

Associative and Quasitrivial Operations on Finite Sets

Characterizations and Enumeration

Jean-Luc Marichal

University of Luxembourg
Luxembourg

in collaboraton with Miguel Couceiro and Jimmy Devillet

Part I: Single-peaked orderings

Single-peaked orderings

Motivating example (Romero, 1978)

Suppose you are asked to order the following six objects in decreasing preference:

- a_1 : 0 sandwich
- a_2 : 1 sandwich
- a_3 : 2 sandwiches
- a_4 : 3 sandwiches
- a_5 : 4 sandwiches
- a_6 : more than 4 sandwiches

We write $a_i \prec a_j$ if a_i is preferred to a_j

Single-peaked orderings

a_1 : 0 sandwich

a_2 : 1 sandwich

a_3 : 2 sandwiches

a_4 : 3 sandwiches

a_5 : 4 sandwiches

a_6 : more than 4 sandwiches

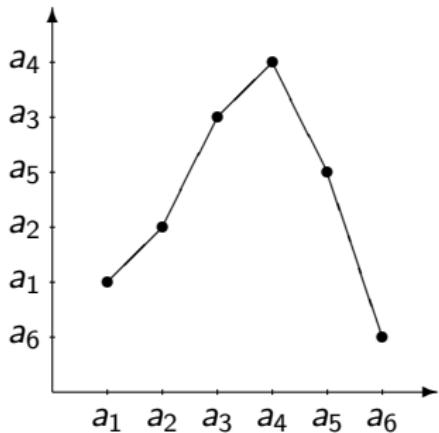
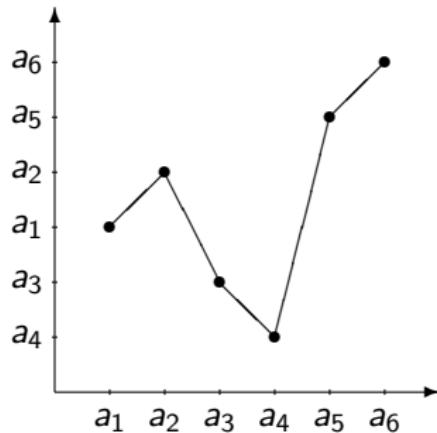
- after a good lunch: $a_1 \prec a_2 \prec a_3 \prec a_4 \prec a_5 \prec a_6$
- if you are starving: $a_6 \prec a_5 \prec a_4 \prec a_3 \prec a_2 \prec a_1$
- a possible intermediate situation: $a_4 \prec a_3 \prec a_5 \prec a_2 \prec a_1 \prec a_6$
- a quite unlikely preference: $a_6 \prec a_5 \prec a_2 \prec a_1 \prec a_3 \prec a_4$

Single-peaked orderings

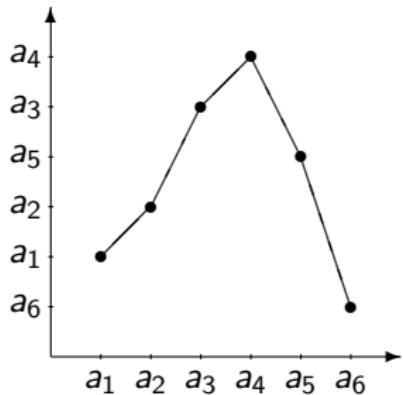
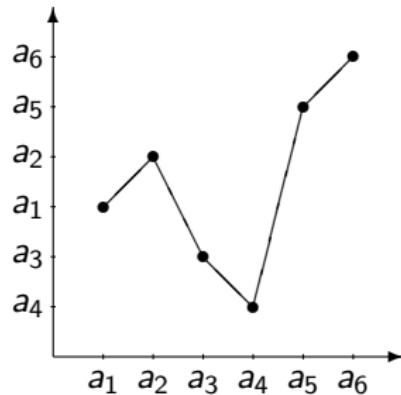
Let us represent graphically the latter two preferences with respect to the reference ordering $a_1 < a_2 < a_3 < a_4 < a_5 < a_6$

$$a_4 \prec a_3 \prec a_5 \prec a_2 \prec a_1 \prec a_6$$

$$a_6 \prec a_5 \prec a_2 \prec a_1 \prec a_3 \prec a_4$$



Single-peaked orderings



Single-peakedness

$$a_i < a_j < a_k \implies a_j \prec a_i \text{ or } a_j \prec a_k$$

Forbidden patterns

Single-peaked orderings

Definition (Black, 1948)

Let \leq and \preceq be total orderings on $X_n = \{a_1, \dots, a_n\}$.

Then \preceq is said to be *single-peaked for \leq* if for any $a_i, a_j, a_k \in X_n$ such that $a_i < a_j < a_k$ we have $a_j \prec a_i$ or $a_j \prec a_k$.

Let us assume that $X_n = \{a_1, \dots, a_n\}$ is endowed with the ordering
 $a_1 < \dots < a_n$

For $n = 4$

$$a_1 \prec a_2 \prec a_3 \prec a_4$$

$$a_2 \prec a_1 \prec a_3 \prec a_4$$

$$a_2 \prec a_3 \prec a_1 \prec a_4$$

$$a_2 \prec a_3 \prec a_4 \prec a_1$$

$$a_4 \prec a_3 \prec a_2 \prec a_1$$

$$a_3 \prec a_2 \prec a_1 \prec a_4$$

$$a_3 \prec a_2 \prec a_4 \prec a_1$$

$$a_3 \prec a_4 \prec a_2 \prec a_1$$

There are 2^{n-1} total orderings \preceq on X_n that are single-peaked for \leq

Single-peaked orderings

Recall that a *weak ordering* (or *total preorder*) on X_n is a binary relation \precsim on X_n that is total and transitive.

Defining a weak ordering on X_n amounts to defining an ordered partition of X_n

$$C_1 \prec \cdots \prec C_k$$

where C_1, \dots, C_k are the equivalence classes defined by \sim

For $n = 3$, we have 13 weak orderings

$$a_1 \prec a_2 \prec a_3$$

$$a_1 \prec a_3 \prec a_2$$

$$a_2 \prec a_1 \prec a_3$$

$$a_2 \prec a_3 \prec a_1$$

$$a_3 \prec a_1 \prec a_2$$

$$a_3 \prec a_2 \prec a_1$$

$$a_1 \sim a_2 \prec a_3$$

$$a_1 \prec a_2 \sim a_3$$

$$a_2 \prec a_1 \sim a_3$$

$$a_3 \prec a_1 \sim a_2$$

$$a_1 \sim a_3 \prec a_2$$

$$a_2 \sim a_3 \prec a_1$$

$$a_1 \sim a_2 \sim a_3$$

Single-peaked orderings

Definition

Let \leq be a total ordering on X_n and let \precsim be a weak ordering on X_n . We say that \precsim is *weakly single-peaked for \leq* if for any $a_i, a_j, a_k \in X_n$ such that $a_i < a_j < a_k$ we have $a_j \prec a_i$ or $a_j \prec a_k$ or $a_i \sim a_j \sim a_k$.

Let us assume that X_n is endowed with the ordering $a_1 < \dots < a_n$

For $n = 3$

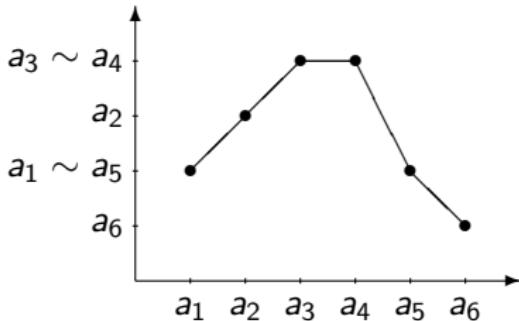
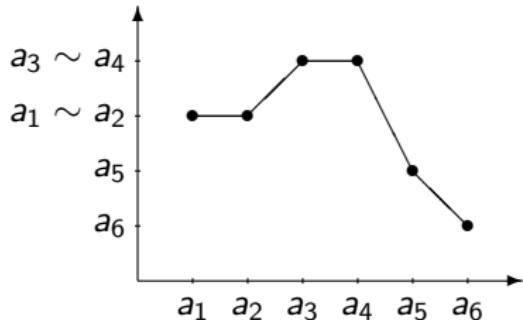
$$\begin{array}{lll} a_1 \prec a_2 \prec a_3 & a_1 \sim a_2 \prec a_3 & a_1 \sim a_2 \sim a_3 \\ a_1 \prec a_3 \prec a_2 & a_1 \prec a_2 \sim a_3 & \\ a_2 \prec a_1 \prec a_3 & a_2 \prec a_1 \sim a_3 & \\ a_2 \prec a_3 \prec a_1 & a_3 \prec a_1 \sim a_2 & \\ a_3 \prec a_1 \prec a_2 & a_1 \sim a_3 \prec a_2 & \\ a_3 \prec a_2 \prec a_1 & a_2 \sim a_3 \prec a_1 & \end{array}$$

Single-peaked orderings

Examples

$$a_3 \sim a_4 \prec a_2 \prec a_1 \sim a_5 \prec a_6$$

$$a_3 \sim a_4 \prec a_2 \sim a_1 \prec a_5 \prec a_6$$



Forbidden patterns

Part II: Associative and quasitrivial operations

Connectedness and Contour plots

Let $F: X_n^2 \rightarrow X_n$ be an operation on $X_n = \{1, \dots, n\}$

Definition

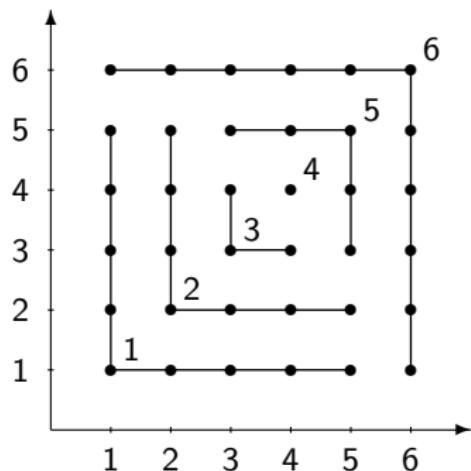
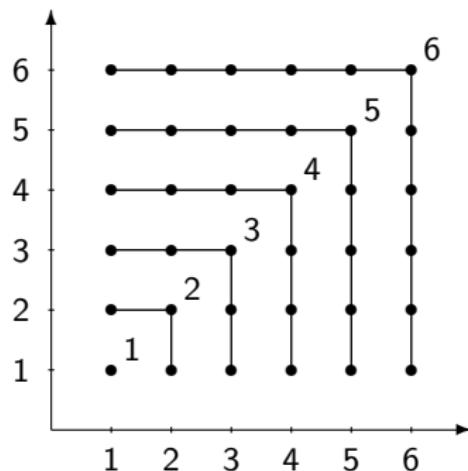
- The points (u, v) and (x, y) of X_n^2 are said to be *F-connected* if

$$F(u, v) = F(x, y)$$

- The point (x, y) of X_n^2 is said to be *F-isolated* if it is not *F-connected* to another point

Connectedness and Contour plots

Examples



Connectedness and Contour plots

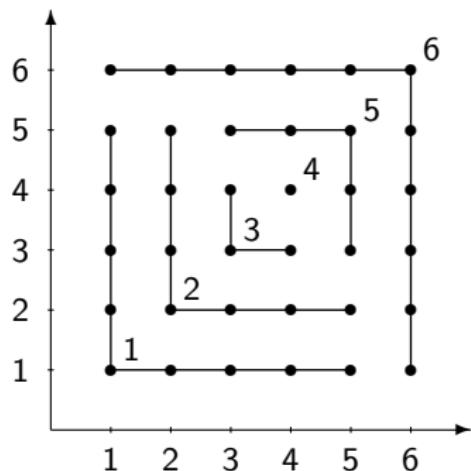
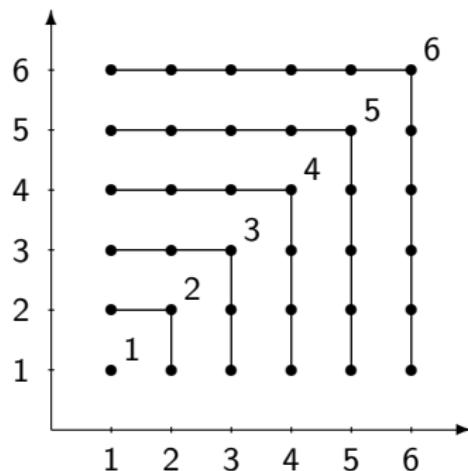
Definition

For any $x \in X_n$, the *F-degree of x* , denoted $\deg_F(x)$, is the number of points $(u, v) \neq (x, x)$ such that $F(u, v) = F(x, x)$

Remark. The point (x, x) is *F-isolated* iff $\deg_F(x) = 0$

Connectedness and Contour plots

Examples



Quasitriviality

Definition

$F: X_n^2 \rightarrow X_n$ is said to be

- *quasitrivial* (or *conservative*) if

$$F(x, y) \in \{x, y\} \quad (x, y \in X_n)$$

- *idempotent* if

$$F(x, x) = x \quad (x \in X_n)$$

Fact. If F is quasitrivial, then it is idempotent

Fact. If F is idempotent and if (x, y) is F -isolated, then $x = y$

$$F(x, y) = F(F(x, y), F(x, y))$$

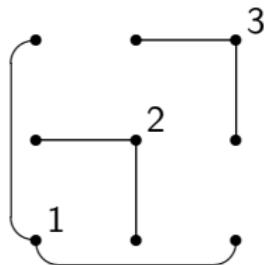
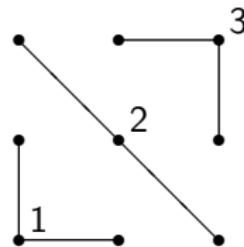
Quasitriviality

Let $\Delta_{X_n} = \{(x, x) \mid x \in X_n\}$

Fact

$F: X_n^2 \rightarrow X_n$ is quasitrivial iff

- it is idempotent
- every point $(x, y) \notin \Delta_{X_n}$ is F -connected to either (x, x) or (y, y)



Corollary. If F is quasitrivial, then it has at most one F -isolated point

Neutral and annihilator elements

Definition

- $e \in X_n$ is said to be a *neutral element* of $F: X_n^2 \rightarrow X_n$ if

$$F(x, e) = F(e, x) = x, \quad x \in X_n$$

- $a \in X_n$ is said to be an *annihilator element* of $F: X_n^2 \rightarrow X_n$ if

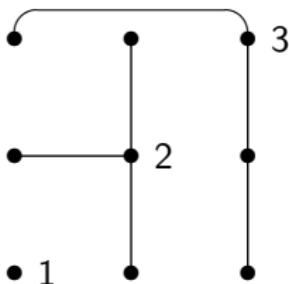
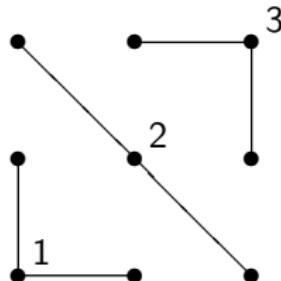
$$F(x, a) = F(a, x) = a, \quad x \in X_n$$

Neutral and annihilator elements

Proposition

Assume that $F: X_n^2 \rightarrow X_n$ is quasitrivial.

- $e \in X_n$ is a neutral element of F iff $\deg_F(e) = 0$
- $a \in X_n$ is an annihilator element of F iff $\deg_F(a) = 2n - 2$.



Associative, quasitrivial, and commutative operations

Theorem

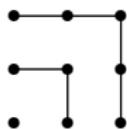
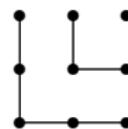
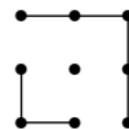
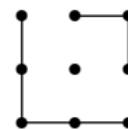
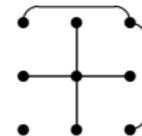
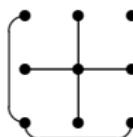
Let $F: X_n^2 \rightarrow X_n$. The following assertions are equivalent.

- (i) F is associative, quasitrivial, and commutative
- (ii) $F = \max_{\preceq}$ for some total ordering \preceq on X_n

The total ordering \preceq is uniquely determined as follows:

$$x \preceq y \iff \deg_F(x) \leq \deg_F(y)$$

Fact. There are exactly $n!$ such operations

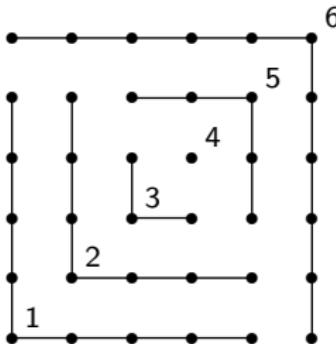


Associative, quasitrivial, and commutative operations

Theorem

Let $F: X_n^2 \rightarrow X_n$. The following assertions are equivalent.

- (i) F is associative, quasitrivial, and commutative
- (ii) $F = \max_{\preceq}$ for some total ordering \preceq on X_n
- (iii) F is quasitrivial and $\{\deg_F(x) \mid x \in X_n\} = \{0, 2, 4, \dots, 2n - 2\}$



Associative, quasitrivial, and commutative operations

Definition.

$F: X_n^2 \rightarrow X_n$ is said to be \leq -preserving for some total ordering \leq on X_n if for any $x, y, x', y' \in X_n$ such that $x \leq x'$ and $y \leq y'$, we have $F(x, y) \leq F(x', y')$

Theorem

Let $F: X_n^2 \rightarrow X_n$. The following assertions are equivalent.

- (i) F is associative, quasitrivial, and commutative
- (ii) $F = \max_{\leq}$ for some total ordering \preceq on X_n
- (iii) F is quasitrivial and $\{deg_F(x) \mid x \in X_n\} = \{0, 2, 4, \dots, 2n - 2\}$
- (iv) F is quasitrivial, commutative, and \leq -preserving for some total ordering \leq on X_n

Associative, quasitrivial, and commutative operations

Definition.

A *uninorm on X_n* is an operation $F: X_n^2 \rightarrow X_n$ that

- has a neutral element $e \in X_n$

and is

- associative
- commutative
- \leq -preserving for some total ordering \leq on X_n

Associative, quasitrivial, and commutative operations

Theorem

Let $F: X_n^2 \rightarrow X_n$. The following assertions are equivalent.

- (i) F is associative, quasitrivial, and commutative
- (ii) $F = \max_{\preceq}$ for some total ordering \preceq on X_n
- (iii) F is quasitrivial and $\{\deg_F(x) \mid x \in X_n\} = \{0, 2, 4, \dots, 2n - 2\}$
- (iv) F is quasitrivial, commutative, and \leq -preserving for some total ordering \leq on X_n
- (v) F is an idempotent uninorm on X_n for some total ordering \leq on X_n

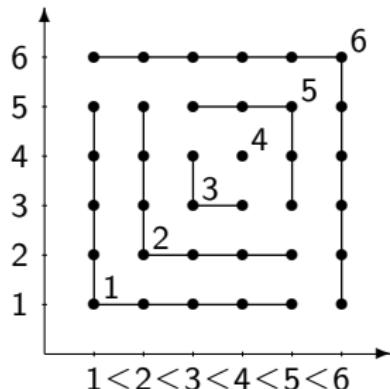
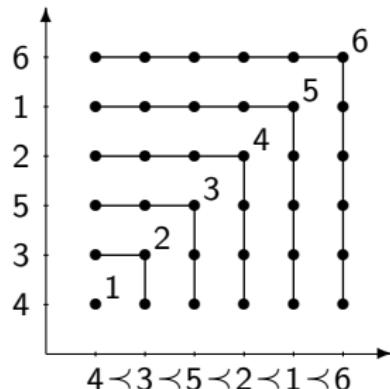
Associative, quasitrivial, and commutative operations

Assume that $X_n = \{1, \dots, n\}$ is endowed with the usual total ordering \leq_n defined by $1 <_n \dots <_n n$

Theorem

Let $F: X_n^2 \rightarrow X_n$. The following assertions are equivalent.

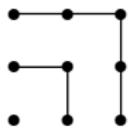
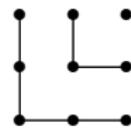
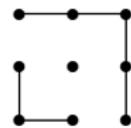
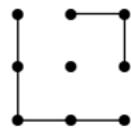
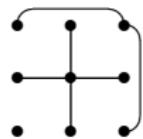
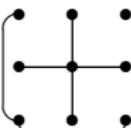
- (i) F is quasitrivial, commutative, and \leq_n -preserving (\Rightarrow associative)
- (ii) $F = \max_{\preceq}$ for some total ordering \preceq on X_n that is single-peaked for \leq_n



Associative, quasitrivial, and commutative operations

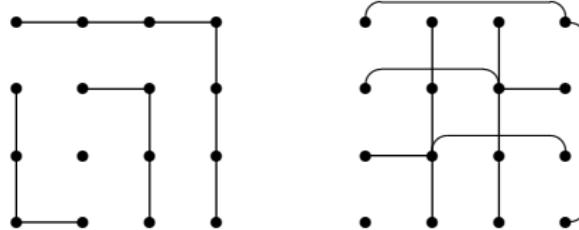
Remark.

- There are $n!$ operations $F: X_n^2 \rightarrow X_n$ that are associative, quasitrivial, and commutative.
- There are 2^{n-1} of them that are \leq_n -preserving



Associative and quasitrivial operations

Examples of noncommutative operations



Associative and quasitrivial operations

Definition.

The *projection operations* $\pi_1: X_n^2 \rightarrow X_n$ and $\pi_2: X_n^2 \rightarrow X_n$ are respectively defined by

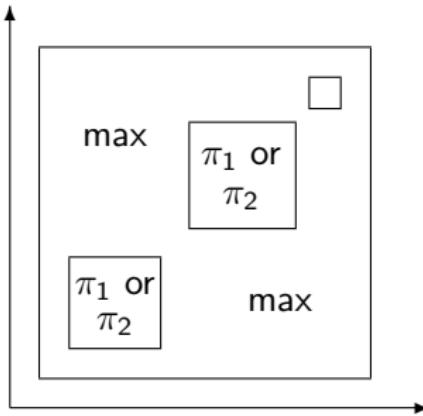
$$\begin{aligned}\pi_1(x, y) &= x, & x, y \in X_n \\ \pi_2(x, y) &= y, & x, y \in X_n\end{aligned}$$

Associative and quasitrivial operations

Assume that $X_n = \{1, \dots, n\}$ is endowed with a weak ordering \precsim

Ordinal sum of projections

$$\text{osp}_{\precsim}: X_n^2 \rightarrow X_n$$



Permuting the elements related to a box does not change the graph of F

Associative and quasitrivial operations

Theorem (Länger 1980)

Let $F: X_n^2 \rightarrow X_n$. The following assertions are equivalent.

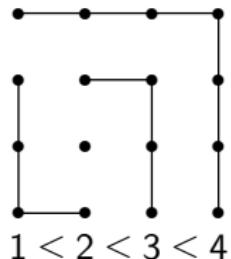
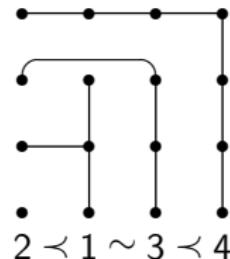
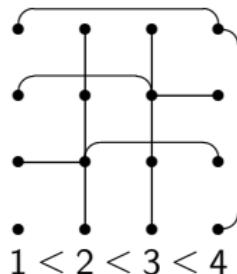
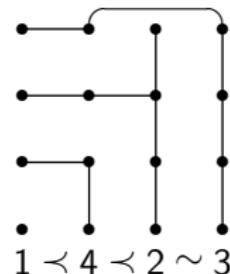
- (i) F is associative and quasitrivial
- (ii) $F = \text{osp}_{\precsim}$ for some weak ordering \precsim on X_n

The weak ordering \precsim is uniquely determined as follows:

$$x \precsim y \iff \deg_F(x) \leq \deg_F(y)$$

Associative and quasitrivial operations

Examples



Associative and quasitrivial operations

How to check whether a quasitrivial operation $F: X_n^2 \rightarrow X_n$ is associative?

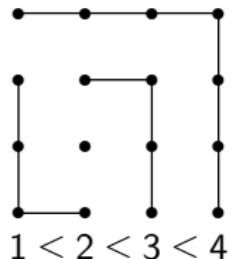
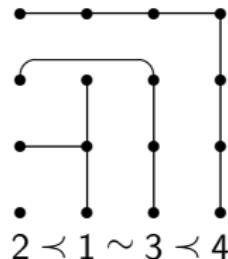
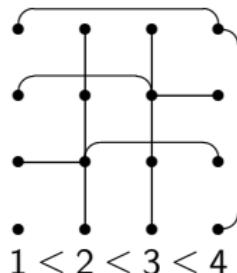
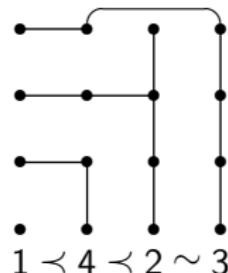
1. Order the elements of X_n according to the weak ordering \precsim defined by

$$x \precsim y \iff \deg_F(x) \leq \deg_F(y)$$

2. Check whether the resulting operation is one of the corresponding ordinal sums

Associative and quasitrivial operations

Which ones are \leq -preserving?



Associative and quasitrivial operations

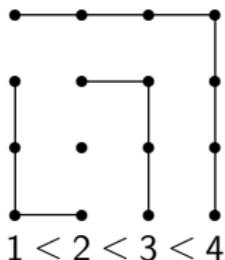
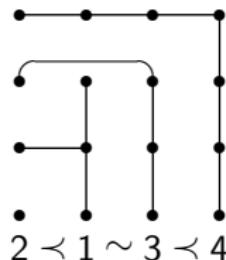
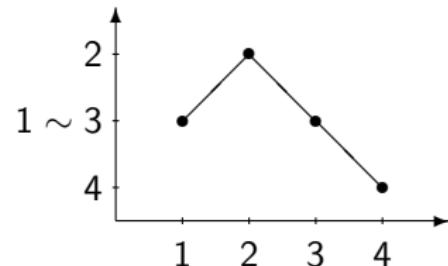
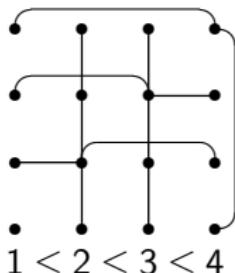
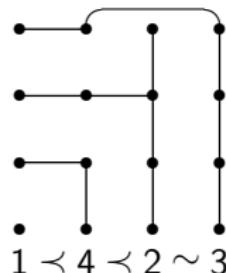
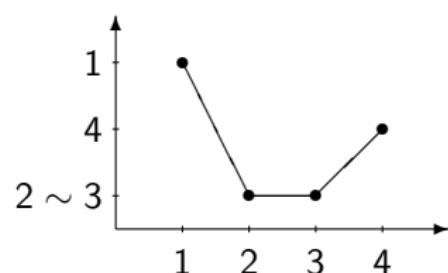
Assume that $X_n = \{1, \dots, n\}$ is endowed with the usual total ordering \leq_n defined by $1 <_n \dots <_n n$

Theorem

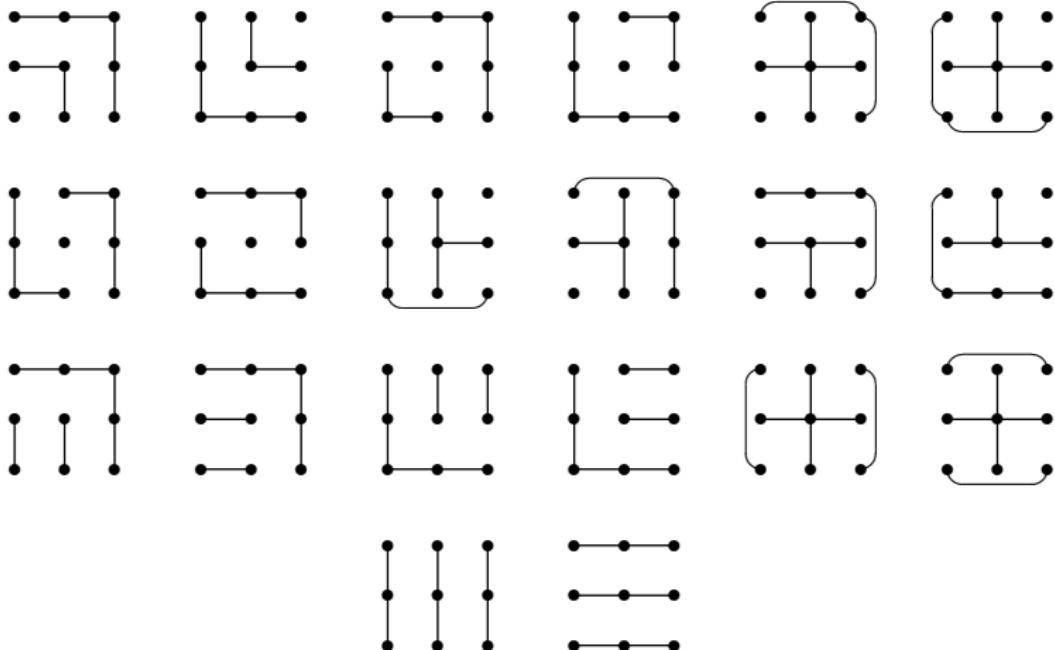
Let $F: X_n^2 \rightarrow X_n$. The following assertions are equivalent.

- (i) F is associative, quasitrivial, and \leq_n -preserving
- (ii) $F = \text{osp}_{\precsim}$ for some weak ordering \precsim on X_n that is weakly single-peaked for \leq_n

Associative and quasitrivial operations



Associative and quasitrivial operations



Final remarks

1. We have introduced and identified a number of integer sequences in <http://oeis.org>
 - Number of associative and quasitrivial operations: A292932
 - Number of associative, quasitrivial, and \leq_n -preserving operations: A293005
 - Number of weak orderings on X_n that are weakly single-peaked for \leq_n : A048739
 - ...
2. Most of our characterization results still hold on arbitrary sets X (not necessarily finite)

Some references

- **N. L. Ackerman.**
A characterization of quasitrivial n -semigroups.
To appear in Algebra Universalis.
- **S. Berg and T. Perlinger.**
Single-peaked compatible preference profiles: some combinatorial results.
Social Choice and Welfare 27(1):89–102, 2006.
- **D. Black.**
On the rationale of group decision-making.
J Polit Economy, 56(1):23–34, 1948
- **M. Couceiro, J. Devillet, and J.-L. Marichal.**
Quasitrivial semigroups: characterizations and enumerations.
Semigroup Forum, in press. arXiv:1709.09162
- **H. Länger.**
The free algebra in the variety generated by quasi-trivial semigroups.
Semigroup forum, 20:151–156, 1980.
- **N. J. A. Sloane (editor).**
The On-Line Encyclopedia of Integer Sequences.
<http://oeis.org/>