

A Faithful Semantic Embedding of the Dyadic Deontic Logic E in HOL

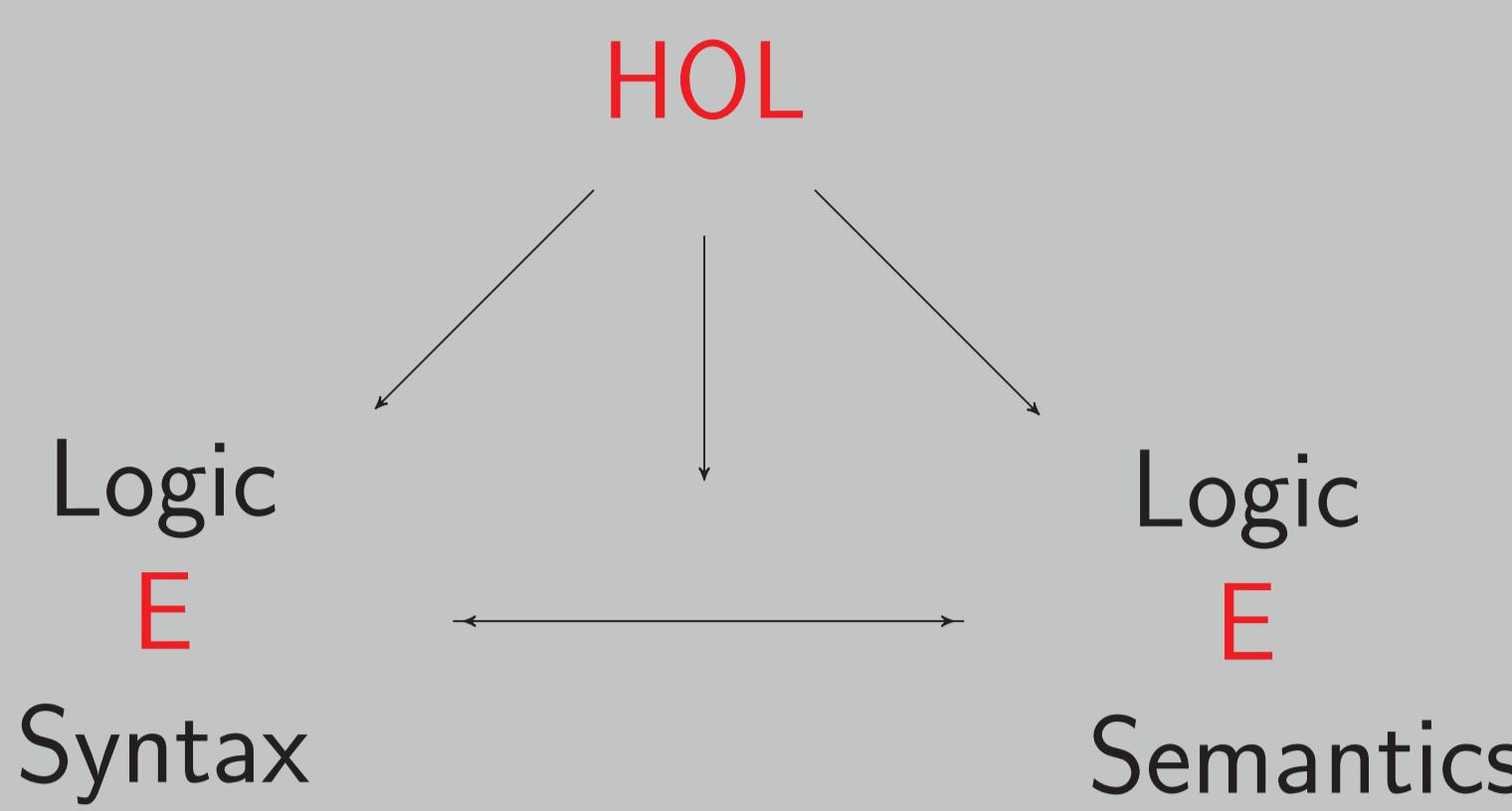
Christoph Benzmüller, Ali Farjami and Xavier Parent

University of Luxembourg

c.benzmueller@gmail.com, ali.farjami@uni.lu, xavier.parent@uni.lu

Shallow Semantical Embedding

A semantic embedding of a target logical system defines the syntactic elements of the target language in a background logic (HOL) [2].



Comprehension axiom:

$$\neg\varphi = \{x \mid \neg_{o \rightarrow o}(\varphi x)\} = \lambda x. \neg_{o \rightarrow o}(\varphi x)$$

$M, s \models \neg\varphi$ if and only if $M, s \not\models \varphi$ (that is, not $M, s \models \varphi$)

System E: Syntax

Åqvist defined dyadic deontic logic system **E** [1] by the following axioms and rules: (\square (S5-schemata for necessity) and $\bigcirc(-/-)$ (for conditional obligation))

$\bigcirc(\psi_1 \rightarrow \psi_2 / \varphi) \rightarrow (\bigcirc(\psi_1 / \varphi) \rightarrow \bigcirc(\psi_2 / \varphi))$	COK
$\bigcirc(\psi / \varphi) \rightarrow \square \bigcirc (\psi / \varphi)$	Abs
$\square \psi \rightarrow \bigcirc(\varphi / \psi)$	Nec
$\square(\varphi_1 \leftrightarrow \varphi_2) \rightarrow (\bigcirc(\psi / \varphi_1) \leftrightarrow \bigcirc(\psi / \varphi_2))$	Ext
$\bigcirc(\varphi / \varphi)$	Id
$\bigcirc(\psi / \varphi_1 \wedge \varphi_2) \rightarrow \bigcirc(\varphi_2 \rightarrow \psi / \varphi_1)$	Sh

System E: Semantics

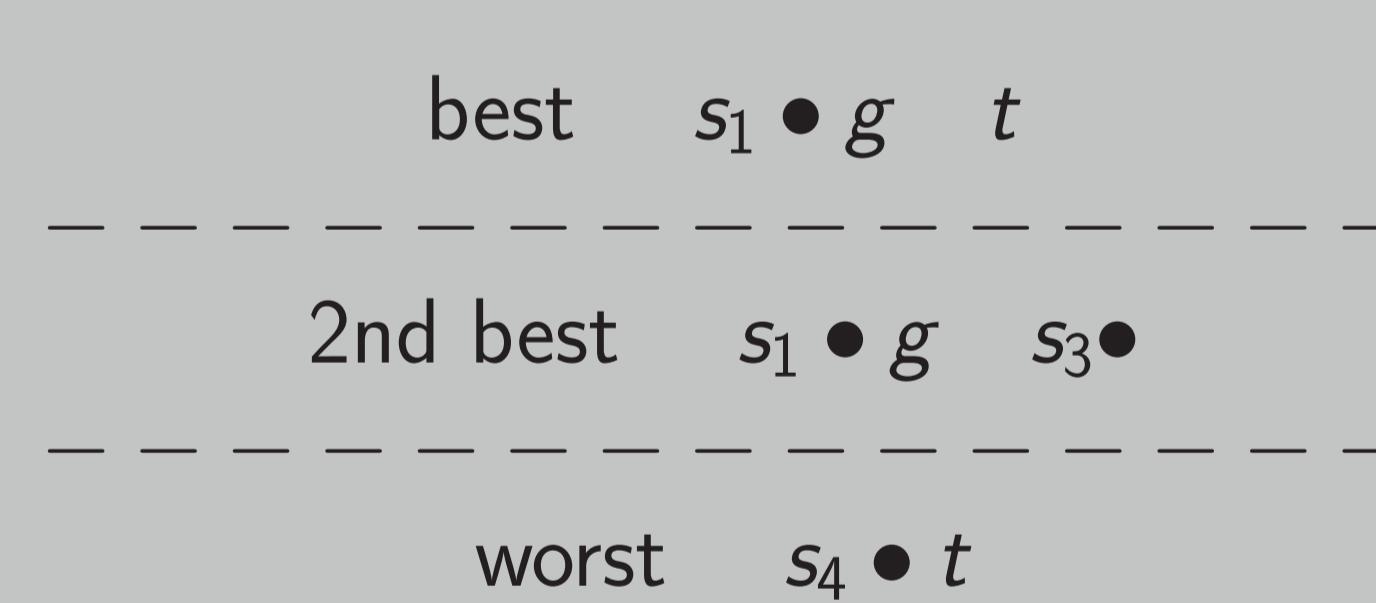
- A preference model is a structure $M = \langle S, \succeq, V \rangle$ where
 - S is a non-empty set of items called possible worlds;
 - $\succeq \subseteq S \times S$ (intuitively, \succeq is a betterness or comparative goodness relation);
 - V is a function assigning to each atomic sentence a set of worlds (i.e. $V(\varphi) \subseteq S$).
- (Satisfaction) Given $opt_{\succeq}(V(\varphi)) = \{s \in V(\varphi) \mid \forall t (t \models \varphi \rightarrow s \succeq t)\}$

$$M, s \models \bigcirc(\psi / \varphi) \text{ if and only if } opt_{\succeq}(V(\varphi)) \subseteq V(\psi)$$

- (Soundness and Completeness) System **E** is (strongly) sound and complete with respect to the class of all preference models [1].

Contrary-To-Duties

- Chisholm's CTD-paradox [4]
 - It ought to be that a certain man go to help his neighbours.
 - It ought to be that if he goes he tell them he is coming.
 - If he does not go, he ought not to tell them he is coming.
 - He does not go.



- For example actual world s_3 satisfies: $\bigcirc(g) \bigcirc(t/g) \bigcirc(\neg t / \neg g) \neg g$

Formulas E as Certain HOL Terms

We assume a set of basic types $BT = \{o, i\}$. The mapping $\lfloor \cdot \rfloor$ translates **E** formulas s into HOL terms $\lfloor s \rfloor$ of type $i \rightarrow o$. Type $i \rightarrow o$ is abbreviated as τ in the remainder.

$$\begin{aligned} \lfloor p^j \rfloor &= p^j_\tau \\ \lfloor \neg s \rfloor &= \neg_\tau \lfloor s \rfloor \\ \lfloor s \vee t \rfloor &= \vee_{\tau \rightarrow \tau \rightarrow \tau} \lfloor s \rfloor \lfloor t \rfloor \\ \lfloor \square s \rfloor &= \square_{\tau \rightarrow \tau} \lfloor s \rfloor \\ \lfloor \bigcirc(t/s) \rfloor &= \bigcirc_{\tau \rightarrow \tau \rightarrow \tau} \lfloor s \rfloor \lfloor t \rfloor \end{aligned}$$

$\neg_{\tau \rightarrow \tau}, \vee_{\tau \rightarrow \tau \rightarrow \tau}, \square_{\tau \rightarrow \tau}$ and $\bigcirc_{\tau \rightarrow \tau \rightarrow \tau}$ thereby abbreviate the following HOL terms:

$$\begin{aligned} \neg_{\tau \rightarrow \tau} &= \lambda A_\tau \lambda X_i \neg(A X) \\ \vee_{\tau \rightarrow \tau \rightarrow \tau} &= \lambda A_\tau \lambda B_\tau \lambda X_i (A X \vee B X) \\ \square_{\tau \rightarrow \tau} &= \lambda A_\tau \lambda X_i \forall Y_i (A Y) \\ \bigcirc_{\tau \rightarrow \tau \rightarrow \tau} &= \lambda A_\tau \lambda B_\tau \lambda X_i \forall W_i ((\lambda V_i (A V \wedge (\forall Y_i (A Y \rightarrow r_{i \rightarrow \tau} V Y)))) W \rightarrow B W) \end{aligned}$$

Corresponding Henkin Model H^M for Preference Model M

Given a preference model $M = \langle S, \succeq, V \rangle$. Let $p^1, \dots, p^m \in PV$, for $m \geq 1$ be propositional symbols and $\lfloor p^j \rfloor = p^j_\tau$ for $j = 1, \dots, m$. The Henkin model $H^M = \langle \{D_\alpha\}_{\alpha \in T}, I \rangle$ for M is defined as follows:

- D_i is chosen as the set of possible worlds S
- $D_{\alpha \rightarrow \beta}$ as (not necessarily full) sets of functions from D_α to D_β .
- For $1 \leq i \leq m$, we choose $l p^i_\tau \in D_\tau$ such that $l p^i_\tau(s) = T$ if $s \in V(p^i)$ in M and $l p^i_\tau(s) = F$ otherwise.
- We choose $l r_{i \rightarrow \tau} \in D_{i \rightarrow \tau}$ such that $l r_{i \rightarrow \tau}(u, s) = T$ if $s \succeq u$ in M and $l r_{i \rightarrow \tau}(u, s) = F$ otherwise.

Corresponding Preference Model M_H for Henkin Model H

For every Henkin model $H = \langle \{D_\alpha\}_{\alpha \in T}, I \rangle$ there exists a corresponding preference model M_H . Corresponding means that for all **E** formulas δ and for all assignment g and worlds s , $\lfloor \lfloor \delta \rfloor \rfloor_{H^M, g[s/S_i]} = T$ if and only if $M_H, s \models \delta$. We construct the corresponding preference model M_H as follows:

- $S = D_i$.
- $s \succeq u$ for $s, u \in S$ iff $l r_{i \rightarrow \tau}(u, s) = T$.
- $s \in V(p^i_\tau)$ iff $l p^i_\tau(s) = T$.

Result: Soundness and Completeness of the Embedding

Given $\text{vld}_{\tau \rightarrow o} = \lambda A_\tau \forall S_i (AS_i)$ we have: $\models^E \varphi$ if and only if $\models^{\text{HOL}} \text{vld} \lfloor \varphi \rfloor$

Isabelle/HOL: Propositional Connectives

```

Isabelle2016-1 - DDE.thy
File Edit Search Markers Folding View Utilities Macros Plugins Help
File Edit Search Markers Folding View Utilities Macros Plugins Help
DDE.thy (%USERPROFILE%DropboxthyPoster)
theory DDE imports Main
begin
stypedecl i -- "type for possible worlds"
type_synonym σ = "(i⇒bool)"
abbreviation(input) mtrue :: "σ" ("T") where "T ≡ λw. True"
abbreviation(input) mfalse :: "σ" ("F") where "F ≡ λw. False"
abbreviation(input) mnot :: "σ ⇒ σ" ("¬" "[52]53") where "¬φ ≡ λw. ¬φ(w)"
abbreviation(input) mand :: "σ ⇒ σ ⇒ σ" ("infixr" ∧ "51") where "φ ∧ ψ ≡ λw. φ(w) ∧ ψ(w)"
abbreviation(input) mor :: "σ ⇒ σ ⇒ σ" ("infixr" ∨ "50") where "φ ∨ ψ ≡ λw. φ(w) ∨ ψ(w)"
abbreviation(input) mimp :: "σ ⇒ σ ⇒ σ" ("infixr" → "49") where "φ → ψ ≡ λw. φ(w) → ψ(w)"
abbreviation(input) mequ :: "σ ⇒ σ ⇒ σ" ("infixr" ↔ "48") where "φ ↔ ψ ≡ λw. φ(w) ↔ ψ(w)"
  
```

Isabelle/HOL: Modal Operators

```

abbreviation(input) mbox :: "σ ⇒ σ" ("□") where "□ ≡ λφ w. ∀v. φ(v)"
consts r :: "i ⇒ i ⇒ bool" (infixr "r" 70)
  -- "the betterness relation r, used in definition of 0"
abbreviation(input) mopt :: "(i ⇒ bool) ⇒ (i ⇒ bool)" ("opt<_>")
  where "opt<φ> ≡ (λv. (φ(v) ∧ (λx. ((φ)(x) → v r x))) )"
abbreviation(input) mssubset :: "σ ⇒ σ ⇒ bool" (infix "⊆" 53)
  where "φ ⊆ ψ ≡ ∀x. φ x → ψ x"
abbreviation(input) mcond :: "σ ⇒ σ ⇒ σ" ("○<_>")
  where "○<ψ|φ> ≡ λw. opt<φ> ⊆ ψ"
  
```

Isabelle/HOL: Validity

```

abbreviation(input) valid :: "σ ⇒ bool" ("_|" "[8]109)
  where "|p| ≡ ∀w. p w"
  
```

Isabelle/HOL: Chisholm Scenario

```

section {* Chisholm Scenario *}
consts g :: "σ" t :: "σ"
context (* Chisholm Scenario*)
assumes
  ax1: "l (○<g|T>) " and
  ax2: "l (○<t|g>) " and
  ax3: "l (○<t|¬g>) " and
  ax4: "l (¬g) "
begin
  lemma True nitpick [satisfy, user_axioms, show_all, expect=genuine] oops
end
  
```

Conclusion

- We have described a faithful semantic embedding of the dyadic deontic logic system **E** in simple type theory.
- This work complements the one reported in [3] where the focus is on neighborhood semantics for dyadic deontic logic.
- Our work provides the theoretical foundation for the implementation and automation of dyadic deontic logics within theorem provers and proof assistants.

References

- Xavier Parent. Completeness of Åqvist's systems E and F. *The Review of Symbolic Logic*, 8(1):164–177, 2015.
- Christoph Benzmüller. Recent successes with a meta-logical approach to universal logical reasoning (extended abstract). *volume 10623 of Lecture Notes in Computer Science*, pages 7–11. Springer, 2017.
- C. Benzmüller, A. Farjami, and X. Parent. Faithful semantical embedding of a dyadic deontic logic in HOL. Accepted for presentation at DEON 2018. To appear in IfColog.
- Roderick M. Chisholm. Contrary-to-duty imperatives and deontic logic. *Analysis*, 24:336, 1963.

Acknowledgment

This work has been supported by the European Unions Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 690974.