZ-Aer - —Cgvzyﬂay, (49)
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gives the external thermodynamic forces the network is
coupled to, as we see in Eq. (61), and thus provides a
thermodynamic meaning to the cycle affinities Eq. (28).

Combining the detailed-balance property Eq. (18)
and the equilibrium condition on the affinities Aj' =0
[Eq. (46)], we can relate the Gibbs free energies of reaction
to the rate constants

ket AG
ﬁ:exf’{_ RT } (50)

where A,G, = V{ug. This relation is the thermodynamic
counterpart of the local detailed balance Eq. (18). It plays
the same role as in stochastic thermodynamics, namely,
connecting the thermodynamic description to the stochastic
dynamics. We emphasize that the local detailed-balance
property as well as the local equilibrium assumption by
no mean imply that the CRN operates close to equili-
brium. Their importance is to assign well-defined equilib-
rium potentials to the states of the CRN, which are
then connected by the nonequilibrium mechanisms, i.e.,
reactions.

C. Enthalpies and entropies of reaction

To identify the heat produced by the CRN, we need to
distinguish the enthalpic change produced by each reaction
from the entropic one. We consider the decomposition
of the standard-state chemical potentials (Ref. [23],
Sec. I1I. 2):

ue = h —Tse. (51)

The standard enthalpies of formation {h.} take into
account the enthalpic contributions carried by each species
(Ref. [23], Sec. III. 2, and Ref. [72], Sec. X.4.2). Enthalpy
changes caused by reactions give the enthalpies of reaction
(Ref. [23], Sec. III. 2, and Ref. [57], Sec. II. 4),

AH, = Vhg, (52)

which at constant pressure measure the heat of reaction.
This is the content of the Hess law (see, e.g., Ref. [72],
Sec. X.4.1). The standard entropies of formation {s¢} take
into account the internal entropic contribution carried by
each species under standard-state conditions (Ref. [23],
Sec. III. 2). Using Eq. (51), the chemical potentials Eq. (45)
can be rewritten as

p, = he —T(s2 —RInZ,). (53)
————

=s,

The entropies of formation {s, = s; — RIn Z,} account for
the entropic contribution of each species in the CRN
(Ref. [23], Sec. III. 2). Entropy changes along reactions
are given by

A.S, = Vis,. (54)

called entropies of reaction [[23] § 3.2].

D. Entropy balance
1. Entropy production rate

The entropy production rate is a non-negative measure of
the break of detailed balance in each chemical reaction. Its
typical form is given by (Ref. [8] and Ref. [57], Sec. IX.5)

: J
TS, =RT(J,,—J_,) an—“’ >0, (55)

-p

because (1) it is non-negative and vanishes only at
equilibrium, i.e., when the detailed-balance property
Eq. (17) is satisfied, and (2) it vanishes to first order
around equilibrium, thus allowing for quasistatic reversible
transformations. Indeed, defining

27 =73

Z, €, le?| < 1,

Voes, (56)

we find that
S = E%¢ e, + O(€%), (57)

where E = {E‘%} is a positive semidefinite symmetric
matrix.

Furthermore, it can be rewritten in a thermodynamically
appealing way using [Eq. (48)]

TS, = —J’AG,. (58)

It can be further expressed as the sum of two distinct
contributions [56]:

TS; = —po d 2% —p, (d, 2% — 1) (59)
\-—H/—/\—-Y—-\F-—_/
ETSX ETS'

y

The first term is due to changes in the internal species and
thus vanishes at steady state. The second term is due to the
chemostats. It takes into account both the exchange of
chemostatted species and the time-dependent driving of
their concentration. If the system reaches a nonequilibrium
steady state, the external currents {I°} do not vanish and
the entropy production reads

TS, = I, (60)
This expression can be rewritten as a bilinear form of

emergent cycle affinities {4, } Eq. (49) and currents along
the emergent cycle {J* = c5J*} [56]

041064-10



NONEQUILIBRIUM THERMODYNAMICS OF CHEMICAL ...

PHYS. REV. X 6, 041064 (2016)

TS, = T° A, (61)

which clearly emphasizes the crucial role of emergent
cycles in steady-state dissipation.

2. Entropy flow rate

The entropy flow rate measures the reversible entropy
changes in the environment due to exchange processes with
the system [57]. Using the expressions for the enthalpy of
reaction Eq. (52) and entropy of formation Eq. (53), we
express the entropy flow rate as

TS, = JPAH, +1%Ts,,. (62)
~——
=0

The first contribution is the heat flow rate (positive if heat is
absorbed by the system). When divided by temperature, it
measures minus the entropy changes in the thermal bath.
The second contribution accounts for minus the entropy
change in the chemostats.

3. System entropy

The entropy of the ideal dilute solution constituting the
CRN is given by (see Appendix A)

S =2Z%,+RZ° +S,. (63)

The total concentration term,

75=>"7°. (64)

ceS

and the constant S, together represent the entropic con-
tribution of the solvent. S, may also account for the entropy
of chemical species not involved in the reactions. We also
prove in Appedix B that the entropy [Eq. (63)] can be
obtained as a large particle limit of the stochastic entropy
of CRNs.

S would be an equilibrium entropy if the reactions could
all be shut down. But in the presence of reactions, it
becomes the nonequilibrium entropy of the CRN. Indeed,
Using eqs. (53), (58), and (62), we find that its change can
be expressed as

d,S =s,d,Z° + Z°d,s, + Rd,Z8
= s,d,Z°
=JPAS, +1%s,
=5+ S.. (65)
This relation is the nonequilibrium formulation of the

second law of thermodynamics for CRNs. It demonstrates
that the non-negative entropy production Eq. (55) measures

the entropy changes in the system plus those in the
reservoirs (thermal and chemostats) [57].

E. Energy balance
1. First law of thermodynamics

Since the CRN is kept at constant pressure p, its enthalpy
H=Zh, + H, (66)

is equal to the CRN internal energy, up to a constant.
Indeed, the enthalpy H is a density which, when written in
terms of the internal energy (density) U, reads H = U + p.

Using the rate equations (9) and (10), the enthalpy rate of
change can be expressed as the sum of the heat flow rate,
defined in Eq. (62), and the enthalpy of formation exchange
rate:

dH = hyd,Z° = Q + 1°h;, . (67)

Equivalently, it can be rewritten in terms of the entropy
flow rate Eq. (62) as (Ref. [57], Sec. IV.1.2)

dH =TS, + Iy, . (68)

The last term on the rhs of Eq. (68) is the free energy
exchanged with the chemostats. It represents the chemical
work rate performed by the chemostats on the CRN
[21,23]:

We=1%u, . (69)

Either Eq. (67) or (68) may be considered as the non-
equilibrium formulation of the first law of thermodynamics
for CRNs. The former has the advantage to solely focus on
energy exchanges. The latter contains entropic contribu-
tions but is appealing because it involves the chemical
work Eq. (69).

2. Nonequilibrium Gibbs free energy

We are now in the position to introduce the thermody-
namic potential regulating CRNs. The Gibbs free energy of
ideal dilute solutions reads

G=H-TS =27, —RTZS + G,. (70)

As for entropy, the total concentration term —R7ZS and the
constant G, represent the contribution of the solvent (see
Appendix A). Furthermore, in the presence of reactions, G
becomes the nonequilibrium Gibbs free energy of CRNs.

We now show that the nonequilibrium Gibbs free
energy of a closed CRN is always greater than or equal
to its corresponding equilibrium form. A generic non-
equilibrium concentration distribution {Z°} is character-
ized by the set of components {L* = £2Z°}. Let {Zg,} be
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the corresponding equilibrium distribution defined by the
detailed-balance property Eq. (18) and characterized by the
same set of components {L*} [a formal expression for
the equilibrium distribution is given in Eq. (88)]. At
equilibrium, the Gibbs free energy Eq. (70) reads

Geq = ZZpis" — RTZ3, + Go. (71)

As we discuss in Sec. III B, the equilibrium chemical
potentials must satisfy VSug' = 0. We deduce that 45! must
be a linear combination of the closed system conservation

laws Eq. (12),
pe' = fit5, (72)

where {f,} are real coefficients. Thus, we can write the
equilibrium Gibbs free energy as

Geq = f1L* — RTZS, + G, (73)

In this form, the first term of the Gibbs free energy appears
as a bilinear form of components {L*} and conjugated
generalized forces {f,} (Ref. [23], Sec. III. 3), which can
be thought of as chemical potentials of the components.
From Eq. (72) and the properties of components Eq. (13),
the equality ZZus' = Z°us' follows. Hence, using the
definition of chemical potential Eq. (45), the nonequili-
brium Gibbs free energy G of the generic distribution {Z°}
defined above is related to G, [Eq. (73)] by

G = Geq + RTLH{Z}{Z2,}). (74)

where we introduce the relative entropy for non-normalized
concentration distributions, also called the Shear Lyapunov
function or the pseudo-Helmholtz function [35,73,74]:

LUzWz7y) = 7 m% —(Z5-7%)50. (75

o

This quantity is a natural generalization of the relative
entropy, or Kullback-Leibler divergence, used to compare
two normalized probability distributions [75]. For sim-
plicity, we still refer to it as relative entropy. It quantifies
the distance between two distributions: it is always
positive and vanishes only if the two distributions are
identical: {Z°} = {Z'°}. Hence, Eq. (74) proves that the
nonequilibrium Gibbs free energy of a closed CRN is
always greater than or equal to its corresponding equi-
librium form, G > Geq.

We now proceed to show that the nonequilibrium Gibbs
free energy is minimized by the dynamics in closed CRNss;
viz., G—or, equivalently, L({Z7}|{ZZ}) [59,76]—acts as
a Lyapunov function in closed CRNs. Indeed, the time
derivative of G Eq. (70) always reads

d,G = p,d,Z° + Z°d,u, + Rd,ZS
= pu,d,Z°. (76)

When using the rate equation for closed CRNs Eq. (7), we
find that d,G = —J’Vju,. Using Eq. (74) together with
Egs. (46) and (58), we get

d,G = RTd,L({Z°}[{Ze"}) = -TS$; <0, (77)
which proves the aforementioned result.

3. Chemical work

In arbitrary CRNSs, the rate of change of nonequilibrium
Gibbs free energy, Eq. (76), can be related to the entropy
production rate, Eq. (59), using the rate equations of open
CRN, Egs. (9) and (10), and the chemical work rate,
Eq. (69):

TS, =W.—d,G > 0. (78)

This important result shows that the positivity of the
entropy production sets an intrinsic limit on the chemical
work that the chemostats must perform on the CRN to
change its concentration distribution. The equality sign is
achieved for quasistatic transformations (S; = 0).

If we now integrate Eq. (78) along a transformation
generated by an arbitrary time-dependent protocol z(?),
which drives the CRN from an initial concentration dis-
tribution {Z¢} to a final one {Z{}, we find

TAS =W, — AG >0, (79)

where AG = G; — G; is the difference of nonequilibrium
Gibbs free energies between the final and the initial state.
Let us also consider the equilibrium state {ZZ,.} ({Z%;})
obtained from {Z¢} ({Z7}) if one closes the network (i.e.,
interrupts the chemostatting procedure) and lets it relax to
equilibrium, as illustrated in Fig. 4. The Gibbs free energy
difference between these two equilibrium distributions,
AGeq = Gegp — Gey; 18 related to AG via the difference

of relative entropies, Eq. (74):
AG = AGq + RTAL, (80)
where

AL = LUZEYZ8 ) - LUZEYHZe,)). (8D)

eqj
Thus, the chemical work Eq. (79) can be rewritten as
W, = AG, = RTAL + TA;S, (82)

which is a key result of our paper. AG,, represents the
reversible work needed to reversibly transform the CRN
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FIG. 4. Pictorial representation of the transformation between
two nonequilibrium concentration distributions. The nonequili-
brium transformation (blue line) is compared with the equilib-
rium one (green line). The equilibrium transformation depends on
the equilibrium states corresponding to the initial and final
concentration distributions. In Sec. IIIE3, for an arbitrary
CRN, these equilibrium states are obtained by first closing the
network and then letting it relax to equilibrium. Instead, in Sec. V,
for a detailed balance CRN, the equilibrium states are obtained by
simply stopping the time-dependent driving and letting the
system spontaneously relax to equilibrium.

from {ZZ} to {Z%;,}. Implementing such a reversible
transformation may be difficult to achieve in practice.
However, it allows us to interpret the difference WiclT =
W, = AG, in Eq. (82) as the chemical work dissipated
during the nonequilibrium transformation, i.e., the irre-
versible chemical work. The positivity of the entropy
production implies that

Wir > RTAL. (83)

This relation sets limits on the irreversible chemical work
involved in arbitrary far-from-equilibrium transformations.
For transformations connecting two equilibrium distribu-
tions, we get the expected inequality W™ > 0. More
interestingly, Eq. (83) tells us how much chemical work
the chemostat needs to provide to create a nonequilibrium
distribution from an equilibrium one. It also tells us how
much chemical work can be extracted from a CRN relaxing
to equilibrium.

The conceptual analogue of Eq. (82) in stochastic
thermodynamics (where probability distributions replace
non-normalized concentration distributions) is called the
nonequilibrium Landauer principle [42,43] (see also
Refs. [77-79]). It has been shown to play a crucial role
in analyzing the thermodynamic cost of information
processing (e.g., for Maxwell demons, feedback control,
or proofreading). The inequality Eq. (83) is, therefore, a
nonequilibrium Landauer principle for CRN.

IV. THERMODYNAMICS OF COMPLEX-
BALANCED NETWORKS

In this section, we focus on unconditionally complex-
balanced networks. We see that the thermodynamics of
these networks bears remarkable similarities to stochastic
thermodynamics.

Let us first observe that whenever a CRN displays a
well-defined steady-state distribution {Z°}, the entropy
production rate Eq. (55) can be formally decomposed as
the sum of an adiabatic and a nonadiabatic contribution,

) J Z,
TS, = JﬂRTlnj—”—dtZ@RTlL X, (84)
_[) GX

=T8$, =TS8,

in analogy with what was done in stochastic thermody-
namics [46-50]. As we discuss in Sec. II E, unconditionally
complex-balanced networks have a unique steady-state
distribution, {Z% = Z°(xz(t))}, Eq. (37), for any value
of the chemostatted concentrations, {Z% = Z% (x(t))}, and
of the fixed unbroken components {L*}. The decompo-
sition Eq. (84) is thus well defined at any time, for any
protocol z(7). As a central result, we prove in Appendix C
that the adiabatic and nonadiabatic contribution are non-
negative for unconditionally complex-balanced networks
as well as for complex-balanced networks without time-
dependent driving.

The adiabatic entropy production rate encodes the
dissipation of the steady state {Z°}. It can be rewritten
in terms of the steady-state Gibbs free energy of reaction
{A,G,} Eq. (48) as

TS, =—-J'AG, >0. (85)

This inequality highlights the fact that the transient
dynamics—generating the currents {J”}—is constrained
by the thermodynamics of the complex-balanced steady
state, i.e., by {A,G,}.

The nonadiabatic entropy production rate characterizes
the dissipation of the transient dynamics. It can be
decomposed as

TSy, = —RTd,L({Z>}[{Z*})
+ RTd,Z% — Z°d,ji, >0, (86)

ETSd

where Z% =}, .5 Z% (see Refs. [46,48] for the analo-
gous decomposition in the stochastic context). The first
term is proportional to the time derivative of the relative
entropy Eq. (75) between the nonequilibrium concentration
distribution at time ¢ and the corresponding complex-
balanced steady-state distribution. Hence, it describes the
dissipation of the relaxation towards the steady state. The
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second term, TS‘d, is related to the time-dependent driving
performed via the chemostatted species and thus denoted
the driving entropy production rate [46]. It vanishes in
nondriven networks where we obtain

Sna = _Rdt[’({zgx}

(Z7}) > 0. (87)

This result shows the role of the relative entropy
L({Z>*}|{Z°}) as a Lyapunov function in nondriven
complex-balanced networks with mass action kinetics. It
was known in the mathematical literature [35,80], but we
provide a clear thermodynamic interpretation to this result
by demonstrating that it derives from the nonadiabatic
entropy production rate.

We mention that an alternative derivation of the
adiabatic—nonadiabatic decomposition for nondriven com-
plex-balanced networks with mass action kinetics was very
recently found in Ref. [51].

V. THERMODYNAMICS OF OPEN
DETAILED-BALANCED NETWORKS

We finish our study by considering detailed-balanced
networks. We discuss the equilibrium distribution, intro-
duce a new class of nonequilibrium potentials, and derive a
new work inequality.

Let us also emphasize that open detailed-balanced
CRNs are a special class of open complex-balanced
CRNs for which the adiabatic entropy production rate
vanishes (since the steady state is detailed balanced) and
thus the nonadiabatic entropy production characterizes the
entire dissipation.

A. Equilibrium distribution

As we discuss in Sec. IID, for given kinetics {k**},
chemostatting {Z°} and unbroken components {L*},
detailed-balanced networks always relax to a unique
equilibrium distribution. Since the equilibrium chemical
potentials can be expressed as a linear combination of
conservation laws, Eq. (72), we can express the equilibrium
distribution as

(88)

Ziq = exp {_M},

RT

inverting the expression for the chemical potentials
Eq. (45). Since the independent set of unbroken conserva-

tion laws {#*} is such that f’“; =0, Y4,, oy, see Sec. 11 C,
we have that

P = fi.62, Yo, €S,. (89)

We thus conclude that the |4,| broken generalized forces
{f,,} depend on only the chemostatted concentrations
{Z°}. Instead, the remaining |4,| unbroken generalized

forces f, can be determined by inverting the nonlinear set

of equations L = ff;; Zga. They, therefore, depend on both
{z°} and {L*}.

One can easily recover the local detailed-balanced
property [Egs. (50) and (18)] using Eq. (88).

B. Open nondriven networks

As a consequence of the break of conservation laws, the
nonequilibrium Gibbs free energy G Eq. (70) is no longer
minimized at equilibrium in open detailed-balanced
networks. In analogy to equilibrium thermodynamics
[23], the proper thermodynamic potential is obtained from
G by subtracting the energetic contribution of the broken
conservation laws. This transformed nonequilibrium Gibbs
free energy reads

G=G—fL»
= Z°(uy — f1,£) = RTZS + G, (90)

We proceed to show that G is minimized by the dynamics
in nondriven open detailed-balanced networks. Let {Z}
be a generic concentration distribution in a detailed-
balanced network characterized by {L*} and {Z°}, and
let {Z&} be its corresponding equilibrium. Using the
relation between equilibrium chemical potentials and con-
servation laws Eq. (72), the transformed Gibbs free energy
Eq. (90) at equilibrium reads

Geq = f1,L™ — RTZS, + G, (91)

Yet, combining Eq. (72) and the properties of unbroken

components, one can readily show that Zg, (ug* — f, £y =

Z° (U — f,,£2). The relation between the nonequilibrium
G and the corresponding equilibrium value thus follows

G = Geq + RTL{Z Y {Z&}) (92)

(we show in Appendix A the derivation of the latter
in the presence of a reacting solvent). The non-negativity
of the relative entropy for concentration distributions
L({Z%}[{Zeq™}) ensures that the nonequilibrium trans-
formed Gibbs free energy is always greater than or equal to
its equilibrium value, G > G.4. Since entropy production
and nonadiabatic entropy production coincide, using
Egs. (87) and (92), we obtain

d,G = RTd,L({Z7}{Zey™}) = =TS, <0, (93)

which demonstrates the role of G as a Lyapunov function.
The relative entropy L£({Z°}|{Z'°x}) was known to be a
Lyapunov function for detailed-balanced networks [76,81],
but we provide its clear connection to the transformed
nonequilibrium Gibbs free energy. To summarize, instead
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of minimizing the nonequilibrium Gibbs free energy G
Eq. (70) as in closed CRNs, the dynamics minimizes the
transformed nonequilibrium Gibbs free energy G in open
nondriven detailed-balanced CRNs.

C. Open driven networks

We now consider unconditionally detailed-balanced
CRNs. As we discuss in Sec. II D, they are characterized
by a unique equilibrium distribution {ZZ& = Z& (= (1))},
defined by Eq. (18), for any value of the chemostatted
concentrations {Z% = Z%(z(1))}.

We start by showing that the external fluxes {I°} can be
expressed as the influx rate of moieties. Since the CRN is
open and unconditionally detailed balanced, each chemo-
statted species breaks a conservation law (no emergent
cycle is created, Sec. II D). Therefore, the matrix whose

entries are {ff,l‘;} in Eq. (89) is square and also nonsingular
[82]. We can thus invert Eq. (89) to get

fa, = M?yl?:ﬂz, (94)

where {zf”Z} denote the entries of the inverse matrix of that
with entries {fﬁby} Hence, using the definition of a broken

component, {L* = £»Z°}, we obtain that

falh = ey e ze. (95)
N——

=M

From the rate equations for the chemostatted concentrations

Eq. (10), we find that
M =1%, Vo, €S,. (96)

We can thus interpret M as the concentration of a moiety

that is exchanged with the environment only through the
chemostatted species X, . Equation (95) shows that the
energetic contribution of the broken components can be
expressed as the Gibbs free energy carried by these specific
moieties.

Example 12.—A simple implementation of this scenario
is the thermodynamic description of CRNs at constant pH
(Ref. [23], Chap. 4), where the chemostatted species
becomes the ion H* and MM" is the total amount of
H* ions in the system. The transformed Gibbs potential
thus becomes G' =G — /4H+MH+ and the transformed
chemical potentials can be written in our formalism as
Hy, = Mo, — Ji1, 2 £h, where £% is the conservation law
broken by chemostatting H . O

Example 13.—For the CRN in Fig. 2, whose conserva-
tion laws are given in example 4, the concentrations of the
exchanged moieties are

1
M' =7+ -2,
2
M?* =74 75 (97)

For the specific implementation of that CRN, Fig. 3,
the first term (second term) is the total number of
moiety 2H (C) in the system, which can be exchanged
with the environment only via the chemostatted species
H,0 (CO). O

We now turn to the new work relation. From the general
work relation Eq. (78), using Egs. (90) and (95), we find

TS'i - Wd - d[g Z O» (98)

where the driving work due to the time-dependent driving
of the chemostatted species is obtained using the chemical
work rate Eq. (69) together with Egs. (95) and (96):

Wy=W, - dt(fibLib)
= /‘frgdzng - dt(/’t(e;jMO-y)
= —d oM. (99)

Equivalently, the driving work rate Eq. (99) can be defined
as the rate of change of the transformed Gibbs free energy
Eq. (90) due to the time-dependent driving only; i.e.,

. 0G eq 0G
Wo=—=dus —. 100

d ot " y 8/1(6;(3, ( )
To relate this alternative definition to Eq. (99), all {Z°v}
must be expressed in terms of {4 } using the definition of
chemical potential Eq. (45).

The driving work rate W, vanishes in nondriven CRNSs,
where Eq. (98) reduces to Eq. (93). After demonstrating
that the entropy production rate is always proportional to
the difference between the chemical work rate and the
change of nonequilibrium Gibbs free energy in Eq. (79), we
show that, for unconditionally detailed-balanced CRNSs, it
is also proportional to the difference between the driving
work rate and the change in transformed nonequilibrium
Gibbs free energy, Eq. (98).

We end by formulating a nonequilibrium Landauer
principle for the driving work instead of the chemical
work done in Sec. III E 3. We consider a time-dependent
transformation driving the unconditionally detailed-
balanced CRN from {Z?} to {Z?}. The distribution
{z¢.} ({Z2;}) denotes the equilibrium distribution
obtained from {Z¢} ({Z7}) by stopping the time-dependent
driving and letting the system relax towards the equilib-
rium, Fig. 4. Note that this reference equilibrium state is
different from the one obtained by closing the network in
Sec. IITE3. Integrating Eq. (98) over time and using
Eq. (92), we get
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Wy — AG,, = RTAL + TAS, (101)

where

AL = LHZEYZae)) - LUZPZE)). (102)
Ageq represents the reversible driving work, and the
irreversible driving work satisfies the inequality

Wit = w, — AGeq = RTAL. (103)
This central relation sets limits on the irreversible work
spent to manipulate nonequilibrium distributions. It is a
nonequilibrium Landauer principle for the driving work by
the same reasons that inequality Eq. (83) is a nonequili-
brium Landauer principle for the chemical work. The key
difference is that the choice of the reference equilibrium
state is different in the two cases. The above discussed
inequality Eq. (103) holds only for unconditionally
detailed-balanced CRNs, while Eq. (83) is valid for any
CRNE.

VI. CONCLUSIONS AND PERSPECTIVES

Following a strategy reminiscent of stochastic thermo-
dynamics, we systematically build a nonequilibrium
thermodynamic description for open driven CRNs made
of elementary reactions in homogeneous ideal dilute
solutions. The dynamics is described by deterministic rate
equations whose kinetics satisfies mass action law. Our
framework is not restricted to steady states and allows
us to treat transients as well as time-dependent drivings
performed by externally controlled chemostatted concen-
trations. Our theory embeds the nonequilibrium thermo-
dynamic framework of irreversible processes established by
the Brussels School of Thermodynamics.

We now summarize our results. Starting from the
expression for the entropy production rate, we establish
a nonequilibrium formulation of the first and second law of
thermodynamics for CRNs. The resulting expression for
the system entropy is that of an ideal dilute solution. The
clear separation between chemostatted and internal species
allows us to identify the chemical work done by the
chemostats on the CRN and to relate it to the nonequili-
brium Gibbs potential. We are also able to express the
minimal chemical work necessary to change the non-
equilibrium distribution of species in the CRN as a differ-
ence of relative entropies for non-normalized distributions.
The latter measure the distance of the initial and final
concentration distributions from their corresponding equi-
librium ones, obtained by closing the network. This result is
reminiscent of the nonequilibrium Landauer principle
derived in stochastic thermodynamics [43] and which prove
very useful to study the energetic cost of information
processing [45]. We also highlight the deep relationship
between the topology of CRNs, their dynamics, and their

thermodynamics. Closed CRNs (nondriven open detailed-
balanced networks) always relax to a unique equilibrium
by minimizing their nonequilibrium Gibbs free energy
(transformed nonequilibrium Gibbs free energy). This
latter is given, up to a constant, by the relative entropy
between the nonequilibrium and equilibrium concentra-
tion distribution. Nondriven complex-balanced networks
relax to complex-balanced nonequilibrium steady states
by minimizing the relative entropy between the non-
equilibrium and steady-state concentration distribution. In
all these cases, even in the presence of driving, we show
how the rate of change of the relative entropy relates to
the CRN dissipation. For complex-balanced networks, we
also demonstrate that the entropy production rate can be
decomposed, as in stochastic thermodynamics, in its
adiabatic and nonadiabatic contributions quantifying,
respectively, the dissipation of the steady state and of
the transient dynamics.

Our framework could be used to shed new light on a
broad range of problems. We mention only a few.

Stochastic thermodynamics has been successfully used
to study the thermodynamics cost of information process-
ing in various synthetic and biological systems [44,83-87].
However, most of these are modeled as few state systems or
linear networks [8,9]—e.g., quantum dots [88], molecular
motors [89,90], and single enzyme mechanisms [91,92]—
while biochemical networks involve more-complex
descriptions. The present work overcomes this limitation.
It could be used to study biological information-handling
processes, such as kinetic proofreading [93-99] or enzyme-
assisted copolymerization [92,100-105], which have cur-
rently only been studied as single enzyme mechanisms.

Our theory could also be used to study metabolic
networks. However, these require some care, since complex
enzymatic reaction mechanisms are involved [106].
Nevertheless, our framework provides a basis to build
effective coarse-graining procedures for enzymatic reac-
tions [107]. For instance, proofreading mechanisms oper-
ating in metabolic processes could be considered [108]. We
foresee an increasing use of thermodynamics to improve
the modeling of metabolic networks, as recently shown in
Refs. [30,32,33].

Since our framework accounts for time-dependent
drivings and transient dynamics, it could be used to
represent the transmission of signals through CRNs or
their response to external modulations in the environment.
These features become crucial when considering problems
such as signal transduction and biochemical switches
[24,109,110], biochemical oscillations [28,111], growth
and self-organization in evolving biosystems [112,113],
or sensory mechanisms [85,87,114—-117]. Also, since
transient signals in CRNs can be used for computation
[118] and have been shown to display Turing universality
[119-122], one should be able to study the thermodynamic
cost of chemical computing [123].
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Finally, one could use our framework to study any
process that can be described as nucleation or reversible
polymerization [124-129] (see also Ref. [130], Chaps. 5 ad
6) since these processes can be described as CRNs [63].

As closing words, we believe that our results constitute
an important contribution to the theoretical study of CRNS.
It does for nonlinear chemical kinetics what stochastic
thermodynamics has done for stochastic dynamics, namely,
build a systematic nonequilibrium thermodynamics on top
of the dynamics. It also opens many new perspectives and
builds bridges between approaches from different com-
munities studying CRNs: mathematicians who study CRNs
as dynamical systems, physicists who study them as
nonequilibrium complex systems, and biochemists as well
as bioengineers who aim for accurate models of metabolic
networks.
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APPENDIX A: THERMODYNAMICS OF IDEAL
DILUTE SOLUTIONS

We show that the nonequilibrium Gibbs free energy
Eq. (70) is the Gibbs free energy of an ideal dilute solution
(Ref. [131], Chap. 7) (see also Ref. [51]). We also show that
in open detailed-balanced networks in which the solvent
reacts with the solutes, the expression of the transformed
Gibbs free energy Eq. (92) is recovered by treating the
solvent as a special chemostatted species.

The Gibbs free energy (density) of an ideal dilute
mixture of chemical compounds kept at constant temper-
ature and pressure reads

G =2+ Zopg (A1)
where the labels o € S refer to the solutes and 0 to the
solvent. The chemical potentials of each species Eq. (45)
read

Z
U, =,u,°,—|—RT1nZ—”, Vo € S,

tot

Zy

Mo = po + RT In .
° Zi

(A2)

Since the solution is dilute, Z, = Y ,e5Z° + Zo = Z, and
the standard-state chemical potentials {y} depend on the
nature of the solvent. Hence, the chemical potentials of the
solutes read

Z
,u,,:,uf,—i—RTan—”, Vo €S, (A3)

0

while that of the solvent reads

. S
Mo = po — RT —,

ZO (A4)

where Z% =" _sZ°. Therefore, the Gibbs free energy
Eq. (A1) reads

G =2Z%,+ 7% — RTZS, (AS)
which is Eq. (70), where G, is equal to ZO/;B plus possibly
the Gibbs free energy of solutes that do not react.

We now consider the case where the solvent reacts with
the solutes. We assume that both the solutes and the solvent
react according to the stoichiometric matrix

VO
V= VX],
vY

(A6)

where the first row refers to the solvent, the second block of
rows to the internal species, and the last one to the
chemostatted species. The solvent is treated as a chemo-
statted species such that d,Z;, = 0.

In order to recover the expression for the transformed
Gibbs free energy Eq. (92) in unconditionally detailed-
balanced networks, we observe that, at equilibrium,

Vous' + Voug = 0. (A7)
Therefore, the equilibrium chemical potentials are a linear
combination of the conservation laws of V [Eq. (A6)],

po' = fit%,
WS = 1.6, (A8)
As mentioned Sec. IIC, the chemostatting procedure
breaks some conservation laws, which are labeled by 4.
The unbroken ones are labeled by 4,,.
The transformed Gibbs free energy is defined as in
Eq. (90), reported here for convenience,
G=G-f,L", (A9)
where G reads as in Eq. (Al), {L*} are the broken
components, and {f, } are here interpreted as the con-
jugated generalized forces. Adding and subtracting the term
Z%ug' + Zopy' from the last equation and using Eq. (A8),
we obtain

G =Geq+Z°(4y — ) + Z%(uo — pg). (A10)

where
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Geq = f1, L™ (A11)

From Eqs. (A3) and (A4) and the fact that Z% = Zg(’i and
Zy = Z;', we obtain

G = Geq + 2% (g, — p33) = RT(Z5 — Z53)

z
= Geq + Z7RTIn - - RT(Z5 - Z5)
cq

= Gog + RTLU{Z}{Z%)), (A12)

in agreement with the expression derived in the main
text, Eq. (92).

APPENDIX B: ENTROPY OF CRNs

We show how the nonequilibrium entropy Eq. (63) can
be obtained as a large particle limit of the stochastic
entropy. We point out that very recently similar derivations
for other thermodynamic quantities have been obtained in
Refs. [51,132].

In the stochastic description of CRNs, the state is
characterized by the population vector m = {n°}. The
probability to find the network is in state n at time ¢ is
denoted p,(n). The stochastic entropy of that state reads
[21,107], up to constants,

S(n) = —kpIn p,(n) + s(n). (BI)

The first term is a Shannon-like contribution, while the
second term is the configurational entropy,

nc!

s(n) =n%; —kzy In (B2)

n
ny

55 is the standard entropy of one single X, molecule, and n
is the very large number of solvent molecules.

We now assume that the probability becomes very
narrow in the large particle limit n° > 1 and behaves as
a discrete delta function p;(n) = &[n — i(¢)]. The vector
(7)) = {A°} denotes the most probable and macroscopic
amount of chemical species, such that Z° = 7°/(VN,).
Hence, the average entropy becomes

(S) =2 p/(n)S(n) = s(f). (B3)

When using the Stirling approximation (Inm!=mlInm —
m for m > 1), we obtain

O

N AG~0 A n A
s() = A°s, — kg lnn— + kg E n°e
0

aol ~ U
=7 s>+ krpl
" (S” ’ “VNA>

o

ﬁﬁ
—ACkgln——m + kg > A°
+ n"Kp nVNA+ Bzg:l’l
= 7°(5% + kz In Z,)
+ kg I Z7 + kg i

o

(B4)

Dividing by V and using the relation R = N kg, we finally
get the macroscopic entropy density Eq. (63)

(S))V =2Z7°s5 —Z°RInZ, + RZS, (B5)

where the (molar) standard entropies of formation s;, reads

5o =Na(SL + kgnZy). (B6)

Mindful of the information-theoretical interpretation of
the entropy [133], we note that the uncertainty due to the
stochasticity of the state disappears [the first term on
the rhs of Eq. (B1)]. However, the uncertainty due to the
indistinguishability of the molecules of the same species—
quantified by the configurational entropy Eq. (B2)—
remains and contributes to the whole deterministic entropy
function Eq. (63).

APPENDIX C: ADIABATIC-NONADIABATIC
DECOMPOSITION

We prove the positivity of the adiabatic and nonadiabatic
entropy production rates Eq. (84) using the theory of
complex-balanced networks; see Sec. I E.

We first rewrite the mass action kinetics currents
Eq. (5) as [53,81] J? = K‘;’,yﬂ/, where y? = Z°'¢ and K =
{K? = K,;” — K,”} is the rate constants matrix whose
entries are defined by

k*t? if yis the reactant complex of + p
—kP

0 otherwise.

K = if yis the product complex of + p

(C1)

Hence, the definition of a complex-balanced network
Eq. (37) reads

ZWW?’ =0, Vj, (C2)

7eC;

where W=0K = {0)K)} ={W)} is the so-called

kinetic matrix [35], and @7 = Z°T~.
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The kinetic matrix W is a Laplacian matrix [76,81]:
any off-diagonal term is equal to the rate constant of
the reaction having y’ as a reactant and y as a product
if the reaction exists, and it is zero otherwise. Also, it
satisfies

ZV\/;, =0,

yeC

(C3)

which is a consequence of the fact that the diagonal
terms are equal to minus the sum of the off-diagonal
terms along the columns. The detailed balanced prop-
erty Eq. (18) implies that

(C4)

Wiyt =Wiyy'. Vr.y',

h eq _ eqry
where vy,  =Z5"7.

In order to prove the non-negativity of the adiabatic term
Eq. (84), we rewrite it as

Jip Z,\Vr
S,=J° ln Kp,y/}’l <>
7 eq
—p o
= Wy In
ll/}'

(C5)

The detailed balance property is used in the first
equality, and the decomposition of the stoichiometric
matrix Eq. (30) in the second one. Also, the constant RT
is taken equal to 1. Using Eq. (C3), Eq. (C5) can be
rewritten as

v, V/gq
a7

Sa=-Wiy In (C6)

From the log inequality —Inx > 1 —x and the detailed
balance property Eq. (C4), we obtain

p— yl
: vy (1 Yr¥eq
S = Wiyt (1 e
Va8 Wy
= oW, T o (o)
Ty Ty

The last equality follows from the assumption of a
complex-balanced steady state Eq. (C2), the properties
of the groups of complexes {C;} (Sec. Il E), and the fact

that {Z, =Z, }. Indeed,
X
Sy ()

—Z(>§

Wy_7

Yyt =0.  (C8)

Concerning the nonadiabatic term Eq. (84), using the
rate equations (9) and the fact that {Z, =Z, }, we can
rewrite it as

C — o] Z(" _ 4 4 l//y
Soa =—d,Z IHZ =-Ww’ lnw—y (C9)
Because of Eq. (C3), we further get that
. , v
Spa = Wiy 2V (C10)
vy

From the log inequality —Inx > 1 — x and from Eq. (C4),

. , '’ )

S = Wiy <1 v ) Wi Y 0. (c11)
Wy v,

The last equality again follows from the assumption of a

complex-balance steady state Eq. (C2) as in Eq. (C8).

APPENDIX D: DEFICIENCY OF CRNs
The deficiency of an open CRN is defined as [22]

8 = dimker VX — dimker ¢ > 0, (D1)
where 0¢ = {9}, = > rec; d5}. Other equivalent definitions
can be found in Refs. [52 53]. The kernel of VX identifies

the set of cycles, Egs. (19) and (20), while the kernel of the

incidence matrix O identifies the set of cycles of the
reaction graph. Hence, the deficiency measures the differ-
ence between the number of cyclic transformations on
chemical species and how many of them can be represented
as cycles on the reaction graph. Deficiency-zero networks
are defined by 6 =0; i.e., they exhibit a one-to-one
correspondence between the two. This topological property
has many dynamical consequences, the most important of
which is that deficiency-zero networks are unconditionally
complex balanced [36,37]. As shown in Ref. [22], defi-
ciency also has implications on the stochastic thermody-
namic description of networks: the stochastic entropy
production of a deficiency-zero network converges to the
deterministic entropy production in the long-time limit.
Linear networks are the simplest class of deficiency-zero
networks. Since only one internal species appears in each
complex with a stoichiometric coefficient equal to 1,
VX = 9, and thus & = 0.
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We describe the oligosaccharides-exchange dynamics performed by the so-called D-enzymes on
polysaccharides. To mimic physiological conditions, we treat this process as an open chemical
network by assuming some of the polymer concentrations fixed (chemostatting). We show that
three different long-time behaviors may ensue: equilibrium states, nonequilibrium steady states,
and continuous growth states. We dynamically and thermodynamically characterize these states and
emphasize the crucial role of conservation laws in identifying the chemostatting conditions inducing
them. © 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4938009]

. INTRODUCTION

Biological systems use large and branched chains of
basic sugars, called polysaccharides, to store energy.' Glucans
such as glycogen and starch are polysaccharides whose
building blocks are D-glucose monosaccharides. Despite the
apparent simplicity of their constituents, their metabolism
involves several chemical steps, each performed by a specific
set of enzymes.> Interestingly, some of these catalysts
lack specificity regarding the reaction they catalyze or
the substrates they act on.>?*3? An example is provided
by (1 — 4)-alpha-D-glucans>*° (EC 2.4.1.25), also called
D-enzymes, which act on pairs of glucans regardless of their
size.” Specifically, D-enzymes catalyze the transfer of groups
of glycosyl residues from a donor glucan to an acceptor
glucan.*> Experimental evidences highlight the presence of
bonds between glycosyl residues which are not cleaved by
D-enzymes‘—at least not over physiological time scales.”
These bonds are called forbidden linkages.* In this way,
D-enzymes transfer segments of glucan chains containing
one or more forbidden linkages, and the transfer of segments
containing one forbidden linkage are the most probable.* Also,
each glucan chain is characterized by a reducing-end glucose
which is not transferred by D-enzymes.*’ Hence, glucans
made of just the reducing end can act only as acceptor in the
transfer.

Qualitatively, D-enzymes process medium-size glucans
by disproportionating them into unit-size and big-size
glucans.’ Since their transfers reactions are neutral ener-
getically,”® entropy is the main driving force in this system. In
closed conditions, this system evolves towards an equilibrium
state maximizing the entropy.””

In this paper we consider a simplified kinetic description
of the D-enzyme’s action on glucans, which we treat as
a chemical network. Since metabolic processes should be
thought of as part of an open system continuously fed from

Driccardo.rao@uni.lu
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the environment, we mimic these physiological conditions by
introducing chemostats (i.e., species whose concentrations
are kept constant by the environment). Our goal is to
characterize the dynamical and thermodynamical implications
of treating the action of the D-enzymes on glucans as an open
chemical network. In the framework of deterministic chemical
networks endowed with mass action kinetics, we prove
that chemostatting can induce three different types of long-
time behaviors: equilibrium, non-equilibrium steady state,
and continuous growth. The equilibrium state corresponds
to the stationary concentration distribution in which the
concentration currents along each reaction pathway vanishes
(detailed balance property'®). Non-equilibrium steady states
refer to stationary distributions violating detailed balance.
Hence, contrary to equilibrium states, a continuous and
steady flow of mass circulates across the network. Finally,
the continuous growth regime we observed corresponds
to a non-stationary state characterized by continuous and
steady flow of mass entering the network and resulting in
its continuous growth. We emphasize the dynamical and
thermodynamical roles of conservation laws and emergent
cycles in identifying the chemostatting conditions leading to
these states. We are thus able to confirm the general relation
between the number of chemostatted species and the number
of independent thermodynamical forces—or affinities—found
in Ref. 11. Despite the simplicity of our description, the
closed system results found in Ref. 7 are reproduced and
the qualitative disproportionating behavior of D-enzymes” is
captured by our (chemostatted) open system description.

The plan of the paper is as follows: in Sec. II, the kinetic
model is established and the related rate equation description
for the concentration of polysaccharides is introduced. In
Sec. III, the chemostatting conditions leading to non-
equilibrium steady states rather than equilibrium ones are
found. For this purpose, both the conservation laws of the
dynamics and the emergent cycles of the network are analyzed.
The dissipation of the non-equilibrium steady state is also stud-
ied. The network’s conservation laws identified in Sec. III A
are used in Sec. IV to derive the steady-state concentration

©2015 AIP Publishing LLC
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distributions for different numbers of chemostats. The explo-
sive asymptotic behavior is described in Sec. V. Conclusions
are drawn in Sec. VI. Some technical derivations and proofs
are provided in Appendices.

Il. THE KINETIC MODEL

The action of D-enzymes is modeled as follows (see also
Fig. 1). Glucans are treated as polymers whose monomers
represent single transferable segments. Hence, each glucan
is identified by its number of monomers, or equivalently by
its monomeric mass. The enzymatic steps performed by the
D-enzymes in order to achieve the transfer are not explicitly
described—they are coarse-grained—, and we describe the
interaction between two polymers of mass n and m as a
mass-exchange process:'?

W +m) X nm+D)+m=-1), forn>1l,m>2 (1)

where «,,, denotes the related coarse-grained rate constant.
Transfers of oligosaccharides longer than one monomeric unit
are less probable* and are not considered in our description.
We take into account the presence of non-transferable units
by imposing the size of the donor glucan (m) to be greater
than one.*’

Let us note that each reaction is reversible because the
backward path is already included in (1) (it is realized by
replacingn — m — 1 and m — n + 1 in the above expression).
Furthermore, the constraint on the minimal size of the donor
molecules imposes that m > 2. Since we describe the glucans
as linear polymers, and since D-enzymes do not discriminate
the size of the polymers, we assume a constant kernel for
the reactions: k,, =k, Yn > 1,¥Ym > 2. This assumption
is based on the evidence that the free-enthalpy release
resulting from any reaction is almost vanishing.”® Indeed,
for any bond cleaved, a new one of the same kind will be
formed.

Assuming a large and well stirred pool of interacting
polymers, the evolution of the system is well described
by reaction rate equations.'” According to this mean-field
description, the molar concentration of polymers of mass
k at time z, Z*¥ = ZX(¢), satisfies the following first order
differential equations:

7k = % SV g fork 2 1 ()
n>1 D e —

m22 =jnm

The % factor in front of the summation takes into account

that summing over all » > 1 and m > 2 includes every

(a) K
o000 © ——
(b)

oee® ©

oe® ©o

0000

FIG. 1. (a) The typical monomer-exchange reaction describing the action of
D-enzymes on glucan chains. (b) The attachment of free monomers to other
species is not allowed.
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reaction pathway twice.”> VX = represents the element of
the stoichiometric matrix related to the species of mass k and
to the reaction involving an acceptor and a donor polymer
of mass n and m, respectively. The reaction scheme in (1)
implies that

Vi = Oryy + O = O = Oy 3)

where (5{ represents the Kronecker delta. Assuming a mass
action kinetics, the forward (denoted by +) and the backward
fluxes (—) can be written as

J+nm — KZan’ J—nm — KZn+lZm_], (4)

where Z" denotes the concentrations of the polymers of size n.
To simplify the following discussion, we will use the Einstein
summation notation: upper indexed quantities represent
vectors, lower indexed ones covectors, and repeated indexes
imply the summation over all the allowed values for those
indexes (1 <1 < nypax and 2 < m < Mypay, O 1 < k < kpax,
where fgmax, Mmaxs and kpa, are finite in closed systems but
infinite in open ones). To avoid confusion, exponents will
always act on parentheses (e.g., (a)" denotes the quantity a to
the power n).

The rate equations (2) assume the following form when
the expressions for both stoichiometric matrix (3) and fluxes
(4) are considered

Z2' =z (2*- 2"+ «Z'Z",
ZF = kz (ZF - 275 + 781 (5)
+kZ"(ZF -7z, fork > 2,

where Z = Zl;'f;" Zk denotes the total concentration. The
second term in the right hand side of (5) arises from the
constraint that the donor species cannot be monomers'* (see
Fig. 1(b)).

To model the open system we now assume that the
environment keeps the concentrations of some species
constant by refilling the consumed ones and eliminating the
produced ones, see Fig. 2. We call these species chemostats'
and we denote them with the indices ky € Qy, where Qy C N
represents a subset of all species. The remaining (variable)
species are explicitly denoted by k.

By definition, the chemostats’ concentrations must remain
constant, ZKv =0. The rate of chemostatted molecules
consumed by the reactions in the network must therefore
be balanced by the rate of chemostatted molecules in-
jected/rejected from the system. The rate of injection/rejection

system

o%e® ©

oo

FIG. 2. Pictorial representation of a reaction involving a chemostat. When a
reaction produces a chemostat (here a dimer), the environment extracts one
molecule of this species from the system (dotted light green reaction). On
the other hand, when a chemostat reacts, a new molecule is injected into the
system (dashed dark green reaction).
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of the kyth chemostat is quantified by the external currents,'!
whose expression is

1 _« _
ky _ y +nm _ nm
=3 wm (J J7m)
=xZ(Z*-Z")+«k2'Z"  ifky=1
=«Z(ZM =27k + ZB 7
SN IA VAR if ky > 2. ©6)

lll. STEADY STATES: CONSERVATION LAWS,
CYCLES, AND DISSIPATION

Three different types of long-time behaviors have been
identified for our kinetic model: equilibrium, non-equilibrium
steady state and continuous growth. We start by focusing
on the chemostatting conditions leading to equilibrium or
non-equilibrium steady states. The existence and uniqueness
of the steady state are currently a priori assumed.

Closed systems always reach an equilibrium steady
state!® defined by ZekqX =0,Yk, and ngm =0,Yn,m. Their
dynamics is constrained by conservation laws,'"'"'% which
fully characterize the equilibrium concentration distribution.
Chemostatting generic chemical species may break these
conservation laws and may create chemical forces—also
called affinities.'! The appearance of affinities is directly
related to that of so-called emergent cycles, through which
the external chemical forces can act. In finite chemical
networks, if no emergent affinity arises from the chemostatting
procedure, the system will always relax to a unique
equilibrium state compatible with the chemostats and the
non-broken conservation laws.'!"'® When emergent cycles—or
equivalently affinities—are generated, the system may evolve

towards a non-equilibrium steady state defined by Z b 0, Vky
and J"™ # 0 (non-equilibrium steady state quantities are
denoted by an overbar in the text). In Subsections IIT A-III C,
we analyze how the closed system’s conservation laws and
emergent cycles are modified by the gradual increase of
the number of chemostatted chemical species. In Subsection
IIT C, we relate these to the dissipation in the system.

A. Conservation Laws

Conservation laws denote the presence of physical
quantities which are conserved during the evolution of the
system, the so-called components. In general, they can be
identified from the cokernel space of the stoichiometric
matrix.!"!71¥ Indeed, if I, € cokerV, namely, if [; VK, =0,
the scalar I, Z* is conserved

d

kY _ 7k
P (kZ¥) =1 Z

1
=3 LYK, (T = Jm) = 0, (7)

For the closed system, the equation leading to the
conservation laws is (X — 1% =1k — 1% for 1 <n < npa
= kmax — l and 2 < m < mpux = kmax- It exhibits the following
solutions: lg) =a and lf) = a -k (where a is an arbitrary
constant, which is taken as one when expressing the

components), which correspond to the conservations of

J. Chem. Phys. 143, 244903 (2015)

the total concentration Z = Z:“:"‘;" Zk and the total mass
M= Zi‘:i" kZk, respectively. Hence, kpax = M — Z + 1.

However, when the system is opened by setting
chemostats, the relevant stoichiometric matrix becomes the
stoichiometric submatrix of the variable species: V]f,fn. Also,
kmax = 00. No matter what the sizes of the chemostatted
glucans are, neither the total concentration conservation law
lx, = a nor the total mass conservation law I, = aky survives
(i.e., they are not anymore elements of the cokernel space
of V’f,’;,,). We therefore say that the total mass and the total
concentration are broken conservation laws. Nevertheless,
when just one chemostat is present, Qy = {k,}, a new
conservation law emerges,

10 = o (ke — ky). (8)

Hence, the system exhibits just one (net) broken conservation
law. It corresponds to the component

q=M-kZ, €))

which can assume any value in R and takes into account that
the total mass can change in the system only by multiples
of the chemostat mass, ky. In presence of more than one
chemostat, no conservation law survives.

The components derived in this section—M and Z for the
closed system and g for the network with one chemostat—will
be used to characterize the steady state distribution in Sec. I'V.

B. Emergent cycles

A cycle represents a finite set of reactions which leave
the state of the network unchanged. Algebraically they are
represented as vectors ¢ and they belong by definition to
the kernel space of the stoichiometric matrix (¢"™ € ker V):
FVE ™™ = 0.

2 Vnm

The steady-state currents satisfy VX J"" =0 and can
always be written as linear combinations of cycles. The
cycle space of our polymers system is however infinite
dimensional and its complete characterization is of little use.
However, in order to characterize non-equilibrium steady
states only the emergent cycles—those cycles that may appear
when chemostatted species are introduced—are needed.'!
Physically, they represent cyclic transformations leaving the
variable species kx unchanged, but which would change the
concentrations of the chemostats ky if they were not kept
constant and contribute to the external currents.

An emergent cycle (y"™) is thus defined by
{ 195, =0, o

k k
IV Y™™ = v # 0 for at least one ky,

where {vj;y}k o denotes the amount of chemostats of mass ky
injected (min{ls sYign) or rejected (plus sign) from the chemical
network during the transformation y"". These quantities
cannot take arbitrary values, due to the constraints imposed
by the conservation laws of vk . Indeed, for any conservation
law, lg), a constraint of the following form holds:

Y

v = 1Ay = 0,
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Taking into account the total concentration l;(l) = «a and total

@
lk

mass = ak conservation laws, derived in Sec. III A (the

emergent conservation law lf) is a linear combination of the
first two on the whole set of species indexes), we obtain the
following constraints:

k
Zky Vyy =0

i .
2ky kyv, =0

Non-trivial solutions of this set of equations signal the
presence of emergent cycles, and thus of independent affinities,

which read'!
A =1 Sy ey
Y 2 3
nm y

The set of linearly independent solutions of (12) gives the
number of independent emergent cycles in the chemostatted
chemical network. If we normalize this set so to have the
smallest non-vanishing integer values for vfy, these values
indicate the number of chemostatted species which are
introduced in or rejected from the system in precisely one
(emergent) cyclic transformation.

For less than three chemostats, only trivial solutions of
(12) exist and therefore no emergent cycle appears. For three
chemostats, we obtain one emergent cycle characterized by
the following normalized values for vXy:

12)

13)

kal = ky3 - kyg,
ka2 = kyl - ky37 (14)
ka3 = ky2 - kyls

where ky1, ky2, and ky3 represent the masses of the chemostats.
For any additional chemostat, we obtain an additional
emergent cycle, each characterized by its value for the
coeflicients vky.

C. External currents and dissipation

We now show that at steady state, the emergent cycles
determine the external currents I*v and the entropy production
rate X.

We first observe that the steady-state external currents
I* are in general linear combination of the coefficients vf,y
and must satisfy the same constraints (Eq. (12)). Indeed, the
steady-state equations in presence of chemostats,

{%V’,‘lxmf””‘ =0,

18 = 1, -

are equivalent to Eq. (10): the emergent cycles y"™ are
substituted by the steady state currents J"™ and the coefficients
vk¥ by the steady-state external currents 7. Thereby, if no
cycle emerges due to the chemostats, the steady-state external
currents 7%y are vanishing, provided that the steady state exists.
The system is then at equilibrium.

The dissipation at steady state is intimately related to
the external currents.!' Indeed, the (non-negative) entropy
production rate for our chemical reaction network can be

J. Chem. Phys. 143, 244903 (2015)

TABLE I. Summary of the behaviors of our model for different numbers
of chemostats (ES stands for “equilibrium state” whereas NESS for “non-
equilibrium steady state”). The number of broken conservation laws and
independent affinities are also reported. The growth state occurs whenever
the concentration of the largest chemostat is larger than the concentration of
the smallest one: (Z Ky luger > ZKy1),

Number of Broken c. laws, Independent Asymptotic
chemostats, s ¥ b affinities, a behavior
0 0 0 ES
1 1 0 ES
2 2 0 ES/growth
3 2 1 NESS/growth
4 2 2 NESS/growth
written as
1 +nm
- _ nm
e > RIn BT
nm
. Zkx Zky
=—ZZ"XR1n - —Zlklen—k, (16)
A% z.3
kx eq ky eq
=Xy =Ty

where R is the gas constant. At the steady state, the
internal species’ contribution Xx always vanishes. Hence,
the dissipation is characterized by the contribution due to the
chemostats Xy, which is non-vanishing if the set of steady-state
external currents /%Y is also non-vanishing. We also mention
that the steady state entropy production can be expressed
as the sum along a set of independent emergent cycles
of products of affinities (13) and emergent cycle currents'!
F2=3,4A49.

Summarizing, the conservation laws provide us with
both the components—which are useful for expressing the
steady state distributions—and the constraints (Eq. (12))
on the emergent cycles of the network (Eq. (10)). Due to
these constraints, the first emergent cycle appears in the
system with three chemostats. For any additional chemostat
an additional independent cycle emerges. Through these
cycles the environment exerts chemical forces, which are
generated by the chemostats concentrations. The external
currents analyzed in Subsection III C result from these forces
and characterize the dissipation.

We emphasize that the relation between the number of
chemostats sY, of net broken conservation laws b, and of
emergent cycles a, is in perfect agreement with the general
result obtained for finite-dimensional phase space in Ref. 11
stating that

sY=b+a. (17)

These results are summarized in Table I.

IV. THE STATIONARY DISTRIBUTIONS

We now use the components introduced in Subsection
Il A to derive the steady-state concentration distribution
for different number of chemostats. The conditions on the
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chemostats’ concentrations not leading to the steady state
solution are also identified.

From the steady-state equations corresponding to (5) and
from the equations for external currents (6), we can write
a general expression for the steady-state concentrations as a
function of the concentration of monomers, Z', the fraction
of polymers larger than monomers, 7 =1 — Z'/Z, and the
chemostats fluxes, I*v, as follows:

7k Z\k—k
7k = ZV(F)k 1 + Z % L)_y(a(k —ky—1), (18)

1-7
kyEQY

where O(-) represents the discrete step function (we refer
the reader to Appendix A for details). Here, the number
of chemostats is arbitrary, and since the external currents
at steady state satisfy the same constraints as in (12), only
sY — 2 of them are independent. In the next paragraphs, we
will discuss in detail the above expression for zero, one, two,
and three chemostats, and the variables Z!, 7, and I*v will be
expressed in terms of the components and of the chemostats’
concentrations.

A. Closed system

As previously discussed, the closed system exhibits the
following components: Z = Zi:f‘ ZF and M = Z’;Z*}X kZ*. In
order to express the equilibrium distribution algebraically
as function of Z and M we consider the following limit
M > Z. In this way kpax ~ o0 and imposing Z = 3, zZk
and M =Y, kZ* on expression (18) we can write Z' and 7
as functions of Z and M. Hence
i (2)2(1 z )"‘1

i 19)

7k

M

Fig. 3 shows the behavior of this distribution for different

values of Z and M. As expected, the higher the ratio between

the mass and the concentration M > Z, the broader the
distribution.

Remark. The equilibrium distribution we obtained from

our dynamical description is equivalent to the result obtained

steady—state conentration, Ek

0 5 10 15 20

polymer mass, k

FIG. 3. Equilibrium concentration distribution for the closed system of
monomers-exchanging polymers at different values of the total concentration
Z and total mass M. The dark blue bar plot refers to the choice Z =10 and
M =15, while the light blue one to Z =10 and M =55.
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using maximum entropy approaches and is consistent with
experimental observations.” The equivalence is inferred by
comparing Eq. (19) with Egs. (1), (3), and (4) in Ref. 7.

B. Open system: 1 chemostat

Introducing a chemostat breaks the concentration and
mass conservation laws, but a new one arises (8). As a result,
no affinity appears (s¥ = 1, b = 1, and a = 0) and the system
evolves towards an equilibrium state compatible with the
chemostat concentration Z*v and the value of the component
g (9) (the steady-state external current vanishes, I*v = 0).
Also, since the system is now open, kp,x is infinite.

Imposing the constraints on the expression for the steady
state (18), namely,

Slk(-P)
(1-7?
Zky — Zl(r—)kyfl

1= (20)

we can express the variables Z' and 7 numerically as functions
of ¢ and Z% and obtain the equilibrium—exponential—
distribution as a function of ¢ and Z*v.

C. Open system: 2 chemostats

From two chemostats on, the infinite dimension of the
system starts to play a role. As discussed in Sec. III, two
chemostats are not enough to drive the network towards
a non-equilibrium steady state (s¥ =2, b =2, and a = 0):
I*1 = 0 and I"v2 = 0, where ky1 and ky, represent the masses
of the two chemostats (ky; < ky»). Thus, imposing the known
values of the chemostat concentrations on expression (18)
leads to

kyt — 71emky1—1
{Z 1= ZI(F)k o

Zkyz — Zl(f)kYTl ’

which only admits physical solutions if Z*! > Z*2. In this
case, from (21) we obtain the equilibrium distribution

k—ky|

7k = Zkyl(zkyz) R

which is broader the smaller Z%' — Z&2 is or the larger
ky> — kyi is. When Z*v1 < ZKv2 the equilibrium concentration
distribution becomes an increasing exponential which cannot
be reached. As a result the system will enter a regime of
continuous growth aimed at reaching that state (which we
analyze in Sec. V).

(22)

D. Open system: 3 chemostats

Three is the minimum number of chemostats able to drive
the system in a non-equilibrium steady state (Sec. III B).
Indeed, a class of emergent cycles appears (s¥ =3, b =2,
and a = 1) and the system exhibits a set of non-vanishing
external currents. If we impose the values for the chemostats’
concentrations on the general expression for the steady state
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(18), we obtain

Zkt = Z ()i,
e e U i
K 1-7 ’
e S Ul
K 1-7
T 1 - (f)ky3—ky2
K 1-7

As discussed in Sec. III C, the external currents ¥y are subject
to the same constraints as the emergent cycles and can be
written as linear combinations of them. Since we have one
class of emergent cycles, characterized by the v*v values in
(14), we have that

Iy = vk,

i = 1’293a (24)

where I € R determines the exact value of the fluxes. As for
two chemostats, the set of equations in (23), in the variables Z',
7,and I, does not exhibit physical solutions if the concentration
of the largest chemostat is higher than the one of the smallest
one, i.e., Z*1 < Z*3. On the other hand, whenever the above
condition is not fulfilled, the stationary solution is unique and
stable (Appendix B). Solving the system (23) numerically, we
obtain the values of Z', 7, and I given Z*1, Z%2, and Z%3. In
Fig. 4, the distribution is shown for different values of these
concentrations.

The chemostat concentrations also determine the sign of
the related fluxes: if the concentration of the second chemostat
lies above the equilibrium distribution obtained by the first
and third one, we have a continuous flow of mass from
the intermediate chemostat towards the external ones (I > 0,
Fig. 4(a)). Vice versa, if the concentration of the second
chemostat lies below the equilibrium distribution obtained
by the first and the third one, we have a continuous flow
of mass from the smallest and largest chemostats towards
the intermediate one (I < 0, Fig. 4(b)). Importantly, whatever
physical value Zk, 7% and Zv3 assume, the system cannot
exhibit a condition in which a net flux of matter from the
largest species to the smallest one occurs. This is clear by
looking at the vky-values in (14) used to express Thyi, Eq. (24):
the sign of v&! and v*¥ is always the same, and opposite to
the one of v¥y2.

E. Open system: More chemostats

Going on adding chemostats, new independent classes
of emergent cycles appear. The procedure for determining
the steady-state distribution is equivalent to that discussed
is Subsections IV C and IV D. In these two cases we
proved that when the largest chemostat has a concentration
greater or equal to that of the smallest one, the system
does not reach a steady state. The same exact behavior has
been observed numerically for more chemostats, hence we
speculate that this property holds for an arbitrary number of
chemostats.

As a final remark, we point out that the steady-state
distributions do not depend on the value of the rate constant
«. Indeed, solving Equations (20), (21), and (23) for Z!, 7,
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FIG. 4. Non-equilibrium steady-state distributions for the system of
monomer-exchanging polymers with three chemostatted species. In both of
the plots, the chemostats—highlighted in green and by the arrows—are ky;
=2, ky>=35, and ky3 = 10. The orientation of the arrows denotes the sign of the
external fluxes of chemostats: arrows pointing up means chemostats leaving
the system, i.e., 1 ky > 0. The chosen chemostat’s concentrations are: plot (a)
Z*=5, 752 =7, and Z*¥ =2; plot (b) Z*y1 =5, Z2 =1, and ZF¥3=2.

and %/, we obtain them as functions of the components and
the chemostats’ concentrations. Since the latter do not depend
on k, the same holds for Z', 7, and I*v/x. As a corollary
I% is proportional to « and the same holds true for entropy

production (16).

V. ASYMPTOTIC GROWTH REGIME

We mentioned in the previous section that the system does
not exhibit a steady state when the concentration of the largest
chemostat exceeds that of the smallest one, Z51 < ZFylst_we
refer in the text to this configuration of chemostats leading to
continuous growth as “unbalanced.” The dynamical fixed point
moves outside the region of physical solutions—namely, to
7 > 1, see Appendix B—and the system approaches the limit
7 — 1. This indicates that the concentration of the single
monomer species becomes negligible compared to the rest of
the species. Hence the system grows towards an unreachable
steady state with an exponentially increasing concentration
distribution.
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FIG. 5. Concentration distributions at different times are shown for system
in unbalanced conditions. Different colors from red to violet correspond
to exponentially increasing times. The set of plots is obtained by numer-
ical solution of differential equation (5). Absorbing boundary conditions
have been chosen, meaning that the concentration at the cutoff—here set to
kcutoff = 1000—is zero. We point out that this prescription is safe before the
cutoff is reached. In plot (a) we report a system with three chemostats. The
chemostat’s masses and the related concentrations chosen are: Z3=1, Z!°
=7, and Z%7 =2. The concentrations of the species between the chemostats
basically overlap at times ¢ > 1 and become steady. Beyond this time the
growth only involves the species larger than the biggest chemostats. In plot
(b) we2 consider a system with monomers and dimers chemostatted: z'=3
and Z-=4.

Fig. 5(a) shows the concentration distributions of an
unbalanced system at different times before the numerical
cutoff (more details are given in the related caption) is
reached. These different distributions show that while the
concentrations of the species between two chemostats stabilize
to steady values, the concentrations of the species larger than
the biggest chemostat do not. Hence, the system continuously
grows trying to populate the infinite size polymer. This
behavior has been observed taking into account different
number of chemostats and chemostats’ concentrations.

In order to characterize this growth algebraically, we
consider a system with monomer and dimer chemostats (ky
=1 and ky; = 2) such that Zkv < 7% (The typical growth
obtained numerically in this scenario is shown in Fig. 5(b).)
Since the growth dynamics cannot be solved exactly, we
assume that the asymptotic concentration distribution can be
parametrized by (equilibrium) steady state expression (18)
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with time dependent parameters, i.e.,

7M@) = A@)(a() T, fork = 3, 25)

where A(¢) and a(¢) are unknown real functions of time.
To simplify the notation, let us denote the concentrations of
the chemostats by Y' = Z%! and Y? = Z%2. The functions
A(t) and a(t) can be determined by means of the differential
equations for the total concentration Z and the total mass M,

Z=-I'"-1"=-kZ(Z>-Y? - kY?Y!,
M=-1'-21
—kZ(2Z3 - 3Y? + YY) - k2Y%Y + kY'Y,

(26)

where Z, M and the concentration of trimers Z> assume the
following form when ansatz (25) is taken into account,
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FIG. 6. Stream plot of the differential equations (26) expressed in terms
of the ansatz functions a(z) (abscissa) and A(z) (ordinate). When balanced
chemostat concentrations are used, the fixed point takes values of a(z) in
10, 1[: plot (a). The chemostats chosen for this plot are Y!=4 and Y2 =2.
Vice versa, when the chemostats are unbalanced (Y =2 and Y2 =4) the fixed
point moves outside from the physical region (a(z) > 1): plot (b).

177



178

244903-8 Rao, Lacoste, and Esposito

A(?)
1—af(r)
3 = 2af(t)
(1-a@)’
Z3(1) ~ A®r).

Z(t) ~ +Y Y2

M(t) ~ Alt) +Y' + 272, @n

When the equations are expressed in terms of A(¢) and a(¢), the
stream plots for different values of the chemostats’ concen-
trations show that the ansatz captures the non-equilibrium
phase transition occurring when the chemostats become
unbalanced, see Fig. 6. Indeed, for balanced chemostats,
the system evolves towards a fixed point with a lying in
10,1[, Fig. 6(a). On the other hand, when the chemostats are
unbalanced the fixed point lies beyond a = 1 signaling an
asymptotic growth regime, Fig. 6(b).

The numerical solution for A(¢) and a(t) obtained using
(26) and (27) accurately characterizes the asymptotic growth.
Indeed, as seen in Fig. 7, when comparing the evolution of
Z and M obtained from A(¢) and a(¢) with that obtained by
numerically solving the rate equations, the former solution
overlaps with the latter before the cutoff used in the numerics
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FIG. 7. Total concentration (a) and total mass (b) as functions of time in
the asymptotic growth regime. The numerical solution obtained using ansatz
(25) is plotted in green (dashed). These plots are compared with numerical
solutions of the system of differential equations (5) with different cutoffs
(blue curves). The chosen chemostat concentrations are: Y! =3 and Y2=4
while the initial condition imposed is Z*(f =0) = %(%)" Finally, the chosen
cutoff concentrations are: k. =200 (dark blue curile), ke =500 (blue curve)
and k. = 1000 (light blue curve).
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FIG. 8. Entropy production rate as a function of time in the asymptotic
growth regime. The numerical solution obtained using ansatz (25) is plotted in
green (dashed). This plot is compared with numerical solutions of the system
of differential equations (5) with different cutoffs (blue curves). In all the
plot, the entropy production rate is given in units of R. The chosen chemostat
concentrations are: Y' =3 and Y2 =4 while the initial condition imposed is
Zk(1=0)=2(2)*. The chosen cutoffs k. are: 200 (dark blue curve), 500
(blue curve) and 1000 (light blue curve). Also, the inset shows in greater
details the initial transient relaxation stage.

is reached. We find that the total concentration grows linearly
with time whereas the mass quadratically.

Taking into account ansatz (25), entropy production rate
(16) becomes

AO AW
riaor " M awy

where I' and I? can be written in terms of Y, Y2, A(¢), and
a(t) using Eq. (26). The latter is plotted in Fig. 8, where it is
compared with the numerical solutions for different cutoffs.
The agreement with the numerical solution is not perfect
but captures the linear asymptotic growth of the entropy
production rate reasonably well. Also, we point out that
the unbalanced dynamics shown in Fig. 8 exhibits an initial
transient relaxation stage shown in the inset.

We conclude mentioning that the same ansatz could
be used for systems characterized by more chemostats
with unbalanced concentrations. Indeed, the growth always
involves the species larger than the biggest chemostat, whereas
the species between chemostats converge faster to proper
steady values. Hence, fixing the concentration of these latter
species, we could assume a growth like (25) for the species
larger then the biggest chemostat and perform the same
analysis.

L ~RI'In (28)

VI. CONCLUSIONS

This paper provides a kinetic description of systems
made of glucans and processed by the class of enzymes
known as D-enzymes. The action of the enzyme induces a
monomer-exchange process'? between pairs of glucans which
are distinguished by their mass or degree of polymerization.
Free monomers are not allowed to attach to other polymers*
implying that the total concentration and the total mass
are conserved when the system is closed. The system’s
dynamics is ruled by rate equations for the polymer
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concentrations endowed with mass action kinetics. We mimic
physiological conditions by introducing chemostats which
effectively describe the action of the environment by fixing the
concentrations of certain glucans. In this scenario, chemostats
represent species processed by the environment. For example,
they may represent species which need to be processed and
injected by the environment in the system; analogously, they
may represent final products of the metabolic processes which
are taken out of the system. Importantly, chemostatting the
system amounts to open it and introduce driving forces on the
non-chemostatted species.

Our main results are summarized in Table I. We identified
three types of different long-time behaviors depending on the
chemostatting conditions: equilibrium state, non-equilibrium
steady state, and continuous growth of the system. The closed
system as well as the open system with a single chemostat
always relax to an equilibrium state. In presence of two
chemostats the system will either relax to equilibrium or turn
into a state of continuous growth depending on whether or not
the concentration of the largest chemostat is lower than the
concentration of the smallest one. We proved that this latter
condition for growth holds true for up to three chemostats
and conjectured that it is generally true based on numerical
evidence. For more than two chemostats, if the concentration
of the largest chemostat is lower than that of the smallest
one, the system will reach a nonequilibrium steady state
where the chemostats continuously exchange matter across
the system. Our results confirm that, even in the infinite-
dimensional chemical network considered here, the number of
chemostats equals to the number of broken conservation laws
plus the number of emergent cycles (see Table I). A proof
of this equality for finite dimensional chemical networks
is provided in Ref. 11. We also emphasized the role of
the emergent cycles in driving the chemostatted chemical
networks towards nonequilibrium steady states rather than
equilibrium states.'!

The metabolism of polysaccharides is a complex process
involving many steps and several enzymes? and its complete
dynamical characterization is beyond the scope of the present
paper. We focused on the dynamical characterization of the
disproportionating action of D-enzymes in the breakdown
and synthesis processes of glucans.’ Under physiological
conditions, it has been pointed out that one of the possible
role of D-enzymes in these processes is to produce glucans
of large sizes (which are then processed by other enzymes)
starting from medium sized ones.’ Importantly, a production
of glucose (monomers in our descriptions) is expected too.’
This disproportionating behavior can be reproduced in a
(nonequilibrium) steady state by the three chemostats system
depicted in Figure 4(a). The intermediate high concentration
chemostatted glucans represent the species to be processed,
while the low concentration chemostatted glucans represent
the species to be produced—in this case the small and large
glucans. In this scenario, a continuous flow of intermediate
glucans enters the system and consequently both the smaller
and the larger glucans are steadily produced and expelled
from the system (Sec. IV D). We stress that the production
of the small glucans follows from the total concentration
conservation law (Sec. III A), i.e., the fact that free monomers
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cannot attach to other glucans. As seen in Sec. IV C, two
chemostats are not sufficient to reproduce a nonequilibrium
steady state.

Also, under closed in vitro conditions, the equilibrium
distribution (which has also been analyzed in Ref. 9 and can
be equivalently obtained by means of maximum entropy
methods’) agrees with experiments.” This means that if
chemostatting conditions could be implemented in vitro, our
predictions could be verified experimentally. Such a procedure
would also enable to engineer different polymer concentration
distributions.

The approach we developed could be easily extended
to describe the behavior of more sophisticated forms of
D-enzymes’ embedding further conservation laws. It is
also relevant to study any type of exchange process or
aggregation—fragmentation dynamics'? in an open system
framework,'*~>?> emphasizing the importance of conservation
laws and providing more insights into the mechanisms driving
these processes out of equilibrium.
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APPENDIX A: STEADY-STATE DISTRIBUTIONS

The generic expression for steady-state distribution (18)
can be obtained as follows. The steady-state equations can be
expressed as

Z{z2*-72%+27'72' =0,
Z{ZM 27k 4 ZFNY 4 217K - 741y

I_k
= 75]( kyeQy» for k > 2.

(AL)

Defining the variable AZ¥ = Z* — Z*¥~1, they become

ZANZ?+7'7' =0,
Z{AZ* — AZF} + Z'AZF = ﬁé fork > 2 (A2
- k kyEQY’ or = .
K

Hence, by hierarchically substituting these expression one
into the other and using the variable 7 = 1 — Z!/Z, we obtain

AZF=-(1-7)Z'F2+

Tk
+ Z %Fk_ky_l(@(k—ky— 1), (A3
kyEQY

where ©(-) represents the discrete step function,

0 ifk <0,

Ad
1 ifk > 0. (Ad

O(k) = {
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Finally,

k
Zh=)AZI =2\ +
i=1

2,

K
kyeQy

I& 1 — (F)kks

Ok —ky - 1),

(AS5)

which corresponds to Equation (18) in the main text.

APPENDIX B: THREE CHEMOSTATS STEADY STATE

We discuss the uniqueness and stability conditions for the
steady state when three chemostats are present.

From the constraints on the steady state (23) and from
the condition for external currents (24), we can write a single
steady state condition involving just 7 as variable,

— _ k k _ k
(ka3zky] + ka]Zkyz) (f)v ¥l 5y3 _ (ka| + ka3> Zkyz(r—)v yl
_ _ k.
— (VR ZM 4 v ZR3) ()

+ (Vi zke 4 vk ZR) = 0, (B1)

Let us define the variables x = (F)"ky3 and y = (f)"kyl, so that
the above-expressed steady-state condition can be written as
the intersection of two curves: a rectangular hyperbola and a
power law function
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where the coeflicients are given by

(vt + vhv) ZEn2

X0 = — =
Vi Zkvt 4 ykyi zke’
V3 Zkyt 4 kv Zky3

Yo = = = B3
VR Zkyt 4 kv zky’ (B3)
kaley3 (Zkyz _ Zkyl) (Zky2 _ Zky3)

20 = .

. 2
(Vi3 ZK1 4 v Zk2)

[The subscripts h and p simply help us to distinguish the
two functions.] From a geometrical point of view, physical
solutions are represented by those intersection points lying
in (x,y) € (0,1) x (0,1). In order to prove that this happens
whenever Z*v1 > Z*% we observe that all of the possible
configurations of chemostat concentrations are described by
the following four cases for the parameters x¢ and yy.

e xo<1 and yp <1 (z0 <0). This condition implies
the following configuration for the chemostats: Z*v!
> Zhe > 7k,

In this case we have always one and only one
solution. Indeed, the center of the hyperbola (xo, yo)
lies in (0,1) % (0,1), and the upper right branch of
the hyperbola always intersects the power law in
x =1 (which is non-physical). The left lower one,
instead, always intersects the power law for values in

20 . .
Yn = Yo — , (0,1) x (0,1) since yp(x = 0) > 0 (Fig. 9(a)).
X —X . .-
oy k 30 (B2) e xo < land yy > 1(z > 0). This condition corresponds
y1/y"y3 S = S S
yp=(x) to Zk > Z*v2 and Zkvs > Zke,
1.4 T 1.4
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In this case we have one solution if and only
if Z*'> Z*%3. The center of the hyperbola lies
in (0,1)x (1,00) and the upper left branch of the
hyperbola never intersects the power law. The right
lower one, instead, always intersects the power law in
x =1, y = 1 (Fig. 9(b)). We have a further intersection
in the physical region if and only if % . %Lﬁl,
which holds iff Z¥v1 > Z*v—indeed, x* : yn(x*) = 0is
such that x* > 0, for any choice of the chemostats.
e xo> land yy < 1 (z9 > 0). This condition corresponds
to: Zkv < Z*v2 and Zk < Zkv2,

Once again, we have one solution if and only if
Z&1 > 7k The center of the hyperbola lies in
(1,00) X (0,1) and the right lower branch of the
hyperbola never intersects the power law. The upper
left one, instead, always intersects the power law in
x =1, y = 1 (Fig. 9(c)). We have a further intersection
in the physical region if and only if %L{_l > % o
which holds iff Z¥v1 > Z*v—indeed, y,(0) > O for any
choice of the chemostats.

e xo> 1and yp > 1 (z9 < 0). This condition implies the
following configuration for the chemostats: Z*v < Zky2
< 7M.

In this case we have no solutions. Indeed, the center
of the hyperbola lies in (x,y) € (1,00) X (1,00) and
neither the upper right nor the lower left branch of
the hyperbola intersects the power law in the physical
region. The left lower one, indeed, always intersects the
power law in (1, 1) which is non-physical (Fig. 9(c)).

Summarizing, we have a unique steady state whenever
the concentration of the largest chemostat is higher than the
concentration of the smallest one: Z*v1 > Zkv3,

Stability. In order to prove the stability of the fixed point
we resort to the following Lyapunov function:

zk
_ k (7 _
L= §k Z*1n 7 (Z-2Z). (B4)

It is easy to prove that this function is always positive and
vanishes only for Z¥ = Zk, where Z* represents the steady-
state solution. If the steady-state solution exists, namely,
if exists Z¥: Zk = 0, the time derivative of the Lyapunov
function (B4) can be written as

dL ) Zkx
— = Z*¥1n .
dr ; Zkx

(BS)

Close to the steady state the above derivative is negative.
Spanning the phase space with small perturbations on every
concentration, we always obtain % < 0, where the equal sign
is reached only at the steady state. Disregarding the infinite
dimension of the phase space, we consider the independent
set of perturbations labeled with the index k; and quantified
by the small real value €

ZM = Zhoy et e < min zkx, (B6)
X
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Embedding these perturbation in (B5) and using rate equations
(5) we obtain

dL K ,
- [T N T
dL _

- = (27,4228 (B7)

i
—ZE - ZE T -z e forkl # 1,

which are always negative, no matter the sign of the
perturbation.
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We set up a rigorous thermodynamic description of reaction-diffusion systems driven out of equilibrium
by time-dependent space-distributed chemostats. Building on the assumption of local equilibrium,
nonequilibrium thermodynamic potentials are constructed exploiting the symmetries of the chemical
network topology. It is shown that the canonical (resp. semigrand canonical) nonequilibrium free energy
works as a Lyapunov function in the relaxation to equilibrium of a closed (resp. open) system, and its
variation provides the minimum amount of work needed to manipulate the species concentrations. The
theory is used to study analytically the Turing pattern formation in a prototypical reaction-diffusion system,
the one-dimensional Brusselator model, and to classify it as a genuine thermodynamic nonequilibrium

phase transition.
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Introduction.—Reaction-diffusion systems (RDSs) are
ubiquitous in nature. When nonlinear feedback effects
within the chemical reactions are locally destabilized by
diffusion, complex spatiotemporal phenomena emerge.
These latter ranging from stationary Turing patterns [1,2]
to traveling waves [3,4] play a critical role in the aggre-
gation and structuring of hard matter [5] as well as living
systems [6]. In biology, striking examples are embryogen-
esis determined by the prepatterning of morphogens [7-9]
and cellular rhythms regulated by calcium waves [10,11].

Nonequilibrium conditions consisting in a continual
influx of chemicals and energy are required to create and
maintain these dissipative structures. Since the original work
of Prigogine and Nicolis [12,13], which made clear how
order can emerge spontaneously at the expense of continu-
ous dissipation, much work has been dedicated to better
understanding the chaotic and nonequilibrium dynamics of
RDSs [14]. Most of it has focused on searching for general
extremum principles, e.g., in selecting the relative stability of
competing patterns [15]. Nevertheless, a complete frame-
work is still lacking that models RDSs as proper thermo-
dynamic systems in contact with nonequilibrium chemical
reservoirs subject to external work and entropy changes.
Such a theory is all the more necessary nowadays, when
promising technological applications, such as biomimetics
[16,17] and chemical computing [18], are envisaged that
deliberately exploit the self-organized structures of RDSs.
In this respect, the work needed to manipulate a Turing
pattern and the efficiency with which information exchanges
through traveling waves can occur are thermodynamic
questions of crucial importance.

In this Letter, we lay the basis to address these questions
by presenting a rigorous thermodynamic theory of RDSs
far from equilibrium. We take the viewpoint of stochastic

0031-9007/18/121(10)/108301(6)
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thermodynamics [19,20] and carry over its systematic way
to define thermodynamic quantities (such as work and
entropy), anchoring them to the (herein deterministic)
dynamics of the RDSs. Stochastic thermodynamics has
recently emerged as a comprehensive framework for
describing small systems arbitrarily far from equilibrium,
as it allows one to study the efficiency of thermal micro-
engines [21], rationalize the fluctuation theorems [22], and
connect information processing to work [23]. We supple-
ment this well-established approach with a novel yet pivotal
element, which is the inclusion of the conservation laws
[24-26] of the underlying chemical network (CN) for
constructing thermodynamic potentials under general non-
equilibrium conditions. Moreover, viewing the RDS as the
large size limit of stochastically reacting and diffusing
chemicals, we can study Turing patterns as instances of
thermodynamic nonequilibrium phase transitions [27-32].
Theory.—The description of Ref. [33] is extended to
CNs endowed with a spatial structure. We consider a dilute
ideal mixture of chemical species ¢ that diffuse within a
vessel V 3 r with impermeable walls and undergo elemen-
tary reactions p. The abundance of some species is possibly
controlled by the coupling with external chemostats (if not,
the system is called closed). Hence, the concentration
Z,(r,t) of internal and chemostatted species, respectively
denoted x and y follows the reaction-diffusion equations

8IZGZ_V'JG+Z§ij+IU~ (1)
P

Fick’s diffusion currents J,, = —D_,VZ, are responsible for
the transport of chemicals across space and vanish at the
boundaries of V; the external currents I, # 0V y describe
the rate at which the controlled species are injected into the

© 2018 American Physical Society
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(open) system by the chemostats; S7j, gives the concen-
tration variation upon reaction p. Here, S] =v?2, — 19, is
the stoichiometric matrix, i.e., the negative difference
between the number of species ¢ involved in the forward
(+p) and backward (—p) reaction and j, = j,, — j_, is the
net reaction current. While the former specifies the CN
topology, the latter determines its kinetics. By virtue
of the mass-action kinetics assumption [34], each reaction
current is proportional to the product of the reacting

(r

species concentrations, j., = ki ,[[,Z;”. For example,
the net current associated with the autocatalytlc reaction

k
2X, +X2\—‘i3X | (the core of the Brusselator model dis-
k_

cussed later) is j, = k| Z% Zy, — k_Z},, where /\!, =2,

uﬁi, =1, and u)_(‘ﬂ = 3. Thermodynamic equilibrium char-
acterized by homogeneous concentrations Zg' is reached
when all external and reaction currents vanish identically,
Jp =1, =0. It implies for the rate constants the local
detailed balance condition k. ,/k_, = [],(Z5")%. Such a
relation is taken to be valid irrespective of the system’s
state. The CN instead may be in a global nonequilibrium
state characterized by space-dependent concentrations
Z,(r,t) as a result of inhomogeneous initial conditions
or because of nonvanishing external currents ;. Yet, we
assume it to be kept by the solvent in local thermal
equilibrium at a given temperature 7. Therefore, the species
can be assigned thermodynamic state functions, which have
the known equilibrium form valid for dilute ideal mixtures
but are a function of the nonequilibrium concentrations
Z,(r, 1) (Ref. [35], Chap. 15).

A central role is played by the nonequilibrium chemical
potential p,(r) == ug + InZ,(r) (given in units of temper-
ature T times the gas constant R, as any other quantity
hereafter). It renders the local detailed balance in the form
ki ,/k_, =exp(=>_, Sous) involving only the difference
between the energy of formation of reactants and products.
Moreover, its variation across space and between species
gives the local diffusion and reaction affinity [34]

Z SHAG)

Fa(r) = _vlua(r)v

which are the thermodynamic forces driving the system.

We introduce as nonequilibrium potential the “canonical”
Gibbs free energy of the system G := [,,dr>" (4,2, — Z,)
(given up to a constant). It can be expressed in terms of the
equilibrium free energy G* = G(Z?) as

G =G + L(Z,]|Z5) (3)

introducing the relative entropy for non-normalized con-
centration distributions

L(Z,||Z) : /drz (z In eq

Akin to the Kullback—Leibler divergence for probability
densities [36], Eq. (4) quantifies the dissimilarity between
two concentrations: Being positive for all Z, # Zg?, it
implies that G is always larger than its equilibrium
counterpart G®. Most importantly, it is minimized by
the relaxation dynamics of closed systems. This is shown
by evaluating the time derivative of Eq. (3) with the aid of
Eq. (1) at I, = 0 and Eq. (2),

z-2). @

dL=dG =3y —Sq= - <0, (5)

and recognizing the standard form of the total entropy
production rate (EPR) by split into its diffusion and reaction
parts [34]:

z"‘clff = /VerJa - F,, z“'rcl = /Vdrz.jpfp' (6)
o p

The relative entropy (4) possesses some important physical
features. First, in the absence of reactions, it gives the
total entropy produced by the diffusive expansion of
concentrations. For example, consider n, and npz moles
of inert chemicals A and B initially placed in the volume
fractions V, and Vyp, respectively. They relax to homo-
geneous concentrations with an entropy production —£ =
nylog V4 + nglog Vp that is exactly the entropy of mixing
of the two species [37]. It is remarkable that diffusive
dissipation and mixing entropy are, thus, fully described
in a purely information theoretic fashion, namely, as a
relative entropy between concentrations. Second, the rel-
ative entropy between reacting concentrations Z,(r, t) =
Z,(t)¢,(r, 1)V and arbitrary reference homogeneous con-
centrations Z” can be split into the relative entropy between
space-averaged concentrations Z,(t) = [, drZ,(r,1)/V
and equilibrium ones Z;' plus the relative entropy of the
normalized local modulations ¢, (r) around Z,, and the flat
distribution 1/V:

L(Z,1Z8) = L(Z,\1Z8) + Y ZoL($ol11/V). (7)

The positivity of relative entropy implies £(Z,||Z%) >
L(Z,||Zt); i.e., the free energy of a patterned system is
always larger than its homogeneous counterpart. Third,
different patterns may have the same relative entropy (see
Fig. 1) indicating that morphology and thermodynamics
need not be correlated [38].

The conservation laws of the CN play a central role in
building the nonequilibrium thermodynamics of the sys-
tem, i.e., in the derivation of Egs. (3) and (4). The left null
vectors of Sy, i.e., Z,,ff,S;‘, = 0, define the components
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Z(r)4
$(r)
Z
T
0 l
Z(r) 4
r —
0 l
FIG. 1. Sketch of two patterns with equal relative entropy. Any

transformation ¢(r) = ¢/'(r) = ¢(r') with |0r/0F| =1 corre-
sponding to a simple rearrangement of the local concentrations
leaves £(Z|Z9) unchanged. This is rooted in the lack of
interactions between chemicals at the scale of the RDS.

=Y, ¢4Z,, which are the global conserved quantities
of the closed system: d, fv drL, = 0. For this reason, £/ are
called conservation laws. Physically, they identify parts of
molecules called moieties exchanged between species [39].
When the system is opened by chemostatting, 7% differ-
entiate into the fﬁ“’s that are left null vectors of the
submatrix of internal species S; and the £¥°s that are
not, namely,

Yocksi=0. Y zrsi#o. (8)

Accordingly, the unbroken components L; = Zgz,’f,”Za
remain global conserved quantities of the system,
d, [,drL, =0, while the broken ones L, = S 07,

=360 [y drl, #0.

In light of that, the equilibrium condition »_,Sous! =
corresponding to null reaction affinities f, = 0 implies that
us! is a linear combination of the conservation laws 7%
This entails [, dry_ us'0,Z, = 0, which yields, in turn, the
decomposition (3) when time integrating along a relaxation
dynamics that leads from Z, to Zg! [40].

Moreover, the conservation laws are the passkey to
construct the correct nonequilibrium thermodynamic
potential for open systems. For the latter, an additional
term appears when taking the time derivative of G due to

the external current in Eq. (1),

W = | iy (9)

change over time, d, [, drL, =

which defines the chemical work performed by the chemo-
stats. The second law (5) thus attains the new form
Wchem - dtG = Z >0, (10)
where the EPR X is still given by the two contributions
of Eq. (6) even for I, # 0. Consequently, G is no longer
minimized due to the break of conservations laws.
Similar to equilibrium thermodynamics when passing from
canonical to grand canonical ensembles, one needs to
transform the free-energy G subtracting the energetic
contributions of matter exchanged with the reservoirs
[41]. This amounts to the moieties of the broken compo-
nents M v, =
stats y,, that break all conservation laws, times the reference
values of their chemical potential ,uref (which simplifies to
Hy, for homogeneous chemostats). The so-obtained semi-

Do, ffj’ ! [drL 5, (r) entering those chemo-

grand Gibbs free energy

G:=G-) M, (11)

Vp

encodes CN-specific topological and spatial features thanks
to the freedom in the choice of y, and ,ur"t This allows one
to split the EPR

Wdriv + Wnc -dg= 2’ (12)
in terms of the driving and the nonconservative chemical
work rate, respectively,

Wdriv = Z dz/lget

o W :=Z/dr1yfy. (13)
Vo y Y
The former results from time-dependent manipulations
of the reference chemostats y o while the latter gives the
cost of sustaining chemical flows by means of the forces
1y
Fylr) = puy(r) =32, w32, a7 ey

respect to the reference chemical potentials /fef [40].

measured with

Equation (12) is a major result of this Letter and can be
verified by direct substitution. It quantifies exactly the
energy needed to manipulate, sustain, and create chemical

patterns. In the absence of driving (dty§et = 0) and non-

conservative forcing (F, = 0), it simplifies to d,G = -¥<0,
which proves that the CN, despite being open, relaxes to
equilibrium by minimizing the free energy G. Moreover, for
a generic open CN, the decomposition of G corresponding
to Bq. (3), ie, G—G% = L(Z,||Z5") >0, and a time
integral between two nonequilibrium states connected
by an arbitrary manipulation turn Eq. (12) into a non-
equilibrium Landauer principle [36] for RDS,

108301-3
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Wdriv + Wnc - Ageq > A£(26||Z§q) (14)

The latter states that the dissipative work spent to
manipulate the CN is bounded by the variation in relative
entropy between the boundary states and their respective
equilibria attained by stopping the driving and zeroing the

forcing.
Turing pattern in the Brusselator model.—As first
proposed by Turing in his seminal paper [42], RDSs
|

X2

undergo a spatial symmetry breaking leading to a stationary
pattern when at least two chemical species react nonlinearly
and their diffusivities differ substantially. A minimal
system that captures these essential features is the
Brusselator model [43] in one spatial dimension. Here,
the concentrations of two chemical species, an activator
Zy, = x1(r,t) and an inhibitor Zy, = x,(r, 1), evolve in
time and space r € [0, /] according to the RDS (1) for the
chemical equations in Fig. 2, namely,

P (xl ) B (kly] — k_1x) — koyoX| + k_oysxy 4 ksxixg — k_sxi — kaxy + k_gys + D, 0%x, ) (15)
' kyyaxy — k_yysxy — k3xixy + k_yxi + Dy, 0%x, .

The y;, y», ¥3, and y, are the homogeneous concen-
trations of the chemostatted species, and the diffusivities
satisfy the Turing condition D, < D, . Equation (15)
admits a homogeneous stationary solution (x?,x4)T that
becomes unstable for y, > y§ so that a sinusoidal pattern
with wave number ¢, and amplitude proportional to the (in
general complex) function A(r, t) starts developing around
the space-averaged concentrations x() [35]:

(20 = (XY ([ Yo e
(16)

The critical values y§ and g. are determined by the
condition of marginal stability of the homogeneous
state: They are the smaller values for which the matrix
0. J (x, x4) (evolving linearized perturbations) acquires a
zero eigenvalue, the corresponding eigenvector being
(l,uXZ)T. Near the onset of instability, one can treat
€= (y,—5)/y5 < 1 as a small parameter and carry out
a perturbation expansion in powers of ¢. This leads to the
amplitude equation for A(r, 1) [44],

70,A = €A — a|A* A + £D2A, (17)

which describes an exponential growth from an initial small
perturbation A(r, 0) ~ 0 followed by a late-time saturation
due to the nonlinear terms in Eq. (15). Amplitude equations
provide a general quantitative description of pattern for-
mation in several systems near the onset of instability [45],
irrespective of the details of the underlying physical process
that is subsumed into the effective coefficients 7, a, and &.
Since Eq. (17) can be seen as a gradient flow in a complex
Ginzburg-Landau potential involving a bifurcation as e
turns positive, pattern formation is usually considered a
dynamical phase transition [46]. Here, using an analytical

=T (x1.x2)

I
approximate solution to Eq. (15) valid for € < 1, we show
that the phenomenon is, in fact, a genuine thermodynamic
phase transition identified by the appearance of a kink
singularity at y§ in the nonequilibrium free energy G(y,).
The semigrand canonical free energy of Fig. 2 is calculated
[40] taking the stationary stable solution corresponding to a
given value of y,, i.e., the homogenous one for y, < y§ and
the patterned one for y, > y$, namely,

()~ (a Waasmtan.on

—31.45 T
Ylf?‘x,
X +Y2%‘X2+Y3
—31L5| 2x,+x2%3x1 B
X, :%‘\Q
G—31.55 |- e
0.94 0.96 0.98
T T \
- 42 o
>
—3L6 | 4-25 &
>
L 1.3 3
| el e .
—31.65 ‘ . .
0.94 0.96 0.98 1
Ay, /”’?/2

FIG. 2. Nonequilibrium semigrand Gibbs free energy G for the
Brusselator model as a function of the chemical potential of the
chemostatted species Zy, obtained by the analytic stationary
solution of the amplitude equation. To define G, we choose y; and
v, as the reference chemostats breaking the two components
Ly =x;+x,+y, +y4and L, =y, + y3. The dotted line rep-
resents the free energy G in the unstable homogeneous system
before the pattern growth. Symbols (%) result from numerical
integration of Eq. (15). Inset: The derivative 9G/0uy, displays a
discontinuity at y§ ~ 2.66.
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0.4

0.2

—0.2 -

04} .

2.6 2.7 2.8 2.9 3 3.1 3.2

FIG. 3. Analytical result for the EPR of reaction im (dashed)
and diffusion ﬁdff (solid) in the stable stationary state as function
of the concentration y,. The EPR of the (unstable for y, > y$)
homogeneous state »" is subtracted from the former to show the
effect of the pattern formation, i.e., decreasing reaction dissipa-
tion at the expense of diffusion dissipation. Inset: The total
entropy production shows no singularity at the phase transition.

All results correspond to the weakly reversible case k_,=
10* <k, ,=1, and y; =y, =107, y, =2, D, =1, D, =10.

The physical meaning of the kink at y, = y§ is best
understood noticing that the quantity 0G/0uy, =

Wdriv/d,ﬂyz is the driving work upon a quasistatic
manipulation of the chemical potential yy,. In particular,
for y, > y§ it represents the minimum work needed to
vary the wave number ¢, of the Turing pattern (18).
Interestingly, the total EPR shows no singularity at the
transition (cf. Fig. 3): Moving across y5, the EPR of
reaction 2rct decreases with respect to the homogeneous
state value 3", while a nonzero EPR of diffusion appears,
their sum being continuous. This is different from what
has been observed in some previous studies of non-
equilibrium phase transition [27-31].

Conclusion.—We presented the nonequilibrium thermo-
dynamics of RDSs and exemplified the theory with the
application to the Brusselator model. We went beyond
the conventional treatment of classical nonequilibrium
thermodynamics [47] in two respects: avoiding to linear-
ize the chemistry, i.e., to oversimplify reaction affinities to
currents times Onsager coefficients; explicitly building
thermodynamic potentials that act as Lyapunov functions
in the relaxation to equilibrium provide minimum work
principles and reveal the existence of nonequilibrium
phase transitions. As demonstrated by the paradigmatic
case of the Brusselator model, the framework can be
directly applied to quantify the energy cost of pattern
manipulations in complex biochemical systems [48-50]
and paves the way to study information transmission
in signal transduction [51], quorum sensing [52], and
chemotaxis [53].
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No. 9114110) and the European Research Council project
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We here recall the basic ingredients underlying the dynamics and thermodynamics of reaction—diffusion systems
(RDS). In the following sections, the algebraic details underlying our main results are explained.
The evolution in time of the concentration of each chemical species o is ruled by a reaction—diffusion equation

O Zy(r) = =V - Jo(r) + X2,805,(r) + L,(r). &
The diffusion currents (null at the boundaries of the system) follow from Fick’s first law

Jo(r) =—D,VZ,(r), (2)
whereas the reaction ones satisfy the mass-action kinetics

3o(1) = ki1, 120 ()% = b T, [ Z0 (1) 3)

The currents I,(r) are non zero only for the chemostatted species y, and only at the points where the chemostats are
located.

Enforcing the hypothesis of local equilibrium [1], we prescribe that each point in space is characterized by a
well-defined Gibbs free energy density

g(r) =225 lne(r) — RT] Zy(r), (4)
where the chemical potential of the species is that of a dilute ideal gas
po(r) = uS + RTIn{Z,(r)/Zo} . (5)

As discussed in Refs. [2], the term proportional to the total concentration, —RT"Y_Z,(r), is due to the solvent. Zj is
the concentration of the solvent. Dynamics and thermodynamics are connected by the local detailed balance,

k -
= 2% = exp {-5, Iy — RTIn Z)]S7} (6)
P

o

which relates the ratio of forward and backward reaction rates to the difference of standard-state chemical potentials,
uS. Since Zj is constant, the term —RT In Zj is absorbed in p2 in the main text. Integrating Eq. (4) over all volume
V, we obtain the Gibbs free energy of RDS,

G= /Vdr (o (T)Zs(r) — RTY . Zs(7)] . (7)
We finally recall that the forces which act on RDS are related to either spatial gradients of concentrations

Fo(r) = —V,LLU(T') ’ (8)

or to chemical reactions

fo(r) i= = o1a (r)S7 . (9)

These forces are called affinities and they vanish only at thermodynamic equilibrium: for each point of space r,
Jo(r) =0 for all o and j,(r) = 0 for all p.
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DYNAMICS AND THERMODYNAMICS OF CLOSED RDS

We now discuss the minimization of the Gibbs free energy as closed RDS relax to equilibrium, and show how this
minimization is related to the entropy production rate (EPR).

In closed CNs I, (r) = 0 for all o, namely there is no exchange of matter with the chemostats. We also assume that
closed RDS always relax to thermodynamic equilibrium. At equilibrium, Z59 must be homogeneous, i.e. VZ$4 = 0 for
all o, as a consequence of F4 = 0 for all o. All affinities related to chemical reactions must also vanish

[t =2 ,151S; =0, forallp, (10)
which implies that the chemical potentials can be written as a linear combination of conservation laws
et =D - (11)

The conservation laws are left null vectors of the stoichiometric matrix S. They identify components, Ly(r) :=
> a2 Z,(r), namely global conserved quantities in closed RDS. Indeed,

dy /V drLy(r) = /v dry> (0di Z,(r) = /V dry> 62 [—V-Jg(r)Jrzpsgjp(T) =0, (12)

where the first term vanish because J,(7) vanishes at the boundaries, whereas the second one because of the definition
of £).

We can now show that the Gibbs free energy can be expressed in terms of a relative entropy for non-normalized
concentrations distribution, i.e. Eq. (4) of the main text. We first observe that the difference between G of a generic
state Z,(r) and that of a reference homogeneous state, Z2, can be written as

G=G" = [ ArS, [(a(r) = 1) Z(r) = RT(Zo(r) = 22)] 4 5,05 [ dr [Zo(r) ~ 28] (13)
% %
We now notice that using the definition of chemical potential, Eq. (5), the first term on the rhs can be recast into (up

to a global factor equal to RT)

c(za)22) = [ ars, {zarn 2~ (2,0 - 221} 20, (19

which is akin to a relative entropy for non-normalized distributions. It is indeed always non-negative and vanish only
when Z, = Z". The second term in Eq. (13) is in general different from zero, but when the homogeneous reference
state is the equilibrium one, Z2 = Z¢4, then it vanishes. The latter fact is due to the properties of equilibrium chemical
potentials, Eq. (11), and the properties of conservation laws, Eq. (12). Therefore,

G~ G" = RTL(Z,|28) + 5,08 [ v [Z(r) - 2} (15)
%
holds in general, but when the equilibrium state is chosen as a reference, one has
G—Geq=RTL(Z,||ZY) > 0. (16)
Crucially, the last equation tells us that G takes its minimum value at equilibrium, where it becomes

Geq = D \txLx — RTVY  Z3%. (17)

We now relate the changes of G to the EPR when the RDS relaxes to equilibrium. By taking the time derivative of
the Gibbs free energy (7), we obtain

4G = [ ar S o) {=9 - 1,0+ T,80,0)} (18)

Notice that the first term in curly brackets can be written as

[ A SV o) = [ ArS (Ve ()] + () - Vg ()} (19)
1% v



The divergence theorem, together with the fact that the currents vanish at the boundaries, implies that the first term
on the rhs vanishes. The second term, instead, is minus the EPR due to diffusion

TS ag = /vdrza.](,(r) -F,(r)= RT/vdT ZJDUHVZZ:((:))'P >0, (20)

where we used the definition of diffusion affinity given in Eq. (8).
The second term in curly brackets of Eq. (18) is easily recognized as minus the EPR due to the reactions

~—

Y

mm:ﬁwzmmmm:wszwwmﬂw

il = 0

~—

where we used the definition of reaction affinity given in Eq. (9). The last equality in Eq. (21) is sometimes called
reaction isotherm of flux—force relation and follows from the assumption of elementary reactions (mass-action kinetics)
and the local detailed balance, Eq. (6). We can thus conclude that

4G = TS — TS = -TE <0, (22)

which, together with Eq. (16), also demonstrates that G is a Lyapunov function in closed RDS.

DYNAMICS AND THERMODYNAMICS OF OPEN RDS

Open RDS are characterized by nonvanishing currents I,(r) for the species y which are chemostatted. As a
consequence, the time derivative of the Gibbs free energy reads

dtG = Wchem - TZ ) (23)

where
Wosen = [ dr S,y (r)1,(r). (24)

is the chemical work, namely the free energy exchanged with the chemostats. Crucially, even if the open RDS is
prepared in such a way to relax to an equilibrium concentration distribution (more about these conditions will be
given later), G is not minimized anymore. The reason is that Geq depends on all conservation laws, Eq. (17), but in
open RDS some conservation laws are broken. Broken conservation laws, labeled by Ay, are those minimal subset of
conservation laws such that ZEZ;\bSﬁ # 0 for at least one p. As a consequence, the related components change due to
the exchange of chemostatted species with the environment

dy /V drLy, (r) = >, 6" /V drl,(r) #0. (25)

The subset of conservation laws which are not broken by the exchange of mass are labeled by A,. They are characterized
by the fact that - £3*S% = 0 for all p, and as a consequence d; [, drLy,(r) = 0.

In order to find the potential which is minimized at equilibrium in open RDS, we need an expression for the EPR
which, in contrast to Eq. (23), accounts for the broken conservation laws.

EPR Decomposition

We will now derive Eq. (12) of the main text, namely an EPR, decomposition which accounts for those RDS-specific
topological properties encoded in conservation laws.

We start by partitioning the set of chemostatted species y into two disjoint groups, to which belong species denoted
yp and y¢. The first group is composed by a minimal set of chemostats that break all broken conservation laws when
starting from the closed CN. Clearly, the number of species y;, equals that of Ay. All other chemostatted species fall

into the second group. From the fact that the set of conservation laws is linearly independent, it follows that the

. . . . . . . —1
matrix whose entries are 62}‘: is square and nonsingular. The entries of the inverse matrix are denoted by Zf’\i .
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We now observe that this partitioning allows us to recast Eq. (25) as

-1
4 M, = /V dr I, (r) + 5, 20 7', O /V dr I, (r), (26)
where
My, =3, 0 / drLy, (r), (27)
2

are defined as the moiety concentrations.

At this point we choose some reference values u;if for the chemical potentials of the species y,. These can be chosen
arbitrarily among the values of p, (r) where Z, (r) are controlled by the chemostats. With this prescription, we can
rewrite Eq. (26) as

re re: re: re re -1
iy My, = dy {“ypryP} + dupy My, = i /V dr Ly, (r) + pye X0, 0 2,60 /vdr fulr) @)

When inserting the above identity in the definition of chemical work, Eq. (24), we obtain

Woser = s [, 1500, ] = £, dug 81, + %, | ant, ()7, (r). (29)
where the fundamental chemical forces are defined as

Fy(r) = pry(r) — 0, oS0, 640 7 e (30)
Overall, the EP can be written as

TS = Wariy + Wae — diG (31)
(Eq. (12) in the main text) where

Wiy = =3, dipty My, (32)

is defined as the driving work rate,

Wae =3, / drl,(r)F, (r) (33)
%
as the nonconservative chemical work, and finally
G=G- Zyp“ZifMyP (34)

is the semigrand Gibbs free energy. These three terms reflect the three fundamental forms of dissipation occurring in

RDS. W,y involves the time derivative of /,L;Zf, hence it accounts for external manipulation via time-dependently driven

chemostats and vanishes for autonomous RDS. W, is the sum of a minimal number of current—force terms. It describes
the thermodynamic cost of sustaining currents of chemicals across the system and vanishes in detailed-balanced RDS,
see next section. Finally, —d;G is the conservative contribution which quantifies the dissipation during transient
dynamics and vanishes at steady states.

We now briefly linger on the definition of fundamental force, Eq. (30). For the chemostatted species y,, the forces

read Fy (1) = piy, (r) — u;if. Therefore, they simply accounts for differences of chemical potential of the same species
in different points of the boundaries. They originate steady currents of chemicals across the RDS which not necessarily
involve reactions. In contrast, Fy, (r) = piy(r) — >, u;ifz /\bfzf\i_léé‘fb also accounts for chemical potential differences
of different species which are coupled by reactions. Therefore, they originate steady currents of chemicals which involve

reactions.



Open Detailed-Balanced RDS

Open detailed-balanced RDS can relax to equilibrium despite the fact that they exchange matter with the environment.

As we now show, this happens when all fundamental forces vanishing and the time-dependent driving is stopped.
Let us assume that the open RDS relaxes to equilibrium. From Eq. (11), it follows that

S n by = iy (35)

where we have used the fact that @: =0, for all A, by definition of unbroken conservation law. In words, Eq. (35)
tells us that the equilibrium distribution must be shaped by the reference chemical potentials. We can thus rewrite the
semigrand Gibbs potential as

9’ = G — ZAb/(/))\b Aer)\b (T’) s (36)

whose expression is reminiscent of a Legendre transform of G with respect to the broken components. Using the
equilibrium expression of G, Eq. (17), one can write the equilibrium semigrand potential as

Geq = 35, U, / drLy,(r) — RTVY, Z5% (37)
2

We thus readily get that
G — Gog= G — Yyths / drLy(r) — RTVY, 258 = RTL(Z,||Z5) > 0. (38)
%

holds far from equilibrium.

Equation (38) tells us that G takes its minimum value at the equilibrium distribution identified by the reference
chemical potentials, Eq. (35). However, G may not be effectively minimized by the dynamics, namely d;G £ 0. This
happens only when all fundamental forces vanish and the time-dependent driving is stopped. Then, Eq. (31) becomes

4,6 =-T% <0, (39)

which, in combination with Eq. (38), demonstrates the role of G as a Lyapunov function in open detailed-balanced
RDS.

Some comments are in order regarding the requirements that all fundamental forces vanish. First, ]-";p =0 if and
only if oy, (r) = u;’f wherever exchange with the chemostats is allowed. Physically, this means that there cannot
develop steady diffusion currents of y;, due to gradients of j, (r) imposed by the chemostats. Second, F; = 0 if and
only if the chemical potentials of y; at the points where exchange is allowed are constant and equal to

* r p—1
IRCIED DT DAL W (40)

Hence, steady diffusion currents of ys and steady currents of chemical reactions across the RDS are prevented.

Nonequilibrium Landauer’s Principle

In absolute generality, Eqs. (31) and (38) can be combined in the form
Wac + Wariv — diGeq = RT 4 L(Z, || Z3%) + TX. (41)

where Z¢9 must be understood as the equilibrium concentration distribution identified by u;‘f, Eq. (35). Clearly, the
latter distribution is achieved when stopping the driving and turning off the fundamental forces, so that Eq. (39) is

recovered. When integrating over time between two arbitrary nonequilibrium concentration distributions we obtain
Whe + Wariy — AGeq = RT AL(Z, | Z5Y) + TX. (42)

(Eq. (14) in the main text). The positivity of the EP thus bounds the overall work, Wye + Wariv — AGeq, to be
greater than the difference of relative entropies, which measure the distance from equilibrium of the initial and final
distribution.
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Homogeneous Chemostatted Species Limit

We now discuss the case of homogeneous chemostatting used in the second part our Letter. It can be seen as
the limit of fast-diffusing chemostatted species. In this limit Jy(r) = 0, or equivalently Vy, = 0, for time scales
comparable to those of reactions. Therefore, the reaction—diffusion equation for the concentrations of chemostatted
species become balance equations of the form

deZy =32 ,S8ip(r) + 1y(r), (43)

with external currents in general different from zero everywhere in the vessel. In this limit, the chemical work (24)
becomes

Wehem = Zyﬂy /v drl,(r). (44)

One can as well determine the EPR decomposition (31) in this limit. First, one has that p, = pzef for all . Hence,
the expressions of semigrand Gibbs free energy and driving work reads identical as in Eqs. (34) and (32). Instead,
there cannot be fundamental forces F, = 0 due to differences of chemical potentials of y,. The other fundamental
forces are instead homogeneous, and can be expressed as

g —1
‘Fyf = fyy — ZypﬂypZAbff\i ég)/\fb ) (45)

so that the related nonconservative contributions read Wy, = Fue fv drly(r).

BRUSSELATOR MODEL

We study the Brusselator model as an open CN constituted of two dynamical species X1, X5 and four homogeneously
chemostatted species Y71, ..., Ys. Their concentrations are denoted by 1 (r,t), z2(r,t) and y1,. .., y4, respectively. The
chemical equations governing the CN are depicted in the upper left corner of Fig. 2 in the main text. Their main
feature is the autocatalytic reaction p = 3 that is responsible of the nonlinear effects at the basis of patter formation.
The stoichiometric matrix of the closed CN

1 -1 1 -1
0 1 -1 0
s |-1 0 0 o0
S5=1o0 -1 0 o0 (46)
0 1 0 0
0 0 0 1

possesses two conservation laws /L = (11100 1) and £2 = (000 11 0) that are both broken by chemostatting. The
species Y7 and Y5 are chosen to be the reference chemostats y,. Other choices do not change qualitatively our results.
The reaction-diffusion equations for the Brusselator model in one spatial dimension [0, £] 3 r read, in vector form,

z1\ _ (ki — k_1xy — kayexy + k_oysao + ksaias — k_gat — kawy + k_yys + Dy, 07210
o <x2> a ( koyaw1 — k_oysxs — kzaizy + k_32} + Dy, 07w = (e z). (47)

Setting all partial derivatives to zero in Eq. (47), one finds the unique stationary homogeneous solution

T
(o} a3)" = (ky oy o t ksw?m}f) (48)

.’1:1 5 ZC2 3
ko1 +ky k_oys + k3$}112
Its linear stability against small perturbations is analyzed by applying to (47) a Fourier transform z(q,t) :=
J dra(r,t)e’? and considering its Jacobian matrix evaluated in the homogeneous state (2%, 25)T:
_ _ _ }12 _ 2 h2
0, T (2, 2h) = (k-1 + ka) kiz?/}z1 ) 3k 3] 5 Dy q k—2ys + }’fg% L - (49)
kgyg — 2]173%1%2 + 3k_3$1 7k_2y3 - kgl’l — DIQQ



The eigenvalues A1 (q) of (49) are most easily expressed by means of the Jacobian’s trace and determinant:

1
T(q) == T{0,T (@}, a8)},  Dlg) i=Det{d.T(hah)},  Aele) = 5 [Tl £ VT2 (@) —D(@)] . (50)
The homogeneous solution is stable if both eigenvalues are negative, while it is unstable if at least one eigenvalue is
positive. The Turing mechanism requires the homogeneous state to be stable in the absence of diffusion, i.e. Ay (0) <0,
and to turn unstable for some finite value of ¢. In view of (50), these two conditions correspond to, respectively,

T(0) <0and D(0) >0, D(q) < 0 for some q. (51)

Since D is an upward parabola in ¢2, the critical wavelength q. of the Turing pattern is determined by looking for the
value of ¢ which first makes D negative:

1 0D
2q 0q

D W2 _ g Do (9aghyh — — ks — 3k agh?
0. ie. qC:\/ w1 (k321" — k—2y3) + Dy, (2kyzi@y — koys — kg — k27" — k1) (52)

2D, Dy,

9=9c

The critical value of the chemostat concentration y$ is fixed by setting D(g.) = 0, which corresponds to the condition
of marginal stability of the homogeneous state, i.e. Ay (g.) = 0. We call (1,u,,)T the corresponding eigenvector.

The above linear stability analysis suggests that sufficiently close to the threshold value y§ the concentrations are
well described by

(i) = (2a0) (oo, ) (e e o

with A(r,t) following the so-called amplitude equation
TO A = €A — a| AP A + €02 A. (54)

The latter can be derived by a multiple scale expansion based on the replacements 9, — 9, + /e, and 9y — €d;
together with the expansion of (x1,22)T in powers of the small reduced parameter v/ := /(y2 — y5)/yS [3]. This
formalizes the intuitive idea that the amplitude A(r,t) describes slow modulations of the pattern around its leading
critical mode. Thus, it changes sizeably only over long distances ' = \/er and large times t' = et, related by the
diffusive scaling 2/> ~ /. Truncating the expansion at lowest order gives (54), whose effective coefficients are expressible
in closed form if the backward reactions are neglected [4]:

__lten _— Dy, o . —8+ 38y + Syin® — 8y’ ¢ e 2
T D, ' 9yin(1 + y1n) S 14y

(55)

Hence, hereafter we focus on the weakly reversible case k4, = 1> k_, = 1074, and to obtain analytic results we
approximate k_, = 0 as far as purely dynamical expressions are concerned. From here on, we also make use of the
no-flux boundary conditions of Eq. (47): they restrict the spectrum of Fourier modes x(q,t) ~ cos(gr), and impose
that the critical wavenumber ¢. is a multiple of 27 /¢.

First, we look for an analytic solution of the amplitude equation (54). Very close to the critical point inhomogeneous
solutions of (54) may be just small modulations with wavelength close to g.. Though, such solutions do not conform
with the no-flux conditions at the boundaries r = {0, I} and thus must be excluded. Therefore, (54) admits only a
real-valued homogeneous solution

A(t) = ¢ ‘ (56)

o — exp[—2(t — to)]’

that for long times relaxes to the patter maximum amplitude /e/a. Second, we focus on the space-averaged
concentrations. Integrating Eqs. (47) over space and adding them up we obtain,

dtZ1 +dyT2 = Y1 — T, (57)

which shows that z; attains the same value in the homogeneous and patterned stationary state, i.e. 7h =z} = y;.

In fact, the numerical solution of (47) shows that Z;(¢) varies very little during the formation of the pattern (e.g. a

197



198

relative variation smaller than 10~% is observed at e = 0.05) so that the approximation Z(t) =~ y; is legitimate at all
times. Then, an approximate solution for Z»(t) is found by using (56) together with (53), namely,

(i) (o) + (i) rarmtan o

plugging it into (47) and averaging over space. We arrive at
dea = y1ys — 23x9 = Yyrya — 4A () ug, — (Y7 + 24%(t)uy, ) Ts, (59)
whose solution

_ 1 t 2, | 2 +exp (—25(t —to)) :
t)=—|y2+ dt'y () (y2 — 4A%(t )u, ith y(t) = e’ | = T
70 = 55 [t [ WO a2 )| i () = o | 2L

(60)

can be given explicitly in terms of hypergeometric functions (being cumbersome we avoid to present it here). The
dynamics of the pattern formation is thus fully characterized for e < 1. The long time solution (58) and (60), i.e.

(0) = ()« () Vizemtan o

is employed to evaluate the Gibbs free energy and the EPR of the pattern.
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Abstract

Starting from the detailed catalytic mechanism of a biocatalyst we provide a coarse-graining procedure
which, by construction, is thermodynamically consistent. This procedure provides stoichiometries,
reaction fluxes (rate laws), and reaction forces (Gibbs energies of reaction) for the coarse-grained level.
It can treat active transporters and molecular machines, and thus extends the applicability of ideas that
originated in enzyme kinetics. Our results lay the foundations for systematic studies of the
thermodynamics of large-scale biochemical reaction networks. Moreover, we identify the conditions
under which a relation between one-way fluxes and forces holds at the coarse-grained level as it holds
at the detailed level. In doing so, we clarify the speculations and broad claims made in the literature
about such a general flux—force relation. As a further consequence we show that, in contrast to
common belief, the second law of thermodynamics does not require the currents and the forces of
biochemical reaction networks to be always aligned.

1. Introduction

Catalytic processes are ubiquitous in cellular physiology. Biocatalysts are involved in metabolism, cell signaling,
transcription and translation of genetic information, as well as replication. All these processes and pathways
involve not only a few but rather dozens to hundreds, sometimes thousands of different enzymes. Finding the
actual catalytic mechanism of a single enzyme is difficult and time consuming work. To date, for many enzymes
the catalytic mechanisms are not known. Even if such detailed information was at hand, including detailed
catalytic machanisms into a large scale model is typically unfeasable for numerical simulations. Therefore, larger
biochemical reaction networks contain the enzymes as single reactions following enzymatic kinetics. This
simplified description captures only the essential dynamical features of the catalytic action, condensed into a
single reaction.

The history of enzyme kinetics [ 1] stretches back more than a hundred years. After the pioneering work of
Brown [2] and Henri [3], Michaelis and Menten [4] laid the foundation for the systematic coarse graining of a
detailed enzymatic mechanism into a single reaction. Since then, alot of different types of mechanisms have
been found and systematically classified [5]. Arguably, the most important catalysts in biochemical processes are
enzymes—which are catalytically active proteins. However, other types of catalytic molecules are also known,
some of them occur naturally like catalytic RNA (ribozymes) or catalytic anti-bodies (abzymes), some of them
are synthetic (synzymes) [5]. For our purposes it does not matter which kind of biocatalyst is being described by a
catalytic mechanism—we treat all of the above in the same way.

From a more general perspective, other scientific fields are concerned with the question of how to properly
coarse grain a process as well. While in most applications the focus lies on the dynamics, or kinetics, of a process,
itturned out that thermodynamics plays an intricate role in this question [6]. For processes occurring at
thermodynamic equilibrium, every choice of coarse graining can be made thermodynamically consistent—after
all, the very foundation of equilibrium thermodynamics is concerned with reduced descriptions of physical

© 2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft
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phenomena [7]. Instead, biological systems are open systems exchanging particles with reservoirs and as such
they are inherently out of equilibrium. Nonequilibrium processes, in general, do not have a natural coarse
graining.

When the particle numbers in a reaction network are small, it needs to be described stochastically with the
chemical master equation. Indeed, there is increased interest in the correct thermodynamic treatment of
stochastic processes [8, 9]. With stochastic processes it is possible to investigate energy-conversion in molecular
motors [10—13], error correction via kinetic proofreading [ 14—16], as well as information processing in small
sensing networks [17-19]. In this field, different suggestions arose for coarse grainings motivated by
thermodynamic consistency [20-22]. In these cases, the dissipation in a nonequililibrium process is typically
underestimated—although also overestimations may occur [23]. For a general overview of coarse-graining in
Markov processes, see [24] and references therein.

For large-scale networks however, a stochastic treatment is unfeasable. On the one hand, stochastic
simulations quickly become computationally so demanding that they are effectively untractable. On the other
hand, when species appear in large abundances (e.g. metabolic networks) the stochastic noise is negligible. This
paper is exclusively concerned with this latter case. The dynamics is governed by deterministic differential
equations: the nonlinear rate equations of chemical kinetics. Assuming a separation of time scales in these
equations, model reduction approaches have been developed [25-27]. However, they do not address the
question of thermodynamic consistency. Remarkably, recent development in the thermodynamics of chemical
reaction networks [28, 29] highlighted the strong connection between the thermodynamics of deterministic rate
equations and of stochastic processes, including the relation between energy, work, and information.
Unfortunately, these studies were limited to elementary reactions with mass—action kinetics. The present paper
addresses this constraint, thus extending the theory to kinetics of coarse-grained catalysts.

Understanding the nonequilibrium thermodynamics of catalysts is a crucial step towards incorporating
thermodynamics into large-scale reaction networks. There is ongoing effort in the latter [30-32] which very
often is based on the connection between thermodynamics and kinetics [33-35].

In this paper we show how to coarse grain the deterministic description of any biocatalystin a
thermodynamically consistent way—extending the applicability of such simplifications even to molecular
motors [10, 36] and active membrane transport [37]. The starting point is the catalytic mechanism described as a
reversible chemical reaction network where each of the M reaction steps p is an elementary transition
representing a conformational change of a molecule or an elementary chemical reaction with mass—action
kinetics. The corresponding rates are given by the fluxes (kinetic rate laws), (bzt, that incorporate the reaction rate
constants and the dependence on the concentration of the reactant molecules. The mass—action reaction forces
(negative Gibbs free energies of reaction) are — A,G=RTIn ¢; / ¢; [38]. At thislevel, the reaction currents,

I, = (;5; — ¢;, of these elementary steps are aligned with their respective reaction forces [39]: when one is

positive, so is the other. From here we construct a reduced set of C reactions with effective reaction fluxes 1= and
net forces —A,, G. As we will see later, there is a limited freedom to choose the exact set of reduced reactions.
Nonetheless, the number of reduced reactions is independent of this choice.

By construction, our coarse graining procedure captures the entropy-production rate (EPR) [39, 40] of the
underlying catalytic mechanism,

M C
To= —3(6 — 6,)8,G = —S (W — ) AG > 0,
p @

even though the number C of effective reactions « is much smaller than the number M of original reaction steps
p. Therefore, our procedure is applicable in nonequilibrium situations, such as biological systems. In fact, the
above equation is exact under steady-state conditions. In transient and other time-dependent situations the
coarse graining can be a reasonable approximation. We elaborate this point further in the discussion.

Secondly, we work out the condition for this coarse graining to reduce to a single reaction cv. In this case, we
prove that the following flux—force relation holds true for this coarse-grained reaction:

Ya

—A,G=RTIn

«

A trivial consequence is that the coarse-grained reaction current, J, = Uit — afy, is aligned with the net force,
—A, G.Inthe past, such a flux—force relation has been used in the literature [41, 42] after its general validity was
claimed [33] and later questioned [31, 34]. From here the belief arises that in every biochemical reaction network
with any type of kinetics the currents and the forces of each reaction individually need to be aligned, a constraint
used especially in flux balance analysis [43—45]. However, as we show in this paper, this relation does not hold
when the coarse-graining reduces the biocatalyst to two or more coupled reactions.
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Figure 1. Overview of the coarse-graining procedure: (Left) the starting point is a reaction network with elementary reactions
following mass—action kinetics in a steady state. This example contains two catalytic mechanisms [blue boxes] and for illustrative
purposes some additional arbitrary reactions. Each of the two catalyst species, E and M, is conserved throughout the network. The
reaction partners of the catalysts re-appear in the rest of the network. From the perspective of the remaining network, only the
turnover [blue arrows] of these molecules are relevant. The involved concentrations may be global, as for S, or refer to different well
stirred sub-compartments [green box], as for P. (Right) The procedure provides few coarse-grained reactions [blue arrows] that
replace the originally more complicated mechanisms. The kinetic rate laws, 1), of the coarse-grained reactions are different from
mass—action. We construct them explicitly during the coarse-graining procedure, so that the turnover is correctly reproduced.
Combined with the coarse-grained reaction forces [Gibbs free energies] also the entropy-production rate is reproduced exactly. We
work out the coarse graining of these two catalysts, E and M, in detail in section 3.
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This paper is structured as follows: first we present our results. Then, we illustrate our findings with two
examples: the first is enzymatic catalysis of two substrates into one product. This can be reduced to a single
reaction, for which we verify the flux—force relation at the coarse-grained level. The second example is a model of
active membrane transport of protons, which is a prototype of a biocatalyst that cannot be reduced to a single
reaction. Afterwards, we sketch the proofs for our general claims. Finally, we discuss our results and their
implications. Rigorous proofs are provided in the appendix.

2. Results

Our main result is a systematic procedure for a thermodynamically consistent coarse graining of catalytic
processes. These processes may involve several substrates, products, modifiers (e.g. activators, inhibitors) that
bind to or are released from a single molecule—the catalyst. The coarse graining involves only a few steps and is
exemplified graphically in figure 1:

(1) Consider the catalytic mechanism in a closed box and identify the internal stoichiometric cycles of the
system. An internal stoichiometric cycle is a sequence of reactions leaving the state of the system invariant.
Formally, internal stoichiometric cycles constitute the nullspace of the full stoichiometric matrix, S.

(2) Consider the concentrations of all substrates, modifiers, and products (summarized as Y) constant in
time—therefore reduce the stoichiometric matrix by exactly those species. The remaining species, X,
represent N different states of the catalyst. As a consequence, the reduced stoichiometric matrix, S*, has a
larger nullspace: new stoichiometric cycles emerge in the system. These emergent cycles cause a turnover in
the substrates/products while leaving the internal species invariant. Choose a basis, C,, of emergent
stoichiometric cycles that are linearly independent from the internal cycles.

(3) Identify the net stoichiometry, SYC,, together with the sum, —A,G, of the forces along each emergent

cycle a..

(4) Calculate the apparent fluxes ;- along the emergent cycles at steady state.

3
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Figure 2. An enzymatic scheme turning two substrates into one product. The substrates can bind in arbitrary order. We adopt a
reference direction for the individual reactions: forward is from left to right, as indicated by the arrows. The backward reactions are
from right to left, thus every single reaction step is reversible. This scheme has a clear interpretation as a graph: the reactions are edges,
reactants/products are vertices, where different combinations of reactants/products are considered different vertices. This graph has
three disconnected components and contains no circuit.

For each emergent stoichiometric cycle o this procedure provides a new reversible reaction with net
stoichiometry S¥ C,, net force — A, G, and net fluxes 1/, Furthermore, it preserves the EPR and, therefore, is
thermodynamically consistent.

Our second result is a consequence of the main result: we prove that the flux—force relation is satisfied at the
coarse-grained level by any catalytic mechanism for which only one single cycle emerges in step 2 of the
presented procedure, as in example 3.1. When more cycles emerge, the flux—force relation does not hold as we
show in the explicit counter-example 3.2.

3. Examples

3.1. Enzymatic catalysis
Let us consider the enzyme E that we introduced in figure 1. It is capable of catalyzing a reaction of two
substrates, S; and S,, into a single product molecule, P. The binding order of the two substrates does not matter.
Every single one of these reaction steps is assumed to be reversible and to follow mass—action kinetics. For every
reaction we adopt a reference forward direction. Overall, the enzymatic catalysis can be represented by the
reaction network in figure 2.

We apply our main result to this enzymatic scheme and thus construct a coarse-grained description for the
net catalytic action. We furthermore explicitly verify our second result by showing that the derived enzymatic
reaction fluxes satisfy the flux—force relation.

3.1.1. Closed system—internal cycles
When this system is contained in a closed box, no molecule can leave or enter the reaction volume. The
dynamics is then described by the following rate equations:

%z ST, (1)

where we introduced the concentration vector z, the current vector J (z), as well as the stoichiometric matrix S:

[E]
(ES,] KIEI[S] — k_1[ESI] BRSO
[ES,] K [EI[S;] — k_,[ES,] 0 1 1o 0 o
N [ e R S | R I B R |
[EP] ka[ES/IIS,] — k_4[ES;S,] 0 0 0 0 1 —1
[Si] ks[ES;S,] — k_s[EP] —01 01 —01 01 8 8
[[%]] ke[EP] — k_6[E][P] o 0 0 o0 o 1

In the dynamical equations, only the currents J (z) depend on the concentrations, whereas the
stoichiometric matrix S does not. The stoichiometric matrix thus imposes constraints on the possible steady-
state concentrations that can be analyzed with mere stoichiometry: at steady state the current has to satisfy
0 = S J (z) or, equivalently, J (zis) € kerS. In our example, the nullspace ker S is one-dimensional and
spannedby Cj,y = (1 —1 —1 1 0 0)'.Hence, the steady-state current is fully described by a single scalar
value, J (zss) = Jine Cine- The vector Cyy, represents a series of reactions that leave the system state unchanged: the
two substrates are bound along reactions 1 and 4 and released again along reactions —3 and —2. In the end, the
system returns to the exact same state as before these reactions. Therefore, we call this vector internal
stoichiometric cycle. Having identified this internal cycle renders the first step complete.
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Note that this stoichiometric cycle does not correspond to a self-avoiding closed path, or circuit, in the
reaction graph in figure 2. This is due to the fact that combinations of species serve as vertices. If instead each
species individually is a vertex, then also each cycle corresponds to a circuit.

In the following we explain why the first step of the procedure is important. The closed system has to satisfy a
constraint that comes from physics: a closed system necessarily has to relax to a thermodynamic equilibrium
state—which is characterized by the absence of currents of extensive quantities on any scale. Thus
thermodynamic equilibrium is satisfied if J;,; = 0. One can show that this requirement is equivalent to
Wegscheider’s condition [46]: the product of the forward rate constants along the internal cycle equals that of
the backward rate constants,

kiksk sk o = k_ik_sksk. )

Furthermore, irrespective of thermodynamic equilibrium, the steady state has to be stoichiometrically
compatible with the initial condition: there are three linearly independent vectors in the cokernel of S:

0
0
1
1
1
0
1
1

O OO = e e
—_ O Rk O = O

For each such vector, the scalar L = € - z evolves according to %f -z=17- S J(z) = 0,and thusis a conserved
quantity. We deliberately chose linearly independent vectors with a clear physical interpretation. These vectors
represent conserved moieties, i.e. a part of (or an entire) molecule that remains intact in all reactions. The total
concentration of the enzyme moiety in the system is given by Lg. The other two conservation laws, L, and L,, are
the total concentrations of moieties of the substrates, S; and S,, respectively.

Given a set of values for the conserved quantities from the initial condition, Wegscheider’s condition on the
rate constants ensures uniqueness of the equilibrium solution [46].

3.1.2. Open system—emergent cycles

So far we only discussed the system in a closed box that will necessarily relax to a thermodynamic equilibrium.
We now open the box and assume that there is a mechanism capable of fixing the concentrations of S;, S,

and P to some given levels. These three species therefore no longer take part in the dynamics. Formally, we

divide the set of species into two disjoint sets:

{E) ESD ESZ> ESISZ> EP} U {sh SZ> P}

X Y

The first are the internal species, X, which are subject to the dynamics. The second are the chemostatted species, Y,
which are exchanged with the environment. We apply this splitting to the stoichiometric matrix,

X
S B (S )’
sY
and the vector of concentrations, z = (x, y). Analogously, the rate equations for this open reaction system split
into

%x = SX](x; y)) (3)
_ 0 y
OzayzS J(x, ) + I(x, y). 4)

The equation (4) is merely a definition for the exchange current I, keeping the species Y at constant
concentrations. Note that the exchange currents I quantify the substrate/product turnover. The actual
dynamical rate equations, the equation (3), are a subset of the original equations for the closed system, treating
the chemostats as constant parameters. Absorbing these latter concentrations into the rate constants, we arrive at
alinear ODE system with new pseudo-first-order rate constants k(y). For these rate equations, one needs to
reconsider the graphical representation of this reaction network: since the chemostatted species now are merely
parameters for the reactions, we have to remove the chemostatted species from the former vertices of the
network representation and associate them to the edges. The resulting graph representing the open network is
drawn in figure 3.
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Figure 3. (Left) Enzymatic catalysis as an open chemical network. The species S, S, and P are now associated to the edges of the graph,
instead of being part of its vertices as in figure 2. This graph has only one connected component and contains three distinct circuits.
(Center, right) Graphical representation of the two circuits spanning the kernel of S*. The lower left triangle constitutes the third
circuit. It can be recovered by a linear combination of the other two circuits.

The steady-state current Ji, = J (x, ¥) of equation (3) needs to be in the kernel of the internal
stoichiometric matrix SX only. This opens up new possibilities. It is obvious that ker S is a subset of ker SX, but
ker S¥ is in fact bigger. In our example we now have two stoichiometric cycles,

©)

Cine = and Cext =

|
—
[ e =

The first cycle is the internal cycle we identified in the closed system already: it only involves reactions that leave
the closed system invariant, thus upon completion of this cycle not a single molecule is being exchanged. The
second cycle is different: upon completion it leaves the internal species unchanged but chemostatted species are
exchanged with the environment. Since this type of cycle appears only upon chemostatting, we call them
emergent stoichiometric cycles. Overall, the steady-state current is a linear combination of these two cycles:

Jss = Jint Cint + Jext Cext- This completes step 2.

These two stoichiometric cycles correspond to circuits in the open reaction graph. We give a visual
representation on the right of figure 3. As a consequence of working with catalysts, the vertices of the reaction
graph for the open system coincide with the internal species X. Therefore, for all catalysts the cycles of the open
system correspond to circuits in the corresponding graph.

The cycles are not the only structural object affected by the chemostatting procedure: the conservation laws
change as well. In the enzyme example we have merely one conservation law left—that of the enzyme moiety, Lg.
The substrate moieties are being exchanged with the environment, which renders L, and L, broken conservation
laws. Overall, upon adding three chemostats two conservation laws were broken and one cycle emerged. In fact,
the number of chemostatted species always equals the number of broken conservation laws plus the number of
emergent cycles [47].

3.1.3. Net stoichiometries and net forces

The net stoichiometry of the emergent cycleis S; + S, = P . This represents a single reversible reaction describing
the net catalytic action of the enzyme. For a complete coarse graining, we still need to identify the fluxes and the net
force along this reaction. Its net force is given by the sum of the forces along the emergent cycle. Collecting the Gibbs
energies of reaction in avector, A, G = (AG, ..., A¢G), this sum is concisely written as

kikskske[S11[S2]

—AetG = —Cet - A/G = RTIn —————=—,
k_ik_sk_sk_g[P]

(6)

One could also ask about the net stoichiometry and net force along the internal cycle. However, we have
S Cine = 0since the internal cycle does not interact with the chemostats. Moreover, the net force along the
internal cycle is

kkik sk,

—Cint - A'G =RT In =
k_1k_sksk,

)

by virtue of Wegscheider’s condition.

3.1.4. Apparent fluxes
We now determine the apparent fluxes along the two cycles of the system. To that end, we first solve the linear
rate equations to calculate the steady-state concentrations and the steady-state currents. For the steady-state
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concentrations we use a diagrammatic method popularized by King and Altman [48] that we summarize in
appendix A.
As derived in step 2 of the procedure, the steady-state current vector is

Jint + Jext
—Jint
—Jint

Jint + Jext
Jext
Jext

Js =

Hence the two cycle currents are
Jne = =] = k1 [ES;] — K [E][S], Jext = Jo = ke[EP] — k_g[E][P].

With the explicit steady-state concentrations given in appendix A. 1, we find (see appendix B.1 for details):

Ju = k2[ESa] — K[EI[S,] = M(ﬂ 4 [Sz])(klk4ksk6[P] ~ kikaksks[Si1S21).
NE()’)kl k4
and
L
Jext = k6[EP] — k_¢[E][P] = £ () (kikaksks[S1][S2] — k—1k_sk_sk_g[P]). €))
Ne(y)

Here, L is the total amount of available enzyme, Ng (y) is a positive quantity that depends on the chemostat
concentrations as well as all rate constants, and

ko k3 [Ss] - k,zk,3.

1 —4

EW) = ks[S1] +

As expected, the current along the emergent cycle . is not zero, provided that its net force is not zero.
However, note that the current along the internal cycle does not vanish either, even though its own net force is
zero. Both currents vanish only when the net force, — A G, vanishes—which is at thermodynamic

equilibrium.
Finally, we decompose the current J.,, = ¥* — ¢~ into the apparent fluxes
L L
Yt = I\E]f((;l)) kiksksks[Si11[S2] > 0, Yo = I\E]f((yy)) k_1k_4k_sk_¢[P] > 0. €)

Here, it is important to note that while
Y+ — ¢~ = ke[EP] — k_6[E][P],

there are several cancellations happening in the derivation of equation (8) implying that
Yt = k¢[EP], ¢~ = k_g[E][P].

We elaborate on these cancellations in this special case in appendix B.1 as well as for the general case in
appendix B.3.

3.1.5. Flux—force relation
With the explicit expressions for the net force, equation (6), and the apparent fluxes, equation (9), of the
emergent cycle we explicitly verify the flux—force relation at the coarse-grained level:
+
RT In AN RT In hiksksks[Si[S,] —AuG.
(U k_1k_4k sk _[P]
This flux—force relation implies that the reaction current is always aligned with the net force along this reaction:
Jext > 0 & —AG > 0.In other words, the reaction current directly follows the force acting on this reaction.
In fact, in this case we can connect the flux—force relation to the second law of thermodynamics. The EPR
reads

TU(XSS) )’) = _]ss . ArG - _]int Cint . ArG - ]ext Cext . ArG
+
= —Jext AextG = RT(¢+ - ¢_)lnw—_ = 0.
(&
With this representation, it is evident that the flux—force relation ensures the second law: o > 0. Moreover, we

see explicitly that the EPR is faithfully reproduced at the coarse-grained level. This shows the thermodynamic
consistency of our coarse-graining procedure.

7
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Figure 4. Reaction graph for the mechanism modeling the active transport of protons from one side of a membrane, H;, to the other
side, Hy}. The transport is coupled to the catalysis of a substrate, S, to a product, P. The free transporter itself exists in two different
conformations denoted "M and M, respectively. Again, all reactions are considered reversible and to follow mass—action kinetics. A
reference forward direction is indicated as arrows from left to right.

3.2. Active membrane transport
We now turn to the second example introduced in figure 1: a membrane protein, M, that models a proton pump
similar to the one presented in [37]. It transports protons from one side of the membrane (side a) to the other
(side b). The membrane protein itself is assumed to be charged to facilitate binding of the protons and to have
different conformations M~ and ~M where it exposes the binding site to the two different sides of the
membrane. Furthermore, when a proton is bound, it can either bind another substrate S when exposing the
proton to side a—or the respective product P when the proton is exposed to side b. The latter could be some
other ion concentrations on either side of the membrane—or an energy rich compound (ATP) and its energy
poor counterpart (ADP). The reactions modeling this mechanism are summarized in the reaction graph in
figure 4.

In order to find a coarse-grained description for this transporter we apply our result. Since the procedure is
already detailed in example 3.1, we omit some repetitive explanations in this example.

3.2.1. Closed system—internal cycles
This closed system has no cycle, therefore Wegscheider’s conditions do not impose any relation between the
reaction rate constants. There are three conservation laws in the closed system,

fM:

O O O O o e e e
OO M - O O
== O O O O = = O O

They represent the conservation of membrane protein (Ly;), proton (Ly), and substrate moieties (Ls),
respectively, showing that these three are conserved independently. For any initial condition, the corresponding
rate equations will relax to a unique steady-state solution satisfying thermodynamic equilibrium, J(z) = 0.

3.2.2. Open system—emergent cycles

We now fix the concentrations of the protons H;” and Hj\ in the two reservoirs, as well as the substrate and the
product concentrations. The reaction network for this open system is depicted in figure 5. The open system still
has a conserved membrane protein moiety while the conservation laws of protons and substrate are broken
upon chemostatting. Furthermore, there are two emergent cycles now,

0 —1
1 0
1 0
Cet = 1 and Cy = 0 |. (10)
0 —1
0 —1
—1 —1

Their visual representation as circuits is given on the right of figure 5.
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Figure 5. (Left) Active membrane transport as a graph representing the open chemical network. The proton concentrations H; and
H', as well as the substrate and the product are chemostatted, thus are associated to the edges of the graph. (Right) Graphical
representations for the three distinct cycles in this graph. Only two of them are independent and we choose C,¢ and Cg as a basis in
the main text. The third is their difference C,;, = Cy; — Cy.

3.2.3. Net stoichiometry and net forces
The first emergent cycle has the net stoichiometry S = P, which represents pure catalysis with net force
kyksksk—7[S]

—~AwWG=RTIn .
k_sk_sk_4k; [P]

an

The second cycle has net stoichiometry Hi = H . This represents the slip of one proton from side b back to
side a with net force
k_k_sk_ck_7[Hy]
kikskek, [H1

—AgG =RTIn (12)
For later reference, we note that the difference C, = C.,; — Cy has net stoichiometry H + S = H{ + P.
This is the active transport of a proton from side a to side b, under catalysis of one substrate into one product.
The net force of this reaction is

kikokskaksks[H1[S]

—AyG=—-AuG+ AgG =RTI1 .
t t ! Pk k_ok sk _sk_sk_o[H{ ][P]

13)

3.2.4. Apparent fluxes

Solving the linear rate equations (see appendix A), we have a solution for the steady-state concentrations. The
exact expressions are given in appendix A.2. With the steady-state concentrations, we calculate the contributions
of both cycles to the steady-state current: J (x5, ¥) = Jat Ceat + Ju Cq. Each current contribution is given by a
single reaction:

Jeat = o = wz;t - w;ta Jao=—-h= Q;Z}:i - 7/};
With the abbreviations
e = kck_s[Hy] + kik s[HI1[Hy] + keki[H 1, &g = ksky 4 k_oky + k_3k_s,

we can express the apparent fluxes as

k—7k2 k3 k4 [S] >

cat

N,
L—M o = kikokskaksks [H1[S] + &
M

Ny
L—MT/Jcat = k_tk_ok_sk_sk_sk_s[H{ 1[P] + & krk_ok_sk_4[P],
M

N
My = k_rk_ok_sk_sk_sk_6[H{ 1[P] + &gk_ik_sk_k_7[H{],

M

Num o
L—Mwsl = kikykskykske[HIT[S] + &, kikskeks [H, 1.
M

The derivation for these equations is detailed in appendix B.2. Note that Ny; depends on all rate constants and all
chemostat concentrations.

3.2.5. Breakdown of the flux—force relation

We see that the abbreviated terms £ appear symmetrically in the forward and backward fluxes. Therefore, when
the net forces are zero, necessarily the currents vanish and the system is at thermodynamic equilibrium.
However, in general, the currents do not vanish. Moreover, the concentrations of the chemostats appear in the
four different fluxes in different combinations—indicating that both net forces couple to both coarse-grained
reactions. Due to this coupling, it is impossible to find nice flux—force relations for the two reactions

9
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independently:
+ +
—AqG = RT In =24 —AgG = RTIn =L, (14)
cat sl

To the contrary, it is easy to find concentrations for the four chemostats where the catalytic force is so strong
that it drives the slip current against its natural direction—giving rise to a negative contribution in the EPR.
Nonetheless, the overall EPR is correctly reproduced at the coarse-grained level:

To = —Js - ArG = —Jeat AcatG —Ja AslG = 0.

Since this is, by construction, the correct EPR of the full system at steady state, we know that it is always non-
negative—and that the coarse-graining procedure is thermodynamically consistent. This example shows
explicitly that biochemical reaction networks need not satisfy the flux—force relation, nor need their currents and
forces be aligned to comply with the second law. After all, the function of this membrane protein is to transport
protons from side a to side b against the natural concentration gradient.

4. Cycle-based coarse graining

From the perspective of a single biocatalyst, the rest of the cell (or cellular compartment) serves as its
environment, providing a reservoir for different chemical species. Our coarse graining exploits this perspective
to disentangle the interaction of the catalyst with its environment—in the form of emergent cycles—from the
behavior of the catalyst in a (hypothetical) closed box at thermodynamic equilibrium—in the form of the
internal cycles. From the perspective of the environment, only the interactions with the catalyst matter, i.e. the
particle exchange currents: they prescribe the substrate/product turnover and when combined with the
reservoir’s concentrations (chemical potentials) also the dissipation. Our coarse graining respects the reservoir’s
concentrations and incorporates all the emergent cycles that exchange particles with the reservoir. It thus
correctly reproduces the exchange currents: this is the fundamental reason why we can replace the actual
detailed mechanism of the catalyst with a set of coarse-grained reactions in a thermodynamically exact way. A
formal version of this reasoning, including all necessary rigor and a constructive prescription to find the
apparent fluxes, is provided in appendix B.

In our examples we illustrated the fundamental difference between the case where a catalyst can be replaced
with a single coarse-grained reaction and the case where this is not possible. In the first case, such a catalyst
interacts with substrate and product molecules that are coupled via exchange of mass in a specific stoichiometric
ratio. This is known as tight coupling. Whether or not the catalysis is additionally modified by activators or
inhibitors, does not interfere with this condition. After all, the modifiers are neither consumed nor produced.
Thus they appear only in the normalizing denominators of the steady-state concentrations and affect the kinetics
while leaving the thermodynamics untouched. Furthermore, if there is only one single emergent cyclein a
catalytic mechanism, any product of pseudo-first-order rate constants along any circuit in the network will
either (i) satisfy Wegscheider’s conditions or (ii) reproduce (up to sign) the net force, — A, G, of the emergent
cycle. Ultimately, this is why the flux—force relation holds in this tightly coupled case. A formal version of this
proof, including all necessary rigor, is provided in appendix C.

In the case where we have to provide two or more coarse-grained reactions, the catalytic mechanism couples
several processes that are not tightly coupled via exchange of mass. To the contrary: the turnover of different
substrates/products need not have fixed stoichiometric ratios. In fact, their ratios will depend on the
environment’s concentrations. In this case the flux—force relation does not hold in general, as we proved with
our counter-example. After all, when several processes are coupled, the force of one process can overcome the
force of the second process to drive the second current against its natural direction. This transduction of
energy [12,49] would not be possible at a coarse-grained level, if the flux—force relation was always true.

We now asses the reduction provided by our procedure: the number C of coarse-grained reactions « is
always lower than the number M of reaction steps p in the original mechanism. This can be understood from the
graph representation of the open system: the number B of circuits in a connected graph is related to its number N
of vertices (catalyst states) and the number M of edges (reaction steps)by B = M — N + 1[50]. Some of the
circuits represent internal cycles, rendering B an upper bound to the number of emergent cycles C. Since the
number N of catalyst states is at least two, these numbers are ordered: M > B > C. This proves that our coarse
graining always reduces the number of reactions.
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5. Discussion

The original work of Michaelis and Menten [4] was based on a specific enzyme that converts a single substrate
into a single product assuming a totally irreversible step. Their goal was to determine the rate of production of
product molecule. Later progress in enzyme kinetics extended their method to deal with fully reversible
mechanisms, as well as many substrates, many products and modifiers [1]. The focus on the turnover led many
people to identify the net effect of the enzyme with a single effective reaction, describing its kinetics with the
Michaelis—Menten equation (or one of its generalizations). Our coarse-graining indeed incorporates all these
special cases: the Michaelis—Menten equation arises from coarse graining a mechanism of the form

S+E=ES=FP=E+P (15)

and assuming that the last reaction step, the release of the product, is much faster than the other steps. Then the
coarse-grained reaction current is identical to the substrate /product turnover. Importantly, our procedure
highlights that there is no direct correspondence between the number of required net reactions and the number
of circuits in the reaction graph—even of the open system. Some circuits correspond to internal cycles that play a
kinetic role, notleaving a trace in the thermodynamic forces. Only the emergent cycles need to be taken into
account for the coarse graining. Thus the net effect of a multi-cyclic catalyst might be consistently expressed as a
single effective reaction, as seen in the example 3.1.

Likewise, in theoretical studies of biochemical systems, effective unimolecular reactions of the form

X Y
AN A B
are frequently used, where the reaction rate constants satisfy
+ o _ o + _
k_ = exp Ky Hg Hx My .
k- RT

Here, the chemical potentials, 1, account for the thermodynamic force exerted by X and Y. Even when the actual
effective reaction does not follow mass—action kinetics, this equation is assumed, implying that the effective
reaction fluxes are k™[A] = " and k7[B] = 1 ~, and the ‘constants’ k indeed depend on some concentrations.
This is only consistent if the implicit conversion mechanism is tightly coupled by exchange of mass: when tightly
coupled, the differences of the chemical potentials represent the Gibbs free energy change along the reaction

A + X = B + Y.Inthis case, the above equation is the flux—force relation. Otherwise, our coarse-graining
procedure reveals that this is thermodynamically inconsistent: if the implicitly modeled catalysis is not tightly
coupled via the exchange of mass, there is a hidden thermodynamic driving force that is independent of the
concentrations of A and B, while the turnover of X/Y is not in a stoichiometric ratio to the turnover of A/B. We
have seen in example 3.2 that the flux—force relation indeed does not hold in this case.

The failure of the flux—force relation in the nontightly coupled case does not imply inconsistent
thermodynamics. Our coarse-graining procedure indeed deals with this case very easily. The resulting fluxes and
forces reproduce the EPR while sacrificing the flux—force relation. The key difference to the original ideas in
enzyme kinetics is that the substrate/product turnover is split into several effective reactions with their own
reaction fluxes and forces, reproducing the EPR. This is especially important for complex catalysts: many models
for molecular motors and active transporters are not tightly coupled. These free-energy transducers often
display slippage via futile cycles. While some enzymes also show signs of slippage, many simple enzymes are
modeled as tightly coupled—which implies they satisfy the flux—force relation. Our coarse graining deals with all
these cases and in that sense goes far beyond Michaelis—Menten.

Our procedure greatly reduces the number of species and reactions involved in a network while reproducing
the EPR. This comes at the cost of complicated effective fluxes (rate laws). They are rational functions of the
involved concentrations and thus more complicated than simple mass—action kinetics. Nonetheless, our
procedure is constructive by giving these complicated expressions explicitly. With the explicit solutions at hand,
further assumptions can be made to simplify the effective fluxes—as in the case of the original Michaelis—
Menten equation. Note that these additional simplifications may have an impact on the EPR, in the worst case
breaking the thermodynamic consistency. This trade-off between simplicity and thermodynamic correctness
needs to be evaluated case by case.

We now discuss the limitations of our approach. The presented coarse-graining procedure is exact in steady-
statessituations, arbitrarily far from equilibrium. When the surrounding reaction network is not in a steady state,
the coarse graining can still be used: then the coarse-grained reaction fluxes and forces have to be considered
instantaneous—they change in time due to the changing substrate/product (or modifier) concentrations.
Underlying this point of view is a separation of time scales: when the abundance of substrates and products is
very large, as compared to the abundance of catalyst, then the concentrations of the latter change much more
quickly. This results in a quasi-steady state for the catalyst-containing species. Consequently, our coarse graining
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cannot capture the contribution to dissipation that arises in this fast relaxation dynamics. It only captures the
dissipation due to the conversion of substrate into product. This reasoning can be made more rigorous: there are
time-scale separation techniques for deterministic rate equations [25, 51] frequently used in biochemical
contexts [26], furthermore stochastic corrections due to small copy-numbers [52] and even effective memory
effects [27, 53] can be incorporated. However, these techniques do not explicitly address the question of
thermodynamic consistency and we think that combining our coarse-graining with these techniquesisa
promising endeavor for the future.

We restricted the entire reasoning in this paper to catalysts. They follow linear rate equations when their
reaction partners have constant concentrations. This linearity allowed us to give explicit solutions for general
catalysts. Focusing on the emergent cycles to reproduce the correct thermodynamics paves the way to apply a
similar procedure beyond catalysts: reaction networks that remain nonlinear after chemostatting still have
emergent cycles [28]. They can be calculated algebraically from bases for the nullspaces of the full and the
reduced stoichiometric matrices, S and SX. The cycles in nonlinear networks may not have a representation as
circuits in the reaction graph, as we have seen with the internal cycle of the enzyme in a closed box. Nonetheless,
each of the emergent cycles C, can serve as an effective reaction: it has a well defined stoichiometry, SYC,, and a
well defined net force, —A, G - C,. The steady state concentrations as well as the fluxes, however, need to be
determined case by case. Nonlinear differential equations can be multi-stable, where our coarse graining applies
to each stable steady state. Some nonlinear ODEs exhibit limit cycles, thus never reaching a steady state. In this
case our procedure is no longer applicable.

6. Summary

We have presented a coarse-graining procedure for biocatalysts and have shown that it is thermodynamically
consistent. During this coarse graining procedure, a detailed catalytic mechanism is replaced by a few net
reactions. The stoichiometry, deterministic kinetic rate laws and net forces for the coarse-grained reactions are
calculated explicitly from the detailed mechanism—ensuring that at steady state the detailed mechanism and the
net reactions have both the same substrate/product turnover and the same EPR.

Furthermore, we have shown that in the tightly coupled case where a detailed mechanism is replaced by a
single reaction, this net reaction satisfies a flux—force relation. In the case where a detailed mechanism has to be
replaced with several net reactions, the flux—force relation does not hold for the net reactions due to cross-
coupling of independent thermodynamic forces. Ultimately, this cross-coupling allows the currents and forces
not to be aligned—while complying with the second law of thermodynamics.

Opverall, we have shown that coarse-graining schemes which preserve the correct thermodynamics far from
equilibrium are not out of reach.
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Appendix A. Diagrammatic method for explicit steady states of linear reaction networks

We consider a catalytic mechanism with a catalyst and several substrates, products, inhibitors or activators. The
mechanism is resolved down to elementary reactions following mass—action kinetics.

Upon chemostatting all the substrates, products, inhibitors and activators—summarized as y—we are left
with rate equations that are linear in the catalyst-containing species—summarized as x. While the steady-state
equations alone, 0 = S¥J (x, y), are under-determined and linearly dependent, the open system still has a
conservation law for the total catalyst-moiety concentration L = ), x;, which again is a linear equation. We can
replace the first line of the steady-state equations with this constraint to arrive at linear equations Le; = M(y)x,
where e; = (1, 0,...) is the first Cartesian unit vector and M(y) is an invertible square matrix that depends on the
chemostat concentrations. According to Cramer’s rule the unique solution to this problem is given by
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x* _ detM;(y)

= , A
L detM(y) (A1)

where M;(y) is identical to M((y) just with the ith column replaced by e;. We now provide a diagrammatic
method to represent this solution. This diagrammatic method is frequently attributed to King and Altman [48]
or Hill [54], while an equivalent approach was already employed by Kirchhoff [55] to solve problems in electric
networks. We give the diagrammatic method in the language of graph theory [50, 56], for which we need some
definitions.

The open pseudo-first-order reaction network has a simple representation as a connected graph G where all
the catalyst-containing species i form the vertices ) and the reactions p U — p form bidirectional edges R. The
reduced stoichiometric matrix S¥ is the incidence matrix for this graph.

A closed self-avoiding path in a graph is a circuit and can be identified with a vector ¢ € R® over the edges,
whose entries are in fact restricted to { —1, 0, 1}. Since a circuitis a closed path, it satisfies SXc = 0 and reaches
as many vertices as it contains edges. A graph not containing any circuit is called forest, a connected forest is
called tree.

A connected subgraph 7 C G is called spanning tree if it spans all the vertices but contains no circuit. The set
7T of spanning trees of a finite graph is always finite. A rooted spanning tree is a tree where all the edges are
oriented along the tree towards one and the same vertex, called the root.

With these notions set, the determinants in equation (A1) can be written as

detM(») = S ] k(). detM(y) =3 3 ] k() = N(y).

T€T; peET i 7€T; peT

Here, 7, is the set of spanning trees rooted in vertex 7, and l;p () is the pseudo-first-order rate constant of
reaction p. Overall, Kirchhoff’s formula for the solution to the linear problem is

x*

7= ﬁy) > 11 ko) (A2)
T€T; peT

From this result it is easy to confirm that the solution exists and is always unique as long as the chemostat

concentrations are finite and positive. Furthermore, the steady-state concentrations are expressed as sums of

products of positive quantities, thus themselves are always positive.

While this formula is very compact and abstract, it is not obviously convenient for practical calculations.
However, the rooted spanning trees appearing in this formula can be visually represented as diagrams, as we will
see in the following examples. These diagrams are intuitive enough to make practical calculations with this
formula feasible.

A.1. Steady-state concentrations for the enzymatic catalysis

The enzymatic catalysis example in the main text, when open, is represented by the graph in figure 3. This

graph has five vertices and six edges. It contains three distinct circuits and twelve different spanning trees.
A visual representation of Kirchhoff’s formula (A2) for its steady-state concentrations is given by the

following diagrams:

DN N NN s | NN
N STTNIN NN o N SNN NN
SN N NERAAN R BN EN(ENENAN
B NNINR NN e NSNS NN
IS NN EN[ERNAN
e N SN I NN

Here, each diagram represents a product of pseudo-first-order rate constants over a spanning tree that is rooted
in the (circled) vertex associated with the species we want to solve for (left-hand side). Thus, the concentrations
are sums of twelve diagrams each, normalized by a denominator Ng that equals the sum of all the 60 diagrams
given above.

A.2. Steady-state concentrations for the active transporter
The active membrane transporter example in the main text, when open, is represented by the graph in figure 5.
This graph has six vertices and seven edges. It contains three distinct circuits and 15 different spanning trees.

13

213



214

I0P Publishing

New J. Phys. 20 (2018) 042002 B Fast Track Communications

Avisual representation of Kirchhoft’s formula (A2) for its steady-state concentrations is given by the

_ o (JUGEHES | ner_ o (JHGEHES
e N NPRASE e N HTRASE

s [JUGEHES, o+ [JUGEYES,
b | O0RAE ne~w|OM0RA3E

[mmzlﬂUDEHEEH _ JUDHHEEH
b N RASE e TNERASE

Here, each diagram represents a product of pseudo-ﬁrst-order rate constants over a spanning tree that is rooted
in the (circled) vertex associated with the species we want to solve for (left-hand side). Thus, the concentrations
are sums of 15 diagrams each, normalized by a denominator Ny that equals the sum of all the 90 diagrams given
above.

—
|

[—
—

Appendix B. Kinetic rate laws for the coarse-grained reactions

We now explicitly construct the kinetic rate laws as apparent cycle fluxes. First, we make use of the diagrammatic
method to derive the coarse-grained kinetic rate laws for the two example systems of the main text. Then we
generalize these examples to generic catalysts.

B.1. Kinetic rate laws for the enzymatic catalysis
As shown in the main text, the cycle currents are

Jint = —h = k_3[ES;] — k[E][S,], Jext = Jo = ke[EP] — k_g[E][P].

Plugging in the diagrams (appendix A.1) for the steady-state concentrations of the enzyme-containing species
we arrive at

v, [ARNENS] ARLWENS]
R SFNENR Y SNMERR
v JARRENS] L ARNENS]
e SRMENS) Y SNEE NN

Next, we multiply the remaining pseudo-first-order rate constants into the diagrams and highlight them in blue.

This leads us to

N
E]int =

Ng
L_E.]ext =

NN
DN NN

NN RSN
N (SN ENRNIEN

INNNINANN
INNAIAINAN
N NN SNEN
I NN

Note how some of the diagrams did not contain that edge before, leading to a circuit in the new diagrams. The
new pseudo-first-order rate constant carries an arrowhead to highlight the orientation of that edge. The black
edges remain oriented along the other black edges towards the circled vertex. The remaining diagrams already
contained the reverse pseudo-first-order rate constant for the newly incorporated edge. The product of these
forward and backward pseudo-first-order rate constants is highlighted as a dashed blue edge without arrowhead.
The latter tree diagrams appear on both sides of the minus signs and can be canceled. Thus the currents are

NN

N - (SIS

Ng _ N
L Jmt = [ Ni
N

L_}jfext = [ ° °
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Here, we highlight the entire circuits in blue to emphasize the common factors in the remaining terms. Note that
the square representing the internal cycle remained in the internal cycle current on both sides of the minus sign.
However, Wegscheider’s conditions, equation (2), ensure that these terms cancel as well. Furthermore,
Wegscheider’s conditions allow us to express the diagrams containing the lower triangle with the upper triangle:

_ x _ k—Zk—?) by _ bt % _ ° k2k3
B J - k_lk_4 ’ B B k1k4 .

Opverall, the currents expressed with rate constants and concentrations are

Lekyks [ k_
Jint = =22 | 2L 1850 (koik_ak_sk_6[P] — kiksksks[Si1[S2D),
Nik ks
L ko ks [S k_ok_
Joxt = FE(ks (5] + RekelSad ke 3)(k1k4k5k6[51] [S2] — k_1k_sk_sk_4[P]).
E 1 —4

B.2. Kinetic rate laws for the active transporter
We proceed analogously to the previous calculation for the enzymatic catalysis: plug the tree diagrams from
appendix A.2 into

Jeat = 1 = k[SIIHM] — k_>,[HMS],
Ja=—h =k [HM] — k[H,1["M],
and cancel all diagrams that do not contain a circuit. This leads us to
N
N = [FHAS] - [HAR] -
M (-2 (-2 (2 (-2
NM _ 9191912
T [ T mr_] - [ | ul_] :
Since this membrane transporter mechanism does not have an internal cycle, we cannot exploit Wegscheider’s

conditions to cancel more terms. Nonetheless, we see that we can factor the circuits out of some of the terms.
Opverall, we arrive at the cycle currents

Jeat = wz_at - /(/)c_at’ Ja = ¢:i - ’@[J;
with the fluxes

N,
L—M = kikokskakskg[H1[S] + ¢
M

Nvm o
L—Mww — k ik ok sk_gk sk o[H{TIP] 4 £,k k ok sk 4[P],
M

k_7ky ksk4[S],

cat

N
L—M G =k ik ok sk sk sk ¢[H{T[P] + &gk 1k sk ok 7[H T,
M

Num o
L—Mwsl = kkykskykske[H1[S] + & kikskeks [HZ ],
M

where we used the abbreviations

gcat = k76k75[HEL] + kl k75 [H:] [HJbr] + kékl [H;L]a 551 = k3k4 + k72k4 + k73k72.

B.3. Kinetic rate laws for generic catalysts
By making use of the graph theory notation introduced in appendix A, we can generalize the above calculations
to generic catalysts.

Before proceeding with calculations, we need a general method to determine the cycle currents from
individual reaction currents. To that end, we construct a special spanning tree 7* for the graph G of the open
system: (1) we start with the closed system and determine its internal cycles ker S. We take the set Z C R of
edges that the internal cycles are supported on. (2) Consider this set of edges Z C G as a subgraph of the open
network. Choose a spanning tree 77 for this subgraph. (3) Complete 77 to a spanning tree 7* of G. All the edges
not contained in the spanning tree are the chords.

There is a special connection between chords and circuits first highlighted by Schnakenberg [57]: the
spanning tree alone, by definition, does not contain any circuit. Adding a chord to the spanning tree gives rise to
acircuit composed of the chord together with edges from the spanning tree. Furthermore, by construction every
chord gives rise to a different circuit and the set of these circuits form a basis of the cycle space ker SX. In this
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context the circuits associated to chords are also called fundamental cycles. The currents on the chords then are
identical to the steady-state currents along the fundamental cycles of the chords [57].

The special spanning tree 7* that we constructed is separating the chords into two sets: each chord in Z gives
rise to an internal cycle, while the chords not in Z give rise to the emergent cycles. This construction provides a
basis for the entire cycle space, yet keeps the internal cycles and the emergent cycles separated. Therefore we call
ita separating spanning tree.

It is worth noting that not every basis of circuits can be expressed as fundamental cycles of a spanning tree.
This technical detail, however, has no impact on our results. Different bases are just different representations of
the same space. In the following we assume a spanning tree mainly for convenience.

Let j — ibe the chord of an emergent cycle. Then the current through that chord is

Ji = kixj — kinxi = —— ki) S° 11 k) — ki Y. T k&0 |

( ) Te€T; peT T€T; peT

Next, we note that a lot of terms cancel by taking this difference. All the spanning trees that contain the edge
i — jor j — i,respectively, appear with both plus and minus sign:

]ij:— U(}’)Z 11 k()’) kﬂ()’)z [1 k(y)

( €T per T€Ti per
i—jeT j—ieT

) 1J(J’) Z H kﬂ(J’) kﬂ(J’) Z H k (P |

N( €T per T€Ti per
i—jET joidT

After canceling these spanning tree contributions, we define the apparent cycle fluxes as

P = q<y> Z IT k. (B1)

T€Tj per
i—jgT

We obviously have J;; = 1/;; — ;. Thus the apparent cycle fluxes serve as kinetic rate laws for the coarse-grained
reactions.

There is, technically speaking, no strict necessity to cancel the spanning tree contributions in order to arrive
at expressions that can serve as coarse-grained kinetic rate laws. Keeping the spanning tree contributions results
in the apparent fluxes of the substrates/products that are being produced /consumed along the chord. Thisisa
natural choice for dealing with data from isotope labeling experiments. With this definition for kinetic rate laws,
however, the flux—force relation is not satisfied—even in the case of a single emergent cycle [34]. In contrast, our
definition of apparent fluxes resembles the apparent cycle fluxes, rather than apparent exchange fluxes.
Comparing the apparent cycle fluxes with the net force along the emergent cycle, we do have a flux—force
relation, as shown in the next section.

Appendix C. Proof of the flux—force relation

Before we prove the flux—force relation, we rewrite the apparent fluxes for the emergent cycles derived in
equation (B1). This simplifies the final proof considerably. To that end, we observe that adding a chord to a
spanning tree not containing this chord always creates a circuit. Since in equation (B1) we sum over all possible
spanning trees, the same circuits re-appear in several summands. We now re-sort the sums to first run over
distinct circuits, and then sum over the remainders of the spanning trees. For that we need some notation.
For any circuit c we abbreviate the product of pseudo-first-order rate constants along it as

w(c) =Tl 12,) () . The net force along a circuit thus is concisely written as

~A.G=RTS In~ KO g g 2©
pec -y

C
w(—0) (CDH

Here, —c refers to traversing the circuit c with reversed orientation. For any circuit, ¢, we furthermore define
F(c) tobe the set of subforests of G that (i) do not contain any edge of ¢, (ii) span the rest of the graph, and (iii) are
directed towards the circuit c. Analogously to the product of rate constants along a circuit, for this set of
subforests we denote the sum of products of rate constants as
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£@= 3> I k.
feFe) pef
By construction, £(c) = &(—c) since the set 7(c) does not depend on the orientation of c. Let Cj; be the set of
circuits traversing the edge j — i. Note that these circuits are exactly the ones appearing in equation (B1) .
With this notation we rewrite the apparent cycle fluxes in the following way:

L
i=—— Y w(©)&().
Vij N &, (©)¢@©)
This rewriting is not limited to the case of a single emergent cycle. In fact, we used this form to express the
apparent cycle fluxes of the active membrane transporter in appendix B.2.

We now prove the flux—force relation—under the assumption that there is exactly one emergent cycle ¢,
with chord n = j — i.Let — A, G be the net force along this cycle and let J, be its current at steady state. Let
furthermore 7* be a separating spanning tree, as we defined in appendix B.3.

Having only one emergent cycle means that for every circuit ¢ € C;; we have one of the following cases:

+ Thecircuit is formed by following the separating spanning tree from vertex i back to j, in which case it is
exactly the emergent cycle: ¢ = ¢,

* The circuit is formed by traversing more chords, in which case it can be written as ¢ = ¢, + -y where
w() _ wy) wi)  wi)

w(=c)  wE=n wi=¢)  wl-¢,

v € ker S isan internal cycle. In this case we have S due to Wegscheider’s

conditions.

In any case we can write w(dc) = ((c)w(Zc,) where ((c) = ((—c)is asymmetric factor. Overall, the
apparent fluxes for the emergent cycle are

L L
¥ij = WZC w(c)§(c) = ) ZC £ ¢ () |wlcy).

By construction, £ and { are symmetric and also any sum over these terms is symmetric. Consequently, the
apparent forward and backward fluxes of the emergent cycle satisfy

v S| Deef@c@]we) )
Ui ]S geoco |-y vEw

which, together with equation (C1), concludes the proof.

From this proofit is evident, why the flux—force relation breaks down once there are several emergent cycles
with nonzero forces: in the case where a circuit ¢ € Cj; is not identical to the emergent cycle ¢;), we can still write
itas ¢ = ¢, + . However, now yneed not be an internal but might be another emergent cycle. Therefore,
Wegscheider’s condition does not apply to it, thus w () and hence ((c) need not be symmetric. Asa
consequence, the ratio of apparent forward and backward cycle fluxes cannot be expressed by the force of the
emergent cycle —A, G alone.

The proof also shows why the choice of a separating spanning tree is mainly for convenience. In the case of a
single emergent cycle, the exact basis for the internal cycles does not matter and you can always find an
appropriate separating spanning tree. In the case of several emergent cycles, there is no simple and direct relation
between the force and the fluxes of a cycle. The only consistency requirement is the EPR. However, the EPRisa
scalar and thus invariant under change of basis. Furthermore, it involves only the forces and the currents of the
cycles. This imposes no restrictions on the individual forward and backward fluxes.
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CONCLUSIONS

Starting from a phenomenological description of nonequilibrium thermo-
dynamics, we introduced a systematic way of determining broken conser-
vation laws, Sec. 1.5.1. These laws identify conserved quantities whose
changes in the systems are always matched by an opposite change in the
environment, Eq. (52). In this way, these quantities carry the information
about the way the system globally exchanges system quantities with the reser-
voirs. By combining the balance equations of broken conserved quantities
with the laws of thermodynamics, we find that energy and entropy balance
can be decomposed in terms of three fundamental types of energetic and
dissipative contributions, Secs. 1.5 and 3.3: those due to external driving,
which vanish in processes which are not manipulated; those due to noncon-
servative forces created by the coupling with multiple reservoirs, which are
responsible for sustaining currents of system quantities across the system;
and those conservative contributions which account for overall changes of
system quantities within the systems, and which characterize the relaxation
to equilibrium states.

Our phenomenological description is generic, yet it formally accounts for
features that are specific for any system. In this way, it can be applied to
any process, regardless of its dynamics. We specialized it to Markov jump
processes and chemical reaction networks, Sec. 2 and Part ii. Regarding
the former, conservation laws enabled us to provide the first complete ther-
modynamic description. But the importance of our formulation is not only
theoretical. On a practical level, it provides a systematic procedure to anal-
yse the thermodynamics of specific systems. For a large variety of these, we
demonstrated how easy the identification of their dissipative mechanisms
is, Sec. [6, p. 51].

Regarding chemical reaction networks we established a rigorous thermo-
dynamic description for different types of dynamics: chemical master equa-
tion, which describes the evolution in time of the probability distributions
of molecules numbers, Egs. (119) and [(11), p. 113]; rate equations, which de-
scribe concentrations, Egs. (87), (89), and [(9) and (10), p. 148]; and reaction—
diffusion equations for space-inhomogeneous concentration distributions,
Egs. (126) and [(1), p. 185]. For the last two types of dynamics, our approach
is inspired by stochastic thermodynamics, as we build the thermodynamics
on top of the dynamics. Conservation laws, thus enabled us to identify the
thermodynamic potentials which are minimized at equilibrium, and to es-
tablish the connection with the potentials identified by mathematicians in
the context of chemical reaction network theory.

We also introduced a formulation of the nonequilibrium Landauer princi-
ple that is valid for arbitrary isothermal processes, Sec. 1.6. This principle re-
lates the minimal thermodynamic cost of transforming a given system from
two arbitrary nonequilibrium states, to their distance from equilibrium. Its
early formulation for mechanically driven processes, Ref. [1, 2], played a ma-
jor role for the formulation of thermodynamics of information [3]. Indeed, since
information processing is physical and can be regarded as the transforma-
tion of nonequilibrium states, this principle allows to quantify the minimal
cost of this processing, i.e. the minimal cost of computation. Importantly,
this principle also proved useful for assessing the cost of information pro-
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cessing in simple biochemical mechanisms, like copolymerization processes
inspired by DNA replication and RNA transcription [4, 5]. The formulation
that we derived generalizes these earlier ones in two regards. First, it is
formulated for arbitrary isothermal systems—not just mechanically driven
ones—and in particular for systems prevented from reaching equilibrium
due to nonconservative forces. Second, our formulation is valid for arbi-
trary dynamics—not just stochastic ones—and in particular for chemical
reaction networks described by rate equation and reaction—diffusion equa-
tions. For each of these types of dynamics the generalized relative entropy
introduced in Eq. (72) assumes a specific form (Egs. (83), (125), and (128)),
but all these forms share the same properties. In this respect, we find fas-
cinating how thermodynamics imposes a clear theoretical structure which
assumes different forms depending on the class of processes to which it is
applied. Our generalized nonequilibrium Landauer principle can hence be
used to analyse biochemical information-handling systems whose complex-
ity goes beyond simple mechanisms. This endeavour is important in the
light of the current understanding that biological systems have developed
by optimizing the gathering and representation of information [6, 7].

In the context of chemical reaction networks, our description lays the foun-
dations for thermodynamic analysis of metabolic networks. Metabolisms is
indeed the core thermodynamic process of living organism, which allows
them to manage the energy required for their functioning. Quantifying the
thermodynamic performance of these process is therefore important as it
might reveal crucial features of these organisms.
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