

An n -ary generalization of the concept of distance

Gergely Kiss, Jean-Luc Marichal, and Bruno Teheux

Mathematics Research Unit, University of Luxembourg
`gergely.kiss@uni.lu, jean-luc.marichal@uni.lu, bruno.teheux@uni.lu`

Generalizations of the concept of distance in which $n \geq 3$ elements are considered have been investigated by several authors (see [1, Chapter 3] and the references therein). The general idea is to provide some functions that measure a degree of dispersion among n points. In this talk, we consider the class of n -distances, which are defined as follows.

Definition 1. Let X be a nonempty set and $n \geq 2$. A map $d: X^n \rightarrow [0, +\infty[$ is an n -distance on X if it satisfies

- (i) $d(x_1, \dots, x_n) = 0$ if and only if $x_1 = \dots = x_n$,
- (ii) $d(x_1, \dots, x_n) = d(x_{\pi(1)}, \dots, x_{\pi(n)})$ for all $x_1, \dots, x_n \in X$ and all $\pi \in S_n$,
- (iii) $d(x_1, \dots, x_n) \leq \sum_{i=1}^n d(x_1, \dots, x_n)_i^z$ for all $x_1, \dots, x_n, z \in X$,

where we denote by $d(x_1, \dots, x_n)_i^z$ the function obtained from $d(x_1, \dots, x_n)$ by setting its i th variable to z

For an n -distance $d: X^n \rightarrow [0, +\infty[$, the set of the reals K of $]0, 1]$ for which the condition

$$d(x_1, \dots, x_n) \leq K \sum_{i=1}^n d(x_1, \dots, x_n)_i^z, \quad x_1, \dots, x_n, z \in X,$$

holds has an infimum K^* , called the *best constant associated* with d . The purpose of the talk is to provide natural examples of n -distances based on the Fermat point and geometric constructions, and to provide their best constants. We will also provide examples of n -distances that are not the n -ary part of multidistances as defined in [2].

The results presented in this talk can be found in [3].

References

1. M. M. Deza and E. Deza. *Encyclopedia of distances*, third edition. Springer, 2014.
2. J. Martín and G. Mayor. Multi-argument distances. *Fuzzy Sets and Systems* 167:92–100, 2011.
3. G. Kiss, J.-L. Marichal and B. Teheux. A generalization of the concept of distance based on the simplex inequality. *Contributions to Algebra and Geometry*, <https://doi.org/10.1007/s13366-018-0379-5>