
Reproducible Research at
the Cloud Era

Overview, Hands-on and Open Challenges

Sébastien Varrette, PhD

Parallel Computing and Optimization Group (PCOG),
University of Luxembourg (UL), Luxembourg

http://RR-tutorials.rtfd.io

Before the tutorial starts: Visit
https://goo.gl/l9mCsM

for preliminary setup instructions!

1 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

http://pcog.uni.lu
http://www.uni.lu
http://RR-tutorials.rtfd.io
https://goo.gl/l9mCsM

Summary

1 Introduction and Motivating Examples

2 Reproducible Research
Easy-to {read|take|share} Docs
Sharing Code and Data
Mastering your [reproducible] environment

3 Conclusion

2 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

About me
https://varrette.gforge.uni.lu

2003 – 2007: PhD between INP Grenoble & UL
→֒ Security in Large Scale Distributed Systems:

Authentication and Result Checking

2007 – now: Research Associate at UL
→֒ Part of the PCOG Team led by Prof. P. Bouvry
→֒ Manager of the UL High Performance Computing Facility

X ≃ 197 TFlops (2017), 5.844 PB, 4 sysadmins

Research Interests: Distributed Computing Platforms

Security (crash/cheating faults, obfuscation) in DGVCS
Performance of HPC/cloud platforms

→֒ Energy Efficiency, Performance, Cost. . .

3 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://varrette.gforge.uni.lu
http://www.uni.lu
http://pcog.uni.lu
http://hpc.uni.lu

Disclaimer: Acknowledgements

A large part of these slides were courtesy borrowed, with
permission, from:

→֒ Lucas Nussbaum (INRIA, Univ. Lorraine)
→֒ Arnaud Legrand (INRIA, Univ. Grenoble)
→֒ Valentin Plugaru (Univ. of Luxembourg)
→֒ and many others. . .

In particular, to know more about Reproducible Research:
→֒ Webinars on Reproducible Research https://github.com/alegrand/RR_webinars

→֒ Reproducible build https://reproducible-builds.org/

X initiative of various free software projects

. . .

4 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://members.loria.fr/LNussbaum/
http://mescal.imag.fr/membres/arnaud.legrand/
http://wwwfr.uni.lu/recherche/fstc/computer_science_and_communications_research_unit/membres/valentin_plugaru
https://github.com/alegrand/RR_webinars
https://github.com/alegrand/RR_webinars
https://reproducible-builds.org/
https://reproducible-builds.org/

Agenda: Dec. 12th, 2016

Time Session

09:00 – 10:00 Reproducible Research in Computer Science
10:00 – 10:30 Hands-On: Build these slides using Vagrant
10:30 – 11:00 Coffee Break
11:00 – 11:30 Hands-On: Reproducible Software Environment with Easybuild

Hands-On: Docker
Reproducible Results

12:15 – Lunch

5 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Tutorial Pre-Requisites / Setup

http://RR-tutorials.readthedocs.io/en/latest/setup/

Create (if need) accounts for the cloud services we will use:
→֒ Github, Vagrant Cloud and Docker Hub

Install mandatory software, i.e. (apart from Git):
→֒ Virtual Box https://www.virtualbox.org/

→֒ Vagrant https://www.vagrantup.com

→֒ Docker https://www.docker.com/

Check installed software and download the boxes we will use:

$> git clone https://github.com/Falkor/RR-tutorials.git

$> cd RR-tutorials

$> make setup

$> vagrant up && docker pull ubuntu:14.04 # might take some time...

6 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

http://RR-tutorials.readthedocs.io/en/latest/setup/
https://github.com/
https://vagrantcloud.com/
https://hub.docker.com/
https://git-scm.com/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.vagrantup.com
https://www.vagrantup.com
https://www.docker.com/
https://www.docker.com/

Introduction and Motivating Examples

Summary

1 Introduction and Motivating Examples

2 Reproducible Research
Easy-to {read|take|share} Docs
Sharing Code and Data
Mastering your [reproducible] environment

3 Conclusion

7 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Introduction and Motivating Examples

Validation in (Computer) Science

Two classical approaches for validation:

→֒ Formal: equations, proofs, etc.
→֒ Experimental, on a scientific instrument

Often a mix of both:

→֒ In Physics
→֒ In Computer Science

Quite a lot of formal work in Computer Science
But also quite a lot of experimental validation

→֒ Distributed computing, networking

X testbeds: IoT-LAB, Grid’5000. . .

→֒ Language/image processing ; evaluations using large corpuses

8 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://www.iot-lab.info/
https://www.grid5000.fr

Introduction and Motivating Examples

Validation in (Computer) Science

Two classical approaches for validation:

→֒ Formal: equations, proofs, etc.
→֒ Experimental, on a scientific instrument

Often a mix of both:

→֒ In Physics
→֒ In Computer Science

Quite a lot of formal work in Computer Science
But also quite a lot of experimental validation

→֒ Distributed computing, networking

X testbeds: IoT-LAB, Grid’5000. . .

→֒ Language/image processing ; evaluations using large corpuses

How good are we at performing experiments?

8 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://www.iot-lab.info/
https://www.grid5000.fr

Introduction and Motivating Examples

(Poor) State of Experimentation in CS

1994: survey of 400 papers1

→֒ among published CS articles in ACM journals
→֒ 40%-50% of those requiring an experimental validation had none

1998: survey of 612 papers2

→֒ too many papers have no experimental validation at all
→֒ too many papers use an informal (assertion) form of validation
→֒ 2009 update: situation is improving3

1Paul Lukowicz et al. “Experimental Evaluation in Computer Science: A Quantitative Study”. In: Journal of
Systems and Software 28 (1994), pages 9–18.

2M.V. Zelkowitz and D.R. Wallace. “Experimental models for validating technology”. In: Computer 31.5
(May 1998), pages 23–31.

3Marvin V. Zelkowitz. “An update to experimental models for validating computer technology”. In: J. Syst.
Softw. 82.3 (Mar. 2009), pages 373–376.

9 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Introduction and Motivating Examples

(Poor) State of Experimentation in CS

Most papers do not use even basic statistical tools

→֒ Papers published at the Europar conference4

Year #Papers With error bars Percentage

2007 89 5 5.6%
2008 89 3 3.4%
2009 86 2 2.4%
2010 90 6 6.7%
2011 81 7 8.6%
————— ——— —————– ————
2007-2001 435 23 5.3%

4Study carried out by E. Jeannot.

10 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Introduction and Motivating Examples

(Poor) State of Experimentation in CS

2007: Survey of simulators used in P2P research5

→֒ 287 papers surveyed on P2P networking subject
→֒ 141 of these papers reports the use of a simulator

X 30% use a custom tool
X 50% don’t report the used tool!

30.5 %

Custom

50.4 %

Unspecified
5.6 %

NS-2

5 %

Chord (SFS)

8.5 %

Others

5S. Naicken et al. “The state of peer-to-peer simulators and simulations”. In: SIGCOMM Comput. Commun.
Rev. 37.2 (Mar. 2007), pages 95–98.

11 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

http://www.comp.brad.ac.uk/het-net/tutorials/P37.pdf

Introduction and Motivating Examples

(Poor) State of Experimentation in CS

2015: 601 papers from ACM conferences and journals analysed6

→֒ Obj.: attempt to locate any source code that backed up the
published results; if found, try to build the code.

→֒ EMno (146 papers!): code cannot be provided!
→֒ Original study: 80% of non reproducible work

32.2 %

OK

24.3 %

EMno

3.8 %

OKAuthors 33.1 %

Excluded

5 %

Authors don’t answer

1.6 %
Build Fails

6Christian Collberg et al. Repeatability and Benefaction in Computer Systems Research. Technical report.
http://reproducibility.cs.arizona.edu/. Feb. 2015.

12 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

http://reproducibility.cs.arizona.edu/

Introduction and Motivating Examples

And in Other Sciences?

Biology: Increase in retracted papers7,
→֒ Fraud (data fabrication or falsification)
→֒ Error (plagiarism, scientific mistake, ethical problems)

X see also Reproducibility: A tragedy of errors8

X cf.Duke University scandal with scientific misconduct on lung cancer

→֒ High number of failing clinical trials
X Do We Really Know What Makes Us Healthy?, 2007
X Lies, Damned Lies, and Medical Science, 2010

Psychology:
→֒ unreplicable study about extrasensory perception (ESP)

Machine Learning: Trouble at the lab, The Economist, 2013
According to some estimates, three-quarters of published scientific papers in the field
of machine learning are bunk because of this “overfitting”. Sandy Pentlan, MIT

7R Grant Steen. “Retractions in the scientific literature: is the incidence of research fraud increasing?” In: J
Med Ethics 37 (2011). http://dx.doi.org/10.1136/jme.2010.040923, pages 249–253.

8David B. Allison et al. Reproducibility: A tragedy of errors.
http://www.nature.com/news/reproducibility-a-tragedy-of-errors-1.19264. Feb. 2016.

13 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

9.8 %

Plagiarism

21.3 %

Error

43.4 %

Fraud

14.2 %

Self-Plagiarism

11.3 %

Others

http://www.nature.com/news/reproducibility-a-tragedy-of-errors-1.19264
http://www.nytimes.com/2011/07/08/health/research/08genes.html
http://mescal.imag.fr/membres/arnaud.legrand/teaching/2011/EP_epidemiology.pdf
http://mescal.imag.fr/membres/arnaud.legrand/teaching/2011/EP_lies.pdf
https://en.wikipedia.org/wiki/Daryl_Bem#.22Feeling_the_Future.22_controversy
http://www.economist.com/news/briefing/21588057-scientists-think-science-self-correcting-alarming-degree-it-not-trouble
http://dx.doi.org/10.1136/jme.2010.040923
http://www.nature.com/news/reproducibility-a-tragedy-of-errors-1.19264

Introduction and Motivating Examples

And in Other Sciences?

Medicine: Study shows lower fertility for mices exposed to
transgenic maize (AFSSA report9)

→֒ Several calculation errors have been identified
→֒ led to a false statistical analysis & interpretation

9Opinion of the French Food Safety Agency (Afssa) on the study by Velimirov et al.

14 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://www.anses.fr/en/system/files/BIOT2008sa0361EN.pdf
https://en.wikipedia.org/wiki/Faster-than-light_neutrino_anomaly

Introduction and Motivating Examples

And in Other Sciences?

Medicine: Study shows lower fertility for mices exposed to
transgenic maize (AFSSA report9)

→֒ Several calculation errors have been identified
→֒ led to a false statistical analysis & interpretation

Physics: CERN / OPERA Experiment (2011)
→֒ faster-than-light neutrinos

X People started gossiping about relativity violation. . .

→֒ caused by timing system failure in 2012

9Opinion of the French Food Safety Agency (Afssa) on the study by Velimirov et al.

14 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://www.anses.fr/en/system/files/BIOT2008sa0361EN.pdf
https://en.wikipedia.org/wiki/Faster-than-light_neutrino_anomaly

Introduction and Motivating Examples

And in Other Sciences?

Medicine: Study shows lower fertility for mices exposed to
transgenic maize (AFSSA report9)

→֒ Several calculation errors have been identified
→֒ led to a false statistical analysis & interpretation

Physics: CERN / OPERA Experiment (2011)
→֒ faster-than-light neutrinos

X People started gossiping about relativity violation. . .

→֒ caused by timing system failure in 2012

/: Not everything is perfect
,: But some errors are properly identified

→֒ Stronger experimental culture in other (older?) sciences?
→֒ Long history of costly experiments, scandals, . . .

9Opinion of the French Food Safety Agency (Afssa) on the study by Velimirov et al.

14 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://www.anses.fr/en/system/files/BIOT2008sa0361EN.pdf
https://en.wikipedia.org/wiki/Faster-than-light_neutrino_anomaly

Introduction and Motivating Examples

What About You (as Rewiever) ?

“This may be an interesting contribution but. . . ”

This average value must hide something
As usual, there is no confidence interval,

→֒ I wonder about the variability and whether the difference is
significant or not

15 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Introduction and Motivating Examples

What About You (as Rewiever) ?

“This may be an interesting contribution but. . . ”

This average value must hide something
As usual, there is no confidence interval,

→֒ I wonder about the variability and whether the difference is
significant or not

Why is this graph in logscale? How would it looks like otherwise?
That can’t be true, I’m sure they removed some points
The authors decided to show only a subset of the data.

→֒ I wonder what the rest looks like

15 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Introduction and Motivating Examples

What About You (as Rewiever) ?

“This may be an interesting contribution but. . . ”

This average value must hide something
As usual, there is no confidence interval,

→֒ I wonder about the variability and whether the difference is
significant or not

Why is this graph in logscale? How would it looks like otherwise?
That can’t be true, I’m sure they removed some points
The authors decided to show only a subset of the data.

→֒ I wonder what the rest looks like

There is no label/legend/. . . What is the meaning of this graph?
→֒ If only I could access the generation script

15 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Introduction and Motivating Examples

What About You (as Author) ?

I thought I used the same parameters. . .

→֒ but I’m getting different results!

16 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Introduction and Motivating Examples

What About You (as Author) ?

I thought I used the same parameters. . .

→֒ but I’m getting different results!

The new student wants to compare with my last year’ method
My advisor asked me whether I took care of setting this or this. . .

→֒ but I can’t remember

The damned fourth reviewer asked for a major revision. . .
→֒ he wants me to change figure 3 /

16 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Introduction and Motivating Examples

What About You (as Author) ?

I thought I used the same parameters. . .

→֒ but I’m getting different results!

The new student wants to compare with my last year’ method
My advisor asked me whether I took care of setting this or this. . .

→֒ but I can’t remember

The damned fourth reviewer asked for a major revision. . .
→֒ he wants me to change figure 3 /

Which code / data set did I use to generate this figure?
It worked yesterday!
6 months later: just why did I do that?

16 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Introduction and Motivating Examples

Why is it Hard to Reproduce? (any Scientific Work)

Human error:
→֒ Experimenter bias crowdsourced research?

→֒ Programming errors or data manipulation mistakes
→֒ Poorly selected statistical test

There is just no real incentive in doing so:
→֒ Legal barriers, copyright Many ongoing discussions in US

→֒ Competition issue researchware, bibliometry, ...

→֒ Publication bias only the idea matters, not the gory details...

→֒ Rewards for positive/novel results, not for consolidating results

17 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

http://www.nature.com/news/crowdsourced-research-many-hands-make-tight-work-1.18508
http://web.stanford.edu/~vcs/talks/SC15-Nov182015-STODDEN.pdf

Introduction and Motivating Examples

Why is it Hard to Reproduce? (any Scientific Work)

Human error:
→֒ Experimenter bias crowdsourced research?

→֒ Programming errors or data manipulation mistakes
→֒ Poorly selected statistical test

There is just no real incentive in doing so:
→֒ Legal barriers, copyright Many ongoing discussions in US

→֒ Competition issue researchware, bibliometry, ...

→֒ Publication bias only the idea matters, not the gory details...

→֒ Rewards for positive/novel results, not for consolidating results

Technical difficulty:

→֒ Hardware and software evolve too quickly. It’s not worth it
→֒ No resources for storing so much data/information
→֒ Lack of easy-to-use tools

17 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

http://www.nature.com/news/crowdsourced-research-many-hands-make-tight-work-1.18508
http://web.stanford.edu/~vcs/talks/SC15-Nov182015-STODDEN.pdf

Reproducible Research

Summary

1 Introduction and Motivating Examples

2 Reproducible Research
Easy-to {read|take|share} Docs
Sharing Code and Data
Mastering your [reproducible] environment

3 Conclusion

18 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Reproducible Research Movement

Originated mainly in Computational Sciences

→֒ Computational biology, data-intensive physics, etc.

Explores methods and tools to enhance experimental practices

→֒ Enable others to reproduce and build upon one’s work

Nothing New

→֒ Fundamental basis of the scientific method
→֒ K. Poppler, 1934: non-reproducible single

occurrences are of no significance to science

19 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Replicability vs. Reproducibility

Terminology varies10

→֒ Replicability ∼ same result
→֒ Reproducibity ∼ same scientific conclusions

Completely
independent

reproduction based
only on text

description, without
access to the
original code

Reproduction
using different

software, but with
access to the
original code

Reproduction of the original results using the
same tools

by the original
author on the
same machine

by someone in the
same lab/using a
different machine

by someone
in a

different lab

Replicability Reproducibility

10Dror G. Feitelson. From Repeatability to Reproducibility and Corroboration. Technical report.
http://www.cs.huji.ac.il/~feit/papers/Repeat15SIGOPS.pdf. Hebrew University of Jerusalem, 2015.

20 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Courtesy of Andrew Davison "Automatic Tracking of computational experiments
using Sumatra" (AMP Workshop on Reproducible research) CC-by-NC-SA, 2011

http://www.cs.huji.ac.il/~feit/papers/Repeat15SIGOPS.pdf

Reproducible Research

Reproducibility in Practice

Reproducibility (Wikipedia)

the ability of an entire experiment or study to be reproduced,
→֒ either by the researcher
→֒ or by someone else working independently.

One of the main principles of the scientific method.

For an experiment involving software, reproducibility means:
→֒ open access to the scientific article describing it
→֒ open data sets used in the experiment
→֒ source code of all the components
→֒ environment of execution
→֒ stable references between all this

21 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

The Research Pipeline

Reader

Author

(Design of Experiments)

Protocol

Scientific

Question

Published

Article

Nature/System/...

22 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Courtesy of A. Legrand, inspired by Roger D. Peng’s lecture on reproducible research, May 2014

Reproducible Research

The Research Pipeline

Analytic

Data

Computational

Results

Measured

Data

Numerical

Summaries

Figures

Tables

Text

Reader

Author

(Design of Experiments)

Protocol

Scientific

Question

Published

Article

Nature/System/...

22 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Courtesy of A. Legrand, inspired by Roger D. Peng’s lecture on reproducible research, May 2014

Reproducible Research

The Research Pipeline

Experiment Code

(workload injector, VM recipes, ...)

Processing

Code

Analysis

Code

Presentation

Code

Analytic

Data

Computational

Results

Measured

Data

Numerical

Summaries

Figures

Tables

Text

Reader

Author

(Design of Experiments)

Protocol

Scientific

Question

Published

Article

Nature/System/...

22 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Courtesy of A. Legrand, inspired by Roger D. Peng’s lecture on reproducible research, May 2014

Reproducible Research

The Research Pipeline

= Provenance tracking

Try to keep track of the whole chain

Experiment Code

(workload injector, VM recipes, ...)

Processing

Code

Analysis

Code

Presentation

Code

Analytic

Data

Computational

Results

Measured

Data

Numerical

Summaries

Figures

Tables

Text

Reader

Author

(Design of Experiments)

Protocol

Scientific

Question

Published

Article

Nature/System/...

22 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Courtesy of A. Legrand, inspired by Roger D. Peng’s lecture on reproducible research, May 2014

Reproducible Research

The Research Pipeline

Analysis

E
xp

er
im

en
ts

Experiment Code

(workload injector, VM recipes, ...)

Processing

Code

Analysis

Code

Presentation

Code

Analytic

Data

Computational

Results

Measured

Data

Numerical

Summaries

Figures

Tables

Text

Reader

Author

Analysis/experiment

feedback loop
(Design of Experiments)

Protocol

Scientific

Question

Published

Article

Nature/System/...

22 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Analysis is generally not very domain-specific

Courtesy of A. Legrand, inspired by Roger D. Peng’s lecture on reproducible research, May 2014

Reproducible Research

Reproducible Research Challenges

The Distributed/Cloud Computing point-of-view:
→֒ Experiments remains the HARD part and is very domain-specific

X Rely on large, distributed, hybrid, prototype hardware/software
X Measure execution times (makespans, traces, . . .)
X Many parameters, very costly and hard to reproduce

23 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Environment Management

Controlling/Providing your Environment

An environment is a set of tools and materials that permits a
complete reproducibility of part/whole experiment process.

24 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

http://www.openfoam.com/
https://www.open-mpi.org/
https://www.debian.org/

Reproducible Research

Environment Management

Controlling/Providing your Environment

An environment is a set of tools and materials that permits a
complete reproducibility of part/whole experiment process.

Q1: How to describe/provide the software environment used?

“I used OpenFOAM with OpenMPI on Debian”

Obvious solution: Virtual Machines

→֒ Easy way to [automatically] test recipes
→֒ Yet provides only the final result, not the logic behind

24 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

http://www.openfoam.com/
https://www.open-mpi.org/
https://www.debian.org/

Reproducible Research

RR: Trying to Bridge the Gap

Accurate, organized and easy-to{read|take|share} Docs

→֒ Markdown, mkdocs, org-mode, Read the Docs. . .

25 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://guides.github.com/features/mastering-markdown/
http://www.mkdocs.org/
http://doc.norang.ca/org-mode.html
https://readthedocs.org/
https://git-scm.com/
https://github.com/
https://bitbucket.org/
https://about.gitlab.com/
https://www.vagrantup.com
https://www.docker.com/

Reproducible Research

RR: Trying to Bridge the Gap

Accurate, organized and easy-to{read|take|share} Docs

→֒ Markdown, mkdocs, org-mode, Read the Docs. . .

Sharing Code and Data

→֒ git, Github, Bitbucket, Gitlab. . .

25 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://guides.github.com/features/mastering-markdown/
http://www.mkdocs.org/
http://doc.norang.ca/org-mode.html
https://readthedocs.org/
https://git-scm.com/
https://github.com/
https://bitbucket.org/
https://about.gitlab.com/
https://www.vagrantup.com
https://www.docker.com/

Reproducible Research

RR: Trying to Bridge the Gap

Accurate, organized and easy-to{read|take|share} Docs

→֒ Markdown, mkdocs, org-mode, Read the Docs. . .

Sharing Code and Data

→֒ git, Github, Bitbucket, Gitlab. . .

Mastering your environment clean and automated by:

→֒ Using common building tools make, cmake etc.
→֒ Using a constrained environment

X Sandboxed Ruby/Python,Vagrant, Docker

→֒ Automate its building through cross-platform recipes
→֒ Automatically test your recipes for Environment configuration

25 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://guides.github.com/features/mastering-markdown/
http://www.mkdocs.org/
http://doc.norang.ca/org-mode.html
https://readthedocs.org/
https://git-scm.com/
https://github.com/
https://bitbucket.org/
https://about.gitlab.com/
https://www.vagrantup.com
https://www.docker.com/

Reproducible Research

RR: Trying to Bridge the Gap

Accurate, organized and easy-to{read|take|share} Docs

→֒ Markdown, mkdocs, org-mode, Read the Docs. . .

Sharing Code and Data

→֒ git, Github, Bitbucket, Gitlab. . .

Mastering your environment clean and automated by:

→֒ Using common building tools make, cmake etc.
→֒ Using a constrained environment

X Sandboxed Ruby/Python,Vagrant, Docker

→֒ Automate its building through cross-platform recipes
→֒ Automatically test your recipes for Environment configuration

25 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

A
ll

co
ve

re
d

in
th

is
tu

to
ria

l!

https://guides.github.com/features/mastering-markdown/
http://www.mkdocs.org/
http://doc.norang.ca/org-mode.html
https://readthedocs.org/
https://git-scm.com/
https://github.com/
https://bitbucket.org/
https://about.gitlab.com/
https://www.vagrantup.com
https://www.docker.com/

Reproducible Research

Summary

1 Introduction and Motivating Examples

2 Reproducible Research
Easy-to {read|take|share} Docs
Sharing Code and Data
Mastering your [reproducible] environment

3 Conclusion

26 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Easy-to-{Read | Take | Share} Docs

Reproducible research assumes accurate and organized Docs
You need to document your:

→֒ Hypotheses: keep track of your ideas/line of thoughts
→֒ Experiments: details on how and why an experiment was run

X including failed or ambiguous attempts.

→֒ Initial analysis or interpretation of these experiments
X was the outcome conform to the expectation or not?
X does it (in)validate the hypothesis?

→֒ Organization: keep track of things to do/ x/test/improve

Stucture:
→֒ General information about the document
→֒ commonly used commands and how to set up experiments
→֒ Experiment results

X by date (tags)
X by experiment campaigns (date/time)

27 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Documentation Tools / Format

Recommandation

Plain-text with Markdown syntax
→֒ Easy to track over Git (text files, not Word/RFT etc.)
→֒ Easy to export to any format using pandoc / multimarkdown

→֒ Supports online/offline Wikis / Blogging platforms

Focus on writing, viewers for all platform
→֒ Mac OS: MOU, Marked 2
→֒ Linux: Remarkable, Retext
→֒ Windows: MarkdownPad, Remarkable

Git Based Markdown Blogging
→֒ Octopress, Jekyll

28 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://daringfireball.net/projects/markdown/syntax
http://pandoc.org/
http://michaelhyatt.com/multimarkdown.html
http://25.io/mou/
http://marked2app.com/
https://remarkableapp.github.io/
http://sourceforge.net/projects/retext/
http://markdownpad.com/
https://remarkableapp.github.io/
https://daringfireball.net/projects/markdown/syntax
https://github.com/octopress/octopress
https://jekyllrb.com/

Reproducible Research

Git-based Markdown Wiki

Permits to work offline
→֒ Gollum, as embedded in GitLab

X run gollum (from root directory) http://localhost:4567

Recommandation: MkDocs http://www.mkdocs.org/

Better for Hierarchical structure of the docs
→֒ fully configured by mkdocs.yml and files in docs/

→֒ local [interpreted] site: mkdocs serve (from root directory)
http://localhost:8000

compliant with Read the Docs
→֒ trigger automatic doc rebuild upon [git] push
→֒ cf http://rr-tutorials.readthedocs.io/ ,

29 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://daringfireball.net/projects/markdown/syntax
https://github.com/gollum/gollum/wiki
http://localhost:4567
http://www.mkdocs.org/
http://localhost:8000
https://readthedocs.org/
http://rr-tutorials.readthedocs.io/

Reproducible Research

Mkdocs Workflow

$> mkdocs new # initialize ’mkdocs.yml’ and docs/ directory

30 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

http://localhost:8000

Reproducible Research

Mkdocs Workflow

$> mkdocs new # initialize ’mkdocs.yml’ and docs/ directory

mkdocs.yml -- MkDocs configuration, all *.md files relative to docs/

site_name: My Environment Documentation

pages:

- Home: ’index.md’

- Tools:

- SSH: ’tools/ssh.md’

- Git: ’tools/git.md’

- Configuration:

- CA Certificates: ’config/certificates/README.md’

theme: readthedocs

30 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

http://localhost:8000

Reproducible Research

Mkdocs Workflow

$> mkdocs new # initialize ’mkdocs.yml’ and docs/ directory

mkdocs.yml -- MkDocs configuration, all *.md files relative to docs/

site_name: My Environment Documentation

pages:

- Home: ’index.md’

- Tools:

- SSH: ’tools/ssh.md’

- Git: ’tools/git.md’

- Configuration:

- CA Certificates: ’config/certificates/README.md’

theme: readthedocs

$> mkdocs serve # Run LOCAL builtin server http: // localhost: 8000

30 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

http://localhost:8000

Reproducible Research

Hands-On 1: Markdown & MkDocs

Your Turn! http://rr-tutorials.readthedocs.io/en/latest/hands-on/docs/

Easy-to-{Read | Take | Share} Docs with MkDocs
→֒ installation of MkDocs http://www.mkdocs.org/#installation

→֒ initialization mkdocs new .

→֒ Markdown basis
→֒ Local serve mkdocs serve

31 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://daringfireball.net/projects/markdown/syntax
http://www.mkdocs.org/
http://rr-tutorials.readthedocs.io/en/latest/hands-on/docs/
http://www.mkdocs.org/#installation

Reproducible Research

Summary

1 Introduction and Motivating Examples

2 Reproducible Research
Easy-to {read|take|share} Docs
Sharing Code and Data
Mastering your [reproducible] environment

3 Conclusion

32 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Sharing Code and Data

What kinds of systems are available?

Good : The cloud Dropbox, Google Drive, Figshare. . .
Better - Version Control systems (VCS)

→֒ SVN, Git and Mercurial

Best - Version Control Systems on the Public/Private Cloud
→֒ GitHub, Bitbucket, Gitlab

33 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://www.dropbox.com/
https://figshare.com/
https://subversion.apache.org/
https://git-scm.com/
https://www.mercurial-scm.org/
https://github.com/
https://bitbucket.org/
https://about.gitlab.com/

Reproducible Research

Sharing Code and Data

What kinds of systems are available?

Good : The cloud Dropbox, Google Drive, Figshare. . .
Better - Version Control systems (VCS)

→֒ SVN, Git and Mercurial

Best - Version Control Systems on the Public/Private Cloud
→֒ GitHub, Bitbucket, Gitlab

Which one?

→֒ Depends on the level of privacy you expect

X . . . but you probably already know these tools ,

→֒ Few handle GB files. . .

33 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://www.dropbox.com/
https://figshare.com/
https://subversion.apache.org/
https://git-scm.com/
https://www.mercurial-scm.org/
https://github.com/
https://bitbucket.org/
https://about.gitlab.com/

Reproducible Research

Centralized VCS – CVS, SVN

File

Checkout

Version Database

Version 3

Version 2

Version 1

Central VCS Server
Computer A

34 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Centralized VCS – CVS, SVN

File

Checkout

Version Database

Version 3

Version 2

Version 1

Central VCS Server
Computer A

File

Checkout

Computer B

34 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Distributed VCS – Git

Version Database

Version 3

Version 2

Version 1

Server Computer

File

Computer A

Version Database

Version 3

Version 2

Version 1

File

Computer B

Version Database

Version 3

Version 2

Version 1

Everybody has the full history of commits

35 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Tracking changes (most VCS)

file A

file B

file C

C1

Checkins over Time

36 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Tracking changes (most VCS)

Δ1

C2

Δ1

file A

file B

file C

C1

Checkins over Time

36 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Tracking changes (most VCS)

C3

Δ2

Δ1

C2

Δ1

file A

file B

file C

C1

Checkins over Time

36 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Tracking changes (most VCS)

C4

Δ2

Δ1

C3

Δ2

Δ1

C2

Δ1

file A

file B

file C

C1

Checkins over Time

36 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Tracking changes (most VCS)

C5

Δ2

Δ3

C4

Δ2

Δ1

C3

Δ2

Δ1

C2

Δ1

file A

file B

file C

C1

Checkins over Time

36 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Tracking changes (most VCS)

C5

Δ2

Δ3

C4

Δ2

Δ1

C3

Δ2

Δ1

C2

Δ1

file A

file B

file C

C1

Checkins over Time

delta
storage

36 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Tracking changes (Git)

snapshot
(DAG)
storage

C5

Δ2

Δ3

C4

Δ2

Δ1

C3

Δ2

Δ1

C2

Δ1

file A

file B

file C

C1

Checkins over Time

delta
storage

36 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Tracking changes (Git)

Checkins over Time

A

B

C

C1

snapshot
(DAG)
storage

C5

Δ2

Δ3

C4

Δ2

Δ1

C3

Δ2

Δ1

C2

Δ1

file A

file B

file C

C1

Checkins over Time

delta
storage

36 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Tracking changes (Git)

C2

A1

B

C1

Checkins over Time

A

B

C

C1

snapshot
(DAG)
storage

C5

Δ2

Δ3

C4

Δ2

Δ1

C3

Δ2

Δ1

C2

Δ1

file A

file B

file C

C1

Checkins over Time

delta
storage

36 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Tracking changes (Git)

C2

A1

B

C1

Checkins over Time

A

B

C

C1

snapshot
(DAG)
storage

C5

Δ2

Δ3

C4

Δ2

Δ1

C3

Δ2

Δ1

C2

Δ1

file A

file B

file C

C1

Checkins over Time

delta
storage

36 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Tracking changes (Git)

C3

A1

B

C2

C2

A1

B

C1

Checkins over Time

A

B

C

C1

snapshot
(DAG)
storage

C5

Δ2

Δ3

C4

Δ2

Δ1

C3

Δ2

Δ1

C2

Δ1

file A

file B

file C

C1

Checkins over Time

delta
storage

36 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Tracking changes (Git)

C3

A1

B

C2

C2

A1

B

C1

Checkins over Time

A

B

C

C1

snapshot
(DAG)
storage

C5

Δ2

Δ3

C4

Δ2

Δ1

C3

Δ2

Δ1

C2

Δ1

file A

file B

file C

C1

Checkins over Time

delta
storage

36 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Tracking changes (Git)

C4

A2

B1

C2

C3

A1

B

C2

C2

A1

B

C1

Checkins over Time

A

B

C

C1

snapshot
(DAG)
storage

C5

Δ2

Δ3

C4

Δ2

Δ1

C3

Δ2

Δ1

C2

Δ1

file A

file B

file C

C1

Checkins over Time

delta
storage

36 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Tracking changes (Git)

C4

A2

B1

C2

C3

A1

B

C2

C2

A1

B

C1

Checkins over Time

A

B

C

C1

snapshot
(DAG)
storage

C5

Δ2

Δ3

C4

Δ2

Δ1

C3

Δ2

Δ1

C2

Δ1

file A

file B

file C

C1

Checkins over Time

delta
storage

36 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Tracking changes (Git)

C5

A2

B2

C3

C4

A2

B1

C2

C3

A1

B

C2

C2

A1

B

C1

Checkins over Time

A

B

C

C1

snapshot
(DAG)
storage

C5

Δ2

Δ3

C4

Δ2

Δ1

C3

Δ2

Δ1

C2

Δ1

file A

file B

file C

C1

Checkins over Time

delta
storage

36 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Tracking changes (Git)

C5

A2

B2

C3

C4

A2

B1

C2

C3

A1

B

C2

C2

A1

B

C1

Checkins over Time

A

B

C

C1

snapshot
(DAG)
storage

C5

Δ2

Δ3

C4

Δ2

Δ1

C3

Δ2

Δ1

C2

Δ1

file A

file B

file C

C1

Checkins over Time

delta
storage

36 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

VCS Taxonomy

Subversion
svn

cvs

git

mercurial
hg

time
machine

cp -r

rsync

duplicity

rcs

delta
storage

snapshot
(DAG)
storage

bazaar
bzr

bitkeeper

local

centralized

distributed

local

centralized

distributed

bontmia
backupninja

duplicity

Mac OS File
Versions

37 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Git at the heart of RR http://git-scm.org

38 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

http://git-scm.org

Reproducible Research

Git on the Cloud: Github github.com

(Reference) web-based Git repository hosting service

Set up Git Create Repository

Fork repository Work together

39 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

http://github.com

Reproducible Research

So what makes Git so useful?

(almost) Everything is local

everything is fast
every clone is a backup
you work mainly offline

Ultra Fast, Efficient & Robust

Snapshots, not patches (deltas)
Cheap branching and merging

→֒ Strong support for thousands of parallel branches

Cryptographic integrity everywhere

40 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Other Git features

Git doesn’t delete
→֒ Immutable objects, Git generally only adds data
→֒ If you mess up, you can usually recover your stuff

X Recovery can be tricky though

41 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://git-scm.com/book/en/v2/Git-Tools-Subtree-Merging
https://github.com/nvie/gitflow

Reproducible Research

Other Git features

Git doesn’t delete
→֒ Immutable objects, Git generally only adds data
→֒ If you mess up, you can usually recover your stuff

X Recovery can be tricky though

Git Tools / Extension

cf. Git submodules or subtrees
Introducing git-flow

→֒ workflow with a strict branching model
→֒ offers the git commands to follow the workflow

$> git flow init

$> git flow feature { start, publish, finish } <name>

$> git flow release { start, publish, finish } <version>

41 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://git-scm.com/book/en/v2/Git-Tools-Subtree-Merging
https://github.com/nvie/gitflow

Reproducible Research

Hands-on 2: Practical Git http://git-scm.com/downloads

Installation on Linux / Mac OS

$> apt-get install git-core git-flow # On Debian-like systems

$> yum install git gitflow # On CentOS-like systems

$> brew install git git-flow # On Mac OS, using Homebrew

42 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

http://git-scm.com/downloads
http://mxcl.github.com/homebrew/
https://msysgit.github.io/
http://rr-tutorials.readthedocs.io/en/latest/setup/

Reproducible Research

Hands-on 2: Practical Git http://git-scm.com/downloads

Installation on Linux / Mac OS

$> apt-get install git-core git-flow # On Debian-like systems

$> yum install git gitflow # On CentOS-like systems

$> brew install git git-flow # On Mac OS, using Homebrew

Installation on Windows MsysGit

Incl. Git Bash/GUI & Shell Integration
→֒ install Git bash + command prompt
→֒ select checkout windows / commit unix

42 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

http://git-scm.com/downloads
http://mxcl.github.com/homebrew/
https://msysgit.github.io/
http://rr-tutorials.readthedocs.io/en/latest/setup/

Reproducible Research

Hands-on 2: Practical Git http://git-scm.com/downloads

Installation on Linux / Mac OS

$> apt-get install git-core git-flow # On Debian-like systems

$> yum install git gitflow # On CentOS-like systems

$> brew install git git-flow # On Mac OS, using Homebrew

Installation on Windows MsysGit

Incl. Git Bash/GUI & Shell Integration
→֒ install Git bash + command prompt
→֒ select checkout windows / commit unix

Your turn! http://rr-tutorials.readthedocs.io/en/latest/setup/

→֒ Ensure you have git installed

42 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

http://git-scm.com/downloads
http://mxcl.github.com/homebrew/
https://msysgit.github.io/
http://rr-tutorials.readthedocs.io/en/latest/setup/

Reproducible Research

Git GUI (default) Gitk

43 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Git GUI (Mac OS) GitX-dev

http://rowanj.github.io/gitx/

43 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

http://rowanj.github.io/gitx/
http://rowanj.github.io/gitx/

Reproducible Research

Git GUI (Windows/Mac) SourceTree

http://www.sourcetreeapp.com/

11 Let it install a default git ignore file

22 make it load your SSH key created with Putty

43 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

http://www.sourcetreeapp.com/
http://www.sourcetreeapp.com/

Reproducible Research

Preliminary Configurations

Global Git configuration are stored in ~/.gitconfig

→֒ Ex: see my personal .gitconfig

You SHOULD at least configure your name and email to commit
→֒ open a terminal (Git bash under windows) for the below commands

$> git config –-global user.name "Firstname LastName"

$> git config –-global user.email "Firstname.LastName@uni.lu"

$> git config –-global color.ui true # Colors
$> git config –-global core.editor vim # Editor

44 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://github.com/Falkor/dotfiles/blob/master/git/.gitconfig

Reproducible Research

Preliminary Configurations

Global Git configuration are stored in ~/.gitconfig

→֒ Ex: see my personal .gitconfig

You SHOULD at least configure your name and email to commit
→֒ open a terminal (Git bash under windows) for the below commands

$> git config –-global user.name "Firstname LastName"

$> git config –-global user.email "Firstname.LastName@uni.lu"

$> git config –-global color.ui true # Colors
$> git config –-global core.editor vim # Editor

Your Turn!

Then check the changes by: git config -l | grep user

44 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://github.com/Falkor/dotfiles/blob/master/git/.gitconfig

Reproducible Research

Git Commands Aliases

You can also create git command aliases in ~/.gitconfig.

→֒ Ex copy/paste from my personal .gitconfig

[alias]

up = pull origin

pu = push origin

st = status

df = diff

ci = commit -s

co = checkout

br = branch

w = whatchanged --abbrev-commit

ls = ls-files

gr = log --graph --oneline --decorate

amend = commit --amend

45 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://github.com/Falkor/dotfiles/blob/master/git/.gitconfig

Reproducible Research

Git Workflow

git directory
(repository)

remote
repo

staging
area

working
directory

git add

git commit

git push

git fetch / git pull

git merge

git checkout

Local Remote

46 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Creating a Repository

$> git [flow] init

Initializes a new git (flow) repository in the current directory

47 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://github.com/nvie/gitflow

Reproducible Research

Creating a Repository

$> git [flow] init

Initializes a new git (flow) repository in the current directory

Your Turn!

$> cd /tmp

$> mkdir firstproject

$> cd firstproject

$> git init

Initialized empty Git repository in /private/tmp/firstproject/.git/

47 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://github.com/nvie/gitflow

Reproducible Research

Cloning a Repository

$> git clone [–-recursive] <url> [<path>]

Type URL Format / Example Port

Local /path/to/project.git n/a
SSH git+ssh://user@server:port/project.git 22
Git git://server/project.git 9418
HTTPS https://github.com/Falkor/falkorlib.git 443

48 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Cloning a Repository

$> git clone [–-recursive] <url> [<path>]

Your Turn!

$> cd /tmp

$> git clone https://github.com/Falkor/RR-tutorials.git

Cloning into ’tutorials’...

remote: Counting objects: 1247, done.

remote: Compressing objects: 100% (63/63), done.

remote: Total 1247 (delta 32), reused 0 (delta 0), pack-reused 1181

Receiving objects: 100% (1247/1247), 15.74 MiB | 3.08 MiB/s, done.

Resolving deltas: 100% (588/588), done.

Checking connectivity... done.

$> git clone --recursive \

https://github.com/Falkor/RR-tutorials.git /tmp/tutorials2

49 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Inspecting a Repository

$> git status [-s] # -s: short / simplified output

50 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Inspecting a Repository

$> git status [-s] # -s: short / simplified output

Your Turn!

$> cd /tmp/firstproject

$> git status

On branch master

Initial commit

nothing to commit

Create an empty file

$> touch README.md

$> git status

On branch master

Initial commit

Untracked files:

README

nothing added to commit but untracked

files present

$> git status -s

?? README

50 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Add / Tracking [new] file(s)

$> git add [-f] <pattern>

Adds changes to the index

→֒ Add a specific file: git add README

→֒ Add a set of files: git add *.py

working directory

repository .git/

staging area / index

git add

Beware that empty directory cannot be added directly
→֒ due to the internal file representation (blobs)
→֒ Tips: add an hidden file .empty (or .gitignore)

51 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Add / Tracking [new] file(s)

$> git add [-f] <pattern>

Adds changes to the index

→֒ Add a specific file: git add README

→֒ Add a set of files: git add *.py

working directory

repository .git/

staging area / index

git add

Beware that empty directory cannot be added directly
→֒ due to the internal file representation (blobs)
→֒ Tips: add an hidden file .empty (or .gitignore)

Your Turn!

$> cd /tmp/firstproject

$> git status -s

?? README

$> git add README

$> git status -s

A README

51 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Committing your changes

$> git commit [-s] [-m "msg"]

Commit all changes: git commit -a

working directory

repository .git/

staging area / index

git commit

git add

52 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Committing your changes

$> git commit [-s] [-m "msg"]

Commit all changes: git commit -a

working directory

repository .git/

staging area / index

git commit

git add

Your Turn!

$> cd /tmp/firstproject

$> git commit -s -m "add README" # OR git ci -m "add README"

[master (root-commit) ee60f53] add README

1 file changed, 0 insertions(+), 0 deletions(-)

create mode 100644 README

$> git status # OR git st

On branch master

nothing to commit, working directory cleant

52 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Removing Files

$> git rm [-rf] [–-cached] <file>

--cached: remove from Staging area

→֒ otherwise (default): from index and file system

53 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Ignoring Files

Ignoring files from staging: ‘.gitignore‘

you can create a .gitignore file listing patterns to ignore
→֒ Blank lines or lines starting with \# are ignored
→֒ End pattern with slash (/) to specify a directory
→֒ Negate pattern with exclamation point (!)

Collection of useful .gitignore templates

.DS_Store

*~

*.asv

*.m~

.mex

tmp/*

LATEX.gitignore

Python .gitignore

Ruby .gitignore

54 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://github.com/github/gitignore
https://github.com/github/gitignore/blob/master/TeX.gitignore
https://github.com/github/gitignore/blob/master/Python.gitignore
https://github.com/github/gitignore/blob/master/Ruby.gitignore

Reproducible Research

Moving Files

$> git mv <source> <destination> # Equivalent of:

mv <source> <destination>

git rm <source>

git add <destination>

55 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Moving Files

$> git mv <source> <destination> # Equivalent of:

mv <source> <destination>

git rm <source>

git add <destination>

Your Turn!

$> cd /tmp/firstproject

$> git mv README README.md

$> git status

On branch master

Changes to be committed:

renamed: README -> README.md

$> git commit -m "a first move"

55 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Check the Commit History

$> git log [-p] [–-stat] [–-graph –-oneline –-decorate]

-p / --stat: show the differences introduced in each commit
You can also perform some date filtering

$> git log –-since=2.weeks

Ncurses-based text-mode interface: tig

56 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://github.com/jonas/tig

Reproducible Research

Check the Commit History

$> git log [-p] [–-stat] [–-graph –-oneline –-decorate]

-p / --stat: show the differences introduced in each commit
You can also perform some date filtering

$> git log –-since=2.weeks

Ncurses-based text-mode interface: tig

Your Turn!

$> cd /tmp/firstproject

$> git log --oneline --graph --decorate # OR git gr

* f1f0c27 (HEAD -> master) a first move

* ee60f53 add README

$> git log -p -1 # only the last commit OR git show

$> tig

56 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://github.com/jonas/tig

Reproducible Research

Show differences

$> git diff [–-cached] [<ref>]

Check un-staged changes: git diff

→֒ --cached: check staged changes

Relative to a specific revision:

$> git diff 1776f5

$> git diff HEADˆ

57 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Undoing Things

$> git commit –-amend # Change the last commit

58 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Undoing Things

$> git commit –-amend # Change the last commit

$> git unstage <file> # or git reset HEAD <file>

58 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Undoing Things

$> git commit –-amend # Change the last commit

$> git unstage <file> # or git reset HEAD <file>

$> git checkout –- <file> # DANGER! Un-modify modified file

Restore to the last committed/cloned version: all changes are lost!

58 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Undoing Things

$> git commit –-amend # Change the last commit

$> git unstage <file> # or git reset HEAD <file>

$> git checkout –- <file> # DANGER! Un-modify modified file

$> git revert <commit> # revert a <commit>

Make a new commit that undoes all changes made in <commit>

58 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Undoing Things

$> git commit –-amend # Change the last commit

$> git unstage <file> # or git reset HEAD <file>

$> git checkout –- <file> # DANGER! Un-modify modified file

$> git revert <commit> # revert a <commit>

Your Turn!

$> cd /tmp/firstproject

$> git commit --amend

$> echo ’toto’ >> README.md

$> cat README.md && git status

$> git checkout -- README

$> git status

58 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Git Summary

Basic Workflow

Edit files vim / emacs / subl . . .
Stage the changes git add

Review your changes git status

Commit the changes git commit

59 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Git Summary

For cheaters: A Basicerer Workflow

Edit files vim / emacs / subl . . .
Stage & commit the changes git commit -a

60 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Git Summary

For cheaters: A Basicerer Workflow

Edit files vim / emacs / subl . . .
Stage & commit the changes git commit -a

Advices: Commit early, commit often!
→֒ commits = save points

X use descriptive commit messages

→֒ Don’t get out of sync with your collaborators
→֒ Commit the sources, not the derived files

Not covered here (by lack of time)

→֒ Branches, tags, remotes, submodules, subtrees, etc. . .

60 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Summary

1 Introduction and Motivating Examples

2 Reproducible Research
Easy-to {read|take|share} Docs
Sharing Code and Data
Mastering your [reproducible] environment

3 Conclusion

61 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Environment Management

RR assumes that you Master your environment
Keep it clean and automated by:

→֒ Using common building tools make, cmake etc.
→֒ Using a constrained environment

X Sandboxed Ruby environment bundler, Gemfile

X Sandboxed Python pip freeze, pyenv, virtualenv

X VMs or Containers Vagrant, Docker

→֒ Automate its building through cross-platform recipes
→֒ Automatically test your recipes for Environment configuration

62 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://github.com/yyuu/pyenv
https://virtualenv.pypa.io/en/latest/
https://www.vagrantup.com
https://www.docker.com/

Reproducible Research

Controlled Ruby Environment

Consider using RVM, rbenv and more importantly Bundler
→֒ Bring the flexibility of Rakefile (Makefile + Ruby)
→֒ Bundler: reproducible running environment across developpers
→֒ easy configuration through Gemfile[.lock] + bundle command

RVM: sandboxed environment per project (alternative: rbenv)
→֒ easy configuration through .ruby-{version,gemset} files

63 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://rvm.io/
http://rbenv.org/
http://bundler.io/
http://bundler.io/
https://rvm.io/
https://hpc.uni.lu/blog/2014/create-a-sandboxed-python-slash-ruby-environment/
http://rbenv.org/

Reproducible Research

Controlled Ruby Environment

Consider using RVM, rbenv and more importantly Bundler
→֒ Bring the flexibility of Rakefile (Makefile + Ruby)
→֒ Bundler: reproducible running environment across developpers
→֒ easy configuration through Gemfile[.lock] + bundle command

RVM: sandboxed environment per project (alternative: rbenv)
→֒ easy configuration through .ruby-{version,gemset} files

Typical setup of a freshly cloned project:

$> gem install bundler # assuming it is not yet available

$> bundle # clone ruby deps/env as defined in Gemfile*

$> rake -T # To list the available tasks

63 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://rvm.io/
http://rbenv.org/
http://bundler.io/
http://bundler.io/
https://rvm.io/
https://hpc.uni.lu/blog/2014/create-a-sandboxed-python-slash-ruby-environment/
http://rbenv.org/

Reproducible Research

Controlled Ruby Environment

Consider using RVM, rbenv and more importantly Bundler
→֒ Bring the flexibility of Rakefile (Makefile + Ruby)
→֒ Bundler: reproducible running environment across developpers
→֒ easy configuration through Gemfile[.lock] + bundle command

RVM: sandboxed environment per project (alternative: rbenv)
→֒ easy configuration through .ruby-{version,gemset} files

Typical setup of a freshly cloned project:

$> gem install bundler # assuming it is not yet available

$> bundle # clone ruby deps/env as defined in Gemfile*

$> rake -T # To list the available tasks

Recommended Gems

rake, bundler, falkorlib

63 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://rvm.io/
http://rbenv.org/
http://bundler.io/
http://bundler.io/
https://rvm.io/
https://hpc.uni.lu/blog/2014/create-a-sandboxed-python-slash-ruby-environment/
http://rbenv.org/

Reproducible Research

Controlled Python Environment

pip: Python package manager

→֒ “nice” python packages: mkdocs. . .
→֒ Windows: install via Chocolatey

$> pip install <package> # install <package>

64 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://pypi.python.org/pypi/pip
https://chocolatey.org/

Reproducible Research

Controlled Python Environment

pip: Python package manager

→֒ “nice” python packages: mkdocs. . .
→֒ Windows: install via Chocolatey

$> pip install <package> # install <package>

$> pip install -U pip # upgrade on Linux/Mac OS

64 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://pypi.python.org/pypi/pip
https://chocolatey.org/

Reproducible Research

Controlled Python Environment

pip: Python package manager

→֒ “nice” python packages: mkdocs. . .
→֒ Windows: install via Chocolatey

$> pip install <package> # install <package>

$> pip install -U pip # upgrade on Linux/Mac OS

Dump python environment to a requirements file

$> pip freeze -l > requirements.txt # as Ruby Gemfiles

64 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://pypi.python.org/pypi/pip
https://chocolatey.org/

Reproducible Research

Pyenv / VirtualEnv / Autoenv

pyenv: ≃ RVM/rbenv for Python
virtualenv ≃ RVM Gemset
(optional) autoenv

→֒ Directory-based shell environments
→֒ easy config through .env file. Ex:

(rootdir)/.env : autoenv configuration file

pyversion=‘head .python-version‘

pvenv=‘head .python-virtualenv‘

pyenv virtualenv --force --quiet ${pyversion} ${pvenv}-${pyversion}

activate it

pyenv activate ${pvenv}-${pyversion}

65 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://github.com/yyuu/pyenv
https://virtualenv.pypa.io/en/latest/
https://github.com/kennethreitz/autoenv

Reproducible Research

Constrained VM environment

Let’s see how to reproduce a simple yet practical example in a
constrained and reproducible VM environment.

Challenge 1: Reproduce the Build of these Slides

Several tricky issues illustrating previous best practices
→֒ grab the sources git

→֒ use of a constrained environment Vagrant
→֒ installing the prerequisite software environment apt-get

X [un]common mix here: make, latex-beamer, biber, pandoc. . .
X generally the major challenge in reproducing computations. . .

66 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://git-scm.com/
https://www.vagrantup.com
http://rr-tutorials.readthedocs.io/en/latest/hands-on/vagrant/
http://rr-tutorials.readthedocs.io/en/latest/setup/

Reproducible Research

Constrained VM environment

Let’s see how to reproduce a simple yet practical example in a
constrained and reproducible VM environment.

Challenge 1: Reproduce the Build of these Slides

Several tricky issues illustrating previous best practices
→֒ grab the sources git

→֒ use of a constrained environment Vagrant
→֒ installing the prerequisite software environment apt-get

X [un]common mix here: make, latex-beamer, biber, pandoc. . .
X generally the major challenge in reproducing computations. . .

http://rr-tutorials.readthedocs.io/en/latest/hands-on/vagrant/

IF NOT YET DONE: http://rr-tutorials.readthedocs.io/en/latest/setup/

66 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://git-scm.com/
https://www.vagrantup.com
http://rr-tutorials.readthedocs.io/en/latest/hands-on/vagrant/
http://rr-tutorials.readthedocs.io/en/latest/setup/

Reproducible Research

Grab the [Code/Data] Source

You should have now Git installed
Get the RR-tutorials repository from Github

$> git clone https://github.com/Falkor/RR-tutorials.git

$> cd RR-tutorials

$> make setup # OR git submodule init && git submodule update

Notable elements within this cloned repository:

→֒ the LATEX slides sources slides/2016/cloudcom2016/src/

→֒ Documentation sources mkdocs.yml and docs/

→֒ Vagrant configuration for this project Vagrantfile

→֒ Bats unit tests tests/

→֒ Continuous Integration settings through Travis-CI .travis.yml

67 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

http://git-scm.com
https://github.com/Falkor/RR-tutorials
https://www.vagrantup.com
https://github.com/sstephenson/bats
https://travis-ci.org/Falkor/RR-tutorials

Reproducible Research

Use a Constrained Environment

http://vagrantup.com/

68 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

http://vagrantup.com/

Reproducible Research

What is Vagrant ?

Create and configure lightweight, reproducible, and portable
development environments

Command line tool vagrant [...]

Easy and Automatic per-project VM management
→֒ Supports many hypervisors: VirtualBox, VMWare. . .
→֒ Easy text-based configuration (Ruby syntax) Vagrantfile

Supports provisioning through configuration management tools
→֒ Shell
→֒ Puppet https://puppet.com/

→֒ Salt. . . https://saltstack.com/

Cross-platform: runs on Linux, Windows, MacOS

69 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

http://vagrantup.com/
https://www.virtualbox.org/
http://www.vmware.com/
https://puppet.com/
https://puppet.com/
https://saltstack.com/
https://saltstack.com/

Reproducible Research

Installation Notes
http://rr-tutorials.readthedocs.io/en/latest/setup/

Mac OS X:

→֒ best done using Homebrew and Cask

$> brew install caskroom/cask/brew-cask

$> brew cask install virtualbox # install virtualbox

$> brew cask install vagrant

$> brew cask install vagrant-manager # cf http://vagrantmanager.com/

Windows / Linux:

→֒ install Oracle Virtualbox and the Extension Pack
→֒ install Vagrant

70 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

http://rr-tutorials.readthedocs.io/en/latest/setup/
http://brew.sh/
http://sourabhbajaj.com/mac-setup/Homebrew/Cask.html
https://www.virtualbox.org/
https://www.vagrantup.com/downloads.html

Reproducible Research

Why use Vagrant?

Create new VMs quickly and easily: only one command!

→֒ vagrant up

Keep the number of VMs under control

→֒ All configuration in VagrantFile

Reproducibility

→֒ Identical environment in development and production

Portability

→֒ avoid sharing 4 GB VM disks images
→֒ Vagrant Cloud to share your images

Collaboration made easy:

$> git clone ...

$> vagrant up

71 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://vagrantcloud.com/

Reproducible Research

Minimal default setup

$> vagrant init [-m] <user>/<name> # setup vagrant cloud image

A Vagrantfile is configured for box <user>/<name>

→֒ Find existing box: Vagrant Cloud https://vagrantcloud.com/

→֒ You can have multiple (named) box within the same Vagrantfile

X See ULHPC/puppet-sysadmins/Vagrantfile

Vagrant.configure(2) do |config|

config.vm.box = ’<user>/<name>’

config.ssh.insert_key = false

end

Box name Description

ubuntu/trusty64 Ubuntu Server 14.04 LTS
debian/contrib-jessie64 Vanilla Debian 8 “Jessie”
centos/7 CentOS Linux 7 x86_64
svarrette/RR-tutorials IEEE CloudCom 2016 Tuto

72 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://vagrantcloud.com/
https://vagrantcloud.com/
https://github.com/ULHPC/puppet-sysadmins/blob/devel/Vagrantfile

Reproducible Research

Pulling and Running a Vagrant Box

$> vagrant up # boot the box(es) set in the Vagrantfile

Base box is downloaded and stored locally ~/.vagrant.d/boxes/

A new VM is created and configured with the base box as template

→֒ The VM is booted and (eventually) provisioned
→֒ Once within the box: /vagrant = directory hosting Vagrantfile

73 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Pulling and Running a Vagrant Box

$> vagrant up # boot the box(es) set in the Vagrantfile

Base box is downloaded and stored locally ~/.vagrant.d/boxes/

A new VM is created and configured with the base box as template

→֒ The VM is booted and (eventually) provisioned
→֒ Once within the box: /vagrant = directory hosting Vagrantfile

$> vagrant status # State of the vagrant box(es)

73 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Pulling and Running a Vagrant Box

$> vagrant up # boot the box(es) set in the Vagrantfile

Base box is downloaded and stored locally ~/.vagrant.d/boxes/

A new VM is created and configured with the base box as template

→֒ The VM is booted and (eventually) provisioned
→֒ Once within the box: /vagrant = directory hosting Vagrantfile

$> vagrant status # State of the vagrant box(es)

$> vagrant ssh # connect inside it, CTRL-D to exit

73 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Stopping Vagrant Box

$> vagrant { destroy | halt } # destroy / halt

Once you have finished your work within a running box

→֒ save the state for later with vagrant halt

→֒ reset changes / tests / errors with vagrant destroy

→֒ commit changes by generating a new version of the box

74 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Back to Hands-on 1

Your Turn! http://rr-tutorials.readthedocs.io/en/latest/hands-on/vagrant/

Steps [1-4] to cover the following elements:
→֒ Basic Usage of Vagrant
→֒ Build these Slides

X find the prerequisite software environment apt-get

X [un]common mix here: make, latex-beamer, biber, pandoc. . .

Hints:

→֒ if a package is missing, find the appropriate one apt-cache search

→֒ Ubuntu Package Search for a missing *.sty http://packages.ubuntu.com/

X Search the contents of packages for Distribution Trusty

75 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

http://rr-tutorials.readthedocs.io/en/latest/hands-on/vagrant/
http://packages.ubuntu.com/
http://packages.ubuntu.com/

Reproducible Research

Vagrant Box Provisioning

Now you have hopefully a working documented procedure

→֒ it’s time to bundle it for provisioning the box upon boot
→֒ key for sustainable reproducible environment

Simple case: inline provisioning i.e. list commands to run

76 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Vagrant Box Inline Provisioning

Now you have hopefully a working documented procedure

→֒ it’s time to bundle it for provisioning the box upon boot
→֒ key for sustainable reproducible environment

Simple case: inline provisioning i.e. list commands to run

config.vm.provision "shell", inline: <<-SHELL

sudo apt-get update --fix-missing

sudo apt-get upgrade

Complete the below list of missing packages

apt-get -yq --no-install-suggests --no-install-recommends install \

git make latex-beamer biber latex-make [...]

SHELL

76 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Vagrant Box Inline Provisioning

Now you have hopefully a working documented procedure

→֒ it’s time to bundle it for provisioning the box upon boot
→֒ key for sustainable reproducible environment

Simple case: inline provisioning i.e. list commands to run

config.vm.provision "shell", inline: <<-SHELL

sudo apt-get update --fix-missing

sudo apt-get upgrade

Complete the below list of missing packages

apt-get -yq --no-install-suggests --no-install-recommends install \

git make latex-beamer biber latex-make [...]

SHELL

$> vagrant provision # test your provisioning config

76 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Vagrant Box Inline Provisioning

Your Turn! http://rr-tutorials.readthedocs.io/en/latest/hands-on/vagrant/

Steps 5:
→֒ adapt the Vagrantfile to embed your commands
→֒ recall that relative paths are expanded relative to the location of

the root Vagrantfile

→֒ inline command are run as the vagrant user, not root

IMPORTANT:
→֒ all your commands should run in a non-interactive way

apt-get install -y <package> # Debian / Ubuntu

yum install -y <package> # CentOS/ Redhat

77 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

http://rr-tutorials.readthedocs.io/en/latest/hands-on/vagrant/

Reproducible Research

Vagrant Box Shell Provisioning

Embed your inline commands in a Shell/Python/Ruby script
→֒ see sample script vagrant/bootstrap.sample.sh

config.vm.provision "shell", path: "<script>.{sh|py|rb}"

Your Turn! http://rr-tutorials.readthedocs.io/en/latest/hands-on/vagrant/

Steps 6: copy and adapt vagrant/bootstrap.sample.sh

→֒ adapt the Vagrantfile to provision the VM with your script
→֒ test a reproducible provisioning from scratch

$> vagrant destroy && vagrant up && vagrant ssh

$> make -C make -C /vagrant/slides/2016/cloudcom2016/src/

78 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

http://rr-tutorials.readthedocs.io/en/latest/hands-on/vagrant/

Reproducible Research

Vagrant Box Packaging

At some moment, you probably want to diffuse your custom box!
→֒ Ex: svarrette/RR-tutorials used for this tutorial
→֒ use Vagrant Cloud as a global storage media
→֒ VBoxManage list runningvms to get the real box name

$> vagrant package –-base <real-box-name> –-output <name>.box

79 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://atlas.hashicorp.com/svarrette/boxes/RR-tutorials
https://vagrantcloud.com
https://github.com/mitchellh/vagrant/tree/master/keys
https://github.com/Falkor/RR-tutorials/blob/master/vagrant/purge.sh

Reproducible Research

Vagrant Box Packaging

At some moment, you probably want to diffuse your custom box!
→֒ Ex: svarrette/RR-tutorials used for this tutorial
→֒ use Vagrant Cloud as a global storage media
→֒ VBoxManage list runningvms to get the real box name

$> vagrant package –-base <real-box-name> –-output <name>.box

BEFORE packaging your box:

→֒ Use official insecure SSH key config.ssh.insert_key=false

→֒ Purge the VM to reduce its size see vagrant/purge.sh

X remove useless [big] packages aptitude purge [...]

X Empty logs/history etc.
X Zero out the free space dd if=/dev/zero of=/EMPTY bs=1M

→֒ Up-to-date Virtualbox Guest additions vagrant vbguest

79 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://atlas.hashicorp.com/svarrette/boxes/RR-tutorials
https://vagrantcloud.com
https://github.com/mitchellh/vagrant/tree/master/keys
https://github.com/Falkor/RR-tutorials/blob/master/vagrant/purge.sh

Reproducible Research

Detailed Pre-Packaging Steps (1/2)

Ensure you DO NOT reset the default (insecure) SSH key
→֒ default expected setting to SSH your box
→֒ before vagrant up, ensure replacement of SSH keys is not done

config.ssh.insert_key = false # in Vagrantfile

Purge the VM, in particular to Zero out the free space
→֒ see vagrant/purge.sh

Remove APT cache

apt-get clean -y && apt-get autoclean -y && apt-get autoremove -y

Remove bash history

unset HISTFILE

rm -f /root/.bash_history && rm -f /home/vagrant/.bash_history

Zero out free space to aid VM compression

dd if=/dev/zero of=/EMPTY bs=1M

rm -f /EMPTY

80 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://github.com/mitchellh/vagrant/tree/master/keys
https://github.com/Falkor/RR-tutorials/blob/master/vagrant/purge.sh

Reproducible Research

Detailed Pre-Packaging Steps (2/2)

Ensure an Up-to-date Virtualbox Guest additions
→֒ ensure optimized usage of the box
→֒ simplified management with the vbguest plugin

Install the ’vbguest’ plugin

$> vagrant plugin install vagrant-vbguest

$> vagrant vbguest --status

GuestAdditions versions on your host (5.1.8) and guest (4.3.36)

do not match.

Upgrade the GuestAdditions

$> vagrant vbguest --do install --auto-reboot [--force]

If you want the manual way:
→֒ copy /Applications/VirtualBox.app/Contents/MacOS/VBoxGuestAdditions.iso

→֒ mount in within the VM
→֒ execute VBoxLinuxAdditions.run

81 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://github.com/dotless-de/vagrant-vbguest

Reproducible Research

Vagrant Box Packaging

Locate the internal name of the running VM and repackage it

$> VBoxManage list runningvms

"RR-tutorials_default_1481463725786_57301" {...}

$> vagrant package \

--base vagrant-vms_default_1431034026308_70455 \

--output <os>-<version>-<arch>.box

82 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

http://vagrantcloud.com

Reproducible Research

Vagrant Box Packaging

Locate the internal name of the running VM and repackage it

$> VBoxManage list runningvms

"RR-tutorials_default_1481463725786_57301" {...}

$> vagrant package \

--base vagrant-vms_default_1431034026308_70455 \

--output <os>-<version>-<arch>.box

Now you can upload the generated box on Vagrant Cloud.
→֒ select ‘New version’, enter the new version number
→֒ add a new box provider (Virtualbox)
→֒ upload the generated box

82 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

http://vagrantcloud.com

Reproducible Research

Vagrant Box Packaging

Locate the internal name of the running VM and repackage it

$> VBoxManage list runningvms

"RR-tutorials_default_1481463725786_57301" {...}

$> vagrant package \

--base vagrant-vms_default_1431034026308_70455 \

--output <os>-<version>-<arch>.box

Now you can upload the generated box on Vagrant Cloud.
→֒ select ‘New version’, enter the new version number
→֒ add a new box provider (Virtualbox)
→֒ upload the generated box

Upon successful upload: release the uploaded box
→֒ by default it is unreleased
→֒ Now people using the <user>/<name> box will be notified of a

pending update

82 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

http://vagrantcloud.com

Reproducible Research

Vagrant Box Packaging

Your Turn! http://rr-tutorials.readthedocs.io/en/latest/hands-on/vagrant/

Steps 7-8: Package your box and diffuse it on Vagrant Cloud
→֒ Make preliminary checks
→֒ Purge the VM
→֒ Package it and Upload to Vagrant Cloud

83 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

http://rr-tutorials.readthedocs.io/en/latest/hands-on/vagrant/
https://vagrantcloud.com
https://vagrantcloud.com

Reproducible Research

Vagrant Box Generation

You might rely on Falkor/vagrant-vms
→֒ use it at your own risks
→֒ based on packer and veewee

$> git clone https://github.com/Falkor/vagrant-vms.git

$> cd vagrant-vms

$> gem install bundler && bundle install

$> rake setup

84 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://github.com/Falkor/vagrant-vms
http://www.packer.io/
https://github.com/jedi4ever/veewee

Reproducible Research

Vagrant Box Generation

You might rely on Falkor/vagrant-vms
→֒ use it at your own risks
→֒ based on packer and veewee

$> git clone https://github.com/Falkor/vagrant-vms.git

$> cd vagrant-vms

$> gem install bundler && bundle install

$> rake setup

initiate a template for a given Operating System:

$> rake packer:{Debian,CentOS,openSUSE,scientificlinux,ubuntu}:init

Build a Vagrant box

$> rake packer:{Debian,CentOS,openSUSE,scientificlinux,ubuntu}:build

If things goes fine:

$> vagrant box add packer/<os>-<version>-<arch>/<os>-<version>-<arch>.box

84 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://github.com/Falkor/vagrant-vms
http://www.packer.io/
https://github.com/jedi4ever/veewee

Reproducible Research

Advanced Provisioning: Puppet

Shell provisioning is a reasonable good basis but not sufficient
→֒ hard to be cross-platform apt-get vs. yum

You quickly something more consistent
→֒ Puppet https://puppet.com/

→֒ Salt. . . https://saltstack.com/

85 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://puppet.com/
https://puppet.com/
https://saltstack.com/
https://saltstack.com/
https://docs.puppetlabs.com/puppet/latest/reference/lang_summary.html
https://forge.puppet.com/

Reproducible Research

Advanced Provisioning: Puppet

Shell provisioning is a reasonable good basis but not sufficient
→֒ hard to be cross-platform apt-get vs. yum

You quickly something more consistent
→֒ Puppet https://puppet.com/

→֒ Salt. . . https://saltstack.com/

Puppet: Reproducible/Cross-Platform IT Environment

Advanced configuration management and IT Automation
→֒ cross-platform w. Puppet’s Resource Abstraction Layer (RAL)
→֒ Git-based workflow

Embed environment management in manifests and modules
→֒ nodes manifests: nodes definitions
→֒ modules: (reusable) set of recipe to configure a given service

X Large Community Recipes / Modules https://forge.puppet.com/

85 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://puppet.com/
https://puppet.com/
https://saltstack.com/
https://saltstack.com/
https://docs.puppetlabs.com/puppet/latest/reference/lang_summary.html
https://forge.puppet.com/

Reproducible Research

Puppet Operational modes

Masterless - apply Puppet manifests directly on the target system.
→֒ No need of a complete client-server infrastructure.
→֒ Have to distribute manifests and modules to the managed nodes.

$> puppet apply –-modulepath /modules/ /manifests/file.pp

86 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Puppet Operational modes

Masterless - apply Puppet manifests directly on the target system.
→֒ No need of a complete client-server infrastructure.
→֒ Have to distribute manifests and modules to the managed nodes.

$> puppet apply –-modulepath /modules/ /manifests/file.pp

Master / Client Setup
→֒ server (running as puppet) listening on 8140 on the Puppet Master
→֒ client (running as root) on each managed node.

X Run as a service (default), via cron (with random delays), manually
or via MCollective

→֒ Client and Server have to share SSL certificates
X certificates must be signed by the Master CA

$> puppet agent –-test [–-noop] [–-environment <environment>]

86 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Puppet DSL

A Declarative Domain Specific Language (DSL)
→֒ defines STATES (and not procedures)

Puppet code is written in manifests <file>.pp

→֒ declare resources that affect elements of the system
X each resource has a type (package, service, file, user, exec . . .)
X each resource has a uniq title

→֒ resources are grouped in classes

Classes and configuration files are organized in modules
Example of resources types:

file { ’/etc/motd’:

content => "Toto"

}

package { ’openssh’:

ensure => present,

}

service { ’httpd’:

ensure => running,

enable => true,

}

87 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Puppet Classes

Containers of different resources

→֒ Can have parameters since Puppet 2.6

class mysql (

$root_password = ’default_value’,

$port = ’3306’,

) {

package { ’mysql-server’:

ensure => present,

}

service { ’mysql’:

ensure => running,

}

[...]

}

88 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Puppet Classes Declaration

To use a class previously defined, we declare it
“Old style” class declaration, without parameters:

include mysql

“New style” (from Puppet 2.6) with explicit parameters:

class { ’mysql’:

root_password => ’my_value’,

port => ’3307’,

}

A class is uniq to a given node

89 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Puppet Defines

Similar to parametrized classes . . .
→֒ . . . but can be used multiple times (with different titles).

Definition of a define

define apache::virtualhost (

$ensure = present,

$template = ’apache/virtualhost.conf.erb’ ,

[...]) {

file { "ApacheVirtualHost_${name}":

ensure => $ensure,

content => template("${template}"),

}

}

Declaration of a define:

apache::virtualhost { ’www.uni.lu’:

template => ’site/apache/www.uni.lu-erb’

}

90 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Puppet Variables and Facts

Can be defined in different places and by different actors:
→֒ by client nodes as facts
→֒ defined by users in Puppet code, on Hiera on in the ENC
→֒ built-in and be provided directly by Puppet

Facts using facter:
→֒ runs on clients and collects facts that the server can use as variables

$> facter

architecture => x86_64

fqdn => toto.uni.lu

kernel => Linux

memorytotal => 16.00 GB

operatingsystem => Centos

operatingsystemrelease => 6.3

osfamily => RedHat

virtual => physical

[...]

Can be used outside Puppet
Good tool to abstract your
environment

→֒ permits reproducible and
cross-platform developments

91 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Puppet User Variables

In Puppet manifests:

$role = ’mail’

$package = $::operatingsystem ? {

/(?i:Ubuntu|Debian|Mint)/ => ’apache2’,

default => ’httpd’,

}

In an External Node Classifier (ENC)
→֒ Common ENC: Puppet DashBoard, the Foreman, Puppet

Enterprise.

In an Hiera backend

$syslog_server = hiera(syslog_server)

92 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Puppet Nodes

A node/system is identified by its certname

→֒ defaults to the node’s fqdn

node ’web01’ {

include apache

}

node /^www\d+$/ {

include apache

}

Nodes classification can be done by External Node Classifier (ENC)

→֒ Puppet DashBoard, The Foreman and Puppet Enterprise

Nodes classification can be done also by Hiera

→֒ In /etc/puppet/manifests/site.pp

hiera_include(’classes’)

93 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Vagrant Puppet Provisionning

Operate in masterless mode
Embed your manifests and modules in your repository

→֒ grab community modules with librarian-puppet, r10K

config.vm.provision :puppet do |puppet|

puppet.hiera_config_path = ’hieradata/hiera.yaml’

puppet.working_directory = ’/vagrant’

puppet.manifests_path = "manifests"

puppet.module_path = "modules"

puppet.manifest_file = "init.pp"

puppet.options = [’-v’,’--report’,’--show_diff’,’--pluginsync’]

end

94 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

http://librarian-puppet.com/
https://github.com/puppetlabs/r10k

Reproducible Research

Vagrant Puppet Provisionning

Operate in masterless mode
Embed your manifests and modules in your repository

→֒ grab community modules with librarian-puppet, r10K

config.vm.provision :puppet do |puppet|

puppet.hiera_config_path = ’hieradata/hiera.yaml’

puppet.working_directory = ’/vagrant’

puppet.manifests_path = "manifests"

puppet.module_path = "modules"

puppet.manifest_file = "init.pp"

puppet.options = [’-v’,’--report’,’--show_diff’,’--pluginsync’]

end

Your Turn!

94 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

http://librarian-puppet.com/
https://github.com/puppetlabs/r10k

Reproducible Research

Vagrant Puppet Provisionning

Operate in masterless mode
Embed your manifests and modules in your repository

→֒ grab community modules with librarian-puppet, r10K

config.vm.provision :puppet do |puppet|

puppet.hiera_config_path = ’hieradata/hiera.yaml’

puppet.working_directory = ’/vagrant’

puppet.manifests_path = "manifests"

puppet.module_path = "modules"

puppet.manifest_file = "init.pp"

puppet.options = [’-v’,’--report’,’--show_diff’,’--pluginsync’]

end

Your Turn! ... Or not ,(no time)

94 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

http://librarian-puppet.com/
https://github.com/puppetlabs/r10k

Reproducible Research

Software/Modules Management

Software Management Challenge
→֒ Not so much standardization

X every machine/app has a different software stack / installation
procedure

X Sites share unique hardware among teams with very different
requirements

X You want to experiment with many exotic architectures

Software Flavor vs. Dependency nightmare vs Performance
→֒ Ex: 3 compilers + 3 MPI + n software
→֒ Complex set of CLI options,
→֒ One of the main limits for RR

Some Tools can help you!
→֒ Easybuild http://easybuild.readthedocs.io/

→֒ Spack http://spack.readthedocs.io/

→֒ CDE
→֒ Kameleon http://kameleon.imag.fr/

95 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

http://easybuild.readthedocs.io/
http://easybuild.readthedocs.io/
http://spack.readthedocs.io/
http://spack.readthedocs.io/
http://www.pgbovine.net/cde.html
http://kameleon.imag.fr/
http://kameleon.imag.fr/

Reproducible Research

EasyBuild http://easybuild.readthedocs.io/

Easybuild: open-source framework to
(automatically) build scientific software
Why?: "Could you please install this software on the cluster?"

→֒ Scientific software are often painful to build

X non-standard build tools / incomplete build procedure
X hardcoded parameters and/or poor/outdated documentation

→֒ EasyBuild helps to facilitate this task

X consistent software build and installation framework
X automatically generates LMod modulefiles

96 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

http://easybuild.readthedocs.io/
http://hpcugent.github.io/easybuild/

Reproducible Research

EasyBuild Installation http://easybuild.readthedocs.io/

pick an installation prefix to install EasyBuild to

export EASYBUILD_PREFIX=$HOME/.local/easybuild

download script

curl -O goo.gl/RK3Gpf # Get bootstrap_eb.py

bootstrap EasyBuild

python bootstrap_eb.py $EASYBUILD_PREFIX

update $MODULEPATH, and load the EasyBuild module

module use $EASYBUILD_PREFIX/modules/all

module load EasyBuild

97 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

http://easybuild.readthedocs.io/

Reproducible Research

EasyBuild Usage http://easybuild.readthedocs.io/

Load EasyBuild module

module load EasyBuild

Check version

eb --version

Look for HPL

eb -S HPL

Check what needs to be built to compile HPL 2.1 with Intel compiler

HPL-2.1-intel-2016b.eb

Check what needs to be built to compile HPL 2.1 with GCC/OpenMPI/...

eb HPL-2.1-foss-2016b.eb -Dr

Build HPL and its dependencies

eb HPL-2.1-foss-2016b.eb -r

See available HPL now

module avail HPL

Amending an existing easyconfig

eb HPL-2.1-foss-2016b.eb --try-software-version=2.2

98 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

http://easybuild.readthedocs.io/

Reproducible Research

Kameleon: Reproducible SW11

Uses recipes (high-level description)
→֒ Similar to cfengine, Puppet, Chef in the sysadmin world

Persistent cache to allow re-generation without external resources
→֒ Linux distribution mirror ; self-contained archive
→֒ Supports LXC, Docker, VirtualBox, qemu, Kadeploy images, etc.

.....
.
....

.
....

.
....

.

Creation process of an experimental setup

Base software layer

(O.S. + middleware)
Software

appliance

- Installation of packages

- Source code compilation

- Application configuration

- etc.

...

infrastructure

Deployment

Contextualization

Kameleon

Final Experimental setup

INRIA MESCAL TEAM HEMERA Kameleon: Software Appliance Builder 39 / 68

11Cristian Camilo Ruiz Sanabria et al. “Reproducible Software Appliances for Experimentation”. In:
TRIDENTCOM’2014.

99 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Courtesy of L. Nussbaum

Reproducible Research

Lighweight Constrained Env.: Docker
http://www.docker.com

Open-source engine
Automates the deployment of any application

→֒ lightweight, portable, self-sufficient container
→֒ will run virtually anywhere

Tries to achieve deterministic builds by isolating your service

→֒ build done from a snapshotted OS and running imperative steps on
top of it

Dependency hell:

→֒ Docker works with images that consume minimal disk space
→֒ all images are versioned, archivable, and shareable DockerHub

Dockerfiles: resolving imprecise documentation

100 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://www.docker.com/
http://www.docker.com
https://hub.docker.com/

Reproducible Research

VM vs. Containers

Virtual machines

→֒ app + binaries + libraries
→֒ incl. an entire guest OS

Container

→֒ app + binaries + libraries
→֒ kernel shared
→֒ run on any computer

101 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Reproducible Research

Pulling and Running Images

$> docker pull <name>:<tag>

Pull a public image such as ubuntu or centos
→֒ if a tag is not specified, use “latest”.

102 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

http://rr-tutorials.readthedocs.io/en/latest/hands-on/docker/

Reproducible Research

Pulling and Running Images

$> docker pull <name>:<tag>

Pull a public image such as ubuntu or centos
→֒ if a tag is not specified, use “latest”.

$> docker run -it <name>

102 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

http://rr-tutorials.readthedocs.io/en/latest/hands-on/docker/

Reproducible Research

Pulling and Running Images

$> docker pull <name>:<tag>

Pull a public image such as ubuntu or centos
→֒ if a tag is not specified, use “latest”.

$> docker run -it <name>

$> docker commit <ID> <name>

102 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

http://rr-tutorials.readthedocs.io/en/latest/hands-on/docker/

Reproducible Research

Pulling and Running Images

$> docker pull <name>:<tag>

Pull a public image such as ubuntu or centos
→֒ if a tag is not specified, use “latest”.

$> docker run -it <name>

$> docker commit <ID> <name>

Your Turn!

http://rr-tutorials.readthedocs.io/en/latest/hands-on/docker/

102 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

http://rr-tutorials.readthedocs.io/en/latest/hands-on/docker/

Conclusion

Summary

1 Introduction and Motivating Examples

2 Reproducible Research
Easy-to {read|take|share} Docs
Sharing Code and Data
Mastering your [reproducible] environment

3 Conclusion

103 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Conclusion

The Research Pipeline

Analysis

E
xp

er
im

en
ts

Experiment Code

(workload injector, VM recipes, ...)

Processing

Code

Analysis

Code

Presentation

Code

Analytic

Data

Computational

Results

Measured

Data

Numerical

Summaries

Figures

Tables

Text

Reader

Author

Analysis/experiment

feedback loop
(Design of Experiments)

Protocol

Scientific

Question

Published

Article

Nature/System/...

104 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Conclusion

RR: Trying to Bridge the Gap

Accurate, organized and easy-to{read|take|share} Docs

→֒ Markdown, mkdocs, org-mode, Read the Docs. . .

105 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://guides.github.com/features/mastering-markdown/
http://www.mkdocs.org/
http://doc.norang.ca/org-mode.html
https://readthedocs.org/
https://git-scm.com/
https://github.com/
https://bitbucket.org/
https://about.gitlab.com/
https://www.vagrantup.com
https://www.docker.com/

Conclusion

RR: Trying to Bridge the Gap

Accurate, organized and easy-to{read|take|share} Docs

→֒ Markdown, mkdocs, org-mode, Read the Docs. . .

Sharing Code and Data

→֒ git, Github, Bitbucket, Gitlab. . .

105 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://guides.github.com/features/mastering-markdown/
http://www.mkdocs.org/
http://doc.norang.ca/org-mode.html
https://readthedocs.org/
https://git-scm.com/
https://github.com/
https://bitbucket.org/
https://about.gitlab.com/
https://www.vagrantup.com
https://www.docker.com/

Conclusion

RR: Trying to Bridge the Gap

Accurate, organized and easy-to{read|take|share} Docs

→֒ Markdown, mkdocs, org-mode, Read the Docs. . .

Sharing Code and Data

→֒ git, Github, Bitbucket, Gitlab. . .

Mastering your environment clean and automated by:

→֒ Using common building tools make, cmake etc.
→֒ Using a constrained environment

X Sandboxed Ruby/Python,Vagrant, Docker

→֒ Automate its building through cross-platform recipes
→֒ Automatically test your recipes for Environment configuration

105 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

https://guides.github.com/features/mastering-markdown/
http://www.mkdocs.org/
http://doc.norang.ca/org-mode.html
https://readthedocs.org/
https://git-scm.com/
https://github.com/
https://bitbucket.org/
https://about.gitlab.com/
https://www.vagrantup.com
https://www.docker.com/

Conclusion

Sharing Code and Data

Is this enough?

11 Use a work ow that documents both data and process

22 Use the machine readable CSV format

33 Provide raw data and meta data, not just statistical outputs

44 Never do data manipulation and statistical tests by hand

55 Use R, Python or another free software to read and process raw
data

X ideally to produce complete reports with code, results and prose

106 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Conclusion

Reproducibility axes

Always keep track of:
→֒ your methodology
→֒ your code
→֒ your (input) data

Can you later come back and:
→֒ reproduce your experiment
→֒ including its environment
→֒ . . . and obtain the same results?

107 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Conclusion

Reproducibility axes

Always keep track of:
→֒ your methodology
→֒ your code
→֒ your (input) data

Can you later come back and:
→֒ reproduce your experiment
→֒ including its environment
→֒ . . . and obtain the same results?

If not, then now is the best time to start
→֒ documenting your processes
→֒ describing your environment (software and hardware!)
→֒ versioning and tagging your code and data
→֒ (. . . and keep backups of it all)

107 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Conclusion

Reproducibility levels

Is your research12:

reviewable
→֒ desc. of your methods can be independently assessed?

replicable
→֒ are the tools available to duplicate the results?

confirmable
→֒ can the main conclusions be attained independently of your tools?

auditable
→֒ do you have records such that your research can be later defended?
→֒ . . . or differences between independent confirmations resolved?

open or reproducible, such that
→֒ the procedures can be fully audited and
→֒ the results can be replicated or independently reproduced and
→֒ the results can be extended or the method applied to new problems

12ICERM Report 2013: "Reproducibility in Computational and Experimental Mathematics"

108 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Research

Reviewable

Replicable

Confirmable

Auditable

Reproducible

Conclusion

Open challenges

Sometimes you need to:

Continue your computation elsewhere
→֒ another HPC node/cluster, supercomputer, cloud instance

Continue your computation in a different environment
→֒ another software stack (just OS, some libraries / compiler flags)

Use a different version of a commercial or community software

109 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Conclusion

Open challenges

Sometimes you need to:

Continue your computation elsewhere
→֒ another HPC node/cluster, supercomputer, cloud instance

Continue your computation in a different environment
→֒ another software stack (just OS, some libraries / compiler flags)

Use a different version of a commercial or community software

Are your results consistent?

109 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Conclusion

Open challenges

Sometimes you need to:

Continue your computation elsewhere
→֒ another HPC node/cluster, supercomputer, cloud instance

Continue your computation in a different environment
→֒ another software stack (just OS, some libraries / compiler flags)

Use a different version of a commercial or community software

Are your results consistent?

Be wary of:

Comparing algorithms running on diverse hw. infrastructures
Restarting calculation with the same code but on diff. sw. env.
. . . different (usually newer. . .) version of the code

109 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Conclusion

Open challenges

Sometimes you need to:

Continue your computation elsewhere
→֒ another HPC node/cluster, supercomputer, cloud instance

Continue your computation in a different environment
→֒ another software stack (just OS, some libraries / compiler flags)

Use a different version of a commercial or community software

Are your results consistent?

Be wary of:

Comparing algorithms running on diverse hw. infrastructures
Restarting calculation with the same code but on diff. sw. env.
. . . different (usually newer. . .) version of the code

Keep track of your environment changes!

109 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

Thank you for your attention...

Questions?

Sebastien Varrette
mail: Sebastien.Varrette@uni.lu
Office E-007
Campus Kirchberg
6, rue Coudenhove-Kalergi
L-1359 Luxembourg

1 Introduction and Motivating Examples

2 Reproducible Research
Easy-to {read|take|share} Docs

Sharing Code and Data
Mastering your [reproducible] environment

3 Conclusion

110 / 110
Sebastien Varrette (University of Luxembourg) Reproducible Research at the Cloud Era

N

mailto:Sebastien.Varrette@uni.lu

	Introduction and Motivating Examples
	Reproducible Research
	Easy-to {read|take|share} Docs
	Sharing Code and Data
	Mastering your [reproducible] environment

	Conclusion

