
IT/Dev[op]s Army Knives
Tools for the researcher

a journey from SSH to Git

Sebastien Varrette

Parallel Computing and Optimization Group (PCOG),

University of Luxembourg (UL), Luxembourg

1 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://pcog.uni.lu
http://www.uni.lu

Summary

1 Introduction
Agenda
Overview of managed IT Infrastructure

2 IT/Dev[op]s Army Knives Tools
SSH Secure Shell
PGP / GPG: Gnu Privacy Guard
Vagrant
Puppet
Ruby / Python / Markdown-based Documentations
Password Management

3 Research Computing Platform @ UL

4 Git[Lab] @ UL and VCS

Git[Lab] Around You
About Version Control System (VCS)

5 Git Basics
Installing Git
Git theory
Basic Commands
Branching and Merging

6 Collaborating / Working together

7 Advanced Git Topics
Git Submodules
Rebasing
Using Git over Subversion Repository
More Cool stuff

2 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Introduction

Summary

1 Introduction
Agenda
Overview of managed IT Infrastructure

2 IT/Dev[op]s Army Knives Tools
SSH Secure Shell
PGP / GPG: Gnu Privacy Guard
Vagrant
Puppet
Ruby / Python / Markdown-based Documentations
Password Management

3 Research Computing Platform @ UL

4 Git[Lab] @ UL and VCS

Git[Lab] Around You
About Version Control System (VCS)

5 Git Basics
Installing Git
Git theory
Basic Commands
Branching and Merging

6 Collaborating / Working together

7 Advanced Git Topics
Git Submodules
Rebasing
Using Git over Subversion Repository
More Cool stuff

3 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Introduction

Summary

1 Introduction
Agenda
Overview of managed IT Infrastructure

2 IT/Dev[op]s Army Knives Tools
SSH Secure Shell
PGP / GPG: Gnu Privacy Guard
Vagrant
Puppet
Ruby / Python / Markdown-based Documentations
Password Management

3 Research Computing Platform @ UL

4 Git[Lab] @ UL and VCS

Git[Lab] Around You
About Version Control System (VCS)

5 Git Basics
Installing Git
Git theory
Basic Commands
Branching and Merging

6 Collaborating / Working together

7 Advanced Git Topics
Git Submodules
Rebasing
Using Git over Subversion Repository
More Cool stuff

4 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Introduction

Seminar Objective

Review some of the most sensible tools every researcher

→֒ . . . in computer science but not only

Focus on key IT [DevOps] Tools: SSH, PGP, Vagrant. . .
Review also some best-practice for your daily work

→֒ Sand-boxing in Python and Ruby for your prototyping
→֒ Password Management

Overview of the Research Computing platforms @ UL
Overview of Version Control System (VCS) and Git in particular

5 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Introduction

Agenda Part I (9h45-12h00)

Location: room B21, campus Kirchberg

SSH Secure Shell
→֒ Overview and Basic usage
→֒ Advanced usage (proxy SOCKS, multi-jump w. ProxyCommand)

PGP / GPG: Gnu Privacy Guard
Vagrant: Development environment made easy
Puppet: Configuration Management
Sandboxed and reproducible running environment across developers

→֒ Ruby & Python

Markdown-based documentation, articles and slides
→֒ Overview of the Markdown syntax
→֒ Git-based Markdown Wiki: gollum, mkdocs
→֒ using Markdown with LaTeX and Beamer

Password Management
Overview of the Research Computing platforms @ UL

6 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Introduction

Agenda Part II (13h15 - 15h00)

Location: room B21, campus Kirchberg

Introduction to Version Control System (VCS)
Git Basics

→֒ Installing Git
→֒ Git theory
→֒ Basic Commands Branching and Merging

Collaborating / Working together
Advanced Git Topics

→֒ Git Submodules
→֒ Rebasing
→֒ Using Git over Subversion Repository

More Cool stuff

7 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Introduction

Technical Recommendation

All attendee are strongly encouraged to bring their computer laptop

→֒ the talk integrate a set of hands-on / exercises

Start to install some components:

→֒ Mac OS: Homebrew http://brew.io

→֒ Virtualbox: https://www.virtualbox.org/

→֒ Vagrant: https://www.vagrantup.com/downloads.html

8 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://brew.io
https://www.virtualbox.org/
https://www.vagrantup.com/downloads.html

Introduction

Summary

1 Introduction
Agenda
Overview of managed IT Infrastructure

2 IT/Dev[op]s Army Knives Tools
SSH Secure Shell
PGP / GPG: Gnu Privacy Guard
Vagrant
Puppet
Ruby / Python / Markdown-based Documentations
Password Management

3 Research Computing Platform @ UL

4 Git[Lab] @ UL and VCS

Git[Lab] Around You
About Version Control System (VCS)

5 Git Basics
Installing Git
Git theory
Basic Commands
Branching and Merging

6 Collaborating / Working together

7 Advanced Git Topics
Git Submodules
Rebasing
Using Git over Subversion Repository
More Cool stuff

9 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Introduction

Typical [UL] IT Infrastructure

*.<domain>-intern.com

bastion[1-N].<domain>.com

10 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Introduction

Typical [UL] IT Infrastructure

*.<domain>-intern.com

backup1

gforge, gitlab

ipa, ldap ad mssql[-demo]

oracle[-demo]

jenkins

apptest

etc…

bastion[1-N].<domain>.com

10 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Introduction

Typical [UL] IT Infrastructure

*.<domain>-intern.com

backup1

gforge, gitlab

ipa, ldap ad mssql[-demo]

oracle[-demo]

jenkins

apptest

etc…

bastion[1-N].<domain>.com

10 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Introduction

Typical [UL] IT Infrastructure

*.<domain>-intern.com

backup1

gforge, gitlab

ipa, ldap ad mssql[-demo]

oracle[-demo]

jenkins

apptest

etc…

bastion[1-N].<domain>.com
TOTAL resources managed

222 servers

 - 66 physical

 - 156 VMs (Xen, KVM guests)

492 computing nodes (part of UL HPC facility)

5.35 PB raw shared storage (NFS / GPFS /Lustre)

4 system administrators / 2 sites

Operating System: Debian, CentOS

servers: 718

10 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Introduction

UL HPC Software Stack

Operating System: Linux Debian (CentOS on storage servers)
Remote connection to the platform: SSH
User SSO: OpenLDAP-based
Resource management: job/batch scheduler: OAR
(Automatic) Computing Node Deployment:

→֒ FAI (Fully Automatic Installation)
→֒ Puppet
→֒ Kadeploy

Platform Monitoring: OAR Monika, OAR Drawgantt, Ganglia,
Nagios, Puppet Dashboard etc.
Commercial Softwares:

→֒ Intel Cluster Studio XE, TotalView, Allinea DDT, Stata etc.

11 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://oar.imag.fr/
http://fai-project.org/
https://puppetlabs.com/
http://kadeploy3.gforge.inria.fr/

IT/Dev[op]s Army Knives Tools

Summary

1 Introduction
Agenda
Overview of managed IT Infrastructure

2 IT/Dev[op]s Army Knives Tools
SSH Secure Shell
PGP / GPG: Gnu Privacy Guard
Vagrant
Puppet
Ruby / Python / Markdown-based Documentations
Password Management

3 Research Computing Platform @ UL

4 Git[Lab] @ UL and VCS

Git[Lab] Around You
About Version Control System (VCS)

5 Git Basics
Installing Git
Git theory
Basic Commands
Branching and Merging

6 Collaborating / Working together

7 Advanced Git Topics
Git Submodules
Rebasing
Using Git over Subversion Repository
More Cool stuff

12 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

Summary

1 Introduction
Agenda
Overview of managed IT Infrastructure

2 IT/Dev[op]s Army Knives Tools
SSH Secure Shell
PGP / GPG: Gnu Privacy Guard
Vagrant
Puppet
Ruby / Python / Markdown-based Documentations
Password Management

3 Research Computing Platform @ UL

4 Git[Lab] @ UL and VCS

Git[Lab] Around You
About Version Control System (VCS)

5 Git Basics
Installing Git
Git theory
Basic Commands
Branching and Merging

6 Collaborating / Working together

7 Advanced Git Topics
Git Submodules
Rebasing
Using Git over Subversion Repository
More Cool stuff

13 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

SSH Secure Shell: Overview

Ensure secure connection to remote (UL) server
(optional) policy: restricted to public key authentication

→֒ over non-standard port (8022)

Rule: 1 machine = 1 key pair (ideally with passphrase protection)

ServerClient

authorized_keys

~/.ssh/

remote homedir

id_dsa.pub

id_dsa

known_hosts

~/.ssh/

local homedir

/etc/ssh/

SSH server config

ssh_host_dsa_key.pub

ssh_configsshd_config

ssh_host_dsa_key

ssh_host_rsa_key.pub

ssh_host_rsa_key

OR

14 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

SSH Setup on Linux / Mac OS

OpenSSH natively supported; configuration directory : ~/.ssh/

→֒ package openssh-client (Debian-like) or ssh (Redhat-like)

$> ssh-keygen -t dsa # SSH DSA Key-Pair generation

Public key: ~/.ssh/id_{rsa,dsa}.pub

→֒ This one is the only one SAFE to distribute.

Private (identity) key ~/.ssh/id_{rsa,dsa}

Configuration: ~/.ssh/config. Format:

Host <shortname>

Port <port>

User <login>

Hostname <hostname>

15 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

SSH Setup on Windows

Putty Suite, includes: http://www.chiark.greenend.org.uk/~sgtatham/putty/

→֒ PuTTY, the free SSH client
→֒ Pageant, an SSH authentication agent for PuTTY tools
→֒ PLink, th PuTTy CLI
→֒ PuTTYgen, an RSA and DSA key generation utility

16 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://the.earth.li/~sgtatham/putty/0.65/htmldoc/Chapter1.html#intro
http://the.earth.li/~sgtatham/putty/0.65/htmldoc/Chapter9.html#pageant
http://the.earth.li/~sgtatham/putty/0.65/htmldoc/Chapter7.html#plink
http://the.earth.li/~sgtatham/putty/0.65/htmldoc/Chapter8.html#pubkey-puttygen
https://github.com/cuviper/ssh-pageant

IT/Dev[op]s Army Knives Tools

SSH Setup on Windows

Putty Suite, includes: http://www.chiark.greenend.org.uk/~sgtatham/putty/

→֒ PuTTY, the free SSH client
→֒ Pageant, an SSH authentication agent for PuTTY tools
→֒ PLink, th PuTTy CLI
→֒ PuTTYgen, an RSA and DSA key generation utility

PuTTY 6= OpenSSH

16 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://the.earth.li/~sgtatham/putty/0.65/htmldoc/Chapter1.html#intro
http://the.earth.li/~sgtatham/putty/0.65/htmldoc/Chapter9.html#pageant
http://the.earth.li/~sgtatham/putty/0.65/htmldoc/Chapter7.html#plink
http://the.earth.li/~sgtatham/putty/0.65/htmldoc/Chapter8.html#pubkey-puttygen
https://github.com/cuviper/ssh-pageant

IT/Dev[op]s Army Knives Tools

SSH Setup on Windows

Putty Suite, includes: http://www.chiark.greenend.org.uk/~sgtatham/putty/

→֒ PuTTY, the free SSH client
→֒ Pageant, an SSH authentication agent for PuTTY tools
→֒ PLink, th PuTTy CLI
→֒ PuTTYgen, an RSA and DSA key generation utility

PuTTY 6= OpenSSH

Putty keys are NOT supported by OpenSSH (yet can be exported)
Binding Pageant with OpenSSH agent is NOT natively supported

→֒ Third-party tools like ssh-pageant are made for that

with PLink, hostnames eventually refer to PuTTY Sessions
→֒ NEVER to SSH entries in ~/.ssh/config

→֒ This usage might be hidden. . . Ex: $GIT_SSH etc.

16 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://the.earth.li/~sgtatham/putty/0.65/htmldoc/Chapter1.html#intro
http://the.earth.li/~sgtatham/putty/0.65/htmldoc/Chapter9.html#pageant
http://the.earth.li/~sgtatham/putty/0.65/htmldoc/Chapter7.html#plink
http://the.earth.li/~sgtatham/putty/0.65/htmldoc/Chapter8.html#pubkey-puttygen
https://github.com/cuviper/ssh-pageant

IT/Dev[op]s Army Knives Tools

SSH Basic Usage

*.<domain>-intern.com

gitlab

bastion1.<domain>.com

17 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

SSH Basic Usage

SSH

*.<domain>-intern.com

gitlab

bastion1.<domain>.com

17 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

SSH Basic Usage

SSH

*.<domain>-intern.com

OpenSSH ~/.ssh/config (Mac / Linux)

Host uni_*
 User <LOGIN>
 Port 8022

Host uni_bastion1
 Hostname bastion1.<domain>.com

gitlab

bastion1.<domain>.com

17 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

SSH Basic Usage

SSH

*.<domain>-intern.com

OpenSSH ~/.ssh/config (Mac / Linux)

Host uni_*
 User <LOGIN>
 Port 8022

Host uni_bastion1
 Hostname bastion1.<domain>.com

gitlab

PuTTY / PLink / Pageant (Windows)

Session “uni_bastion1”
- Hostname: bastion1.<domain>.com
- Port: 8022
- Connection/Data: username: <LOGIN>

bastion1.<domain>.com

17 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

SSH Advanced Usage: SOCKS Proxy

*.<domain>-intern.com

gitlab

bastion1.<domain>.com

18 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

SSH Advanced Usage: SOCKS Proxy

https://gitlab.<domain>-intern.com

SSH

*.<domain>-intern.com

OpenSSH ~/.ssh/config (Mac / Linux)

Host uni_*
 User <LOGIN>
 Port 8022

Host uni_bastion1
 Hostname bastion1.<domain>.com

gitlab

PuTTY / PLink / Pageant (Windows)

Session “uni_bastion1”
- Hostname: bastion1.<domain>.com
- Port: 8022
- Connection/Data: username: <LOGIN>

bastion1.<domain>.com

18 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

SSH Advanced Usage: SOCKS Proxy

https://gitlab.<domain>-intern.com

DOMAIN <domain>-intern.com
NOT FOUND

SSH

*.<domain>-intern.com

OpenSSH ~/.ssh/config (Mac / Linux)

Host uni_*
 User <LOGIN>
 Port 8022

Host uni_bastion1
 Hostname bastion1.<domain>.com

gitlab

PuTTY / PLink / Pageant (Windows)

Session “uni_bastion1”
- Hostname: bastion1.<domain>.com
- Port: 8022
- Connection/Data: username: <LOGIN>

bastion1.<domain>.com

18 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

SSH Advanced Usage: SOCKS Proxy

SSH

*.<domain>-intern.com

OpenSSH ~/.ssh/config (Mac / Linux)

Host uni_*
 User <LOGIN>
 Port 8022

Host uni_bastion1
 Hostname bastion1.<domain>.com

gitlab

PuTTY / PLink / Pageant (Windows)

Session “uni_bastion1”
- Hostname: bastion1.<domain>.com
- Port: 8022
- Connection/Data: username: <LOGIN>
- Connection/SSH/Tunnels: Port 1080, Dynamic

-D 1080 (SOCKS 5 Proxy)
SOCKS LISTEN: localhost:1080

bastion1.<domain>.com

18 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

SSH Advanced Usage: SOCKS Proxy

https://gitlab.<domain>-intern.com

SSH

*.<domain>-intern.com

OpenSSH ~/.ssh/config (Mac / Linux)

Host uni_*
 User <LOGIN>
 Port 8022

Host uni_bastion1
 Hostname bastion1.<domain>.com

gitlab

PuTTY / PLink / Pageant (Windows)

Session “uni_bastion1”
- Hostname: bastion1.<domain>.com
- Port: 8022
- Connection/Data: username: <LOGIN>
- Connection/SSH/Tunnels: Port 1080, Dynamic

-D 1080 (SOCKS 5 Proxy)
SOCKS LISTEN: localhost:1080

bastion1.<domain>.com

18 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

SSH Advanced Usage: SOCKS Proxy

https://gitlab.<domain>-intern.com

SSH

*.<domain>-intern.com

OpenSSH ~/.ssh/config (Mac / Linux)

Host uni_*
 User <LOGIN>
 Port 8022

Host uni_bastion1
 Hostname bastion1.<domain>.com

gitlab

PuTTY / PLink / Pageant (Windows)

Session “uni_bastion1”
- Hostname: bastion1.<domain>.com
- Port: 8022
- Connection/Data: username: <LOGIN>
- Connection/SSH/Tunnels: Port 1080, Dynamic

-D 1080 (SOCKS 5 Proxy)
SOCKS LISTEN: localhost:1080

bastion1.<domain>.com

18 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

SSH Advanced Usage: SOCKS Proxy

https://gitlab.<domain>-intern.com

SSH

*.<domain>-intern.com

OpenSSH ~/.ssh/config (Mac / Linux)

Host uni_*
 User <LOGIN>
 Port 8022

Host uni_bastion1
 Hostname bastion1.<domain>.com

gitlab

PuTTY / PLink / Pageant (Windows)

Session “uni_bastion1”
- Hostname: bastion1.<domain>.com
- Port: 8022
- Connection/Data: username: <LOGIN>
- Connection/SSH/Tunnels: Port 1080, Dynamic

-D 1080 (SOCKS 5 Proxy)
SOCKS LISTEN: localhost:1080

bastion1.<domain>.com

18 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

SSH Advanced Usage: SOCKS Proxy

https://gitlab.<domain>-intern.com

SSH

*.<domain>-intern.com

OpenSSH ~/.ssh/config (Mac / Linux)

Host uni_*
 User <LOGIN>
 Port 8022

Host uni_bastion1
 Hostname bastion1.<domain>.com

gitlab

PuTTY / PLink / Pageant (Windows)

Session “uni_bastion1”
- Hostname: bastion1.<domain>.com
- Port: 8022
- Connection/Data: username: <LOGIN>
- Connection/SSH/Tunnels: Port 1080, Dynamic

-D 1080 (SOCKS 5 Proxy)
SOCKS LISTEN: localhost:1080

bastion1.<domain>.com

18 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

SSH Advanced Usage: ProxyCommand

*.<domain>-intern.com

gitlab

bastion1.<domain>.com

19 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

SSH Advanced Usage: ProxyCommand

SSH

*.<domain>-intern.com

OpenSSH ~/.ssh/config (Mac / Linux)

Host uni_*
 User <LOGIN>
 Port 8022

Host uni_bastion1
 Hostname bastion1.<domain>.com

gitlab

PuTTY / PLink / Pageant (Windows)

Session “uni_bastion1”
- Hostname: bastion1.<domain>.com
- Port: 8022
- Connection/Data: username: <LOGIN>

bastion1.<domain>.com

19 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

SSH Advanced Usage: ProxyCommand

SSH

*.<domain>-intern.com

+ ProxyCommand + netcat

OpenSSH ~/.ssh/config (Mac / Linux)

Host uni_*
 User <LOGIN>
 Port 8022

Host uni_bastion1
 Hostname bastion1.<domain>.com

Host uni_gitlab
 Hostname gitlab
 ProxyCommand ssh -q uni_bastion1 "nc %h %p"

gitlab

PuTTY / PLink / Pageant (Windows)

Session “uni_bastion1”
- Hostname: bastion1.<domain>.com
- Port: 8022
- Connection/Data: username: <LOGIN>

Session “uni_gitlab”
- Hostname: gitlab.<domain>-intern.com
- Port: 8022
- Connection/Data: username: <LOGIN>
- Connection/Proxy:
 - type: local
 - Proxy hostname: bastion1.<domain>.com
 - Port: 8022
 - Username: <LOGIN>
 - Local proxy command:
 plink -load “uni_bastion1” -nc %host:%port

bastion1.<domain>.com

19 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

SSH Advanced Usage: ProxyCommand

SSH

*.<domain>-intern.com

+ ProxyCommand + netcat

OpenSSH ~/.ssh/config (Mac / Linux)

Host uni_*
 User <LOGIN>
 Port 8022

Host uni_bastion1
 Hostname bastion1.<domain>.com

Host uni_gitlab
 Hostname gitlab
 ProxyCommand ssh -q uni_bastion1 "nc %h %p"

gitlab

PuTTY / PLink / Pageant (Windows)

Session “uni_bastion1”
- Hostname: bastion1.<domain>.com
- Port: 8022
- Connection/Data: username: <LOGIN>

Session “uni_gitlab”
- Hostname: gitlab.<domain>-intern.com
- Port: 8022
- Connection/Data: username: <LOGIN>
- Connection/Proxy:
 - type: local
 - Proxy hostname: bastion1.<domain>.com
 - Port: 8022
 - Username: <LOGIN>
 - Local proxy command:
 plink -load “uni_bastion1” -nc %host:%port

bastion1.<domain>.com

19 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

SSH Advanced Usage: ProxyCommand

SSH

*.<domain>-intern.com

+ ProxyCommand + netcat

OpenSSH ~/.ssh/config (Mac / Linux)

Host uni_*
 User <LOGIN>
 Port 8022

Host uni_bastion1
 Hostname bastion1.<domain>.com

Host uni_gitlab
 Hostname gitlab
 ProxyCommand ssh -q uni_bastion1 "nc %h %p"

gitlab

PuTTY / PLink / Pageant (Windows)

Session “uni_bastion1”
- Hostname: bastion1.<domain>.com
- Port: 8022
- Connection/Data: username: <LOGIN>

Session “uni_gitlab”
- Hostname: gitlab.<domain>-intern.com
- Port: 8022
- Connection/Data: username: <LOGIN>
- Connection/Proxy:
 - type: local
 - Proxy hostname: bastion1.<domain>.com
 - Port: 8022
 - Username: <LOGIN>
 - Local proxy command:
 plink -load “uni_bastion1” -nc %host:%port

bastion1.<domain>.com

19 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

DSH – Distributed / Dancer’s Shell

http://www.netfort.gr.jp/~dancer/software/dsh.html.en

SSH wrapper that allows to run commands over multiple machines.

→֒ Linux / Mac OS only

$> { apt-get | yum | brew } install dsh # Installation

Configuration: in ~/.dsh/

→֒ ~/.dsh/dsh.conf: main configuration file
→֒ ~/.dsh/machines.list: list of all nodes
→֒ ~/.dsh/group/: holds group definition

<name> Group definition: ~/.dsh/group/<name>:

→֒ simply list SSH shortnames (one name by line)

Bash completion file for DSH: https://gist.github.com/920433.git

20 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://www.netfort.gr.jp/~dancer/software/dsh.html.en
http://www.netfort.gr.jp/~dancer/software/dsh.html.en
https://gist.github.com/920433.git

IT/Dev[op]s Army Knives Tools

DSH configuration ~/.dsh/dsh.conf

##

~/.dsh/dsh.conf

Configuration file for dsh (Distributed / Dancer’s Shell).

‘man dsh.conf‘ for details

##

verbose = 0

remoteshell = ssh

showmachinenames = 1

Specify 1 to make the shell wait for each individual invocation.

See -c and -w option for dsh(1)

waitshell = 0 # whether to wait for execution

Number of parallel connection to create at the same time.

#forklimit=8

remoteshellopt = -q

21 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://www.netfort.gr.jp/~dancer/software/dsh.html.en

IT/Dev[op]s Army Knives Tools

DSH Basic Usage

$> dsh [-c | -w] { -a | -g <group> | -m <hostname> } <command>

Option Description

-c run the commands in parallel (default)
-w run the commands in sequential
-a run the command on all nodes listed in machines.list

-g <group> restrict the commands to the hosts group <group>

-m <hostname> run the command only on hostname

FAQ: sudo: sorry, you must have a tty to run sudo

→֒ requires to change the default configuration of sudo

→֒ Ex to not requiring a tty to launch a sudo command

Defaults:<login> !requiretty

22 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://www.netfort.gr.jp/~dancer/software/dsh.html.en

IT/Dev[op]s Army Knives Tools

Summary

1 Introduction
Agenda
Overview of managed IT Infrastructure

2 IT/Dev[op]s Army Knives Tools
SSH Secure Shell
PGP / GPG: Gnu Privacy Guard
Vagrant
Puppet
Ruby / Python / Markdown-based Documentations
Password Management

3 Research Computing Platform @ UL

4 Git[Lab] @ UL and VCS

Git[Lab] Around You
About Version Control System (VCS)

5 Git Basics
Installing Git
Git theory
Basic Commands
Branching and Merging

6 Collaborating / Working together

7 Advanced Git Topics
Git Submodules
Rebasing
Using Git over Subversion Repository
More Cool stuff

23 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

GPG: Gnu Privacy Guard

GnuPG: implementation of the OpenPGP standard aka RFC4880

→֒ Hybrid encryption framework based on Web of Trust
→֒ Mail | Document | Git commit... encryption / signature

24 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://www.gnupg.org/
http://www.ietf.org/rfc/rfc4880.txt
https://en.wikipedia.org/wiki/Web_of_trust

IT/Dev[op]s Army Knives Tools

GPG Setup (Mac OS)

GPGTools Suite

→֒ GPG for Apple Mail and GPG Keychain
→֒ GPG Services and MacGPG

25 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://gpgtools.org/

IT/Dev[op]s Army Knives Tools

GPG Setup (Mac OS)

GPGTools Suite

→֒ GPG for Apple Mail and GPG Keychain
→֒ GPG Services and MacGPG

25 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://gpgtools.org/

IT/Dev[op]s Army Knives Tools

GPG Setup (Mac OS)

GPGTools Suite

→֒ GPG for Apple Mail and GPG Keychain
→֒ GPG Services and MacGPG

25 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://gpgtools.org/

IT/Dev[op]s Army Knives Tools

GPG Setup (Mac OS)

GPGTools Suite

→֒ GPG for Apple Mail and GPG Keychain
→֒ GPG Services and MacGPG

25 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://gpgtools.org/

IT/Dev[op]s Army Knives Tools

GPG Setup (Mac OS)

GPGTools Suite

→֒ GPG for Apple Mail and GPG Keychain
→֒ GPG Services and MacGPG

25 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://gpgtools.org/

IT/Dev[op]s Army Knives Tools

GPG Setup (Windows)

GPG4Win – Tutorial
→֒ GnuPG, GnuPG for Outlook (GpgOL)
→֒ Kleopatra + GNU Privacy Assistant (GPA) (to be checked)
→֒ GPG Explorer eXtension (GpgEX)

[All OS] Thunderbird + Enigmail

26 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://www.gpg4win.org/
https://www.deepdotweb.com/2015/02/21/pgp-tutorial-for-windows-kleopatra-gpg4win/
https://enigmail.wiki/

IT/Dev[op]s Army Knives Tools

GPG Setup (Windows)

GPG4Win – Tutorial
→֒ GnuPG, GnuPG for Outlook (GpgOL)
→֒ Kleopatra + GNU Privacy Assistant (GPA) (to be checked)
→֒ GPG Explorer eXtension (GpgEX)

[All OS] Thunderbird + Enigmail

26 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://www.gpg4win.org/
https://www.deepdotweb.com/2015/02/21/pgp-tutorial-for-windows-kleopatra-gpg4win/
https://enigmail.wiki/

IT/Dev[op]s Army Knives Tools

GPG Setup (Windows)

GPG4Win – Tutorial
→֒ GnuPG, GnuPG for Outlook (GpgOL)
→֒ Kleopatra + GNU Privacy Assistant (GPA) (to be checked)
→֒ GPG Explorer eXtension (GpgEX)

[All OS] Thunderbird + Enigmail

26 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://www.gpg4win.org/
https://www.deepdotweb.com/2015/02/21/pgp-tutorial-for-windows-kleopatra-gpg4win/
https://enigmail.wiki/

IT/Dev[op]s Army Knives Tools

GPG Setup (Windows)

GPG4Win – Tutorial
→֒ GnuPG, GnuPG for Outlook (GpgOL)
→֒ Kleopatra + GNU Privacy Assistant (GPA) (to be checked)
→֒ GPG Explorer eXtension (GpgEX)

[All OS] Thunderbird + Enigmail

26 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://www.gpg4win.org/
https://www.deepdotweb.com/2015/02/21/pgp-tutorial-for-windows-kleopatra-gpg4win/
https://enigmail.wiki/

IT/Dev[op]s Army Knives Tools

GPG CLI Usage

$> gpg –-gen-key # Generate your PGP key

$> gpg –-list-keys [pattern] # List available PGP key(s)

$> gpg –-keyserver pgp.mit.edu –-search-keys <pattern> # Search & Import

$> gpg –-keyserver pgp.mit.edu –-recv-keys <ID> # Import

27 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

GPG CLI Usage

$> gpg –-gen-key # Generate your PGP key

$> gpg –-list-keys [pattern] # List available PGP key(s)

$> gpg –-keyserver pgp.mit.edu –-search-keys <pattern> # Search & Import

$> gpg –-keyserver pgp.mit.edu –-recv-keys <ID> # Import

Send encrypted mails to user@domain.org ⇔ you trust his key

→֒ i.e. sign (after careful check) this key (using GPG Keychain / GPA)

27 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

GPG CLI Usage

$> gpg –-gen-key # Generate your PGP key

$> gpg –-list-keys [pattern] # List available PGP key(s)

$> gpg –-keyserver pgp.mit.edu –-search-keys <pattern> # Search & Import

$> gpg –-keyserver pgp.mit.edu –-recv-keys <ID> # Import

Send encrypted mails to user@domain.org ⇔ you trust his key

→֒ i.e. sign (after careful check) this key (using GPG Keychain / GPA)

$> gpg [-K] –-fingerprint <mail> # Get (with -K) / Check fingerprint

$> gpg –-sign-key –-ask-cert-level <ID> # Sign Key <ID> AFTER check

$> gpg –-keyserver pgp.mit.edu –-send-keys <ID> # Send back signed key

27 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

GPG CLI Usage

$> gpg –-encrypt [-r <recipient>] <file> # => <file>.gpg

WARNING: encryption does not delete the input (clear-text) file

28 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

GPG CLI Usage

$> gpg –-encrypt [-r <recipient>] <file> # => <file>.gpg

WARNING: encryption does not delete the input (clear-text) file

$> gpg –-decrypt <file>.gpg # Decrypt PGP encrypted file

28 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

GPG CLI Usage

$> gpg –-encrypt [-r <recipient>] <file> # => <file>.gpg

WARNING: encryption does not delete the input (clear-text) file

$> gpg –-decrypt <file>.gpg # Decrypt PGP encrypted file

$> gpg –-armor –-detach-sign <file> # Do signature <file>.asc

28 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

GPG CLI Usage

$> gpg –-encrypt [-r <recipient>] <file> # => <file>.gpg

WARNING: encryption does not delete the input (clear-text) file

$> gpg –-decrypt <file>.gpg # Decrypt PGP encrypted file

$> gpg –-armor –-detach-sign <file> # Do signature <file>.asc

GPG Keychain / Keyring

→֒ Linux / Mac OS: ∼/.gnupg/

→֒ Windows: C:\\Documents and Settings\<LOGIN>\Application Data\gnupg\

28 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

Recall: Security = Noble Goal, yet. . .

29 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

Summary

1 Introduction
Agenda
Overview of managed IT Infrastructure

2 IT/Dev[op]s Army Knives Tools
SSH Secure Shell
PGP / GPG: Gnu Privacy Guard
Vagrant
Puppet
Ruby / Python / Markdown-based Documentations
Password Management

3 Research Computing Platform @ UL

4 Git[Lab] @ UL and VCS

Git[Lab] Around You
About Version Control System (VCS)

5 Git Basics
Installing Git
Git theory
Basic Commands
Branching and Merging

6 Collaborating / Working together

7 Advanced Git Topics
Git Submodules
Rebasing
Using Git over Subversion Repository
More Cool stuff

30 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

What is Vagrant ?

http://vagrantup.com/

31 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://vagrantup.com/
http://vagrantup.com/

IT/Dev[op]s Army Knives Tools

What is Vagrant ?

Create and configure lightweight, reproducible, and portable
development environments

Command line tool
Automates VM creation with

→֒ VirtualBox
→֒ VMWare etc.

Integrates well with configuration management tools

→֒ Shell
→֒ Puppet etc.

Runs on Linux, Windows, MacOS

32 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://vagrantup.com/

IT/Dev[op]s Army Knives Tools

Why use Vagrant?

Create new VMs quickly and easily: only one command!

$> vagrant up

Keep the number of VMs under control
→֒ All configuration in VagrantFile

Reproducability
→֒ Identical environment in development and production

Portability
→֒ avoid sharing 4 GB VM disks images
→֒ Vagrant Cloud to share your images

Collaboration made easy:
$> git clone ...

$> vagrant up

33 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://vagrantcloud.com/

IT/Dev[op]s Army Knives Tools

Installation Notes: Mac OS

Best done using Homebrew and Cask

$> brew install caskroom/cask/brew-cask

$> brew cask install virtualbox # install virtualbox

$> brew cask install vagrant

$> brew cask install vagrant-manager # see http://vagrantmanager.com/

34 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://brew.sh/
http://sourabhbajaj.com/mac-setup/Homebrew/Cask.html

IT/Dev[op]s Army Knives Tools

Installation Notes: Windows / Linux

Install Oracle Virtualbox
Go on the Download Page

→֒ select the appropriate OS, in 64 bits versions

Notes for windows users:

→֒ you will also need both PuTTY and PuTTYGen
→֒ Vagrant boxes are located in %userprofile%/.vagrant.d/boxes

→֒ To configure the appropriate Putty profile:

X run vagrant ssh-config to collect IP and port (after vagrant up)
X load %userprofile%/.vagrant.d/insecure_public_key

X Use Save Public Keyto convert the OpenSSH key to PPK format
X Create the PuttY profile accordingly (username: vagrant)

35 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://www.virtualbox.org/
http://www.vagrantup.com/downloads
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

IT/Dev[op]s Army Knives Tools

Minimal default setup

$> vagrant init [-m] <user>/<name> # setup vagrant cloud image

A Vagrantfile is configured

36 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

Minimal default setup

$> vagrant init [-m] <user>/<name> # setup vagrant cloud image

A Vagrantfile is configured

$> vagrant up # boot the box(es) set in the Vagrantfile

The base box is downloaded and stored locally
→֒ in ~/.vagrant.d/boxes/

A new VM is created and configured with the base box as template
The VM is booted and (eventually) provisioned

36 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

Minimal default setup

$> vagrant init [-m] <user>/<name> # setup vagrant cloud image

A Vagrantfile is configured

$> vagrant up # boot the box(es) set in the Vagrantfile

The base box is downloaded and stored locally
→֒ in ~/.vagrant.d/boxes/

A new VM is created and configured with the base box as template
The VM is booted and (eventually) provisioned

$> vagrant ssh # connect inside it

36 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

Find a vagrant box

Vagrant Cloud https://vagrantcloud.com/

VagrantBox.es http://www.vagrantbox.es/

37 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://vagrantcloud.com/
https://vagrantcloud.com/
https://vagrantcloud.com/
http://www.vagrantbox.es/

IT/Dev[op]s Army Knives Tools

Find a vagrant box

Vagrant Cloud https://vagrantcloud.com/

VagrantBox.es http://www.vagrantbox.es/

Your Turn!

$> vagrant init ubuntu/trusty64 # Ubuntu Server 14.04 LTS

$> vagrant up

$> vagrant ssh

Box name Description

ubuntu/trusty64 Ubuntu Server 14.04 LTS
centos/7 CentOS Linux 7 x86_64
debian/jessie64 Vanilla Debian 8 “Jessie”
jhcook/osx-elcapitan-10.11 OS X 10.11 El Capitan

Once within the box:

→֒ /vagrant: root directory
hosting Vagrantfile

37 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://vagrantcloud.com/
https://vagrantcloud.com/
https://vagrantcloud.com/
http://www.vagrantbox.es/

IT/Dev[op]s Army Knives Tools

Configuring Vagrant

Minimal Vagrantfile (Ruby syntax)

VAGRANTFILE_API_VERSION = ’2’

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|

config.vm.box = ’svarrette/centos-7-puppet’

config.ssh.insert_key = false

end

Configure Multiple box within the same Vagrantfile

→֒ See ULHPC/puppet-sysadmins/Vagrantfile

38 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://github.com/ULHPC/puppet-sysadmins/blob/devel/Vagrantfile

IT/Dev[op]s Army Knives Tools

Vagrant Box Status / Stop

$> vagrant status # State of the vagrant box(es)

39 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

Vagrant Box Status / Stop

$> vagrant status # State of the vagrant box(es)

$> vagrant { destroy | halt } # destroy / halt

Once you have finished your work within a running box

→֒ save the state for later with vagrant halt

→֒ reset changes / tests / errors with vagrant destroy

→֒ commit changes by generating a new version of the box

39 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

Vagrant Box Generation

You might rely on Falkor/vagrant-vms

→֒ use it at your own risks
→֒ based on packer and veewee

$> git clone https://github.com/Falkor/vagrant-vms.git

$> cd vagrant-vms

$> gem install bundler && bundle install

$> rake setup

40 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://github.com/Falkor/vagrant-vms
http://www.packer.io/
https://github.com/jedi4ever/veewee

IT/Dev[op]s Army Knives Tools

Vagrant Box Generation

You might rely on Falkor/vagrant-vms

→֒ use it at your own risks
→֒ based on packer and veewee

$> git clone https://github.com/Falkor/vagrant-vms.git

$> cd vagrant-vms

$> gem install bundler && bundle install

$> rake setup

initiate a template for a given Operating System:

$> rake packer:{Debian,CentOS,openSUSE,scientificlinux,ubuntu}:init

Build a Vagrant box

$> rake packer:{Debian,CentOS,openSUSE,scientificlinux,ubuntu}:build

If things goes fine:

$> vagrant box add packer/<os>-<version>-<arch>/<os>-<version>-<arch>.box

40 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://github.com/Falkor/vagrant-vms
http://www.packer.io/
https://github.com/jedi4ever/veewee

IT/Dev[op]s Army Knives Tools

Vagrant Box Customization

Obj: customize / specialize the configuration of a running box
This can be done in two ways:

11 use provisionning within the Vagrantfile (using puppet etc.)

22 re-package the box via vagrant package

(1) Vagrantfile with Puppet provisioning

Vagrant.configure(2) do |config|

config.vm.box = ’svarrette/centos-7-puppet’

config.vm.provision :puppet do |puppet|

puppet.hiera_config_path = ’hieradata/hiera.yaml’

puppet.working_directory = ’/vagrant’

puppet.manifests_path = "manifests"

puppet.module_path = "modules"

puppet.manifest_file = "init.pp"

puppet.options = [’-v’,’--report’,’--show_diff’,’--pluginsync’]

end

end

41 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

Box Re-packaging (1/2)

WARNING: ensure you DO NOT reset the (insecure) SSH key
→֒ before vagrant up, use the following Vagrantfile configuration:

config.ssh.insert_key = false

Zero out the free space to save space – run the following script:

$> dd if=/dev/zero of=/EMPTY bs=1M

$> rm -f /EMPTY

Ensure Virtualbox Guest additions match using the vbguest plugin

$> vagrant plugin install vagrant-vbguest

$> vagrant vbguest --status

GuestAdditions versions on your host (5.0.4) & guest (4.3.26) mismatch

Upgrade the GuestAdditions

$> vagrant vbguest --do install --auto-reboot

42 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://github.com/mitchellh/vagrant/tree/master/keys
https://github.com/dotless-de/vagrant-vbguest

IT/Dev[op]s Army Knives Tools

Box Re-packaging (2/2)

Locate the internal name of the running VM and repackage it

$> VBoxManage list runningvms

"vagrant-vms_default_1431034026308_70455" {...}

$> vagrant package \

--base vagrant-vms_default_1431034026308_70455 \

--output <os>-<version>-<arch>.box

43 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://vagrantcloud.com

IT/Dev[op]s Army Knives Tools

Box Re-packaging (2/2)

Locate the internal name of the running VM and repackage it

$> VBoxManage list runningvms

"vagrant-vms_default_1431034026308_70455" {...}

$> vagrant package \

--base vagrant-vms_default_1431034026308_70455 \

--output <os>-<version>-<arch>.box

Now you can upload the generated box on Vagrant Cloud.
→֒ select ‘New version’, enter the new version number
→֒ add a new box provider (Virtualbox)
→֒ upload the generated box

43 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://vagrantcloud.com

IT/Dev[op]s Army Knives Tools

Box Re-packaging (2/2)

Locate the internal name of the running VM and repackage it

$> VBoxManage list runningvms

"vagrant-vms_default_1431034026308_70455" {...}

$> vagrant package \

--base vagrant-vms_default_1431034026308_70455 \

--output <os>-<version>-<arch>.box

Now you can upload the generated box on Vagrant Cloud.
→֒ select ‘New version’, enter the new version number
→֒ add a new box provider (Virtualbox)
→֒ upload the generated box

Upon successful upload: release the uploaded box
→֒ by default it is unreleased
→֒ Now people using the <user>/<name> box will be notified of a

pending update

43 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://vagrantcloud.com

IT/Dev[op]s Army Knives Tools

Summary

1 Introduction
Agenda
Overview of managed IT Infrastructure

2 IT/Dev[op]s Army Knives Tools
SSH Secure Shell
PGP / GPG: Gnu Privacy Guard
Vagrant
Puppet
Ruby / Python / Markdown-based Documentations
Password Management

3 Research Computing Platform @ UL

4 Git[Lab] @ UL and VCS

Git[Lab] Around You
About Version Control System (VCS)

5 Git Basics
Installing Git
Git theory
Basic Commands
Branching and Merging

6 Collaborating / Working together

7 Advanced Git Topics
Git Submodules
Rebasing
Using Git over Subversion Repository
More Cool stuff

44 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

IT Serv[er|ice] Management: Puppet

Server/Service configuration by Puppet http://puppetlabs.com

IT Automation for configuration management
→֒ idempotent
→֒ agent/master OR stand-alone architecture
→֒ cross-platform through Puppet’s Resource Abstraction Layer (RAL)
→֒ Git-based workflow
→֒ PKI-based security (X.509)

DevOps tool of choice for configuration management
→֒ Declarative Domain Specific Language (DSL)

45 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://puppetlabs.com/
http://puppetlabs.com
https://docs.puppetlabs.com/puppet/latest/reference/lang_summary.html
http://theagileadmin.com/what-is-devops/

IT/Dev[op]s Army Knives Tools

IT Serv[er|ice] Management: Puppet

Server/Service configuration by Puppet http://puppetlabs.com

IT Automation for configuration management

→֒ idempotent
→֒ agent/master OR stand-alone architecture
→֒ cross-platform through Puppet’s Resource Abstraction Layer (RAL)
→֒ Git-based workflow
→֒ PKI-based security (X.509)

DevOps tool of choice for configuration management

→֒ Declarative Domain Specific Language (DSL)

Average server installation/configuration time: ≃ 3-6 min

45 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://puppetlabs.com/
http://puppetlabs.com
https://docs.puppetlabs.com/puppet/latest/reference/lang_summary.html
http://theagileadmin.com/what-is-devops/

IT/Dev[op]s Army Knives Tools

Configuration Management advantages

Infrastructure as Code: Track, Test, Deploy, Reproduce, Scale

→֒ Code commits log shows the history of change on the infrastructure

Reproducible setups

→֒ Do once, repeat forever

Scale quickly:

→֒ Done for one, use on many

Coherent and consistent server setups
Aligned Environments for devel, test, qa, prod nodes

Alternatives to Puppet: Chef, CFEngine, Salt, Ansible

46 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://www.opscode.com/chef/
http://cfengine.com/
http://saltstack.com/
http://www.ansibleworks.com/

IT/Dev[op]s Army Knives Tools

Software related to Puppet

Tool Description

Facter Complementary tool to retrieve system’s data
MCollective Infrastructure Orchestration framework
Hiera Key-value lookup tool where Puppet data can be placed
PuppetDB Stores all the data generated by Puppet
Puppet DashBoard A Puppet Web frontend and External Node Classifier (ENC)
The Foreman A well-known third party provisioning tool and Puppet ENC
Geppetto A Puppet IDE based on Eclipse

47 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://docs.puppetlabs.com/facter/
http://docs.puppetlabs.com/mcollective/
http://docs.puppetlabs.com/hiera/1/
http://docs.puppetlabs.com/puppetdb/1/
http://docs.puppetlabs.com/dashboard/
http://theforeman.org/
http://cloudsmith.github.com/geppetto

IT/Dev[op]s Army Knives Tools

How Puppet work ?

48 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

General Puppet Infrastructure

MCollective / ActiveMQ or

XMLRPC/REST

over SSL

Files

testing

devel

production

Puppet Master

Modules/Manifests

Certificate Authority

Environments

PuppetDB /

dashboard

Puppet master

Client descriptions

Puppet agent

Puppet agent

Puppet agent

Puppet agent

Puppet agent

C
lie

n
t S

ite
 A

Puppet agent

49 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

Puppet Data Flow

50 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

Puppet Performances

 10

 100

 1000

 Run 1 Run 2 Run 3

C
o
m

p
le

ti
o
n
 T

im
e
 [
s
]

L
O

G
S

C
A

L
E

Base
www − Web server

hpcfront − HPC frontend
nfs − NFS server

between 161s and 364s to completely bootstrap a virgin node
→֒ between 20s and 31s to later check/correct the config

Now proposed as an IT service to external consumers

51 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

Puppet Installation

Debian, Ubuntu (available by default)

$> apt-get install puppet # On clients (nodes)

$> apt-get install puppetmaster # On server (master)

RedHat, Centos, Fedora

→֒ Add EPEL repository or RHN Extra channel

$> rpm -ivh https://yum.puppetlabs.com/puppetlabs-release-el-<version>.noarch.r

$> yum install puppet # On clients (nodes)

$> yum install puppet-server # On server (master)

Other OS: https://docs.puppet.com/puppet/3.8/reference/pre_install.html

52 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://docs.puppet.com/puppet/3.8/reference/pre_install.html

IT/Dev[op]s Army Knives Tools

Puppet DSL

A Declarative Domain Specific Language (DSL)
→֒ defines STATES (and not procedures)

Puppet code is written in manifests <file>.pp

→֒ declare resources that affect elements of the system
X each resource has a type (package, service, file, user, exec . . .)
X each resource has a uniq title

→֒ resources are grouped in classes

Classes and configuration files are organized in modules
Example of resources types:

file { ’/etc/motd’:

content => "Toto"

}

package { ’openssh’:

ensure => present,

}

service { ’httpd’:

ensure => running,

enable => true,

}

53 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

Puppet Classes

Containers of different resources

→֒ Can have parameters since Puppet 2.6

class mysql (

$root_password = ’default_value’,

$port = ’3306’,

) {

package { ’mysql-server’:

ensure => present,

}

service { ’mysql’:

ensure => running,

}

[...]

}

54 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

Puppet Classes Declaration

To use a class previously defined, we declare it
“Old style” class declaration, without parameters:

include mysql

“New style” (from Puppet 2.6) with explicit parameters:

class { ’mysql’:

root_password => ’my_value’,

port => ’3307’,

}

A class is uniq to a given node

55 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

Puppet Defines

Similar to parametrized classes . . .
→֒ . . . but can be used multiple times (with different titles).

Definition of a define

define apache::virtualhost (

$ensure = present,

$template = ’apache/virtualhost.conf.erb’ ,

[...]) {

file { "ApacheVirtualHost_${name}":

ensure => $ensure,

content => template("${template}"),

}

}

Declaration of a define:

apache::virtualhost { ’www.uni.lu’:

template => ’site/apache/www.uni.lu-erb’

}

56 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

Puppet Variables and Facts

Can be defined in different places and by different actors:
→֒ by client nodes as facts
→֒ defined by users in Puppet code, on Hiera on in the ENC
→֒ built-in and be provided directly by Puppet

Facts using facter:
→֒ runs on clients and collects facts that the server can use as variables

$> facter

architecture => x86_64

fqdn => toto.uni.lu

hostname => toto

kernel => Linux

memorytotal => 16.00 GB

netmask => 255.255.255.0

operatingsystem => Centos

operatingsystemrelease => 6.3

osfamily => RedHat

virtual => physical

[...]

57 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

Puppet User Variables

In Puppet manifests:

$role = ’mail’

$package = $::operatingsystem ? {

/(?i:Ubuntu|Debian|Mint)/ => ’apache2’,

default => ’httpd’,

}

In an External Node Classifier (ENC)
→֒ Commonly used ENC are Puppet DashBoard, the Foreman, Puppet

Enterprise.

In an Hiera backend

$syslog_server = hiera(syslog_server)

58 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

Puppet Nodes

A node is identified by the PuppetMaster by its certname

→֒ defaults to the node’s fqdn

node ’web01’ {

include apache

}

node /^www\d+$/ {

include apache

}

Nodes classification can be done by External Node Classifier (ENC)

→֒ Puppet DashBoard, The Foreman and Puppet Enterprise

Nodes classification can be done also by Hiera

→֒ In /etc/puppet/manifests/site.pp

hiera_include(’classes’)

59 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

Puppet Operational modes

Masterless - apply Puppet manifests directly on the target system.
→֒ No need of a complete client-server infrastructure.
→֒ Have to distribute manifests and modules to the managed nodes.

$> puppet apply –-modulepath /modules/ /manifests/file.pp

60 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

Puppet Operational modes

Masterless - apply Puppet manifests directly on the target system.
→֒ No need of a complete client-server infrastructure.
→֒ Have to distribute manifests and modules to the managed nodes.

$> puppet apply –-modulepath /modules/ /manifests/file.pp

Master / Client Setup
→֒ server (running as puppet) listening on 8140 on the Puppet Master
→֒ client (running as root) on each managed node.

X Run as a service (default), via cron (with random delays), manually
or via MCollective

→֒ Client and Server have to share SSL certificates
X certificates must be signed by the Master CA

$> puppet agent –-test [–-noop] [–-environment <environment>]

60 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

Components of a Puppet architecture

Tasks to be deal with:

→֒ definition of the classes to be included in each node
→֒ definition of the parameters to use for each node
→֒ definition of the configuration files provided to the nodes

Components

→֒ Master, CA, and agents
→֒ (optional) ENC - Enternal Node Classifier
→֒ (optional) ldap/IPA backend
→֒ Hiera - Data key-value backend
→֒ Public modules - Public shared modules Puppet Forge
→֒ Site modules - Local custom modules

61 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://forge.puppet.com/

IT/Dev[op]s Army Knives Tools

ULHPC Puppet Infrastructure

X
M

L
R

P
C

 / R
E

S
T

o
v
e

r S
S

L

UL HPC Platform

LCSB site (Belval)

(transmart) puppet agent

Files

testing

devel

production

Puppet Master LCSB
(kali) puppet agent

(lcsb-portal) puppet agent

CA

35 hosts

Puppet master

Puppet Infrastructure

Managed hosts: 160

(+31 Grid'5000 Luxembourg)

gaia cluster (Belval)

(nfs) puppet agent

Files

testing

devel

production

Puppet Master gaia cluster
(adminfront) puppet agent

(mds1) puppet agent

CA

57+17(nyx) hosts

Puppet master

Computing nodes (271+98(nyx)+4(pyro))

FAI Infrastructure

Managed computing nodes:

454 (4830 cores)

(+38 (368 cores) Grid'5000 Luxembourg)

CSC site (Kirchberg)

Files

testing

Puppet master

devel

production

Puppet Master CSC

(shiva) puppet agent

(gforge) puppet agent

37 hosts

(urt) puppet agentCA

chaos cluster (Kirchberg)

Files

testing

devel

production

Puppet Master chaos cluster

(adminfront) puppet agent

(dhcp) puppet agent

14 hosts

(urt) puppet agentCA

Files

testing

devel

production

Modules/Manifests

Root CA

Puppet (Root) CA

Environments

Puppet master

Puppet master

Computing nodes (81)

TOTAL resources managed

191 servers (130 VMs)

488 computing nodes (5196 cores)

5.35 PB raw shared storage (NFS / GPFS /Lustre)

4 system administrators / 2 sites

62 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

Summary

1 Introduction
Agenda
Overview of managed IT Infrastructure

2 IT/Dev[op]s Army Knives Tools
SSH Secure Shell
PGP / GPG: Gnu Privacy Guard
Vagrant
Puppet
Ruby / Python / Markdown-based Documentations
Password Management

3 Research Computing Platform @ UL

4 Git[Lab] @ UL and VCS

Git[Lab] Around You
About Version Control System (VCS)

5 Git Basics
Installing Git
Git theory
Basic Commands
Branching and Merging

6 Collaborating / Working together

7 Advanced Git Topics
Git Submodules
Rebasing
Using Git over Subversion Repository
More Cool stuff

63 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

Ruby / RVM / Bundler

Bring the flexibility of Rakefile (Makefile + Ruby)
Bundler: reproducible running environment across developpers

→֒ easy configuration through Gemfile[.lock] + bundle command

RVM: sandboxed environment per project (alternative: rbenv)

→֒ easy configuration through .ruby-{version,gemset} files

64 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://rvm.io/
http://bundler.io/
http://bundler.io/
https://rvm.io/
https://hpc.uni.lu/blog/2014/create-a-sandboxed-python-slash-ruby-environment/
http://rbenv.org/

IT/Dev[op]s Army Knives Tools

Ruby / RVM / Bundler

Bring the flexibility of Rakefile (Makefile + Ruby)
Bundler: reproducible running environment across developpers

→֒ easy configuration through Gemfile[.lock] + bundle command

RVM: sandboxed environment per project (alternative: rbenv)

→֒ easy configuration through .ruby-{version,gemset} files

Typical setup of a freshly cloned project:

$> gem install bundler # assuming it is not yet available

$> bundle # clone ruby deps/env as defined in Gemfile*

$> rake -T # To list the available tasks

64 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://rvm.io/
http://bundler.io/
http://bundler.io/
https://rvm.io/
https://hpc.uni.lu/blog/2014/create-a-sandboxed-python-slash-ruby-environment/
http://rbenv.org/

IT/Dev[op]s Army Knives Tools

Ruby / RVM / Bundler

Bring the flexibility of Rakefile (Makefile + Ruby)
Bundler: reproducible running environment across developpers

→֒ easy configuration through Gemfile[.lock] + bundle command

RVM: sandboxed environment per project (alternative: rbenv)

→֒ easy configuration through .ruby-{version,gemset} files

Typical setup of a freshly cloned project:

$> gem install bundler # assuming it is not yet available

$> bundle # clone ruby deps/env as defined in Gemfile*

$> rake -T # To list the available tasks

Recommended Gems

falkorlib, rake, bundler, git_remote_branch

64 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://rvm.io/
http://bundler.io/
http://bundler.io/
https://rvm.io/
https://hpc.uni.lu/blog/2014/create-a-sandboxed-python-slash-ruby-environment/
http://rbenv.org/

IT/Dev[op]s Army Knives Tools

Python / Pip

pip: Python package manager

→֒ “nice” python packages: mkdocs. . .
→֒ Windows: install via Chocolatey

$> pip install <package> # install <package>

65 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://pypi.python.org/pypi/pip
https://chocolatey.org/

IT/Dev[op]s Army Knives Tools

Python / Pip

pip: Python package manager

→֒ “nice” python packages: mkdocs. . .
→֒ Windows: install via Chocolatey

$> pip install <package> # install <package>

$> pip install -U pip # upgrade on Linux/Mac OS

65 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://pypi.python.org/pypi/pip
https://chocolatey.org/

IT/Dev[op]s Army Knives Tools

Python / Pip

pip: Python package manager

→֒ “nice” python packages: mkdocs. . .
→֒ Windows: install via Chocolatey

$> pip install <package> # install <package>

$> pip install -U pip # upgrade on Linux/Mac OS

Dump python environment to a requirements file

$> pip freeze -l > requirements.txt # as Ruby Gemfiles

65 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://pypi.python.org/pypi/pip
https://chocolatey.org/

IT/Dev[op]s Army Knives Tools

Pyenv / VirtualEnv / Autoenv

pyenv: ≃ RVM/rbenv for Python
virtualenv ≃ RVM Gemset
(optional) autoenv

→֒ Directory-based shell environments
→֒ easy config through .env file. Ex:

(rootdir)/.env : autoenv configuration file

pyversion=‘head .python-version‘

pvenv=‘head .python-virtualenv‘

pyenv virtualenv --force --quiet ${pyversion} ${pvenv}-${pyversion}

activate it

pyenv activate ${pvenv}-${pyversion}

66 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://github.com/yyuu/pyenv
https://virtualenv.pypa.io/en/latest/
https://github.com/kennethreitz/autoenv

IT/Dev[op]s Army Knives Tools

Documentation

Priviledge Markdown-based documentation

→֒ easy to track over Git (text files, not Word/RFT etc.)
→֒ easy to export to any format using pandoc / multimarkdown

→֒ focus on writing, viewers for all platform

X Mac OS: MOU, Marked 2
X Linux: Remarkable, Retext
X Windows: MarkdownPad, Remarkable

Git-based Markdown Wiki

Gollum, as embedded in GitLab
Mkdocs

67 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://daringfireball.net/projects/markdown/syntax
http://pandoc.org/
http://michaelhyatt.com/multimarkdown.html
http://25.io/mou/
http://marked2app.com/
https://remarkableapp.github.io/
http://sourceforge.net/projects/retext/
http://markdownpad.com/
https://remarkableapp.github.io/
https://github.com/gollum/gollum/wiki
http://www.mkdocs.org/

IT/Dev[op]s Army Knives Tools

Gollum / MkDocs

Advantage: possibility to serve the HTML locally
→֒ Gollum: gollum (from root directory) http://localhost:4567

→֒ Mkdocs: mkdocs serve (from root directory) http://localhost:8000

68 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://github.com/gollum/gollum/wiki
http://localhost:4567
http://www.mkdocs.org/
http://localhost:8000

IT/Dev[op]s Army Knives Tools

Gollum / MkDocs

Advantage: possibility to serve the HTML locally
→֒ Gollum: gollum (from root directory) http://localhost:4567

→֒ Mkdocs: mkdocs serve (from root directory) http://localhost:8000

$> mkdocs new # initialize ’mkdocs.yml’ and docs/ directory

68 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://github.com/gollum/gollum/wiki
http://localhost:4567
http://www.mkdocs.org/
http://localhost:8000

IT/Dev[op]s Army Knives Tools

Gollum / MkDocs

Advantage: possibility to serve the HTML locally
→֒ Gollum: gollum (from root directory) http://localhost:4567

→֒ Mkdocs: mkdocs serve (from root directory) http://localhost:8000

$> mkdocs new # initialize ’mkdocs.yml’ and docs/ directory

mkdocs.yml -- MkDocs configuration, all *.md files relative to docs/

site_name: UL HPC Developpers Documentaion

pages:

- Home: ’index.md’

- Tools:

- SSH: ’tools/ssh.md’

- Git: ’tools/git.md’

- Configuration:

- CA Certificates: ’config/certificates/README.md’

theme: readthedocs

68 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://github.com/gollum/gollum/wiki
http://localhost:4567
http://www.mkdocs.org/
http://localhost:8000

IT/Dev[op]s Army Knives Tools

Summary

1 Introduction
Agenda
Overview of managed IT Infrastructure

2 IT/Dev[op]s Army Knives Tools
SSH Secure Shell
PGP / GPG: Gnu Privacy Guard
Vagrant
Puppet
Ruby / Python / Markdown-based Documentations
Password Management

3 Research Computing Platform @ UL

4 Git[Lab] @ UL and VCS

Git[Lab] Around You
About Version Control System (VCS)

5 Git Basics
Installing Git
Git theory
Basic Commands
Branching and Merging

6 Collaborating / Working together

7 Advanced Git Topics
Git Submodules
Rebasing
Using Git over Subversion Repository
More Cool stuff

69 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

Password Management

Traditional [Strong] Password policy

≥ 15 characters, including digits, special chars (#,&,@,$ etc.)
→֒ mix upper/lower case

avoid matching dictionary/personal/company/dates info
renew periodically, typically after 180 days.

Build by selecting words / sentence easy to remember

→֒ combine them to respect the above rules

70 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

IT/Dev[op]s Army Knives Tools

Stanford Password Policy
https://itservices.stanford.edu/service/accounts/passwords/quickguide

71 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://itservices.stanford.edu/service/accounts/passwords/quickguide

IT/Dev[op]s Army Knives Tools

Password Manager

Password Manager

Ensure a safe and secure way to store/organize passwords
→֒ privilege random & unique passwords everywhere
→֒ ideally: cross-platform applications, with browser integration

encrypted back-end/vault, eventually shared over Cloud storage
→֒ Dropbox, iCLoud, S3, OneDrive. . .

72 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://dropbox.com/
https://www.icloud.com/
https://aws.amazon.com/s3/
https://onedrive.live.com/about/en-us/
http://www.keepassx.org
https://www.pwsafe.org/
https://encryptr.org/
https://lastpass.com/
https://agilebits.com/onepassword
https://www.dashlane.com/

IT/Dev[op]s Army Knives Tools

Password Manager

Password Manager

Ensure a safe and secure way to store/organize passwords
→֒ privilege random & unique passwords everywhere
→֒ ideally: cross-platform applications, with browser integration

encrypted back-end/vault, eventually shared over Cloud storage
→֒ Dropbox, iCLoud, S3, OneDrive. . .

Open-Source / Cloud-based

72 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://dropbox.com/
https://www.icloud.com/
https://aws.amazon.com/s3/
https://onedrive.live.com/about/en-us/
http://www.keepassx.org
https://www.pwsafe.org/
https://encryptr.org/
https://lastpass.com/
https://agilebits.com/onepassword
https://www.dashlane.com/

IT/Dev[op]s Army Knives Tools

Password Manager

Password Manager

Ensure a safe and secure way to store/organize passwords
→֒ privilege random & unique passwords everywhere
→֒ ideally: cross-platform applications, with browser integration

encrypted back-end/vault, eventually shared over Cloud storage
→֒ Dropbox, iCLoud, S3, OneDrive. . .

Open-Source / Cloud-based Commercial

72 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://dropbox.com/
https://www.icloud.com/
https://aws.amazon.com/s3/
https://onedrive.live.com/about/en-us/
http://www.keepassx.org
https://www.pwsafe.org/
https://encryptr.org/
https://lastpass.com/
https://agilebits.com/onepassword
https://www.dashlane.com/

IT/Dev[op]s Army Knives Tools

GPG+Git Password Management: pass

pass: the standard Unix password manager

→֒ stores passwords as encrypted files – default: ~/.password-store/

→֒ cross-platform GUI clients, incl. iOS/Android / Pass4Win
→֒ multiple recipient can share a sub-directory

Installation: { brew | yum | apt-get } install pass

$> pass init <ID> && pass git init # Create the store over git

73 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://www.passwordstore.org/
http://www.passwordstore.org/
https://github.com/mbos/Pass4Win

IT/Dev[op]s Army Knives Tools

GPG+Git Password Management: pass

pass: the standard Unix password manager

→֒ stores passwords as encrypted files – default: ~/.password-store/

→֒ cross-platform GUI clients, incl. iOS/Android / Pass4Win
→֒ multiple recipient can share a sub-directory

Installation: { brew | yum | apt-get } install pass

$> pass init <ID> && pass git init # Create the store over git

$> pass insert <domain>/<name> # store <domain>/<name>.gpg

73 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://www.passwordstore.org/
http://www.passwordstore.org/
https://github.com/mbos/Pass4Win

IT/Dev[op]s Army Knives Tools

GPG+Git Password Management: pass

pass: the standard Unix password manager

→֒ stores passwords as encrypted files – default: ~/.password-store/

→֒ cross-platform GUI clients, incl. iOS/Android / Pass4Win
→֒ multiple recipient can share a sub-directory

Installation: { brew | yum | apt-get } install pass

$> pass init <ID> && pass git init # Create the store over git

$> pass insert <domain>/<name> # store <domain>/<name>.gpg

$> pass [<domain>/<name>] # list / retrieve password <name>

73 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://www.passwordstore.org/
http://www.passwordstore.org/
https://github.com/mbos/Pass4Win

Research Computing Platform @ UL

Summary

1 Introduction
Agenda
Overview of managed IT Infrastructure

2 IT/Dev[op]s Army Knives Tools
SSH Secure Shell
PGP / GPG: Gnu Privacy Guard
Vagrant
Puppet
Ruby / Python / Markdown-based Documentations
Password Management

3 Research Computing Platform @ UL

4 Git[Lab] @ UL and VCS

Git[Lab] Around You
About Version Control System (VCS)

5 Git Basics
Installing Git
Git theory
Basic Commands
Branching and Merging

6 Collaborating / Working together

7 Advanced Git Topics
Git Submodules
Rebasing
Using Git over Subversion Repository
More Cool stuff

74 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Research Computing Platform @ UL

High Performance Computing @ UL

Key numbers

344 users
98 servers
492 nodes

→֒ 5300 cores
→֒ 85.543 TFlops

5354.4 TB
4 sysadmins
2 sites

→֒ Kirchberg
→֒ Belval

http://hpc.uni.lu

75 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://hpc.uni.lu

Research Computing Platform @ UL

High Performance Computing @ UL

 0

 50

 100

 150

 200

 250

 300

 350

 400
J
a

n
−

2
0

0
8

J
a

n
−

2
0

0
9

J
a

n
−

2
0

1
0

J
a

n
−

2
0

1
1

J
a

n
−

2
0

1
2

J
a

n
−

2
0

1
3

J
a

n
−

2
0

1
4

J
a

n
−

2
0

1
5

J
a

n
−

2
0

1
6

N
u

m
b

e
r

o
f

u
s
e

rs

Evolution of registered users with active accounts within UL internal clusters

LCSB (Bio−Medicine)
URPM (Physics and Material Sciences)

FDEF (Law, Economics and Finance)
RUES (Engineering Science)

SnT (Security and Trust)
CSC (Computer Science and Communications)

LSRU (Life Sciences)
Bachelor and Master students

Others

76 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Research Computing Platform @ UL

High Performance Computing @ UL

Enables & accelerates scientific discovery and innovation
Largest facility in Luxembourg (after GoodYear R&D Center)

TFlops TB FTEs

Country Name/Institute #Cores Rpeak Storage Manpower

Luxembourg
UL 5300 85.543 5354.4 2
CRP GL 800 6.21 144 1.5

France
TGCC Curie, CEA 77184 1667.2 5000 n/a
LORIA, Nancy 3724 29.79 82 5.05
ROMEO, UCR, Reims 564 4.128 15 2

Germany
Juqueen, Juelich 393216 5033.2 448 n/a
MPI, RZG 2556 14.1 n/a 5
URZ, (bwGrid),Heidelberg 1140 10.125 32 9

Belgium
UGent, VCS 4320 54.541 82 n/a
CECI, UMons/UCL 2576 25.108 156 > 4

UK
Darwin, Cambridge Univ 9728 202.3 20 n/a
Legion, UCLondon 5632 45.056 192 6

Spain MareNostrum, BCS 33664 700.2 1900 14

77 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Research Computing Platform @ UL

UL HPC Services

Horizontal HPC & storage services

for the three UL Faculties and their Research Units
for the two UL Inter-disciplinary Centres

→֒ LCSB, SnT

. . . and their external partners
on UL strategic research priorities

→֒ computational sciences
→֒ systems biomedicine
→֒ security, reliability and trust
→֒ finance

78 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://lcsb.uni.lu
http://snt.uni.lu
https://gforge.uni.lu
https://gitlab.uni.lu
https://owncloud.uni.lu

Research Computing Platform @ UL

UL HPC Services

Horizontal HPC & storage services

for the three UL Faculties and their Research Units
for the two UL Inter-disciplinary Centres

→֒ LCSB, SnT

. . . and their external partners
on UL strategic research priorities

→֒ computational sciences
→֒ systems biomedicine
→֒ security, reliability and trust
→֒ finance

Complementary research related services Total: 80 servers
→֒ On demand VM hosting for development, frontends, etc.
→֒ Project management & collaboration (GForge, GitLab. . .)
→֒ Cloud storage (OwnCloud) . . . and many others!

78 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://lcsb.uni.lu
http://snt.uni.lu
https://gforge.uni.lu
https://gitlab.uni.lu
https://owncloud.uni.lu

Research Computing Platform @ UL

Gforge @ Uni.lu – https://gforge.uni.lu

Long-running collaboration system, featuring:
→֒ static web hosting for projects
→֒ Git or Subversion repositories etc.

Get an account / information: https://helpdesk.gforge.uni.lu/

Open to anybody but separate authentication base

79 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://gforge.uni.lu
https://helpdesk.gforge.uni.lu/

Research Computing Platform @ UL

Gitlab @ Uni.lu – https://gitlab.uni.lu

Similar to Github
→֒ advanced Git repository management
→֒ . . . incl. private projects

Open to _UL staff__ with an HPC account

80 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://gitlab.uni.lu

Research Computing Platform @ UL

Galaxy – http://galaxy-server.uni.lu

Web-based platform
Simplified interface to many popular bioinformatics tools

→֒ . . . and generation of reproducible workflows.

81 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://galaxy-server.uni.lu

Git[Lab] @ UL and VCS

Summary

1 Introduction
Agenda
Overview of managed IT Infrastructure

2 IT/Dev[op]s Army Knives Tools
SSH Secure Shell
PGP / GPG: Gnu Privacy Guard
Vagrant
Puppet
Ruby / Python / Markdown-based Documentations
Password Management

3 Research Computing Platform @ UL

4 Git[Lab] @ UL and VCS

Git[Lab] Around You
About Version Control System (VCS)

5 Git Basics
Installing Git
Git theory
Basic Commands
Branching and Merging

6 Collaborating / Working together

7 Advanced Git Topics
Git Submodules
Rebasing
Using Git over Subversion Repository
More Cool stuff

82 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git[Lab] @ UL and VCS

Summary

1 Introduction
Agenda
Overview of managed IT Infrastructure

2 IT/Dev[op]s Army Knives Tools
SSH Secure Shell
PGP / GPG: Gnu Privacy Guard
Vagrant
Puppet
Ruby / Python / Markdown-based Documentations
Password Management

3 Research Computing Platform @ UL

4 Git[Lab] @ UL and VCS

Git[Lab] Around You
About Version Control System (VCS)

5 Git Basics
Installing Git
Git theory
Basic Commands
Branching and Merging

6 Collaborating / Working together

7 Advanced Git Topics
Git Submodules
Rebasing
Using Git over Subversion Repository
More Cool stuff

83 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git[Lab] @ UL and VCS

What Git will now mean to you...

84 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git[Lab] @ UL and VCS

Github github.com

(Reference) web-based Git repository hosting service

Set up Git Create Repository

Fork repository Work together

85 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://github.com

Git[Lab] @ UL and VCS

git-scm.com --everything-is-local

86 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://git-scm.com/

Git[Lab] @ UL and VCS

Git – the simple Guide
http://rogerdudler.github.io/git-guide/

87 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://rogerdudler.github.io/git-guide/
http://rogerdudler.github.io/git-guide/

Git[Lab] @ UL and VCS

Atlassian Tutorials
https://www.atlassian.com/git/tutorials/

88 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://www.atlassian.com/git/tutorials/
https://www.atlassian.com/git/tutorials/

Git[Lab] @ UL and VCS

Pro Git Book – progit.org

Open-Source Book on Git by S. Chacon and B. Straub

→֒ Sources (on Github)
→֒ Online Reading – PDF

See also Git Internal, also by S. Chacon

Note: Most images of this talk comes from
this book

→֒ more precisely the first edition

89 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://progit.org/
https://github.com/progit/progit2
http://git-scm.com/book/en/v2
https://progit2.s3.amazonaws.com/en/2015-05-31-24e8b/progit-en.519.pdf
http://opcode.org/peepcode-git.pdf
https://github.com/progit/progit/

Git[Lab] @ UL and VCS

Gitlab @ Uni.lu https://gitlab.uni.lu .t

Gitlab ≃ Github Clone, for deployment on internal servers

→֒ web-based Git repository manager, wiki & issue tracking
→֒ GitLab CI for continuous integration and delivery.

Open to UL staff with an HPC account

90 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://gitlab.uni.lu
https://about.gitlab.com/
https://about.gitlab.com/gitlab-ci/

Git[Lab] @ UL and VCS

Gitlab Features

Activity Stream

91 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git[Lab] @ UL and VCS

Gitlab Features

File Browser

91 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git[Lab] @ UL and VCS

Gitlab Features

Git/Markdown powered Wiki

91 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git[Lab] @ UL and VCS

Gitlab Features

Powerful Code Review

91 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git[Lab] @ UL and VCS

Gitlab Features

Issue Management

91 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git[Lab] @ UL and VCS

Gitlab Features

Code Snippets

91 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git[Lab] @ UL and VCS

Gitlab Features

Web/Service Hooks

91 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git[Lab] @ UL and VCS

Summary

1 Introduction
Agenda
Overview of managed IT Infrastructure

2 IT/Dev[op]s Army Knives Tools
SSH Secure Shell
PGP / GPG: Gnu Privacy Guard
Vagrant
Puppet
Ruby / Python / Markdown-based Documentations
Password Management

3 Research Computing Platform @ UL

4 Git[Lab] @ UL and VCS

Git[Lab] Around You
About Version Control System (VCS)

5 Git Basics
Installing Git
Git theory
Basic Commands
Branching and Merging

6 Collaborating / Working together

7 Advanced Git Topics
Git Submodules
Rebasing
Using Git over Subversion Repository
More Cool stuff

92 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git[Lab] @ UL and VCS

Why use Version Control?

Version Control = Revision Control = Source Control
→֒ lets you track your files over time.

you probably cooked up your own!
→֒ ever get files like main-v2.tex, CORE-proposal.doc.old or

2015-03-cv.pdf?

93 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git[Lab] @ UL and VCS

Why use Version Control?

Version Control = Revision Control = Source Control
→֒ lets you track your files over time.

you probably cooked up your own!
→֒ ever get files like main-v2.tex, CORE-proposal.doc.old or

2015-03-cv.pdf?

Version Control System (VCS)

Integrated fool-proof framework for:
→֒ Backup and Restore
→֒ Synchronization / Collaborating
→֒ Short and long-term undo / Tracking changes
→֒ Sandboxing

93 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git[Lab] @ UL and VCS

Typical VCS Workflow

94 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git[Lab] @ UL and VCS

Typical VCS Workflow

94 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git[Lab] @ UL and VCS

Local VCS – RCS, Mac OS Versions

File

Checkout Version Database

Version 3

Version 2

Version 1

Local Computer

95 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git[Lab] @ UL and VCS

Centralized VCS – CVS, SVN

File

Checkout

Version Database

Version 3

Version 2

Version 1

Central VCS Server
Computer A

96 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git[Lab] @ UL and VCS

Centralized VCS – CVS, SVN

File

Checkout

Version Database

Version 3

Version 2

Version 1

Central VCS Server
Computer A

File

Checkout

Computer B

96 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git[Lab] @ UL and VCS

Distributed VCS – Git

Version Database

Version 3

Version 2

Version 1

Server Computer

File

Computer A

Version Database

Version 3

Version 2

Version 1

File

Computer B

Version Database

Version 3

Version 2

Version 1

Everybody has the full history of commits

97 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git[Lab] @ UL and VCS

Tracking changes (most VCS)

file A

file B

file C

C1

Checkins over Time

98 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git[Lab] @ UL and VCS

Tracking changes (most VCS)

Δ1

C2

Δ1

file A

file B

file C

C1

Checkins over Time

98 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git[Lab] @ UL and VCS

Tracking changes (most VCS)

C3

Δ2

Δ1

C2

Δ1

file A

file B

file C

C1

Checkins over Time

98 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git[Lab] @ UL and VCS

Tracking changes (most VCS)

C4

Δ2

Δ1

C3

Δ2

Δ1

C2

Δ1

file A

file B

file C

C1

Checkins over Time

98 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git[Lab] @ UL and VCS

Tracking changes (most VCS)

C5

Δ2

Δ3

C4

Δ2

Δ1

C3

Δ2

Δ1

C2

Δ1

file A

file B

file C

C1

Checkins over Time

98 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git[Lab] @ UL and VCS

Tracking changes (most VCS)

C5

Δ2

Δ3

C4

Δ2

Δ1

C3

Δ2

Δ1

C2

Δ1

file A

file B

file C

C1

Checkins over Time

delta
storage

98 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git[Lab] @ UL and VCS

Tracking changes (Git)

snapshot
(DAG)
storage

C5

Δ2

Δ3

C4

Δ2

Δ1

C3

Δ2

Δ1

C2

Δ1

file A

file B

file C

C1

Checkins over Time

delta
storage

98 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git[Lab] @ UL and VCS

Tracking changes (Git)

Checkins over Time

A

B

C

C1

snapshot
(DAG)
storage

C5

Δ2

Δ3

C4

Δ2

Δ1

C3

Δ2

Δ1

C2

Δ1

file A

file B

file C

C1

Checkins over Time

delta
storage

98 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git[Lab] @ UL and VCS

Tracking changes (Git)

C2

A1

B

C1

Checkins over Time

A

B

C

C1

snapshot
(DAG)
storage

C5

Δ2

Δ3

C4

Δ2

Δ1

C3

Δ2

Δ1

C2

Δ1

file A

file B

file C

C1

Checkins over Time

delta
storage

98 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git[Lab] @ UL and VCS

Tracking changes (Git)

C2

A1

B

C1

Checkins over Time

A

B

C

C1

snapshot
(DAG)
storage

C5

Δ2

Δ3

C4

Δ2

Δ1

C3

Δ2

Δ1

C2

Δ1

file A

file B

file C

C1

Checkins over Time

delta
storage

98 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git[Lab] @ UL and VCS

Tracking changes (Git)

C3

A1

B

C2

C2

A1

B

C1

Checkins over Time

A

B

C

C1

snapshot
(DAG)
storage

C5

Δ2

Δ3

C4

Δ2

Δ1

C3

Δ2

Δ1

C2

Δ1

file A

file B

file C

C1

Checkins over Time

delta
storage

98 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git[Lab] @ UL and VCS

Tracking changes (Git)

C3

A1

B

C2

C2

A1

B

C1

Checkins over Time

A

B

C

C1

snapshot
(DAG)
storage

C5

Δ2

Δ3

C4

Δ2

Δ1

C3

Δ2

Δ1

C2

Δ1

file A

file B

file C

C1

Checkins over Time

delta
storage

98 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git[Lab] @ UL and VCS

Tracking changes (Git)

C4

A2

B1

C2

C3

A1

B

C2

C2

A1

B

C1

Checkins over Time

A

B

C

C1

snapshot
(DAG)
storage

C5

Δ2

Δ3

C4

Δ2

Δ1

C3

Δ2

Δ1

C2

Δ1

file A

file B

file C

C1

Checkins over Time

delta
storage

98 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git[Lab] @ UL and VCS

Tracking changes (Git)

C4

A2

B1

C2

C3

A1

B

C2

C2

A1

B

C1

Checkins over Time

A

B

C

C1

snapshot
(DAG)
storage

C5

Δ2

Δ3

C4

Δ2

Δ1

C3

Δ2

Δ1

C2

Δ1

file A

file B

file C

C1

Checkins over Time

delta
storage

98 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git[Lab] @ UL and VCS

Tracking changes (Git)

C5

A2

B2

C3

C4

A2

B1

C2

C3

A1

B

C2

C2

A1

B

C1

Checkins over Time

A

B

C

C1

snapshot
(DAG)
storage

C5

Δ2

Δ3

C4

Δ2

Δ1

C3

Δ2

Δ1

C2

Δ1

file A

file B

file C

C1

Checkins over Time

delta
storage

98 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git[Lab] @ UL and VCS

Tracking changes (Git)

C5

A2

B2

C3

C4

A2

B1

C2

C3

A1

B

C2

C2

A1

B

C1

Checkins over Time

A

B

C

C1

snapshot
(DAG)
storage

C5

Δ2

Δ3

C4

Δ2

Δ1

C3

Δ2

Δ1

C2

Δ1

file A

file B

file C

C1

Checkins over Time

delta
storage

98 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git[Lab] @ UL and VCS

VCS Taxonomy

Subversion
svn

cvs

git

mercurial
hg

time
machine

cp -r

rsync

duplicity

rcs

delta
storage

snapshot
(DAG)
storage

bazaar
bzr

bitkeeper

local

centralized

distributed

local

centralized

distributed

bontmia
backupninja

duplicity

Mac OS File
Versions

99 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git[Lab] @ UL and VCS

So what makes Git so useful?

(almost) Everything is local

everything is fast
every clone is a backup
you work mainly offline

Ultra Fast, Efficient & Robust

Snapshots, not patches (deltas)
Cheap branching and merging

→֒ Strong support for thousands of parallel branches

Cryptographic integrity everywhere

100 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git[Lab] @ UL and VCS

Other Git features

Git doesn’t delete
→֒ Immutable objects, Git generally only adds data
→֒ If you mess up, you can usually recover your stuff

X Recovery can be tricky though

101 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://git-scm.com/book/en/v2/Git-Tools-Subtree-Merging
https://github.com/nvie/gitflow

Git[Lab] @ UL and VCS

Other Git features

Git doesn’t delete
→֒ Immutable objects, Git generally only adds data
→֒ If you mess up, you can usually recover your stuff

X Recovery can be tricky though

Git Tools / Extension

cf. Git submodules or subtrees
Introducing git-flow

→֒ workflow with a strict branching model
→֒ offers the git commands to follow the workflow

$> git flow init

$> git flow feature { start, publish, finish } <name>

$> git flow release { start, publish, finish } <version>

101 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://git-scm.com/book/en/v2/Git-Tools-Subtree-Merging
https://github.com/nvie/gitflow

Git Basics

Summary

1 Introduction
Agenda
Overview of managed IT Infrastructure

2 IT/Dev[op]s Army Knives Tools
SSH Secure Shell
PGP / GPG: Gnu Privacy Guard
Vagrant
Puppet
Ruby / Python / Markdown-based Documentations
Password Management

3 Research Computing Platform @ UL

4 Git[Lab] @ UL and VCS

Git[Lab] Around You
About Version Control System (VCS)

5 Git Basics
Installing Git
Git theory
Basic Commands
Branching and Merging

6 Collaborating / Working together

7 Advanced Git Topics
Git Submodules
Rebasing
Using Git over Subversion Repository
More Cool stuff

102 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Summary

1 Introduction
Agenda
Overview of managed IT Infrastructure

2 IT/Dev[op]s Army Knives Tools
SSH Secure Shell
PGP / GPG: Gnu Privacy Guard
Vagrant
Puppet
Ruby / Python / Markdown-based Documentations
Password Management

3 Research Computing Platform @ UL

4 Git[Lab] @ UL and VCS

Git[Lab] Around You
About Version Control System (VCS)

5 Git Basics
Installing Git
Git theory
Basic Commands
Branching and Merging

6 Collaborating / Working together

7 Advanced Git Topics
Git Submodules
Rebasing
Using Git over Subversion Repository
More Cool stuff

103 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Installation Notes git-scm.com

Linux / Mac OS

$> apt-get install git-core git-flow # On Debian-like systems

$> yum install git gitflow # On CentOS-like systems

$> brew install git git-flow # On Mac OS, using Homebrew

104 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://git-scm.com/downloads
http://mxcl.github.com/homebrew/
https://msysgit.github.io/

Git Basics

Installation Notes git-scm.com

Linux / Mac OS

$> apt-get install git-core git-flow # On Debian-like systems

$> yum install git gitflow # On CentOS-like systems

$> brew install git git-flow # On Mac OS, using Homebrew

Windows MsysGit

Incl. Git Bash/GUI & Shell Integration
→֒ use PLINk from Putty
→֒ install Git bash + command prompt
→֒ select checkout windows / commit unix

104 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://git-scm.com/downloads
http://mxcl.github.com/homebrew/
https://msysgit.github.io/

Git Basics

Installation Notes git-scm.com

Linux / Mac OS

$> apt-get install git-core git-flow # On Debian-like systems

$> yum install git gitflow # On CentOS-like systems

$> brew install git git-flow # On Mac OS, using Homebrew

Windows MsysGit

Incl. Git Bash/GUI & Shell Integration
→֒ use PLINk from Putty
→֒ install Git bash + command prompt
→֒ select checkout windows / commit unix

Your Turn! Ensure you have git installed

104 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://git-scm.com/downloads
http://mxcl.github.com/homebrew/
https://msysgit.github.io/

Git Basics

Git GUI (default) Gitk

105 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Git GUI (Mac OS) GitX-dev

http://rowanj.github.io/gitx/

105 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://rowanj.github.io/gitx/
http://rowanj.github.io/gitx/

Git Basics

Git GUI (Windows/Mac) SourceTree

http://www.sourcetreeapp.com/

11 Let it install a default git ignore file

22 make it load your SSH key created with Putty

105 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://www.sourcetreeapp.com/
http://www.sourcetreeapp.com/

Git Basics

Preliminary Configurations

Global Git configuration are stored in ~/.gitconfig

→֒ Ex: see my personal .gitconfig

You SHOULD at least configure your name and email to commit

→֒ open a terminal (Git bash under windows) for the below commands

$> git config –-global user.name "Firstname LastName"

$> git config –-global user.email "Firstname.LastName@uni.lu"

$> git config –-global color.ui true # Colors

$> git config –-global core.editor vim # Editor

106 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://github.com/Falkor/dotfiles/blob/master/git/.gitconfig

Git Basics

Preliminary Configurations

Global Git configuration are stored in ~/.gitconfig

→֒ Ex: see my personal .gitconfig

You SHOULD at least configure your name and email to commit

→֒ open a terminal (Git bash under windows) for the below commands

$> git config –-global user.name "Firstname LastName"

$> git config –-global user.email "Firstname.LastName@uni.lu"

$> git config –-global color.ui true # Colors

$> git config –-global core.editor vim # Editor

Your Turn!

Then check the changes by: git config -l | grep user

106 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://github.com/Falkor/dotfiles/blob/master/git/.gitconfig

Git Basics

Git Commands Aliases

You can also create git command aliases in ~/.gitconfig.

→֒ Ex copy/paste from my personal .gitconfig

[alias]

up = pull origin

pu = push origin

st = status

df = diff

ci = commit -s

co = checkout

br = branch

w = whatchanged --abbrev-commit

ls = ls-files

gr = log --graph --oneline --decorate

amend = commit --amend

107 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://github.com/Falkor/dotfiles/blob/master/git/.gitconfig

Git Basics

Summary

1 Introduction
Agenda
Overview of managed IT Infrastructure

2 IT/Dev[op]s Army Knives Tools
SSH Secure Shell
PGP / GPG: Gnu Privacy Guard
Vagrant
Puppet
Ruby / Python / Markdown-based Documentations
Password Management

3 Research Computing Platform @ UL

4 Git[Lab] @ UL and VCS

Git[Lab] Around You
About Version Control System (VCS)

5 Git Basics
Installing Git
Git theory
Basic Commands
Branching and Merging

6 Collaborating / Working together

7 Advanced Git Topics
Git Submodules
Rebasing
Using Git over Subversion Repository
More Cool stuff

108 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

The Three (local) States

Git Directory
(Repository)

Staging
Area

Working
Directory

stage files
Checkout the project

Local Operations

Commit

Stage files

git add

git rm

git status

git clone

git commit

The local repository lives in the .git directory.
The staging area tracks what will go into the next commit

→֒ AKA “the index”

109 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Summary

1 Introduction
Agenda
Overview of managed IT Infrastructure

2 IT/Dev[op]s Army Knives Tools
SSH Secure Shell
PGP / GPG: Gnu Privacy Guard
Vagrant
Puppet
Ruby / Python / Markdown-based Documentations
Password Management

3 Research Computing Platform @ UL

4 Git[Lab] @ UL and VCS

Git[Lab] Around You
About Version Control System (VCS)

5 Git Basics
Installing Git
Git theory
Basic Commands
Branching and Merging

6 Collaborating / Working together

7 Advanced Git Topics
Git Submodules
Rebasing
Using Git over Subversion Repository
More Cool stuff

110 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Creating a Repository

$> git [flow] init

Initializes a new git (flow) repository in the current directory

111 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://github.com/nvie/gitflow

Git Basics

Creating a Repository

$> git [flow] init

Initializes a new git (flow) repository in the current directory

Your Turn!

$> cd /tmp

$> mkdir firstproject

$> cd firstproject

$> git init

Initialized empty Git repository in /private/tmp/firstproject/.git/

111 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://github.com/nvie/gitflow

Git Basics

Cloning a Repository

$> git clone [–-recursive] <url> [<path>]

Type URL Format / Example Port

Local /path/to/project.git n/a
SSH git+ssh://user@server:port/project.git 22
Git git://server/project.git 9418
HTTPS https://github.com/Falkor/falkorlib.git 443

112 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Cloning a Repository

$> git clone [–-recursive] <url> [<path>]

Your Turn!

$> cd /tmp

$> git clone https://github.com/ULHPC/tutorials.git

Cloning into ’tutorials’...

remote: Counting objects: 1247, done.

remote: Compressing objects: 100% (63/63), done.

remote: Total 1247 (delta 32), reused 0 (delta 0), pack-reused 1181

Receiving objects: 100% (1247/1247), 15.74 MiB | 3.08 MiB/s, done.

Resolving deltas: 100% (588/588), done.

Checking connectivity... done.

$> git clone --recursive \

https://github.com/ULHPC/tutorials.git /tmp/tutorials2

113 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Inspecting a Repository

$> git status [-s] # -s: short / simplified output

114 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Inspecting a Repository

$> git status [-s] # -s: short / simplified output

Your Turn!

$> cd /tmp/firstproject

$> git status

On branch master

Initial commit

nothing to commit

Create an empty file

$> touch README.md

$> git status

On branch master

Initial commit

Untracked files:

README

nothing added to commit but untracked

files present

$> git status -s

?? README

114 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Add / Tracking [new] file(s)

$> git add [-f] <pattern>

Adds changes to the index

→֒ Add a specific file: git add README

→֒ Add a set of files: git add *.py

working directory

repository .git/

staging area / index

git add

Beware that empty directory cannot be added directly
→֒ due to the internal file representation (blobs)
→֒ Tips: add an hidden file .empty (or .gitignore)

115 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Add / Tracking [new] file(s)

$> git add [-f] <pattern>

Adds changes to the index

→֒ Add a specific file: git add README

→֒ Add a set of files: git add *.py

working directory

repository .git/

staging area / index

git add

Beware that empty directory cannot be added directly
→֒ due to the internal file representation (blobs)
→֒ Tips: add an hidden file .empty (or .gitignore)

Your Turn!

$> cd /tmp/firstproject

$> git status -s

?? README

$> git add README

$> git status -s

A README

115 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Committing your changes

$> git commit [-s] [-m "msg"]

Commit all changes: git commit -a

working directory

repository .git/

staging area / index

git commit

git add

116 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Committing your changes

$> git commit [-s] [-m "msg"]

Commit all changes: git commit -a

working directory

repository .git/

staging area / index

git commit

git add

Your Turn!

$> cd /tmp/firstproject

$> git commit -s -m "add README" # OR git ci -m "add README"

[master (root-commit) ee60f53] add README

1 file changed, 0 insertions(+), 0 deletions(-)

create mode 100644 README

$> git status # OR git st

On branch master

nothing to commit, working directory cleant

116 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Removing Files

$> git rm [-rf] [–-cached] <file>

--cached: remove from Staging area

→֒ otherwise (default): from index and file system

117 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Ignoring Files

Ignoring files from staging: ‘.gitignore‘

you can create a .gitignore file listing patterns to ignore
→֒ Blank lines or lines starting with \# are ignored
→֒ End pattern with slash (/) to specify a directory
→֒ Negate pattern with exclamation point (!)

Collection of useful .gitignore templates

.DS_Store

*~

*.asv

*.m~

.mex

tmp/*

LATEX.gitignore

Python .gitignore

Ruby .gitignore

118 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://github.com/github/gitignore
https://github.com/github/gitignore/blob/master/TeX.gitignore
https://github.com/github/gitignore/blob/master/Python.gitignore
https://github.com/github/gitignore/blob/master/Ruby.gitignore

Git Basics

Moving Files

$> git mv <source> <destination> # Equivalent of:

mv <source> <destination>

git rm <source>

git add <destination>

119 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Moving Files

$> git mv <source> <destination> # Equivalent of:

mv <source> <destination>

git rm <source>

git add <destination>

Your Turn!

$> cd /tmp/firstproject

$> git mv README README.md

$> git status

On branch master

Changes to be committed:

renamed: README -> README.md

$> git commit -m "a first move"

119 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Check the Commit History

$> git log [-p] [–-stat] [–-graph –-oneline –-decorate]

-p / --stat: show the differences introduced in each commit
You can also perform some date filtering

$> git log –-since=2.weeks

Ncurses-based text-mode interface: tig

120 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://github.com/jonas/tig

Git Basics

Check the Commit History

$> git log [-p] [–-stat] [–-graph –-oneline –-decorate]

-p / --stat: show the differences introduced in each commit
You can also perform some date filtering

$> git log –-since=2.weeks

Ncurses-based text-mode interface: tig

Your Turn!

$> cd /tmp/firstproject

$> git log --oneline --graph --decorate # OR git gr

* f1f0c27 (HEAD -> master) a first move

* ee60f53 add README

$> git log -p -1 # only the last commit OR git show

$> tig

120 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://github.com/jonas/tig

Git Basics

Show differences

$> git diff [–-cached] [<ref>]

Check un-staged changes: git diff

→֒ --cached: check staged changes

Relative to a specific revision:

$> git diff 1776f5

$> git diff HEADˆ

121 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Undoing Things

$> git commit –-amend # Change the last commit

122 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Undoing Things

$> git commit –-amend # Change the last commit

$> git unstage <file> # or git reset HEAD <file>

122 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Undoing Things

$> git commit –-amend # Change the last commit

$> git unstage <file> # or git reset HEAD <file>

$> git checkout –- <file> # DANGER! Un-modify modified file

Restore to the last committed/cloned version: all changes are lost!

122 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Undoing Things

$> git commit –-amend # Change the last commit

$> git unstage <file> # or git reset HEAD <file>

$> git checkout –- <file> # DANGER! Un-modify modified file

$> git revert <commit> # revert a <commit>

Make a new commit that undoes all changes made in <commit>

122 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Undoing Things

$> git commit –-amend # Change the last commit

$> git unstage <file> # or git reset HEAD <file>

$> git checkout –- <file> # DANGER! Un-modify modified file

$> git revert <commit> # revert a <commit>

Your Turn!

$> cd /tmp/firstproject

$> git commit --amend

$> echo ’toto’ >> README.md

$> cat README.md && git status

$> git checkout -- README

$> git status

122 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Summary

Basic Workflow

Edit files vim / emacs / subl . . .
Stage the changes git add

Review your changes git status

Commit the changes git commit

123 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Summary

For cheaters: A Basicerer Workflow

Edit files vim / emacs / subl . . .
Stage & commit the changes git commit -a

124 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Summary

For cheaters: A Basicerer Workflow

Edit files vim / emacs / subl . . .
Stage & commit the changes git commit -a

Advices

Commit early, commit often!
→֒ commits = save points
→֒ use descriptive commit messages

Don’t get out of sync with your collaborators
Commit the sources, not the derived files

124 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Summary

1 Introduction
Agenda
Overview of managed IT Infrastructure

2 IT/Dev[op]s Army Knives Tools
SSH Secure Shell
PGP / GPG: Gnu Privacy Guard
Vagrant
Puppet
Ruby / Python / Markdown-based Documentations
Password Management

3 Research Computing Platform @ UL

4 Git[Lab] @ UL and VCS

Git[Lab] Around You
About Version Control System (VCS)

5 Git Basics
Installing Git
Git theory
Basic Commands
Branching and Merging

6 Collaborating / Working together

7 Advanced Git Topics
Git Submodules
Rebasing
Using Git over Subversion Repository
More Cool stuff

125 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Data Model

blob

branch

HEAD

commit

remote

tree

tag

Immutable objects

→֒ Blob: File content
→֒ Tree: Directory List
→֒ Commit: Pointer to a snapshot / tree
→֒ Tag: Pointer to commit

Git Branch: Lighweight, movable pointer
to a commit (HEAD: current branch)

blob

commit

tree C1}
branch branch

126 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Data Model Example

hello.c

#include <stdio.h>

int main(void) {

 printf(“Hello\n”);

 return 0;

}

‘Hello’ Project

====================

This is Seb’s first

Git project

Licenced under GPL

README.md

127 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Data Model Example

‘Hello’ Project

====================

This is Seb’s first

Git project

Licenced under GPL

c3db2

(Compress)
Checksum

hello.c

#include <stdio.h>

int main(void) {

 printf(“Hello\n”);

 return 0;

}

‘Hello’ Project

====================

This is Seb’s first

Git project

Licenced under GPL

README.md

127 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Data Model Example

Blob = File Content

B
lo

b

‘Hello’ Project

====================

This is Seb’s first

Git project

Licenced under GPL

c3db2

(Compress)
Checksum

hello.c

#include <stdio.h>

int main(void) {

 printf(“Hello\n”);

 return 0;

}

‘Hello’ Project

====================

This is Seb’s first

Git project

Licenced under GPL

README.md

127 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Data Model Example

#include <stdio.h>

int main(void) {

 printf(“Hello\n”);

 return 0;

}

f13eb

‘Hello’ Project

====================

This is Seb’s first

Git project

Licenced under GPL

c3db2

(Compress)
Checksum

hello.c

#include <stdio.h>

int main(void) {

 printf(“Hello\n”);

 return 0;

}

‘Hello’ Project

====================

This is Seb’s first

Git project

Licenced under GPL

README.md

127 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Data Model Example

./

!"" hello.c f13eb

#"" README.md c3db2

1a738

#include <stdio.h>

int main(void) {

 printf(“Hello\n”);

 return 0;

}

f13eb

‘Hello’ Project

====================

This is Seb’s first

Git project

Licenced under GPL

c3db2

hello.c

#include <stdio.h>

int main(void) {

 printf(“Hello\n”);

 return 0;

}

‘Hello’ Project

====================

This is Seb’s first

Git project

Licenced under GPL

README.md

127 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Data Model Example

Tree = List of trees AND blobs

T
r
e

e ./

!"" hello.c f13eb

#"" README.md c3db2

1a738

#include <stdio.h>

int main(void) {

 printf(“Hello\n”);

 return 0;

}

f13eb

‘Hello’ Project

====================

This is Seb’s first

Git project

Licenced under GPL

c3db2

hello.c

#include <stdio.h>

int main(void) {

 printf(“Hello\n”);

 return 0;

}

‘Hello’ Project

====================

This is Seb’s first

Git project

Licenced under GPL

README.md

127 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Data Model Example

commit A

a11bef

./

!"" hello.c f13eb

#"" README.md c3db2

1a738

#include <stdio.h>

int main(void) {

 printf(“Hello\n”);

 return 0;

}

f13eb

‘Hello’ Project

====================

This is Seb’s first

Git project

Licenced under GPL

c3db2

hello.c

#include <stdio.h>

int main(void) {

 printf(“Hello\n”);

 return 0;

}

‘Hello’ Project

====================

This is Seb’s first

Git project

Licenced under GPL

README.md

127 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Data Model Example

commit A

a11bef

./

!"" hello.c f13eb

#"" README.md c3db2

1a738

#include <stdio.h>

int main(void) {

 printf(“Hello\n”);

 return 0;

}

f13eb

‘Hello’ Project

====================

This is Seb’s first

Git project

Licenced under GPL

c3db2

hello.c

#include <stdio.h>

int main(void) {

 printf(“Hello\n”);

 return 0;

}

‘Hello’ Project

====================

This is Seb’s first

Git project

Licenced under GPL

README.md

127 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Data Model Example

Commit = Pointer to a Tree

commit size

a11bef..

tree

parent

author

committer
commit A - that’s my first

super cool commit message.

1a738

NULL

svarrette

svarrette

commit A

a11bef

./

!"" hello.c f13eb

#"" README.md c3db2

1a738

#include <stdio.h>

int main(void) {

 printf(“Hello\n”);

 return 0;

}

f13eb

‘Hello’ Project

====================

This is Seb’s first

Git project

Licenced under GPL

c3db2

hello.c

#include <stdio.h>

int main(void) {

 printf(“Hello\n”);

 return 0;

}

‘Hello’ Project

====================

This is Seb’s first

Git project

Licenced under GPL

README.md

127 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Data Model Example

commit A

a11bef

./

!"" hello.c f13eb

#"" README.md c3db2

1a738

#include <stdio.h>

int main(void) {

 printf(“Hello\n”);

 return 0;

}

f13eb

‘Hello’ Project

====================

This is Seb’s first

Git project

Licenced under GPL

c3db2

hello.c

#include <stdio.h>

int main(void) {

 printf(“Hello\n”);

 return 0;

}

‘Hello’ Project

====================

This is Seb’s first

Git project

Licenced under GPL

README.md

127 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Data Model Example

commit A

a11bef

./

!"" hello.c f13eb

#"" README.md c3db2

1a738

#include <stdio.h>

int main(void) {

 printf(“Hello\n”);

 return 0;

}

f13eb

‘Hello’ Project

====================

This is Seb’s first

Git project

Licenced under GPL

c3db2

#include <stdio.h>

int main(void) {

 printf(“Hi\n”);

 return 0;

}

hello.c

‘Hello’ Project

====================

This is Seb’s first

Git project

Licenced under GPL

README.md

127 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Data Model Example

#include <stdio.h>

int main(void) {

 printf(“Hi\n”);

 return 0;

}

6d4a1

(Compress)
Checksum

commit A

a11bef

./

!"" hello.c f13eb

#"" README.md c3db2

1a738

#include <stdio.h>

int main(void) {

 printf(“Hello\n”);

 return 0;

}

f13eb

‘Hello’ Project

====================

This is Seb’s first

Git project

Licenced under GPL

c3db2

#include <stdio.h>

int main(void) {

 printf(“Hi\n”);

 return 0;

}

hello.c

‘Hello’ Project

====================

This is Seb’s first

Git project

Licenced under GPL

README.md

127 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Data Model Example

#include <stdio.h>

int main(void) {

 printf(“Hi\n”);

 return 0;

}

6d4a1

./

!"" hello.c 6d4a1

#"" README.md c3db2

b456a

commit A

a11bef

./

!"" hello.c f13eb

#"" README.md c3db2

1a738

#include <stdio.h>

int main(void) {

 printf(“Hello\n”);

 return 0;

}

f13eb

‘Hello’ Project

====================

This is Seb’s first

Git project

Licenced under GPL

c3db2

#include <stdio.h>

int main(void) {

 printf(“Hi\n”);

 return 0;

}

hello.c

‘Hello’ Project

====================

This is Seb’s first

Git project

Licenced under GPL

README.md

127 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Data Model Example

commit B

32cc5

#include <stdio.h>

int main(void) {

 printf(“Hi\n”);

 return 0;

}

6d4a1

./

!"" hello.c 6d4a1

#"" README.md c3db2

b456a

commit A

a11bef

./

!"" hello.c f13eb

#"" README.md c3db2

1a738

#include <stdio.h>

int main(void) {

 printf(“Hello\n”);

 return 0;

}

f13eb

‘Hello’ Project

====================

This is Seb’s first

Git project

Licenced under GPL

c3db2

#include <stdio.h>

int main(void) {

 printf(“Hi\n”);

 return 0;

}

hello.c

‘Hello’ Project

====================

This is Seb’s first

Git project

Licenced under GPL

README.md

127 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Data Model Example

commit B

32cc5

#include <stdio.h>

int main(void) {

 printf(“Hi\n”);

 return 0;

}

6d4a1

./

!"" hello.c 6d4a1

#"" README.md c3db2

b456a

commit A

a11bef

./

!"" hello.c f13eb

#"" README.md c3db2

1a738

#include <stdio.h>

int main(void) {

 printf(“Hello\n”);

 return 0;

}

f13eb

‘Hello’ Project

====================

This is Seb’s first

Git project

Licenced under GPL

c3db2

#include <stdio.h>

int main(void) {

 printf(“Hi\n”);

 return 0;

}

hello.c

‘Hello’ Project

====================

This is Seb’s first

Git project

Licenced under GPL

README.md

127 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Data Model Example

commit B

32cc5

#include <stdio.h>

int main(void) {

 printf(“Hi\n”);

 return 0;

}

6d4a1

./

!"" hello.c 6d4a1

#"" README.md c3db2

b456a

commit A

a11bef

./

!"" hello.c f13eb

#"" README.md c3db2

1a738

#include <stdio.h>

int main(void) {

 printf(“Hello\n”);

 return 0;

}

f13eb

‘Hello’ Project

====================

This is Seb’s first

Git project

Licenced under GPL

c3db2

#include <stdio.h>

int main(void) {

 printf(“Hi\n”);

 return 0;

}

hello.c

‘Hello’ Project

====================

This is Seb’s first

Git project

Licenced under GPL

README.md

127 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Data Model Example

commit B

32cc5

#include <stdio.h>

int main(void) {

 printf(“Hi\n”);

 return 0;

}

6d4a1

./

!"" hello.c 6d4a1

#"" README.md c3db2

b456a

‘Hello’ Project

====================

This is Seb’s first

Git project

Licenced under GPL

c3db2

#include <stdio.h>

int main(void) {

 printf(“Hi\n”);

 return 0;

}

hello.c

‘Hello’ Project

====================

This is Seb’s first

Git project

Licenced under GPL

README.md

127 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Data Model Example

mastercommit B

32cc5

#include <stdio.h>

int main(void) {

 printf(“Hi\n”);

 return 0;

}

6d4a1

./

!"" hello.c 6d4a1

#"" README.md c3db2

b456a

‘Hello’ Project

====================

This is Seb’s first

Git project

Licenced under GPL

c3db2

#include <stdio.h>

int main(void) {

 printf(“Hi\n”);

 return 0;

}

hello.c

‘Hello’ Project

====================

This is Seb’s first

Git project

Licenced under GPL

README.md

127 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Data Model Example

Branch

Branch = pointer to a

commit
mastercommit B

32cc5

#include <stdio.h>

int main(void) {

 printf(“Hi\n”);

 return 0;

}

6d4a1

./

!"" hello.c 6d4a1

#"" README.md c3db2

b456a

‘Hello’ Project

====================

This is Seb’s first

Git project

Licenced under GPL

c3db2

#include <stdio.h>

int main(void) {

 printf(“Hi\n”);

 return 0;

}

hello.c

‘Hello’ Project

====================

This is Seb’s first

Git project

Licenced under GPL

README.md

127 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Data Model Example

HEAD

mastercommit B

32cc5

#include <stdio.h>

int main(void) {

 printf(“Hi\n”);

 return 0;

}

6d4a1

./

!"" hello.c 6d4a1

#"" README.md c3db2

b456a

commit A

a11bef

./

!"" hello.c f13eb

#"" README.md c3db2

1a738

#include <stdio.h>

int main(void) {

 printf(“Hello\n”);

 return 0;

}

f13eb

‘Hello’ Project

====================

This is Seb’s first

Git project

Licenced under GPL

c3db2

#include <stdio.h>

int main(void) {

 printf(“Hi\n”);

 return 0;

}

hello.c

‘Hello’ Project

====================

This is Seb’s first

Git project

Licenced under GPL

README.md

127 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Branching

$> git branch <name> # create a branch <name>

128 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Branching

$> git branch <name> # create a branch <name>

$> git branch -d <name> # delete the branch <name>

use -D instead of -d to force deletion

128 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Branching

$> git branch <name> # create a branch <name>

$> git branch -d <name> # delete the branch <name>

$> git branch [-a] # List [all] the branches

128 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Branching

$> git branch <name> # create a branch <name>

$> git branch -d <name> # delete the branch <name>

$> git branch [-a] # List [all] the branches

$> git checkout [-b] <name> # swicth to the branch <name>

-b: create the branch before switching
changes commited through git commit are committed to HEAD

128 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Branching

$> git branch <name> # create a branch <name>

$> git branch -d <name> # delete the branch <name>

$> git branch [-a] # List [all] the branches

$> git checkout [-b] <name> # swicth to the branch <name>

Switching branches changes the files in your Working directory

→֒ since you change the HEAD snapshot. . .

128 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Tags

$> git tag [-s] <name> [-m ’msg’]

-s: GPG-signed tag, assuming you have configured your signing key

$> git config –-global user.signingkey 0xDD01D5C1

129 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Tags

$> git tag [-s] <name> [-m ’msg’]

-s: GPG-signed tag, assuming you have configured your signing key

$> git config –-global user.signingkey 0xDD01D5C1

Your Turn!

129 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Branch and Tags Hands-on

$> cd /tmp/firstproject

$> git branch

* master

$> git tag v1.0 -m ’first tag’

$> git gr

* f31c173 (HEAD -> master, tag: v1.0) a first move with amend

* ee60f53 add README

$> git branch testing

$> git checkout testing # Move to the ’testing’ branch

$> echo ’testing’ >> README.md && git commit -a -m "testing 1"

[testing 7afa96d] testing 1

1 file changed, 1 insertion(+)

$> git checkout master # return to ’master’

$> echo ’master’ >> README.md && git commit -a -m "master"

[master 72d4d5f] master

1 file changed, 1 insertion(+)

$> git gr

$> gitx # or gitk

130 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Daily Branching Example

Snapshot A Snapshot B Snapshot C

98ca9 34ac2 f30ab

master

HEAD

v1.0

131 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Daily Branching Example

98ca9 34ac2 f30ab

master

HEAD

131 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Daily Branching Example

(master)$> git branch testing # create a branch named ’testing’

98ca9 34ac2 f30ab

master

HEAD

testing

131 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Daily Branching Example

(master)$> git checkout testing # switch to the ’testing’ branch

98ca9 34ac2 f30ab

master

HEAD

testing

131 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Daily Branching Example
(testing)$> vim README.md # make some edits...

(testing)$> git commit -a -m "made a change" # and commit them

98ca9 34ac2 f30ab

master

testing

c2b9e

HEAD

131 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Daily Branching Example

(testing)$> git checkout master # switch back to ’master’ branch

98ca9 34ac2 f30ab

master

HEAD

testing testing

c2b9e

131 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Daily Branching Example
(testing)$> vim README.md # make some edits

(testing)$> git commit -a -m "intro" # introduce divergence!

87ab2

98ca9 34ac2 f30ab

c2b9e

testing

master
DIVERGENCE

HEAD

131 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Diverging / Converging (Fork-Join)

Diverging

Changes are committed into two
branches independently

→֒ Then the branches diverge
87ab2

98ca9 34ac2 f30ab

c2b9e

testing

master

HEAD

132 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Diverging / Converging (Fork-Join)

Diverging

Changes are committed into two
branches independently

→֒ Then the branches diverge
87ab2

98ca9 34ac2 f30ab

c2b9e

testing

master

HEAD

Converging to join branches

11 merge (if possible in fast-forward mode)

22 rebase

132 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Merging

$> git merge [–-no-ff] <branch>

Different auto-merge strategies

→֒ fast-forward (if possible)
→֒ 3-ways (regular)

Usually painless ;)

133 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Merging

$> git merge [–-no-ff] <branch>

Different auto-merge strategies

→֒ fast-forward (if possible)
→֒ 3-ways (regular)

Usually painless ;)

<<<<<<< HEAD

master

=======

testing

>>>>>>> testing

In case of conflicts:

→֒ Resolve the conflicts manually vim / emacs / subl . . .

X check for the sequence <<< in the text

→֒ then mark as resolved git add <file>

→֒ and trigger the merge commit git commit

133 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Daily Branching Example

87ab2

98ca9 34ac2 f30ab

c2b9e

testing

master

HEAD

134 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Daily Branching Example
(master)$> git checkout -b hotfix # create and switch to ’hotfix’

(hotfix)$> vim test.rb # make some edits...

(hotfix)$> git commit -a -m "hotfix" # and commit them

87ab2

98ca9 34ac2 f30ab

c2b9e

testing

master

HEAD

ab126

hotfix

134 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Daily Branching Example

(hotfix)$> git checkout master # swicth back to ’master’ branch

87ab2

98ca9 34ac2 f30ab

c2b9e

testing

master

HEAD

ab126

hotfix

134 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Daily Branching Example

(master)$> git merge hotfix # merge the ’hotfix’ branch (fast-forward)

Common Ancestor

87ab2

98ca9 34ac2 f30ab

c2b9e

testing

master

HEAD

ab126

hotfix

134 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Daily Branching Example

(master)$> git merge hotfix # merge the ’hotfix’ branch (fast-forward)

87ab2

98ca9 34ac2 f30ab

c2b9e

testing

Fast Forward Merge
Does not create a new commit

Only moves forward the pointer

HEAD

ab126

hotfix

master

134 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Daily Branching Example

87ab2

98ca9 34ac2 f30ab

c2b9e

testing

HEAD

ab126

hotfix

master

134 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Daily Branching Example

(master)$> git branch -d hotfix # delete the (useless) ’hotfix’ branch

87ab2

98ca9 34ac2 f30ab

c2b9e

testing

HEAD

ab126

hotfix

master

134 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Daily Branching Example

(master)$> git branch -d hotfix # delete the (useless) ’hotfix’ branch

87ab2

98ca9 34ac2 f30ab

c2b9e

testing

HEAD

ab126

master

134 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Daily Branching Example

87ab2

98ca9 34ac2 f30ab

c2b9e

HEAD

ab126

master

1ff54

testing

134 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Daily Branching Example

(master)$> git merge testing # merge the ’testing’ branch (3-ways)

Common Ancestor

87ab2

98ca9 34ac2 f30ab

c2b9e

HEAD

ab126

master

1ff54

testing

Snapshot to

Merge INTO

Snapshot to

Merge In

134 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Daily Branching Example

(master)$> git merge testing # merge the ’testing’ branch (3-ways)

87ab2

98ca9 34ac2 f30ab

c2b9e

3-ways Merge

Creates a new commit

Can be forced using --no-ff

HEAD

ab126

1ff54

testing

b433a

master

134 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Daily Branching Example

(master)$> git merge testing # merge the ’testing’ branch (3-ways)

87ab2

98ca9 34ac2 f30ab

c2b9e

HEAD

ab126

1ff54

testing

b433a

master

134 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Merging and solving conflicts Hands-on

Your Turn!

135 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Merging and solving conflicts Hands-on

$> cd /tmp/firstproject

$> git checkout master

Switched to branch ’master’

$> git checkout -b hotfix

Switched to a new branch ’hotfix’

$> touch test.rb && git add test.rb && git commit -m "hotfix"

[hotfix ac188bd] hotfix

1 file changed, 0 insertions(+), 0 deletions(-)

create mode 100644 test.rb

$> git checkout master

Switched to branch ’master’

$> git gr

* 72d4d5f (HEAD -> master) master

* f31c173 (tag: v1.0) a first move with amend

* ee60f53 add README

135 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Merging and solving conflicts Hands-on

Fast-Forward Merge

$> git merge hotfix

Updating 72d4d5f..ac188bd

Fast-forward

test.rb | 0

1 file changed, 0 insertions(+), 0 deletions(-)

create mode 100644 test.rb

$> git gr

* ac188bd (HEAD -> master, hotfix) hotfix

* 72d4d5f master

* f31c173 (tag: v1.0) a first move with amend

* ee60f53 add README

$> git branch -d hotfix

Deleted branch hotfix (was ac188bd)

135 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Merging and solving conflicts Hands-on

Solving conflicts

$> git merge testing

CONFLICT (content): Merge conflict in README.md

Automatic merge failed; fix conflicts and then commit the result.

$> cat README.md

<<<<<<< HEAD

master

=======

testing

>>>>>>> testing

$> vim README.md # Edit to solve the conflicts

$> cat README.md

master corrected

135 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Merging and solving conflicts Hands-on

Solving conflicts

$> git status # OR git st

On branch master

You have unmerged paths.

Unmerged paths:

both modified: README.md

no changes added to commit

135 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Merging and solving conflicts Hands-on

Solving conflicts and 3-way merge

$> git add README.md # Mark as corrected / conflict solved

$> git commit

Recorded resolution for ’README.md’.

[master ef299b7] Merge branch ’testing’

$> git gr

* ef299b7 (HEAD -> master) Merge branch ’testing’

|\

| * 7afa96d (testing) testing 1

* | ac188bd hotfix

* | 72d4d5f master

|/

* f31c173 (tag: v1.0) a first move with amend

* ee60f53 add README

135 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Branching Workflow

C1 C2 C3 C4 C5 C6 C7

production master feature/topic

136 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Branching Workflow

production

master

feature/topic

C1

C2 C3 C4 C5

C6 C7

136 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Branching Workflow

production

master

feature/topic

feature/sc2015

136 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Git Basics

Git-flow to the rescue

http://nvie.com/posts/a-successful-git-branching-model/

$> git flow init

$> git flow feature { start, publish, finish } <name>

$> git flow release { start, publish, finish } <version>

Ensure two long running branches
→֒ production : the stable branch

X ideally holding only tags of the successive releases

→֒ master / devel: the main branch where the developments occurs

On demand: make a new feature branch feature/<name>

From time to time, release your code into production and tag

137 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://github.com/nvie/gitflow
http://nvie.com/posts/a-successful-git-branching-model/

Git Basics

Git-flow Illustrated [Source : Nvie]

T
im
e

release

branches production
master or

devel
hotfixes

feature

branches

Feature
for future
release

Tag

1.0

Major feature
for next
release

From this point on,
“next release”

means the release
after 1.0

Severe bug

fixed for

production:

hotfix 0.2

Bugfixes from
rel. branch may
be continuously

merged back
into devel

Tag

0.1

Tag

0.2

Incorporate
bugfix in
develop

Only

bugfixes!

Start of

release

branch for

1.0

138 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://github.com/nvie/gitflow
http://nvie.com/posts/a-successful-git-branching-model/

Git Basics

Git-flow Setup using FalkorLib

Initiate a Git-flow-ready repository using FalkorLib

→֒ [Personnal] Ruby Library offering the falkor binary

$> falkor new repo [–-rake] # setup the current directory

The repository is fed with a root Makefile (or Rakefile)

→֒ facilitate repository setup upon cloning

$> git clone <url> && cd <cloned_dir>

$> make setup

→֒ project releasing using Git-flow made easy

$> make start_bump_{major,minor,patch} # bump version with git-flow

$> make release

139 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://github.com/nvie/gitflow
https://github.com/Falkor/falkorlib
https://github.com/nvie/gitflow
https://github.com/Falkor/falkorlib
https://github.com/nvie/gitflow
https://github.com/nvie/gitflow

Collaborating / Working together

Summary

1 Introduction
Agenda
Overview of managed IT Infrastructure

2 IT/Dev[op]s Army Knives Tools
SSH Secure Shell
PGP / GPG: Gnu Privacy Guard
Vagrant
Puppet
Ruby / Python / Markdown-based Documentations
Password Management

3 Research Computing Platform @ UL

4 Git[Lab] @ UL and VCS

Git[Lab] Around You
About Version Control System (VCS)

5 Git Basics
Installing Git
Git theory
Basic Commands
Branching and Merging

6 Collaborating / Working together

7 Advanced Git Topics
Git Submodules
Rebasing
Using Git over Subversion Repository
More Cool stuff

140 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Collaborating / Working together

Working Together

Sign-up on Github

→֒ http://github.com

→֒ Best place to share public repository

141 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://github.com
http://github.com
https://gitlabuni.lu/
https://gitlab.uni.lu
https://github.com/sitaramc/gitolite
https://github.com/sitaramc/gitolite

Collaborating / Working together

Working Together

Sign-up on Github

→֒ http://github.com

→֒ Best place to share public repository

Alternative for private projects:

→֒ Gitlab @ Uni.lu https://gitlab.uni.lu

141 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://github.com
http://github.com
https://gitlabuni.lu/
https://gitlab.uni.lu
https://github.com/sitaramc/gitolite
https://github.com/sitaramc/gitolite

Collaborating / Working together

Working Together

Sign-up on Github

→֒ http://github.com

→֒ Best place to share public repository

Alternative for private projects:

→֒ Gitlab @ Uni.lu https://gitlab.uni.lu

Setup your own Git server: gitolite https://github.com/sitaramc/gitolite

→֒ Management through the gitolite-admins Git repository (!)
→֒ A single user (git) to interact with all repositories

X map users though their (multiple) SSH keys
X fine-grained access control

141 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://github.com
http://github.com
https://gitlabuni.lu/
https://gitlab.uni.lu
https://github.com/sitaramc/gitolite
https://github.com/sitaramc/gitolite

Collaborating / Working together

Working with remotes

git directory

(repository)

remote

repo

staging

area

working

directory

git add

git commit

git push

git fetch / git pull

git merge

git checkout

Local Remote

142 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Collaborating / Working together

Remotes

$> git remote [-v]

Other clones of the same repository
→֒ Can be local (another checkout) or remote (coworker, central server)
→֒ default remotes for push and pull actions: origin

X origin is set upon clone

143 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Collaborating / Working together

Remotes

$> git remote [-v]

Other clones of the same repository
→֒ Can be local (another checkout) or remote (coworker, central server)
→֒ default remotes for push and pull actions: origin

X origin is set upon clone

Your Turn!

$> cd /tmp/tutorials

$> git remote

origin

$> git remote -v

origin https://github.com/ULHPC/tutorials.git (fetch)

origin https://github.com/ULHPC/tutorials.git (push)

143 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Collaborating / Working together

Adding Remotes

$> git remote add <name> <url>

144 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

(https://help.github.com/articles/fork-a-repo/)
https://github.com/ULHPC/tutorials

Collaborating / Working together

Adding Remotes

$> git remote add <name> <url>

Your Turn!

Fork the ULHPC/tutorials (as <yourlogin>/tutorials)
Clone and add the upstream remote to the original repository

$> git clone https://github.com/<yourlogin>/tutorials.git /tmp/fork

$> cd /tmp/fork

$> git remote add upstream https://github.com/ULHPC/tutorials.git

$> git remote -v

origin https://github.com/<yourlogin>/tutorials.git (fetch)

origin https://github.com/<yourlogin>/tutorials.git (push)

upstream https://github.com/ULHPC/tutorials.git (fetch)

upstream https://github.com/ULHPC/tutorials.git (push)

144 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

(https://help.github.com/articles/fork-a-repo/)
https://github.com/ULHPC/tutorials

Collaborating / Working together

Removing Remotes

$> git remote rm <name>

145 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Collaborating / Working together

Removing Remotes

$> git remote rm <name>

Your Turn!

$> cd /tmp/fork

$> git remote

origin

upstream

$> git remove rm upstream

145 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Collaborating / Working together

Remote Branches

Branches on remotes are represented locally as: <remote>/<branch>

→֒ Ex: origin/master

146 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Collaborating / Working together

Remote Branches

Branches on remotes are represented locally as: <remote>/<branch>

→֒ Ex: origin/master

Tracking Remote Branches

You can track a remote branch <remote>/<branch>

→֒ assuming you have previously fetch the remote origin

→֒ creates the local branch <branch>

$> git branch –-track <branch> origin/<branch>

146 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Collaborating / Working together

Tracking Remote Branches

$> git branch –-track <branch> origin/<branch>

Your Turn!

$> cd /tmp/tutorials

$> git branch -a

* devel

remotes/origin/HEAD -> origin/devel

remotes/origin/devel

remotes/origin/production

$> git branch --track production origin/production

Branch production set up to track remote branch production from

origin.

$> git branch

* devel

production

147 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Collaborating / Working together

Pushing to your remote

$> git push [<remote>]

Transfer local commits of the current branch to a remote.
→֒ push to origin by default, assuming the current branch is tracked

148 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Collaborating / Working together

Pushing to your remote

$> git push [<remote>]

Transfer local commits of the current branch to a remote.
→֒ push to origin by default, assuming the current branch is tracked

Your Turn!

$> cd /tmp/fork

$> git remote

origin

upstream

$> touch new-file

$> git add new-file

$> git commit -m "add"

$> git push

Counting objects: 10, done.

Delta compression using up to 8 threads.

Compressing objects: 100% (6/6), done.

Writing objects: 100% (10/10), done.

Total 10 (delta 4), reused 0 (delta 0)

To git@github.com:<yourlogin>/documents.git

671eb88..c798919 devel -> devel

148 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Collaborating / Working together

Pulling from remotes

$> git pull [–-rebase] [<remote>] # –-rebase = DANGER!

fetch all commits from the remote and merge (or rebase)
→֒ allows for easy to use, equivalent to the advanced alternative:

$> git fetch [<remote>]

$> git merge <remote>/<branch> # ’git rebase’ if –-rebase

→֒ fetch: allows for inspection and manual merging of remote changes

149 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Collaborating / Working together

Pulling from remotes

$> git pull [–-rebase] [<remote>] # –-rebase = DANGER!

fetch all commits from the remote and merge (or rebase)
→֒ allows for easy to use, equivalent to the advanced alternative:

$> git fetch [<remote>]

$> git merge <remote>/<branch> # ’git rebase’ if –-rebase

→֒ fetch: allows for inspection and manual merging of remote changes

Your Turn!

$> cd /tmp/tutorials

$> git pull # OR git up

Updating ae97dae..06576e0

[...]

2 files changed, 4 insertions(+), 5 deletions(-)

149 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Collaborating / Working together

Publish a (local) branch on a remote

$> git push -u origin <branch>

$> git flow feature publish <name>

150 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Collaborating / Working together

Publish a (local) branch on a remote

$> git push -u origin <branch>

$> git flow feature publish <name>

If you want to delete a remote branch

$> git push origin –-delete <branch> # DANGER!

150 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Collaborating / Working together

Publish a (local) branch on a remote

$> git push -u origin <branch>

$> git flow feature publish <name>

If you want to delete a remote branch

$> git push origin –-delete <branch> # DANGER!

Your Turn!

$> cd /tmp/fork

$> git flow feature start toto

$> git flow feature publish toto

$> git branch -a

$> git push origin --delete \

feature/toto

150 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Collaborating / Working together

Putting it all together

gitlab.uni.lu

a6b4c0b743

master

f42c5

151 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Collaborating / Working together

Putting it all together

gitlab.uni.lu

My Computer

a6b4c0b743

master

f42c5

a6b4c0b743

origin/master

f42c5

git clone git+ssh://git@gitlab.uni.lu/project.git

master

Remote Branch

Local Branch

151 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Collaborating / Working together

Putting it all together

gitlab.uni.lu

My Computer

a6b4c0b743

master

f42c5

a6b4c0b743

origin/master

f42c5

master

a38de 893cf

31b8e 190a3 Someone else pushes

151 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Collaborating / Working together

Putting it all together

gitlab.uni.lu

My Computer

a6b4c0b743

master

f42c5

a6b4c0b743

origin/master

f42c5

master

a38de 893cf

31b8e 190a3

git fetch origin

31b8e 190a3

151 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Collaborating / Working together

Putting it all together

gitlab.uni.lu

My Computer

master

f42c5

a6b4c0b743

origin/master

f42c5

master

a38de 893cf

31b8e 190a3

31b8e 190a3

origin

gitlab-lcsb.uni.lu

master

f42c5 31b8e

teamone

git remote add teamone git://gitlab-lcsb.uni.lu

151 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Collaborating / Working together

Putting it all together

My Computer

master

f42c5

a6b4c0b743

origin/master

f42c5

master

a38de 893cf

31b8e 190a3

31b8e 190a3

origin

master

f42c5 31b8e

teamone

git fetch teamone

teamone/master

gitlab.uni.lu gitlab-lcsb.uni.lu

151 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Advanced Git Topics

Summary

1 Introduction
Agenda
Overview of managed IT Infrastructure

2 IT/Dev[op]s Army Knives Tools
SSH Secure Shell
PGP / GPG: Gnu Privacy Guard
Vagrant
Puppet
Ruby / Python / Markdown-based Documentations
Password Management

3 Research Computing Platform @ UL

4 Git[Lab] @ UL and VCS

Git[Lab] Around You
About Version Control System (VCS)

5 Git Basics
Installing Git
Git theory
Basic Commands
Branching and Merging

6 Collaborating / Working together

7 Advanced Git Topics
Git Submodules
Rebasing
Using Git over Subversion Repository
More Cool stuff

152 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Advanced Git Topics

Summary

1 Introduction
Agenda
Overview of managed IT Infrastructure

2 IT/Dev[op]s Army Knives Tools
SSH Secure Shell
PGP / GPG: Gnu Privacy Guard
Vagrant
Puppet
Ruby / Python / Markdown-based Documentations
Password Management

3 Research Computing Platform @ UL

4 Git[Lab] @ UL and VCS

Git[Lab] Around You
About Version Control System (VCS)

5 Git Basics
Installing Git
Git theory
Basic Commands
Branching and Merging

6 Collaborating / Working together

7 Advanced Git Topics
Git Submodules
Rebasing
Using Git over Subversion Repository
More Cool stuff

153 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Advanced Git Topics

Git Submodules

$> git submodule add [-b <branch>] <url> <subdir>

Git submodule: repository nested within another repository.
→֒ see it as a read-only snapshot
→֒ make symbolic links to the submodules files

State saved in .gitmodules (git root directory)

[submodule ".submodules/Makefiles"]

path = .submodules/Makefiles

url = https://github.com/Falkor/Makefiles

Explicit initialization is mandatory
→֒ before cloning git clone --recursive

→֒ after cloning git submodule init && git submodule update

154 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Advanced Git Topics

Git Submodules - Update

$> git submodule add \

https://github.com/Falkor/Makefiles .submodules/Makefiles

You might need to update the submodules after fetch / pull

You might wish to upgrade the submodules to the latest version

$> git submodule init

$> git submodule update

$> git submodule foreach \

’git fetch origin; \

git checkout $(git rev-parse --abbrev-ref HEAD); \

git reset --hard origin/$(git rev-parse --abbrev-ref HEAD); \

git submodule update --recursive; git clean -dfx’

See make upgrade of this Makefile for repositories

155 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://github.com/Falkor/Makefiles/blob/devel/repo/Makefile

Advanced Git Topics

Summary

1 Introduction
Agenda
Overview of managed IT Infrastructure

2 IT/Dev[op]s Army Knives Tools
SSH Secure Shell
PGP / GPG: Gnu Privacy Guard
Vagrant
Puppet
Ruby / Python / Markdown-based Documentations
Password Management

3 Research Computing Platform @ UL

4 Git[Lab] @ UL and VCS

Git[Lab] Around You
About Version Control System (VCS)

5 Git Basics
Installing Git
Git theory
Basic Commands
Branching and Merging

6 Collaborating / Working together

7 Advanced Git Topics
Git Submodules
Rebasing
Using Git over Subversion Repository
More Cool stuff

156 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Advanced Git Topics

Rebasing

$> git rebase <branch> # DANGER! Rewrites the tree

Basic (3-ways) merging via git merge creates a new commit

C1C0 C2 C3

C4

experiment

master

(master)$> git merge experiment

157 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Advanced Git Topics

Rebasing

$> git rebase <branch> # DANGER! Rewrites the tree

Basic (3-ways) merging via git merge creates a new commit

C1C0 C2 C3

C4

experiment

C5

master

(master)$> git merge experiment

157 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Advanced Git Topics

Rebasing

$> git rebase <branch> # DANGER! Rewrites the tree

Rebasing: Linear alternative to merging
→֒ create a patch of the introduced change (in C4)
→֒ reapply it on top (of C3) to create C4’

C1C0 C2 C3

C4

experiment

master

157 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Advanced Git Topics

Rebasing

$> git rebase <branch> # DANGER! Rewrites the tree

Rebasing: Linear alternative to merging
→֒ create a patch of the introduced change (in C4)
→֒ reapply it on top (of C3) to create C4’

C1C0 C2 C3

C4
experiment

C4’

master

(master)$> git checkout experiment

(experiment)$> git rebase master

157 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Advanced Git Topics

Rebasing

$> git rebase <branch> # DANGER! Rewrites the tree

Rebasing: Linear alternative to merging
→֒ create a patch of the introduced change (in C4)
→֒ reapply it on top (of C3) to create C4’

C1C0 C2 C3

experiment

C4’

master

(experiment)$> git checkout master

(master)$> git merge experiment

157 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Advanced Git Topics

Rebasing (left) vs. Merging (right)

C1C0 C2 C3

experiment

C4’

master

C1C0 C2 C3

C4

experiment

C5

master

Rebasing ensure your commits apply cleanly on a (remote) branch

Never rebase published code!

158 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Advanced Git Topics

Summary

1 Introduction
Agenda
Overview of managed IT Infrastructure

2 IT/Dev[op]s Army Knives Tools
SSH Secure Shell
PGP / GPG: Gnu Privacy Guard
Vagrant
Puppet
Ruby / Python / Markdown-based Documentations
Password Management

3 Research Computing Platform @ UL

4 Git[Lab] @ UL and VCS

Git[Lab] Around You
About Version Control System (VCS)

5 Git Basics
Installing Git
Git theory
Basic Commands
Branching and Merging

6 Collaborating / Working together

7 Advanced Git Topics
Git Submodules
Rebasing
Using Git over Subversion Repository
More Cool stuff

159 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Advanced Git Topics

Git-svn: using Git with Subversion

$> git svn clone [-s] <svn-url> # checkout an SVN repository

-s: standard SVN layout with trunk/, branches/ and tags/

clone into master – you shall work in another branch Ex: work

$> git checkout -b work

→֒ delegate all interactions with SVN repository with master

→֒ thus make all your (local) commits into the work branch

160 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://git-scm.com/docs/git-svn

Advanced Git Topics

Git-svn: using Git with Subversion

$> git svn clone [-s] <svn-url> # checkout an SVN repository

-s: standard SVN layout with trunk/, branches/ and tags/

clone into master – you shall work in another branch Ex: work

$> git checkout -b work

→֒ delegate all interactions with SVN repository with master

→֒ thus make all your (local) commits into the work branch

$> git svn rebase # fetch revisions from SVN and rebase

Important: always do that from the master branch!
(work)$> git checkout master

(master)$> git svn rebase

160 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://git-scm.com/docs/git-svn

Advanced Git Topics

Git-svn: commit to Subversion

$> git svn dcommit # create an SVN revision for each commit

AFTER you sanitize the ’master’ branch!

(work)$> git checkout master

(master)$> git svn rebase

11 rebase the master branch with the SVN repository

161 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://git-scm.com/docs/git-svn

Advanced Git Topics

Git-svn: commit to Subversion

$> git svn dcommit # create an SVN revision for each commit

AFTER you sanitize the ’master’ branch!

(master)$> git checkout work

(work)$> git rebase master

11 rebase the master branch with the SVN repository

22 go back to the work branch and rebase with master

161 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://git-scm.com/docs/git-svn

Advanced Git Topics

Git-svn: commit to Subversion

$> git svn dcommit # create an SVN revision for each commit

AFTER you sanitize the ’master’ branch!

(work)$> git log –graph –oneline –decorate # OR git gr

11 rebase the master branch with the SVN repository

22 go back to the work branch and rebase with master

33 ensure everything is fine

161 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://git-scm.com/docs/git-svn

Advanced Git Topics

Git-svn: commit to Subversion

$> git svn dcommit # create an SVN revision for each commit

AFTER you sanitize the ’master’ branch!

(work)$> git checkout master

(master)$> git merge –no-ff work

11 rebase the master branch with the SVN repository

22 go back to the work branch and rebase with master

33 ensure everything is fine

44 force 3-ways merge your local commit

161 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://git-scm.com/docs/git-svn

Advanced Git Topics

Git-svn: commit to Subversion

$> git svn dcommit # create an SVN revision for each commit

AFTER you sanitize the ’master’ branch!

(master)$> git commit –amend

11 rebase the master branch with the SVN repository

22 go back to the work branch and rebase with master

33 ensure everything is fine

44 force 3-ways merge your local commit

55 edit (amend) the last commit for your SVN dudes

161 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://git-scm.com/docs/git-svn

Advanced Git Topics

Git-svn: commit to Subversion

$> git svn dcommit # create an SVN revision for each commit

AFTER you sanitize the ’master’ branch!

(master)$> git svn dcommit

11 rebase the master branch with the SVN repository

22 go back to the work branch and rebase with master

33 ensure everything is fine

44 force 3-ways merge your local commit

55 edit (amend) the last commit for your SVN dudes

66 Finally commit on the SVN server

161 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://git-scm.com/docs/git-svn

Advanced Git Topics

Git-svn: commit to Subversion

$> git svn dcommit # create an SVN revision for each commit

AFTER you sanitize the ’master’ branch!

(master)$> git checkout work

11 rebase the master branch with the SVN repository

22 go back to the work branch and rebase with master

33 ensure everything is fine

44 force 3-ways merge your local commit

55 edit (amend) the last commit for your SVN dudes

66 Finally commit on the SVN server

77 Go back to the ‘work’ branch!

161 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://git-scm.com/docs/git-svn

Advanced Git Topics

Summary

1 Introduction
Agenda
Overview of managed IT Infrastructure

2 IT/Dev[op]s Army Knives Tools
SSH Secure Shell
PGP / GPG: Gnu Privacy Guard
Vagrant
Puppet
Ruby / Python / Markdown-based Documentations
Password Management

3 Research Computing Platform @ UL

4 Git[Lab] @ UL and VCS

Git[Lab] Around You
About Version Control System (VCS)

5 Git Basics
Installing Git
Git theory
Basic Commands
Branching and Merging

6 Collaborating / Working together

7 Advanced Git Topics
Git Submodules
Rebasing
Using Git over Subversion Repository
More Cool stuff

162 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Advanced Git Topics

Shell Integration

Git Completion – Git flow completion

Colored PS1

bash: integrate __git_ps1() function in your PS1 variable
→֒ normally part of the bash-completion package
→֒ See integration in the ULHPC/dotfiles repository

$> export GIT_PS1_SHOWDIRTYSTATE=1 # you probably want

that
zsh: agnoster theme / powerline

→֒ Mac OS instructions

On CentOS/Redhat, you have to source the correct file
$> ln -s /usr/share/git-core/contrib/completion/git-prompt.sh

/etc/profile.d/

163 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://github.com/bobthecow/git-flow-completion/wiki/Install-Bash-git-completion
https://github.com/bobthecow/git-flow-completion
https://github.com/ULHPC/dotfiles/blob/master/bash/bashrc
https://github.com/robbyrussell/oh-my-zsh/blob/master/themes/agnoster.zsh-theme
https://github.com/milkbikis/powerline-shell
http://www.dotnet-rocks.com/2015/05/07/setting-up-iterm2-with-oh-my-zsh-and-powerline-on-osx/

Advanced Git Topics

Revision Selection and Log Filtering

When referring to a commit <commit>:

Symbol Description

<commit>ˆ Parent of the commit <commit>

HEADˆ previous commit (parent of HEAD)
<commit>~<n> <n>-th parent of <commit>

$> $ git log --pretty=format:’%h %s’ --graph

* 734713b fixed refs handling, added gc auto, updated tests # HEAD

* d921970 Merge commit ’phedders/rdocs’ # HEAD^

|\

| * 35cfb2b Some rdoc changes

* | 1c002dd added some blame and merge stuff # d921970^ OR HEAD~2

|/

* 1c36188 ignore *.gem # HEAD~3

164 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Advanced Git Topics

External Merge and Diff Tools

Git offers visual diff/merge tools, assuming you configured it:
$> git config –-global merge.tool sourcetree

$> git difftool [<commit>] diff GUI

165 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://www.perforce.com/product/components/perforce-visual-merge-and-diff-tools
http://www.perforce.com/downloads/helix#product-10
http://mxcl.github.com/homebrew/
http://caskroom.io/

Advanced Git Topics

External Merge and Diff Tools

Git offers visual diff/merge tools, assuming you configured it:
$> git config –-global merge.tool sourcetree

$> git difftool [<commit>] diff GUI

$> git mergetool [<path>...] # resolving merge conflicts

165 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://www.perforce.com/product/components/perforce-visual-merge-and-diff-tools
http://www.perforce.com/downloads/helix#product-10
http://mxcl.github.com/homebrew/
http://caskroom.io/

Advanced Git Topics

External Merge and Diff Tools

Git offers visual diff/merge tools, assuming you configured it:
$> git config –-global merge.tool sourcetree

$> git difftool [<commit>] diff GUI

$> git mergetool [<path>...] # resolving merge conflicts

You can set up another graphical merge-conflict-resolution tool
→֒ List the available tools: git mergetool --tool-help

→֒ Mac OS: git config --global merge.tool opendiff

→֒ Linux: git config --global merge.tool kdiff3

→֒ Cross-platform: P4Merge (download)

$> brew cask install p4merge # on Mac OS, using Homebrew and Cask

165 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://www.perforce.com/product/components/perforce-visual-merge-and-diff-tools
http://www.perforce.com/downloads/helix#product-10
http://mxcl.github.com/homebrew/
http://caskroom.io/

Advanced Git Topics

Using P4Merge as diff/merge tool

git config --global merge.tool p4mergetool

git config --global mergetool.p4mergetool.trustexitcode false

git config --global mergetool.p4mergetool.keeptemporaries false

git config --global mergetool.p4mergetool.keepbackup false

git config --global mergetool.p4mergetool.cmd \

$BASE $LOCAL $REMOTE $MERGED

Alternatives (mostly Mac OS)

→֒ Kaleidoscope
→֒ Araxis Merge
→֒ DeltaWalker
→֒ DiffMerge (free)
→֒ SourceTree (free)

166 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

http://www.perforce.com/product/components/perforce-visual-merge-and-diff-tools
http://www.kaleidoscopeapp.com/
http://www.araxis.com/merge/
http://www.deltawalker.com/
http://www.sourcegear.com/diffmerge/
https://www.sourcetreeapp.com/

Advanced Git Topics

Interesting Git plugins

Git-extra: Additionnal GIT utilities https://github.com/tj/git-extras

→֒ repo summary, repl, changelog population, author commit. . .

Git-crypt: Transparent file encryption in git

→֒ file to automatically encrypt specified in .gitattributes file
→֒ beware of a hook to check status

$> git-crypt init # Initialize repo with YOUR GPG key

167 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://github.com/tj/git-extras
https://github.com/tj/git-extras
https://github.com/AGWA/git-crypt

Advanced Git Topics

Interesting Git plugins

Git-extra: Additionnal GIT utilities https://github.com/tj/git-extras

→֒ repo summary, repl, changelog population, author commit. . .

Git-crypt: Transparent file encryption in git

→֒ file to automatically encrypt specified in .gitattributes file
→֒ beware of a hook to check status

$> git-crypt init # Initialize repo with YOUR GPG key

$> git-crypt [un]lock # Lock/Unlock the files

167 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://github.com/tj/git-extras
https://github.com/tj/git-extras
https://github.com/AGWA/git-crypt

Advanced Git Topics

Git-crypt

You need also to enable a git pre-commit hook

→֒ to avoid accidentally adding unencrypted files – see issue #45.
→֒ Example of such a pre-commit hook: this gist – raw version

X to be placed as .git/hooks/pre-commit

note: these hooks are local to your working directory

$> curl <url/to/raw/gist> -o .git/hooks/pre-commit

$> chmod +x .git/hooks/pre-commit

168 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

https://git-scm.com/book/it/v2/Customizing-Git-Git-Hooks
https://github.com/AGWA/git-crypt/issues/45
https://gist.github.com/Falkor/848c82daa63710b6c132bb42029b30ef
https://gist.github.com/Falkor/848c82daa63710b6c132bb42029b30ef/raw/605a40d778c521e8993a316fa2568ad384fd06ff/pre-commit.git-crypt.sh

Advanced Git Topics

Git-crypt

$> git-crypt add-gpg-user USER_ID # Add (GPG) collaborator

$> git-crypt status # Status – raise WARNING on problem

169 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Advanced Git Topics

Git-crypt

$> git-crypt add-gpg-user USER_ID # Add (GPG) collaborator

$> git-crypt status # Status – raise WARNING on problem

.gitattributes

specify which files to encrypt using git-crypt

see https://www.agwa.name/projects/git-crypt/

Certificate private keys

*.key filter=git-crypt diff=git-crypt

Host SSH private keys

*ssh_*_key filter=git-crypt diff=git-crypt

169 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Advanced Git Topics

Other Cool Stuff

Stashing

Move changes to a separate “stash”.

Interactive Rebase

$> git rebase -i <branch>

$> git stash

$> git stash pop

$> git stash list

$> git stash apply

$> git stash drop

$> git stash clear

170 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Advanced Git Topics

Other Cool Stuff

Stashing

Move changes to a separate “stash”.

Interactive Rebase

$> git rebase -i <branch>

$> git stash

$> git stash pop

$> git stash list

$> git stash apply

$> git stash drop

$> git stash clear

Git hooks:
→֒ Located in .git/hooks/

→֒ scripts run at various stages of Git operation
→֒ useful to perform lint actions for instance before pushing

170 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

Thank you for your attention...

Questions?

Sebastien Varrette
mail: Sebastien.Varrette@uni.lu
Office E-007
Campus Kirchberg
6, rue Coudenhove-Kalergi
L-1359 Luxembourg

1 Introduction
Agenda
Overview of managed IT Infrastructure

2 IT/Dev[op]s Army Knives Tools
SSH Secure Shell
PGP / GPG: Gnu Privacy Guard
Vagrant
Puppet
Ruby / Python / Markdown-based Documentations
Password Management

3 Research Computing Platform @ UL

4 Git[Lab] @ UL and VCS

Git[Lab] Around You
About Version Control System (VCS)

5 Git Basics
Installing Git
Git theory
Basic Commands
Branching and Merging

6 Collaborating / Working together

7 Advanced Git Topics
Git Submodules
Rebasing
Using Git over Subversion Repository
More Cool stuff

171 / 171
S. Varrette (PCOG Research unit) IT/Dev[op]s Army Knives Tools for the researcher

N

mailto:Sebastien.Varrette@uni.lu

	Introduction
	Agenda
	Overview of managed IT Infrastructure

	IT/Dev[op]s Army Knives Tools
	SSH Secure Shell
	PGP / GPG: Gnu Privacy Guard
	Vagrant
	Puppet
	Ruby / Python / Markdown-based Documentations
	Password Management

	Research Computing Platform @ UL
	Git[Lab] @ UL and VCS
	Git[Lab] Around You
	About Version Control System (VCS)

	Git Basics
	Installing Git
	Git theory
	Basic Commands
	Branching and Merging

	Collaborating / Working together
	Advanced Git Topics
	Git Submodules
	Rebasing
	Using Git over Subversion Repository
	More Cool stuff

