Clones of pivotally decomposable operations

Bruno Teheux
joint work with Miguel Couceiro

Mathematics Research Unit
University of Luxembourg

Motivation

Shannon decomposition of operations $f:\{0,1\}^{n} \rightarrow\{0,1\}$:

$$
f(\mathbf{x})=x_{k} f\left(\mathbf{x}_{k}^{1}\right)+\left(1-x_{k}\right) f\left(\mathbf{x}_{k}^{0}\right),
$$

where

- \mathbf{x}_{k}^{a} is obtained from \mathbf{x} by replacing its $k^{\text {th }}$ component by a.

Motivation

Shannon decomposition of operations $f:\{0,1\}^{n} \rightarrow\{0,1\}$:

$$
f(\mathbf{x})=x_{k} f\left(\mathbf{x}_{k}^{1}\right)+\left(1-x_{k}\right) f\left(\mathbf{x}_{k}^{0}\right),
$$

Median decomposition of polynomial operations over bounded DL:

$$
f(\mathbf{x})=\operatorname{med}\left(x_{k}, f\left(\mathbf{x}_{k}^{1}\right), f\left(\mathbf{x}_{k}^{0}\right)\right)
$$

where

- \mathbf{x}_{k}^{a} is obtained from \mathbf{x} by replacing its $k^{\text {th }}$ component by a.
- $\operatorname{med}(x, y, z)=(x \wedge y) \vee(x \wedge z) \vee(y \wedge z)$

Motivation

Shannon decomposition of operations $f:\{0,1\}^{n} \rightarrow\{0,1\}$:

$$
f(\mathbf{x})=x_{k} f\left(\mathbf{x}_{k}^{1}\right)+\left(1-x_{k}\right) f\left(\mathbf{x}_{k}^{0}\right),
$$

Median decomposition of polynomial operations over bounded DL:

$$
f(\mathbf{x})=\operatorname{med}\left(x_{k}, f\left(\mathbf{x}_{k}^{1}\right), f\left(\mathbf{x}_{k}^{0}\right)\right)
$$

where

- \mathbf{x}_{k}^{a} is obtained from \mathbf{x} by replacing its $k^{\text {th }}$ component by a.
- $\operatorname{med}(x, y, z)=(x \wedge y) \vee(x \wedge z) \vee(y \wedge z)$

Goal: Uniform approach of these decomposition schemes.

Pivotal decomposition

A set and $0,1 \in A$
Let $\Pi: A^{3} \rightarrow A$ an operation

Definition. An operation $f: A^{n} \rightarrow A$ is Π-decomposable if

$$
f(\mathbf{x})=\Pi\left(x_{k}, f\left(\mathbf{x}_{k}^{1}\right), f\left(\mathbf{x}_{k}^{0}\right)\right)
$$

for all $\mathbf{x} \in A^{n}$ and all $k \leq n$.

Pivotal decomposition

A set and $0,1 \in A$
Let $\Pi: A^{3} \rightarrow A$ an operation that satisfies the equation

$$
\Pi(x, y, y)=y
$$

Such a Π is called a pivotal operation. In this talk, all Π are pivotal.

Definition. An operation $f: A^{n} \rightarrow A$ is Π-decomposable if

$$
f(\mathbf{x})=\Pi\left(x_{k}, f\left(\mathbf{x}_{k}^{1}\right), f\left(\mathbf{x}_{k}^{0}\right)\right)
$$

for all $\mathbf{x} \in A^{n}$ and all $k \leq n$.

Examples

$$
f(\mathbf{x})=\Pi\left(x_{k}, f\left(\mathbf{x}_{k}^{1}\right), f\left(\mathbf{x}_{k}^{0}\right)\right)
$$

Shannon decomposition: $\Pi(x, y, z)=x y+(1-x) z$
Median decomposition: $\Pi(x, y, z)=\operatorname{med}(x, y, z)$
Benefits:

- uniformly isolate the marginal contribution of a factor
- repeated applications lead to normal form representations
- lead to characterization of operation classes

$$
\Lambda_{\Pi}:=\{f \mid f \text { is } \Pi \text {-decomposable }\}
$$

$$
\Lambda_{\Pi}=\{f \mid f \text { is } \Pi \text {-decomposable }\}
$$

Problem.

Characterize those Λ_{\square} which are clones.

$$
\Lambda_{\Pi}=\{f \mid f \text { is } \Pi \text {-decomposable }\}
$$

Problem.

Characterize those Λ_{Π} which are clones.

$$
\begin{gather*}
\Pi(x, 1,0)=x \tag{P}\\
\Pi(\Pi(x, y, z), u, v)=\Pi(x, \Pi(y, u, v), \Pi(z, u, v)) \tag{AD}
\end{gather*}
$$

$$
\Lambda_{\Pi}=\{f \mid f \text { is } \Pi \text {-decomposable }\}
$$

Problem.

Characterize those Λ_{Π} which are clones.

$$
\begin{gather*}
\Pi(x, 1,0)=x \tag{P}\\
\Pi(\Pi(x, y, z), u, v)=\Pi(x, \Pi(y, u, v), \Pi(z, u, v)) \tag{AD}
\end{gather*}
$$

Proposition. If $\Pi \models(A D)$, the following are equivalent
(i) Λ_{Π} is a clone
(ii) $\Lambda_{\Pi} \vDash(\mathrm{P})$

Clones of pivotally decomposable Boolean operations

$$
(P)+(A D) \Longrightarrow \Lambda_{\Pi} \text { is a clone } \quad(\star)
$$

Example. For a Boolean clone C, the following are equivalent
(i) There is Π such that $C=\Lambda_{\Pi}$

Clones of pivotally decomposable Boolean operations

$$
(P)+(A D) \Longrightarrow \Lambda_{\Pi} \text { is a clone }
$$

Example. For a Boolean clone C, the following are equivalent
(i) There is Π such that $C=\Lambda_{\Pi}$
(ii) C is the clone of (monotone) Boolean functions

What about the converse of (\star) ?

The case of Π-decomposable Π

$$
\left.\begin{array}{l}
\Pi(\Pi(1,0,1), 0,1)=\Pi(1, \Pi(0,0,1), \Pi(1,0,1)) \\
\Pi(\Pi(0,0,1), 0,1)=\Pi(0, \Pi(0,0,1), \Pi(1,0,1))
\end{array}\right\}
$$

The case of Π-decomposable Π

$$
\left.\begin{array}{l}
\Pi(\Pi(1,0,1), 0,1)=\Pi(1, \Pi(0,0,1), \Pi(1,0,1)) \\
\Pi(\Pi(0,0,1), 0,1)=\Pi(0, \Pi(0,0,1), \Pi(1,0,1))
\end{array}\right\}
$$

Theorem. If $\Pi \in \Lambda_{\Pi}$ and $\Pi \models$ (WAD), then

$$
(\mathrm{P})+(\mathrm{AD}) \Longleftrightarrow \Lambda_{\Pi} \text { is a clone },
$$

and Λ_{Π} is the clone generated by Π and the constant maps.

What happens if Π is not Π-decomposable?

We have seen that if Λ_{Π} is a Boolean clone then $\Pi \in \Lambda_{\Pi}$.
There are some Π such that Λ_{Π} is a clone but $\Pi \notin \Lambda_{\Pi}$.

What happens if Π is not Π-decomposable?

We have seen that if Λ_{Π} is a Boolean clone then $\Pi \in \Lambda_{\Pi}$.
There are some Π such that Λ_{Π} is a clone but $\Pi \notin \Lambda_{\Pi}$.
Example. Let $A=\{0,1 / 2,1\}$ and Π be the pivotal operation s.t.

$$
\begin{aligned}
\Pi(x, 1,0) & =x \\
\Pi(x, 0,1) & =1-x \\
\Pi(x, 1,1 / 2) & =1
\end{aligned}
$$

$$
\begin{aligned}
& \Pi(x, 0,1 / 2)=1 \\
& \Pi(x, 1 / 2,1)=0 \\
& \Pi(x, 1 / 2,0)=0
\end{aligned}
$$

What happens if Π is not Π-decomposable?

We have seen that if Λ_{Π} is a Boolean clone then $\Pi \in \Lambda_{\Pi}$.
There are some Π such that Λ_{Π} is a clone but $\Pi \notin \Lambda_{\Pi}$.
Example. Let $A=\{0,1 / 2,1\}$ and Π be the pivotal operation s.t.

$$
\begin{aligned}
\Pi(x, 1,0) & =x \\
\Pi(x, 0,1) & =1-x \\
\Pi(x, 1,1 / 2) & =1
\end{aligned}
$$

$$
\begin{aligned}
& \Pi(x, 0,1 / 2)=1 \\
& \Pi(x, 1 / 2,1)=0 \\
& \Pi(x, 1 / 2,0)=0
\end{aligned}
$$

$$
\Pi \models(P),(A D) \quad \text { but } \quad \Pi \notin \Lambda_{\Pi}
$$

since
$\Pi(x, 1 / 2,1 / 2)=1 / 2 \quad$ and $\quad \Pi(1 / 2, \Pi(x, 1,1 / 2), \Pi(x, 0,1 / 2))=1$

Symmetry

Theorem. If $\Pi \in \Lambda_{\Pi}$ and $\Pi \models(P)$, then the following are equivalent
(i) Π is symmetric
(ii) $\Pi(0,0,1)=\Pi(0,1,0)$ and $\Pi(1,0,1)=\Pi(1,1,0)$

Summary

- If $\Pi \in \Lambda_{\Pi}$ and $\Pi \models($ WAD $)$, then

$$
(P)+(A D) \Longleftrightarrow \Lambda_{\Pi} \text { is a clone }
$$

- There is a clone Λ_{Π} such that $\Pi \notin \Lambda_{\Pi}$

Summary

- If $\Pi \in \Lambda_{\Pi}$ and $\Pi \models(\mathrm{WAD})$, then

$$
(\mathrm{P})+(\mathrm{AD}) \Longleftrightarrow \Lambda_{\Pi} \text { is a clone }
$$

- There is a clone Λ_{Π} such that $\Pi \notin \Lambda_{\Pi}$

Problems.

Find a characterization of those Λ_{Π} which are clones when $\Pi \notin \Lambda_{\Pi}$.
Structure of the family of decomposable classes of operations?
M. Couceiro, and B. Teheux. Pivotal decomposition schemes inducing clones of operations. Beitr. Algebra Geom., 59:25-40, 2018.

