

On biselective operations

DSDFE 2018

Jimmy Devillet

in collaboration with Gergely Kiss

University of Luxembourg

Motivation

Let X be a nonempty set

Definition

$F: X^2 \rightarrow X$ is said to be *transitive* if

$$F(F(\textcolor{red}{x}, z), F(\textcolor{red}{y}, z)) = F(\textcolor{red}{x}, \textcolor{red}{y}) \quad x, y, z \in X$$

We select 2 variables among 3

What happens if we select 2 variables among 4?

Biselectiveness

Definition

Let $i, j \in \{1, 2, 3, 4\}$. We say that $F: X^2 \rightarrow X$ is **(i, j) -selective** if

$$F(F(x_1, x_2), F(x_3, x_4)) = F(x_i, x_j) \quad x_1, x_2, x_3, x_4 \in X$$

Biselectiveness

$$F(F(x_1, x_2), F(x_3, x_4)) = F(x_i, x_j)$$

(1,1)	(1,2)	(1,3)	(1,4)
(2,1)	(2,2)	(2,3)	(2,4)
(3,1)	(3,2)	(3,3)	(3,4)
(4,1)	(4,2)	(4,3)	(4,4)

Biselectiveness

$$F(F(x_1, x_2), F(x_3, x_4)) = F(x_i, x_j)$$

(1,1)	(1,2)	(1,3)	(1,4)
(2,1)	(2,2)	(2,3)	(2,4)
(3,1)	(3,2)	(3,3)	(3,4)
(4,1)	(4,2)	(4,3)	(4,4)

Proposition

The following assertions are equivalent.

- (i) F is (i, j) -selective with $j < i$.
- (ii) F is $(2, 3)$ -selective.
- (iii) F is constant.

Biselectiveness

$$F(F(x_1, x_2), F(x_3, x_4)) = F(x_i, x_j)$$

(1,1)	(1,2)	(1,3)	(1,4)
(2/1)	(2,2)	(2/3)	(2,4)
(3/1)	(3/2)	(3,3)	(3,4)
(4/1)	(4/2)	(4/3)	(4,4)

Proposition

The following assertions are equivalent.

- (i) F is $(2, 2)$ -selective.
- (ii) F is $(3, 3)$ -selective.
- (iii) $F|_{\text{ran}(F)}$ is constant and $\forall x: F(F(x, x), F(x, x)) = F(x, x)$.

Biselectiveness

$$F(F(x_1, x_2), F(x_3, x_4)) = F(x_i, x_j)$$

(1,1)	(1,2)	(1,3)	(1,4)
(2,1)	(2,2)	(2,3)	(2,4)
(3,1)	(3,2)	(3,3)	(3,4)
(4,1)	(4,2)	(4,3)	(4,4)

Lemma

$F(x, y)$ is (1, 1)-selective $\Leftrightarrow F(y, x)$ is (4, 4)-selective

$F(x, y)$ is (1, 2)-selective $\Leftrightarrow F(y, x)$ is (3, 4)-selective

⋮

Biselectiveness

$$F(F(x_1, x_2), F(x_3, x_4)) = F(x_i, x_j)$$

(1,1)	(1,2)	(1,3)	(1,4)
(2,1)	(2,2)	(2,3)	(2,4)
(3,1)	(3,2)	(3,3)	(3,4)
(4,1)	(4,2)	(4,3)	(4,4)

Proposition

$$F \text{ is } (1,2)\text{-selective} \Leftrightarrow F|_{\text{ran}(F)} = \pi_1|_{\text{ran}(F)}$$

Biselectiveness

$$F(F(x_1, x_2), F(x_3, x_4)) = F(x_i, x_j)$$

(1,1)	(1/2)	(1,3)	(1,4)
(2/1)	(2/2)	(2/3)	(2/4)
(3/1)	(3/2)	(3/3)	(3/4)
(4/1)	(4/2)	(4/3)	(4/4)

Some definitions

Definition

- $x \in X$ is said to be *idempotent for F* if $F(x, x) = x$.
- We denote *the set of all idempotent elements of F* by $\text{id}(F)$, that is,

$$\text{id}(F) = \{x \in X \mid F(x, x) = x\}.$$

Some definitions

Given $F: X^2 \rightarrow X$ we define the equivalence relation \sim_F on X by

$$x \sim_F y \iff F(x, x) = F(y, y), \quad x, y \in X.$$

Also, we denote by $[x]_{\sim_F}$ the equivalence class of $x \in X$ for \sim_F .

Fact : If F is (i, j) -selective, then

$$\text{id}(F) \cap [x]_{\sim_F} = \{F(x, x)\}, \quad x \in X.$$

Indeed, by (i, j) -selectiveness, we have

$$F(F(x, x), F(x, x)) = F(x, x), \quad x \in X.$$

Also, if $y \in \text{id}(F) \cap [x]_{\sim_F}$, then $y = F(y, y) = F(x, x)$.

(1, 1)-selectiveness

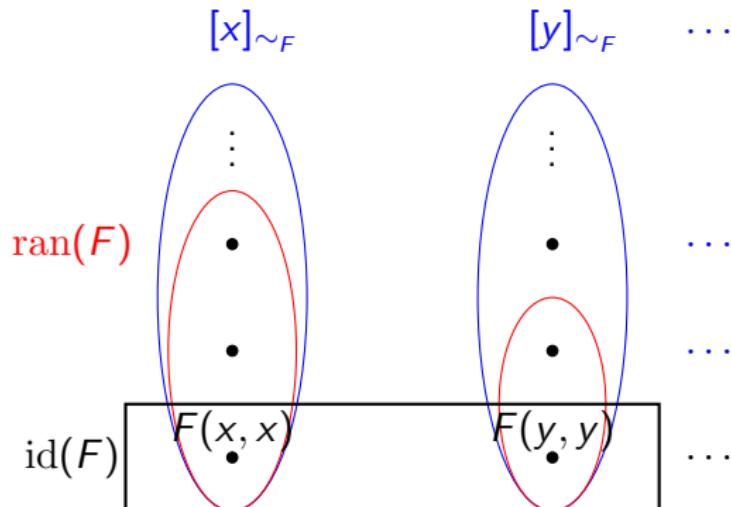
$$F(F(x_1, x_2), F(x_3, x_4)) = F(x_1, x_1)$$

Proposition

F is (1, 1)-selective iff the following hold.

- (a) $F(x, y) = F(x, x)$ for any $x, y \in \text{ran}(F)$.
- (b) $F(x, y) \in [x]_{\sim_F}$ for any $x, y \in X$.

$(1, 1)$ -selectiveness



(1, 3)-selectiveness

$$F(F(x_1, x_2), F(x_3, x_4)) = F(x_1, x_3)$$

Example.

On $X = \{1, 2, 3, 4\}$, define F by

$$1 = F(1, 1) = F(1, 3) = F(3, 1) = F(3, 3)$$

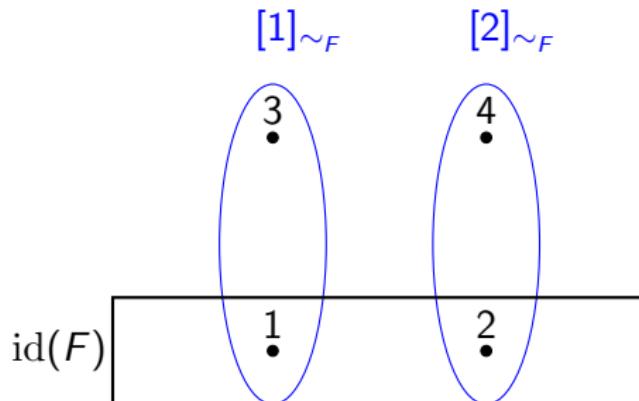
$$2 = F(2, 2) = F(2, 4) = F(4, 2) = F(4, 4)$$

$$3 = F(1, 2) = F(1, 4) = F(3, 2) = F(3, 4)$$

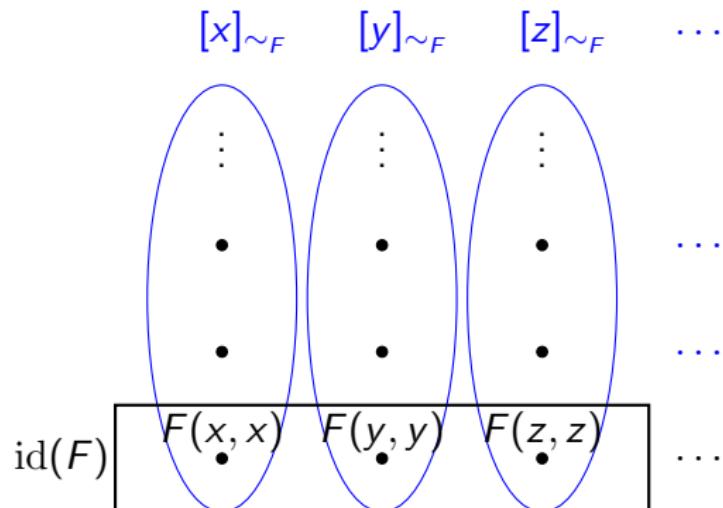
$$4 = F(2, 1) = F(2, 3) = F(4, 1) = F(4, 3)$$

(1, 3)-selectiveness

$$\begin{aligned}1 &= F(1,1) = F(1,3) = F(3,1) = F(3,3) \\2 &= F(2,2) = F(2,4) = F(4,2) = F(4,4) \\3 &= F(1,2) = F(1,4) = F(3,2) = F(3,4) \\4 &= F(2,1) = F(2,3) = F(4,1) = F(4,3)\end{aligned}$$



$(1, 3)$ -selectiveness



(1, 3)-selectiveness

$$F(F(x_1, x_2), F(x_3, x_4)) = F(x_1, x_3)$$

Theorem

The following assertions are equivalent.

- (i) F is (1, 3)-selective
- (ii) For any $x, y \in X$, $u \in [x]_{\sim_F}$, and $v \in [y]_{\sim_F}$, we have

$$F(x, y) = F(u, v) \in [x]_{\sim_F}$$

- (iii) For any $x, y, z \in X$, we have

$$F(F(x, y), z) = F(x, z) \quad \text{and} \quad F(x, F(y, z)) = F(x, y)$$

Some definitions

Definition

$F: X^2 \rightarrow X$ is said to be

- *anticommutative* if $\forall x, y \in X$:

$$F(x, y) = F(y, x) \Rightarrow x = y$$

- *bisymmetric* if

$$F(F(x, y), F(u, v)) = F(F(x, u), F(y, v)) \quad x, y, u, v \in X$$

- *idempotent* if

$$F(x, x) = x \quad x \in X$$

Some definitions

We define the binary relations $\sim_{F,1}$ and $\sim_{F,2}$ on X by

$$x \sim_{F,1} y \quad \Leftrightarrow \quad F(x, y) = x$$

and

$$x \sim_{F,2} y \quad \Leftrightarrow \quad F(x, y) = y$$

(1, 4)-selectiveness

$$F(F(x_1, x_2), F(x_3, x_4)) = F(x_1, x_4)$$

Proposition

Let F be (1, 4)-selective. The following are equivalent.

- (i) F is anticommutative
- (ii) F is idempotent
- (iii) F is onto
- (iv) $\sim_{F,1}$ and $\sim_{F,2}$ are equivalence relations

(1, 4)-selectiveness

$$F(F(x_1, x_2), F(x_3, x_4)) = F(x_1, x_4)$$

Example.

On $X = \{1, 2, 3, 4\}$, define F by

$$1 = F(1, 1) = F(1, 4) = F(3, 1) = F(3, 4)$$

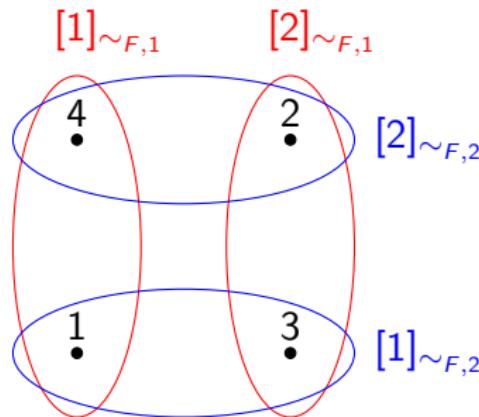
$$2 = F(2, 2) = F(2, 3) = F(4, 2) = F(4, 3)$$

$$3 = F(1, 2) = F(1, 3) = F(3, 2) = F(3, 3)$$

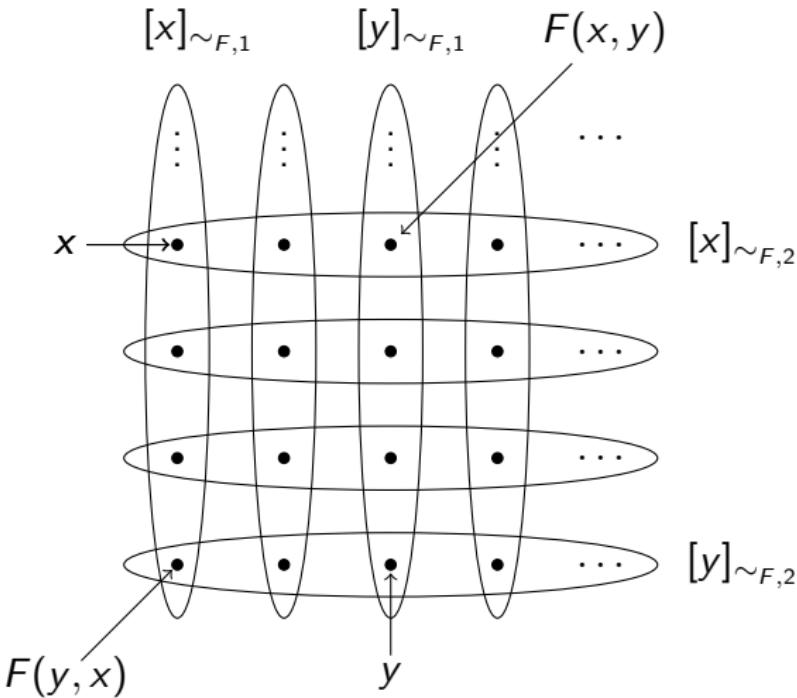
$$4 = F(2, 1) = F(2, 4) = F(4, 1) = F(4, 4)$$

$(1, 4)$ -selectiveness

$$\begin{aligned}1 &= F(1, 1) = F(1, 4) = F(3, 1) = F(3, 4) \\2 &= F(2, 2) = F(2, 3) = F(4, 2) = F(4, 3) \\3 &= F(1, 2) = F(1, 3) = F(3, 2) = F(3, 3) \\4 &= F(2, 1) = F(2, 4) = F(4, 1) = F(4, 4)\end{aligned}$$



(1, 4)-selectiveness



(1, 4)-selectiveness

$$F(F(x_1, x_2), F(x_3, x_4)) = F(x_1, x_4)$$

Theorem

F is (1, 4)-selective and idempotent (resp. anticommutative, onto) iff the following hold.

- (a) $\sim_{F,1}$ and $\sim_{F,2}$ are equivalence relations
- (b) For any $u \in [x]_{\sim_{F,1}}$, there exists a unique $v \in [y]_{\sim_{F,1}}$ such that $u \sim_{F,2} v$
- (c) For any $x, y, z \in X$ such that $y \sim_{F,1} z$, we have

$$F(x, y) = F(x, z)$$

(1, 4)-selectiveness

$$F(F(x_1, x_2), F(x_3, x_4)) = F(x_1, x_4)$$

Theorem

F is (1, 4)-selective and idempotent (resp. anticommutative, onto) iff $\sim_{F,1}$ and $\sim_{F,2}$ are equivalence relations such that

$$[x]_{\sim_{F,2}} \cap [y]_{\sim_{F,1}} = \{F(x, y)\} \quad x, y \in X$$

$(1, 4)$ -selectiveness

$$F(F(x_1, x_2), F(x_3, x_4)) = F(x_1, x_4)$$

Lemma

If F is $(1, 4)$ -selective, then $\text{id}(F) = \text{ran}(F)$.

Theorem

The following assertions are equivalent.

- (i) F is $(1, 4)$ -selective
- (ii) $F|_{\text{ran}(F)}$ is $(1, 4)$ -selective and $F(x, y) = F(F(x, x), F(y, y))$ for any $x, y \in X$
- (iii) $F(F(x, y), z) = F(x, F(y, z)) = F(x, z)$ for any $x, y, z \in X$

Selected references

- [J. Aczél.](#)
Lectures in Functional Equations and Their Applications,
Dover Publications , Inc., New York, 2006.
- [J. Devillet and G. Kiss.](#)
Characterizations of biselective operations.
arXiv: 1806.02073.
- [Pl. Kannappan.](#)
Functional Equations and Inequalities with Applications,
Springer, Inc., New York, 2009.
- [N. Kimura.](#)
The structure of idempotent semigroups. I.
Pacific J. Math., 8:257–275, 1958.
- [D. McLean.](#)
Idempotent semigroups.
Amer. Math. Monthly, 61:110–113, 1954.