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Abstract
A shallow semantical embedding of a dyadic deontic logic by Carmo and

Jones in classical higher-order logic is presented. This embedding is proven
sound and complete, that is, faithful.

The work presented here provides the theoretical foundation for the imple-
mentation and automation of dyadic deontic logic within off-the-shelf higher-
order theorem provers and proof assistants.

Keywords: Logic of CTD conditionals by Carmo and Jones; Classical higher-
order logic; Semantic embedding; Automated reasoning

1 Introduction
Dyadic deontic logic is the logic for reasoning with dyadic obligations (“it ought to
be the case that ... if it is the case that ..."). A particular dyadic deontic logic,
tailored to so-called contrary-to-duty (CTD) conditionals, has been proposed by
Carmo and Jones [13]. We shall refer to it as DDL in the remainder. DDL comes
with a neighborhood semantics and a weakly complete axiomatization over the class
of finite models. The framework is immune to the well-known CTD paradoxes, like
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Chisholm’s paradox [14, 19], and other related puzzles. However, the question of
how to mechanise and automate reasoning tasks in DDL has not been studied yet.

This article adresses this challenge. We essentially devise a faithful semantical
embedding of DDL in classical higher-order logic (HOL). The latter logic thereby
serves as an universal meta-logic. Analogous to successful, recent work in the area
of computational metaphysics (cf. [6] and the references therein), the key motivation
is to mechanise and automate DDL on the computer by reusing existing theorem
proving technology for meta-logic HOL. The embedding of DDL in HOL as devised
in this article enables just this.

Meta-logic HOL [4], as employed in this article, was originally devised by Church
[17], and further developed by Henkin [18] and Andrews [1, 3, 2]. It bases both terms
and formulas on simply typed λ-terms. The use of the λ-calculus has some major
advantages. For example, λ-abstractions over formulas allow the explicit naming of
sets and predicates, something that is achieved in set theory via the comprehension
axioms. Another advantage is, that the complex rules for quantifier instantiation
at first-order and higher-order types is completely explained via the rules of λ-
conversion (the so-called rules of α-, β-, and η-conversion) which were proposed
earlier by Church [15, 16]. These two advantages are exploited in our embedding of
DDL in HOL.

Different notions of semantics for HOL have been thoroughly studied in the
literature [7, 20]. In this article we assume HOL with Henkin semantics and choice
(cf. the detailed description by Benzmüller et. al. [7]). For this notion of HOL, which
does not suffer from Gödel’s incompleteness results, several sound and complete
theorem provers have been developed in the past decades [9]. We propose to reuse
these theorem provers for the mechanisation and automation of DDL. The semantical
embedding as devised in this article provides both the theoretical foundation for the
approach and the practical bridging technology that is enabling DDL applications
within existing HOL theorem provers.

The article is structured as follows: Section 2 outlines DDL and Sec. 3 introduces
HOL. The semantical embedding of DDL in HOL is then devised and studied in
Sec. 4. This section also addresses soundness and completeness, but due to space
restrictions the proofs can only be sketched here; for details we refer to [8]. Section 5
discusses the implementation and automation of the embedding in Isabelle/HOL [21]
and Sec. 6 concludes the paper.
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2 The Dyadic Deontic Logic of Carmo and Jones
This section provides a concise introduction of DDL, the dyadic deontic logic pro-
posed by Carmo and Jones. Definitions as required for the remainder are presented.
For further details we refer to the literature [13, 12].

To define the formulas of DDL we start with a countable set P of propositional
symbols, and we choose ¬ and ∨ as the only primitive connectives.

The set of DDL formulas is given as the smallest set of formulas obeying the
following conditions:

• Each pj ∈ P is an (atomic) DDL formula.

• Given two arbitrary DDL formulas ϕ and ψ, then
¬ϕ — classical negation,
ϕ ∨ ψ — classical disjunction,
©(ψ/ϕ) — dyadic deontic obligation: “it ought to be ψ, given ϕ”,
2ϕ — in all worlds,
2aϕ — in all actual versions of the current world,
2pϕ — in all potential versions of the current world,
©aϕ — monadic deontic operator for actual obligation, and
©pϕ — monadic deontic operator for primary obligation

are also DDL formulas.

Further logical connectives can be defined as usual: ϕ ∧ ψ := ¬(¬ϕ ∨ ¬ψ),
ϕ→ ψ := ¬ϕ ∨ ψ, ϕ←→ ψ := (ϕ→ ψ) ∧ (ψ → ϕ), 3ϕ := ¬2¬ϕ, 3aϕ := ¬2a¬ϕ,
3pϕ := ¬2p¬ϕ, > := ¬qj ∨ qj , for some propositional symbol qj , ⊥ := ¬>, and
©ϕ :=©(ϕ/>).

A DDL model is a structureM = 〈S, av, pv, ob, V 〉, where S is a non empty set of
items called possible worlds, V is a function assigning a set of worlds to each atomic
formula, that is, V (pj) ⊆ S. av: S → ℘(S), where ℘(S) is the power set of S, is a
function mapping worlds to sets of worlds such that av(s) 6= ∅. av(s) is the set of
actual versions of the world s. pv: S → ℘(S) is another, similar mapping such that
av(s) ⊆ pv(s) and s ∈ pv(s). pv(s) is the set of potential versions of the world s.
ob: ℘(S) → ℘(℘(S)) is a function mapping sets of worlds to sets of sets of worlds.
ob(X̄) is the set of propositions that are obligatory in context X̄ ⊆ S. The following
conditions hold for ob (where X̄, Ȳ , Z̄ designate arbitrary subsets of S):

1. ∅ /∈ ob(X̄).

2. If Ȳ ∩ X̄ = Z̄ ∩ X̄, then Ȳ ∈ ob(X̄) if and only if Z̄ ∈ ob(X̄).
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3. Let β̄ ⊆ ob(X̄) and β̄ 6= ∅. If (∩β̄) ∩ X̄ 6= ∅ (where ∩β̄ = {s ∈ S | for all Z̄ ∈
β̄ we have s ∈ Z̄}), then (∩β̄) ∈ ob(X̄).

4. If Ȳ ⊆ X̄ and Ȳ ∈ ob(X̄) and X̄ ⊆ Z̄, then (Z̄ r X̄) ∪ Ȳ ∈ ob(Z̄).

5. If Ȳ ⊆ X̄ and Z̄ ∈ ob(X̄) and Ȳ ∩ Z̄ 6= ∅, then Z̄ ∈ ob(Ȳ ).

Satisfiability of a formula ϕ for a model M = 〈S, av, pv, ob, V 〉 and a world s ∈ S
is expressed by writing that M, s |= ϕ and we define VM (ϕ) = {s ∈ S | M, s |= ϕ}.
In order to simplify the presentation, whenever the modelM is obvious from context,
we write V (ϕ) instead of VM (ϕ). Moreover, we often use “iff” as shorthand for “if
and only if”.

M, s |= pj iff s ∈ V (pj)
M, s |= ¬ϕ iff M, s 6|= ϕ (that is, not M, s |= ϕ)
M, s |= ϕ ∨ ψ iff M, s |= ϕ or M, s |= ψ
M, s |= 2ϕ iff V (ϕ) = S
M, s |= 2aϕ iff av(s) ⊆ V (ϕ)
M, s |= 2pϕ iff pv(s) ⊆ V (ϕ)
M, s |= ©(ψ/ϕ) iff V (ψ) ∈ ob(V (ϕ))
M, s |= ©aϕ iff V (ϕ) ∈ ob(av(s)) and av(s) ∩ V (¬ϕ) 6= ∅
M, s |= ©pϕ iff V (ϕ) ∈ ob(pv(s)) and pv(s) ∩ V (¬ϕ) 6= ∅

Our evaluation rule for ©(_/_) is a simplified version of the one used by Carmo
and Jones. Given the constraints placed on ob, the two rules are equivalent (cf. [5,
result II-2-2]).

As usual, a DDL formula ϕ is valid in a DDL model M = 〈S, av, pv, ob, V 〉, i.e.
M |=DDL ϕ, if and only if for all worlds s ∈ S we have M, s |= ϕ. A formula ϕ is
valid, denoted |=DDL ϕ, if and only if it is valid in every DDL model.

3 Classical Higher-order Logic

In this section we introduce classical higher-order logic (HOL). The presentation,
which has partly been adapted from [5], is rather detailed in order to keep the article
sufficiently self-contained.

3.1 Syntax of HOL

For defining the syntax of HOL, we first introduce the set T of simple types. We
assume that T is freely generated from a set of basic types BT ⊇ {o, i} using the
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function type constructor �. Type o denotes the (bivalent) set of Booleans, and i a
non-empty set of individuals.

For the definition of HOL, we start out with a family of denumerable sets of typed
constant symbols (Cα)α∈T , called the HOL signature, and a family of denumerable
sets of typed variable symbols (Vα)α∈T .1 We employ Church-style typing, where
each term tα explicitly encodes its type information in subscript α.

The language of HOL is given as the smallest set of terms obeying the following
conditions.

• Every typed constant symbol cα ∈ Cα is a HOL term of type α.

• Every typed variable symbol Xα ∈ Vα is a HOL term of type α.

• If sα�β and tα are HOL terms of types α � β and α, respectively, then
(sα�β tα)β, called application, is an HOL term of type β.

• If Xα ∈ Vα is a typed variable symbol and sβ is an HOL term of type β, then
(λXαsβ)α�β, called abstraction, is an HOL term of type α � β.

The above definition encompasses the simply typed λ-calculus. In order to
extend this base framework into logic HOL we simply ensure that the signature
(Cα)α∈T provides a sufficient selection of primitive logical connectives. Without
loss of generality, we here assume the following primitive logical connectives to be
part of the signature: ¬o�o ∈ Co�o, ∨o�o�o ∈ Co�o�o, Π(α�o)�o ∈ C(α�o)�o and
=α�α�α∈ Cα�α�α, abbreviated as =α. The symbols Π(α�o)�o and =α�α�α are
generally assumed for each type α ∈ T . The denotation of the primitive logical con-
nectives is fixed below according to their intended meaning. Binder notation ∀Xα so
is used as an abbreviation for Π(α�o)�oλXαso. Universal quantification in HOL is
thus modeled with the help of the logical constants Π(α�o)�o to be used in combi-
nation with lambda-abstraction. That is, the only binding mechanism provided in
HOL is lambda-abstraction.

HOL is a logic of terms in the sense that the formulas of HOL are given as the
terms of type o. In addition to the primitive logical connectives selected above,
we could assume choice operators ε(α�o)�α ∈ C(α�o)�α (for each type α) in the
signature. We are not pursuing this here.

Type information as well as brackets may be omitted if obvious from the context,
and we may also use infix notation to improve readability. For example, we may
write (s ∨ t) instead of ((∨o�o�oso)to).

1For example in Section 4 we will assume constant symbols av, pv and ob with types i � i � o,
i � i � o and (i � o) � (i � o) � o as part of the signature.
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From the selected set of primitive connectives, other logical connectives can be
introduced as abbreviations.2 For example, we may define s ∧ t := ¬(¬s ∨ ¬t),
s → t := ¬s ∨ t, s ←→ t := (s → t) ∧ (t → s) , > := (λXiX) = (λXiX), ⊥ := ¬>
and ∃Xαs := ¬∀Xα¬s.

The notions of free variables, α-conversion, βη-equality (denoted as =βη) and
substitution of a term sα for a variable Xα in a term tβ (denoted as [s/X]t) are
defined as usual.

3.2 Semantics of HOL

The semantics of HOL is well understood and thoroughly documented. The intro-
duction provided next focuses on the aspects as needed for this article. For more
details we refer to the previously mentioned literature [7].

The semantics of choice for the remainder is Henkin semantics, i.e., we work with
Henkin’s general models [18]. Henkin models (and standard models) are introduced
next. We start out with introducing frame structures.

A frame D is a collection {Dα}α∈T of nonempty sets Dα, such that Do = {T, F}
(for truth and falsehood). The Dα→β are collections of functions mapping Dα into
Dβ.

A model for HOL is a tuple M = 〈D, I〉, where D is a frame, and I is a family
of typed interpretation functions mapping constant symbols pα ∈ Cα to appropriate
elements of Dα, called the denotation of pα. The logical connectives ¬, ∨, Π and =
are always given their expected, standard denotations:3

• I(¬o→o) = not ∈ Do→o such that not(T ) = F and not(F ) = T .

• I(∨o→o→o) = or ∈ Do→o→o such that or(a, b) = T iff (a = T or b = T ).

• I(=α→α→o) = id ∈ Dα→α→o such that for all a, b ∈ Dα, id(a, b) = T iff a is
identical to b.

2As demonstrated by Andrews [4], we could in fact start out with only primitive equality in
the signature (for all types α) and introduce all other logical connectives as abbreviations based on
it. Alternatively, we could remove primitive equality from the above signature, since equality can
be defined in HOL from these other logical connectives by exploiting Leibniz’ principle, expressing
that two objects are equal if they share the same properties. Leibniz equality .=α at type α is thus
defined as sα

.=α
tα := ∀Pα�o(Ps←→ Pt). The motivation for the redundant signature as selected

here is to stay close to the the choices taken in implemented theorem provers such as LEO-II and
Leo-III and also to theory paper [7], which is recommended for further details.

3Since =α→α→o (for all types α) is in the signature, it is ensured that the domains Dα→α→o

contain the respective identity relations. This addresses an issue discovered by Andrews [2]: if such
identity relations did not existing in the Dα→α→o, then Leibniz equality in Henkin semantics might
not denote as intended.
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• I(Π(α→o)→o) = all ∈ D(α→o)→o such that for all s ∈ Dα→o, all(s) = T iff
s(a) = T for all a ∈ Dα; i.e., s is the set of all objects of type α.

Variable assignments are a technical aid for the subsequent definition of an inter-
pretation function ‖.‖M,g for HOL terms. This interpretation function is parametric
over a model M and a variable assignment g.

A variable assignment g maps variables Xα to elements in Dα. g[d/W ] denotes
the assignment that is identical to g, except for variable W , which is now mapped
to d.

The denotation ‖sα‖M,g of an HOL term sα on a model M = 〈D, I〉 under
assignment g is an element d ∈ Dα defined in the following way:

‖pα‖M,g = I(pα)

‖Xα‖M,g = g(Xα)

‖(sα→β tα)β‖M,g = ‖sα→β‖M,g(‖tα‖M,g)

‖(λXαsβ)α→β‖M,g = the function f from Dα to Dβ such that
f(d) = ‖sβ‖M,g[d/Xα] for all d ∈ Dα

A model M = 〈D, I〉 is called a standard model if and only if for all α, β ∈
T we have Dα→β = {f | f : Dα −→ Dβ}. In a Henkin model (general model)
function spaces are not necessarily full. Instead it is only required that for all
α, β ∈ T , Dα→β ⊆ {f | f : Dα −→ Dβ}. However, it is required that the valuation
function ‖ · ‖M,g from above is total, so that every term denotes. Note that this
requirement, which is called Denotatpflicht, ensures that the function domainsDα→β

never become too sparse, that is, the denotations of the lambda-abstractions as
devised above are always contained in them.

Corollary 1. For any Henkin model M = 〈D, I〉 and variable assignment g:

1. ‖(¬o→o so)o‖M,g = T iff ‖so‖M,g = F .

2. ‖((∨o→o→o so) to)o‖M,g = T iff ‖so‖M,g = T or ‖to‖M,g = T .

3. ‖((∧o→o→o so) to)o‖M,g = T iff ‖so‖M,g = T and ‖to‖M,g = T .

4. ‖((→o→o→o so) to)o‖M,g = T iff (if ‖so‖M,g = T then ‖to‖M,g = T ).

5. ‖((←→o→o→o so) to)o‖M,g = T iff (‖so‖M,g = T iff ‖to‖M,g = T ).

6. ‖>‖M,g = T .

7. ‖⊥‖M,g = F .
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8. ‖(∀Xαso)o‖M,g = T iff for all d ∈ Dα we have ‖so‖M,g[d/Xα] = T .

9. ‖(∃Xαso)o‖M,g = T iff there exists d ∈ Dα such that ‖so‖M,g[d/Xα] = T .

Proof. We leave the proof as an exercise to the reader.

An HOL formula so is true in an Henkin model M under assignment g if and
only if ‖so‖M,g = T ; this is also expressed by writing that M, g |=HOL so. An HOL
formula so is called valid in M , which is expressed by writing that M |=HOL so, if
and only if M, g |=HOL so for all assignments g. Moreover, a formula so is called
valid, expressed by writing that |=HOL so, if and only if so is valid in all Henkin
models M . Finally, we define Σ |=HOL so for a set of HOL formulas Σ if and only if
M |=HOL so for all Henkin models M with M |=HOL to for all to ∈ Σ.

Note that any standard model is obviously also a Henkin model. Hence, validity
of a HOL formula so for all Henkin models, implies validity of so for all standard
models.

4 Modeling DDL as a Fragment of HOL

This section, the core contribution of this article, presents a shallow semantical
embedding of DDL in HOL and proves its soundness and completeness. In contrast
to a deep logical embedding, where the syntax and semantics of logic L would
be formalized in full detail (using structural induction and recursion), only the core
differences in the semantics of both DDL and meta-logic HOL are explicitly encoded
here.

4.1 Semantical Embedding

DDL formulas are identified in our semantical embedding with certain HOL terms
(predicates) of type i � o. They can be applied to terms of type i, which are
assumed to denote possible worlds. That is, the HOL type i is now identified with
a (non-empty) set of worlds. Type i � o is abbreviated as τ in the remainder.
The HOL signature is assumed to contain the constant symbols avi�τ , pvi�τ and
obτ�τ�o. Moreover, for each propositional symbol pi of DDL, the HOL signature
must contain the corresponding constant symbol piτ . Without loss of generality, we
assume that besides those symbols and the primitive logical connectives of HOL, no
other constant symbols are given in the signature of HOL.
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The mapping b·c translates DDL formulas s into HOL terms bsc of type τ . The
mapping is recursively4 defined:

bpjc = pjτ
b¬sc = ¬τ bsc
bs ∨ tc = ∨τ�τ�τ bscbtc
b2sc = 2τ�τ bsc
b©(t/s)c = ©τ�τ�τ bscbtc
b2asc = 2aτ�τ bsc
b2psc = 2pτ�τ bsc
b©asc = ©a

τ�τ bsc
b©psc = ©p

τ�τ bsc

¬τ�τ , ∨τ�τ�τ , 2τ�τ ,©τ�τ�τ , 2aτ�τ , 2pτ�τ ,©a
τ�τ and©p

τ�τ thereby abbreviate
the following HOL terms:

¬τ�τ = λAτλXi¬(AX)
∨τ�τ�τ = λAτλBτλXi(AX ∨BX)
2τ�τ = λAτλXi∀Yi(AY )
©τ�τ�τ = λAτλBτλXi(obAB)
2aτ�τ = λAτλXi∀Yi(¬(av X Y ) ∨AY )
2pτ�τ = λAτλXi∀Yi(¬(pv X Y ) ∨AY )
©a
τ�τ = λAτλXi((ob (av X)A) ∧ ∃Yi(av X Y ∧ ¬(AY )))
©p
τ�τ = λAτλXi((ob (pv X)A) ∧ ∃Yi(pv X Y ∧ ¬(AY )))

Analyzing the truth of a translated formula bsc in a world represented by term wi
corresponds to evaluating the application (bscwi). In line with previous work [10],
we define vldτ�o = λAτ∀Si(AS). With this definition, validity of a DDL formula s
in DDL corresponds to the validity of formula (vld bsc) in HOL, and vice versa.

4.2 Soundness and Completeness

To prove the soundness and completeness, that is, faithfulness, of the above embed-
ding, a mapping from DDL models into Henkin models is employed.

Definition 1 (Henkin model HM for DDL model M). For any DDL model M =
〈S, av, pv, ob, V 〉, we define a corresponding Henkin model HM . Thus, let a DDL
model M = 〈S, av, pv, ob, V 〉 be given. Moreover, assume that pj ∈ P , for j ≥ 1, are

4A recursive definition is actually not needed in practice. By inspecting the equations below it
should become clear that only the abbreviations for the logical connectives of DDL are required in
combination with a type-lifting for the propositional constant symbols; cf. also Fig. 1.
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the only propositional symbols of DDL. Remember that our embedding requires the
corresponding signature of HOL to provide constant symbols pjτ such that bpjc = pjτ
for j = 1, . . . ,m.

A Henkin model HM = 〈{Dα}α∈T , I〉 for M is now defined as follows: Di is cho-
sen as the set of possible worlds S; all other sets Dα�β are chosen as (not necessarily
full) sets of functions from Dα to Dβ. For all Dα�β the rule that every term tα�β
must have a denotation in Dα�β must be obeyed (Denotatpflicht). In particular, it
is required that Dτ , Di�τ and Dτ�τ�o contain the elements Ipjτ , Iavi�τ , Ipvi�τ and
Iobτ�τ�o. The interpretation function I of HM is defined as follows:

1. For j = 1, . . . ,m, Ipjτ ∈ Dτ is chosen such that Ipjτ (s) = T iff s ∈ V (pj) in
M .

2. Iavi�τ ∈ Di�τ is chosen such that Iavi�τ (s, u) = T iff u ∈ av(s) in M .

3. Ipvi�τ ∈ Di�τ is chosen such that Ipvi�τ (s, u) = T iff u ∈ pv(s) in M .

4. Iobτ�τ�o ∈ Dτ�τ�o is such that Iobτ�τ�o(X̄, Ȳ ) = T iff Ȳ ∈ ob(X̄) in M .

5. For the logical connectives ¬, ∨, Π and = of HOL the interpretation function
I is defined as usual (see the previous section).

Since we assume that there are no other symbols (besides the pi, av, pv, ob and
¬, ∨, Π, and =) in the signature of HOL, I is a total function. Moreover, the
above construction guarantees that HM is a Henkin model: 〈D, I〉 is a frame, and
the choice of I in combination with the Denotatpflicht ensures that for arbitrary
assignments g, ‖.‖HM ,g is an total evaluation function.

Lemma 1. Let HM be a Henkin model for a DDL model M . In HM we have for
all s ∈ Di and all X̄, Ȳ , Z̄ ∈ Dτ (cf. the conditions on DDL models as stated on
page 3):5
(av) Iavi�τ (s) 6= ∅.
(pv1) Iavi�τ (s) ⊆ Ipvi�τ (s).
(pv2) s ∈ Ipvi�τ (s).
(ob1) ∅ /∈ Iobτ�τ�o(X̄).
(ob2) If Ȳ ∩ X̄ = Z̄ ∩ X̄, then (Ȳ ∈ Iobτ�τ�o(X̄) iff Z̄ ∈ Iobτ�τ�o(X̄)).
(ob3) Let β̄ ⊆ Iobτ�τ�o(X̄) and β̄ 6= ∅.

If (∩β̄) ∩ X̄ 6= ∅, where ∩β̄ = {s ∈ S | for all Z̄ ∈ β̄ we have s ∈ Z̄},
then (∩β̄) ∈ Iobτ�τ�o(X̄).

5In the proof in [8] we implicitly employ curring and uncurring, and we associate sets with their
characteristic functions. This analogously applies to the remainder of this article.
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(ob4) If Ȳ ⊆ X̄ and Ȳ ∈ Iobτ�τ�o(X̄) and X̄ ⊆ Z̄,
then (Z̄ \ X̄) ∪ Ȳ ∈ Iobτ�τ�o(Z̄).

(ob5) If Ȳ ⊆ X̄ and Z̄ ∈ Iobτ�τ�o(X̄) and Ȳ ∩ Z̄ 6= ∅,
then Z̄ ∈ Iobτ�τ�o(Ȳ ).

Proof. Each statement follows by construction of HM for M .

Lemma 2. Let HM = 〈{Dα}α∈T , I〉 be a Henkin model for a DDL model M . We
have HM |=HOL Σ for all Σ ∈ {AV,PV 1, PV 2, OB1, ..., OB5}, where
AV is ∀Wi∃Vi(avi�τWiVi)
PV1 is ∀Wi∀Vi(avi�τWiVi → pvi�τWiVi)
PV2 is ∀Wi(pvi�τWiWi)
OB1 is ∀Xτ¬obτ�τ�oXτ (λXτ⊥)
OB2 is ∀XτYτZτ ( (∀Wi((YτWi ∧XτWi)←→ (ZτWi ∧XτWi)))

→ (obτ�τ�oXτYτ ←→ obτ�τ�oXτZτ ))
OB3 is ∀βτ�τ�o∀Xτ

( ((∀Zτ (βτ�τ�oZτ → obτ�τ�oXτZτ )) ∧ ∃Zτ (βτ�τ�oZτ ))
→ ( (∃Yi(((λWi∀Zτ (βτ�τ�oZτ → ZτWi))Yi) ∧XτYi))

→ obτ�τ�oXτ (λWi∀Zτ (βτ�τ�oZτ → ZτWi))))
OB4 is ∀XτYτZτ

( (∀Wi(YτWi → XτWi) ∧ obτ�τ�oXτYτ ∧ ∀Xτ (XτWi → ZτWi))
→ obτ�τ�oZτ (λWi((ZτWi ∧ ¬XτWi) ∨ YτWi)))

OB5 is ∀XτYτZτ
( (∀Wi(YτWi → XτWi) ∧ obτ�τ�oXτZτ ∧ ∃Wi(YτWi ∧ ZτWi))
→ obτ�τ�oYτZτ )

Proof. By construction of HM for M in combination with Lemma 1.

Lemma 3. Let HM be a Henkin model for a DDL model M . For all DDL formulas
δ, arbitrary variable assignments g and worlds s it holds:

M, s |= δ if and only if ‖bδcSi‖H
M ,g[s/Si] = T

Proof. By induction on the structure of δ.

Lemma 4. For every Henkin model H = 〈{Dα}α∈T , I〉 such that H |=HOL Σ for all
Σ ∈ {AV, PV1, PV2, OB1,..., OB5}, there exists a corresponding DDL model M .
Corresponding means that for all DDL formulas δ and for all assignments g and
worlds s, ‖bδcSi‖H,g[s/Si] = T if and only if M, s � δ.
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Proof. Suppose that H = 〈{Dα}α∈T , I〉 is a Henkin model such that H |=HOL Σ for
all Σ ∈ {AV, PV1, PV2, OB1,..,OB5}. Without loss of generality, we can assume
that the domains of H are denumerable [18]. We construct the corresponding DDL
model M as follows:

1. S = Di,

2. u ∈ av(s) for s, u ∈ S iff Iavi�τ (s, u) = T ,

3. u ∈ pv(s) for s, u ∈ S iff Ipvi�τ (s, u) = T ,

4. Ȳ ∈ ob(X̄) for X̄, Ȳ ∈ Di −→ Do iff Iobτ�τ�o(X̄, Ȳ ) = T , and

5. s ∈ V (pj) iff Ipjτ (s) = T .

Since H |=HOL Σ for all Σ ∈ {AV, PV1, PV2, OB1, .., OB5}, it is straightfor-
ward (but tedious) to verify that av, pv and ob satisfy the conditions as required for
a DDL model.

Moreover, the above construction ensures that H is a Henkin model HM for
DDL model M . Hence, Lemma 3 applies. This ensures that for all DDL formulas
δ, for all assignment g and all worlds s we have ‖bδcSi‖H,g[s/Si] = T if and only if
M, s � δ.

Theorem 1 (Soundness and Completeness of the Embedding).

|=DDL ϕ if and only if {AV, PV1, PV2, OB1,..,OB5} |=HOL vld bϕc

Proof. (Soundness, ←) The proof is by contraposition. Assume 6|=DDL ϕ, that is,
there is a DDL model M = 〈S, av, pv, ob, V 〉, and world s ∈ S, such that M, s 6|= ϕ.
Now let HM be a Henkin model for DDL model M . By Lemma 3, for an arbitrary
assignment g, it holds that ‖bϕcSi‖H

M ,g[s/Si] = F . Thus, by definition of ‖.‖,
it holds that ‖∀Si(bϕcS)‖HM ,g = ‖vld bϕc‖HM ,g = F . Hence, HM 6|=HOL vld bϕc.
Furthermore, HM |=HOL Σ for all Σ ∈ {AV, PV1, PV2, OB1,. . . ,OB5} by Lemma 2.
Thus, {AV, PV1, PV2, OB1,..,OB5} 6|=HOL vld bϕc.

(Completeness, →) The proof is again by contraposition. Assume
{AV, PV1, PV2, OB1,..,OB5} 6|=HOL vld bϕc, that is, there is a Henkin model H =
〈{Dα}α∈T , I〉 such that H |=HOL Σ for all Σ ∈ {AV, PV1, PV2, OB1,..,OB5}, but
‖vld bϕc‖H,g = F for some assignment g . By Lemma 4, there is a DDL model M
such that M 2 ϕ. Hence, 6|=DDL ϕ.

Each DDL reasoning problem thus represents a particular HOL problem. The
embedding presented in this section, which is based on simple abbreviations, tells
us how the two logics are connected.

12
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5 Implementation in Isabelle/HOL
The semantical embedding as devised in Sec. 4 has been implemented in the higher-
order proof assistant Isabelle/HOL [21]. Figure 1 displays the respective encoding.
Figure 2 applies this encoding to Chisholm’s paradox (cf. [14]), which involves the
following four statements:

1. It ought to be that Jones goes to assist his neighbors;

2. It ought to be that if Jones goes, then he tells them he is coming;

3. If Jones doesn’t go, then he ought not tell them he is coming;

4. Jones doesn’t go.

These statements can be given a consistent formalisation in DDL see Fig. 2. This
is confirmed by the model finder Nitpick [11] integrated with Isabelle/HOL. Nitpick
computes an intuitive, small model for the scenario consisting of two possible worlds
i1 and i2. Function ob is interpreted in this model as follows:

ob({i1, i2}) = {{i1, i2}, {i1}}

ob({i1}) = {{i1, i2}, {i1}}

ob({i2}) = {{i1, i2}, {i2}}

ob(∅) = ∅

The designated current world in the given model is i2, in which Jones doesn’t go to
assist his neighbors and doesn’t tell them that he is coming. In the other possible
world i1, Jones is going to assist them and he also tells them that he his coming.
That is, V (go) = V (tell) = {i1}. Also, we have {i1} ∈ ob({i1, i2}). So, i2 |=©go by
the evaluation rule for ©. Similarly, {i1} ∈ ob({i1}) implies i2 |= ©(tell/go), and
{i2} ∈ ob({i2}) implies i2 |=©(¬tell/¬go).

For further experiments, focusing on the automation of meta-theoretic aspects
of DDL, we refer to [8, Fig. 2 and Fig. 3].

6 Conclusion
A shallow semantical embedding of Carmo and Jones’s logic of contrary-to-duty
conditionals in classical higher-order logic has been presented, and shown to be
faithful (sound an complete). This theory work has meanwhile been implemented in
the proof assistant Isabelle/HOL. This implementation constitutes the first theorem
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prover for the logic by Carmo and Jones that is available to date. The foundational
theory for this implementation has been laid in this article.

There is much room for future work. First, experiments could investigate whether
the provided implementation already supports non-trivial applications in practical
normative reasoning, or whether further emendations and improvements are re-
quired. Second, the introduced framework could also be used to systematically anal-
yse the properties of Carmo and Jones’s dyadic deontic logic within Isabelle/HOL.
Third, analogous to previous work in modal logic [10], the provided framework could
be extended to study and support first-order and higher-order variants of the frame-
work.
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Figure 1: Shallow semantical embedding of DDL in Isabelle/HOL.
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Figure 2: The Chisholm paradox scenario encoded in DDL (the shallow semantical
embedding of DDL in Isabelle/HOL as displayed in Fig. 1 is imported here). Nitpick
confirms consistency the encoded statements.
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