Clones of pivotally decomposable operations

Bruno Teheux joint work with Miguel Couceiro

Mathematics Research Unit University of Luxembourg

Motivation

Shannon decomposition of operations $f: \{0,1\}^n \to \{0,1\}$:

$$f(\mathbf{x}) = x_k f(\mathbf{x}_k^1) + (1 - x_k) f(\mathbf{x}_k^0),$$

where

 \cdot \mathbf{x}_{k}^{a} is obtained from \mathbf{x} by replacing its k^{th} component by a.

Motivation

Shannon decomposition of operations $f: \{0,1\}^n \to \{0,1\}$:

$$f(\mathbf{x}) = x_k f(\mathbf{x}_k^1) + (1 - x_k) f(\mathbf{x}_k^0),$$

Median decomposition of polynomial operations over bounded DL:

$$f(\mathbf{x}) = \operatorname{med}(x_k, f(\mathbf{x}_k^1), f(\mathbf{x}_k^0)),$$

where

- \cdot \mathbf{x}_k^a is obtained from \mathbf{x} by replacing its k^{th} component by a.
- $\cdot \, \operatorname{med}(x,y,z) = (x \wedge y) \vee (x \wedge z) \vee (y \wedge z)$

Motivation

Shannon decomposition of operations $f: \{0,1\}^n \to \{0,1\}$:

$$f(\mathbf{x}) = x_k f(\mathbf{x}_k^1) + (1 - x_k) f(\mathbf{x}_k^0),$$

Median decomposition of polynomial operations over bounded DL:

$$f(\mathbf{x}) = \operatorname{med}(x_k, f(\mathbf{x}_k^1), f(\mathbf{x}_k^0)),$$

where

- · \mathbf{x}_k^a is obtained from \mathbf{x} by replacing its k^{th} component by a.
- $\cdot \ \mathrm{med}(x,y,z) = (x \wedge y) \vee (x \wedge z) \vee (y \wedge z)$

Goal: Uniform approach of these decomposition schemes.

Pivotal decomposition

A set and $0, 1 \in A$

Let $\Pi: A^3 \to A$ an operation

Definition. An operation $f: A^n \to A$ is Π -decomposable if

$$f(\mathbf{x}) = \Pi(x_k, f(\mathbf{x}_k^1), f(\mathbf{x}_k^0))$$

for all $\mathbf{x} \in A^n$ and all $k \leq n$.

Pivotal decomposition

A set and $0, 1 \in A$

Let $\Pi: A^3 \to A$ an operation that satisfies the equation

$$\Pi(x,y,y)=y.$$

Such a Π is called a *pivotal operation*. In this talk, all Π are pivotal.

Definition. An operation $f: A^n \to A$ is Π -decomposable if

$$f(\mathbf{x}) = \Pi(x_k, f(\mathbf{x}_k^1), f(\mathbf{x}_k^0))$$

for all $\mathbf{x} \in A^n$ and all $k \leq n$.

Examples

$$f(\mathbf{x}) = \Pi(x_k, f(\mathbf{x}_k^1), f(\mathbf{x}_k^0))$$

Shannon decomposition: $\Pi(x, y, z) = xy + (1 - x)z$

Median decomposition: $\Pi(x, y, z) = \text{med}(x, y, z)$

Benefits:

- · uniformly isolate the marginal contribution of a factor
- · repeated applications lead to normal form representations
- · lead to characterization of operation classes

$$Λ_{\Pi} := \{ f \mid f \text{ is } \Pi\text{-decomposable} \}$$

$$\Lambda_{\Pi} = \{ f \mid f \text{ is } \Pi\text{-decomposable} \}$$

Problem.

Characterize those Λ_{Π} which are clones.

$$\Lambda_{\Pi} = \{ f \mid f \text{ is } \Pi\text{-decomposable} \}$$

Problem.

Characterize those Λ_{Π} which are clones.

$$\Pi(x, 1, 0) = x$$

$$\Pi(\Pi(x, y, z), u, v) = \Pi(x, \Pi(y, u, v), \Pi(z, u, v))$$
(AD)

$$\Lambda_{\Pi} = \{ f \mid f \text{ is } \Pi\text{-decomposable} \}$$

Problem.

Characterize those Λ_{Π} which are clones.

$$\Pi(x, 1, 0) = x$$
 (P)

$$\Pi(\Pi(x, y, z), u, v) = \Pi(x, \Pi(y, u, v), \Pi(z, u, v))$$
 (AD)

Proposition. If $\Pi \models (AD)$, the following are equivalent

- (i) Λ_{Π} is a clone
- (ii) $\Lambda_{\Pi} \models (P)$

Clones of pivotally decomposable Boolean operations

$$(P) \ + \ (AD) \implies \Lambda_\Pi \text{ is a clone } \qquad (\star)$$

Example. For a Boolean clone C, the following are equivalent (i) There is Π such that $C = \Lambda_{\Pi}$

Clones of pivotally decomposable Boolean operations

$$(P) \ + \ (AD) \implies \Lambda_{\Pi} \text{ is a clone } \qquad (\star)$$

Example. For a Boolean clone C, the following are equivalent

- (i) There is Π such that $C = \Lambda_{\Pi}$
- (ii) C is the clone of (monotone) Boolean functions

What about the converse of (\star) ?

The case of Π -decomposable Π

The case of Π -decomposable Π

$$\Pi(\Pi(1,0,1),0,1) = \Pi(1,\Pi(0,0,1),\Pi(1,0,1))
\Pi(\Pi(0,0,1),0,1) = \Pi(0,\Pi(0,0,1),\Pi(1,0,1))$$
(WAD)

Theorem. If
$$\Pi \in \Lambda_{\Pi}$$
 and $\Pi \models (WAD)$, then
$$(P) + (AD) \iff \Lambda_{\Pi} \text{ is a clone,}$$

and Λ_Π is the clone generated by Π and the constant maps.

What happens if Π is not Π -decomposable?

We have seen that if Λ_Π is a Boolean clone then $\Pi\in\Lambda_\Pi.$

There are some Π such that Λ_{Π} is a clone but $\Pi \not\in \Lambda_{\Pi}$.

What happens if Π is not Π -decomposable?

We have seen that if Λ_{Π} is a Boolean clone then $\Pi \in \Lambda_{\Pi}$.

There are some Π such that Λ_{Π} is a clone but $\Pi \not\in \Lambda_{\Pi}$.

Example. Let $A = \{0, 1/2, 1\}$ and Π be the pivotal operation s.t.

$$\Pi(x,1,0) = x$$
 $\Pi(x,0,1/2) = 1$
 $\Pi(x,0,1) = 1-x$ $\Pi(x,1/2,1) = 0$
 $\Pi(x,1,1/2) = 1$ $\Pi(x,1/2,0) = 0$

What happens if Π is not Π -decomposable?

We have seen that if Λ_{Π} is a Boolean clone then $\Pi \in \Lambda_{\Pi}$.

There are some Π such that Λ_{Π} is a clone but $\Pi \not\in \Lambda_{\Pi}$.

Example. Let $A = \{0, 1/2, 1\}$ and Π be the pivotal operation s.t.

$$\Pi(x,1,0) = x$$
 $\Pi(x,0,1/2) = 1$ $\Pi(x,0,1/2) = 0$ $\Pi(x,1,1/2) = 1$ $\Pi(x,1/2,0) = 0$

$$\Pi \models (P), (AD)$$
 but $\Pi \notin \Lambda_{\Pi}$

since

$$\Pi(x, 1/2, 1/2) = 1/2$$
 and $\Pi(1/2, \Pi(x, 1, 1/2), \Pi(x, 0, 1/2)) = 1$

Symmetry

Theorem. If $\Pi \in \Lambda_{\Pi}$ and $\Pi \models (P)$, then the following are equivalent

- (i) Π is symmetric
- (ii) $\Pi(0,0,1) = \Pi(0,1,0)$ and $\Pi(1,0,1) = \Pi(1,1,0)$

Summary

· If
$$\Pi \in \Lambda_\Pi$$
 and $\Pi \models$ (WAD), then
$$(P) \ + \ (AD) \iff \Lambda_\Pi \text{ is a clone}$$

. There is a clone Λ_Π such that $\Pi\not\in\Lambda_\Pi$

Summary

· If
$$\Pi \in \Lambda_\Pi$$
 and $\Pi \models$ (WAD), then
$$(P) \ + \ (AD) \iff \Lambda_\Pi \text{ is a clone}$$

· There is a clone Λ_Π such that $\Pi \not\in \Lambda_\Pi$

Problems.

Find a characterization of those Λ_{Π} which are clones when $\Pi \not\in \Lambda_{\Pi}$.

Structure of the family of decomposable classes of operations?

M. Couceiro, and B. Teheux. Pivotal decomposition schemes inducing clones of operations. *Beitr. Algebra Geom.*, 59:25 – 40, 2018.