

An n -ary generalization of the concept of distance

Gergely Kiss Jean-Luc Marichal Bruno Teheux

University of Luxembourg

Motivation

During AGOP 2009 in Palma, Gaspar Mayor began his talk by:

What is the distance among Santander, Valladolid, Barcelona, Madrid, Seville, and Palma?

An answer: multidistance

Definition (Martín, Mayor).

A map $d: \bigcup_{n \geq 1} X^n \rightarrow \mathbb{R}^+$ is a *multidistance* if

- d is symmetric
- $d(x_1, \dots, x_n) = 0$ iff $x_1 = \dots = x_n$
- $d(x_1, \dots, x_n) \leq \sum_{i=1}^n d(x_i, z)$ for every $z \in X$

An answer: multidistance

Definition (Martín, Mayor).

A map $d: \bigcup_{n \geq 1} X^n \rightarrow \mathbb{R}^+$ is a *multidistance* if

- d is symmetric
- $d(x_1, \dots, x_n) = 0$ iff $x_1 = \dots = x_n$
- $d(x_1, \dots, x_n) \leq \sum_{i=1}^n d(x_i, z)$ for every $z \in X$

This definition

- requires an existing distance
- is made for variadic functions

n-distance

$$n \geq 2$$

\mathbf{x}_i^z is obtained from $\mathbf{x} \in X^n$ by replacing its i -th element by z .

Definition. A map $d: X^n \rightarrow \mathbb{R}^+$ is an *n-distance* if

- d is symmetric
- $d(x_1, \dots, x_n) = 0$ iff $x_1 = \dots = x_n$
- $d(x_1, \dots, x_n) \leq \sum_{i=1}^n d(x_1, \dots, x_n)_i^z$ (simplex inequality)

n-distance

$$n \geq 2$$

\mathbf{x}_i^z is obtained from $\mathbf{x} \in X^n$ by replacing its i -th element by z .

Definition. A map $d: X^n \rightarrow \mathbb{R}^+$ is an *n-distance* if

- d is symmetric
- $d(x_1, \dots, x_n) = 0$ iff $x_1 = \dots = x_n$
- $d(x_1, \dots, x_n) \leq \sum_{i=1}^n d(x_1, \dots, x_n)_i^z$ (simplex inequality)

For $n = 3$,

$$d(x_1, x_2, x_3) \leq d(z, x_2, x_3) + d(x_1, z, x_3) + d(x_1, x_2, z)$$

$$d(x_1, \dots, x_n) \leq \sum_{i=1}^n d(x_1, \dots, x_n)_i^z$$

Definition.

The *best constant K^** of d is the *infimum* of the $K > 0$ such that

$$d(x_1, \dots, x_n) \leq K \sum_{i=1}^n d(x_1, \dots, x_n)_i^z$$

for every $x_1, \dots, x_n, z \in X$

$$d(x_1, \dots, x_n) \leq \sum_{i=1}^n d(x_1, \dots, x_n)_i^z$$

Definition.

The *best constant K^** of d is the *infimum* of the $K > 0$ such that

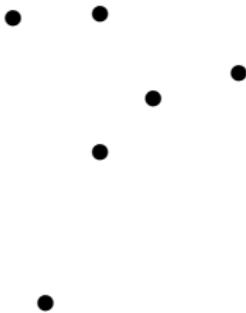
$$d(x_1, \dots, x_n) \leq K \sum_{i=1}^n d(x_1, \dots, x_n)_i^z$$

for every $x_1, \dots, x_n, z \in X$

Basic examples of n -distances

Example (Drastic n -distance)

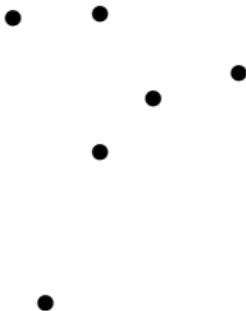
$$d(x_1, \dots, x_n) := \begin{cases} 0 & \text{if } x_1 = \dots = x_n \\ 1 & \text{otherwise} \end{cases}$$



Example (Drastic n -distance)

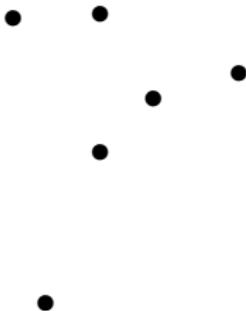
$$d(x_1, \dots, x_n) := \begin{cases} 0 & \text{if } x_1 = \dots = x_n \\ 1 & \text{otherwise} \end{cases}$$

It has best constant $K^* = \frac{1}{n-1}$.



Example (Cardinality based n -distance)

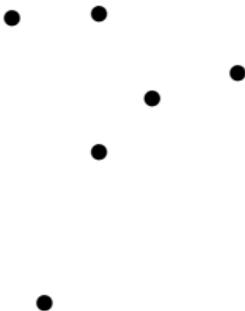
$$d(x_1, \dots, x_n) := |\{x_1, \dots, x_n\}| - 1$$



Example (Cardinality based n -distance)

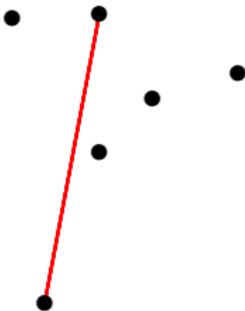
$$d(x_1, \dots, x_n) := |\{x_1, \dots, x_n\}| - 1$$

It has best constant $K^* = \frac{1}{n-1}$.



Example (Diameter in a metric space)

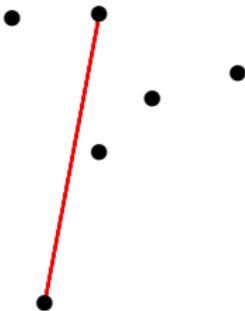
$$d_{\max}(x_1, \dots, x_n) := \max\{d(x_i, x_j) \mid i, j \leq n\}$$



Example (Diameter in a metric space)

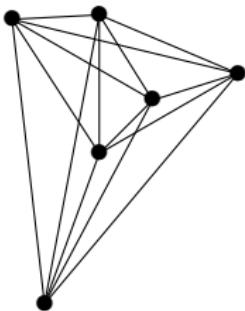
$$d_{\max}(x_1, \dots, x_n) := \max\{d(x_i, x_j) \mid i, j \leq n\}$$

It has best constant $K^* = \frac{1}{n-1}$.



Example (Sum based n -distance in a metric space)

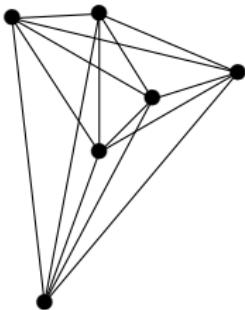
$$d_{\max}(x_1, \dots, x_n) := \sum_{\{i,j\} \subseteq X} d(x_i, x_j)$$



Example (Sum based n -distance in a metric space)

$$d_{\max}(x_1, \dots, x_n) := \sum_{\{i,j\} \subseteq X} d(x_i, x_j)$$

It has best constant $K^* = \frac{1}{n-1}$.



Fermat points based n -distances

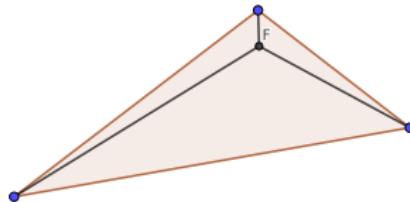
Fermat point of a triangle

F is a *Fermat point* of ABC if

$$d(A, F) + d(B, F) + d(C, F)$$

is minimum.

Fermat points of triangles are unique.



The function $(A, B, C) \mapsto d(A, F) + d(B, F) + d(C, F)$ is a 3-distance.

Example (Fermat points based n -distance)

$$d_F(x_1, \dots, x_n) := \min_{x \in X} \sum_{i=1}^n d(x_i, x)$$

It is defined in any metric space in which closed balls are compact.

Example (Fermat points based n -distance)

$$d_F(x_1, \dots, x_n) := \min_{x \in X} \sum_{i=1}^n d(x_i, x)$$

It is defined in any metric space in which closed balls are compact.

Computation is hard.

Theorem. We have $\frac{1}{n-1} \leq K^* \leq \frac{4n-4}{3n^2-4n}$

Fermat distance in median graphs

Definition. A connected graph is *median* if for any three vertices a, b, c , there is only one vertex $m(a, b, c)$ that is at the intersection of shortest paths between any two of $\{a, b, c\}$

Cubes are examples of median graphs.

Proposition. In a median graph,

- a, b, c have a unique Fermat point $m := m(a, b, c)$
- $d_F(a, b, c) = d(a, m) + d(b, m) + d(c, m)$
- $K^* = \frac{1}{2} = \frac{1}{n-1}$

n-distances based on geometric constructions

Smallest enclosing sphere

$x_1, \dots, x_n \in \mathbb{R}^k$

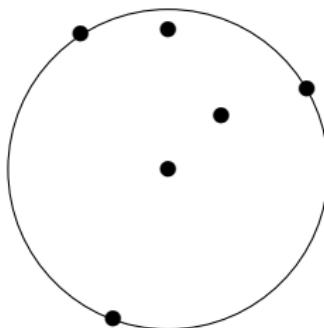
$S(x_1, \dots, x_n) :=$ the smallest $(k - 1)$ -sphere enclosing x_1, \dots, x_n .

Smallest enclosing sphere

$x_1, \dots, x_n \in \mathbb{R}^k$

$S(x_1, \dots, x_n) :=$ the smallest $(k - 1)$ -sphere enclosing x_1, \dots, x_n .

This sphere can be computed in linear time.

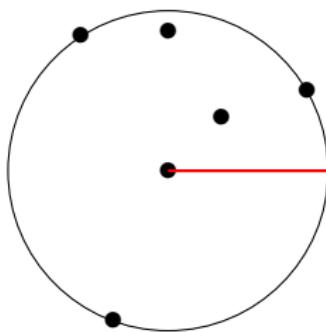


Example (radius of $S(x_1, \dots, x_n)$ in \mathbb{R}^2)

$$n \geq 2$$

$$x_1, \dots, x_n \in \mathbb{R}^2$$

$$d_r(x_1, \dots, x_n) := \text{radius of } S(x_1, \dots, x_n)$$



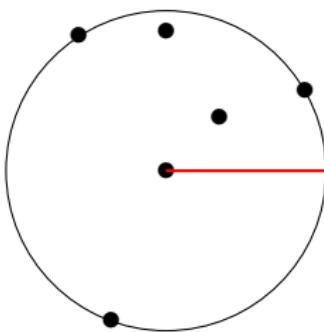
Example (radius of $S(x_1, \dots, x_n)$ in \mathbb{R}^2)

$$n \geq 2$$

$$x_1, \dots, x_n \in \mathbb{R}^2$$

$$d_r(x_1, \dots, x_n) := \text{radius of } S(x_1, \dots, x_n)$$

It has best constant $K^* = \frac{1}{n-1}$

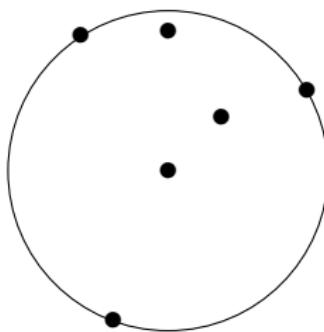


Example (area of $S(x_1, \dots, x_n)$ in \mathbb{R}^2)

$$n \geq 3$$

$$x_1, \dots, x_n \in \mathbb{R}^2$$

$$d_a(x_1, \dots, x_n) := \text{area bounded by } S(x_1, \dots, x_n)$$



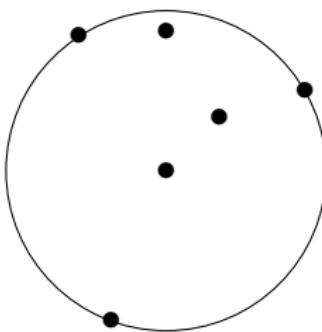
Example (area of $S(x_1, \dots, x_n)$ in \mathbb{R}^2)

$$n \geq 3$$

$$x_1, \dots, x_n \in \mathbb{R}^2$$

$$d_a(x_1, \dots, x_n) := \text{area bounded by } S(x_1, \dots, x_n)$$

It has best constant $K^* = (n - \frac{3}{2})^{-1}$.

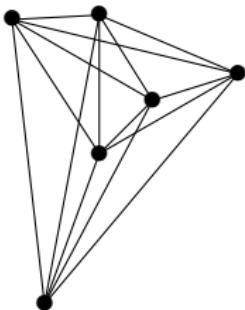


Example (number of directions in \mathbb{R}^2)

$$n \geq 3$$

$$x_1, \dots, x_n \in \mathbb{R}^2$$

$$d_{\Delta}(x_1, \dots, x_n) := \# \text{ directions given by pairs of } x_1, \dots, x_n$$



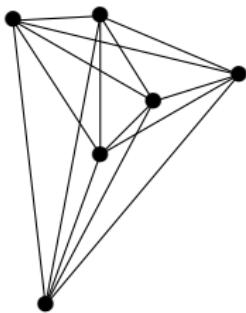
Example (number of directions in \mathbb{R}^2)

$$n \geq 3$$

$$x_1, \dots, x_n \in \mathbb{R}^2$$

$$d_{\Delta}(x_1, \dots, x_n) := \# \text{ directions given by pairs of } x_1, \dots, x_n$$

Its best constant K^* satisfies $(n - 2 + \frac{2}{n})^{-1} \leq K^* < (n - 2)^{-1}$.



Homogeneity degree

Definition. An n -distance on \mathbb{R}^k is *homogeneous of degree $q \geq 0$* if

$$d(tx_1, \dots, tx_n) = t^q d(x_1, \dots, x_n)$$

for every $x_1, \dots, x_n \in \mathbb{R}^n$ and every $t > 0$.

Summary

n -distance	K^*	q
Drastic n -distance	$1/(n-1)$	0
Cardinality based n -distance	$1/(n-1)$	0
Diameter	$1/(n-1)$	1
Sum based n -distance	$1/(n-1)$	1
Fermat n -distance	$1/(n-1) \leq K^* \leq \frac{4n-4}{3n^2-4n}$	1
Median Fermat 3-distance	$1/(n-1)$	1
Radius of $S(x_1, \dots, x_n)$ in R^2	$1/(n-1)$	1
*Area of $S(x_1, \dots, x_n)$ in R^2	$(n-3/2)^{-1}$	2
Number of directions in \mathbb{R}^2	$(n-2 + \frac{2}{n})^{-1} \leq K^ < \frac{1}{n-2}$	0

* These n -distances are not multidistances.

Generation Theorems

Two classical constructions

Proposition. Let d, d' be n -distances on X , and $\lambda > 0$.

- (1) $d + d'$ and λd are n -distances
- (2) $\frac{d}{1+d}$ is an n -distance valued in $[0, 1]$.

Constructing n -distances from n -hemimetric

Definition. A map $d: X^n \rightarrow \mathbb{R}^+$ is an $(n - 1)$ -hemimetric if

- d is symmetric
- $d(x_1, \dots, x_n) = 0$ iff there are $i \neq j$ such that $x_i = x_j$
- $d(x_1, \dots, x_n) \leq \sum_{i=1}^n d(x_1, \dots, x_n)_i^z$ (simplex inequality)

Proposition. Let

- d be an n -distance on X ,
- d' be an $(n - 1)$ -hemimetric on X ,

then $d + d'$ is an n -distance on X .

Topics of further research

- I. Improve the bounds for Fermat n -distances.
- II. Is the radius of $S(x_1, \dots, x_n)$ an n -distance on \mathbb{R}^k for $k > 2$?
- III. Is the volume of the region bounded by $S(x_1, \dots, x_n)$ an n -distance with $K^* = (n - 2 + 2^{1-k})^{-1}$ for $k > 2$?
- IV. Find classification/clustering applications.
- V. Characterize the n -distances for which $K^* = 1/(n - 1)$.

G. Kiss, J.-L. Marichal, and B. Teheux. A generalization of the concept of distance based on the simplex inequality. *Contributions to Algebra and Geometry*, 59(2):247 - 266, 2018.