Privacy-preserving KYC on Ethereum

Alex Biryukov
University of Luxembourg
alex.biryukov@uni.lu

Dmitry Khovratovich
University of Luxembourg
(now with ABDK Consulting

Sergei Tikhomirov
University of Luxembourg
sergey.s.tikhomirov @ gmail.com

and Evernym Inc.)
khovratovich@gmail.com

ABSTRACT

Identity is a fundamental concept for the financial indus-
try. In order to comply with regulation, financial insti-
tutions must verify the identity of their customers. Iden-
tities are currently handled in a centralized way, which
diminishes users’ control over their personal information
and threats their privacy. Blockchain systems, especially
those with support for smart contracts (e.g., Ethereum),
are expected to serve as a basis of more decentralized
systems for digital identity management.

We propose a design of a privacy-preserving KYC scheme
on top of Ethereum. It would let providers of financial
services leverage the potential of blockchain technology
to increase efficiency of customer onboarding while com-
plying with regulation and protecting users’ privacy.

Author Keywords

blockchain, smart contracts, Ethereum, know your
customer, KYC

INTRODUCTION
Digital identity is information used by a computer sys-
tem to represent a user. It serves two purposes:

e Authentication: to prove that the user is who they
claim to be;

e Authorization: to ensure that the user has the right
to perform the action they are trying to perform.

Modern financial system adheres to the centralized iden-
tity model and depends on government-issued identities.
Regulation in most jurisdictions demand that banks ob-
tain proof of identity from customers before doing busi-
ness with them ("know your customer”, or KYC). ” Anti
money laundering” (AML) and ” counter terrorist financ-
ing” (CTF) are related regulations that require banks to
stop and report suspicious transactions.

Modern KYC is not only cumbersome but also privacy
violating. Users’ sensitive information is stored in banks’
databases, where it is difficult to update and can be

Biryukov, Alex; Khovratovich, Dmitry; Tikhomirov, Sergei (2018):
Privacy-preserving KYC on Ethereum. In: W. Prinz & P. Hoschka (Eds.),
Proceedings of the 1st ERCIM Blockchain Workshop 2018, Reports of the
European Society for Socially Embedded Technologies (ISSN 2510-2591),
DOI: 10.18420/blockchain2018_09

stolen by corrupt employees or external hackers. Banks
implement KYC/AML procedures independently, which
leads to high compliance cost for the industry as a whole,
as well as multiplies the risk of identity theft and privacy
violations.

Open blockchains, the first one being Bitcoin, take a dif-
ferent approach to identity: users join the network with-
out any identification. This technology enabled the cre-
ation of more sophisticated decentralized networks with
rich programming capabilities, e.g., Ethereum. Banks
and other financial services companies see the potential
of blockchain technology and are collaborating on its ap-
plications in consortia such as Enterprise Ethereum Al-
liance [17], Hyperledger [1], and R3 |2]. Though to com-
ply with regulation, they have to handle government-
issued identities in a blockchain setting, which is a non-
trivial task. Taking into account the users’ demand
for better privacy protection, this becomes even harder.
The upcoming European privacy regulation (GDPR [18])
coming into force in May 2018 poses even more chal-
lenges for organizations that handle users’ personal data.

We first explore the centralized and decentralized ap-
proaches to identity. We then propose KYCE — a pri-
vacy preserving Ethereum-based KYC implementation
for smart contract based financial services. KYCE al-
lows banks to implement KYC checks via an external
smart contract — a KYC provider. Our scheme uses
zero-knowledge proofs to check users’ eligibility without
disclosing their private information to anyone except the
KYC provider. The whitelist is stored in the KYC smart
contract in the form of a cryptographic accumulator.
This construction allows users to be efficiently added to,
removed from, and checked against a list without storing
any plaintext data on the blockchain. We then discuss
possible use cases, implementation challenges, and out-
line the direction for future work.

Centralized identity

We can re-formulate the notion of identity in terms of
asymmetric cryptography. Identity I of user U is a
public-private key pair (puby,privy). The public key
puby authenticates the user (or, equivalently, links the
current action to some past actions). Public identifiers
like username or address are derived from puby. The
private key privy allows U to sign messages on behalf of
I. From the point of view of the system, U is whoever
possesses privy .

In the centralized model of identity, which is prevalent
on the internet today, users delegate managing their pri-
vate keys to a trusted party and use a password to access
them when necessary. This approach is sub-optimal in
many regards. First of all, users do not control their
identities. The trusted party always has the technical
ability to sign messages without the user’s consent or to
prevent the user from signing the message they want.
Moreover, users’ personal data is stored by a centralized
entity, which creates additional incentives for malicious
actors to attack it. Finally, users have to create a new
identity for each website they wish to register with. As
a consequence, they adhere to a risky practice of reusing
passwords. This problem is partially addressed with the
”login with” feature, often implemented using protocols
such as OAuth [25] and OpenID [28]. In this scheme,
a third-party website queries the website that holds the
user’s existing identity (e.g., Google) and asks for per-
mission to access a subset of the user’s data (e.g., name
and email). Upon approval, the access is granted. This
approach alleviates the password management problem
but increases the impact of a potential identity theft.

Even though users can revoke the access at any time, the
”login with” scheme is still privacy violating. Imagine a
user that reveals their date of birth to prove to a website
that they are 18 years of age or older. Even if they later
revoke the access, their date of birth will never change.
Thus, they grant the third-party website an effectively
unlimited access to a piece of private information.

Maintaining correspondence between "real world” iden-
tities and public keys has long been a challenge. Central-
ized solutions like PKI generally work, but suffer from
risks associated with centralization: a fraudulent author-
ity can issue rogue certificates [32].

Decentralized identity and open blockchains

A noteworthy approach to decentralized identity is the
PGP ”web of trust” |19]. It has not gained significant
traction due in part to usability challenges |34] and con-
cerns about the security of the long-term key model [42].

Bitcoin [24] is the first practical implementation of fully
decentralized digital cash. It eliminates the problem of
connecting public keys to identities in a radical manner:
in Bitcoin, public keys are identities. Since its launch
in 2009, hundreds of alternative open blockchains were
developed, most of them adhering to this approach to
identity management.

Ethereum [8] [45] is a decentralized blockchain-based
smart contracts platform. Smart contracts were ini-
tially defined as ”a set of promises, specified in digital
form” [39]. In Ethereum, a smart contract is a piece
of code in Ethereum virtual machine (EVM) bytecode,
a Turing complete language. Programmers write con-
tracts in high-level languages targeting EVM, most pop-
ular being Solidity, and deploy them onto the blockchain.
Users interact with contracts by broadcasting transac-
tions. Upon receiving a transaction, Ethereum nodes

execute the corresponding function of the specified con-
tract with given arguments. Nodes maintain a common
view of the state using a proof-of-work consensus mech-
anism.

Contracts can call other contracts’ functions and send
them units of the Ethereum native cryptocurrency ether.
Each EVM operation has a cost denominated in units of
gas to prevent denial-of-service attacks. The user deter-
mines the maximum amount of resources their computa-
tion will consume and pays for it upfront when sending
the transaction. If the computation executes normally,
the user gets a refund for the remaining gas. In case
of an exception, all allocated gas is consumed, but the
transaction has no effect on the state of the blockchain[l

Traditional financial institutions are becoming interested
in blockchain technology, especially in networks enabling
smart contracts [13]. However the way open blockchains
handle identity may come at odds with financial regu-
lation. We propose a design that will simultaneously
leverage the power of blockchain-based smart contracts,
enable banks to implement KYC to comply with the law,
and preserve users’ privacy.

KYCE: A DECENTRALIZED KYC-COMPLIANT EX-
CHANGE

Definitions and security properties

KYC requirements differ depending on jurisdiction |33]
(see Appendix [A| for a brief overview of the regulatory
landscape in the EU). A typical KYC procedure links
users’ real-world identities to their accounts and checks
users against a whitelist or a blacklist. The details of the
KYC procedure do not affect our design.

DEFINITION 1. A KYC procedure is a process that
determines if a given user is eligible for a given transac-
tion.

DErFINITION 2. A KYC provider is an entity that
performs a KYC procedure.

DEFINITION 3. A financial service is an informa-
tion system that allows users to exchange units of value.

DEFINITION 4. A financial service 1is KYC-
compliant w.r.t. the KYC procedure iff all users
are eligible for all transactions they perform.

DEFINITION 5. A KYC-compliant financial service is
privacy-preserving iff only the KYC provider has ac-
cess to the users’ private data.

Tokens and exchanges

Our KYC solution can be applied for any type of ser-
vice. For concreteness, consider a token exchange as an
example of a financial service.

DEFINITION 6. A token is a transferable fungible unit
of value maintained by a smart contract.

! After the Byzantium update in October 2017, certain types
of exceptions no longer consume all gas.

ERC20 [44] is the de-facto standard API for implement-
ing token contracts in Ethereum. A token contract keeps
track of users’ token balances and enables them to trans-
fer tokens using the following functions:

e transfer sends a given amount of tokens to a given
address.

e approve allows a given user to withdraw up to a given
amount of tokens from the account of the user calling
the function.

e transferFrom sends a given amount of tokens from
one given address to another (the amount has to be
approved beforehand).

DEFINITION 7. An exchange is a service that enables
users to exchange tokens.

The most prevalent type of exchanges is centralized ones,
implemented as a regular web service. In this work, we
are mostly interested in decentralized, or on-chain ex-
changes, implemented as smart contracts.

An exchange without KYC support may be used as fol-
lows.

1. Alice creates an order to sell X A-tokens for Y B-
tokens.

2. Bob creates an order to sell Y B-tokens for X A-
tokens.

3. The exchange matches the two orders and transfers
(by calling transferFrom) X A-tokens from Alice to
Bob and Y B-tokens from Bob to Alice.

The transaction succeeds if Alice and Bob approved
the exchange with sufficient amount of A- and B-
tokens respectively before transferFrom is called.
Users withdraw tokens from the exchange by calling
approve (exchangeAddress,0).

Privacy-preserving KYC
We propose KYCE — a privacy-preserving KYC design
for Ethereum-based financial services.

A KYC contract provides an API to other contracts so
that external services can determine if a given user is
KYC-approved for using a given token. A KYC provider
(a governmental entity or company in charge of customer
onboarding) performs the necessary checks for a new cus-
tomer and adds their address to the whitelist.

A naive approach to implementing KYC check with a
separate contract would be the following. The KYC
contract stores the whitelist of approved addresses. On
every transfer, token contracts check if the address
which is being used belongs to the whitelist. This design
has a fundamental drawback from the privacy-preserving
standpoint: all whitelisted addresses are stored on the
blockchain in plaintext. Moreover, users must use the
same addresses they registered with the KYC provider,
which violates privacy: an adversary can link the user’s
transactions in the public blockchain.

Our approach

We use cryptographic techniques to design a privacy
preserving KYC solution. In KYCE, the KYC con-
tract stores a cryptographic accumulator of the
whitelisted addresses.

A cryptographic accumulator A absorbs certain alge-
braic objects and provides an interface to generate and
verify zero-knowledge proofs that a certain value was ac-
cumulated. In our construction, to generate a proof for
value x € A one needs a witness, which depends on A
and z and is provided by the accumulator owner to the
user who submitted z. We suggest an accumulator based
on bilinear maps due to Camenisch et al. [9].

Briefly, the KYC setup and workflow is as follows. The
KYC provider creates and publishes a smart contract,
which is initialized with an empty accumulator. The
User interacts with the KYC provider physically or on-
line and provides credentials needed to pass the KYC
procedure. He also generates his own master secret m
and during the authenticated session gives the provider
a Pedersen commitment gi* - g5 to it, where g;, g2 are
certain group generatord’|and r is random. If the checks
are passed, the provider updates the accumulator with
user-dependent data and provides the User with a wit-
ness, needed to prove the KYC property in the future.
In every Ethereum transaction to KYCE, the User pro-
vides a proof that he has been registered in the accumu-
lator, that his right has not been revoked, and that the
proof owner and the transaction sender are the same per-
son. The latter statement is verified by KYCE, whereas
the rest is submitted to the KYC contract for verifica-
tion against the current accumulator value. If the checks
pass, the command is executed in KYCE.

Details on the accumulator construction

We follow the approach by Camenisch et al. [9], who
construct an accumulator based on a pairing function
e(+,-) in some pairing setting ﬂ The accumulator con-
tains just serial numbers, possibly consecutive integer
The accumulator is constructed as follows. We assume
a bilinear pairing e : G x G — G where G,Gr are
groups of order q. The KYC provider selects generator

g and the secret value vy & Z4. It also selects L as an
upper bound of users enabled for KYC and computes

L+1
z=-e(g,9) .
by 1.

The accumulator value A is initialized

Let us denote g; = g¢”. The provider publishes
A {giti<i<r, L+2<i<2r, the set of registered KYC in-
dices V = (), and the parameters g, z needed to perform
a verification.

2Here and in the further text all multiplications take place in
the pre-selected group of prime order g, typically an elliptic-
curve group.

3The original paper [9] uses type-1 pairings, but type-3 pair-
ings can be adopted as well.

4Tt is possible to store public keys but it would be less effi-
cient.

Every User who passes the KYC check is issued a new
serial number i, the witness w; = [[;cv 2 9r+1-j+4,
where V is the set of all issued serial numbers, and a sig-
nature o; of ¢;||7 on the provider’s private signature key.
The witness is used to generate a proof of accumulat-
ingﬂ The accumulator is updated by the KYC provider
with 4 by

Avugy < Av gLy

multiplying it by gr+1-; = ¢7 , and i is published
as a new valid serial number. To prove that ¢ has been
committed to A and has not been revoked without dis-
closing it, the holder of w; must update itﬂ so that the
following equation holds:

6(91',, A) _

e(g, wi)

Note that revocation is also efficient: the KYC contract
owner simply multiplies the accumulator value by the
inverse of gr4+1—;. The witness value can not be updated
anymore.

Presentation

When issuing a transaction to use the exchange (e.g., cre-
ate an order), the user submits a zero-knowledge
proof of the following statement:

e I know the private key of the current user address
(msg.sender), and

e | know a signature o; and a witness w; for some num-
ber 7 that has been accumulated in the accumulator
A in the KYC contract.

It is crucial that this compound statement is atomic, i.e.
the sub-statements can not be extracted as separate valid
proofs, as this would make the transaction malleable.

The atomicity (and thus non-malleability) are ensured
as follows. Let us denote the proof of knowledge for the
witness and signature by PK,,, which is given in [9],
Section 4.2. Then Prover submits

P ={PK, A PK,},

where PK is the proof of knowledge of the private key of
the msg. sender’s ECDSA public key, which can be taken
from [11]. The technique to make a composite proof
of knowledge is straightforward as both PoKs are non-
interactive and is standard in complex PoK protocols:

1. Prover collects a set C of commitments asserted in sub-
proofs PK,, and PK,.

2. Prover makes necessary randomization of C to create
t-values T.

3. Prover computes ¢ + H(C,T).

SWe refer an interested reader to [9] for the details.

5We omit the details, but the update can be performed just
before the presentation, not necessarily after every accumu-
lator update.

4. Prover computes s-values S using C, 7, and c.

5. The proof P is (C,S,c). To verify it one computes
asserted t-values T and verifies

C;H(C,'f).

The resulting proof P is submitted as an Ethereum
transaction argument. KYCE retrieves the most recent
accumulator value and verifies P against it and the pub-
lic key of the message sender, which is available in the
transaction metadata. If the proof is correct the order is
executed.

Use cases

Either the exchange contract or the token contract must
be KYC-compliant — i.e., check eligibility of transacting
parties using the implementation of the cryptographic
scheme described above in the KYC contract.

KYC-compliant exchange
If the exchange is KYC-compliant, the tokens do not
need to be aware of the KYC.

Figure 1. KYC-compliant exchange

‘ Execute order

Transfer

Exchange > Token contract

Eligible?

KYC provider

Consider an established exchange that trades dozens of
tokens. It applies for official approval in a jurisdiction
that requires all customers to pass the KYC procedure.
The governmental body acts as a KYC provider, de-
ploys a KYC contract, and publishes its address. The
exchange adds KYC checks to its codebase and contin-
ues operation. Users who do not want to apply for KYC
can simply withdraw their tokens from the exchange and
use them elsewhere.

KYC-compliant token
If the token is KYC-compliant, the exchange does not
need to be aware of the KYC.

Consider a government that issues its own tokeng’| Gov-
ernment tokens could be used by KYC-approved users
for tax payments, fees, fines, etc. Such solution leverages
the flexibility and auditability of smart contracts while
limiting the userbase of the token to the approved en-
tities only. The KYC-enabled government token can be
also traded on exchanges. This allows citizens to hold
their wealth in currency portfolios of their choice and

"Bank of England [12] and the Monetary Authority of Sin-
gapore [4] already did research in this direction.

Figure 2. KYC-compliant token

‘ Execute order Exchange

Transfer o oren contract

A
Eligible?

A

KYC provider

only purchase government tokens to transact with the
state.

Transaction-dependent checks

Many jurisdictions impose additional restrictions that
depend on the value of the transaction. E.g., the EU reg-
ulation [30] states that ”the obligation to check whether
information on the payer or the payee is accurate should
[...] be imposed only in respect of individual transfers
of funds that exceed €1000”. EU member states im-
pose further restrictions for transactions of higher value,
e.g., exceeding € 10000 in Belgium, € 15000 in Germany
and in the Netherlands [33]. Either the exchange con-
tract or the token contract can perform such checks by
storing the following mappings:

e address => accumulated transaction volume in the
current period (day, month, year);

e address => timestamp of the latest transaction.

IMPLEMENTATION DETAILS

We created a proof-of-concept implementation of the
proposed design. Our project consists of two smart con-
tracts written in Solidity: KycProvider and KyceToken.

Initial (not privacy-preserving) implementation

In the initial (not privacy-preserving) implementation,
KycProvider maintains a 2-dimensional boolean array
that stores the eligibility status across users and tokens.
On initialization, the address that deploys the contract
to the blockchain is made the owner, allowing it to add
and remove users from the array. The ownership may be
transferred (using the functionality inherited from the
standard Ownable contract).

The KycProvider exposes the following API:

e add(address _user, address _token) — makes the
user eligible for using the token (callable only by the
owner)

e remove(address _user, address _token) — makes
the user not eligible for using the token (callable only
by the owner)

e isEligible(address _user, address _token) -
checks if the user is eligible for using the token

KyceToken adheres to the de-facto standard token API
in Ethereum — ERC20. To minimize the risk of se-
curity issues due to implementation subtleties, we in-
herit a widely used and tested ERC20 implementation
by OpenZeppelin. We override the functions approve,
transfer, and transferFrom to check if the given user
(msg.sender) is eligible for using this token. Namely,
the function isEligible is called. If the returned value
is false, the execution stops; is it is true, the corre-
sponding function of the super class is invoked.

The implementation of the proposed scheme requires
cryptographic primitives partially already available in
Ethereum as pre-compiled contracts (namely, elliptic
curve addition and scalar multiplication, as well as pair-
ing checks). For the proposed scheme to be fully im-
plemented, pairing evaluation is also required. We are
looking into the possibilities to add this functionality.

RELATED WORK

Parra-Moyano and Ross use distributed ledger technol-
ogy to improve the KYC process [31]. Their proposal
can be summarized as follows:

e the regulator maintains a database with all users’ pri-
vate data;

e the first bank a user signs a contract with (the ”home
bank”) stores hashes of the user’s documents in a
smart contract in a permissioned blockchain;

e all subsequent banks the user wants to work with
obtain the user’s documents from the database and
look the hash up to ensure that the user had been
KYC-approved (without knowing which home bank
had done it);

e a cost-sharing mechanism for banks allows to propor-
tionally share the cost of the initial KYC approval
among all banks that use it.

In this design, all banks store users’ private data — con-
trary to our solution, where it is stored only with the
KYC provider. A more decentralized design is also pro-
posed, but the authors claim it to be of a lesser practical
relevance.

Sullivan and Burger investigate possible implications of
further development of the Estonian e-residency pro-
gram using blockchain technology [38]. E-residency of
Estonia is a governmental program that provides appli-
cants with a digital identity, which can then be used,
e.g., to register a company and open a bank account.
Estonian e-residency disconnects a digital identity from
citizenship or physical residence. Within the e-residency
program, Estonia collaborates with a blockchain project
Bitnation [6] [14]. Oraclize, a company that provides
trusted external data to Ethereum smart contracts, im-
plemented a connector that lets Ethereum contracts han-
dle e-residency identities [29).

An existing project [27] implements a KYC scheme in
an Ethereum smart contract, but stores the KYC status
on the blockchain in plaintext.

There are multiple projects aimed at easing customer
onboarding (creating an identity for a new user and
ensuring KYC compliance) for banks. Some of the
projects are: Cambridge Blockchain [7], Cetas [10],
Fundchain [20[f] KYC-chain [22], KYCStart [15], Snap-
Swap [36], Tradle [40]. Blockchain consortium R3 de-
veloped a proof-of-concept implementation of a shared
KYC between ten banks based on its blockchain plat-
form Corda [3].

CONCLUSION AND FUTURE WORK

We proposed a modular design of an Ethereum-based
financial service with an external KYC check, which
brings benefits to all participants:

e Users obtain a unified identity which they can use
to utilize multiple financial services. Users’ personal
data is stored only with the KYC provider and can be
easily updated. Personal data is neither stored on the
blockchain nor transmitted to third parties.

e Financial services greatly simplify the KYC process:
it boils down to a single API call. Our design lets them
cut KYC costs while at the same time diminishing
risks of handling sensitive data.

e Governments get an opportunity to stimulate inno-
vation in the financial sector by providing a unified
and simple KYC API. This is especially important in
the context of rapidly growing fintech and blockchain
industries.

Our design is agnostic to the nature of the entity be-
hind the KYC contract: it does not have to be a gov-
ernment body. The proposed solution can be used in
any setting where a smart contract based service wants
to limit the set of its users according to some criteria.
For instance, many jurisdictions (e.g., the US [35]) only
allow certain type of investment to be offered to "ac-
credited investors” — typically, high-net-worth individu-
als and financial institutions. This logic can be repli-
cated in a blockchain setting. Consider a blockchain-
based financial service that only wants to deal with ex-
perienced cryptocurrency users (e.g., those who possess
more than $10000 in ether and did their first transac-
tion earlier than 2016). The ”accrediting” functional-
ity is delegated to a third party KYC provider. Prov-
ing net worth and previous activity on the blockchain
is straightforward; additional checks can also be added.
Once accredited, a blockchain investor uses multiple "re-
stricted” services without revealing any personal details
to their developers. Privacy-preserving KYC might be a
good use case for Ethereum-based identity projects [23],
e.g., Sovrin [37] and uPort [41].

8A blockchain-based asset management solution including
KYC implementation.

ACKNOWLEDGEMENTS

A proof-of-concept implementation of the design de-
scribed above was created in May 2017 during the
Luxblock hackathon in Luxembourg by the CryptoLUX
team, and was awarded a joint first prize. The team
included Daniel Feher, Dmitry Khovratovich, Sergei
Tikhomirov, Aleksei Udovenko, and Maciej Zurad.

REFERENCES
1. 2018. Hyperledger Business Blockchain
Technologies. (2018).
https://www.hyperledger.org/.

2. 2018. R3. (2018). https://www.r3.com/.

3. Ian Allison. 2016. R3 develops proof-of-concept for
shared KYC service with 10 global banks. (2016).
http://www.ibtimes.co.uk/r3-develops-proof-
concept-shared-kyc-service-10-global-banks-
1590908.

4. Monetary authority of Singapore. 2017. The future
is here. Project Ubin: SGD on Distributed Ledger.
(2017).
http://www.mas.gov.sg/Singapore-Financial-
Centre/Smart-Financial-Centre/Project-Ubin.aspx.

5. Matthias Berberich and Malgorzata Steiner. 2016.
Blockchain Technology and the GDPR — How to
Reconcile Privacy and Distributed Ledgers?
European Data Protection Law Review 2 (2016),
422 — 426. Issue 3.
http://edpl.lexxion.eu/article/EDPL/2016/3/21.

6. Bitnation. 2015. Estonia e-residency program &
Bitnation DAO public notary partnership. (2015).
https://bitnation.co/blog/pressrelease-estonia-
bitnation-public-notary-partnership/.

7. Cambridge Blockchain. 2017. (2017).
http://cambridge-blockchain.com/.

8. Vitalik Buterin. 2014. A Next-Generation Smart
Contract and Decentralized Application Platform.
(2014).
https://github.com/ethereum /wiki/wiki/White-
Paper.

9. Jan Camenisch, Markulf Kohlweiss, and Claudio
Soriente. 2009. An Accumulator Based on Bilinear
Maps and Efficient Revocation for Anonymous
Credentials. In Public Key Cryptography (Lecture
Notes in Computer Science), Vol. 5443. Springer,
481-500.

10. Cetas. 2017. (2017). https://cetas.systems/.

11. Melissa Chase, Chaya Ganesh, and Payman
Mohassel. 2016. Efficient Zero-Knowledge Proof of
Algebraic and Non-Algebraic Statements with
Applications to Privacy Preserving Credentials. In
CRYPTO (3) (Lecture Notes in Computer
Science), Vol. 9816. Springer, 499-530.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.
23.

24.

25.
26.

George Danezis and Sarah Meiklejohn. 2015.
Centrally Banked Cryptocurrencies. CoRR
abs/1505.06895 (2015).
http://arxiv.org/abs/1505.06895.

Michael del Castillo. 2017. Enterprise Ethereum
Alliance Adds 86 Members to Blockchain
Consortium. (2017).

http://www.coindesk.com /enterprise-ethereum-
alliance-new-members-blockchain/.

e-Estonia. 2015. New Possibilities for e-residents.
(2015). https://e-estonia.com/new-possibilities-for-
e-residents/.

EconoTimes. 2017. Deloitte Luxembourg develops
blockchain PoC 'KYCStart’ to perform customer
onboarding. (2017).
http://www.econotimes.com/Deloitte-Luxembourg-
develops-blockchain-PoC-KY CStart-to-perform-
customer-onboarding-691965.

Meghan Elison. 2016. Christopher Kong: PSD2
Means Opportunity. (2016).
https://ripple.com/insights/christopher-kong-
psd2/.

Enterprise Ethereum Alliance. 2017. (2017).
https://entethalliance.org/.

EUGDPR. 2016. EU General Data Protection
Regulation. (2016). http://www.eugdpr.org/.

Patrick Feisthammel. 2017. Explanation of the web
of trust of PGP. (2017).
https://www.rubin.ch/pgp/weboftrust.en.html.

Fundchain. 2017. (2017). http://fundchain.lu/.

Viola Hellstréom. 2017. PSD2 — the directive that
will change banking as we know it. (2017).
https://www.evry.com/en/news/articles/psd2-the-
directive-that-will-change-banking-as-we-know-it/.

KYC-Chain. 2017. (2017). http://kyc-chain.com/.

Elena Mesropyan. 2017. 21 Companies Leveraging
Blockchain for Identity Management and
Authentication. (2017).
https://letstalkpayments.com/22-companies-
leveraging-blockchain-for-identity-management-
and-authentication/.

Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer
Electronic Cash System. (2008).
https://bitcoin.org/bitcoin.pdf.

OAuth. 2017. (2017). https://oauth.net/.

Council of the EU. 2016. Money laundering and
terrorist financing: Council agrees its negotiating
stance. (2016).
http://www.consilium.europa.eu/en/press/press-
releases/2016/12/20-money-laundering-and-
terrorist-financing/.

27.

28.
29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.
41.
42.

43.

44.

Mikko Ohtamaa. 2016. Know Your Customer
partner integration. (2016).
https://github.com/TokenMarketNet /ethereum-
tokens/blob/master/KYC.rst.

OpenID. 2017. (2017). https://openid.net/.

Oraclize. 2017. Identity on the blockchain — chapter
3. (2017). https://blog.oraclize.it/identity-on-the-
blockchain-chapter-3-585bchc7e2cT.

European Parliament. 2015. Regulation (EU)
2015/847 of the European Parliament and of the
Council of 20 May 2015 on information
accompanying transfers of funds and repealing
Regulation (EC) No 1781/2006 (Text with EEA
relevance). (2015). http://eur-lex.europa.eu/legal-
content/EN/ALL/?uri=celex:32015R0847.

José Parra-Moyano and Omri Ross. 2017. KYC
Optimization Using Distributed Ledger Technology.
(2017). https://ssrn.com/abstract=2897788.

Business Unit Prins, JR and Cybercrime. 2011.
DigiNotar Certificate Authority breach ” Operation
Black Tulip”. Foz-IT, November (2011).

PWC. 2015. Know your customer: quick reference
guide. (2015). https://www.pwe.lu/en/anti-money-
laundering/docs/pwc-aml-know-your-customer-
2015.pdf.

Scott Ruoti, Jeff Andersen, Daniel Zappala, and
Kent E. Seamons. 2015. Why Johnny Still, Still
Can’t Encrypt: Evaluating the Usability of a
Modern PGP Client. CoRR abs/1510.08555 (2015).
http://arxiv.org/abs/1510.08555.

US securities and exchange comission. 2014.
Accredited Investors. (2014).
https://www.sec.gov/fast-answers/answers-
accredhtm.html.

SnapSwap. 2017. (2017). https://snapswap.eu/.
Sovrin. 2017. (2017). https://www.sovrin.org/.

Clare Sullivan and Eric Burger. 2017. E-residency
and blockchain. (2017).
https://doi.org/10.1016/j.clsr.2017.03.016.

Nick Szabo. 1996. Smart Contracts: Building
Blocks for Digital Markets. (1996).

Tradle. 2017. (2017). https://tradle.io/.

Uport. 2017. (2017). https://www.uport.me/.
Filippo Valsorda. 2016. I'm giving up on PGP.
(2016). https://blog.filippo.io/giving-up-on-long-
term-pgp/.

Niels Vandezande. 2017. Virtual currencies under
EU anti-money laundering law. (2017).
https://doi.org/10.1016/j.clsr.2017.03.011.

Fabian Vogelsteller. 2017. ERC: Token standard.
(2017).
https://github.com/ethereum/EIPs/issues/20.

45. Gavin Wood. 2014. Ethereum: A secure
decentralised generalised transaction ledger. (2014).
http://gavwood.com/paper.pdf.

APPENDIX

FINANCIAL AND PRIVACY REGULATION IN THE EU

The current EU legislation ”on information accompany-
ing transfers of funds” came into effect in 2015 [30]. In
the wake of the rapid growth of cryptocurrencies, the EU
is tightening its anti-money laundering regulations,
stating that ”virtual currency exchange platforms and
custodian wallet providers will have to apply customer
due diligence controls, ending the anonymity associated
with such exchanges” [26]. Vandezande analyzes virtual
currencies under the EU anti-money laundering law [43].

2018 is set to be a ”game-changing” year for European
financial industry, as two important regulations come
into force.

The Revised Payment Service Directive (PSD2) ob-
ligates banks to provide third-party providers access to
their customers’ accounts through open APIs [21]. This
is meant to foster competition and give rise to third-
party financial service providers. For instance, unified
banking API will likely make connecting banks’ infras-
tructure to open blockchains simpler [16].

The General Data Protection Regulation (GDPR),
coming into force on 25 May 2018, harmonizes data pri-
vacy laws across the EU [18] and introduces stricter rules
for handling data of EU residents even for companies
from outside the EU. Berberich and Steiner describe pos-
sible implications of blockchain adoption from the point
of view of the EU data protection regulation [5].

	Introduction
	Centralized identity
	Decentralized identity and open blockchains

	KYCE: a decentralized KYC-compliant exchange
	Definitions and security properties
	Tokens and exchanges
	Privacy-preserving KYC
	Use cases

	Implementation details
	Initial (not privacy-preserving) implementation

	Related work
	Conclusion and future work
	Acknowledgements
	References
	Financial and privacy regulation in the EU

