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Abstract

We show that the function sheaf of a Z5-manifold is a nuclear Fréchet sheaf of Z3-
graded Z5-commutative associative unital algebras. Further, we prove that the compo-
nents of the pullback sheaf morphism of a Z%-morphism are all continuous. These results
are essential for the existence of categorical products in the category of Z5-manifolds. All

proofs are self-contained and explicit.
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1 Introduction

Z5-Geometry is an emerging framework in mathematics and mathematical physics, which
has been introduced in the foundational papers [CGP16a|] and [COP12|. This non-trivial
extension of standard supergeometry allows for Z3-gradings, where

g:Z;n:ZQX...XZQ and neN.

The corresponding Z3-commutation rule for coordinates (u?) 4 with degrees degu? € 75 does
not use the product of the (obviously defined) parities, but the scalar product (—, —) of Z% :

’LLAUB _ (_1)(deguA,deguB)uBuA ) (1)

The definitions of Z5-manifolds and Z5-morphisms are recalled in Section 2. A survey of Zj-
Geometry is available in [Ponl6].

The motivations for this new setting originate in both, mathematics and physics.

In physics, Z5-gradings and the Z5-commutation rule (n > 2) are used in various contexts.
References include [AS17]|, [AKTT16|, [Toll3], and [YJ01]|, as well as [CKRS17]| and [Khol6]
(the latter, which can be traced back to [BB04|, [DVHO02|, and [MHO3|, use the Zj-formalism
implicitly). Further, the Z5-commutation rule is not only necessary, but also sufficient: it can
be shown [CGP14]| that any commutation rule, for any finite number m of coordinates, is of
the form (1), for some n > 2m.

In mathematics, well-known algebras are Z3-commutative. This holds for instance for the
algebra of quaternions (which is Z-commutative with n = 3) and, more generally, for any
Clifford algebra Cl, 4(R) (Z5-commutative with n = p + ¢ + 1), as well as for the algebra of
Deligne differential forms on a standard supermanifold (Z5-commutative with n = 2: the first
Zs-degree is induced by the cohomological degree, the second Zs-degree is the parity).

Moreover, there exist canonical examples of Z5-manifolds. The local model of these higher
or colored supermanifolds is necessarily [Ponl6| the Z3-commutative algebra C*°(x)[[{]] of
formal power series in the coordinates £ = (&1,...,&n) of non-zero Zj-degree, with coefficients
in the smooth functions in the coordinates = (x1,...,x,) of zero Z5-degree. For instance,
the tangent bundle of a classical Zy-manifold or supermanifold M can be viewed as a Z32-
manifold 7'M, in which case the function sheaf is the completion of Deligne differential forms
of M. Actually, the tangent (and cotangent) bundle of any Z§-manifold is a Zgﬂ—manifold.
Moreover, the ‘superization’ of any double vector bundle (resp., any n-fold vector bundle) is
canonically a Z2-manifold (resp., Z3-manifold).

We expect that a number of applications of Z5-Geometry in physics are based on the
integration theory of Z3-manifolds. A first step towards Z5-integration is the Z3-generalization
of the Berezinian. This fundamental concept has been constructed in [COP12] and is referred
to as the Zy-Berezinian. The Z3-integration theory is still under investigation.

Other applications of Z5-Geometry rely on Z§ Lie groups (generalized super Lie groups)
and their actions on Z5-manifolds (which are expected to be of importance in supergravity), on
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Z% vector bundles (generalized super vector bundles) and their sections (these are basic objects
needed for instance in the study of Z# Lie algebroids), on the internal Hom in the category
of Z4-manifolds (which is of importance in field theory — Z"-gradings and Z5-parities), ... All
these notions are themselves based on products in the category of Z5-manifolds.

The investigation in the present paper is motivated by three facts:

1. the proof of existence of the preceding categorical products uses the content of this paper,

2. the proof of the reconstructions of Zg-manifolds and morphisms between them from
global Zz-functions and morphisms between them, is based on this content, and

3. the results of the present paper extend similar results in the standard supercase to the
more challenging Z3-context, and constitute an added value of the less detailed study in
the supercase, which is given in the Appendix of [CCF11].

2 Z3-manifolds and their morphisms

We denote by Zi the cartesian product of n copies of Zy. Further, we use systematically
the following standard order of the 2" elements of Z3: first the even degrees are ordered
lexicographically, then the odd ones are also ordered lexicographically. For example,

73 ={(0,0,0),(0,1,1),(1,0,1),(1,1,0),(0,0,1), (0,1,0), (1,0,0), (1,1,1)} .

A Z5-domain has, aside from the usual coordinates x = (z',...,2P) of degree degz’ = 0 €
73, also formal coordinates or parameters & = (¢1,...,£9) of non-zero degrees deg&?® € 73,
These coordinates u = (z,£) commute according to the generalized sign rule

uAuB _ (_1)<deguA,deguB)uBuA ’ (2)

where (—, —) denotes the standard scalar product. For instance,
((0,1,1),(1,0,1)) =1.

Observe that, in contrast with ordinary Zs- or super-domains, even coordinates may anticom-
mute, odd coordinates may commute, and even nonzero degree coordinates are not nilpotent.
Of course, for n = 1, we recover the classical situation. We denote by p the number of coordi-
nates 2 of degree 0, by ¢ the number of coordinates £€* which have the first non-zero degree
of Z%, and so on. We get that way a tuple q = (q1,...,qy) € NV with N := 2" — 1. The
dimension of the considered Z5-domain is then given by p|q. Clearly the @ above is the sum

lal = > g
We recall the definition of a Z%-manifold.
Definition 1. A locally Z5-ringed space is a pair (M,Op) made of a topological space M

and a sheaf of Zy-graded Zy-commutative (in the sense of (2)) associative unital R-algebras
over it, such that at every point m € M the stalk Opr, is a local graded ring.
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A smooth Z5-manifold of dimension p|q is a locally Z5-ringed space M = (M, Oypr), which
is locally isomorphic to the smooth Z3-domain RPI9 := (RP, e ll€l]), and whose underlying
topological space M is second-countable and Hausdorff. Sections of the structure sheaf Cg;[[€]]
are formal power series in the Z3-commutative parameters £, with coefficients in smooth func-

tions:

CRo(UE)] =13 > fal@)&* | fa €C™(U) p (U open in R?).
aeNxlal
Zg-morphisms between Zy-manifolds are just morphisms of Zy-ringed spaces, i.e., pairs
O = (¢,¢%) : (M,0n) — (N,On) made of a continuous map ¢ : M — N and a sheaf
morphism ¢* : On — 0O, t.e., a family of Z5-graded unital R-algebra morphisms, which
commute with restrictions and are defined, for any open V. C N, by

¢y On(V) = Om(9™H(V)) -
We denote the category of Z5-manifolds and Zy-morphisms between them by Z5Man.

Remark 2. When considering sheaves, like, e.g., Opr, we sometimes omit the underlying
topological space M, provided this space is clear from the context.

Remark 3. Let us stress that the base space M corresponds to the degree zero coordinates
(and not to the even degree coordinates), and let us mention that it can be proven that the
topological base space M carries a natural smooth manifold structure of dimension p, that the
continuous base map ¢ : M — N is in fact smooth, and that the algebra morphisms

between stalks, which are induced by the considered Z5-morphism ® : M — N, respect the
unique homogeneous mazimal ideals of the local graded rings Oy and Op,.

3 Linear Zj-algebra

Let us mention that Z3-graded modules V' over a Zj-commutative algebra A are defined

canonically,
ATV VI (e ),

and that Z3-graded modules over a fixed Zj-commutative algebra, and degree-preserving A-
linear maps between them form an abelian category Z5Mod(A). This category admits a natural
symmetric monotdal structure ® 4, with braiding given by

w: Veaw — W®aV
v w N (_1)<degv,degw>w®v,

for homogeneous elements v and w. This structure is also closed, as for every V' € ZiMod(A),
the functor
—®4V : Z3Mod(A) — Z3Mod(A)
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has a right-adjoint
Hom 4 (V,—) : Z5Mod(A) — Z5Mod(A) ,

i.e., for any U, W € Z5iMod(A), there is a natural isomorphism
Homu (U ® 4 V, W) ~ Hom 4 (U, Hom 4 (V, W)) ,

where Hom 4 (V, W) denotes the categorical hom made of the degree-respecting A-linear maps,
i.e., of the A-linear maps £ : V — W of degree 0 € Z3, i.e., £(VY) C W0 for all v € Z2.
One can readily verify that the internal hom Hom 4 (V, W) is the Z§-graded A-module which
consists of all A-linear maps ¢ : V' — W of all possible degrees o € Z7, i.e.,

(V) cwrre

for all v+ € Z5. The A-linear maps of degree « constitute the a-part Hom%(V, W) of
Hom 4(V,W). Hence, contrary to the case of modules over a classical commutative alge-
bra, the internal hom Hom 4 differs from the categorical hom Hom 4, since this latter contains
only 0-degree A-linear maps: Hom4(V, W) = HomY (V, W).

4 Sheaves of differential operators on a Zj-manifold

It is known that bump functions and partitions of unity do exist in Zj-manifolds [CGP14],
and that they can be used similarly to classical bump functions in smooth geometry [Lei80].
Recall that in a Z5-manifold M = (M, Oyy), the support of a Z5-function s € Oy (U), U C M,
is defined as usual as the complementary in U of the open subset of identical zeros of s in
U. Further, a bump function v of M around m € M is a globally defined degree zero Zj-
function v € 0%, (M) for which there exist open neighborhoods W C V' C M of m, such that
suppy C V and the restriction 7|y = 1. Moreover, if ¢ is the projection to the base that
implements the short exact sequence of sheaves [CGP14]

0= kerye— Oy >C% =0, (3)

the projection eps(y) € C37(M) is a bump function of M around m.

Consider now a Zj-manifold M = (M, O)). Notice that A = R can be viewed as a Zj-
commutative algebra concentrated in degree 0, and that, for any open U C M, the algebra
O(U) is an object in ZjMod(R), i.e., is a Zj-graded R-vector-space. Hence, according to
Section 3,

Endg(O(V)) := Homg (O(U), O(U))

is the Z3-graded R-vector-space of all R-linear maps of all Z§-degrees from O(U) to itself.
Composition endows this space with a Z3-graded associative unital R-algebra structure, and
the Z5-graded commutator [—, —| endows this space with a ZJ-graded Lie algebra structure.
We can identify O(U) with an associative subalgebra of Endr(O(U)) using the left-regular
representation

grrmg, mg(f)=g-f.
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Definition 4. The Z%-graded O(U)-module of k-th order differential operators DE(U), k €N,
1s defined inductively by

D(U) := {D € Endg(O(V)) : [D,O(U)] € D" (U)}, (4)
where D~1(U) = {0}.

Of course DO(U) = O(U). Indeed, it is clear that O(U) C D°(U). Conversely, if D €
DO(U), then, for any f € O(U), we have [D, f] = 0, so that

D(f) = D(f-1) = D) - f =mpu)(f),

ie, D ~ D(1) € O(U). It follows that O-order differential operators are local, i.e., if D €
DY(U), f € O(U), and —|y denotes the restriction to an open subset V' C U, then D(f)|v
only depend on fl|y, or, equivalently, if f|y, = 0 then D(f)[yy = 0. This implies by induction
that any differential operator of any order is local. Indeed, if D € D*(U), if f € O(U) and
fly =0, and if m € V, let v € O°(M) be a bump function of M around m with support
supp~y C V and restriction |y = 1, for some neighborhood W C V of m. It then follows from
the defining property of differential operators applied to [D,~]f, the induction assumption,
and the fact vf = 0, that (Df)|w = 0.

We now show that any D € D¥(U) can be localized.

Proposition 5. Let U € M and V C U be open. Any D € D*(U) induces a unique D|y €
DF(V). This restricted operator satisfies D|yv(gly) = (Dg)|v, for any g € O(U).

Proof. If f € O(V) and m € V, we choose a function F' € O(U) such that F|y = f|w, for
some neighborhood W C V of m (it suffices to choose a bump function v in M around m
with support in V' and restriction 1 to W (m € W C V) and to set F' = ~f). Locality of
D implies that the section (DF)|y € O(W) and the section (DF’)|ly» € O(W’) obtained
similarly but for a point m’ € V, depend only on f and thus coincide on the intersection
W N W’. Hence, these local sections define a unique global section D|y f € O(V) such that
(Dlv f)lw = (DF)|w. In particular, if f = g|y is the restriction of a function g € O(U), we
can take F' = g, so that

Dlv(glv) = (Dg)lv , (5)

as announced. Since, obviously, D]y € Endp(O(V)) (note that D|y has the same parity as
D), it suffices — to prove Proposition 5 — to observe that, for any fi,..., fxt+1,9 € O(V), we
have

([ . [[D‘Vﬂfl}vaL"‘7fk+1]g)‘W = ([ . [[D7F1]7F2]7” . 7Fk+1]G)|W =0,

with obvious notation. O

The assignment D : U — D¥(U) of the Z3-graded O(U)-module D*(U) to any open subset
U C M is a presheaf of Zj-graded O-modules. Indeed, the restriction maps pg : DEU) >
D~ Dl|y € D¥(V) are clearly of degree 0 and O-linear (i.e., p{/(GD) = rY(G)pY(D), where
r‘[f is the restriction map of the function sheaf O), and they satisfy the usual compatibility
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conditions for restriction maps. The presheaf DF is in fact a sheaf over M — the standard
proof goes through. If we wish to emphasize the base topological space of this sheaf we write
D% instead of DF.

Some continuity results will be needed. Let M = (M,Oys) be as above a Z5-manifold.
The kernel sheaf kerys e of the base projection sheaf morphism € : Oy — C§y (see (3)) is a
sheaf of ideals of the structure sheaf Oy, which we usually denote by Jps = keras e. Further,
we write m,, for the unique homogeneous maximal ideal of the stalk O, of the sheaf Oy, at
m € M. The topology of Oy associated to the filtration

Ou>DIu>DT4D...

is referred to as the Jjs-adic topology of the structure sheaf. Similarly, the topology of O,,
associated to the filtration
OmDmy, Dm2, D ...

is the my,-adic topology of the stalk. The Z5-function sheaf Ops (resp., the Z§-function
algebra Op(U), U open in M) is Hausdorff-complete with respect to the Jys-adic (resp.,
Jum (U)-adic) topology [CGP14]. Moreover, Z5-morphisms are J-adically continuous and the
induced morphisms between stalks are m-adically continuous [CGP14]. Moreover:

Proposition 6. Any differential operator A € D*(U) of any degree k > 0 and over any open
U c M is J(U)-adically continuous. In particular, if a sequence of functions f, € O(U)
tends J(U)-adically to a function f € O(U), then Af, tends J(U)-adically to Af. Due to
its locality, any differential operator A of order k acting on O(U) canonically induces, for any
m € M, a differential operator Ay, of order k acting on Oy, and this induced operator Ay, is
My, -adically continuous.

The proof is based on the following lemmata. We will omit the subscript M which remem-
bers that most of the sheaves considered here are defined over M.

Lemma 7. Let M = (M,Oyr) be a Z5-manifold, let k > 0 be an integer and U C M be open,
and let AF € D*(U). We have
Akjk+C(U) c jC(U) ,

for all c > 1.

Proof. In this proof we just write A thus omitting the superscript indicating its order. If
k = 0, the differential operator A is a function A € O(U). Hence, for any ¢ > 1,

AJWU)=A-JU)cIU).

Assume now that the claim holds for £ > 0. We will show that it is then also valid for k + 1.
Let ¢ =1, let A € DFFY(U), let f € J(U) and let g € J¥1(U). We have fAg € J(U), since
J(U) is an ideal, and, since [A, f] € D¥(U), we have [A, flg = A(fg) £ fAg € J(U), in view
of the induction assumption. It follows that A(fg) € J(U) and that A J¥+2(U) ¢ J(U):
for differential operators of order k£ + 1 the claim is true for the lowest value ¢ = 1. It thus
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suffices to assume that the statement holds for ¢ > 1 and to prove that it holds then as well
for ¢ + 1. Therefore, consider f € J(U) and g € J*<*1(U). Since [A, f]lg = A(fg) + fAg €
T (U), due to the induction assumption on k, and since fAg € J°M(U), due to the
induction assumption on ¢, we finally obtain that A J¥T<+2(U) ¢ J°1(U), what completes
the proof. O

The next lemma is similar and has the same proof.

Lemma 8. Let M = (M, Oyr) be a Z5-manifold, let k > 0 be an integer and U C M be open,
and let A¥ € DF(U). If m € U and m,, is the unique homogeneous mazimal ideal of O,,, we
have

AF mbre cme |

m

for all c > 1.

We are now prepared to prove Proposition 6.

Proof. Let A € D*(U) (k> 0, U C M open), let g € O(U) and ¢ > 1, and show that the
preimage A~ (g+ J¢(U)) of the arbitrary basic open subset g+ J¢(U), is open in the J(U)-
adic topology. The fact that A J++¢(U) c J¢(U) implies that A~!(g+ J¢(U)) is the union of
the J (U)-adically open sets f + J*T¢(U), where f runs over all elements of A~ (g + J¢(U)),
so that A=1(g + J¢(U)) is actually open. The claim that the limit of Af, is the value of A
at the limit of f;,, is a direct consequence of Lemma 7. The statement concerning A,,, follows

analogously from Lemma 8. O

In the next proposition, we consider p|q local coordinates u = (z,§) and set u = (z,0, (),
where z (resp., 0, ¢) are the coordinates of degree zero (resp., of even non-zero degrees, of odd
degrees). More precisely, as suggested above, we fix the coordinate order:

w= (2t P 0L, 0,00 T a1 et it By
(6)
The corresponding Z5-graded derivations J¢, 0y, 0, are written in decreasing order.
Theorem 9. For any k € N, the sheafDﬂ of k-th order differential operators of a Zy-manifold
M = (M,Oypr) of dimension p|q is a locally free sheaf of ZY-graded Opr-modules, with local
basis
000,02 ,

where (x,0,¢) are local coordinates, ¥* € Zo and %, a¢ € N, and |a| + 8] + |y| < k.

Remark 10. Note that the decomposition of a differential operator of order k in this local
basis leads to a finite sum ( see Equation (7) below).

Proof. Since we work locally, we take M = (U, CP[[0,(]]), where U is an open subset of R?.
We first prove uniqueness of the coefficients. If D € D*(U) is of the type

k k
S o=% Dl (2,0.¢) 7 9] 0% € DH(U), (7)
=0 =0 jal [+ =i
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and if mapgy = ﬁmm(wﬁ (7, where the coordinates are written in increasing order and |o| +
|B] + |7| = 4, then necessarily

i—1

hiy = D'Magy = Dmgagy — Y Dimags, . (8)
j=0

Indeed, the term with same indices as the considered monomial reduces to its coeflicient when
applied to the monomial, and any other term contains at least one index that is higher than
the corresponding index in the monomial, so that this term annihilates the monomial). Hence,
the coefficients D!, 5, of D are unique, if they exist. More precisely, for |u| + [v| + |7| =1 and
ol + 18] + 7] = 2, we get

Do = Dmooo ,

Dllww = Dm,uwr — Dmgqo - Muvr
Diﬁ,y = Dmggy — Z (Dmyr — Dmooo - Mywr) 82 O Ok magy — Dmooo-magy --- (9)
|+ |=1

Consider now an arbitrary D € D¥(U) and set A = D — X € D*(U), where ¥ denotes the
RHS of (7) with the coefficients defined in (8). This operator A vanishes by construction on
the polynomials of degree < k in x,6, (. The reader might wish to check this claim by direct
computation. For instance, the computation for k = 2 is straightforward in view of Equation
(9)-

Note now that, for any fi,..., fo—1,h € CP(U)[[0,(]], £ > k + 1, we have

/-1
A(fro feah) =D E oo iy Afipr - figyh) + F(R), (10)
b=1
as immediately seen when developing F'(h) := [...[[A, fi], fa], ..., fe—1]h. If £ > k 4+ 1, the

term F'(h) vanishes, whereas in the case £ = k + 1 it is given by F'(h) = F'(1)h. Equation (10)
shows that A = 0 on any polynomial of degree k+1 in x, 0, (. Indeed, for coordinate functions
fiy--oy fx, h, the value A(f; ... frh) vanishes if and only if F'(1) vanishes. However, the value
F(1) is, again in view of (10), computed from values of A on polynomials of degree < k and
does therefore vanish. It now follows by induction from (10) that A = 0 on an arbitrary
polynomial in z, 6, (. We can extend this conclusion to polynomial formal series, i.e., to series

P = Z P“(x)gu’

[#[>0

where g is a multi-index with sum of components denoted by |u|, and where P,(z) is a
polynomial in the zero-degree coordinates x. Indeed, the sequence P, obtained by taking in
the series P only the terms |u| < ¢ converges J(U)-adically to the series P, since in local
coordinates the ideal J¢(U) is made of the series

Z f#(x)é’“ )

[pul>e
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all whose terms contain at least ¢ formal coordinates. Hence, Proposition 6 implies that
AP e J¢U), for all ¢, i.e., that AP = 0. Let now f € C;P(U)[[0,¢]] and let m be any point

in U. By the polynomial approximation theorem [CGP14, Theorem 6.10], there exists, for any

k+c

¢, a polynomial formal series P such that [f],, — [P]lm € m;

(P depends on f,m, and c).
When applying the differential operator A,, of order k to [f];, — [Plm, we get from Lemma 8
that [Af],, € mS,, for any ¢, so that [Af],, = 0. Since m € U was arbitrary, Af = 0 for any

function f € Cr(U)[[0,(]], i.e., D = 3, where ¥ is, as above, the RHS of Equation (7). O

The definition of D! (U) implies straightforwardly that
DY (U) = O(U) & Derg(O(U)) ,

where the second term of the RHS is the Zy-graded O(U)-module of vector fields over U. Fur-
ther, the R-vector space Endr (O(U)) carries natural Zy-graded associative and Z5-graded Lie
algebra structures o and [—, —|, where [—, —] is the above-introduced Z5-graded commutator.
An induction on k + ¢ allows seeing that D*(U) o DY(U) ¢ D*(U) and [DF(U), DY(U)] C
DEH=1(T), so that the (colimit or direct limit) vector space D(U) := UrenD*(U) of all dif-
ferential operators inherits Z3-graded associative and Zij-graded Lie algebra structures that
have weight 0 and —1, respectively, with respect to the filtration degree. The assignment
D:U — D) is a locally free sheaf of Zj-graded O-modules and of Z5-graded associative
and Lie algebras over M. The algebra D(M) is the Zj-graded Lie algebra of differential
operators of the Zj-manifold M.

Remark 11. The reader observed probably that (as usual) DF=Y(U) € DF(U). Hence, a k-th
order differential operator is actually a differential operator of order < k. To emphasize this
fact some authors write D<F(U) instead of D*(U).

5 Functional analytic properties of the function sheaf of a Z3-
manifold

For a review of Fréchet spaces, algebras, and sheaves, we refer the reader to the Appendix.
We define Z3-graded Fréchet vector spaces, nuclear vector spaces, Fréchet algebras and

Fréchet sheaves.

Definition 12.

o A Zy-graded Fréchet vector space is a Z3-graded vector space V , all whose homogeneous
subspaces V7, v € Z%, are Fréchet vector spaces. We denote by (p])ier a family of
seminorms corresponding to V7.

o A Zy-graded nuclear LCTVS s a Z5-graded vector space V, all whose homogeneous
subspaces V7, v € Z5, are nuclear.
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o A 7Z5-graded Zy-commutative (nuclear) Fréchet algebra is a Z5-graded (nuclear) Fréchet
vector space A that is equipped with a Z3-graded Z5-commutative associative bilinear
multiplication -+ AV x A" — AV such that there are equivalent countable families
of seminorms that are submultiplicative, i.e., equivalent countable families (¢ )nen of
seminorms, such that, for alln € N,

@ (@y) < q) (@)q) (y), Vo e AV \Vye AT .

e A (nuclear) Fréchet sheaf of Z-graded Z-commutative algebras is a sheaf F of Z73-
graded 7 -commutative (real) algebras over a smooth manifold M, such that all section
spaces F(U) are Zy-graded Z%-commutative (nuclear) Fréchet algebras and the locally
convex topology on F(U) is the coarsest topology for which all restriction maps F(U) —
F(U;) are continuous.

The algebraic direct sum @,V,, of a family (Vy)aca of LCTVS-s V,, is usually equipped
with the direct sum topology, that is, with the finest locally convex topology such that the
injections iq : Vo — @4V, are all continuous. In this case, we refer to the direct sum as the
topological direct sum of the LOTVS-s V,,. It is known that a countable topological direct sum
of nuclear LCTVS-s is a nuclear LCTVS. Further, a finite topological direct sum of Fréchet
spaces is a Fréchet space. These results show that a Z4-graded Fréchet vector space (resp., a

5-graded nuclear LCTVS) is a Fréchet space (resp., a nuclear LCTVS), when equipped with
the direct sum topology.

Remark 13. In the following, we suppress the superscript vy in the various seminorms p;, q,
. that we consider. In other words, p;, qn, ... refer to a seminorm of some space V7.

We are now prepared to prove one of the main theorems of this paper.

Theorem 14. The function sheaf Opr of a Z5-manifold M = (M, Onr) is a nuclear Fréchet
sheaf of Z5-graded Z3-commutative algebras.

Proof. Let U € Open(M), let C be any compact subset of U, and let D be any differential
operator in D(U). For any f € O(U), we set

pe.p(f) = sup [e(D(f)) ()], (11)

zeC

where ¢ is the projection € : Oy — C53, see Equation (3). It is obvious that each pc p is a
seminorm on O(U).

Lemma 15. For any U € Open(M), the family of seminorms (pc.p)c,p on O(U) is separating
and endows O(U) with a Hausdorff locally convez topological vector space structure.

Proof. It suffices to prove the separability. If sup,cq |e(D(f))(x)] = 0, for all C' and all D,
then (D(f)) =0 in U for any D, since U admits a (countable) cover by compact subsets C,
see Lemma 32. Differently stated, we have

D(f) e kereyy = J(U) , (12)
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for any D € D¥(U) and for any k € N. Let now (V;);en be a (countable) cover of U by Z5-chart
domains (any open cover of U admits a countable subcover, see proof of Lemma 32) and let
V be any element of this cover. For any m € V, there is a Z3-bump-function v € O°(U) and
neighborhoods Ni C Ny C V of m such that v|n, = 1 and suppy C Na. In view of Equation
(12), we have

D|N1(f’N1):D(f)‘N1 EJ(Nl) ) (13)
for any D € D¥(U) and any k € N. If we choose D = 1 € O(U) = D°(U) in (13), we
can conclude that f|y, € J(Ni). It turns out that, if f|y, € J* 1 (Ny), k& > 2, then
fln, € J¥(Ny) . Indeed, denote the coordinates in V by u = (z,¢) and write

fln (2,6) = szﬁ

(=k—1|8|=¢

Our goal is to show that f|y, € J¥(NV1), i.e., that all coefficients fs(z), |8| = k — 1, vanish in
Nji. Let B be any multiindex such that [B| = k—1. When using the operator 8? € D1 (U),
we get from (13),

TN 282 373 () Z z)0g €7,
t=k—1|8|=¢ =k~

as 8? is J(Np)-adically continuous. Since 6?5% = B!, it follows that fy vanishes in Nj.
Hence, f|n, € J*(N1), so f|n, € J"(Ny) for all 7, and thus f|y, = 0. Finally, we get f|i, =0
and f =0. O

The next lemma covers the case where U is a Zj-chart domain.
Lemma 16. Let U C M be a Z3-chart domain with coordinates u = (x,&).
o Let

fo = fap(@)€® (resp, f = fa(2)€")
B B

be a sequence of functions (resp., a function) in O(U). The sequence fy is Cauchy in
O(U) (resp., converges to f in O(U)) if and only if the sequences fnz are all Cauchy
in C°(U) (resp., converge all to the corresponding fz in C°(U) ).

e The locally conver Hausdorff space O(U) is complete.
e The space O(U) is a Z§-graded nuclear Fréchet algebra.

We start with the following observation. Let (U,u = (z,£)) be a Z§-coordinate system,
D € D*(U), and f € O(U). We have

k
Mm=e> > Daﬁxgaﬁaazh =

(=0 o +]5|=¢



Functional analytic issues in Z5-Geometry 13

k
Y7 Y e(Das(x,€)) Zaaf7 )OgE .

£=0 |a|+|8|=¢
If B # =, either there is 8; > ~; , or all §; < ~; but for at least one i we have 3; < ;. In the first
case 8?57 = 0 and in the second 8?57 € J(U), so that in both situations the corresponding
term in the series over ~ vanishes under the action of . If 8 =+, the derivative with respect
to € equals !, so that

Z S e(Daslx,€)) B8 f5(a) (14)

£=0 |a|+|8|=¢
We are now prepared for the proof of Lemma 16.

Proof. e Assume first that the f,,3 are all Cauchy in the locally convex topology of C*°(U): for
any base differential operator A (acting on base functions C*°(U)) and any compact C' C U,
we have

pac(frg— fsp) = Sup |A(frg = fsg) =0, (15)

if ;s — 00, see Example 34. In this case, we get, for any Z-differential operator D (acting
on Z3-functions O(U)) and any compact C C U,

pC,D(f fs) - Sup|€( ( fs | < Z B' Sup|€ aﬁ(x 5))’ Sgp|0g(frﬁ - fs,@)| — 0,

if r,s — o0, so that f, is Cauchy in the topology of O(U). Conversely, if f, is Cauchy in
O(U), we have to show that (15) holds for any A, C, and /. Fix these three data. The base
differential operator A reads

A=) Ay(x)0g

and D = 3?A is a Zj-differential operator. In view of (14), we get
sup |e(D(fr = J:))| = B! sup|ZA )05 (Frp = Jug)| = B! sup | A(frs = fug)] -

The proof of the convergence statement of item one in Lemma 16 is similar.
e In view of Example 34 and item one, item two is obvious.

e To prove that the complete Hausdorff locally convex topological vector space O(U) is a
Fréchet space, it suffices to show that there exists a countable family of seminorms on O(U)
that is equivalent to the family (pc p)c,p. To prove that C*°(U) is a Fréchet space, one uses
a countable cover of U by compact subsets C), C U such that C,, is contained in the interior
of Cp41 [Tre67|. Proceeding similarly, we define the family

POy aa(f) = sup (0702 1)1 (16)
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where the components of « belong to N and the components of 5 to N or Zy depending
on whether they correspond to even degree or odd degree parameters. Since the pc, g are
specific pc p , they are a countable family of seminorms on O(U). To show that the countable
family is equivalent to the original one, we use Proposition 31. For any pc p there exists
C, D C, so that

pC,D(f)ZSIéP|5( \<Sup|z Do, €)) e(0£02f)| <

1 (@205 1) =C 17
(1+ maxsup |e(Das(a,)) Zsuf (005 1) = Zan,aﬁ (17)
The similar condition for pc,p and pc, o8 exchanged is obviously satlsﬁed, since any pc,, a8
is a specific seminorm of the type pc p .

Finally the Z§-graded vector space O(U) is a Fréchet space. This should of course mean
that O(U) is a Zy-graded Fréchet vector space in the sense of Definition 12. In the paragraph
following that definition, we mentioned that, if the homogeneous subspaces O7(U), v € Z1,
are Fréchet, then O(U) is Fréchet as well. A rigorous application of Definition 12 requires now
that we take an interest in the converse result. However, what we proved so far is valid for any
functions in O(U), in particular for the functions of a fixed degree, i.e., for the functions in
OV(U), v € Z5. 1t follows that all spaces OY(U), v € ZY, are Fréchet spaces for the seminorms
considered. Hence, the space O(U) is a Z4-graded Fréchet space in the sense of Definition 12.

Alternatively, the reader may observe that any subspace of a Fréchet space, which contains
the limits of its converging sequences, is itself a Fréchet space. Indeed, the restrictions to this
subspace of the countable and separating family of seminorms of the total space is again a
countable and separating family of seminorms. In view of Proposition 27, the resulting locally
convex seminorm topology of the subspace is implemented by a translation-invariant metric.
To be Fréchet, the subspace must still be complete with respect to this metric, i.e., it has to be
complete with respect to the seminorm topology. Now, any Cauchy sequence of the subspace
is Cauchy in the total space and converges therefore in the total space. But, by assumption, its
limit is located in the subspace, so that the subspace is complete with respect to its topology.
In the case considered here, any homogeneous subspace O7(U) of the Fréchet space O(U)
contains the limits of its converging sequences (in view of point 1 of the preceding lemma) and
is thus Fréchet (so we can conclude again that O(U) is a Z5-graded Fréchet vector space in
the sense of Definition 12).

Of course O(U) is equipped with a Z3-graded Z5-commutative associative unital R-algebra
structure. Hence O(U) is a Zj-graded Fréchet algebra, if we can find equivalent countable
families of submultiplicative seminorms. We choose the countable family of seminorms defined,
for all compacts C), and all m,u € N, by

PCmpu(f) = 2" sup pe, ap(f) =2 sup sup|e(9702 f)] | (18)

la] <m lal <m Chp
Bl < n B8] <
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see Equation (16). These seminorms are submultiplicative. Indeed, for f,g € O(U), |a| < m,
|8] < p, and = € Cy,, we have, in view of (14),

£(OL0%(F - ) =18102(f - 9)sl = 18102 D" fa,- gl <

B1+B2=0
Sl X o B0 S 1810 <
B1+B2=p P25 o) Yag=a
ol
S L ) s swple@f o )l - sup suple(d207g)] <
B /81 52 altas=a Q-0 lar] <m Chn lag| <m Ch
Prebe= rrees 1811 < n Y
gmtp sup Sélp‘g( 518a1f)| sup Sgp EG ,328012 9,
o] <m lag| < m
|[311| <u \522\ <p

since the sum over 1, 82, for instance, is equal to 2181 Tt follows that

an,m,u(f g9) < PCn,m,u(f) 'PC’n,m,u(g) .

Moreover, the family pc,, m . is equivalent to the family pc, 5. On the one hand, we have

PCumu(f) 273" poyas(f)

la| <m
Bl <

and on the other, setting |a| = m, |B| = p, we get pe,, 0,8(f) < pcpmu(f)-

It remains to show that O(U) is a Zy-graded nuclear LCTVS in the sense of Definition 12.
Since any subspace of a nuclear space is nuclear, it suffices to prove that the locally convex space
O(U) is nuclear. We set q = (q',q"), where ' = (q1,...,qon-1_1) and q” = (gan-1,...,q2n_1)
give the number of parameters in each nonzero even degree and the number of parameters
in each odd degree, respectively. We also set A = NIl x Z‘;H'. Further, we consider the
coordinate order (6) and we order the monomials £ = #%¢" using the lexicographic order
with respect to a = (3,~). This leads to a linear vector space isomorphism

i:OU)~C 5 ) fal@)* = (fa)aca € [] C(U)
acA acA
We identify O(U) with [[,c 4 C*(U) via i, so that i = id. Since C*°(U) is nuclear, see
Example 6.2.2, and since any product of nuclear LCTVS-s is a nuclear LCTVS for the product
topology, the space O(U) is nuclear for this topology. It is known that, if 7 : [],c4 Vo = Vb
is a product of LCTVS-s V,, whose locally convex topologies are implemented by families of
seminorms (pf);, then the locally convex product topology is implemented by the family of
seminorms (p}),,; defined by p¢ = pf o m,. Hence, in the case considered here, the product
topology is given by the family of seminorms pR » = pa,coma . Of course, the standard locally
convex topology on O(U), i.e., the seminorm topology of the family pc p, must coincide with
the product topology, i.e., the families of seminorms pj  and pc,p must be equivalent. Let
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therefore 5 € A, f € O(U), let A be a differential operator acting on C*°(U), and let C be
a compact subset of U. When noticing that D = il 85 A is a differential operator acting on
O(U), we obtain

Pac) = pac(ms(£) = suplA(f)| = suple( 5 HOEAG)] = pen(h)
Conversely, for any differential operator D acting on O(U), we have

pe.n(f) =suple(D(f))] =sup| > (B! Dag(w,£)) 05 fa] <
C C B

(14 maxsup [e(8! Das(x, €))| Zsupmafm CY Bhac(f)- (19)

Corollary 17. For any open subset Q C RP, the map
Z fa fa acA € H Coo (20)
acA acA

where the source (resp., the target) is equipped with the standard topology induced by (pc.p)c,p
(resp., the product topology of the standard topologies induced by (pa.c)a,c ), is an isomor-
phism of TVS-s.

The next lemma will allow us to almost complete the proof of Theorem 14.
Lemma 18. Let U C M be an open subset.

o Let (Uj)ier be an open cover of U, let f,, n € N, and f be Z3-functions in O(U). The
sequence fp, is a Cauchy sequence in O(U) (resp., converges in O(U) to f) if and only
if the sequence fy|u, of restrictions is a Cauchy sequence in O(U;) (resp., converges in
O(U;) to the restriction fly, ), for alli e I.

o The space O(U) is a Zy-graded Fréchet algebra.

Proof. Both statements of Item 1 are of the type
pe.p(fn) = Sup [e(D(fn))] = 0 (21)

if n — oo, for all compact subsets C' C U and all Z3-differential operators D on U, if and only
if, for all 4,
pcy,p; (fulu;) = sup e(Di(falv:))] — 0 (22)

if n — oo, for all compact subsets C; C U; and all Zy-differential operators D; on U .

Assume first that (21) holds, let C;, D; be as said, and consider a bump function v € O(U)
that equals 1 in an open neighborhood V of C; and is compactly supported in U;. Since Cj is
a compact subset of U and since yD; is a Z4-differential operator on U, we get

pcy,pi(falvs) = sup [e(V)e(Dilfalvi )] = sup le(vDi) (fa))| = 0,

i
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if n — 0o. Conversely, if (22) holds and if C, D are as above, there exists a finite open cover
(Vj); of C such that each Vj is compact and each Vj is contained in some U;(;y [CCF11]. Then,

pe.p(fn) = suple(D(fa))] = sup e(D(fa))] < ngp e(Dlu;) (falv,)))l =0,
UiV iV

if n — oo.

It remains to show that the Z§-graded associative R-algebra O(U) is a Zj-graded Fréchet
algebra for its standard Hausdorff locally convex topology given by the family (pc.p)c,p, see
Lemma 15. Note that the space O(U) is complete. Indeed, let U; be a countable open cover
of U by Z4-chart domains and let f,, be a Cauchy sequence in O(U). In view of Item 1 and
Lemma 16, the sequence f, |y, converges to fu, in O(U;). When applying Item 1 to the open
cover U;; = U; N U;j of U;, to the sequence f,|y,, and the function fy,, we find that fn|Uij
converges in O(U;;) to fu,|u,;- One sees similarly that it converges also to fu;|u,;. Hence,
there is a unique function f € O(U) such that f|y, = fu,. It now follows from Item 1 that
fn — fin O(U), so that O(U) is complete. To conclude that O(U) is a Z3-graded Fréchet
algebra, we have to provide an equivalent countable submultiplicative family of seminorms
on O(U). It actually suffices to proceed as above, see (18). More precisely, for each one of
the countably many Zg7-chart domains U;, we can choose a countable cover of U; by compact
subsets C), ; C U; such that C),; is contained in the interior of Cj,41,;. The family

PCiam(f) =2 sup sup [£(9702 flu,)| ,

laf <m Cp
1Bl < n

where m, u € N, is the searched countable equivalent submultiplicative family of seminorms

on O(U). O

Theorem 14 can now be proved as follows. Let U be any open subset of M and (U;);er
any open cover of U. In view of Item 1 of Lemma 18, the restriction maps O(U) 3> f —
flu, € O(U;) are sequentially continuous. Since a map from a metrizable TVS into a TVS is
continuous if and only if it is sequentially continuous [Tre67]|, the preceding restrictions are
continuous (in particular any restriction is continuous). The fact that O(U), U C M, carries
the coarsest or initial topology with respect to these restrictions is a consequence of the open
mapping theorem for Fréchet spaces and of the fact that M is second countable [Mal70]. In
view of this initial topology property, the Fréchet sheat O of Z3-graded algebras is nuclear if
O(U) is nuclear for any open U C M, or, equivalently, if O(U) is nuclear for any U of an open
basis of M [Mal70]. As mentioned above, any open subset of M is a union of open Zj-chart
domains, so that it suffices that O(U) be nuclear for any Z5-chart domain U, which has been
proven in Lemma 16. O

We mentioned above that any Z3-differential operator D : O — O and any Z5-morphism
O = (¢,0") : (M,0p) — (N,0Op) are J-adically continuous. The adic continuity allowed us
to conclude that differential operators and pullbacks act on series by acting on each of their
terms. The next proposition states that differential operators and pullbacks are continuous
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with respect to the standard locally convex topology of O. This property will be of importance
later on.

Theorem 19. Let M = (M,0Op) and N = (N,On) be Z5-manifolds, let D be a Z5-
differential operator on M and let ® = (¢, ¢*) : M — N be a ZY-morphism.

e For any open U C M, the differential operator Dy : Op(U) — Op(U) is continuous
for the standard locally convex topology of Op(U).

e For any open V. .C N, the pullback ¢} : On(V) — On(¢~1(V)) is continuous for the
standard locally convex topologies of On (V) and Op(¢~H(V)).

Proof. Since in both cases the source TVS is metrizable, it suffices to prove that the linear
maps Dy and ¢} are sequentially continuous. Item 1 is obvious in view of Equation (11).

We prove Item 2 first in the case V= N. Let f, — 0 in O(N) and show that ¢*f, — 0
in O(M) (we omit subscripts N and M). It follows from Item 1 of Lemma 18 that both
convergences are equivalent to the convergences to 0 of the restrictions of f,, and ¢*f,, to an
arbitrary open cover of N and M, respectively. Let N = U;V; be an open cover of N by
Z3-chart domains of N. We thus get M = U; ¢~1(V;) an open cover of M. Each ¢~1(V})
can again be covered by Zj-chart domains Uj; of M. Since M = Uj; U;;, it suffices to prove
that (¢* fn)|u;; — 0 in O(Uj;), knowing that f,|v;, — 0 in O(Vj). We will omit the subscripts
j,i in the arbitrarily chosen U;; C ¢~1(V;), as well as subscript j in V}, and we will write
vy, for the restriction f,|y. We denote by u = (u?) = (2%, &%) the coordinates in U and by
v = (vP) = (y°,n°) the coordinates in V. Let now C' C U be a compact subset and let

D= Da(u)

be a differential operator acting on O(U). We have to prove that

pe.o((¢"fu)lv) = sup e (D(#" fu) ) \—suprsZD ¢*vn)lul = 0. (23)

The Z% chain rule [CKP16]

A (8 1) = 0,a(670") ¢ (0,5 f)
B
extends to the Z3 Faa di Bruno formula

oo f) =Y (TTeadw ™) o @11,

where the sum and products are finite, where C denotes real numbers, and where we limited
ourselves to the structure of this complex result. It follows that the supremum in (23) reads

sup = 3737 (Datw) [[C00(670")) 6*(@1w)

= sup e 3 F(u) ¢ (8]vn)| = sup| — |
(24)
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where we omitted the restrictions to U and where F' € O(U). We get

sup| — | = sup | 32(e F) () £(0}) (0())|

IN

Zsup |eF| sup |e(0)vy)(o(x))]| = Zsup |eF| sup |e(0)vy)]
c c ¢ #(C)

Since v, — 0 in O(V') and ¢(C) is a compact subset of V', the conclusion follows.

In order to extend the conclusion from ¢}; to ¢j,, for any open V' C N, note that we can
restrict the Z5-morphism

(¢7¢*) : (M,OM) - (N>ON)
to a Z4-morphism (¢, ¢*) between the open Z§-submanifolds (U, Ops|y) and (V, On|v ), where
U = ¢~ Y(V). It suffices to set ¢ = ¢|y : U — V, and to set, for any open W C V,

* -1 1% * _
Piv = Pty © St ON(W) = O™ (W) .

Indeed, the base map ¢ is smooth and the pullbacks ¢y, are Zj-graded unital R-algebra
morphisms, which commute with restrictions. Applying now the first part of our proof of Item
2, we get that ¢}, : On(V) = Oun(¢71(V)) is continuous. This concludes the proof, since
ey = Oy O

6 Appendix

In this section, we recall basic results and provide examples.

6.1 Fréchet spaces
6.1.1 Definitions and construction

Remark 20. All vector spaces considered in the present text are spaces over the field R of real
numbers.

Definition 21. A topological vector space (TVS) is locally convex if its topology has a basis
made of convex subsets, i.e., subsets U such that, for any x,y € U, the segment {(1—t)x+ty :
t €[0,1]} is contained in U.

Definition 22. A locally convex topological vector space (LCTVS) is a Fréchet space if its
topology can be implemented by a translation-invariant metric with respect to which it is (se-
quentially) complete.

Recall that a metrizable TVS is complete if and only if it is sequentially complete.

The standard construction of a Fréchet space starts from a family of seminorms. The
difference between a seminorm p on a vector space and a norm || — || is that p(z) = 0 does
not imply that x = 0. Recall also that a family of seminorms (p;);c; separates points (or is
separating), if for  # 0, there is i € I such that p;(z) # 0.

The following proposition is almost obvious and will not be proven.
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Proposition 23. Let (p;)icr be a family of seminorms on a vector space V. For anyi € I,z €
V,e >0, set
Bi(z,e) ={y eV :pi(y —x) <e}.

The family of all the subsets Bi(z,e) generates a topology on V (recall that this topology is
made of the unions of finite intersections of subsets B;(x,¢)). We refer to this topology as the
seminorm topology induced by (p;)icr- The finite intersections of subsets B;(x,e) with fixed
x and g, form a basis B of the seminorm topology:

B={Ni_¢Bi;(z,e) :n € N,ij € [, € V,e > 0} .

The elements of this basis are convex. The open subsets U of the seminorm topology are
characterized by the property that for any x € U, there is a basis element N7_, B, (z,¢), which
is contained in U. The seminorm topology endows V with a structure of LCTVS.

Proposition 24. Let (p;)ic; be a family of seminorms on a vector space V. A sequence
(zk)ken of elements of V' converges to @ € V with respect to the seminorm topology, if and
only if it converges to x with respect to each seminorm, i.e., if and only if

liinpi(xk —x)=0,Viel.

Similarly, the sequence (xk)ken is a Cauchy sequence with respect to the seminorm topology,
if and only if it s Cauchy with respect to each seminorm.

Proof. We prove the second statement. Let (zj)ren be Cauchy with respect to the topology
and take i € I and € > 0. Since B;(0,¢) is an open neighborhood of 0, there is N > 0 such
that xy — z,, € B;(0,¢) if £,m > N. It follows that p;(z; — zp,) < € if £,m > N. Conversely,
let U be an open neighborhood of 0 and let ﬂ?zoBi].(O, g) C U. The assumption implies that,
for all j € {0,...,n}, there is N;j > 0 such that p; (¢ — 2m) < € if £,m > N;. Hence, if
¢,m > N = sup; N;, the difference z¢ — xy, is in U. O

Further:

Proposition 25. A seminorm topology is Hausdorff if and only if its inducing family of
seminorms s separating.

Proof. Let (p;)icr be the family of seminorms on the vector space V. Assume first that the
seminorm topology is Hausdorff and let x be a non-zero vector in V. In view of the Hausdorff
property, there is a neighborhood of x which does not contain 0. Hence, there is an open
subset B;(x, ) which does not contain 0: p;(x) > ¢ and p;(x) # 0. Conversely, if the family of
seminorms separates points and if z,y are two different vectors in V, there exists ¢ € I such
that p;(x —y) # 0, i.e., such that p;(x —y) =n > 0. Let now € = /2 > 0 and take the open
neighborhoods B;(x,¢) of x and B;(y,¢) of y. If these neighborhoods have a common vector
z, then
2e = pi(xr —y) < pi(z — 2) +pi(z —y) < 2e,

so that the neighborhoods are disjoint. O



Functional analytic issues in Z5-Geometry 21

As well-known, the next definition of Fréchet spaces is equivalent to the above one, but is
better suited for applications.

Definition 26. A TVS is a Fréchet space if it is Hausdorff and (sequentially) complete, and
if its topology can be induced by a countable family of seminorms.

We are now prepared to discuss standard construction methods of Fréchet spaces from
countable families of seminorms.

Proposition 27. If (pn)nen is a countable family of seminorms on a vector space V', and if
this family separates points, then

1 pn(x_y)
= _—— 2
d(z,y) nEEN Ty "Y€ vV, (25)

is a translation-invariant metric on V' that induces the seminorm topology of V.
Proof. The statement is a standard functional analytical result. O
The next proposition is natural. It extends Proposition 24:

Proposition 28. In the situation of Proposition 27, a sequence in V' converges to a limit in
V' (resp., is a Cauchy sequence) with respect to the metric d, if and only if it converges (resp.,
is a Cauchy sequence) with respect to the seminorm topology, and if and only if it converges
(resp., is a Cauchy sequence) with respect to all seminorms.

Remark 29. To construct a Fréchet space, one usually proceeds as follows, although the method
admits a number of variants. On starts with a vector space V and a countable and separating
family (pp)nen of seminorms on it. The seminorm topology turns V into a Hausdorff LCTVS.
Definition 26 then allows us to conclude that V is a Fréchet space, if we can prove that V is
(sequentially) complete with respect to its topology. In view of Proposition 28, this condition
is equivalent to (sequential) completeness with respect to the translation-invariant metric (25)
induced by the seminorms. Further, if one can verify that a sequence in V' that is Cauchy for
any seminorm py, converges to a fized x € V for any p,, then the TVS V is (sequentially)
complete with respect to the seminorm topology, again due to Proposition 28.

6.1.2 Examples

We briefly present some examples.

Example 30. The vector space R* of all sequences r = (rg,r1,...) of real numbers is a
Fréchet space for the countable family (pn)nen of seminorms

Pr(r) = sup |rp| .

m<n
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The family (g, )nen given by
n(r) = Z 7]

r<n

defines the same topology, i.e., the same Fréchet space. We say that two such families of
seminorms are equivalent.

We recall an important criterion for equivalence of two families of seminorms.

Proposition 31. To families of seminorms (p;)icr and (q;)jes on a vector space V are equiv-
alent, i.e., they induce the same locally convex topology, if and only if, for any i, there is a
constant C' > 0 and a finite subset {j1,...,jn} C J, such that

pi(r) < C(gj, () + ...+ qjy(2)), Vo €V,
and vice versa.

The next observation is indispensable.

Lemma 32. Any open subset of a (second-countable Hausdorff finite-dimensional) smooth

manifold admits a countable cover by compact subsets.

Proof. Every second-countable topological space is a Lindel6f space, i.e., any open cover admits
a countable subcover. Since all smooth manifolds considered in our texts on Zj-Geometry are
second-countable Hausdorff finite-dimensional smooth manifolds, the Lindel6f property holds
for all open subsets U C M.

Any open subset Q C RP admits a cover UzeqB(z) by open balls B(z) whose adherence
B(x) is contained in . In view of the Lindeldf property, we can extract from the preceding

open cover of () a countable subcover
Q = UienB(2;) = UienB(a;) - (26)

The latter cover is searched countable cover by compact subsets.

Let now U C M be an open subset of a p-dimensional smooth manifold. We can cover
U by coordinate systems (U,, ¢o) and extract a countable subcover (U, ¢;). Since @; is a
homeomorphism between U; C M and ¢;(U;) C RP, the set U; admits a countable cover U; =
UkenCri by compact subsets Cy; C U;. We thus get the countable cover U = U;en Ugen Ci; of
U by compact subsets Cy; C U. O

The following is one of the important examples of Fréchet spaces.

Example 33. For any open subset Q C RP, the function algebra C*°(S2) is a Fréchet vector
space for the countable family (pa.i)a,i of seminorms defined, for any multi-index o« € N*P and
any compact C; (i € N) of a countable cover of Q0 by compact subsets (e.g., C; may run through
the balls B(x;) of (26)), by

Pai(f) = sup |02 f] (27)

zeC;
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To prove this standard statement one uses Remark 29. The result can be extended:

Example 34. The function algebra C*°(U) of an open subset U of a (second-countable Haus-
dorff finite-dimensional) smooth manifold M, is a Fréchet vector space. The locally convex
topology of C*°(U) is implemented (for instance) by the family of seminorms

pa,c(f) = sup |[A(f)(z)] , (28)
zeC
where A € D(U) is any differential operator acting on C*°(U) and where C' is any compact
subset of U. Note that — by definition — this topology is the topology of uniform convergence
on compact subsets C' of f and its ‘derivatives’ A(f).

6.2 Nuclear spaces
6.2.1 Definition

Let us recall that a completion of a TVS V is a complete TVS V that contains V (or,
better, a homeomorphic image of V') as a dense subspace. Any (LC)TVS can be completed as
(LC)TVS.

When considering (algebraic) tensor products of LCTVS-s, some subtleties arise due to the

possibility to choose various topologies on these products.

More precisely, let VW be two LCTVS-s. The finest locally convex topology on the
algebraic tensor product V ® W, for which the natural map V. x W — V ® W is continuous,
is referred to as the projective tensor topology. The completion of the resulting LCTVS is
the completed projective tensor product V&, W. There exists another natural locally convex
topology on V @ W, which is coarser than the projective one, and which is called the injective
tensor topology. The corresponding completion is the completed injective tensor product
V®;W. Any reasonable locally convex topology on V @ W lies between the injective and

projective ones.

We are now prepared to give one of the equivalent definitions of nuclear LCTVS-s.

Definition 35. A LCTVS V is nuclear if, for any LCTVS W, the canonical map V&, W —
V&;W is an isomorphism of LCTVS-s.

More precisely, the identity id : V&, W — V &®; W is a bijective continuous linear map, and
its continuous extension id : V®,W — V&;W is an injective continuous linear map. When
V' is nuclear, this canonical map is onto, or, better, it is a TVS-isomorphism. As already said,
any (reasonable) locally convex topology on V ® W is located between the projective and the
injective tensor topologies. Hence, if V is nuclear, the complete TVS V&W is independent of
the locally convex topology considered.

Nuclear Fréchet spaces are just a specific type of nuclear LCTVS-s. Fréchet spaces are a
full subcategory of TVS-s, and so are nuclear spaces.
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6.2.2 Example

When thinking about the duality between spaces and function algebras, one meets the
problem of interpreting a tensor product of function algebras as function algebra of some space.
Even in the case of algebras C°°(2) of smooth functions on open subsets €2 of Euclidean spaces,
the canonical map C*(Q') @ C*(Q") — C>®(Q x Q") is (of course) not an isomorphism.
However, if one endows the algebraic tensor product of the LCTVS-s C*°()') and C*°(Q")
with the projective tensor topology and considers the corresponding completion, one gets an
isomorphism of TVS-s:

C®(Q)R,C%(Q) ~ C=(Q x Q") . (29)

The topology that we choose on the algebraic tensor product is actually irrelevant — a space
of the type C*°(Q) is nuclear. More precisely, both, C*(Q) (2 C RP) and C*(U) (U C M,
M smooth manifold), are nuclear Fréchet spaces.

In more detail, if V,W are complete LCTVS-s and if V is a concrete space (e.g., V =
C(€)), then it is mostly impossible to characterize both V&,W and V&;W concretely (in
fact a space of bilinear forms on dual spaces of V and W is also involved here, but we refrain
from describing this space precisely). For example, when V' = C*°(Q)) and W = C*>(Q"), we
can interpret C°°(€)®;C>(2") concretely as the space C®( x Q), but we have no good
access to C®(Q)®,0>(Q"). If we know a priori that V = C*(€) is nuclear, the problem
disappears.

6.3 Fréchet algebras

In fact, the algebra C*°(U), where U is any open subset of any smooth manifold, is a
Fréchet algebra [MHO5|. The definition of a Fréchet algebra is natural:

Definition 36. A Fréchet algebra is a Fréchet vector space A, which is equipped with an
associative bilinear and (jointly) continuous multiplication - : A x A — A. If (pi)ier is a
family of seminorms that induces the topology on A, (joint) continuity is equivalent to the
existence, for anyi € I, of j € I, k € I, and C > 0, such that

pi(z-y) < Cpj(x)pr(y), Yo,y € A.

We can always consider an equivalent increasing countable family of seminorms (|| — ||n)nen-
The preceding condition then requires that, for any n € N, there is r € N,r > n and C' > 0,
such that

|z - ylln < Cllzlly lyllr, Yo,y € A.

In particular, the topology can be induced by a countable family of submultiplicative seminorms,
i.e., by a family (pn)nen that satisfies

Pn(x-y) < pn(x) pu(y), Vn € N,Va,y € A.
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Note that many authors define a Fréchet algebra simply as a Fréchet vector space, which
carries an associative bilinear multiplication, and whose topology can be induced by a count-
able family (g, )nen of submultiplicative seminorms. This latter definition is equivalent to the
former.

6.4 Fréchet sheaves

Let M be a smooth manifold and denote by Open(M) (resp., Alg(R)) the category of open
subsets of M (resp., of associative R-algebras). As mentioned above, the function sheaf

C* :0pen(M)® 5 U — C(U) € Alg(R)

is actually valued in nuclear Fréchet algebras, i.e., in nuclear Fréchet vector spaces that carry a
Fréchet algebra structure. In view of this observation, it is natural to consider Fréchet sheaves.
Their definition is well-known:

Definition 37. A sheaf F of (real) vector spaces over a smooth manifold M is a Fréchet sheaf
of vector spaces, if the next two conditions are satisfied:

e for any U € Open(M), the vector space F(U) is a Fréchet vector space, and

o for any U € Open(M) and any cover (Us)ier of U, U; € Open(U), the locally convex
topology on F(U) is the coarsest topology for which the restriction maps F(U) — F(U;)
are continuous.

Since F is a sheaf of (real) vector spaces, it follows from the second condition that, for
any V € Open(U), the restriction map F(U) — F(V) is R-linear and continuous. As Fréchet
spaces are a full subcategory of TVS-s, the second requirement of Definition 37 is thus quite
natural. In view of this understanding, it is clear that the definition of a (nuclear) Fréchet
sheaf of algebras is similar, but starts from a sheaf of (real) algebras.
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