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Initiation of the problem

Let K be a subfield of C. A function f : K — C is called additive if
fix+y)=Ff(x)+f(y) Vx,y € K.

Now let f; be some unknown additive functions that satisfies

D XPI(x%) =0 Vx € K, (1)
i=1

where p; and g; are nonnegative integers.

Question
How can we characterize the solutions of (1)?

This question was studied first systematically by B. Ebanks in
[1, 2].



Special additive functions on fields

Let f : K — C be an additive function.

e f is a (field) homomorphism if
fixy) =f(x)f(y) Vx,y € K.
e f is a derivation if

f(xy) =xf(y) +yf(x) ¥x,y € K.



Origin of the problem

F. Halter-Koch [4] characterize a pair of additive functions
f,g : K — C that satisfies

g(x™ = Ax"" + xX'"=Df(x") vx e K,
where K is a subfield of C, n € Z\ {0,1}, / e Nand A € K.
Solution: Let e = f(1) and F, G : K — C are defined by
F(x) = f(x) — ex and G(x) = g(x) — (A+ e)x,

then F and G are derivations such that F = nG.



Higher order derivations

Higher order derivation by Unger and Reich [5]:

The identically zero map is the only derivation of order 0.

An additive function f is a derivation of order n if there exists

B : K x K — C such that B is a derivation of order n — 1 in each
variables and

fxy) = xf(y) — f(x)y = B(x, y).

Every derivation is a derivation of order 1.

Claim
For derivations d, ..., d, the function di o ---od, is a derivation
of order n.

Clearly, this holds for every linear combination as well.



Composition of derivations

Let D, denote the set of (complex) linear combination of maps
dio---ody,

where di, ..., d, : K — K are derivations for every 1 < k < n.
Also D denote the U2 ;D).

Let F C C and Q(F) denote the field generated by F over Q.

Theorem

Let K C C be a field and f : K — C be a derivation of order n.
Then for every finite set F C K there exists g € D, such that
floer) = &lagr):

Thus we can concentrate on finitely generated fields over Q.



Results

We denote the maximal cardinality of algebraically independent
elements in K by degg K.

Theorem
Let K be a field with deggp(K) < oo and f; be additive solutions of
(1). Let j = fi(1). Then

f,' = eiX + D,'
and D; € Dy, for all i =1,...,n. Moreover ). ;e =0.

Corollary

Suppose that f; : C — C are additive solutions of (1). Then
fi = fi(1)x + D;, where D; are derivations of order n and

> fi(l) =0



Scope of our proof

1. Reformulation of the problem by rational homogeneity.

. We introduce the symmetrization process which makes it
possible to distinguish several variables in equation of type (1).

. We use a discrete spectral theory to characterize the solutions

of (1).



Homogeneity argument

Fact
For every additive function f we have

f(rx) =rf(x) ¥Yxe€ K,reQ.

If we substitute x by rx in (1), then we get

Po(r) = EN: (xfi(x)) e o, 2)

i=1

This implies that every coefficient of Py(r) is 0 for all x € K.
Thus we can separate the terms of (1) according to the value

pi + gi.



Homogeneity argument

Now we fix that p; + ¢; = n > 2, then we can reformulate (1) as
follows.

n—1
infn,,- (x")) =0 (x € K). (3)
i=0



Symmetrization process

Theorem (Polarization formula)

Let ne N, n>2and A: K" — C be a symmetric, n-additive
function, then for all x,y1,...,ym € K we have

0 if m>n

Ayl"‘A}/mA(X""7X):{ n!A(y]-?'."ym) i m=n.

Then it follows that A(y1,...,ys) =0 for all y1,...,yn, € K if and
only if A(x,...,x) =0 forall x € K.



In our situation:

If
n—1 ) )
A(x,...,x):Zx’fn_,-(x"f’):O (x € K),
i=0
then for all xq,...,x, € K
A(X1y ..oy Xn) =
n—1 1

Z HXJ o H xx | =0.

i=0 (nf )card(l):i Jjel ke{1,...,n}\/



Higher order derivations are solutions
Using the definition of derivations of order n — 1 we get the
following.

Proposition
Let K C C be a field. For every derivation D of order n

S Y (M) o T x)=o

i=0 card(l)=i je€l ke{l,...,n}\I

In particular,

Thus f,—; = (=1)(";") D is a solution of (3).



Spectral theory

Let (G,+) be an Abelian group with the discrete topology and the
set (CK)© of all functions from G to CX endowed with the product
topology.

The elements of (CK)¢ can be identified with the set of k-tuples
(f1,...,f) where fi : G — C. A set V C (CK)® is called a variety
if Visa

e translation invariant

e linear space

e closed w. r. t. the product topology.
Let K* denote the multiplicative group of the field K.
Theorem
Let K C C be a field with degy(K) < co. Spectral analysis and

synthesis holds in every variety V' of (CK)K" containing functions
that are additive in each coordinate.



e Spectral analysis: V contains a function of the form

(a,...,cd),

where ¢ : K — C is a field homomorphism and not all ¢; are
zero (1 < i < k).

e Spectral synthesis: V is spanned by the functions of the form

(¢1OD17"'7¢kODk)7

where ¢; : K — C are field homomorphisms and all D; € D.



Solution space

Proposition

The space of solutions of (3) is a variety if Z,’-’Z_Ol fa_i(1) = 0.
Linearity, closedness are clear.

Translation invariance is tricky: By symmetrization process for an
c € K* we have

n—1
0=A(x,...,x,cx)—xA(x,...,x,c) = ing,,_; (ex™"))+x"-h(c),
i=0

n—i n—(i—1
8n—i = < n fn—i - ()fn—(i—1)>

where

n
holds for all 1 <ji<n-—1 and

n—1

gn="1,and h= Z fo_i.
i=0



Application

Proposition

All solutions of (3) of the form f,_; = c,_;¢ satisfies ¢p(x) = x,
Ch—i = fn_,'(O) and Z,n:_ol Ch—j = 0.

Now we may assume that f,_;(1) = 0 since the functions
fa_i(x) = fa—i(x) — fo—i(1)x provide also a solution of (3).
Corollary

All solutions of (3) with f,_;j(1) = 0 satisfies that f; € D.

Using a recursive method we can reduce the number of unknown
functions in (3).

Proposition

All solutions of (1) with f,_;(1) = 0 satisfies that f,_; € D,_1 for
all0<i<n-1.



Better (best) upper bound

Theorem (Ebanks-Sahoo-Reidel)

Let k denote the number of nonzero terms in (3). Then all
solutions of (3) with f;(1) = 0 satisfies that f; € Dy_1.

Using the symmetrization process we can write
k—1
0=A(x,...,x,1,...,1) = ZXJG/(XH_J),
j=0

where each fj’ is a positive linear combination of f; with rational
coefficients. Thus f/ # 0.

It can be shown that this is the best upper bound.



Happy birthday,
Professor Zdun!

Thank you for your kind
attention.
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