

An equation-free multiscale method applied to discrete networks

Lars Beex

University of Luxembourg

Pierre Kerfriden

Cardiff University

Setup

Macroscale problem

Planar unit cell of LE EB beams inc damage (1x1mm²)

Result

Rotation around vertical axis

- DNS:
- 80M beams
- 233M DOFs

- - QC:
 - 29x less beams
 - 42x less DOFs

Force-displacement response

Main points of the method

Condition:

Unit cell must be periodic.

Advantages compared to other nested multiscale methods:

- 1. Higher-order macroscale interpolations are as easy to treat as linear ones
- 2. No scale-separation

Disadvantages compared to other nested multiscale methods:

- 1. All DOFs in one system, instead of subdivided over the unit cells and the macroscale elements
- 2. More unit cells required

1D string of LE springs: DNS

1D string of LE springs: Interpolation

1D string of LE springs: Interpolation + Sampling

1D string of 2 types of LE springs: DNS

1D string of 2 types of LE springs: Interpolation

1D string of 2 types of LE springs: Interpolation + Sampling

String of LE beams: Interpolation + Sampling

String of LE beams: Interpolation + Sampling

String of 3 types of LE beams: Interpolation + Sampling

String of 3 types of LE beams:

Interpolation + Sampling

Simple planar unit cell: Setup

	Blue	Red	Black	Purple	
Area	1	3	9	27	[m ²] (x10 ⁻⁹)
Y. Modulus	1	5	25	125	[MPa]
P. ratio	0.1	0.2	0.3	0.4	[-]
Failure str.	10	1	2	70	(x10 ⁻⁵)

Simple planar unit cell: Setup

DNS:

- 160k beams
- 722k DOFs

QC:

- 42x less beams
- 52x less DOFs

Simple planar unit cell: Results

Simple planar unit cell: Results

Failed beams, inc. sequence

Simple planar unit cell: Results

Force-displacement response

Simple planar unit cell: New setup + Result

- 13x less beams
- 25x less DOFs

____ DNS

Fibrous unit cell: Small setup

Periodic, planar unit cell of fibres (1x1mm²)

Parameters taken from U(a,b)

	а	b	
L	0.6	0.9	[mm]
Α	1	2	[m ²] (x10 ⁻⁹)
E	1	2	[MPa]
V	0.2	0.4	[-]
Failure str.	1	2	(x10 ⁻⁵)

Fibrous unit cell: Small setup

Periodic, planar unit cell of fibres (1x1mm²)

Beam discretisation (LE EB beams with brittle damage)

Fibrous unit cell: Small setup

- 700k beams
- 2M DOFs

QC:

- 4 less beams
- 4 less DOFs

Failed beams

Fibrous unit cell, small setup: Results

Force-displacement response

Fibrous unit cell: Large setup

DNS:

- 80M beams
- 233M DOFs

QC:

- 29x less beams
- 42x less DOFs

Fibrous unit cell, large domain: Results

Fibrous unit cell: Large setup

Force-displacement response

Main points of the method

Condition:

Unit cell must be periodic.

Advantages compared to other nested multiscale methods:

- 1. Higher-order macroscale interpolations are as easy to treat as linear ones
- 2. No scale-separation

Disadvantages compared to other nested multiscale methods:

- 1. All DOFs in one system, instead of subdivided over the unit cells and the macroscale elements
- 2. More unit cells required

Future work

Ongoing:

Apply to matrix material + inclusions (geom. NL + mat. NL)

Future:

Apply to real materials (e.g. PAPER/CARDBOARD??)

(Goal-oriented) adaptivity

Add randomness to structure in the fully resolved region