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Motivation

During AGOP 2009 in Palma, Gaspar Mayor began his talk by:

Madrid

Barcelona

Palma

Santander

Seville

Valladolid

What is the distance among Santander, Valladolid, Barcelona,
Madrid, Seville, and Palma?



An answer: multidistance

Definition (Mart́ın, Mayor).

A map d :
⋃

n≥1 X
n → R+ is a multidistance if

· d is symmetric

· d(x1, . . . , xn) = 0 iff x1 = · · · = xn

· d(x1, . . . , xn) ≤
∑n

i=1 d(xi , z) for every z ∈ X

This definition

· requires an existing distance

· is made for variadic functions
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n-distance

n ≥ 2

xzi is obtained from x ∈ X n by replacing its i-th element by z .

Definition. A map d : X n → R+ is an n-distance if

· d is symmetric

· d(x1, . . . , xn) = 0 iff x1 = · · · = xn

· d(x1, . . . , xn) ≤
∑n

i=1 d(x1, . . . , xn)zi (simplex inequality)

For n = 3,

d(x1, x2, x3) ≤ d(z , x2, x3) + d(x1, z , x3) + d(x1, x2, z)
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d(x1, . . . , xn) ≤
n∑

i=1

d(x1, . . . , xn)zi

Definition.
The best constant K ∗ of d is the infimum of the K > 0 such that

d(x1, . . . , xn) ≤ K
n∑

i=1

d(x1, . . . , xn)zi

for every x1, . . . , xn, z ∈ X



d(x1, . . . , xn) ≤
n∑

i=1

d(x1, . . . , xn)zi

Definition.
The best constant K ∗ of d is the infimum of the K > 0 such that

d(x1, . . . , xn) ≤ K
n∑

i=1

d(x1, . . . , xn)zi

for every x1, . . . , xn, z ∈ X



Basic examples of n-distances



Example (Drastic n-distance)

d(x1, . . . , xn) :=

{
0 if x1 = · · · = xn
1 otherwize

It has best constant K ∗ = 1
n−1 .

•

•

•

•

•
•
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Example (Cardinality based n-distance)

d(x1, . . . , xn) := |{x1, . . . , xn}| − 1

It has best constant K ∗ = 1
n−1 .
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Example (Diameter in a metric space)

dmax(x1, . . . , xn) := max{d(xi , xj) | i , j ≤ n}

It has best constant K ∗ = 1
n−1 .
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Example (Sum based n-distance in a metric space)

dmax(x1, . . . , xn) :=
∑
{i ,j}⊆X

d(xi , xj)

It has best constant K ∗ = 1
n−1 .
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Fermat points based n-distances



Fermat point of a triangle

F is a Fermat point of ABC if

d(A,F ) + d(B,F ) + d(C ,F )

is minimum.

Fermat points of triangles are unique.

F

The function (A,B,C ) 7→ d(A,F ) + d(B,F ) + d(C ,F ) is a
3-distance.



Example (Fermat points based n-distance)

dF (x1, . . . , xn) := min
x∈X

n∑
i=1

d(xi , x)

It is defined in any metric space in which closed balls are compact.

Computation is hard.

•

•

•

•

•
•

?

Theorem. We have 1
n−1 ≤ K ∗ ≤ 4n−4

3n2−4n
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Fermat distance in median graphs

Definition. A connected graph is median if for any three vertices
a, b, c, there is only one vertex m(a, b, c) that is at the
interesection of shortest paths between any two of {a, b, c}

Cubes are examples of median graphs.

Proposition. In a median graph,

· a, b, c have a unique Fermat point m := m(a, b, c)

· dF (a, b, c) = d(a,m) + d(b,m) + d(c ,m)

· K ∗ = 1
2 = 1

n−1



n-distances based on geometric constructions



Smallest enclosing sphere
x1, . . . , xn ∈ Rk

S(x1, . . . , xn) := the smallest (k − 1)-sphere enclosing x1, . . . , xn.

This sphere can be computed in linear time.
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Example (radius of S(x1, . . . , xn) in R2)

n ≥ 2

x1, . . . , xn ∈ R2

dr (x1, . . . , xn) := radius of S(x1, . . . , xn)

It has best constant K ∗ = 1
n−1
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Example (area of S(x1, . . . , xn) in R2)

n ≥ 3

x1, . . . , xn ∈ R2

da(x1, . . . , xn) := area bounded by S(x1, . . . , xn)

It has best constant K ∗ = (n − 3
2 )−1.
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Example (number of directions in R2)

n ≥ 3

x1, . . . , xn ∈ R2

d∆(x1, . . . , xn) := # directions given by pairs of x1, . . . , xn

Its best constant K ∗ satisfies (n − 2 + 2
n )−1 ≤ K ∗ < (n − 2)−1.
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Homogeneity degree

Definition. An n-distance on Rk is homogeneous of degree q ≥ 0
if

d(tx1, . . . , txn) = tqd(x1, . . . , xn)

for every x1, . . . , xn ∈ Rn and every t > 0.



Summary

n-distance K ∗ q

Drastic n-distance 1/(n − 1) 0
Cardinality based n-distance 1/(n − 1) 0
Diameter 1/(n − 1) 1
Sum based n-distance 1/(n − 1) 1
Fermat n-distance 1/(n − 1) ≤ K ∗ ≤ 4n−4

3n2−4n
1

Median Fermat 3-distance 1/(n − 1) 1
Radius of S(x1, . . . , xn) in R2 1/(n − 1) 1
*Area of S(x1, . . . , xn) in R2 (n − 3/2)−1 2
*Number of directions in R2 (n − 2 + 2

n )−1 ≤ K ∗ < 1
n−2 0

* These n-distances are not multidistances.



Generation Theorems



Two classical constructions

Proposition. Let d , d ′ be n-distances on X , and λ > 0.

(1) d + d ′ and λd are n-distances

(2) d
1+d is an n-distance valued in [0, 1].



Constructing n-distances from n-hemimetric

Definition. A map d : X n → R+ is an (n − 1)-hemimetric if

· d is symmetric

· d(x1, . . . , xn) = 0 iff there are i 6= j such that xi = xj

· d(x1, . . . , xn) ≤
∑n

i=1 d(x1, . . . , xn)zi (simplex inequality)

Proposition. Let

· d be an n-distance on X ,

· d ′ be an (n − 1)-hemimetric on X,

then d + d ′ is an n-distance on X .



Topics of further research

I. Improve the bounds for Fermat n-distances.

II. Is the radius of S(x1, . . . , xn) an n-distance on Rk for k > 2?

III. Is the volume of the region bounded by S(x1, . . . , xn) an
n-distance with K ∗ = (n − 2 + 21−k)−1 for k > 2?

IV. Find classification/clustering applications.

V. Characterize the n-distances for which K ∗ = 1/(n − 1).

G. Kiss, J.-L. Marichal, and B. Teheux. A generalization of the
concept of distance based on the simplex inequality. Contributions
to Algebra and Geometry, 59(2):247 - 266, 2018.


