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Abstract

We show that the function sheaf of a Zn
2 -manifold is a nuclear Fréchet sheaf of Zn

2 -
graded Zn

2 -commutative associative unital algebras. Further, we prove that the compo-
nents of the pullback sheaf morphism of a Zn

2 -morphism are all continuous. These results
are essential for the existence of categorical products in the category of Zn

2 -manifolds. All
proofs are self-contained and explicit.
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1 Introduction

Zn2 -Geometry is an emerging framework in mathematics and mathematical physics, which
has been introduced in the foundational papers [CGP16a] and [COP12]. This non-trivial
extension of standard supergeometry allows for Zn2 -gradings, where

Zn2 = Z×n2 = Z2 × . . .× Z2 and n ∈ N .

The corresponding Zn2 -commutation rule for coordinates (uA)A with degrees deg uA ∈ Zn2 does
not use the product of the (obviously defined) parities, but the scalar product 〈−,−〉 of Zn2 :

uAuB = (−1)〈deg uA,deg uB〉uBuA . (1)

The definitions of Zn2 -manifolds and Zn2 -morphisms are recalled in Section 2. A survey of Zn2 -
Geometry is available in [Pon16].

The motivations for this new setting originate in both, mathematics and physics.

In physics, Zn2 -gradings and the Zn2 -commutation rule (n ≥ 2) are used in various contexts.
References include [AS17], [AKTT16], [Tol13], and [YJ01], as well as [CKRS17] and [Kho16]
(the latter, which can be traced back to [BB04], [DVH02], and [MH03], use the Zn2 -formalism
implicitly). Further, the Zn2 -commutation rule is not only necessary, but also sufficient: it can
be shown [CGP14] that any commutation rule, for any finite number m of coordinates, is of
the form (1), for some n ≥ 2m.

In mathematics, well-known algebras are Zn2 -commutative. This holds for instance for the
algebra of quaternions (which is Zn2 -commutative with n = 3) and, more generally, for any
Clifford algebra Clp,q(R) (Zn2 -commutative with n = p + q + 1), as well as for the algebra of
Deligne differential forms on a standard supermanifold (Zn2 -commutative with n = 2: the first
Z2-degree is induced by the cohomological degree, the second Z2-degree is the parity).

Moreover, there exist canonical examples of Zn2 -manifolds. The local model of these higher
or colored supermanifolds is necessarily [Pon16] the Zn2 -commutative algebra C∞(x)[[ξ]] of
formal power series in the coordinates ξ = (ξ1, . . . , ξN ) of non-zero Zn2 -degree, with coefficients
in the smooth functions in the coordinates x = (x1, . . . , xp) of zero Zn2 -degree. For instance,
the tangent bundle of a classical Z2-manifold or supermanifold M can be viewed as a Z2

2-
manifold TM, in which case the function sheaf is the completion of Deligne differential forms
ofM. Actually, the tangent (and cotangent) bundle of any Zn2 -manifold is a Zn+1

2 -manifold.
Moreover, the ‘superization’ of any double vector bundle (resp., any n-fold vector bundle) is
canonically a Z2

2-manifold (resp., Zn2 -manifold).

We expect that a number of applications of Zn2 -Geometry in physics are based on the
integration theory of Zn2 -manifolds. A first step towards Zn2 -integration is the Zn2 -generalization
of the Berezinian. This fundamental concept has been constructed in [COP12] and is referred
to as the Zn2 -Berezinian. The Zn2 -integration theory is still under investigation.

Other applications of Zn2 -Geometry rely on Zn2 Lie groups (generalized super Lie groups)
and their actions on Zn2 -manifolds (which are expected to be of importance in supergravity), on
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Zn2 vector bundles (generalized super vector bundles) and their sections (these are basic objects
needed for instance in the study of Zn2 Lie algebroids), on the internal Hom in the category
of Zn2 -manifolds (which is of importance in field theory – Zn-gradings and Zn2 -parities), ... All
these notions are themselves based on products in the category of Zn2 -manifolds.

The investigation in the present paper is motivated by three facts:

1. the proof of existence of the preceding categorical products uses the content of this paper,

2. the proof of the reconstructions of Zn2 -manifolds and morphisms between them from
global Zn2 -functions and morphisms between them, is based on this content, and

3. the results of the present paper extend similar results in the standard supercase to the
more challenging Zn2 -context, and constitute an added value of the less detailed study in
the supercase, which is given in the Appendix of [CCF11].

2 Zn2-manifolds and their morphisms

We denote by Zn2 the cartesian product of n copies of Z2 . Further, we use systematically
the following standard order of the 2n elements of Zn2 : first the even degrees are ordered
lexicographically, then the odd ones are also ordered lexicographically. For example,

Z3
2 = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)} .

A Zn2 -domain has, aside from the usual coordinates x = (x1, . . . , xp) of degree deg xi = 0 ∈
Zn2 , also formal coordinates or parameters ξ = (ξ1, . . . , ξQ) of non-zero degrees deg ξa ∈ Zn2 .
These coordinates u = (x, ξ) commute according to the generalized sign rule

uAuB = (−1)〈deg uA,deg uB〉uBuA , (2)

where 〈−,−〉 denotes the standard scalar product. For instance,

〈(0, 1, 1), (1, 0, 1)〉 = 1 .

Observe that, in contrast with ordinary Z2- or super-domains, even coordinates may anticom-
mute, odd coordinates may commute, and even nonzero degree coordinates are not nilpotent.
Of course, for n = 1, we recover the classical situation. We denote by p the number of coordi-
nates xi of degree 0, by q1 the number of coordinates ξa which have the first non-zero degree
of Zn2 , and so on. We get that way a tuple q = (q1, . . . , qN ) ∈ NN with N := 2n − 1. The
dimension of the considered Zn2 -domain is then given by p|q. Clearly the Q above is the sum
|q| =

∑N
i=1 qi.

We recall the definition of a Zn2 -manifold.

Definition 1. A locally Zn2 -ringed space is a pair (M,OM ) made of a topological space M
and a sheaf of Zn2 -graded Zn2 -commutative ( in the sense of (2) ) associative unital R-algebras
over it, such that at every point m ∈M the stalk OM,m is a local graded ring.
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A smooth Zn2 -manifold of dimension p|q is a locally Zn2 -ringed spaceM = (M,OM ), which
is locally isomorphic to the smooth Zn2 -domain Rp|q := (Rp, C∞Rp [[ξ]]), and whose underlying
topological space M is second-countable and Hausdorff. Sections of the structure sheaf C∞Rp [[ξ]]
are formal power series in the Zn2 -commutative parameters ξ, with coefficients in smooth func-
tions:

C∞Rp(U)[[ξ]] :=

 ∑
α∈N×|q|

fα(x) ξα | fα ∈ C∞(U)

 (U open in Rp) .

Zn2 -morphisms between Zn2 -manifolds are just morphisms of Zn2 -ringed spaces, i.e., pairs
Φ = (φ, φ∗) : (M,OM ) → (N,ON ) made of a continuous map φ : M → N and a sheaf
morphism φ∗ : ON → φ∗OM , i.e., a family of Zn2 -graded unital R-algebra morphisms, which
commute with restrictions and are defined, for any open V ⊂ N , by

φ∗V : ON (V )→ OM (φ−1(V )) .

We denote the category of Zn2 -manifolds and Zn2 -morphisms between them by Zn2Man.

Remark 2. When considering sheaves, like, e.g., OM , we sometimes omit the underlying
topological space M , provided this space is clear from the context.

Remark 3. Let us stress that the base space M corresponds to the degree zero coordinates
(and not to the even degree coordinates), and let us mention that it can be proven that the
topological base space M carries a natural smooth manifold structure of dimension p, that the
continuous base map φ : M → N is in fact smooth, and that the algebra morphisms

φ∗m : Oφ(m) → Om (m ∈M)

between stalks, which are induced by the considered Zn2 -morphism Φ : M → N , respect the
unique homogeneous maximal ideals of the local graded rings Oφ(m) and Om.

3 Linear Zn2-algebra

Let us mention that Zn2 -graded modules V over a Zn2 -commutative algebra A are defined
canonically,

Aγ
′ · V γ′′ ⊂ V γ′+γ′′ (γ′, γ′′ ∈ Zn2 ) ,

and that Zn2 -graded modules over a fixed Zn2 -commutative algebra, and degree-preserving A-
linear maps between them form an abelian category Zn2Mod(A). This category admits a natural
symmetric monoidal structure ⊗A, with braiding given by

cgr
VW : V ⊗AW → W ⊗A V

v ⊗ w 7→ (−1)〈deg v,degw〉w ⊗ v ,

for homogeneous elements v and w. This structure is also closed, as for every V ∈ Zn2Mod(A),
the functor

−⊗A V : Zn2Mod(A)→ Zn2Mod(A)
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has a right-adjoint
HomA(V,−) : Zn2Mod(A)→ Zn2Mod(A) ,

i.e., for any U,W ∈ Zn2Mod(A), there is a natural isomorphism

HomA(U ⊗A V,W ) ' HomA(U,HomA(V,W )) ,

where HomA(V,W ) denotes the categorical hom made of the degree-respecting A-linear maps,
i.e., of the A-linear maps ` : V → W of degree 0 ∈ Zn2 , i.e., `(V γ) ⊂ W γ+0, for all γ ∈ Zn2 .
One can readily verify that the internal hom HomA(V,W ) is the Zn2 -graded A-module which
consists of all A-linear maps ` : V →W of all possible degrees α ∈ Zn2 , i.e.,

`(V γ) ⊂W γ+α ,

for all γ ∈ Zn2 . The A-linear maps of degree α constitute the α-part Homα
A(V,W ) of

HomA(V,W ). Hence, contrary to the case of modules over a classical commutative alge-
bra, the internal hom HomA differs from the categorical hom HomA, since this latter contains
only 0-degree A-linear maps: HomA(V,W ) = Hom0

A(V,W ).

4 Sheaves of differential operators on a Zn2-manifold

It is known that bump functions and partitions of unity do exist in Zn2 -manifolds [CGP14],
and that they can be used similarly to classical bump functions in smooth geometry [Lei80].
Recall that in a Zn2 -manifoldM = (M,OM ), the support of a Zn2 -function s ∈ OM (U), U ⊂M ,
is defined as usual as the complementary in U of the open subset of identical zeros of s in
U . Further, a bump function γ of M around m ∈ M is a globally defined degree zero Zn2 -
function γ ∈ O0

M (M) for which there exist open neighborhoods W ⊂ V ⊂M of m, such that
supp γ ⊂ V and the restriction γ|W = 1. Moreover, if ε is the projection to the base that
implements the short exact sequence of sheaves [CGP14]

0→ kerM ε→ OM
ε→ C∞M → 0 , (3)

the projection εM (γ) ∈ C∞M (M) is a bump function of M around m.

Consider now a Zn2 -manifold M = (M,OM ). Notice that A = R can be viewed as a Zn2 -
commutative algebra concentrated in degree 0, and that, for any open U ⊂ M , the algebra
O(U) is an object in Zn2Mod(R), i.e., is a Zn2 -graded R-vector-space. Hence, according to
Section 3,

EndR(O(U)) := HomR(O(U),O(U))

is the Zn2 -graded R-vector-space of all R-linear maps of all Zn2 -degrees from O(U) to itself.
Composition endows this space with a Zn2 -graded associative unital R-algebra structure, and
the Zn2 -graded commutator [−,−] endows this space with a Zn2 -graded Lie algebra structure.
We can identify O(U) with an associative subalgebra of EndR(O(U)) using the left-regular
representation

g 7→ mg , mg(f) = g · f .
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Definition 4. The Zn2 -graded O(U)-module of k-th order differential operators Dk(U), k ∈ N,
is defined inductively by

Dk(U) := {D ∈ EndR(O(U)) : [D,O(U)] ⊂ Dk−1(U)}, (4)

where D−1(U) = {0}.

Of course D0(U) = O(U). Indeed, it is clear that O(U) ⊂ D0(U). Conversely, if D ∈
D0(U), then, for any f ∈ O(U), we have [D, f ] = 0, so that

D(f) = D(f · 1) = D(1) · f = mD(1)(f) ,

i.e., D ' D(1) ∈ O(U). It follows that 0-order differential operators are local, i.e., if D ∈
D0(U), f ∈ O(U), and −|V denotes the restriction to an open subset V ⊂ U , then D(f)|V
only depend on f |V , or, equivalently, if f |V = 0 then D(f)|V = 0. This implies by induction
that any differential operator of any order is local. Indeed, if D ∈ Dk(U), if f ∈ O(U) and
f |V = 0, and if m ∈ V , let γ ∈ O0(M) be a bump function of M around m with support
supp γ ⊂ V and restriction γ|W = 1, for some neighborhoodW ⊂ V of m. It then follows from
the defining property of differential operators applied to [D, γ]f , the induction assumption,
and the fact γf = 0, that (Df)|W = 0.

We now show that any D ∈ Dk(U) can be localized.

Proposition 5. Let U ⊂ M and V ⊂ U be open. Any D ∈ Dk(U) induces a unique D|V ∈
Dk(V ). This restricted operator satisfies D|V (g|V ) = (Dg)|V , for any g ∈ O(U).

Proof. If f ∈ O(V ) and m ∈ V , we choose a function F ∈ O(U) such that F |W = f |W , for
some neighborhood W ⊂ V of m (it suffices to choose a bump function γ in M around m

with support in V and restriction 1 to W (m ∈ W ⊂ V ) and to set F = γf). Locality of
D implies that the section (DF )|W ∈ O(W ) and the section (DF ′)|W ′ ∈ O(W ′) obtained
similarly but for a point m′ ∈ V , depend only on f and thus coincide on the intersection
W ∩W ′. Hence, these local sections define a unique global section D|V f ∈ O(V ) such that
(D|V f)|W = (DF )|W . In particular, if f = g|V is the restriction of a function g ∈ O(U), we
can take F = g, so that

D|V (g|V ) = (Dg)|V , (5)

as announced. Since, obviously, D|V ∈ EndR(O(V )) (note that D|V has the same parity as
D), it suffices – to prove Proposition 5 – to observe that, for any f1, . . . , fk+1, g ∈ O(V ), we
have

([. . . [[D|V , f1], f2], . . . , fk+1]g)|W = ([. . . [[D,F1], F2], . . . , Fk+1]G)|W = 0,

with obvious notation.

The assignment Dk : U → Dk(U) of the Zn2 -gradedO(U)-module Dk(U) to any open subset
U ⊂ M is a presheaf of Zn2 -graded O-modules. Indeed, the restriction maps ρUV : Dk(U) 3
D 7→ D|V ∈ Dk(V ) are clearly of degree 0 and O-linear (i.e., ρUV (GD) = rUV (G)ρUV (D), where
rUV is the restriction map of the function sheaf O), and they satisfy the usual compatibility
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conditions for restriction maps. The presheaf Dk is in fact a sheaf over M – the standard
proof goes through. If we wish to emphasize the base topological space of this sheaf we write
DkM instead of Dk.

Some continuity results will be needed. Let M = (M,OM ) be as above a Zn2 -manifold.
The kernel sheaf kerM ε of the base projection sheaf morphism ε : OM → C∞M (see (3)) is a
sheaf of ideals of the structure sheaf OM , which we usually denote by JM = kerM ε. Further,
we write mm for the unique homogeneous maximal ideal of the stalk Om of the sheaf OM at
m ∈M . The topology of OM associated to the filtration

OM ⊃ JM ⊃ J 2
M ⊃ . . .

is referred to as the JM -adic topology of the structure sheaf. Similarly, the topology of Om
associated to the filtration

Om ⊃ mm ⊃ m2
m ⊃ . . .

is the mm-adic topology of the stalk. The Zn2 -function sheaf OM (resp., the Zn2 -function
algebra OM (U), U open in M) is Hausdorff-complete with respect to the JM -adic (resp.,
JM (U)-adic) topology [CGP14]. Moreover, Zn2 -morphisms are J -adically continuous and the
induced morphisms between stalks are m-adically continuous [CGP14]. Moreover:

Proposition 6. Any differential operator ∆ ∈ Dk(U) of any degree k ≥ 0 and over any open
U ⊂ M is J (U)-adically continuous. In particular, if a sequence of functions fn ∈ O(U)

tends J (U)-adically to a function f ∈ O(U), then ∆fn tends J (U)-adically to ∆f . Due to
its locality, any differential operator ∆ of order k acting on O(U) canonically induces, for any
m ∈M , a differential operator ∆m of order k acting on Om, and this induced operator ∆m is
mm-adically continuous.

The proof is based on the following lemmata. We will omit the subscript M which remem-
bers that most of the sheaves considered here are defined over M .

Lemma 7. LetM = (M,OM ) be a Zn2 -manifold, let k ≥ 0 be an integer and U ⊂M be open,
and let ∆k ∈ Dk(U). We have

∆kJ k+c(U) ⊂ J c(U) ,

for all c ≥ 1.

Proof. In this proof we just write ∆ thus omitting the superscript indicating its order. If
k = 0, the differential operator ∆ is a function ∆ ∈ O(U). Hence, for any c ≥ 1,

∆J c(U) = ∆ · J c(U) ⊂ J c(U) .

Assume now that the claim holds for k ≥ 0. We will show that it is then also valid for k + 1.
Let c = 1, let ∆ ∈ Dk+1(U), let f ∈ J (U) and let g ∈ J k+1(U). We have f∆g ∈ J (U), since
J (U) is an ideal, and, since [∆, f ] ∈ Dk(U), we have [∆, f ]g = ∆(fg)± f∆g ∈ J (U), in view
of the induction assumption. It follows that ∆(fg) ∈ J (U) and that ∆J k+2(U) ⊂ J (U):
for differential operators of order k + 1 the claim is true for the lowest value c = 1. It thus
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suffices to assume that the statement holds for c ≥ 1 and to prove that it holds then as well
for c+ 1. Therefore, consider f ∈ J (U) and g ∈ J k+c+1(U). Since [∆, f ]g = ∆(fg)± f∆g ∈
J c+1(U), due to the induction assumption on k, and since f∆g ∈ J c+1(U), due to the
induction assumption on c, we finally obtain that ∆J k+c+2(U) ⊂ J c+1(U), what completes
the proof.

The next lemma is similar and has the same proof.

Lemma 8. LetM = (M,OM ) be a Zn2 -manifold, let k ≥ 0 be an integer and U ⊂M be open,
and let ∆k ∈ Dk(U). If m ∈ U and mm is the unique homogeneous maximal ideal of Om, we
have

∆k
mm

k+c
m ⊂ mc

m ,

for all c ≥ 1.

We are now prepared to prove Proposition 6.

Proof. Let ∆ ∈ Dk(U) (k ≥ 0, U ⊂ M open), let g ∈ O(U) and c ≥ 1, and show that the
preimage ∆−1(g+J c(U)) of the arbitrary basic open subset g+J c(U), is open in the J (U)-
adic topology. The fact that ∆J k+c(U) ⊂ J c(U) implies that ∆−1(g+J c(U)) is the union of
the J (U)-adically open sets f +J k+c(U), where f runs over all elements of ∆−1(g+J c(U)),
so that ∆−1(g + J c(U)) is actually open. The claim that the limit of ∆fn is the value of ∆

at the limit of fn , is a direct consequence of Lemma 7. The statement concerning ∆m follows
analogously from Lemma 8.

In the next proposition, we consider p|q local coordinates u = (x, ξ) and set u = (x, θ, ζ),
where x (resp., θ, ζ) are the coordinates of degree zero (resp., of even non-zero degrees, of odd
degrees). More precisely, as suggested above, we fix the coordinate order:

u = (x1, . . . , xp, θ1, . . . , θq1 , θq1+1, . . . , θ
∑2n−1−1
i=1 qi , ζ1, . . . , ζq2n−1 , ζq2n−1+1, . . . , ζ

∑2n−1

i=2n−1 qi) .

(6)
The corresponding Zn2 -graded derivations ∂ζ , ∂θ, ∂x are written in decreasing order.

Theorem 9. For any k ∈ N, the sheaf DkM of k-th order differential operators of a Zn2 -manifold
M = (M,OM ) of dimension p|q is a locally free sheaf of Zn2 -graded OM -modules, with local
basis

∂γζ ∂
β
θ ∂

α
x ,

where (x, θ, ζ) are local coordinates, γa ∈ Z2 and βb, αc ∈ N, and |α|+ |β|+ |γ| ≤ k.

Remark 10. Note that the decomposition of a differential operator of order k in this local
basis leads to a finite sum ( see Equation (7) below ).

Proof. Since we work locally, we takeM = (U,C∞U [[θ, ζ]]), where U is an open subset of Rp.
We first prove uniqueness of the coefficients. If D ∈ Dk(U) is of the type

k∑
i=0

Di =
k∑
i=0

∑
|α|+|β|+|γ|=i

Di
αβγ(x, θ, ζ) ∂γζ ∂

β
θ ∂

α
x ∈ Dk(U), (7)
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and if mαβγ = 1
α!β!x

αθβζγ , where the coordinates are written in increasing order and |α| +
|β|+ |γ| = i, then necessarily

Di
αβγ = Dimαβγ = Dmαβγ −

i−1∑
j=0

Djmαβγ , . (8)

Indeed, the term with same indices as the considered monomial reduces to its coefficient when
applied to the monomial, and any other term contains at least one index that is higher than
the corresponding index in the monomial, so that this term annihilates the monomial). Hence,
the coefficients Di

αβγ of D are unique, if they exist. More precisely, for |µ|+ |ν|+ |π| = 1 and
|α|+ |β|+ |γ| = 2, we get

D0
000 = Dm000 ,

D1
µνπ = Dmµνπ −Dm000 ·mµνπ ,

D2
αβγ = Dmαβγ−

∑
|µ|+|ν|+|π|=1

(Dmµνπ−Dm000 ·mµνπ) ∂πζ ∂
ν
θ ∂

µ
x mαβγ−Dm000 ·mαβγ . . . (9)

Consider now an arbitrary D ∈ Dk(U) and set ∆ = D −Σ ∈ Dk(U), where Σ denotes the
RHS of (7) with the coefficients defined in (8). This operator ∆ vanishes by construction on
the polynomials of degree ≤ k in x, θ, ζ. The reader might wish to check this claim by direct
computation. For instance, the computation for k = 2 is straightforward in view of Equation
(9).

Note now that, for any f1, . . . , f`−1, h ∈ C∞U (U)[[θ, ζ]], ` ≥ k + 1, we have

∆(f1 . . . f`−1h) =

`−1∑
b=1

∑
±fi1 . . . fib∆(fib+1

. . . fi`−1
h) + F (h), (10)

as immediately seen when developing F (h) := [. . . [[∆, f1], f2], . . . , f`−1]h. If ` > k + 1, the
term F (h) vanishes, whereas in the case ` = k+ 1 it is given by F (h) = F (1)h. Equation (10)
shows that ∆ = 0 on any polynomial of degree k+1 in x, θ, ζ. Indeed, for coordinate functions
f1, . . . , fk, h, the value ∆(f1 . . . fkh) vanishes if and only if F (1) vanishes. However, the value
F (1) is, again in view of (10), computed from values of ∆ on polynomials of degree ≤ k and
does therefore vanish. It now follows by induction from (10) that ∆ = 0 on an arbitrary
polynomial in x, θ, ζ. We can extend this conclusion to polynomial formal series, i.e., to series

P =
∑
|µ|≥0

Pµ(x)ξµ ,

where µ is a multi-index with sum of components denoted by |µ|, and where Pµ(x) is a
polynomial in the zero-degree coordinates x. Indeed, the sequence Pc obtained by taking in
the series P only the terms |µ| < c converges J (U)-adically to the series P, since in local
coordinates the ideal J c(U) is made of the series∑

|µ|≥c

fµ(x)ξµ ,
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all whose terms contain at least c formal coordinates. Hence, Proposition 6 implies that
∆P ∈ J c(U), for all c, i.e., that ∆P = 0. Let now f ∈ C∞U (U)[[θ, ζ]] and let m be any point
in U . By the polynomial approximation theorem [CGP14, Theorem 6.10], there exists, for any
c, a polynomial formal series P such that [f ]m − [P]m ∈ mk+c

m (P depends on f,m, and c).
When applying the differential operator ∆m of order k to [f ]m − [P]m, we get from Lemma 8
that [∆f ]m ∈ mc

m, for any c, so that [∆f ]m = 0. Since m ∈ U was arbitrary, ∆f = 0 for any
function f ∈ C∞U (U)[[θ, ζ]], i.e., D = Σ, where Σ is, as above, the RHS of Equation (7).

The definition of D1(U) implies straightforwardly that

D1(U) = O(U)⊕DerR(O(U)) ,

where the second term of the RHS is the Zn2 -graded O(U)-module of vector fields over U . Fur-
ther, the R-vector space EndR(O(U)) carries natural Zn2 -graded associative and Zn2 -graded Lie
algebra structures ◦ and [−,−], where [−,−] is the above-introduced Zn2 -graded commutator.
An induction on k + ` allows seeing that Dk(U) ◦ D`(U) ⊂ Dk+`(U) and [Dk(U),D`(U)] ⊂
Dk+`−1(U), so that the (colimit or direct limit) vector space D(U) := ∪k∈NDk(U) of all dif-
ferential operators inherits Zn2 -graded associative and Zn2 -graded Lie algebra structures that
have weight 0 and −1, respectively, with respect to the filtration degree. The assignment
D : U → D(U) is a locally free sheaf of Zn2 -graded O-modules and of Zn2 -graded associative
and Lie algebras over M . The algebra D(M) is the Zn2 -graded Lie algebra of differential
operators of the Zn2 -manifoldM.

Remark 11. The reader observed probably that (as usual) Dk−1(U) ⊂ Dk(U). Hence, a k-th
order differential operator is actually a differential operator of order ≤ k. To emphasize this
fact some authors write D≤k(U) instead of Dk(U).

5 Functional analytic properties of the function sheaf of a Zn2-
manifold

For a review of Fréchet spaces, algebras, and sheaves, we refer the reader to the Appendix.

We define Zn2 -graded Fréchet vector spaces, nuclear vector spaces, Fréchet algebras and
Fréchet sheaves.

Definition 12.

• A Zn2 -graded Fréchet vector space is a Zn2 -graded vector space V , all whose homogeneous
subspaces V γ, γ ∈ Zn2 , are Fréchet vector spaces. We denote by (pγi )i∈I a family of
seminorms corresponding to V γ.

• A Zn2 -graded nuclear LCTVS is a Zn2 -graded vector space V , all whose homogeneous
subspaces V γ, γ ∈ Zn2 , are nuclear.
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• A Zn2 -graded Zn2 -commutative (nuclear) Fréchet algebra is a Zn2 -graded (nuclear) Fréchet
vector space A that is equipped with a Zn2 -graded Zn2 -commutative associative bilinear
multiplication · : Aγ′ × Aγ′′ → Aγ

′+γ′′ , such that there are equivalent countable families
of seminorms that are submultiplicative, i.e., equivalent countable families (qγn)n∈N of
seminorms, such that, for all n ∈ N,

qγ
′+γ′′
n (x · y) ≤ qγ′n (x) qγ

′′
n (y), ∀x ∈ Aγ′ ,∀y ∈ Aγ′′ .

• A (nuclear) Fréchet sheaf of Zn2 -graded Zn2 -commutative algebras is a sheaf F of Zn2 -
graded Zn2 -commutative (real) algebras over a smooth manifold M , such that all section
spaces F(U) are Zn2 -graded Zn2 -commutative (nuclear) Fréchet algebras and the locally
convex topology on F(U) is the coarsest topology for which all restriction maps F(U)→
F(Ui) are continuous.

The algebraic direct sum ⊕αVα of a family (Vα)α∈A of LCTVS-s Vα is usually equipped
with the direct sum topology, that is, with the finest locally convex topology such that the
injections iα : Vα → ⊕αVα are all continuous. In this case, we refer to the direct sum as the
topological direct sum of the LCTVS-s Vα. It is known that a countable topological direct sum
of nuclear LCTVS-s is a nuclear LCTVS. Further, a finite topological direct sum of Fréchet
spaces is a Fréchet space. These results show that a Zn2 -graded Fréchet vector space (resp., a
Zn2 -graded nuclear LCTVS) is a Fréchet space (resp., a nuclear LCTVS), when equipped with
the direct sum topology.

Remark 13. In the following, we suppress the superscript γ in the various seminorms pγi , q
γ
n,

... that we consider. In other words, pi, qn, ... refer to a seminorm of some space V γ.

We are now prepared to prove one of the main theorems of this paper.

Theorem 14. The function sheaf OM of a Zn2 -manifold M = (M,OM ) is a nuclear Fréchet
sheaf of Zn2 -graded Zn2 -commutative algebras.

Proof. Let U ∈ Open(M), let C be any compact subset of U , and let D be any differential
operator in D(U). For any f ∈ O(U), we set

pC,D(f) = sup
x∈C
|ε(D(f))(x)| , (11)

where ε is the projection ε : OM → C∞M , see Equation (3). It is obvious that each pC,D is a
seminorm on O(U).

Lemma 15. For any U ∈ Open(M), the family of seminorms (pC,D)C,D on O(U) is separating
and endows O(U) with a Hausdorff locally convex topological vector space structure.

Proof. It suffices to prove the separability. If supx∈C |ε(D(f))(x)| = 0, for all C and all D,
then ε(D(f)) = 0 in U for any D, since U admits a (countable) cover by compact subsets C,
see Lemma 32. Differently stated, we have

D(f) ∈ ker εU = J (U) , (12)



Functional analytic issues in Zn2 -Geometry 12

for any D ∈ Dk(U) and for any k ∈ N. Let now (Vi)i∈N be a (countable) cover of U by Zn2 -chart
domains (any open cover of U admits a countable subcover, see proof of Lemma 32) and let
V be any element of this cover. For any m ∈ V , there is a Zn2 -bump-function γ ∈ O0(U) and
neighborhoods N1 ⊂ N2 ⊂ V of m such that γ|N1 = 1 and supp γ ⊂ N2 . In view of Equation
(12), we have

D|N1(f |N1) = D(f)|N1 ∈ J (N1) , (13)

for any D ∈ Dk(U) and any k ∈ N. If we choose D = 1 ∈ O(U) = D0(U) in (13), we
can conclude that f |N1 ∈ J (N1). It turns out that, if f |N1 ∈ J k−1(N1), k ≥ 2, then
f |N1 ∈ J k(N1) . Indeed, denote the coordinates in V by u = (x, ξ) and write

f |N1(x, ξ) =

∞∑
`=k−1

∑
|β|=`

fβ(x) ξβ .

Our goal is to show that f |N1 ∈ J k(N1), i.e., that all coefficients fβ(x), |β| = k− 1, vanish in
N1. LetB be any multiindex such that |B| = k−1. When using the operator γ ∂Bξ ∈ Dk−1(U),
we get from (13),

J (N1) 3 ∂Bξ
∞∑

`=k−1

∑
|β|=`

fβ(x) ξβ =
∞∑

`=k−1

∑
|β|=`

fβ(x) ∂Bξ ξ
β ,

as ∂Bξ is J (N1)-adically continuous. Since ∂Bξ ξ
B = B! , it follows that fB vanishes in N1.

Hence, f |N1 ∈ J k(N1), so f |N1 ∈ J r(N1) for all r, and thus f |N1 = 0. Finally, we get f |V = 0

and f = 0 .

The next lemma covers the case where U is a Zn2 -chart domain.

Lemma 16. Let U ⊂M be a Zn2 -chart domain with coordinates u = (x, ξ).

• Let
fn =

∑
β

fnβ(x)ξβ (resp., f =
∑
β

fβ(x)ξβ)

be a sequence of functions (resp., a function) in O(U). The sequence fn is Cauchy in
O(U) ( resp., converges to f in O(U) ) if and only if the sequences fnβ are all Cauchy
in C∞(U) ( resp., converge all to the corresponding fβ in C∞(U) ).

• The locally convex Hausdorff space O(U) is complete.

• The space O(U) is a Zn2 -graded nuclear Fréchet algebra.

We start with the following observation. Let (U, u = (x, ξ)) be a Zn2 -coordinate system,
D ∈ Dk(U), and f ∈ O(U). We have

ε(D(f)) = ε
k∑
`=0

∑
|α|+|β|=`

Dαβ(x, ξ) ∂βξ ∂
α
x

∑
γ

fγ(x)ξγ =
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k∑
`=0

∑
|α|+|β|=`

ε(Dαβ(x, ξ)) ε
∑
γ

∂αx fγ(x) ∂βξ ξ
γ .

If β 6= γ, either there is βi > γi , or all βi ≤ γi but for at least one i we have βi < γi. In the first
case ∂βξ ξ

γ = 0 and in the second ∂βξ ξ
γ ∈ J (U), so that in both situations the corresponding

term in the series over γ vanishes under the action of ε. If β = γ, the derivative with respect
to ξ equals β! , so that

ε(D(f)) =
k∑
`=0

∑
|α|+|β|=`

ε(Dαβ(x, ξ)) β! ∂αx fβ(x) . (14)

We are now prepared for the proof of Lemma 16.

Proof. • Assume first that the fnβ are all Cauchy in the locally convex topology of C∞(U): for
any base differential operator ∆ (acting on base functions C∞(U)) and any compact C ⊂ U ,
we have

p∆,C(frβ − fsβ) = sup
C
|∆(frβ − fsβ)| → 0 , (15)

if r, s → ∞, see Example 34. In this case, we get, for any Zn2 -differential operator D (acting
on Zn2 -functions O(U)) and any compact C ⊂ U ,

pC,D(fr − fs) = sup
C
|ε(D(fr − fs))| ≤

∑
αβ

β! sup
C
|ε(Dαβ(x, ξ))| sup

C
|∂αx (frβ − fsβ)| → 0 ,

if r, s → ∞, so that fn is Cauchy in the topology of O(U). Conversely, if fn is Cauchy in
O(U), we have to show that (15) holds for any ∆, C, and β. Fix these three data. The base
differential operator ∆ reads

∆ =
∑
α

∆α(x) ∂αx

and D = ∂βξ ∆ is a Zn2 -differential operator. In view of (14), we get

sup
C
|ε(D(fr − fs))| = β! sup

C
|
∑
α

∆α(x) ∂αx (frβ − fsβ)| = β! sup
C
|∆(frβ − fsβ)| .

The proof of the convergence statement of item one in Lemma 16 is similar.

• In view of Example 34 and item one, item two is obvious.

• To prove that the complete Hausdorff locally convex topological vector space O(U) is a
Fréchet space, it suffices to show that there exists a countable family of seminorms on O(U)

that is equivalent to the family (pC,D)C,D. To prove that C∞(U) is a Fréchet space, one uses
a countable cover of U by compact subsets Cn ⊂ U such that Cn is contained in the interior
of Cn+1 [Tre67]. Proceeding similarly, we define the family

pCn,α,β(f) = sup
Cn

|ε(∂βξ ∂
α
x f)| , (16)
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where the components of α belong to N and the components of β to N or Z2 depending
on whether they correspond to even degree or odd degree parameters. Since the pCn,α,β are
specific pC,D , they are a countable family of seminorms on O(U). To show that the countable
family is equivalent to the original one, we use Proposition 31. For any pC,D there exists
Cn ⊃ C, so that

pC,D(f) = sup
C
|ε(D(f))| ≤ sup

Cn

|
∑
αβ

ε(Dαβ(x, ξ)) ε(∂βξ ∂
α
x f)| ≤

(1 + max
αβ

sup
Cn

|ε(Dαβ(x, ξ))|)
∑
αβ

sup
Cn

|ε(∂βξ ∂
α
x f)| = C

∑
αβ

pCn,α,β(f) . (17)

The similar condition for pC,D and pCn,α,β exchanged is obviously satisfied, since any pCn,α,β
is a specific seminorm of the type pC,D .

Finally the Zn2 -graded vector space O(U) is a Fréchet space. This should of course mean
that O(U) is a Zn2 -graded Fréchet vector space in the sense of Definition 12. In the paragraph
following that definition, we mentioned that, if the homogeneous subspaces Oγ(U), γ ∈ Zn2 ,
are Fréchet, then O(U) is Fréchet as well. A rigorous application of Definition 12 requires now
that we take an interest in the converse result. However, what we proved so far is valid for any
functions in O(U), in particular for the functions of a fixed degree, i.e., for the functions in
Oγ(U), γ ∈ Zn2 . It follows that all spaces Oγ(U), γ ∈ Zn2 , are Fréchet spaces for the seminorms
considered. Hence, the space O(U) is a Zn2 -graded Fréchet space in the sense of Definition 12.

Alternatively, the reader may observe that any subspace of a Fréchet space, which contains
the limits of its converging sequences, is itself a Fréchet space. Indeed, the restrictions to this
subspace of the countable and separating family of seminorms of the total space is again a
countable and separating family of seminorms. In view of Proposition 27, the resulting locally
convex seminorm topology of the subspace is implemented by a translation-invariant metric.
To be Fréchet, the subspace must still be complete with respect to this metric, i.e., it has to be
complete with respect to the seminorm topology. Now, any Cauchy sequence of the subspace
is Cauchy in the total space and converges therefore in the total space. But, by assumption, its
limit is located in the subspace, so that the subspace is complete with respect to its topology.
In the case considered here, any homogeneous subspace Oγ(U) of the Fréchet space O(U)

contains the limits of its converging sequences (in view of point 1 of the preceding lemma) and
is thus Fréchet (so we can conclude again that O(U) is a Zn2 -graded Fréchet vector space in
the sense of Definition 12).

Of course O(U) is equipped with a Zn2 -graded Zn2 -commutative associative unital R-algebra
structure. Hence O(U) is a Zn2 -graded Fréchet algebra, if we can find equivalent countable
families of submultiplicative seminorms. We choose the countable family of seminorms defined,
for all compacts Cn and all m,µ ∈ N, by

ρCn,m,µ(f) = 2m+µ sup
|α| ≤ m
|β| ≤ µ

pCn,α,β(f) = 2m+µ sup
|α| ≤ m
|β| ≤ µ

sup
Cn

|ε(∂βξ ∂
α
x f)| , (18)
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see Equation (16). These seminorms are submultiplicative. Indeed, for f, g ∈ O(U), |α| ≤ m,
|β| ≤ µ, and x ∈ Cn, we have, in view of (14),

|ε(∂βξ ∂
α
x (f · g))| = |β! ∂αx (f · g)β| = |β! ∂αx

∑
β1+β2=β

fβ1 · gβ2 | ≤

∑
β1+β2=β

β!

β1!β2!

∑
α1+α2=α

α!

α1!α2!
|β1! ∂α1

x fβ1 | · |β2! ∂α2
x gβ2 | ≤

 ∑
β1+β2=β

β!

β1!β2!

∑
α1+α2=α

α!

α1!α2!

 sup
|α1| ≤ m
|β1| ≤ µ

sup
Cn

|ε(∂β1ξ ∂
α1
x f)| · sup

|α2| ≤ m
|β2| ≤ µ

sup
Cn

|ε(∂β2ξ ∂
α2
x g)| ≤

2m+µ sup
|α1| ≤ m
|β1| ≤ µ

sup
Cn

|ε(∂β1ξ ∂
α1
x f)| · sup

|α2| ≤ m
|β2| ≤ µ

sup
Cn

|ε(∂β2ξ ∂
α2
x g)| ,

since the sum over β1, β2, for instance, is equal to 2|β|. It follows that

ρCn,m,µ(f · g) ≤ ρCn,m,µ(f) · ρCn,m,µ(g) .

Moreover, the family ρCn,m,µ is equivalent to the family pCn,α,β . On the one hand, we have

ρCn,m,µ(f) ≤ 2m+µ
∑
|α| ≤ m
|β| ≤ µ

pCn,α,β(f) ,

and on the other, setting |α| = m, |β| = µ, we get pCn,α,β(f) ≤ ρCn,m,µ(f).

It remains to show that O(U) is a Zn2 -graded nuclear LCTVS in the sense of Definition 12.
Since any subspace of a nuclear space is nuclear, it suffices to prove that the locally convex space
O(U) is nuclear. We set q = (q′,q′′), where q′ = (q1, . . . , q2n−1−1) and q′′ = (q2n−1 , . . . , q2n−1)

give the number of parameters in each nonzero even degree and the number of parameters
in each odd degree, respectively. We also set A = N|q′| × Z|q

′′|
2 . Further, we consider the

coordinate order (6) and we order the monomials ξα = θβζγ using the lexicographic order
with respect to α = (β, γ). This leads to a linear vector space isomorphism

i : O(U) ' C∞(U)[[ξ]] 3
∑
α∈A

fα(x)ξα 7→ (fα)α∈A ∈
∏
α∈A

C∞(U) .

We identify O(U) with
∏
α∈AC

∞(U) via i, so that i = id. Since C∞(U) is nuclear, see
Example 6.2.2, and since any product of nuclear LCTVS-s is a nuclear LCTVS for the product
topology, the space O(U) is nuclear for this topology. It is known that, if πb :

∏
a∈A Va → Vb

is a product of LCTVS-s Va, whose locally convex topologies are implemented by families of
seminorms (ρai )i, then the locally convex product topology is implemented by the family of
seminorms (ρ̃ai )a,i defined by ρ̃ai = ρai ◦ πa . Hence, in the case considered here, the product
topology is given by the family of seminorms p̃α∆,C = p∆,C ◦πα . Of course, the standard locally
convex topology on O(U), i.e., the seminorm topology of the family pC,D, must coincide with
the product topology, i.e., the families of seminorms p̃α∆,C and pC,D must be equivalent. Let
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therefore β ∈ A, f ∈ O(U), let ∆ be a differential operator acting on C∞(U), and let C be
a compact subset of U . When noticing that D = 1

β!∂
β
ξ ∆ is a differential operator acting on

O(U), we obtain

p̃β∆,C(f) = p∆,C(πβ(f)) = sup
C
|∆(fβ)| = sup

C
|ε( 1

β!
∂βξ ∆(f))| = pC,D(f) .

Conversely, for any differential operator D acting on O(U), we have

pC,D(f) = sup
C
|ε(D(f))| = sup

C
|
∑
αβ

ε(β!Dαβ(x, ξ)) ∂αx fβ| ≤

(1 + max
αβ

sup
C
|ε(β!Dαβ(x, ξ))|)

∑
αβ

sup
C
|∂αx fβ| = C

∑
αβ

p̃β∂αx ,C
(f) . (19)

Corollary 17. For any open subset Ω ⊂ Rp, the map

C∞(Ω)[[ξ]] 3
∑
α∈A

fα(x)ξα 7→ (fα)α∈A ∈
∏
α∈A

C∞(Ω) , (20)

where the source ( resp., the target ) is equipped with the standard topology induced by (pC,D)C,D
( resp., the product topology of the standard topologies induced by (p∆,C)∆,C ), is an isomor-
phism of TVS-s.

The next lemma will allow us to almost complete the proof of Theorem 14.

Lemma 18. Let U ⊂M be an open subset.

• Let (Ui)i∈I be an open cover of U , let fn, n ∈ N, and f be Zn2 -functions in O(U). The
sequence fn is a Cauchy sequence in O(U) ( resp., converges in O(U) to f ) if and only
if the sequence fn|Ui of restrictions is a Cauchy sequence in O(Ui) ( resp., converges in
O(Ui) to the restriction f |Ui ), for all i ∈ I.

• The space O(U) is a Zn2 -graded Fréchet algebra.

Proof. Both statements of Item 1 are of the type

pC,D(fn) = sup
C
|ε(D(fn))| → 0 (21)

if n→∞, for all compact subsets C ⊂ U and all Zn2 -differential operators D on U , if and only
if, for all i,

pCi,Di(fn|Ui) = sup
Ci

|ε(Di(fn|Ui))| → 0 (22)

if n→∞, for all compact subsets Ci ⊂ Ui and all Zn2 -differential operators Di on Ui .

Assume first that (21) holds, let Ci, Di be as said, and consider a bump function γ ∈ O(U)

that equals 1 in an open neighborhood V of Ci and is compactly supported in Ui. Since Ci is
a compact subset of U and since γDi is a Zn2 -differential operator on U , we get

pCi,Di(fn|Ui) = sup
Ci

|ε(γ)ε(Di(fn|Ui))| = sup
Ci

|ε((γDi)(fn))| → 0 ,
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if n → ∞. Conversely, if (22) holds and if C,D are as above, there exists a finite open cover
(Vj)j of C such that each V̄j is compact and each V̄j is contained in some Ui(j) [CCF11]. Then,

pC,D(fn) = sup
C
|ε(D(fn))| ≤ sup

∪j V̄j
|ε(D(fn))| ≤

∑
j

sup
V̄j

|ε(D|Ui(j)(fn|Ui(j)))| → 0 ,

if n→∞.

It remains to show that the Zn2 -graded associative R-algebra O(U) is a Zn2 -graded Fréchet
algebra for its standard Hausdorff locally convex topology given by the family (pC,D)C,D, see
Lemma 15. Note that the space O(U) is complete. Indeed, let Ui be a countable open cover
of U by Zn2 -chart domains and let fn be a Cauchy sequence in O(U). In view of Item 1 and
Lemma 16, the sequence fn|Ui converges to fUi in O(Ui). When applying Item 1 to the open
cover Uij = Ui ∩ Uj of Ui, to the sequence fn|Ui , and the function fUi , we find that fn|Uij
converges in O(Uij) to fUi |Uij . One sees similarly that it converges also to fUj |Uij . Hence,
there is a unique function f ∈ O(U) such that f |Ui = fUi . It now follows from Item 1 that
fn → f in O(U), so that O(U) is complete. To conclude that O(U) is a Zn2 -graded Fréchet
algebra, we have to provide an equivalent countable submultiplicative family of seminorms
on O(U). It actually suffices to proceed as above, see (18). More precisely, for each one of
the countably many Zn2 -chart domains Ui, we can choose a countable cover of Ui by compact
subsets Cn,i ⊂ Ui such that Cn,i is contained in the interior of Cn+1,i . The family

ρCn,i,m,µ(f) = 2m+µ sup
|α| ≤ m
|β| ≤ µ

sup
Cn,i

|ε(∂βξ ∂
α
x f |Ui)| ,

where m,µ ∈ N, is the searched countable equivalent submultiplicative family of seminorms
on O(U).

Theorem 14 can now be proved as follows. Let U be any open subset of M and (Ui)i∈I
any open cover of U . In view of Item 1 of Lemma 18, the restriction maps O(U) 3 f 7→
f |Ui ∈ O(Ui) are sequentially continuous. Since a map from a metrizable TVS into a TVS is
continuous if and only if it is sequentially continuous [Tre67], the preceding restrictions are
continuous (in particular any restriction is continuous). The fact that O(U), U ⊂ M , carries
the coarsest or initial topology with respect to these restrictions is a consequence of the open
mapping theorem for Fréchet spaces and of the fact that M is second countable [Mal70]. In
view of this initial topology property, the Fréchet sheaf O of Zn2 -graded algebras is nuclear if
O(U) is nuclear for any open U ⊂M , or, equivalently, if O(U) is nuclear for any U of an open
basis of M [Mal70]. As mentioned above, any open subset of M is a union of open Zn2 -chart
domains, so that it suffices that O(U) be nuclear for any Zn2 -chart domain U , which has been
proven in Lemma 16.

We mentioned above that any Zn2 -differential operator D : O → O and any Zn2 -morphism
Φ = (φ, φ∗) : (M,OM )→ (N,ON ) are J -adically continuous. The adic continuity allowed us
to conclude that differential operators and pullbacks act on series by acting on each of their
terms. The next proposition states that differential operators and pullbacks are continuous
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with respect to the standard locally convex topology of O. This property will be of importance
later on.

Theorem 19. Let M = (M,OM ) and N = (N,ON ) be Zn2 -manifolds, let D be a Zn2 -
differential operator onM and let Φ = (φ, φ∗) :M→N be a Zn2 -morphism.

• For any open U ⊂ M , the differential operator DU : OM (U) → OM (U) is continuous
for the standard locally convex topology of OM (U).

• For any open V ⊂ N , the pullback φ∗V : ON (V ) → OM (φ−1(V )) is continuous for the
standard locally convex topologies of ON (V ) and OM (φ−1(V )).

Proof. Since in both cases the source TVS is metrizable, it suffices to prove that the linear
maps DU and φ∗N are sequentially continuous. Item 1 is obvious in view of Equation (11).

We prove Item 2 first in the case V = N . Let fn → 0 in O(N) and show that φ∗fn → 0

in O(M) (we omit subscripts N and M). It follows from Item 1 of Lemma 18 that both
convergences are equivalent to the convergences to 0 of the restrictions of fn and φ∗fn to an
arbitrary open cover of N and M , respectively. Let N = ∪jVj be an open cover of N by
Zn2 -chart domains of N . We thus get M = ∪j φ−1(Vj) an open cover of M . Each φ−1(Vj)

can again be covered by Zn2 -chart domains Uj,i ofM. Since M = ∪ji Uj,i, it suffices to prove
that (φ∗fn)|Uj,i → 0 in O(Uj,i), knowing that fn|Vj → 0 in O(Vj). We will omit the subscripts
j, i in the arbitrarily chosen Uj,i ⊂ φ−1(Vj), as well as subscript j in Vj , and we will write
νn for the restriction fn|V . We denote by u = (uA) = (xa, ξa) the coordinates in U and by
v = (vB) = (yb, ηb) the coordinates in V . Let now C ⊂ U be a compact subset and let

D =
∑
α

Dα(u)∂αu

be a differential operator acting on O(U). We have to prove that

pC,D((φ∗fn)|U ) = sup
C
|ε(D((φ∗fn)|U ))| = sup

C
|ε
∑
α

Dα(u) ∂αu (φ∗νn)|U | → 0 . (23)

The Zn2 chain rule [CKP16]

∂uA(φ∗f) =
∑
B

∂uA(φ∗vB)φ∗(∂vBf)

extends to the Zn2 Faà di Bruno formula

∂αu (φ∗f) =
∑(∏

C ∂βu (φ∗vB)
)
φ∗(∂γv f) ,

where the sum and products are finite, where C denotes real numbers, and where we limited
ourselves to the structure of this complex result. It follows that the supremum in (23) reads

sup
C

∣∣∣∣∣ε∑
α

∑(
Dα(u)

∏
C ∂βu (φ∗vB)

)
φ∗(∂γv νn)

∣∣∣∣∣ = sup
C

∣∣∣ε∑F (u)φ∗(∂γv νn)
∣∣∣ = sup

C
| − | ,

(24)



Functional analytic issues in Zn2 -Geometry 19

where we omitted the restrictions to U and where F ∈ O(U). We get

sup
C
| − | = sup

C

∣∣∣∑(ε F )(x) ε(∂γv νn)(φ(x))
∣∣∣ ≤∑

sup
C
|εF | sup

C
|ε(∂γv νn)(φ(x))| =

∑
sup
C
|εF | sup

φ(C)
|ε(∂γv νn)| .

Since νn → 0 in O(V ) and φ(C) is a compact subset of V , the conclusion follows.

In order to extend the conclusion from φ∗N to φ∗V , for any open V ⊂ N , note that we can
restrict the Zn2 -morphism

(φ, φ∗) : (M,OM )→ (N,ON )

to a Zn2 -morphism (ϕ,ϕ∗) between the open Zn2 -submanifolds (U,OM |U ) and (V,ON |V ), where
U = φ−1(V ). It suffices to set ϕ = φ|U : U → V , and to set, for any open W ⊂ V ,

ϕ∗W = ρ
φ−1(W )
U∩φ−1(W )

◦ φ∗W : ON (W )→ OM (ϕ−1(W )) .

Indeed, the base map ϕ is smooth and the pullbacks ϕ∗W are Zn2 -graded unital R-algebra
morphisms, which commute with restrictions. Applying now the first part of our proof of Item
2, we get that ϕ∗V : ON (V ) → OM (φ−1(V )) is continuous. This concludes the proof, since
ϕ∗V = φ∗V .

6 Appendix

In this section, we recall basic results and provide examples.

6.1 Fréchet spaces

6.1.1 Definitions and construction

Remark 20. All vector spaces considered in the present text are spaces over the field R of real
numbers.

Definition 21. A topological vector space (TVS) is locally convex if its topology has a basis
made of convex subsets, i.e., subsets U such that, for any x, y ∈ U , the segment {(1− t)x+ ty :

t ∈ [0, 1]} is contained in U .

Definition 22. A locally convex topological vector space (LCTVS) is a Fréchet space if its
topology can be implemented by a translation-invariant metric with respect to which it is (se-
quentially) complete.

Recall that a metrizable TVS is complete if and only if it is sequentially complete.

The standard construction of a Fréchet space starts from a family of seminorms. The
difference between a seminorm p on a vector space and a norm || − || is that p(x) = 0 does
not imply that x = 0. Recall also that a family of seminorms (pi)i∈I separates points (or is
separating), if for x 6= 0, there is i ∈ I such that pi(x) 6= 0.

The following proposition is almost obvious and will not be proven.
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Proposition 23. Let (pi)i∈I be a family of seminorms on a vector space V . For any i ∈ I, x ∈
V, ε > 0, set

Bi(x, ε) = {y ∈ V : pi(y − x) < ε} .

The family of all the subsets Bi(x, ε) generates a topology on V ( recall that this topology is
made of the unions of finite intersections of subsets Bi(x, ε) ). We refer to this topology as the
seminorm topology induced by (pi)i∈I . The finite intersections of subsets Bi(x, ε) with fixed
x and ε, form a basis B of the seminorm topology:

B = {∩nj=0Bij (x, ε) : n ∈ N, ij ∈ I, x ∈ V, ε > 0} .

The elements of this basis are convex. The open subsets U of the seminorm topology are
characterized by the property that for any x ∈ U , there is a basis element ∩nj=0Bij (x, ε), which
is contained in U . The seminorm topology endows V with a structure of LCTVS.

Proposition 24. Let (pi)i∈I be a family of seminorms on a vector space V . A sequence
(xk)k∈N of elements of V converges to x ∈ V with respect to the seminorm topology, if and
only if it converges to x with respect to each seminorm, i.e., if and only if

lim
k
pi(xk − x) = 0, ∀i ∈ I .

Similarly, the sequence (xk)k∈N is a Cauchy sequence with respect to the seminorm topology,
if and only if it is Cauchy with respect to each seminorm.

Proof. We prove the second statement. Let (xk)k∈N be Cauchy with respect to the topology
and take i ∈ I and ε > 0. Since Bi(0, ε) is an open neighborhood of 0, there is N ≥ 0 such
that x` − xm ∈ Bi(0, ε) if `,m > N . It follows that pi(x` − xm) < ε if `,m > N . Conversely,
let U be an open neighborhood of 0 and let ∩nj=0Bij (0, ε) ⊂ U . The assumption implies that,
for all j ∈ {0, . . . , n}, there is Nj ≥ 0 such that pij (x` − xm) < ε if `,m > Nj . Hence, if
`,m > N = supj Nj , the difference x` − xm is in U .

Further:

Proposition 25. A seminorm topology is Hausdorff if and only if its inducing family of
seminorms is separating.

Proof. Let (pi)i∈I be the family of seminorms on the vector space V . Assume first that the
seminorm topology is Hausdorff and let x be a non-zero vector in V . In view of the Hausdorff
property, there is a neighborhood of x which does not contain 0. Hence, there is an open
subset Bi(x, ε) which does not contain 0: pi(x) ≥ ε and pi(x) 6= 0. Conversely, if the family of
seminorms separates points and if x, y are two different vectors in V , there exists i ∈ I such
that pi(x− y) 6= 0, i.e., such that pi(x− y) = η > 0. Let now ε = η/2 > 0 and take the open
neighborhoods Bi(x, ε) of x and Bi(y, ε) of y. If these neighborhoods have a common vector
z, then

2ε = pi(x− y) ≤ pi(x− z) + pi(z − y) < 2ε ,

so that the neighborhoods are disjoint.
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As well-known, the next definition of Fréchet spaces is equivalent to the above one, but is
better suited for applications.

Definition 26. A TVS is a Fréchet space if it is Hausdorff and (sequentially) complete, and
if its topology can be induced by a countable family of seminorms.

We are now prepared to discuss standard construction methods of Fréchet spaces from
countable families of seminorms.

Proposition 27. If (pn)n∈N is a countable family of seminorms on a vector space V , and if
this family separates points, then

d(x, y) :=
∑
n∈N

1

2n
pn(x− y)

1 + pn(x− y)
, x, y ∈ V , (25)

is a translation-invariant metric on V that induces the seminorm topology of V .

Proof. The statement is a standard functional analytical result.

The next proposition is natural. It extends Proposition 24:

Proposition 28. In the situation of Proposition 27, a sequence in V converges to a limit in
V (resp., is a Cauchy sequence) with respect to the metric d, if and only if it converges (resp.,
is a Cauchy sequence) with respect to the seminorm topology, and if and only if it converges
(resp., is a Cauchy sequence) with respect to all seminorms.

Remark 29. To construct a Fréchet space, one usually proceeds as follows, although the method
admits a number of variants. On starts with a vector space V and a countable and separating
family (pn)n∈N of seminorms on it. The seminorm topology turns V into a Hausdorff LCTVS.
Definition 26 then allows us to conclude that V is a Fréchet space, if we can prove that V is
(sequentially) complete with respect to its topology. In view of Proposition 28, this condition
is equivalent to (sequential) completeness with respect to the translation-invariant metric (25)
induced by the seminorms. Further, if one can verify that a sequence in V that is Cauchy for
any seminorm pn, converges to a fixed x ∈ V for any pn, then the TVS V is (sequentially)
complete with respect to the seminorm topology, again due to Proposition 28.

6.1.2 Examples

We briefly present some examples.

Example 30. The vector space R∞ of all sequences r = (r0, r1, . . .) of real numbers is a
Fréchet space for the countable family (pn)n∈N of seminorms

pn(r) = sup
m≤n
|rm| .
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The family (qn)n∈N given by
qn(r) =

∑
r≤n
|rm|

defines the same topology, i.e., the same Fréchet space. We say that two such families of
seminorms are equivalent.

We recall an important criterion for equivalence of two families of seminorms.

Proposition 31. To families of seminorms (pi)i∈I and (qj)j∈J on a vector space V are equiv-
alent, i.e., they induce the same locally convex topology, if and only if, for any i, there is a
constant C > 0 and a finite subset {j1, . . . , jN} ⊂ J , such that

pi(x) ≤ C(qj1(x) + . . .+ qjN (x)), ∀x ∈ V ,

and vice versa.

The next observation is indispensable.

Lemma 32. Any open subset of a (second-countable Hausdorff finite-dimensional) smooth
manifold admits a countable cover by compact subsets.

Proof. Every second-countable topological space is a Lindelöf space, i.e., any open cover admits
a countable subcover. Since all smooth manifolds considered in our texts on Zn2 -Geometry are
second-countable Hausdorff finite-dimensional smooth manifolds, the Lindelöf property holds
for all open subsets U ⊂M .

Any open subset Ω ⊂ Rp admits a cover ∪x∈ΩB(x) by open balls B(x) whose adherence
B̄(x) is contained in Ω. In view of the Lindelöf property, we can extract from the preceding
open cover of Ω a countable subcover

Ω = ∪i∈NB(xi) = ∪i∈NB̄(xi) . (26)

The latter cover is searched countable cover by compact subsets.

Let now U ⊂ M be an open subset of a p-dimensional smooth manifold. We can cover
U by coordinate systems (Uα, ϕα) and extract a countable subcover (Ui, ϕi). Since ϕi is a
homeomorphism between Ui ⊂M and ϕi(Ui) ⊂ Rp, the set Ui admits a countable cover Ui =

∪k∈NCki by compact subsets Cki ⊂ Ui. We thus get the countable cover U = ∪i∈N ∪k∈NCki of
U by compact subsets Cki ⊂ U .

The following is one of the important examples of Fréchet spaces.

Example 33. For any open subset Ω ⊂ Rp, the function algebra C∞(Ω) is a Fréchet vector
space for the countable family (pα,i)α,i of seminorms defined, for any multi-index α ∈ N×p and
any compact Ci (i ∈ N) of a countable cover of Ω by compact subsets (e.g., Ci may run through
the balls B̄(xi) of (26)), by

pα,i(f) = sup
x∈Ci
|∂αx f | . (27)
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To prove this standard statement one uses Remark 29. The result can be extended:

Example 34. The function algebra C∞(U) of an open subset U of a (second-countable Haus-
dorff finite-dimensional) smooth manifold M , is a Fréchet vector space. The locally convex
topology of C∞(U) is implemented (for instance) by the family of seminorms

p∆,C(f) = sup
x∈C
|∆(f)(x)| , (28)

where ∆ ∈ D(U) is any differential operator acting on C∞(U) and where C is any compact
subset of U . Note that – by definition – this topology is the topology of uniform convergence
on compact subsets C of f and its ‘derivatives’ ∆(f).

6.2 Nuclear spaces

6.2.1 Definition

Let us recall that a completion of a TVS V is a complete TVS V̂ that contains V (or,
better, a homeomorphic image of V ) as a dense subspace. Any (LC)TVS can be completed as
(LC)TVS.

When considering (algebraic) tensor products of LCTVS-s, some subtleties arise due to the
possibility to choose various topologies on these products.

More precisely, let V,W be two LCTVS-s. The finest locally convex topology on the
algebraic tensor product V ⊗W , for which the natural map V ×W → V ⊗W is continuous,
is referred to as the projective tensor topology. The completion of the resulting LCTVS is
the completed projective tensor product V ⊗̂πW . There exists another natural locally convex
topology on V ⊗W , which is coarser than the projective one, and which is called the injective
tensor topology. The corresponding completion is the completed injective tensor product
V ⊗̂iW . Any reasonable locally convex topology on V ⊗ W lies between the injective and
projective ones.

We are now prepared to give one of the equivalent definitions of nuclear LCTVS-s.

Definition 35. A LCTVS V is nuclear if, for any LCTVS W , the canonical map V ⊗̂πW →
V ⊗̂iW is an isomorphism of LCTVS-s.

More precisely, the identity id : V ⊗πW → V ⊗iW is a bijective continuous linear map, and
its continuous extension îd : V ⊗̂πW → V ⊗̂iW is an injective continuous linear map. When
V is nuclear, this canonical map is onto, or, better, it is a TVS-isomorphism. As already said,
any (reasonable) locally convex topology on V ⊗W is located between the projective and the
injective tensor topologies. Hence, if V is nuclear, the complete TVS V ⊗̂W is independent of
the locally convex topology considered.

Nuclear Fréchet spaces are just a specific type of nuclear LCTVS-s. Fréchet spaces are a
full subcategory of TVS-s, and so are nuclear spaces.
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6.2.2 Example

When thinking about the duality between spaces and function algebras, one meets the
problem of interpreting a tensor product of function algebras as function algebra of some space.
Even in the case of algebras C∞(Ω) of smooth functions on open subsets Ω of Euclidean spaces,
the canonical map C∞(Ω′) ⊗ C∞(Ω′′) → C∞(Ω′ × Ω′′) is (of course) not an isomorphism.
However, if one endows the algebraic tensor product of the LCTVS-s C∞(Ω′) and C∞(Ω′′)

with the projective tensor topology and considers the corresponding completion, one gets an
isomorphism of TVS-s:

C∞(Ω′)⊗̂πC∞(Ω′′) ' C∞(Ω′ × Ω′′) . (29)

The topology that we choose on the algebraic tensor product is actually irrelevant – a space
of the type C∞(Ω) is nuclear. More precisely, both, C∞(Ω) (Ω ⊂ Rp) and C∞(U) (U ⊂ M ,
M smooth manifold), are nuclear Fréchet spaces.

In more detail, if V,W are complete LCTVS-s and if V is a concrete space (e.g., V =

C∞(Ω′)), then it is mostly impossible to characterize both V ⊗̂πW and V ⊗̂iW concretely (in
fact a space of bilinear forms on dual spaces of V and W is also involved here, but we refrain
from describing this space precisely). For example, when V = C∞(Ω′) and W = C∞(Ω′′), we
can interpret C∞(Ω′)⊗̂iC∞(Ω′′) concretely as the space C∞(Ω′ × Ω′′), but we have no good
access to C∞(Ω′)⊗̂πC∞(Ω′′). If we know a priori that V = C∞(Ω′) is nuclear, the problem
disappears.

6.3 Fréchet algebras

In fact, the algebra C∞(U), where U is any open subset of any smooth manifold, is a
Fréchet algebra [MH05]. The definition of a Fréchet algebra is natural:

Definition 36. A Fréchet algebra is a Fréchet vector space A, which is equipped with an
associative bilinear and (jointly) continuous multiplication · : A × A → A. If (pi)i∈I is a
family of seminorms that induces the topology on A, (joint) continuity is equivalent to the
existence, for any i ∈ I, of j ∈ I, k ∈ I, and C > 0, such that

pi(x · y) ≤ C pj(x) pk(y), ∀x, y ∈ A.

We can always consider an equivalent increasing countable family of seminorms (|| − ||n)n∈N.
The preceding condition then requires that, for any n ∈ N, there is r ∈ N, r ≥ n and C > 0,
such that

||x · y||n ≤ C ||x||r ||y||r, ∀x, y ∈ A.

In particular, the topology can be induced by a countable family of submultiplicative seminorms,
i.e., by a family (pn)n∈N that satisfies

pn(x · y) ≤ pn(x) pn(y), ∀n ∈ N, ∀x, y ∈ A.
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Note that many authors define a Fréchet algebra simply as a Fréchet vector space, which
carries an associative bilinear multiplication, and whose topology can be induced by a count-
able family (qn)n∈N of submultiplicative seminorms. This latter definition is equivalent to the
former.

6.4 Fréchet sheaves

Let M be a smooth manifold and denote by Open(M) (resp., Alg(R)) the category of open
subsets of M (resp., of associative R-algebras). As mentioned above, the function sheaf

C∞ : Open(M)op 3 U 7→ C∞(U) ∈ Alg(R)

is actually valued in nuclear Fréchet algebras, i.e., in nuclear Fréchet vector spaces that carry a
Fréchet algebra structure. In view of this observation, it is natural to consider Fréchet sheaves.
Their definition is well-known:

Definition 37. A sheaf F of (real) vector spaces over a smooth manifold M is a Fréchet sheaf
of vector spaces, if the next two conditions are satisfied:

• for any U ∈ Open(M), the vector space F(U) is a Fréchet vector space, and

• for any U ∈ Open(M) and any cover (Ui)i∈I of U , Ui ∈ Open(U), the locally convex
topology on F(U) is the coarsest topology for which the restriction maps F(U)→ F(Ui)

are continuous.

Since F is a sheaf of (real) vector spaces, it follows from the second condition that, for
any V ∈ Open(U), the restriction map F(U)→ F(V ) is R-linear and continuous. As Fréchet
spaces are a full subcategory of TVS-s, the second requirement of Definition 37 is thus quite
natural. In view of this understanding, it is clear that the definition of a (nuclear) Fréchet
sheaf of algebras is similar, but starts from a sheaf of (real) algebras.
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