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Initiation of the problem

Let K be a subfield of C. A function f : K → C is called additive if

f (x + y) = f (x) + f (y) ∀x , y ∈ K .

Now let fi be some unknown additive functions that satisfies

n∑
i=1

xpi fi (x
qi ) = 0 ∀x ∈ K , (1)

where pi and qi are nonnegative integers.

Question
How can we characterize the solutions of (1)?

This question was studied first systematically by B. Ebanks in
[1, 2].



Special additive functions on fields

Let f : K → C be an additive function.

• f is a (field) homomorphism if

f (xy) = f (x)f (y) ∀x , y ∈ K .

• f is a derivation if

f (xy) = xf (y) + yf (x) ∀x , y ∈ K .



Origin of the problem

F. Halter-Koch [4] characterize a pair of additive functions
f , g : K → C that satisfies

g(x ln) = Ax ln + x l(n−l)f (x l) ∀x ∈ K ,

where K is a subfield of C, n ∈ Z \ {0, 1}, l ∈ N and A ∈ K .

Solution: Let e = f (1) and F ,G : K → C are defined by

F (x) = f (x)− ex and G (x) = g(x)− (A + e)x ,

then F and G are derivations such that F = nG .



Higher order derivations

Higher order derivation by Unger and Reich [5]:
The identically zero map is the only derivation of order 0.
An additive function f is a derivation of order n if there exists
B : K × K → C such that B is a derivation of order n − 1 in each
variables and

f (xy)− xf (y)− f (x)y = B(x , y).

Every derivation is a derivation of order 1.

Claim
For derivations d1, . . . , dn the function d1 ◦ · · · ◦ dn is a derivation
of order n.

Clearly, this holds for every linear combination as well.



Composition of derivations

Let Dn denote the set of (complex) linear combination of maps

d1 ◦ · · · ◦ dk ,

where d1, . . . , dk : K → K are derivations for every 1 ≤ k ≤ n.
Also D denote the ∪∞n=1Dn.

Let F ⊂ C and Q(F ) denote the field generated by F over Q.

Theorem
Let K ⊂ C be a field and f : K → C be a derivation of order n.
Then for every finite set F ⊂ K there exists g ∈ Dn such that
f |Q(F ) = g |Q(F ).

Thus we can concentrate on finitely generated fields over Q.



Results

We denote the maximal cardinality of algebraically independent
elements in K by degQ K .

Theorem
Let K be a field with degQ(K ) <∞ and fi be additive solutions of
(1). Let ei = fi (1). Then

fi = eix + Di

and Di ∈ Dn for all i = 1, . . . , n. Moreover
∑n

i=1 ei = 0.

Corollary

Suppose that fi : C→ C are additive solutions of (1). Then
fi = fi (1)x + Di , where Di are derivations of order n and∑n

i=1 fi (1) = 0.



Scope of our proof

1. Reformulation of the problem by rational homogeneity.

2. We introduce the symmetrization process which makes it
possible to distinguish several variables in equation of type (1).

3. We use a discrete spectral theory to characterize the solutions
of (1).



Homogeneity argument

Fact
For every additive function f we have

f (rx) = rf (x) ∀x ∈ K , r ∈ Q.

If we substitute x by rx in (1), then we get

Px(r) =
N∑
i=1

(
xpi fi (x

qi )
)
rpi+qi = 0. (2)

This implies that every coefficient of Px(r) is 0 for all x ∈ K .
Thus we can separate the terms of (1) according to the value
pi + qi .



Homogeneity argument

Now we fix that pi + qi = n ≥ 2, then we can reformulate (1) as
follows.

n−1∑
i=0

x i fn−i
(
xn−i )

)
= 0 (x ∈ K ) . (3)



Symmetrization process

Theorem (Polarization formula)

Let n ∈ N, n ≥ 2 and A : Kn → C be a symmetric, n-additive
function, then for all x , y1, . . . , ym ∈ K we have

∆y1 · · ·∆ymA (x , . . . , x) =

{
0 if m > n

n!A(y1, . . . , ym) if m = n.

Then it follows that A(y1, . . . , yn) = 0 for all y1, . . . , yn ∈ K if and
only if A(x , . . . , x) = 0 for all x ∈ K .



In our situation:
If

A(x , . . . , x) =
n−1∑
i=0

x i fn−i
(
xn−i

)
= 0 (x ∈ K ) ,

then for all x1, . . . , xn ∈ K

A(x1, . . . , xn) =

n−1∑
i=0

1(n−1
i

) ∑
card(I )=i

∏
j∈I

xj

 · fn−i
 ∏

k∈{1,...,n}\I

xk

 = 0.



Higher order derivations are solutions

Using the definition of derivations of order n − 1 we get the
following.

Proposition

Let K ⊂ C be a field. For every derivation D of order n

n−1∑
i=0

(−1)i
∑

card(I )=i

(∏
j∈I

xj

)
· D
( ∏

k∈{1,...,n}\I

xk

)
= 0.

In particular,

n−1∑
i=0

(−1)i
(
n − 1

i

)
x iD(xn−i ) = 0. (4)

Thus fn−i = (−1)i
(n−1

i

)
D is a solution of (3).



Spectral theory

Let (G ,+) be an Abelian group with the discrete topology and the
set (Ck)G of all functions from G to Ck endowed with the product
topology.
The elements of (Ck)G can be identified with the set of k-tuples
(f1, . . . , fk) where fi : G → C. A set V ⊆ (Ck)G is called a variety
if V is a

• translation invariant

• linear space

• closed w. r. t. the product topology.

Let K ∗ denote the multiplicative group of the field K .

Theorem
Let K ⊂ C be a field with degQ(K ) <∞. Spectral analysis and
synthesis holds in every variety V of (Ck)K

∗
containing functions

that are additive in each coordinate.



• Spectral analysis: V contains a function of the form

(c1φ, . . . , ckφ),

where φ : K → C is a field homomorphism and not all ci are
zero (1 ≤ i ≤ k).

• Spectral synthesis: V is spanned by the functions of the form

(φ1 ◦ D1, . . . , φk ◦ Dk),

where φi : K → C are field homomorphisms and all Di ∈ D.



Solution space

Proposition

The space of solutions of (3) is a variety if
∑n−1

i=0 fn−i (1) = 0.

Linearity, closedness are clear.
Translation invariance is tricky: By symmetrization process for an
c ∈ K ∗ we have

0 = A(x , . . . , x , cx)−xA(x , . . . , x , c) =
n−1∑
i=0

x ign−i
(
cxn−i )

)
+xn·h(c),

where

gn−i =

(
n − i

n
fn−i −

n − (i − 1)

n
fn−(i−1)

)
holds for all 1 ≤ i ≤ n − 1 and

gn = fn and h =
n−1∑
i=0

fn−i .



Application

Proposition

All solutions of (3) of the form fn−i = cn−iφ satisfies φ(x) = x,
cn−i = fn−i (0) and

∑n−1
i=0 cn−i = 0.

Now we may assume that fn−i (1) = 0 since the functions
f̃n−i (x) = fn−i (x)− fn−i (1)x provide also a solution of (3).

Corollary

All solutions of (3) with fn−i (1) = 0 satisfies that fi ∈ D.

Using a recursive method we can reduce the number of unknown
functions in (3).

Proposition

All solutions of (1) with fn−i (1) = 0 satisfies that fn−i ∈ Dn−1 for
all 0 ≤ i ≤ n − 1.



Better (best) upper bound

Theorem (Ebanks-Sahoo-Reidel)

Let k denote the number of nonzero terms in (3). Then all
solutions of (3) with fi (1) = 0 satisfies that fi ∈ Dk−1.

Using the symmetrization process we can write

0 = A(x , . . . , x︸ ︷︷ ︸
k−1

, 1, . . . , 1) =
k−1∑
j=0

x j f ′j (xn−j),

where each f ′j is a positive linear combination of fi with rational
coefficients. Thus f ′j 6= 0.

It can be shown that this is the best upper bound.



Happy birthday,
Professor Zdun!

Thank you for your kind
attention.
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