

On biselective operations

Jimmy Devillet

University of Luxembourg, Esch-sur-Alzette, Luxembourg
(joint work with **Gergely Kiss**)
jimmy.devillet@uni.lu

Let X be a nonempty set and let $i, j \in \{1, 2, 3, 4\}$. We say that a binary operation $F: X^2 \rightarrow X$ is (i, j) -*selective* if it satisfies the functional equation

$$F(F(x_1, x_2), F(x_3, x_4)) = F(x_i, x_j), \quad x_1, x_2, x_3, x_4 \in X.$$

Also, we say that an operation $F: X^2 \rightarrow X$ is *biselective* if there exist $i, j \in \{1, 2, 3, 4\}$ such that F is (i, j) -selective. We provide a full description of the class of (i, j) -selective operations when $i < j$. Particular focus is given to the $(1, 3)$ -selective operations (resp. $(1, 4)$ -selective operations) as they are solutions of the transitivity functional equation (resp. associativity and bisymmetry functional equations); see, e.g., [1].

References

- [1] J. Aczél, *Lectures in Functional Equations and Their Applications*, Dover Publications, New York, 2006.
- [2] J. Devillet, G. Kiss, *Characterizations of some classes of biselective operations*, Working paper.