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Abbreviations 
ATP   Adenosine triphosphate 

Cas9   CRISPR associated protein 9 

CLEAR  Coordinated lysosomal expression and regulation 

CRISPR  Cluster regularly interspaced short palindromic  

DNA   Deoxyribonucleic acid 

DSB   Double strand break 

ER   endoplasmic reticulum 

ESCs   Embryonic stem cells 

FACE   FACS-Assisted CRISPR/Cas9 genome editing 

GABAergic  γ-aminobutyric acid producing neurons  

GFP   Green fluorescent protein 

gRNA   Guide RNA 

GSH   Glutathione  

GWAS   Genome-wide association study 

HDR   Homologous directed repair  

hiPSCs  Human induced pluripotent stem cells 

HP-β-CD  2-hydroxypropil-β-cyclodextrin  

IMM   Inner mitochondrial membrane 

ITR   Inverted terminal repeats 

mbDA   Midbrain dopaminergic neurons 

MDVs   Mitochondria derived vesicles 

MPTP   1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine 

mRNA   Messenger RNA 

NADPH  Nicotinamide adenine dinucleotide phosphate 
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NESCS  Neuroepithelial stem cells 

NHEJ   non-homologous end joining 

NPCs   Neuroprecursor cells 

NPD   Niemman-Pick’s disease 

OMM   Outer mitochondrial membrane 

OMMAD  Outer mitochondrial membrane associated degradation 

PAM   Protospacer adjacent motif  

PD   Parkinson’s disease  

PMA   Purmorphamine  

RNA   Ribonucleic acid 

ROS   Reactive oxygen species 

SCNT   Somatic cell nuclear transfer 

SGZ   Subgranullar zone 

SNP   Single nucleotide polymorphism 

SVZ   Subventricular zone 

TALEN   Transcription activator like effector nucleases 

TH   Tyrosine hydroxylase  

ZFN   Zinc-finger nuclease 
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Summary 
Parkinson’s disease (PD) has an aetiology not completely understood. One of the 

hypothesis in the field is that many neurodegenerative diseases are influenced by 

developmental disorders. The underlying concept is that already during brain development 

some processes are deregulated producing a higher degree of susceptibility for 

neurodegeneration during aging. Two hereditary early onset forms of PD are caused by 

recessive mutations in PTEN-induced putative kinase 1 (PINK1) and Parkin genes that 

regulate mitochondrial function and morphology, quarantining damaged mitochondria 

before their degradation as well as triggering the process of mitophagy. Our hypothesis is 

that alterations of the Pink1-Parkin pathway have an impact in mitochondrial physiology 

tempering the differentiation ability of neuroepithelial stem cells into dopaminergic neurons. 

For evaluating this hypothesis we reprogramed patients’ fibroblasts carrying PINK1 

mutations, as well as from healthy individuals, to human induced pluripotent stem cells. We 

developed a streamlined technique of gene editing (FACE) by using the CRISPR/Cas9 

system combined with a composite of fluorescent proteins in the donor template for biallelic 

gene targeting. Isogenic controls were generated using this technique that allowed us to 

analyze the contribution of corrected patients’ mutations in the cellular defects observed. 

Human iPSCs were differentiated into a neuroepithelial stem cell state (NESC) from where 

the cells were further differentiated into neurons. We established different algorithms for 

pattern recognition and applied them for image analysis of different features such as 

mitochondrial morphology, proliferation capacity, apoptosis and differentiation. Patient’s 

derived cells presented an impaired differentiation efficiency into dopaminergic neurons as 

well as an imbalanced cell renewal that can be linked to the mitochondrial differences. Using 

3D cultures, such as microfluidics and organoids, we were able to recapitulate this 

differentiation impairment in a system that mimics better the context of an in vivo 

environment. We evaluated the energetic capabilities of the NESCs and the firing activity of 

differentiated neurons, which also showed a dysregulation in patient cells. We introduced a 
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new system for large-scale analysis of the autophagy and mitophagy pathways by the 

combination of stably integrated Rosella constructs in different patients’ lines and an image 

analysis script for classification of the different subcellular structures involved in these 

pathways activities. This revealed that the basal activity as well as the response against 

stressors of these pathways are altered in cells derived from patients having different 

mutations causative of PD. We performed a screen of repurposed drugs as well as of novel 

compounds to evaluate their impact in this altered developmental transition identifying a 

potential candidate to be further analysed in an in vivo context. 
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1. Introduction 
1.1 Parkinson’s disease 
1.1.1 Neurodegeneration and health 

 
Neurodegenerative diseases impose a great health threat for an ageing worldwide 

population due to increased live expectancies and reduced fertility (World Health 

Organization, 2011). Even though most countries present this phenomena, it will impact 

more those in development presenting a lag in the healthcare system progress (Gammon, 

2014; World Health Organization, 2017). Ailments that were not common in the last 

centuries are starting to create problems that can be potentially scalable in the next 

decades. This can be related to changes in live expectancies as well as modifications in 

cultural and environmental scenarios. Research advancements in the medical system 

generated a reduction of infectious and parasitic diseases leading to an epidemiologic 

transition into an increased level of chronic and degenerative diseases (World Health 

Organization, 2011, 2015). Neurodegenerative diseases is one of the examples of non-

communicable diseases, and Parkinson’s disease is amongst them (Checkoway et al., 

2011). Reports have stated that the number of patients diagnosed with Parkinson’s disease 

had a percentage increase of 1.24% per decade in the last 30 years with some specific 

populations having an incidence of 17.9 per 100000 individuals (Caslake et al., 2013; 

Savica et al., 2016). Even though there were some advances in the detection of prodromal 

symptoms in PD, they were not significant to explain the recent increase in cases 

(Checkoway et al., 2011; Mahlknecht et al., 2016; Bellucci et al., 2017). Ageing populations 

without an intensive care platform surrounding them, represents an economical burden to 

governments as well as emotional impact on the patient and family members (Findley, 2007; 

Chiong-Rivero et al., 2011).  



Introduction 

 

JAVIER JARAZO  12 
 

Even though Parkinson’s is a classic example of neurodegenerative disease its case 

is particular since its pathogeny is not completely understood and the clinical appearance 

and features have a diversity that hinders scientific advances (Przedborski, 2017). The 

overall situation points that further research is needed and encourage in this field with the 

aim of reducing the impact of PD in the global population. 

1.1.2 Clinical manifestation and Age of onset 
 
After two centuries since the description of the disease by James Parkinson, motor 

symptoms are one of the principal characteristic that PD is associated with but not 

exclusively. This symptoms include rigidity, bradykinesia, posture instability, and resting 

tremor, representing the key features of what is denominated as ‘parkinsonism’, a group of 

progressive neurodegenerative diseases of which PD is the most prevalent reason (Dauer 

and Przedborski, 2003; DeMaagd and Philip, 2015). Other motor symptoms have been 

described such as deficits of gait, speech, and handwriting, leading to a classification in 

primary and secondary motor symptoms (Moustafa et al., 2016) categorization that help 

clinicians in making a differential diagnosis (Jankovic, 2008).  

Not only motor symptoms have been reported but also symptoms of depression, 

anhedonia, anxiety and dementia were detected in individuals with PD (Park and Stacy, 

2009). Even though they are not clinically pathognomonic of the disease, they have clinical 

relevance since these symptoms precede the motor ones (Schapira and Tolosa, 2010), and 

they become the main ailment to treat once the disease is diagnosed (Chaudhuri et al., 

2006). The connection between the non-motor symptoms and pathogeny of PD is not 

completely understood hinting that multifactorial phenomena should be considered 

(Schapira et al., 2017).  

The age of onset of PD leads to an arrangement of the patients into three categories: 

young (age of onset before 20 years, named juvenile-onset), middle (those individuals with 

onset between 20 and 50 years, labelled early-onset) and late development (those 
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presenting the disease after 50 years of age, late-onset)(Pankratz and Foroud, 2007). 

However, the age boundaries seem to variate across different reports (Mehanna et al., 

2014). One thing is clear, ageing is considered as the most important risk factor (Hindle, 

2010). This classification is relevant in the context of clinical and pharmacological 

implications (Arevalo et al., 1997; Pagano et al., 2016), and also in the possible origin of 

the disease. Causes of PD have been classified in genetic, environmental and idiopathic 

forms (Schulte and Gasser, 2011). In this context, hereditary forms of PD are prone to 

trigger the disease earlier than non-mendelian forms, or environmental causes of PD would 

only be trigger after exposure to certain elements (Brown et al., 2005; Hernandez et al., 

2016). 

1.1.3 Histopathological Hallmarks of the disease  

 
One of the histopathological hallmarks of Parkinson’s diseases is the loss of a 

specific type of dopaminergic neurons (Antony et al., 2013). These neurons normally reside 

in the pars compacta of the substantia nigra in the brain, also named A9 region (Dahlstroem 

and Fuxe, 1964), and make their projections into the striatum (Grealish et al., 2010). Hence 

they are named midbrain dopaminergic neurons (mbDA). This highly pigmented area (thus 

the name of substantia nigra) was pointed out as the one containing the neurons implicated 

with PD when loss of pigmentation in this region was observed in patients with the disease 

(Trétiakoff, 1919; Marsden, 1983; Gibb and Lees, 1991). However, a more broad affection 

of the brain was reported, implying that PD might not be an only affected brain region 

malady (Braak et al., 1995). The main role of these neurons is the production of dopamine 

that regulates the activity of GABAergics neurons located in the striatum. The dysregulation 

of the later leads to a higher inhibitory activity that the neurons in the globus pallidus internal 

segment exert in the thalamus reducing the stimulation of the cortex for generating motor 

activity and initiation of movement (Smith et al., 2011; de Hemptinne et al., 2015).  
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Another of the historically described hallmarks of Parkinson’s disease is the 

presence of Lewy aggregates within the neurons. These aggregates, mainly formed by 

tangles of α-synuclein, are classified as Lewy bodies or Lewy neurites depending on the 

localization within the neuron (Wakabayashi et al., 2007; Dickson, 2018).  However, this 

does not hold true with all the different forms PD, and Lewy bodies can occur sporadically 

in the ageing individual (named “incidental Lewy bodies”) highlighting the importance of 

avoiding broad conceptualizations in the context of this disease (Mori et al., 1998; Gaig et 

al., 2007; Buchman et al., 2012).  

1.1.4 Treatment of the disease 
 
Even though around 150 years passed from the first report of PD until the first 

successful treatment, there is still no current cure for this disease (Fahn, 2015). Treatments 

for Parkinson’s disease involve different strategies of palliative procedures such as the 

administration of Levodopa or the surgical placement of electrodes for deep brain 

stimulation (Jankovic and Aguilar, 2008). To date there is no treatment that solves one of 

the phenomena observed in the pathology that is the loss of cells in the substantia nigra 

releasing dopamine. The main palliative treatment used today in the clinics is Levodopa. 

While the therapy reduces the symptoms in some of the patients, it also generates several 

side effects. Moreover, some specific group of patients, such as those carrying mutations 

and developing the disease at earlier stages, are refractive to improvements in their 

condition using levodopa (Lücking et al., 2000; Schrag and Schott, 2006; Jankovic and 

Aguilar, 2008). Plus, since the vast clinical features of PD cannot be contained by only 

treating motor symptoms, compounds oriented to sustain the non-motor symptoms have to 

be included in some patients (Williams-Gray et al., 2006; Chaudhuri and Schapira, 2009; 

Wu et al., 2017) 

The other approach, for managing movement disorders used since the beginning of 

last century, are surgical interventions (Goetz, 2011). A range of surgical procedures have 
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been evaluated clinically and experimentally but from all of them Deep Brain Stimulation 

has been largely promoted over the clinics (Lozano et al., 2018). This procedure requires a 

surgical intervention of specialized neurologist which select the patients that would benefit 

from this intervention (Lang and Widner, 2002). Plus, it presents the disadvantage of the 

risks of any surgical intervention (Voges et al., 2006) and the rehabilitation required after 

the procedure (Allert et al., 2018). 

An alternative to these treatments will largely benefit the patients. A potential 

systemic treatment is sought by several research groups and several clinical trials have 

been performed in the last years but without a strong candidate (Dawson, 2005; Athauda 

and Foltynie, 2016), leaving room for further research in this field. 

1.1.5 Pathogenesis of the disease 
 
One of the quick explanations of the unsuccessful drug trails in the last decades is 

the lack of a complete understanding of PD pathogenesis (Eriksen et al., 2005; Hirsch et 

al., 2013; Haddad and Nakamura, 2015). The scientific community accepted scenario is an 

interaction of environmental factors, and a genetic predisposition that triggers the onset of 

the disease (Shin et al., 2009). Since the hallmark of the disease is the loss of a specific 

type of dopaminergic neuron, several hypothesis try to explain why these neurons are the 

first and most affected ones (Forno, 1996). These hypotheses range from an evolutionary 

concept (the enlarged development of the striatum in humans pushing mbDA to increase 

their arborisation compared to other species) to the high functionality demands 

(dopaminergic neurons are one of the most metabolically active cells in the brain, the energy 

needed to keep up with their firing rate seems to be a limiting step) (Vernier et al., 2004; 

Bolam and Pissadaki, 2012; Pissadaki and Bolam, 2013; Garcia-Ruiz and Espay, 2017). 

These induces a higher susceptibility of mbDA to externals stressor as well as those 

generated within the cell. This was supported by the first two findings that contributed to the 

understanding of PD pathogenesis (Schapira and Jenner, 2011): the effects of 1-methyl-4-
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phenyl-1,2,3,6-tetra-hydropyridine (MPTP) and the formation of protein aggregates due to 

mutations in α-synuclein (Langston et al., 1984; Polymeropoulos et al., 1997). From this 

point on, different response mechanism such as microgliosis, reduced vascularization and 

prion-like spreading could determine the progression of the disease as well as other 

concomitant symptoms that occur with PD (Globus et al., 1985; McGeer et al., 1988; Braak 

et al., 2003; Derejko et al., 2006; Tredici and Braak, 2008; Schapira and Jenner, 2011; 

Heron et al., 2014). However, the concept that the immune response and the spreading 

from the peripheral nervous system to the brain (defined in the Braak stages) should be 

considered in the onset of the disease rather than in its later progression, is also supported 

by the scientific community (Wang et al., 2015a; Le et al., 2016; Rietdijk et al., 2017). Energy 

demand and protein deposition might be the key features affecting midbrain dopaminergic 

neurons, with most of the known affected pathways leading to alterations in these two 

aspects (Hunn et al., 2015). Thus, they will be further discussed in the next sections. 

1.1.6 Environmental causes 
 
Knowledge that the environmental exposure to certain elements plays a role in the 

epidemiology of PD is known since several decades (Langston et al., 1983; Koller et al., 

1990). These factors can range from occupational, place of residence, physical activity and 

diet (Chade et al., 2006; Bellou et al., 2016). The connection between environment and PD 

is not old but also represents an important factor in the map of PD since only a small fraction 

of the total cases (10%) has hereditary ties (Sampson et al., 2016). Their mechanism of 

action in some cases is fully understood and they also had become a tool for generating 

disease models to study the disease (Sherer et al., 2003; Bové et al., 2005). One aspect of 

the environmental component of PD that lately gained a lot of attention in the field is the link 

between the gut and the brain, specifically by influence of the microbiota (Sampson et al., 

2016; Li et al., 2017a; Parashar and Udayabanu, 2017; Heintz‐Buschart et al., 2018). This 
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association is also supported by those proposing the spreading mechanism from the 

periphery to the central nervous system (Braak and Tredici, 2017). 

Links between environmental factors and development of neurodegenerative 

disease have not only been reported in the context of PD but in several other 

neurodegenerative diseases, concept that might lead to consider evaluating together the 

genetic aspect and the environmental factors as triggers of neurodegeneration (Brown et 

al., 2005; Ritz, 2006; Cannon and Greenamyre, 2011; Chin-Chan et al., 2015; Chen et al., 

2017; Przedborski, 2017). This enables to think that most of these diseases could have a 

dual hit concept in which mutations carriers develop the disease after an environmental 

factor prompts its onset (Sulzer, 2007; Schwamborn, 2018). 

1.1.7 Genetic and Idiopathic causes 
 
In the categorization of individuals with PD the first division that is stablished is 

between those cases with a genetic component (around 10% of the cases) from those which 

the cause is unknown (hence are named idiopathic), and from the former 90% of the cases 

is sporadic (due to somatic mutations that occur after fertilization) and the rest is familial (at 

least a family member has been identified as carrier or presented the disease)(Pankratz 

and Foroud, 2007; Thomas and Beal, 2007; Klein and Westenberger, 2012; Kim and Jeon, 

2014; Perandones et al., 2015). Of all the identified loci associated to the disease, six have 

been reported as monogenic causes of typical PD with a hereditable link namely SNCA, 

LRRK2, VPS35, Parkin, PINK1 and DJ-1 of which the three first ones are dominant and the 

later recessive (Klein and Westenberger, 2012; Bonifati, 2014; Brás et al., 2015). All the 

those loci that were identify as having a connection with PD were labelled as PARK with 

numbering according to their time of discovery (hence the locus of the first identified gene, 

SNCA, is called PARK1) (Thomas and Beal, 2007). This list has been further extended to 

34 including risk genes and risk loci linked to different forms of Parkinsonism and in some 

cases specifically to PD (Brás et al., 2015). Most of this recently found loci are not mapped 
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to a specific gene and some others are just linked between the detected SNP in the GWAS 

to the most proximal gene or group of genes, thus they need further confirmation (Brás et 

al., 2015). We will focus in the analysis of those that are confirmed causes of PD with a 

more detailed analysis of PINK1. We do so, keeping in mind that the genetic background is 

a crucial factor accounting for patients’ individual variability and that the whole genomic 

context should be considered. This point will be addressed again in the disease modelling 

section. 

1.1.6.1 SNCA 

The first reported gene as causative of PD was α-synuclein (Polymeropoulos et al., 

1996). Most of the patients carrying a mutation in SNCA developed early-onset of the 

disease with the presence of Lewy bodies spread through different regions of the brain, and 

a fast progression of the disease (Klein and Westenberger, 2012). The function of SNCA is 

not completely understood but different reports link this protein in a broad interaction with 

membranes (such as mitochondria and endoplasmic reticulum, ER) but specially to synaptic 

vesicles for their recycling, as well as neurotransmitters management (Thomas and Beal, 

2007; Recasens and Dehay, 2014). It is also the principal aggregated protein in Lewy 

bodies and it can self-propagate matching some of the hypotheses of the pathogeny of the 

disease (Spillantini et al., 1997; Kordower et al., 2008; Li et al., 2008; Braak and Tredici, 

2017)  

1.1.6.2 LRRK2  

Patients carrying mutations in LRRK2 gene represent the majority of late-onset and 

sporadic cases of PD (Kumari and Tan, 2009; Klein and Westenberger, 2012). It encodes 

a large multidomain protein which, as in the case of SNCA, has an unknown specific 

function (Wallings et al., 2015). However, the development of PD and the number of 

reported mutations in LRRK2 differs from the ones of SNCA patients. A mild progression, 

in most cases without dementia, and around 80 mutations are reported in comparison to 
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the aggressive diffusion and five mutations in the case of SNCA (Nuytemans et al., 2010; 

Klein and Westenberger, 2012; Siddiqui et al., 2016). Plus, LRRK2 is involved in both 

familial and sporadic cases, with a frequency of 2% in the latter (Nuytemans et al., 2010). 

The two most important domains of this protein are those involve with enzymatic activity: 

the ROC, the COR and kinase domains, and the main proposed activities range from 

controlling autophagy pathway and mitochondrial homeostasis to regulating inflammatory 

response and oxidative stress (Li et al., 2014). 

1.1.6.3 DJ-1 

Mutations in the PARK7 loci associated with the gene coding for DJ-1 have been 

connected to early-onset PD with a relative low number of reported mutations compared to 

the other two genes affected by autosomal recessive mutations, Parkin and PINK1 (Bonifati 

et al., 2003; Ariga et al., 2013; Brás et al., 2015). Functions of this gene have been better 

characterized, and they mainly focus in oxidative stress control but also closely involved in 

gene transcription regulation (Lev et al., 2006; Malgieri and Eliezer, 2008; Biosa et al., 2017) 

1.1.6.4 VPS35  

One of the recently described genes affected in patients having a classical sporadic 

PD symptomatology, VPS35, was discovered using whole exome studies rather than 

linkage analysis, with only one pathogenic mutation confirmed (Vilariño-Güell et al., 2011; 

Lin and Farrer, 2014; Struhal et al., 2014). Again, the mechanism of contribution in the 

development of PD is not known (Williams et al., 2017). Nevertheless, some of the known 

functions of VPS35 overlap with some of the disease mechanism reported in other PD 

genes, such as organelle’s or vesicle’s membrane recycling, trafficking and turnover 

between endosomes and Golgi apparatus as well as of mitochondria (Seaman, 2012; Deng 

et al., 2013; Wang et al., 2015b). 
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1.1.6.5 Parkin 

The first affected gene described as a cause of autosomal recessive PD was Parkin 

which is reported to cause juvenile and early-onset of the disease with a slow progression 

(Dawson and Dawson, 2010; Klein and Westenberger, 2012; Miklya et al., 2014). Due to its 

ubiquitin ligand nature most of Parkin functions have been associated to the control of 

altered or misfolded protein inducing their degradation by ubiquitination, with strong ties in 

the regulation of mitochondrial homeostasis by overseeing its biogenesis, network 

modulation and degradation (Zhang et al., 2016; Hattori and Mizuno, 2017) 

1.1.6.6 PINK1 

The PTEN-induced putative kinase 1 (PINK1) gene is linked to PD when mutations 

are present in one of the more than 80 reported positions of this 8 exons and 581 amino 

acids protein (Valente et al., 2004; Klein and Westenberger, 2012; Pickrell and Youle, 

2015). The symptomatology of the patients is similar to those carrying Parkin mutations, 

however most of the reported mutations are missense and nonsense mutations compared 

to the prevalent deletions or duplications observed in Parkin (Kumar et al., 2011). The 

protein possess a mitochondrial targeting motif and a kinase domain revealing its principal 

functions (Valente et al., 2004). This kinase domain presents none conserved regions that 

are exclusive of human PINK1 followed by a C-Terminal extension of not well known and 

unmatched functions (Kumar et al., 2017). From the moment it was identify as a cause of 

PD, the main role that was given to PINK1 was the protection of cells from oxidative stress 

after seeing that overexpression of wild-type PINK1 could protect against external stressors 

(Valente et al., 2004; Deas et al., 2009). It has been later stablished that controlling the 

homeostasis of the principal source of ROS, mitochondria, was the way PINK1 is acting 

(Pickrell and Youle, 2015). Through its mitochondrial targeting motif, PINK1 interacts with 

the TOM/TIM complex located in the outer and inner membrane of the mitochondria 

respectively (OMM and IMM) (Ashrafi and Schwarz, 2012). In normal conditions is 



Introduction 

 

JAVIER JARAZO  21 
 

internalized through TOM and into TIM complex to be cleaved by proteases, specifically 

MPP and PARL. However, when the membrane potential of the mitochondria is altered, the 

internalization to TIM is blocked leading to an accumulation of PINK1 in the outer membrane 

(Ashrafi and Schwarz, 2012). At this point PINK1 interacts with another protein that is also 

involved in the pathogeny of PD, Parkin. Through the PINK1 kinase domain, it 

phosphorylates Parkin and ubiquitin in both of their Ser65 position. Interactions between 

these last two proteins lead to conformational changes in Parkin that enhances its 

ubiquitination activity (McWilliams and Muqit, 2017). The amplification signal done by 

Parkin, of labelling the mitochondria surface with poly-ubiquitin chains of different lengths, 

leads to the recruitment of the autophagy machinery (Yamano et al., 2016).  

At this point is worth mentioning that in the context of the functionality of the genes 

involved in the genetic form of PD, several pathway intertwine and some key organelles 

and system are involved in the pathogeny of the disease. This includes mitochondria 

homeostasis control, protein degradation and oxidative stress protection (Fitzgerald and 

Plun‐Favreau, 2008; Fujita et al., 2014; Merwe et al., 2015; Scott et al., 2017). Hence, main 

aspects about mitochondria biogenesis, fission/fusion, activity, and degradation as well as 

general aspects of autophagy will be covered in the next sections. 

1.1.7 Mitochondria 
 
Evolution-wise, these organelles were derived from the symbiotic interaction of α-

protobacteria and pre eukaryotic cells (Yamano et al., 2016). Even though several different 

task such as Krebs cycle, β-oxidation and lipids synthesis are carried out within them, their 

main role is providing a functional structure for oxidative phosphorylation to be carried out 

(Schapira, 2006). Oxidative phosphorylation, also known as electron transport chain is the 

main source of ATP in cellular respiration, that although beneficial to the cell it is also the 

source known as reactive oxygen species (Chaban et al., 2014). These by-products in large 

quantities can be toxic to the cell by producing damage to proteins, lipids and DNA (Larsen 
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et al., 2018). The generation of anion superoxide from oxygen is just one of the steps of a 

vicious cycle that needs to be contained (Beckhauser et al., 2016). Several intracellular 

mechanisms are active in managing the excess of ROS from its formation (e.g. the 

enzymatic action of the superoxide dismutase to transform superoxide to hydrogen peroxide 

and oxygen) to the removal of the damaged structures they generate (Turrens, 2003). Due 

to the importance of the stability and integrity of the genomic sequence, several mechanism 

evolved for repairing nuclear DNA sequence alterations (Schärer, 2003; Jena, 2012; Cadet 

and Wagner, 2013). Mitochondria possess their own genomic sequence that also has 

specific repair mechanisms for its DNA (Alexeyev et al., 2013). However, when the 

production of ROS goes out of feasible range of control for this mechanism, other 

overlapping processes are also taking place for guaranteeing mitochondrial quality (Ashrafi 

and Schwarz, 2012). The series of checkpoints act from a protein to an organelle level 

including: an intrinsic proteolytic system within the mitochondria membrane, the cytoplasmic 

degradation of altered membrane proteins through proteasome, the budding off 

mitochondria membrane vesicles (mitochondria derived vesicles, MDVs), and the final 

degradation of an entire organelle (Ni et al., 2015). Except for the first system, the rest 

requires an interplay with cytosolic proteins to determine the type of cargo and their final 

destination, and some of these proteins are the ones reported to be affected by mutations 

in individuals with PD (Antony et al., 2013). Several structural OMM proteins normally 

undergo ubiquitination, and when these proteins are altered or the membrane potential is 

imbalanced, PINK1 stabilizes in the OMM to phosphorylate these ubiquitins, and recruits 

and phosphorylates Parkin as described before (Yamano et al., 2016). The later leads to 

the extraction of several outer mitochondrial membrane proteins through a process similar 

to those reported for the ER (named outer mitochondrial membrane associated 

degradation, OMMAD) by interaction with p97, and to be degraded by the proteasome 

(Pickrell and Youle, 2015). Some of the proteins regulated this way control mitochondrial 

network dynamics, mainly those involved in controlling mitochondrial fusion and fission 
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(Karbowski and Youle, 2011). Fusion of different mitochondria is promoted to dilute the 

effect of altered proteins in isolated mitochondrion, and involves proteins Mitofusin I and II 

(Mfn) for fusion of the OMM and OPA1 for the fusion of the IMM (Larsen et al., 2018). When 

this mechanism is not enough for counterbalancing an altered network, a specific portion of 

it needs to be isolated (in a process called fission) to be further degraded (Karbowski and 

Youle, 2011). Fission is controlled by Drp1 which interacts with other OMM proteins as well 

as with the ER for establishing the point to be split (Friedman et al., 2011; Ni et al., 2015). 

The dynamic changes that the mitochondrial network goes through are in balance with the 

mitochondria’s anchoring and transporting system to the cellular microtubules formed 

mainly by the Miro-Milton complex (Schwarz, 2013). Reported interaction between 

PINK1/Parkin pathway with Miro, Drp1 and Mfn show their close connection for controlling 

mitochondrial homeostasis (Schwarz, 2013; Buhlman et al., 2014; Pickrell and Youle, 

2015). Another mechanism that is active in mitochondrial quality control is the formation of 

MDVs (Soubannier et al., 2012) . These structures ranging 70 to 150 nm bud off the surface 

of the mitochondria and transport different types of cargo which would dictate their final 

destination to the peroxisome or to the late endosome/lysosome, degrading a higher 

content of altered structures than the previous described mechanism (Sugiura et al., 2014). 

The ultimate step of the mitochondrial quality control process is its final degradation by the 

autophagy pathway (Ni et al., 2015). 

1.1.8 Autophagy pathway 
 
The process of degrading large intracellular material named autophagy, involves 

their engulfing by a membrane and the delivery of the content to lysosomes (Youle and 

Narendra, 2011; Ashrafi and Schwarz, 2012). Three main mechanism are reported in 

autophagy: chaperon mediated autophagy, microautophagy and macroautophagy 

(Mizushima and Komatsu, 2011; Ashrafi and Schwarz, 2012; Galluzzi et al., 2017). Of the 

later process, two types are mainly recognized: the one arising from starvation of cells 
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known as non-selective macroautophagy, and the targeted degradation of proteins or 

organelles or pathogens (Youle and Narendra, 2011), of which we are going to focus in the 

degradation of mitochondria, named mitophagy. Several structures are identified in the 

autophagy pathway, starting with the formation of an isolation membrane known as 

phagophore that surrounds the structure to be degraded leaving a double membrane 

vesicle (named autophagosome) which would then fuse with lysosomes that will release 

their hydrolytic content, transforming it into an autolysosome (Ashrafi and Schwarz, 2012). 

In order to target the mitochondria that needs to be degraded, this pathway relies on other 

system like the PINK1/Parkin pathway described previously that flags the altered 

mitochondrion by poly-ubiquitination. Three autophagy receptors, p62 (also known as 

SQSTM1), Optineurin, and NDP52, interact with the ubiquitin chains to make the connection 

between these marks in the outer membrane of the mitochondria and the autophagy 

machinery (Ni et al., 2015; Bhujabal et al., 2017). The first structure of the autophagy 

machinery, the phagophore, is assembled by an interaction of three different complexes: 

the complex of UNC51-like kinase (ULK, formed by ULK1, ATG13 FIP200 and ATG101), 

the VPS34 complex (formed by beclin-1, VPS15, VPS34, ATG14 and AMBRA1), and the 

ATG5/ATG12-ATG16 complex that are responsible of the initiation, nucleation, and 

conjugation of this isolation membrane respectively (Harper et al., 2018). The conjugation 

of the phagophore membrane is done with ATG8 homologs, such as LC3 and GABARAPs, 

that are the ones to interact with the previously named autophagy receptors (Kaur and 

Debnath, 2015). It has also been reported that other mechanisms independent of the 

ubiquitination of damaged mitochondria by PINK1/Parkin, trigger mitophagy with a direct 

interaction with LC3 or GABARAP, namely by BINP3, FUNDC1 and NIX (Bhujabal et al., 

2017; Koentjoro et al., 2017). Plus, some other proteins (SMURF1 and MUL1/MULAN) 

produce mitochondrial ubiquitination that could replace Parkin’s activity (Ni et al., 2015). 

After formation of the autophagosome, it fuses with the lysosome through a process 

combining the activity of proteins in the HOPS complex (VPS11, VPS16, VPS18, VPS33, 
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VPS39 AND VSP41), PLEKHM1, the SNARE complex (VAMP7/8, SNAP29 and STX17), 

and Rab7 (Itakura et al., 2012; McEwan et al., 2015; Wang et al., 2016; Han et al., 2017; 

Zhi et al., 2018), responsible for tethering, bridging and membrane fusion (Luzio et al., 

2007). This fusion induces the release of the lysosomal hydrolases that sequentially interact 

forming complexes to process their substrate with the help of the acidic environment they 

possess (Appelqvist et al., 2013; Bonten et al., 2014). The monomers obtained after 

degradation can be recycled as well as the lysosomal membranes involved in the process 

(Zhi et al., 2018). To perform the latter, it is reported that the retromer complex (formed by 

VPS5, VPS17, VPS26, VPS29 and VPS35) plays a main role (Luzio et al., 2007). Not only 

the PD genes PINK1/Parkin and VPS35 were reported as playing a role in autophagy but 

also LRRK2 and α-synuclein are involve in its process (Xilouri et al., 2016; Manzoni, 2017). 

1.1.9 De novo neuronal formation: Neurodevelopment and 
neurogenesis 

 
Even though age is a risk factor in the development of PD, there is evidence that the 

development of the disease is a long process that has in some cases an initiation decades 

before the appearance of the first motor symptoms (Chaudhuri and Schapira, 2009; Brás et 

al., 2015). Plus, several genes or risk factors associated with PD determine an early onset 

or juvenile form of the disease with patients presenting symptoms at the early age of 10 

(Fonzo et al., 2008; Myhre et al., 2008; Yalcin-Cakmakli et al., 2014). This would lead to 

think that there is a connection between neuronal development and the onset of the 

disease, specifically an alteration on the transition between neuronal precursor cells and 

differentiated neurons (Schwamborn, 2018). This transition can occur at two different stages 

in life: during the early stages of development (embryonal, fetal and early childhood), and 

during adulthood through neurogenesis (Grand et al., 2015). During embryo development, 

the formation of the neuronal tube after gastrulation of the embryo is one of the structural 

recognized first steps in the development of the neuronal system (Stiles and Jernigan, 

2010). As described previously, the main neurons affected in PD are localized in the 
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substantia nigra pars compacta of the midbrain, and this specific region in the 

mesencephalon is early delimited by the expression of two genes OTX2 and GBX2 that 

mark the caudal limit with the hindbrain in a region named the isthmus organizer (Hegarty 

et al., 2013). In this position, the expression of the transcription factors PAX2, LMX1B, 

WNT1 and EN1 regulate the expression of FGF8 to further limit mid and hindbrain, while 

the interaction between SHH (produced in the floor of the neural plate)  and BMPs 

(produced dorsally) are involved in determining the dorsoventral identity of the progenitors 

(Oliveira et al., 2017). Moreover, the inhibition of SHH by WNT signalling through β-catenin 

at the right time, and the activity of LMX1a induced by OTX2 are crucial for dopaminergic 

specification (Hegarty et al., 2013; Oliveira et al., 2017). Other transcription factors such as 

FOXA2, NURR1 and PITX3 are needed for the normal maintenance of midbrain 

dopaminergic neurons (Hegarty et al., 2013; Grand et al., 2015).  

Adult neurogenesis is reported to arise from cells known as adult neuronal stem 

cells that reside in two different places in the brain: the subventricular zone (SVZ), and the 

subgranullar zone (SGZ) (Marxreiter et al., 2013). A specific type of SVZ stem cells express 

receptors for dopamine, inferring that the neurotransmitter can control neurogenesis since 

dopamine depletion is reported to lower the quantity of cells in these two niches 

(Farzanehfar, 2016). However, there are also conflicting results that did not detect a 

reduction in the number of cells in those niches in post-mortem brain samples of patients 

with PD (van den Berge et al., 2011). Further studies are needed to clarify the possible 

regeneration of functional dopaminergic neurons in the substantia nigra pars compacta 

coming from these niches (Farzanehfar, 2016) 

Several reports have linked genes affected in PD to altered neurogenesis, whether 

by alterations in the same mechanism as reported in adulthood or by completely 

independent mechanism (reviewed in Grand et al., 2015). Especially in the case of PINK1, 

zebrafish models showed that its downregulation leads to reduce levels of midbrain tyrosine 
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hydroxylase (TH) positive cells, due to an increase in apoptosis during brain development 

(Anichtchik et al., 2008).  

Studying developmental aspects of the central nervous tissue in humans within 

living embryos is ethically controversial and so far bound to the Warnock rule, hence the 

need of alternative models to study the pathological implications of PD in neurodevelopment 

(Hyun et al., 2016). 

1.2 Disease Modelling 
1.2.1 hiPSC 

 
Since the first publication by Yamanaka and collaborators in 2006 of the so-called 

human induced pluripotent stem cells (hiPSCs), almost a scientific article a day was 

published until 2016 about this new cell type (Negoro et al., 2017). This is only one of the 

measurements that shows the importance that hiPSCs have in the scientific community 

(Yamanaka, 2012).  

Until the discovery of iPSCs, the known ways for obtaining pluripotent cells were 

derivation of cells from the inner cell mass of an embryo or the somatic cell nuclear transfer 

(SCNT) of a differentiated cell into an oocyte for further activation and embryo development 

(Evans and Kaufman, 1981; Wilmut et al., 1997). Both techniques, even though possible, 

saw their extrapolation in human studies restricted in some countries and in different forms 

(Curtis, 2003; de Wert and Mummery, 2003; Hurlbut, 2006). The new technique introduced 

by Yamanaka not only circumvented these ethical issues but also showed to be a simple 

and repeatable protocol (Shi et al., 2016).  

Induced pluripotent stem cells are obtained through a procedure known as cellular 

reprogramming that implies driving back the differentiation stage of a specific cell into an 

earlier state in development (Jaenisch and Young, 2008); and it is accomplished by the 

introduction of the exogenous factors OCT4, SOX2, c-Myc and KLF4 into cells that would 

induce the reactivation of silenced genes in the cells’ own genome in order to maintain their 
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pluripotency state (implying indefinite self-renewal, differentiation into the three germ layers, 

teratoma formation in vivo and embryo body formation) (Takahashi and Yamanaka, 2006).  

There are different ways and forms of delivery of these factors that range from DNA-

based, RNA, and proteins, with the former including integrative (e.g. lentivirus) and non-

integrative (e.g. Sendai virus, episomal) approaches (González et al., 2011). Their choice 

would have an impact in the derivation efficiency as well as in specific properties of the 

pluripotent cells obtained (Malik and Rao, 2013). Moreover, there are reports of obtaining 

iPSCs by using small molecules (Hou et al., 2013). Even though it has been stated that 

some aspects (e.g. epigenetic memory) of the pluripotent cells obtained by induced 

reprogramming are different from those derived from a fully reprogrammed mechanism 

(going through an embryo/zygote state) (Kim et al., 2010; Gore et al., 2011; Ma et al., 2014), 

most of the ESCs properties are properly recapitulated by hiPSC for modelling specific 

diseases (Halevy and Urbach, 2014). Human iPSCs have also the advantage of requiring 

a non-invasive sampling of patients to obtain the material for reprogramming and further 

differentiation into a specific cell type that would instead need in some cases a critical 

surgical procedure to harvest the same material from an individual (Soldner and Jaenisch, 

2012; Hokayem et al., 2016). This opens the door not only for assessing the pathogeny of 

a disease in the specific cell type (Sánchez‐Danés et al., 2012; Rakovic et al., 2015; Wenker 

et al., 2015; Hillje and Schwamborn, 2016; Ghaffari et al., 2018) but also for screening 

compounds and elucidating their mechanism of action in the proper target (Kim and Jin, 

2012; Sharma et al., 2013; Kim, 2015; Liu and Deng, 2016). Plus, since hiPSCs can be 

derived from the specific individual that needs to be treated, compound screens can be 

tailored in a personalized manner (Kim, 2014; Brennand, 2017). The advent of hiPSCs also 

brought the potential of transplanting specifically differentiated cells as an autologous 

therapy, circumventing the time required to find an allogeneic match (Ohyama and Okano, 

2013; Singh et al., 2015). In case that the patients needing a treatment possess a known 

disease causing mutation, hiPSCs cells are a suitable starting point for correcting the 
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alteration by gene editing techniques since their pluripotency characteristics allows 

selection, purification, and screening of properly modified clones (Hockemeyer and 

Jaenisch, 2016; Bassett, 2017; Kim et al., 2017). Plus, their proliferation capabilities permits 

expanding to have enough biological material to transplant back into the patient (Vonk et 

al., 2015; Shiba et al., 2016; Li et al., 2017b). The importance of gene editing techniques in 

the context of disease modelling is discussed in the next chapter. 

1.2.2 Gene Editing 
 
Most of the late advances in gene editing, the ability of manipulating the genomic 

sequence, were driven by the development of reliable targeted nucleases (Gaj et al., 2016). 

The introduction of these nuclease into eukaryotic cells (delivered as DNA, RNA or proteins) 

have only the function (in the context of gene editing) of generating a double strand break 

(DSB) in the genome for activating the cell’s DNA repair machinery (Kim, 2016). Damages 

in the DNA can be solved in different ways, but DSBs can be fixed mostly by two competing 

mechanisms: nonhomologous end-joining (NHEJ), and homologous directed repair (HDR) 

(Sancar et al., 2004). The former implies the direct binding of the loose ends of the DNA 

strands using short homologies regions (‘microhomology mediated joins’) or no homologies 

at all (‘direct joins’) (Boboila et al., 2010). In this process, several insertions/deletions can 

occur in these ends, becoming suitable for generating knock-out models (Sander and 

Joung, 2014). On the contrary, the mechanism involved in HDR implies that a larger 

template is used for replacing the damaged section of DNA (Heyer et al., 2010). Normally, 

the template used for repairing is the homologous chromosome but in the context of gene 

editing, an exogenously provided template is used for delivering the desired gene 

modification (Sander and Joung, 2014).  Over the last 30 years, different methods have 

been used for selectively inducing a double strand break in the genome, however the 

technological leap happened with the advent of programmable nucleases such as zinc 

finger nucleases (ZFN), transcription activator like effector nucleases (TALEN) and cluster 
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regularly interspaced short palindromic repeats(CRISPR)/CRISPR associated protein 9 

(Cas9) (Kim, 2016). The first two techniques, ZFN and TALEN, rely on a protein based 

sequence recognition while the later, CRISPR/Cas9, on a nucleotide based approach 

(Sander and Joung, 2014). The relevance of the CRISPR/Cas9 technique is due to the ease 

and versatility of the design, and assembly of the guiding sequence into the respective 

nuclease (Ran et al., 2013b). This technique was developed by modifying the adaptive 

immune system some bacteria have against virus and plasmids, into a complex formed by 

the association of a guide RNA (gRNA) and the Cas9 protein (Jinek et al., 2012). The gRNA 

possesses a sequence for binding to the Cas9 protein and a targeting sequence (comprised 

of 20 nucleotide base pair) that would serve as a confirmation template for the Cas9 to exert 

its enzymatic action (Ran et al., 2013b). The Cas9 protein recognizes a specific motif, 

known as protospacer adjacent motif (PAM, of which 5’-NGG is the most efficient), in a DNA 

sequence and binds to it, while the targeting sequence of the gRNA confirms the target site 

following a Watson-Crick base recognition (Barrangou and Doudna, 2016). The enzymatic 

action of the two nuclease domains in the Cas9 produce a DSB 3-4 nucleotides upstream 

of the PAM activating the DNA repair machinery of the cell (Ran et al., 2013b). This targeted 

gene modification represents an important tool for gene function modelling by providing an 

accessible method for the generation of knockout biological material (Barrangou and 

Doudna, 2016). Furthermore, it enables the study of diseases triggered by genomic 

alterations via the correction or insertion of specific mutations (known as isogenic controls) 

to phenotypically compare to their unaltered counterpart (Kim et al., 2014). Plus, it is 

possible to evaluate the activation or inhibition of specific genes (by using a mutated version 

of the Cas9 protein that yields no enzymatic activity), induce epigenetic regulation, generate 

the direct conversion of nucleotides, and genomic painting for live tracking specific genes 

in the nucleus (Barrangou and Doudna, 2016; Yang et al., 2016; Badran et al., 2017). Apart 

from its application in vitro, the in vivo delivery of the parts of the Cas9 complex was shown 

successful for doing genome editing in target tissue in living animals (Nelson et al., 2016). 
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Even though other editing techniques have been tested in humans for in vivo gene editing, 

CRISPR/Cas9 has not yet been taken into clinical studies (Reardon, 2014; Dai et al., 2016; 

Kaiser, 2017) .  

This technique has been proven to be extremely versatile since not only biomedical 

applications have been shown but also broader uses in livestock, crop and 

antibiotic/antiviral formulations (Barrangou and Doudna, 2016). 

1.2.3 Neuroprecursors and Neuronal differentiation 
 
Different cell types for evaluating in vitro properties of PD patients have been 

reported (including fibroblast, hiPSCs, immortalized lines and differentiated neurons) all of 

them with their own limitations to model a multifactorial disease such as PD (Auburger et 

al., 2012; Rakovic et al., 2015; Hillje and Schwamborn, 2016). Due to their accessibility and 

the proliferation capacity of fibroblast, samples from PD patients are normally skin biopsies 

(Mertens et al., 2016). From this starting point, fibroblast can be expanded and directly 

differentiated into mature neurons following a procedure known as transdifferentiation (Zhao 

et al., 2015). This requires solely the addition of specific transcription factors in a sequential 

manner to only de-repress the epigenetic signatures needed to achieve a different 

differentiated state while keeping their age-related epigenetic marks (Pang et al., 2011; 

Mertens et al., 2016). This represents a great advantage for a direct analysis of the desired 

cell type, since different reports showed a decent transdifferentiation efficiency and a short 

time needed to obtain mature neurons, even specific subtypes of neurons such as 

dopaminergic neurons (Caiazzo et al., 2011; Pfisterer et al., 2011; Xu et al., 2017) . 

However, there is still a need for increasing the transdifferentiation efficiency into 

dopaminergic neurons (Jang and Jung, 2017). Plus, starting from material that is not 

indefinitely expandable leads to senescent fibroblast at one point, which might hamper the 

differentiation efficiency (Sun et al., 2014). Moreover, with this process is not possible to 

model the developmental features of neuronal differentiation (Mertens et al., 2016). 
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Reprogramming of fibroblast into hiPSC to further direct their differentiation into neurons, 

circumvent some of the previous limitations (Cobb et al., 2017). Several reports have stated 

efficient protocols for the direct differentiation of hiPSCs into mature neurons (Chambers et 

al., 2009; Kriks et al., 2011; Seibler et al., 2011). However, the long time required (3-6 

weeks) for obtaining the material needed for each round of experiments might not be 

suitable for all applications (Mertens et al., 2016). Differentiation into an intermediate state, 

like a neuronal precursor cells (NPCs) state, maintains similar proliferation capabilities as 

hiPSCs, and the staging of neuronal development, while adding a shorter handling time of 

culture maintenance and a shorter differentiation time, reducing the amount of expensive 

growth factors and media for obtaining mature neurons (Reinhardt et al., 2013; Yan et al., 

2013; Noisa et al., 2015). Considering the importance of NPCs for evaluating their transition 

to differentiated neurons, qualifies them as a suitable model for assessing the 

developmental aspects of PD in a high-throughput manner (Reinhardt et al., 2013; Grand 

et al., 2015). Since the ideal cell model should resemble the early stages of neuronal 

specification, a protocol for obtaining NPCs with properties similar to neuroepithelial stem 

cells (NESCs) in the neuronal plate is suitable for this endeavour (Reinhardt et al., 2013). 

These NPCs are obtained by a dual SMAD inhibition of cells in suspension in an embryo 

body state through the addition of dorsomorphin and SB43152 inhibiting BMP and TGFβ 

signal respectively (Chambers et al., 2009). Plus, an equilibrium between the WNT and 

SHH pathways obtained by the supplementation of CHIR99021 and purmorphamine (PMA) 

maintains the proliferation capacity of these NPCs and the potential formation of cells 

derived from both neural plate and neural crest (Reinhardt et al., 2013). For further 

specification into midbrain dopaminergic neurons, removal of the WNT stimuli induces a 

ventralization of this cell lineage to give rise to ventral midbrain cells after differentiation and 

maturation (Reinhardt et al., 2013). Obtaining the right cell type is not the only property 

desired as a first step for modelling neurodegenerative diseases, but a proper architecture 

as well as cell type composition should be considered for having a better confidence in 
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extrapolating observations in a dish into an in vivo context. The next chapter will discuss 

how disease modelling in 3D cultures can recapitulate this transition. 

1.2.4 3D cultures and microfluidics 
 
It is relevant for some diseases that animal models are not able to mimic the entire 

pathogeny of a human disease, hence the need of a more complex cell culture system that 

bridges the gap between the phenotypes observed in regular 2D culture systems and what 

it is observed in the clinics (Passier et al., 2016). In the context of human brain development, 

most of our knowledge comes from the analysis of post-mortem sections or by inference 

from mouse models or non-human primates (Lullo and Kriegstein, 2017). In vitro culture 

systems such as 3D cultures and microfluidics can also provide the necessary cellular 

context to expand this knowledge (Bhatia and Ingber, 2014). The simplest of these 

approaches relies in pluripotent cells’ self-organization capabilities by providing them a 

suspension state rather than attached in a 2D monolayer (Eiraku et al., 2011; Lancaster et 

al., 2013). Pluripotent cells in suspension adopt a 3D structure resembling the one observed 

in embryoid bodies and can further differentiate into what is called organoid, an organ like 

structure that possess different cell types spatially organized to perform an organ’s specific 

function (Lancaster and Knoblich, 2014). Organoids conserve the required developmental 

time, and recapitulate most of the diversity of cells in a tissue (Lullo and Kriegstein, 2017). 

Moreover, they have been proven valid models for human diseases (Lancaster et al., 2013; 

Clevers, 2016). However, the process of generating a self-organized organoids has a low 

reproducibility unless it is guided by morphogenic cues (Huch et al., 2017). Several groups 

have streamlined stringent protocols for generating organoids that represent only a specific 

region of the organ to reduce the batch to batch variability of the organoid generation 

procedure (Jo et al., 2016; Qian et al., 2016; Monzel et al., 2017). Even though reproducible, 

these organoids might lack specific cell types that are originated from other regions (Lullo 

and Kriegstein, 2017). However, this can be solved by the combination of two or more 
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specific cell types coming from different lineage in a similar fashion to the desired organ or 

tissue (Passier et al., 2016). One of the hurdles of introducing this type of culture in the lab 

is a reduce set of downstream assays that can be readily performed, for instance the 

difficulties of performing immunofluorescence in a high-throughput manner (Bhatia and 

Ingber, 2014). Even though, there is still room for improving the flow of similar techniques 

in organoids, these hurdles can for example be solved by the adaptation of clearing 

techniques, and the usage of nanobodies (Boutin and Hoffman-Kim, 2014; Herce et al., 

2017; Rios and Clevers, 2018). Another system that might avoid the limitations of organoids 

but still can maintain the tridimensional arrangement, is the use of microfluidic organs-on-

chips (Huh et al., 2011). They are micrometre size chambers that apart of containing living 

cells present a small channel for media supply (Bhatia and Ingber, 2014). One of the 

advantages of this system is that it uses the minimal functional unit of a tissue or organ for 

modelling a disease, and that most of the platforms are adapted for a high content screening 

setup (Huh et al., 2013; Passier et al., 2016). Due to the engineered properties of the 

microfluidic devices, the diffusion of nutrients is not a drawback as in organoids where the 

self-arrangement of cells leaves a dense mass of tissue with a nutrient isolated core (Huh 

et al., 2013; Huch et al., 2017). Plus, the possibility of interconnecting several organs-on-a-

chip representing the different organs of the human body is an important asset for 

evaluating pharmacodynamics and pharmacokinetics during drug screening in vitro, not 

only for avoiding the use of animal models but also for modelling them in a personalized 

manner (Sung et al., 2010; Schwamborn, 2018). On the other hand, some limitations of 

microfluidics arise from the fact that the amount of biological material is reduced, making it 

difficult for some assays that require it, and for modelling some diseases that require the 

presence of macro scale structures (Bhatia and Ingber, 2014). It is clear that the list of 

options for choosing a disease modelling system is vast and that the specific question that 

needs to be addressed is an important factor in making this decision.  
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2. Motivation and Aims 
2.1 Motivation 
 

Neurodegenerative diseases represent a social and economic burden to modern 

society since most of the patients rely only in palliative treatments (Hewer, 1997). 

Parkinson’s disease is a considerable example of this current global health situation 

(Findley, 2007). Even though we have seen recent advancement in our understanding of 

PD, we still do not fully grasp the entire scenario that might allow us not only to identify the 

specific mechanism and chain of events involved in the development of the disease, but 

also to make the necessary links of common neurodegenerative processes between 

different diseases (Ramanan and Saykin, 2013; Przedborski, 2017). Moreover, opposing 

situations, such us age being a risk factor and the possible early onset of PD, are still 

categorized under the same disease which points out the multifactorial aspect of this malady 

pushing us to comprehend the factors independently as well as integrally (Schrag and 

Schott, 2006; Reeve et al., 2014). Specific mutations are known causatives of PD, some of 

them involved in the early onset of the disease (Klein and Westenberger, 2012). This means 

that when a crucial pathway is altered, the destabilization of the cell’s homeostasis is 

sufficient for triggering the disease without the need of cofounding stimuli that can occur 

during the life of the individual (Schulte and Gasser, 2011). In some other cases, a point 

mutation might not be enough for causation but for predisposing the individual to a future 

alteration, supporting the multiple hit theory that particularly applies to those mutations with 

a low penetrance (Sulzer, 2007). Based on reports that highlight the role of specific point 

mutations in the early stages of development (summarized in Grand et al., 2015), we can 

hypothesize that this predisposed status can be acquired even during developmental 

stages. Focusing on known mutations that trigger early onset of the disease, such as the 

ones in PINK1, we would be able to address if altered specific pathways elicit an early 
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problem in a human in vitro model or if they could potentially predispose to the development 

of the disease, making our main hypothesis:  

“An altered Pink1-Parkin pathway disturbs the dopaminergic differentiation during early 

stages of development” 

2.2 Aims 
 

1. Streamline the gene editing process in the context of biallelic gene correction 

of patients’ derived cells.  

2. Detect, assess, and classify morphological and functional phenotypes in 

neuroprecursor cells and in their transition into neurons. 

3. Analyse and compare specific morphological features of mitochondria and 

mitophagy events in neuroprecursor cells and neurons. 

4. Evaluate the contribution of the point mutations reported in patients to the 

phenotypes observed. 

5. Screen and identify potential compounds rescuing the altered traits in 

patients’ cells. 
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3. Results 
The three first author articles in the main body of the thesis and the three papers as 

a contributing author in the appendix, explain in detail the relevant results obtained to fulfil 

the aims of my PhD. In the first manuscript, a streamlined procedure for gene editing was 

established using a novel approach (see also Appendices, Patent I) that provides certainty 

at the moment of screening for positively corrected clones. Plus, it also guarantees a 

simultaneous biallelic targeting, by the introduction of a composite of different fluorescences 

and desired modifications that reduces the hands on time of screening. This was a mayor 

improvement to one of the technologies, we successfully had applied to insert point 

mutations in healthy controls, covered in the first manuscript of the Appendices (4th 

manuscript). The second manuscript, was oriented to tackle the lack of a running system 

for assessing the autophagy and mitophagy flux in cells in an automated and high 

throughput manner by means of a fluorescent reporter and high-content image analysis. 

This new system was further studied in the context of PD by introducing the reporter in lines 

derived from patients carrying different point mutations known to cause PD (namely PINK1, 

LRRK2 and VPS35) evidencing the altered activity of these pathways in the context of the 

disease. The third manuscript, evaluates the influence of point mutations present in PD 

patients’ derived cells during the early stages of neurodevelopment. The phenotypes 

assessed in this article rely on the techniques established in the first two manuscripts as 

well as in the platform for making and analysing tridimensional cultures developed in the 5th 

and 6th manuscript. In this study, I highlight the altered features of the mitochondrial network 

during the transition between neuroprecursors and neurons in patients’ derived cells, the 

difference in the metabolomic status between controls and patients, the activity of the 

mitophagy pathway in this transition, the influence of the reported point mutation in the 

phenotype, and the treatment with the repurposed compound 2-hydroxypropyl-β-

cyclodextrin.   
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3.1 Manuscript I 
 

FACS assisted CRISPR-Cas9 genome editing facilitates 

Parkinson’s disease modeling 

Jonathan Arias-Fuenzalida [1,2,7], Javier Jarazo [1,7], Xiaobing Qing [1], Jonas Walter [1] 

Gemma Gomez-Giro [1,4], Sarah Louise Nickels [1,3], Holm Zaehres [4,5], Hans Robert 

Schöler [4,6], Jens Christian Schwamborn [1] 

[1] Luxembourg Centre for Systems Biomedicine (LCSB), Developmental and Cellular 
Biology, University of Luxembourg, L-4362, 7 avenue des Hauts-Fourneaux, Luxembourg 

[2] Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan 

[3] Life Science Research Unit (LSRU), Systems Biology, University of Luxembourg, L-
4367, 6 avenue du swing, Luxembourg 

[4] Max Planck Institute for Molecular Biomedicine, Laboratory of Cell and Developmental 
Biology, Roentgenstrasse 20, Muenster, Germany 

[5] Ruhr-University Bochum, Medical Faculty, Department of Anatomy and Molecular 
Embryology, 44801 Bochum, Germany 

[6] Westphalian Wilhelms University Muenster, Medical Faculty, 48149 Muenster, Germany 

[7] These authors equally contributed to the article 

 

Status: The manuscript is published in Stem Cell Reports, 9 (2017) 1423-1431 
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3.1.1 Preface 
 

Modelling mutation caused diseases in vitro, requires the usage of isogenic controls 

in order to validate its influence in the phenotype observed. Gene editing techniques were 

not readily available in all labs until the introduction of the CRISPR technology. Even though 

promising, we summarize in this article several bottlenecks of the sate-of-the-art of this 

technique, such as the presence of random integrations of the donor templates, the high 

levels of NHEJ observed, the impossibility of targeting both alleles at the same time, and 

the number of colonies to be genotyped until obtaining a positive result. We address these 

issues with the new procedure known as FACS-Assisted CRISPR/Cas9 genome editing 

(FACE). We introduced the novel concept of doing biallelic targeting by combining two 

florescent reporters with homology arms directed to the same genomic region carrying the 

desired composite of modifications to be introduced (homozygous or heterozygous 

changes). We then made use of the piggyBac system for removing the inserted cassette by 

expression of the enzyme transposase. As a proof of concept we selected two known 

mutations in SCNA causative of PD, A30P and A53T to be introduced in a healthy control 

line. Furthermore we also included mutations in two more different genes (PINK1 and 

CLN3) to see if the system was suitable for other genomic regions. We identify that the 

proportion and type of non-repetitive elements in the homology arms of the donor template 

is a major factor in the presence of random integration of the construct. We further assessed 

that the modified lines presented an altered energetic profile, validating the fact that this 

point mutations are sufficient for producing mitochondrial alterations related to PD. 

I contributed in the concept and establishment of this new procedure as well as in 

the conduction of all the experiments, the conceptualization of all the figures, and in the 

writing of this manuscript in collaboration with Jonathan Arias-Fuenzalida. 
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3.1.2 Manuscript 
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3.1.3 Figures 
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3.2 Manuscript II 
 

Automated high-throughput high-content autophagy and 
mitophagy phenotyping in Parkinson's disease 
Jonathan Arias-Fuenzalida [1,2,5], Javier Jarazo [1,2,5], Jonas Walter [1,2,5], Gemma 
Gomez-Giro [1,2,4], Julia Forster [1,3], Paul M.A. Antony [1,3,6] & Jens C. Schwamborn 
[1,2,6] 

[1] Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 
Luxembourg, 7 avenue des Hauts-Fourneaux 

[2] Laboratory of Developmental and Cellular Biology 

[3] Laboratory of Experimental Neurobiology 

[4] Max Planck Institute for Molecular Biomedicine, Laboratory of Cell and Developmental 
Biology, Roentgenstrasse 20, Muenster, Germany 

[5] Authors equally contributed to this article 

[6] Correspondence should be addressed to P.A. (paul.antony@uni.lu) and J.S. 
(jens.schwamborn@uni.lu). 

Status: The manuscript is submitted to Cell Reports 
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3.2.1 Preface 
In this article we stablished a system for the assessment and classification of 

subcellular structures in the context of autophagy and mitophagy in an automated manner. 

For doing so we assessed, in a high-throughput analysis, the status of the autophagy and 

mitophagy pathways with the combination of a Rosella construct and an algorithm for 

pattern recognition. The Rosella construct has the property of being a tandem of dsRed and 

pHluorin fluorescent proteins. This pHluorin is a modified version of GFP that makes it 

susceptible to low pH. When the tagged structure is within an autolysosome, the pHluorin 

fluorescence is quenched and only the dsRed remains. Due to this difference in 

fluorescence and the morphology of the tagged structure, the algorithm we developed is 

able to recognize the different phases in the process of protein degradation through the 

interaction with a lysosome. In this case, we generated hiPSCs lines from PD patients 

(carrying mutations in PINK1, LRRK2 or VPS35) stably expressing either the Rosella 

construct paired with the protein LC3 or with the protein ATP5C1 (a subunit of the 

mitochondrial complex 5) which point out the events in the autophagy and mitophagy 

pathways respectively. We observed that in patient’s lines the overall autophagy capacity 

is reduced compared to control lines. Plus, we modulated the pathway flux by addition of 

compounds known to target specific stages which allow us to identify potential relevant 

targets for novel compounds. I contributed with the design of templates and carrying out all 

the automated image acquisition experiments. I contributed with the logic and writing of the 

algorithm for classifying that autophagy events together with Paul Antony, and helped in the 

implementation of the lysosomal and mitophagy pipeline analysis. I performed all the video 

analysis, 3D reconstructions and interpretations. I performed all the statistical analysis, and 

figures conceptualization and organization with the collaboration of Jonas Walter and 

Jonathan Arias-Fuenzalida. Together with Paul Antony, the first co-authors wrote the 

manuscript. I designed and perform the validation assay of the method so far required by 

one of the reviewers together with Paul Antony.  
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3.2.2 Manuscript 
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3.2.3 Figures 
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3.3 Manuscript III 
 

Impaired dopaminergic differentiation of Parkinson’s disease 

derived neuroprecursor cells improved by 2-hydroxypropyl-β-

cyclodextrin treatment 

Javier Jarazo [1], Lisa Smits [1], Eligio Ianetti [4,5], Jonathan Arias-Fuenzalida [1], Jonas 

Walter [1], Gemma Gomez-Giro [1,6], Xiaobing Qing [1], Christian Jäger [3], Zdenka Hodak 

[3], Philip Seibler [7], Aleksandar Rakovic [7], Emmanuel Berger [1], Silvia Bolognin [1], 

Julien Beyrath [5], Paul Antony [2], Christine Klein [7], Jens C. Schwamborn [1,8]  

[1] Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine, 
University of Luxembourg, 6 Avenue du Swing, 4367, Belvaux, Luxembourg 

[2] Experimental Neurobiology, Luxembourg Centre for Systems Biomedicine, University of 
Luxembourg, 6 Avenue du Swing, 4367, Belvaux, Luxembourg 

[3] Enzymology and Metabolism, Luxembourg Centre for Systems Biomedicine, University 
of Luxembourg, 6 Avenue du Swing, 4367, Belvaux, Luxembourg 

[4] Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Nijmegen, 
the Netherlands 

[5] Khondrion BV, Nijmegen, the Netherlands 

[6] Max Planck Institute for Molecular Biomedicine, Laboratory of Cell and Developmental 
Biology, Roentgenstrasse 20, Münster, Germany 

[7] Institute of Neurogenetics, University of Lübeck, D-23538, Lübeck, Germany 

[8] Corresponding author: jens.schwamborn@uni.lu 

 

Status: This manuscript is about to be sent to Nature Medicine 
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3.3.1 Preface 
This manuscript uses all the techniques developed during my PhD (described in the 

previous articles) to evaluate the effect of known point mutations causative of PD during 

neurodevelopment. We identified an altered differentiation efficiency that can be linked to 

the different energetic capabilities, mitochondrial network properties, and mitochondrial 

degradation between control and patient lines. The usage of isogenic controls allowed us 

to dissect the influence of a point mutation in PINK1 in the phenotype observed. Plus, we 

identified a compound able to resolve the differentiation deficit.   

For this manuscript, I did the reprogramming to hiPSCs and further differentiation to 

the intermediate state of NECSs of some of the fibroblast samples of controls and patient 

lines. I designed and performed all the cell culture work related to the phenotyping of the 

hiPSCs, NESCs and neurons in 2D and in microfluidics. I developed the scripts for all the 

properties analysed during the differentiation stages under the supervision of Paul Antony. 

I performed all the cloning of constructs and gene editing with the collaboration of Gemma 

Gomez-Giro and Jonathan Arias-Fuenzalida. I performed the design and analysis of the 

mitochondrial morphology analysis in fibroblast with the collaboration of Eligio Ianetti. I 

performed the mitochondrial morphology analysis in NESCs and neurons with the 

collaboration of Paul Antony. I performed the multielectrode array measurements and 

analysis with the collaboration of Lisa Smits. I performed the generation of the reporter lines 

with the help of Jonas Walter, Gemma Gomez-Giro and Jonathan-Arias. I generated the 

NESCs reporter lines, their further differentiation into neurons, designed and performed all 

the experiments. I performed the design, implementation, experiments and image analysis 

of the screening of compounds. I performed the image analysis of the microfluidic cultures 

under the supervision of Silvia Bolognin and Paul Antony. I did the statistical analysis, 

conceptualization and organization of all the elements in all the figures of the manuscript.  
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3.3.2 Manuscript 
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3.3.3 Figures 
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4. Discussion and Perspectives 
 

Throughout this thesis, several aspects of the uncertain PD pathogeny such as 

mitochondrial and autophagy homeostasis have been described and analysed (Manuscript 

II and III). Moreover, new methodologies as well as disease modelling platforms have been 

evaluated in the context of PD (Manuscript I and II). This allowed us to assess the main 

hypothesis proposed in this project: an altered functionality of the PINK1/Parkin pathway 

can be the trigger of an impaired dopaminergic differentiation.  

Derivation of hiPSCs from patient fibroblast was our starting point for studying this 

disease in vitro. Several studies remark the importance of their pluripotent state for 

developing tissue from different regions of the body in order to assess in vitro the affected 

cell type of a disease (Wenker et al., 2015). It is also known that their use might also lead 

to some opposing disadvantages, such as having epigenetic memory of the tissue of origin 

or the loss of specific signatures accumulated over time that might contribute to the onset 

of the disease (Kim et al., 2010; Mertens et al., 2016). Nevertheless, in order to have a 

similar epigenetic landscape of the cells affected by a specific disease, one would have to 

sample the actual altered organ where they reside which can be unfeasible and extremely 

invasive for certain diseases. Since obtaining samples of this gold standard is out of reach, 

the cell models we are working with have an assumed limitation that we must acknowledge 

when reaching our conclusions. In our case, the study of a well stablished gene alteration 

in PINK1 known for causing early onset of the disease with an understood mechanism 

allowed us to disregard the involvement of age as a contributor of the phenotypes we 

observed in culture (Grünewald et al., 2007; Seibler et al., 2011; Klein and Westenberger, 

2012). Moreover, the known starting point of the disease mechanism in the context of PINK1 

patients allows setting up a baseline from where we can build enough body of knowledge 
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to model and more easily extrapolate our observations into those cases where the causes 

of the disease are not yet known (sysmedpd.eu, Ronan Fleming, Horizon 2020, No. 668738). 

The intermediate state of neuroprecursor cells chosen as a more differentiated 

starting point allows a quick transition between an expandable state and differentiated 

neurons resulting advantageous not only for its reduce hands-on-work culture but also for 

assessing in a timely manner the response capacity that cells have facing a differentiation 

stimuli. Moreover this cell type has been validated as a relevant disease model especially 

for those involving mitochondrial abnormalities (Lorenz et al., 2017; Walter et al., 2017).  

One of the first alterations we focused on was the evaluation of a specific hallmark 

of the disease that is the loss of dopaminergic neurons. We did first an assessment of an 

early point of differentiation to see if in the context of an altered PINK1 activity the cells 

presented an impaired differentiation capability. Using an automated algorithm for 

unbiasedly quantifying the proportion of dopaminergic neurons, we observed a reduced 

differentiation into TH+ cells of patient lines versus control (Manuscript III, Figure 1A and 

B). We also evaluated several time points for controlling the dynamics of this differentiation 

process (Manuscript III, Figure 1C). Other groups have reported time point related 

differentiation impairments in PD lines with mutations in SNCA, LRRK2 and GBA. (Woodard 

et al., 2014; Borgs et al., 2016; Adil et al., 2017). Likewise, cells carrying PINK1 mutations 

present a reduced dopaminergic proportion of neurons during different points of the 

differentiation process.  

Knowing the processes where PINK1 is involved also helped us to focus in specific 

cellular pathways for detecting differences between control and patient derived cells. Due 

to its normal function in mitochondrial quality control, mitochondrial phenotypes were 

observed in different cell types (Manuscript II, Figure 5 and Manuscript III Figure 2 and 

Supplementary 4). Not only morphological but also metabolic alterations were observed in 

patient cells, posing a scenario where the morphological dynamism of the network is not 

http://www.sysmedpd.eu/
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correctly responding to the energy demands leading to an altered cellular metabolism. 

Impaired basal respiration here reported (Manuscript III, Figure 2F) can be linked to known 

alterations in the respiratory chain of cells derived from patients having PINK1 mutations, 

specifically in complex I and complex IV (Liu et al., 2011). 

This is also elucidated by the higher dependency on glycolysis for obtaining their 

energetic demands (Manuscript III, Figure 2G) and the maintained higher proliferation rates 

of patient cells even after the induction of the neuronal differentiation process (Manuscript 

III, Figure 1E). This presents similarities to what have been already reported in the context 

of loss of PINK1 activity which triggers an increase in glycolysis through a ROS mediated 

stabilization of hypoxia-inducible factor-1α (HIF1α), which is also linked to cancer due to its 

close relation to the Warburg effect (Requejo-Aguilar et al., 2014; Agnihotri et al., 2016). 

This adds to the previous chain of reasoning that the failure in matching the energetic 

requirements due to an unbalanced mitochondrial morphology network for making the shift 

from a proliferation status to a fully functional neuronal profile leads to a reduction in 

dopaminergic differentiation. 

Furthermore, those that were able to reach this differentiated status were also more 

prone to present apoptotic markers in the case of the patient lines, showing that not only 

the differentiation is reduced but the final number is also diminished by an increased cell 

death in those carrying PD related mutations (Manuscript III, Figure 1G). Expression of 

apoptotic and necroptotic markers in other PD mutations have also been reported as 

increased in patient cells, depicting a common end point for dopaminergic neurons in the 

context of PD (Michel et al., 2016; Zhang et al., 2017; Iannielli et al., 2018). Moreover, in 

the those carrying PINK1 mutations, this predisposition can be traced back to an improper 

metabolic status in mature neurons, since oxidative stress mediated neurodegeneration can 

arise from two sources: altered mitochondria and a compensatory decreased of the 

pentose-phosphate pathway (leading to a reduced NADPH content and hence a reduced 



Discussion and Perspectives 

 

JAVIER JARAZO  150 
 

regeneration of GSH) to increase the glycolytic rate (Herrero-Mendez et al., 2009; Dias et 

al., 2013).  

Evaluation of the differentiation capabilities of these cells in the context of a more 

physiological environment was assessed by the use of a microfluidic chamber that allows a 

tridimensional organization of the cells (Manuscript III, Figure 1H). This type of culture 

permits not only the evaluation of the cells disposition but also the influence of the media 

flow in their status (Moreno et al., 2015). It also allows the modelling of an aspect that cannot 

be achieved in 2D that is the impact of cells in degeneration process in the entire culture 

viability. Normally in a regular cell culture system, dying cells are washed away in the 

process of media change and apoptotic/necrotic factors are diluted in the media. In a 3D 

setting, these factors need to diffuse through an extracellular matrix that can also retain 

them forming areas were healthy cells are affected by the degeneration process of those 

surrounding them. Protein accumulation is also another important factor in the process of 

neurodegenerative diseases that was reported in 3D cultures with a dense extracellular 

matrix (Choi et al., 2014; Kim et al., 2015). In this project, we were able to recapitulate the 

differentiation phenotype observed in 2D in the context of a microfluidic culture. 

In order to evaluate the effect of the point mutation in the phenotypes observed, we 

used the CRISPR/Cas9 system for correcting it. As previously mentioned, one of the 

advantages of this system compared to other technologies for gene editing is that the design 

and construction of the necessary elements is broadly accessible. Several inconveniences 

have been reported regarding the state-of-the-art of this technique for successfully 

knocking-in gene editing, such as the high number of clones needed to screen to obtain a 

possible result or the uncontrolled modification of only one of the two alleles (Soldner et al., 

2011; Ran et al., 2013a; Paquet et al., 2016). 

As described in the first manuscript of the thesis, we developed a novel system for 

doing simultaneous biallelic targeting with an easier to screen result. The composite of 
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donors carrying two different fluorescence in their selection cassette allows the visualization 

of a biallelic correctly modified colony that can be selected by cell sorting or fluorescent 

guided picking (Manuscript I, Figure 1E). These selection cassettes were surrounded by 

inverted terminal repeat (ITR) that together with the flanking sequence TTAA, form the 

piggyBac transposon system (Ding et al., 2005). The latter, is recognized by the 

transposase enzyme that circularizes and removes the entire construct restoring the TTAA 

sequence without leaving residual bases in the genome (Yusa, 2013; Xie et al., 2014). We 

designed our system in a way that after selection and purification of the cells with both 

modified alleles, mRNA expression of the excision-only variant of the transposase enzyme 

removed the selection cassette to further purify the cells with the desired modification (Li et 

al., 2013). We also introduced another fluorescence that allowed us to recognize the events 

of random integration that can arise during the procedure which are tightly linked to the 

number of non-repetitive elements present in the homology sequences used for triggering 

the homologous recombination (Manuscript I, Figure S2).  

Even though we were able to induce reported phenotypes by the introduction of 

specific point mutations in the SNCA gene (Manuscript I, Figure 4F), the gene correction of 

patient cells with mutations in PINK1 was able to ameliorate some but not all of the 

phenotypes observed (Manuscript III, Figure 4). In the case of these cells, the metabolic 

alterations observed were reverted by correcting the point mutation, and NESCs presented 

an improved efficiency in ATP production relying more in the mitochondrial electron 

transport chain than in glycolysis (Manuscript III, Figure 4 A and B). Plus, the reduced firing 

activity of patient neurons was increased after the gene correction, showing that an 

improved mitochondrial functionality is a key element in the neuronal network activity 

(Manuscript III, Figure 4 C and D). However, the gene correction was not sufficient for 

restoring the differentiation impairment observed, by not significantly increasing the total 

area of Tuj1 positive neurons that are also TH+ (Manuscript III, Figure 4 E). A reduced 

nuclear volume in the imaged field was detected after the gene correction, pointing out that 
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the induced energetic shift facilitated the reduction of the proliferation after the induction of 

differentiation. These observations point out that the patients’ genetic background has an 

important role in the establishment of the phenotype. Similarly, it has been reported that 

genetically identical individuals, have different susceptibility for developing PD (Woodard et 

al., 2014). The role of epigenetics in monozygotic twins modifying the onset of an illness 

has been highlighted in other diseases (Castillo-Fernandez et al., 2014; Malki et al., 2016; 

Young et al., 2017).  

The assessment of risk factors as well as epigenetic modifications that might be 

present in the context of the disease is relevant at the moment of modelling and defining 

potential treatments. Further studies are planned for evaluating the transcriptomic, 

proteomic and metabolomic profile of 3 different patients carrying the same point mutation 

causative of PD with their respective isogenic controls in order to fully assess the disease 

profile against healthy individuals.  

One of the cellular processes that seems to be impaired in PD patients carrying 

mutations in different genes as well as for other neurodegenerative diseases, is the 

autophagy pathway (Nixon, 2013; Menzies et al., 2015; Guo et al., 2018). In the context of 

this PhD project, the altered gene evaluated is involved in one aspect of macroautophagy 

that is the degradation of mitochondria, process known as mitophagy. Even though it has 

been reported the status of these pathways in PD derived cells, to date no system allowed 

the simultaneous analysis of the different structures involved in autophagy in an unbiased 

high-throughput manner (Klionsky et al., 2016; Manzoni, 2017). In order to address this 

point, we generated stable lines of hiPSCs derived from different patients carrying PD 

causative mutations in the genes LRRK2, VPS35 and PINK1 with a fluorescent construct 

known as Rosella (Manuscript II, Figure 1). It consists of two fluorescent proteins in tandem 

of which one (pHluorin) is quenched when subjected to low pH that inside a cell can only 

be reached within a lysosome (Miesenböck et al., 1998). For evaluating the overall 
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autophagy and specifically the mitophagy pathway we tagged with this construct the 

proteins LC3 and ATP5C1 (Sargsyan et al., 2015). We developed an automated algorithm 

for image analysis that recognizes the different categories of structures in these pathways 

(Manuscript II, Figure S2 and S3). We identified that patients’ cells present a reduced level 

of all the structures involved in autophagy in basal conditions compared to control cells, with 

a greater tendency of presenting an increased proportion of early stages structures in 

relation to the overall autophagic pathway (Manuscript II, Figure 2).  

Even though PINK1 is altered in patient lines we were able to identify events of 

mitophagy in the different cell types we have used (Manuscript II, Figure 5 and Manuscript 

III, Figure 3). This can be explained by reported mitophagy pathways that are independent 

of PINK1-Parkin (Ni et al., 2015; Bhujabal et al., 2017; Koentjoro et al., 2017; McWilliams 

et al., 2018). However, one of the feature that presents differences between patient and 

control lines is the size of the mitophagy events, which are bigger in the patient lines 

(Manuscript II, Figure 5C and Manuscript III, Figure 3B). A pre-mitophagy process recently 

described, involves the formation of a structure called mitochondria derived vesicles (MDVs) 

(Soubannier et al., 2012). These structures have an average size that ranges from 70-

150nm and they induce the degradation of small portions of altered mitochondria and their 

formation depends on the activity of PINK1 (Sugiura et al., 2014). As mentioned in 

Manuscript III, an altered MDVs formation can cause the accumulation of bigger 

mitochondrial structures that need to be degraded, requiring bigger events of mitophagy, 

matching what was observed in patient derived cells. Further studies are planned for 

assessing the content of MDVs in patient and control cells.  

Stably tagged hiPSCs with the Rosella construct derived from PINK1 patients were 

further differentiated into NESCs and neurons, assessing in a time lapse manner the 

behaviour of the mitophagy pathway during the early stages of neuronal differentiation 

compared to cells derived from healthy individuals (Manuscript III, Figure 3B). We were able 
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to observe that in the early stages of differentiation control cells presented a higher count 

of mitophagy events, while the events of mitophagy in case of the patient were bigger in 

size, strengthening the proposed scenario. 

By using known modulators of these pathways, we modified the autophagy pathway 

activity in patients’ cells so they can resemble the pattern observed in control lines 

(Manuscript II, Figure 3). Looking specifically at PINK1, treatment with rapamycin, a known 

inhibitor of mTOR, made that the patient cells clustered together with those derived from 

healthy individuals showing us a potential candidate pathway to be targeted for compound 

screening (Manuscript II, Figure 3C). 

Impairments in the autophagy pathway can be broaden into a larger spectrum of 

mechanisms known together as coordinated lysosomal expression and regulation (CLEAR) 

pathway which includes all lysosomal depending processes such endocytosis, autophagy 

and lysosomal exocytosis (Settembre et al., 2013; Sardiello, 2018). These pathways are 

commonly regulated under the activity of the transcription factor EB (TFEB) which promotes 

lysosomal biogenesis as well as increases their enzymatic content, plus it binds to several 

promoter regions of genes involved in autophagy inducing their expression (Napolitano and 

Ballabio, 2016; Sardiello, 2018). Moreover it has been linked to several neurodegenerative 

diseases, where its expression increases the degradation of protein aggregates in the 

context of Alzheimer’s, Niemman Pick and Gaucher diseases (Awad et al., 2015; Zhang 

and Zhao, 2015; Willett et al., 2017).  

Interestingly, TFEB is regulated by mTOR phosphorylation in the surface of the 

lysosome, reducing the translocation of TFEB to the nucleus for inducing transcription of 

genes involved in the autophagy machinery (Martini-Stoica et al., 2016).  

The close connection between TFEB and mTOR and the results we observed with 

the modulation of the autophagy pathway using rapamycin in cells derived from patients 

carrying PINK1 mutations, lead us to look into ways of modulating TFEB activity with 
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repurposed compounds. Several compounds were reported to increase its activity, with one 

of them (Ambroxol) already reported to reduce phenotypes observed in the context of 

patient derived cells carrying mutations in the gene GBA which is linked to 2 different 

neurodegenerative diseases Gaucher’s and Parkinson’s disease (Yang et al., 2017). 

However, the exact mechanism of increased levels of TFEB by using Ambroxol is not fully 

understood, and controversial since recent results reported an overall reduction of 

autophagy concomitant with a small increase in nuclear translocation of TFEB, which can 

be explained as a normal physiological response after the autophagy inhibition caused by 

Ambroxol rather than its direct effect over the transcription factor (Magalhaes et al., 2018). 

Among other known TFEB activators, 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) has been 

thoroughly characterized, increasing TFEB translocation to the nucleus while inducing 

activation of autophagy (Song et al., 2014). Moreover, it has been shown to reduce neuronal 

loss, and even to revert some of the general phenotypes observed in a mouse model of 

Niemman Pick Type C disease (NPD) (Aqul et al., 2011). This lysosomal storage disorder 

causes neurodegeneration in different brain regions in a progressive and widespread 

manner with a multisystemic affected context since most of the organs are altered (Ong et 

al., 2001; McGovern et al., 2013). Clinical trials using HP-β-CD in patient with Niemman 

Pick disease showed promising results in the phase 1/2a with an ongoing phase 2b/3. 

(NCT01747135 and NCT02534844). 

The effect of cyclodextrin in dopaminergic neurons derived from PD patients was 

not determined to date, becoming a suitable candidate for our screen. We first started 

evaluating the use of HP-β-CD during differentiation with a low dose sustained throughout 

the entire differentiation protocol. Compared to the results observed after the gene 

correction of PINK1 line, treatment with HP-β-CD was able to significantly increase the 

proportion of dopaminergic neurons derived from PINK1 patients at day 14 of differentiation 

(Manuscript III, Figure 4G). Moreover, we tested the effect of this compound in PD patient 

derived cells carrying a mutation in the Parkin gene during the process of differentiation, 
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and we were also able to observe a significant increase in the proportion of dopaminergic 

neurons (Manuscript III, Figure 4H). In order to assess whether the treatment had a direct 

impact in autophagy as it was proposed, we treated with HP-β-CD patient derived NESCs 

tagged with the mitophagy reporter during differentiation and imaged each day of the 

protocol for 14 days to evaluate the mitochondrial degradation profile (Manuscript III, Figure 

4F). We observed that the overall mitophagy was significantly increased upon treatment 

showing a higher number of mitophagy events as well as an increased total area of 

mitophagy. This change occurred without modifying the mean size of the mitochondrion, 

implying that it is an increase in the rate of degradation rather than a modification of the 

fission/fusion balance that could isolate parts of the network for removal (Manuscript III, 

Figure 4F). These last observations confirm that the treatment with HP-β-CD is suitable for 

improving the mitophagy status of a neuronal culture while increasing the proportion of 

dopaminergic neurons in patient derived cells.  

It is important to highlight, based on the phenotypes observed in this project and the 

positive response observed after treatment with a compound used in a different malady, 

that there is a strong correlation between neurodegenerative diseases and it should not be 

disregarded. The identification of common altered pathways and treatments for them, would 

help us tackle complex diseases that are normally grouped under narrow classifications. 

Steps are being taken in order to stratify and define subgroups of PD patients presenting 

distinct biomarkers in order to find personalized treatments (sysmedpd.eu, Christine Klein, 

Horizon 2020, No. 668738). This approach could lead to a new reclassification of the 

disease based on state-of-the-art techniques similar to what has been reported in the 

cancer or diabetes field (cancergenome.nih.gov, Cancer Genome Atlas Research Network et 

al., 2017; Ahlqvist et al., 2018).  

http://www.sysmedpd.eu/
http://www.cancergenome.nih.gov/
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Even though there are still questions that remained unanswered, we consider that 

the goals set up at the beginning of the project were covered with interesting and novel 

results that have been, and will be, shared with the entire scientific community.  

Outlook 
 

Of those questions remaining unanswered, the first one we are currently addressing 

is the lack of rescuing effect after the gene correction of the patient derived line. Studies 

performed with identical twins stablished that even though individuals were originated from 

the same genetic pool, only one of them developed PD (Woodard et al., 2014). This and 

other features like the reduce penetrance of some specific mutations or the low rate of 

familial cases, point out the strong influence of the epigenetic profile. As mentioned before, 

we will perform a transcriptomic, proteomic and metabolomic analysis of 3 patient lines with 

their respective isogenic controls and compared them with age and gender matched healthy 

individuals. This will allow us to study the influence of the genetic and epigenetic 

background of the cells and validate which proportion of the phenotypes observed depend 

on the point mutations presented by the patients.  

Another topic that drove our attention during this research project is the formation of 

mitochondria derived vesicles (MDVs) as a mitochondrial quality control mechanism. The 

formation of these structures relies on the activity of PINK1 and their content depends on 

the type of stimuli that triggers its formation (Sugiura et al., 2014; Matheoud et al., 2016; 

McLelland et al., 2016). We are planning to assess by electron or super resolution 

microscopy if the occurrence of these events is reduced in patient derived cells. We 

hypothesize that one of the reasons we are seeing bigger mitochondrial network and 

mitophagy events in the case of patient derived cells is due to an insufficient formation of 

MDVs as one of the first steps for controlling altered proteins in the mitochondrial 

membrane.  
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We would like to further characterize and isolate the different components of the 

mixture of HP-β-CD to determine if it is the actual mixture of substitutions or one of the 

substitution in particular that is effective in producing the effects we observed. Obtaining a 

more controllable compound preparation would allow us to search for specific modifications 

that could increase its properties, to be ideally validated in a tridimensional cell culture 

system before its further application to in vivo models and potential clinical trials.  
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