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Abstract

This technical online appendix to the paper “A Structured Argumen-
tation Framework for Modeling Debates in the Formal Sciences” consists
of two parts: In the first part, we provide a detailed description of our
formal ASPIC-END model of parts of the debate that mathematicians
had about the Axiom of Choice in the early 20th century, and we briefly
discuss the insight into the strengths and drawbacks of the modeling ca-
pacities of ASPIC-END that we have gained from producing this model.
In the second part, we present, motivate and prove six rationality postu-
lates that ASPIC-END satisfies.

1 Modelling argumentaton on Axiom of Choice

In this part of this technical online appendix, we present a model that formalizes
parts of the debate that mathematicians had about the Axiom of Choice in the
early 20th century [see Moore, [1982]. In 1904, the German mathematician Ernst
Zermelo published a proof of the Well-Ordering Theorem, in which he explicitly
referred to a set-theoretic principle that came to be known as the Axiom of
Choice|Zermelo| [1904]. In the first years after its publication, this proof received
a lot of critique, a significant part of which questioned the general validity of
the Axiom of Choice (see Moore|[1982]). In the long run, however, the proof got
accepted, as the Axiom of Choice got accepted as a valid part of the de-facto
standard foundational theory for mathematics, Zermelo-Fraenkel set theory with
the Aziom of Choice (ZFC).

The two critiques of Zermelo’s Axiom of Choice that we consider in this
paper are those of [Peano| [1906] and Lebesgue [see [Hadamard et al., [1905].
Furthermore, we consider the counterarguments to these critiques put forward
by |Zermelo| [1908a] and by Hadamard [see Hadamard et al., [1905]. Given that
the model still leaves out many contributions to that debate and additionally
simplifies some of the contributions that it does take into account, we consider
it to only be a preliminary model that we plan to extend in the future. However,
we hope that this more extensive model gives some insight into the strengths
and drawbacks of the modeling capacities of ASPIC-END, as well as inspiration
for further research into this direction.



In Section [1.9, we discuss how the model could be extended in order to
provide a more complete picture of the debate and to link it to debates on
related topics within the foundations of mathematics and logic.

1.1 Some general remarks of the model

We are modeling some sophisticated argumentation that often involves a lot of
implicit reasoning steps that are not made explicit. We attempt our formaliza-
tion of the arguments to be as faithful as possible to the original intention of
the authors of the arguments in question, but we cannot avoid making choices
about the implicit reasoning steps that could potentially be made differently.

Generally, the purely mathematical and purely logical demonstrations and
reasoning is formalized using intuitively strict rules, while the philosophical and
metamathematical argumentation and reasoning is formalized using defeasible
rules. Most of the attacks between arguments attack defeasible arguments,
i.e. philosophical or metamathematical arguments. But given that some of
the mathematical and logical principles that were applied in the mathemat-
ical and logical reasoning that we model, e.g. the Axiom of Choice and the
non-constructivist parts of classical logic, are attacked by some philosophical or
metamathematical arguments, there are also some arguments using only intu-
itively strict rules that get attacked. Of course, by the design of ASPIC-END,
all such attacks have to be undercuts.

All arguments have to start from some assumptions, which are not explic-
itly backed up by further arguments. Such an assumption is formalized in
our model as a premise, i.e. as a rule with no antecedent. Depending on
whether this premise is of a purely mathematico-logical nature or has philosoph-
ical/metamathematical aspects, it gets modeled either as an intuitively strict
rule without antecedent, also called an aziom, or as a defeasible rule without
antecedent, also called a defeasible premise.

Instead of presenting the language and the set of rules of our model at once,
we introduce them step by step as we show how to formalize various arguments
put forward during the debate. We explicitly mention all the rules needed
in out model. The language of our model is a standard first-order language
over a vocabulary of predicate symbols, function symbols and constants. This
vocabulary is not explicitly listed, but is evident from the list of rules that we
put forward and from the explanations we provide about the formalization. We
have chosen the names of all predicate symbols, function symbols and constants
in such a way that they resemble either the actual words used in the debatd]
or the words of some reformulation of the cited arguments that we use when
explaining the debate and our formalization of it.

The name of a rule, i.e. the formula that expresses the acceptability of a
rule and whose negation can be used to undercut an argument using the rule, is
denoted with accept(p), where p is a constant symbol that refers to the rule as a
syntactic object. For some rules we explicitly specify the constant p that refers

1All the arguments from the debate cited in this paper were originally presented in lan-
guages other than English. We generally work with their translations to English provided by
Moore| [1982] and [Kennedy| [1973]. In very few cases we have made minor modifications to the
translation that Moore made of German texts in order to make the translation more faithful
to the German original. By “actual words used in the debate” we here mean the English
translation of these words.



to it by writing (p) (for some constant symbol p) in front of the rule. However,
for other rules we do not specify such a constant symbol to refer to it, as it is
mostly not needed.

The inference rules of intuitionistic logic (which are also included in classical
logic) are not called into question by any mathematician involved in the debate
that we model, so these rules never get undercut. Here are the schemes of
intuitively strict rulesEI that are required to model intuitionistic logic in ASPIC-
END:
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For the final rule scheme in this list, i.e. (3-Elim), we only include in our
model those instances for which 1 does not contain x as a free variable.

In order to simplify the exposition of our model, we sometimes omit implicit
reasoning steps that involve only these inference rules of intuitionistic logic. We
use the notation (Ay,..., A, F ¢) for an argument that uses multiple of these
rules to get from the conclusions of arguments A, ..., A, to the conclusion
1. Since these rules can never be undercut, this omission does not lead to any
attacks on such arguments being overlooked.

Furthermore, we will in one place refer to the rule scheme of double negation
elimination, which, when added to the above rule schemes, gives a formalization
of classical first-order logic in ASPIC-END:

1.2 Zermelo’s explicitation of the Axiom of Choice

Since 1871, various mathematicians had produced proofs which relied on making
infinitely many arbitrary choices, i.e. relied on what came to be known as the
Axiom of Choice (see Moore| [1982], Chapter 1). However, before 1904, these

2In this techincal report, we use the word rule in the way in which it is usually used in
the structured argumentation literature. There is one important difference between this usage
of rule and the way the word is usually used in the logical literature outside of structured
argumentation theory: A rule, as the word is used in structured argumentation theory, is what
would normally be called an instance of a rule. For this reason, it makes sense to speak of a
rule scheme, which is what would normally be just called a rule.



mathematicians were not aware of the fact that these proofs require a novel
mathematical principle (ibid.). The first mathematician who explicitly talked
about the problem of making infinitely many arbitrary choices was Giuseppe
Peano [Peano| [1890] (page 280), but Peano talked of it as something that cannot
be done, i.e. he rejected the kind of inferences that the Axiom of Choice allows.
This particular detail of his work did not influence any mathematicians other
than some of his Italian colleagues (see [Moore| [1982], page 76). The first time
that a mathematician made explicit reference to the problem of making infinitely
arbitrary choices while considering this a valid form of inference was the paper
of Zermelo that presented a proof of the Well-Ordering Theorem |Zermelo| [1904].

Zermelo’s formulation of the Axiom of Choice was the following: “even for
an infinite totality of [non-empty] sets there always exist mappings by which
each set corresponds to one of its elements”

We formalize this in ASPIC-END as follows:

(AC) ~» VM (Ym € M non-empty_set(m)) D 3f (domain(f) = MAYm € M f(m) € m)
Here is the argument that Zermelo gives for accepting the Axiom of Choice:

“this logical principle cannot be reduced to a still simpler one, but is
used everywhere in mathematical deduction without hesitation. So
for example the general validity of the theorem that the number of
subsets into which a set is partitioned is less than or equal to the
number of its elements, cannot be demonstrated otherwise than by
assigning to each subset one of its elements.” |Zermelo, 1904} p. 516]

Zermelo does not explicitly explain what he means by reducing a principle
to a simpler principle, so we just take this to be a primitive notion of his meta-
mathematical reasoning, rendered in our model by the unary predicate simple.
We assume that there is a defeasible premise that asserts that (AC) is simple
in this sense. This defeasible premise is justified by the fact that Zermelo pre-
sumably put some considerable mathematical effort into attempting to reduce
(AC) to a simple principle before claiming in print that this cannot be doneE|

= simple(AC)

We formalize Zermelo’s claim that his principle “is used everywhere in math-
ematical deduction without hesitation” as a conjunction of two claims, one as-
serting that (AC) is widely used in mathematical practice (formalized using
the unary predicate widely_used), and one asserting that no mathematician has
called this usage to doubt (formalized using the unary predicate calls_to_doubt
and the function symbol usage). The first claim is backed up by the example

3The proof of |Cohen| |[1963] that if ZF is consistent, then it does not prove the Axiom of
Choice, can be viewed as a confirmation of Zermelo’s claim that (AC) cannot be reduced to
a simpler principle. However, to get to this conclusion, one would still require some judgment
about the simplicity of (AC) in comparison to some other principles that have turned out to
imply it, and unlike Cohen’s proof, these judgments are not of a purely mathematico-logical
nature, and should thus be formalized using defeasible rather than intuitively strict rules. So
while progress has been made since Zermelo’s claim in 1904 that would allow us to put forward
stronger and more elaborate arguments in favor of this claim, these arguments would still be
of a defeasible nature, just like Zermelo’s original claim.



that he produces in the second sentence of the quotation (see the formalization
below), while the second claim is made without argument, and therefore gets
formalized as a defeasible premise:

(pQZM) = -3z calls_to_doubt(z, usage(AC))

The theorem mentioned in the second sentence of the quotation is nowadays
usually called the Partition Principle. The content of this theorem is not relevant
for the argumentative force of the argument that Zermelo puts forward here.
All that is relevant is that he puts forward an example of a theorem from the
mathematical literature for which a proof has been published and accepted by
the community, and that this proof makes makes implicit use of the principle AC
that Zermelo is defending here. As the content of the theorem is not relevant,
we simplify the exposition of the model by replacing it by a constant symbol PP
(“Partition Principle”). Zermelo makes the claim that this theorem “cannot be
demonstrated otherwise than by assigning to each subset one of its elements”,
which we formalize as a conjunction of two claims: that there is a proof that
demonstrates PP, and that any proof that demonstrates PP uses (AC). We do
not assign any specific formal meaning to the words demonstrate and uses, but
consider them primitive concepts of Zermelo’s metamathematical reasoningﬁ
These two claims are not supported by a further argument, so they get modeled
as defeasible premisesﬂ E|

= Jp demonstrates(p, PP);
= Vp (demonstrates(p, PP) D uses(p, AC))

Zermelo uses this example of the Partition Principle to substantiate his claim
that his principle AC' is widely used in mathematical deduction. Of course, an
argument that concludes that a principle is widely used based on evidence for
one single usage of the principle is a comparatively weak argument. But it is
still stronger than making the same claim based on no evidence at all, which
is what would have been the case if Zermelo had not given this single example.
In order to formally account for this inference from a single example of a usage
of AC to the conclusion that it is widely used, we add the following schemeﬂ of
defeasible rules to our model:

Jp, t (demonstrates(p, t) A uses(p, p)) = widely_used(p)

4Even though he did not explicitly use a word that translates to the English word uses, his
usage of “otherwise than by” suggests that he had in mind some notion of a principle being
involved in a demonstration, which we decide to render with the word uses.

5The defeasible premise that there is a proof that demonstrates PP could be replaced by an
intuitively strict argument, if we chose to extend the model by the actual mathematical proof
from the literature that Zermelo is referring to here. But this would require also extending the
model with intuitively strict rules that formalize our semi-formal reasoning about syntactical
entities like proofs and their conclusions.

6Interestingly, a certain reasonable formalization of the terms demonstrates and uses in
terms of the (historically later) formal systems ZF and ZFC gives the second defeasible premise
a reading which is still an open problem in set theory to this day: It is still unknown whether
the full force of the Axiom of Choice is needed to prove the Partition Principle, or whether
a weaker choice principle is sufficient (though it is known that the Partition Principle cannot
be proved in ZF alone).

"It is a scheme, as p may be substituted by an arbitrary term of our language. The
particular instance of the scheme that we will make use of is the one where p is AC.



It is clear that Zermelo puts forward his claims about the simplicity of, the
wide use of and the lack of doubt about his principle AC' in order to corroborate
the acceptability of AC' as a basic mathematical principle that does not require
mathematical proof. In other words, he implicitly makes use of a metamathe-
matical principle, according to which the simplicity of, wide use of and lack of
doubt about a mathematical principle allow one to defeasibly infer the accept-
ability of said mathematical principle. This is formalized through the following
scheme of defeasible rules:

simple(p), widely_used(p), =3z calls_to_doubt(x, usage(p)) = accept(p)

Now that we have presented all the rules require to formalize this argument
of Zermelo in favor of the acceptability of AC, we describe the arguments that
Zermelo constructs from these rules:

Zyt =
7 =
Z9* = (= 3p demonstrates(p, PP))

(= simple(AC))
(
(
224 (= Vp (demonstrates(p, PP) D uses(p, AC)))
= (Z3
(
(

= -3z calls_to_doubt(z, usage(AC)))

7% 794 - Ip, t (demonstrates(p, t) A uses(p, AC)))
Z2% = widely_used(AC))
799, 78 79% = accept(AC))

04
Z6

Z04

Note that the derivation indicated with the symbol F in argument Z2* in-
cludes an application of D-Introduction and an application of V-Introduction,
namely in order to derive Vp (demonstrates(p, PP) D Jp,t (demonstrates(p, t) A
uses(p, AC))), which is needed in order to make use of (F-Elim) in order to
derive 3p, t (demonstrates(p, t) A uses(p, AC)) from Ip demonstrates(p, PP).

1.3 Peano’s response to Zermelo’s proof

In 1906, the Italian mathematician Giuseppe Peano published a note in the Ren-
diconti del Circolo matematico di Palermo in which he responded to Zermelo’s
proof [Peano, [1906] by criticizing his principle AC. First of all, he points out
that he had previously considered and rejected this inference pattern:

“This assumption, which occurs in several books, was already con-

sidered by me in the year 1890, in Math. Ann., 37, p. 210: ‘one may

not apply an infinite number of times an arbitrary law according to

which to a class a is made to correspond an individual of that class
..7 7 |Peanol (1906, p. 208]

Note that this can be viewed as a counterargument against Zermelo’s claim that
the principle has been applied in mathematics “without hesitation”, based on
evidence that Peano himself has previously called this principle to doubt. We
formalize this counterargument as follows:

(p¥ 06) = calls_to_doubt(Peano, usage(AC))



Peano then explains how a single arbitrary choice from a non-empty class can
be formalized in his Formulario mathematico, a semi-formal notational system
for mathematical propositions and proofs that he had devised:

“the form of argument ‘if I arbitrarily choose an element x of class
a, then proposition p (which does not contain x) follows’ is reducible
to the form

Ja (1)
rea D.p (2)
(1).(2).Dp

‘If there exists an a, and if from xea follows proposition p, then
proposition p may be affirmed.’

This is the form of argument called ‘elimination of x’ in Formulario,
V, p. 12, Prop. 3.1.” [Peano, 1906, p. 208]

Note that —apart from irrelevant notational differences — his elimination of z is
the same as our rule scheme 3-Elim.

The point that Peano is making here is that for any informal argument that
makes one arbitrary choice, there is a formalization of this argument in his
Formulario system that makes use of elimination of x once. We formalize this
by the following defeasible premiseEI

= Va, b (arb_choices(a, 1) A formalizes(b, a) A Formulario(b) D uses(b, z-elim, 1))

Here arb_choices(a,n) means that argument ¢ is an informal argument that
contains an inference step in which n arbitrary choices are made. uses(b, p,n)
means that b is a derivation that makes use of rule p n times.

Peano continues:

“The assumption of two successive arbitrary elements has the form:

Ja (1)
rea D.Ib (2)
reayeb. D.p (3)

(1).(2).(3).2p 7
[Peanol, {1906| p. 208]

In this case, four propositions are involved (three hypotheses and a conclusion).
Note that in his semi-formal system the intermediate step resulting from just
one application of elimination of & does not need to be written down, whereas
in our fully formal system such an omission is not allowed, so that there are
actually five propositions involved in two consecutive applications of 3-Elim).
The point that Peano is making here is that for any informal argument that
makes two arbitrary choices, there is a formalization of this argument in his

8Given that it is a statement about the connection between something informal and some-
thing formal, it is not purely mathematico-logical, but has a metamathematical character that
justifies the choice of a defeasible premise instead of an (intuitively strict) axiom.



Formulario system that makes use of elimination of x twice. We formalize this
by the following defeasible premise:

= Va, b (arb_choices(a, 2) A formalizes(b, a) A Formulario(b) D uses(b, z-elim, 2))

At this point, Peano is ready to make his main argument against Zermelo’s
principle AC:

“The assumption of two arbitrary elements z and y leads to an
argument with three hypotheses (1), (2), (3), and a thesis (4). In
general the assumption of n successive arbitrary elements leads to
an argument which consists of n+ 2 propositions. Therefore we may
not suppose n = oo, that is, we cannot construct an argument with
an infinite number of propositions.” [Peanoj, 1906, p. 209]

To formalize this argument, we first need some rules that allow him to con-
clude the claims of the first two sentences of this citation from the above men-
tioned defeasible premises. Note that he makes a generalization about n ar-
bitrary choices from evidence about what happens in the case of one or two
arbitrary choice. This kind of generalization is of course not a mathematical
demonstration, but a common form of argumentation in the informal exposition
of mathematical ideas. So we formalize it as a defeasible rule:

Va,b (arb_choices(a, 1) A formalizes(b, a) A Formulario(b) D uses(b, z-elim, 1)),
Va, b (arb_choices(a, 2) A formalizes(b, a) A Formulario(b) D uses(b, z-elim, 2))
= Vn,a,b (arb_choices(a, n) A formalizes(b, a) A Formulario(b) D uses(b, z-elim, n));

The property of his system that n applications of elimination of x lead to an
argument that involves n+2 propositions, on the other hand, can be considered a
mathematical statement about his system, so we formalize it using an intuitively
strict rule (which, given the lack of proof of this statement, is here just treated
as an axiom, i.e. an intuitively strict rule without antecedent):

~ ¥n (uses(a, x-elim, n) D involves_propositions(a, n + 2))

For concluding the claim in the final sentence, we need two axioms that
formalize his mathematical assumptions that oo + 2 = oo and that there is no
Formulario argument that involves infinitely many propositions:

~s 00 + 2 = 00;

~» =3a (Formulario(a) A involves_propositions(a, c0))

These rules allow us to conclude that no informal argument that makes
infinitely many choices can be formalized in the Formulario. Peano considers
this an attack on the usability of Zermelo’s principle AC. Here Peano is making
the implicit assumption that an informal mathematical argument is acceptable
if and only if it can be formalized in the Formulario. To get an attack on AC,
we additionally need the premise that the acceptability of the Axiom of Choice



implies the acceptability of some informal argument that makes infinitely many
arbitrary choices:

(pf%) = Va (accept(a) = Fb(formalizes(b, a) A Formulario(b)));
~ (accept(AC) D Fa (accept(a) A arb_choices(a, 00)))
Now that we presented all the rules we require to model Peano’s argument

against Zermelo’s principle AC, let us describe the arguments that Peano con-
structs from these rules:

P = (= calls_to_doubt(Peano, usage( AC)))
PY% = (PP® ~ 3z calls_to_doubt(z, usage(AC)))
PY% = (= Va,b (arb_choices(a, 1) A formalizes(b, a) A Formulario(b) O uses(b, z-elim, 1)))
PY% = (= Va, b (arb_choices(a, 2) A formalizes(b, a) A Formulario(b) O uses(b, z-elim, 2)))
PY = (PY% P{® = Vn,a,b (arb_choices(a, n) A formalizes(b, a) A Formulario(b) O uses(b, z-elim, n)))
PY = (~ V¥n (uses(a, z-elim, n) D involves_propositions(a, n + 2)))
P706 (v 0042 =00)
= (~ —3Ja (Formulario(a) A involves_propositions(a, 00)))
ng (= Va(accept(a) = b (formalizes(b, a) A Formulario(b))))
P8 = (PY6 PY% P pY P - —3Ja (accept(a) A arb_choices(a, o0)))
PY = (~ (accept(AC) D Ja (accept(a) A arb_choices(a, c0))))
PP$ = (Assume_ (accept(AC)))
Py = (P, PiY, Piy - 1)
P = (ProofbyContrad(P%, ~accept(AC)))

1.4 Zermelo’s response to Peano

In 1908, Zermelo wrote an article responding to multiple critiques of his proof
of the Well-Ordering Theorem. The article contains the following response to
Peano’s arguments:

“First of all, how does Peano arrive at his own fundamental prin-
ciples and how does he justify admitting them into the Formulaire,
since he cannot prove them either? Obviously, through analyzing
the rules of inference that have historically been recognized as valid
and by referring both to the intuitive evidence for the rules and to
their necessity for science — considerations which may be argued just
as well for the disputed Principles. This Axiom, without being for-
mulated in a scholastic manner, has been applied successfully, and
very frequently, in the most diverse mathematical fields, particularly
set theory, by R. Dedekind, G. Cantor, F. Bernstein, A. Schoenflies,
and J. Ko6nig among others. Such extensive usage of a principle can
only be explained through its self-evidence, which, naturally, must
not be confused with its provability. While this self-evidence may be
subjective to a certain degree, it is in any case an essential source of



mathematical principles, though not a basis for mathematical proofs.
Thus Peano’s statement, that self-evidence has nothing to do with
mathematics, does not do justice to obvious facts. However, what
can be objectively decided, the question of necessity for science, 1
would like now to submit to judgment by presenting a series of el-
ementary and fundamental theorems and problems, which, in my
opinion, could not be settled without the Axiom of Choice.”

Zermelo continues by listing seven theorems of set theory, which he believed
not to be provable without the Axiom of Choice. Some of these theorems were
already widely considered as proven among set theorists of his time, e.g. the
theorem that a countable union of countable sets is contable. Others had been
implicitly assumed by many set theorists without explicit proof, e.g. that every
Dedekind finite set is finite. He also repeated in the list the Partition Principle
mentioned in his 1904 article.

In the second sentence of this quotation, Zermelo mentions three criteria for
admitting fundamental principles: being historically recognized as valid, being
intuitively evident, and being necessary for science. In this passage he seems
interested in providing strong evidence for admitting a fundamental principle by
satisfying all three of these criteria. We formalize this by the following defeasible
rule scheme:

hist_rec_as_valid(p) A int_evident(p) A nec_for_science(p) = accept(p)

Zermelo cites the frequent usage of the Axiom of Choice as evidence both
for its being historically recognized as valid, and for it intuitive evidence. This
is formlized by the following rules:

= used(Dedekind, AC);

= used(Cantor, AC);

= used(Bernstein, AC);

= used(Schoenflies, AC');

= used(Konig, AC);

used(Dedekind, p) A used(Cantor, p) A used(Bernstein, p)A
used(Schoentflies, p) A used(Koénig, p) = widely_used(p);

widely_used(p) = hist_rec_as_valid(p);

widely_used(p) = int_evident(p);

Finally, the seven theorems that Zermelo puts forward as examples for where
the Axiom of Choice is needed serve as evidence for the Axiom of Choice being
necessary for science. As in the case of the Particion Principle that Zermelo
already mentioned in his 1904 article, the precise content of these theorems is
not of great importance for the argumentative power of his argument. So we
will replace the theorems other than PP, which we have already given a name
in Section by the placeholder names Th2, ..., Th7 corresponding to the
numbering used by Zermelo in his paper:

= Jp demonstrates(p, Th2);
= Vp (demonstrates(p, Th2) D uses(p, AC));
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= Jp demonstrates(p, Th3);
= Vp (demonstrates(p, Th3) D uses(p, AC));
= Jp demonstrates(p, Th4);
= Vp (demonstrates(p, Th4) D uses(p, AC));
= Jp demonstrates(p, Th5);
= Vp (demonstrates(p, Th5) D uses(p, AC));
= Jp demonstrates(p, Th6);
= Vp (demonstrates(p, Th6) D uses(p, AC));
= Jp demonstrates(p, Th7);
= Vp (demonstrates(p, Th7) D uses(p, AC));

Jp (demonstrates(p, PP) A uses(p, p)), Ip (demonstrates(p, Th2) A uses(p, p)),
Jp (demonstrates(p, Th3) A uses(p, p)), Ip (demonstrates(p, Thd) A uses(p, p)),
Jp (demonstrates(p, Th5) A uses(p, p)), Ip (demonstrates(p, Th6) A uses(p, p)),

Jp (demonstrates(p, Th7) A uses(p, p)) = nec_for_science(p)

Now the rules provided in this subsection can be combined into a new argu-

ment in favour of the acceptability of the Axiom of Choice:

Z)® =(= used(Dedekind, AC))

Z9® =(= used(Cantor, AC))

Z3% =(= used(Bernstein, AC))

7 =(= used(Schoenflies, AC))

728 =(= used(Konig, AC))

738 =(z98, 298, 798 708, 7% = widely_used(AC))

728 =(Z2® = hist_rec_as_valid(AC))

Z3® =(Z® = int_evident(AC))

7z = (794, Z9* - 3p (demonstrates(p, PP) A uses(p, AC)))
738 = (= 3p demonstrates(p, Th2))

7% = (= Vp (demonstrates(p, Th2) D uses(p, AC)))

798 = (298, Z9% - 3p (demonstrates(p, Th2) A uses(p, AC)))
Z% = (=3 demonstrates(p, Th3))

798 = (= Vp (demonstrates(p, Th3) D uses(p, AC)))

708 = (238, Z{% - 3p (demonstrates(p, Th3) A uses(p, AC)))
738 = (= Ip demonstrates(p, Th4))

798 = (= Vp (demonstrates(p, Th4) D uses(p, AC)))

798 = (28, 7% - 3p (demonstrates(p, Th4) A uses(p, AC)))
Z98 = (=3 dernons‘mrantes(p7 Thb))

738 = (= Vp (demonstrates(p, Th5) D uses(p, AC)))

Z9 = (298, Z98 - Ip (demonstrates(p, Th5) A uses(p, AC)))
73 = (=3 demonstrates(p, The))
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Z33 =
Zy; =
73 = (=3 demonstrates(p, ThT))

(= Vp (demonstrates(p, Th6) D uses(p, AC)))
(
(
738 = (= Vp (demonstrates(p, Th7) D uses(p, AC)))
(
(
(

798, Z8% = Ip (demonstrates(p, Th6) A uses(p, AC)))

798 = (798, Z98 \- Ip (demonstrates(p, Th7) A uses(p, AC)))
Z888 Zgga ZlQa Z?E?a ZlSa 220187 2247 ZQ’? = necior,smence(AC))
798 = (298, 738, Z9% = accept(AC))

Even though the conclusion of Peano’s argument PP is the negation of the
conclusion of Zermelo’s new argument Z3, this does not constitute a direct
attack from Z9§ to PY?. The reason for this is that the conclusion of P is
attained by a proof by contradiction, and such a proof cannot be rebutted on
the top level. However, it is possible to construct from Z95 an argument attack
on PYY by making use of some of Peano’s subarguments that Zermelo does not
intend to attack:

798 = (Assume_,(Va (accept(a) = 3b(formalizes(b, a) A Formulario(b)))));
Z:?f = (Z§§7P§6,P§6,P$6,P§’6,Pf’f = —accept(AC));

Z35 = (Z33, 253 ~ L);
7z = (ProofbyContrad(Z32,—|Va (accept(a) = Ib(formalizes(b, a) A Formulario(b)))));

Now Z% directly rebuts Py®, which is a subargument of PPY, so Z%8 indirectly
attacks PYY as well. This is how our model formalizes Zermelo’s attack on
Peano’s argument. Note that without taking into account preferences, there
would also be an attack back from Peano’s argument P onto Zermelo’s ar-
gument Z3§. We explain in Section how this is avoided through the use of
preferences.

1.5 Lebesgue’s and Hadamard’s letters

In this subsection, we extend the model with a somewhat simplified formaliza-
tion of arguments from two more mathematicians — Henri Lebesgue and Jacques
Hadamard — who had participated in this debate before Peano’s response. The
purpose of this addition to the model is mainly to illustrate the possibility of
attacks on classical inference rules in the context of such foundational debates.
In order to not complicate the exposition of the model much more, we simplify
the formalization of these arguments a bit, while acknowledging that this sim-
plification makes the formalization less faithful to the wording used by Lebesgue
and Hadamard than it could be.

In 1905, French mathematician Emile Borel, who himself had critiqued Zer-
melo’s proof of the Well-Ordering Theorem, asked his colleague Henri Lebesgue
to comment on the proof. Lebesgue responded in a letter to Borel that shortly
afterwards got published together with four other letters on the topic in the Bul-
letin de la Société mathématique de France [Hadamard et all [1905]. Lebesgue
rejected Zermelo’s statement that he had proved the Well-Ordering Theorem,
and a central statement in his justification for this rejection is the following:
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“I believe that we can only build solidly by granting that it is im-
possible to demonstrate the existence of an object without defining
it.”

Lebesgue attributes this principle to the German mathematician Leopold Kro-
necker, who is now often considered a forerunner of later constructivist and
intuitionistic approaches to mathematics. Lebesgue does not make any precise
statement about which forms of inference involving existential statements are
acceptable and which ones are not. However, it is clear that he intends this to
be an attack on the existence claim that the Axiom of Choice makes, namely
that there exists a certain choice function. At the same time, it is fair to assume
that this statement puts him at odds with any non-constructive proof of an ex-
istential statement. So in order to capture the argumentative force of this claim,
we assume that it implies (through two intuitively strict rules) both a rejection
of the Axiom of Choice (AC) and a rejection of double negation elimination
applied to an existential statement (——-Elimz; ). But in order to keep the
formalization simple, we do not formalize the internal structure of this claim,
but instead formalize it as a propositional variable.

Lebesgue does not put forward any argument to support this belief other
than attributing the idea to Kronecker. For this reason, we have decided to
model it as a defeasible premise:

05 . . o, .
(pl") = existence_proof_requires_definition;

existence_proof_requires_definition ~» —accept(AC);

existence_proof_requires_definition ~» —accept(——-Elims; )

Borel sent a copy of Lebesgue’s response to Jacques Hadamard, who reacted
to it in another letter, which was published together with Lebesgue’s letter in
the Bulletin de la Société mathématique de France. In this letter, Hadamard
defends Zermelo’s proof against Lebesgue’s critique. In this letter, he calls the
following argument the “essence of the debate”:

“From the invention of the infinitesimal calculus to the present, it
seems to me, the essential progress in mathematics has resulted
from successively annexing notions which, for the Greeks or the Re-
naissance geometers or the predecessors of Riemann, were “outside
mathematics” because it was impossible to describe them.”

In order to keep the exposition of the model simple — just as for Lebesgue’s
argument — we will not analyse the internal structure of this claim, but just
formalize it as a propositional variable and defeasible premise, to which we
assggn the argumentative force that it was intended to have by including rule
ol " that allows it to be used to attack Lebesgue’s argument:

= progress_by_accepting_existence_of_undescribables;
(pg 05) progress_by_accepting_existence_of_undescribables = —existence_proof_requires_definition

We can describe the arguments that Lebesgue and Hadamard construct:

LY = (= existence_proof_requires_definition)
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LY ~ —accept(AC))
L05

L05 ~ =accept(—~—-Elims, 4))

= progress_by_accepting_existence_of_undescribables)

= (
(
= (
= (

HY = —existence_proof_requires_definition)

1.6 Preferences in our model

Without imposing preferences on the set of rules, all attacks in our model other
than the undercuts on the applications of the Axiom of Choice and double-
negation elimination would become practically bidirectional. By this we mean
that even though there can be a unidirectional attack from some argument A
to some argument B, in such a case there will always be an attack back onto A
from some argument B’ that is closely related to B and accepted in the same
circumstances as B.

In order to make the model more interesting and more realistic, it is therefore
a good idea to include in it some preference order on the rules, which gives rise
to a preference order on the arguments. One drawback of our methodology is
that it gives no methodological guidance on how to select a preference order on
the rules. So for now, we just have to follow our common sense of the relative
strength of different rules and different argument. We will just specify some
instances of rules being preferred to other rules, leaving most pairs of rules
incomparable on the preference order, as comparison is only needed for some
pairs of rules.

The defeasible rule (pQZM) of Zermelo’s 1904 argument, which claims that no
one has called the Axiom of Choice into doubt, is clearly weaker than Peano’s
defeasible rule (p¥’ 0G) that claims that Peano has called the Axiom of Choice
into doubt, as Peano can know better than Zermelo what he has called into
doubt, and can even provide a reference to a publication, where he has called
this inference pattern into doubt in print. So we assume pZ~* < pP’”

Furthermore, the rules that Zermelo requires for his 1908 argument are com-
paratively strong: For example, he makes claims about certain people having
used the Axiom of Choice implicitly, which can be verified by reading the proofs
produced by the mathematicians in question. The rule that allows him to con-
clude frequent usage of the Axiom of Choice from five cited instances of such
usage is clearly stronger than the similar rule from 1904, by which he made this
conclusion based on one instance of such usage. Also the central premise used to
conclude the acceptability of the Axiom of Choice based on three criteria seems
to be a philosophically strong point of his argument. In contrast, Peano’s rule

o6 . X . .
Py, which claims that all acceptable informal mathematical arguments can be
formalized in the Formulario is weaker than those rules from Zermelo’s 1908
argumentation. So we assume pl’ P* to be weaker than all the rules introduced
in Section [[4] In Lebegue’s text analyzed 1n this report, there is no explicit
philosophical support for Lebesgue’s rule p1 , which claims that proving the
existence of an object requires defining it, which could be considered to be a
reason for preferring Zermelo’s rules over Lebesgue’s rule plLOS. On the other
hand, with the benefit of hindsight, we know that there exist some compelling
philosophical arguments in favor of constructivist approaches to mathematics
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and thus supportive of Lebesgue’s rule plLOS. For this reason, we consider plLO5
and the rules introduced in Section to be incomparable according to the
preference relation between rules.

1.7 A relevant implicit argument

While the preference relation between rules explained in the previous section
does not lead to Lebesgue’s argument L3° against accepting the Axiom of
Choice to be preferred over Zermelo’s 1908 argument Z95 in favor of the Ax-
iom of Choice, Zermelo’s argument by itself does not work as a counterargument
against Lebesgue’s argument. The reason for this is a technical detail of ASPIC-
END that it has inherited from ASPIC+ and that helps to ensure the rationality
postulate of closure under accepted intuitively strict rules that is explained and
proved as Theorem |2 in Section [2| below, namely the fact that arguments end-
ing in an intuitively strict rule cannot be rebutted (i.e. ASPIC+ has restricted
rebuttal rather than wunrestricted rebuttal; see |Caminada et al| [2014] for an
explanation of the distinction). However, by making use of the proof by contra-
diction construct, we can actually construct the following attack on Lebesgue’s
argument based on argument Z95 for the Axiom of Choice:

I = (Assume_, (existence_proof_requires_definition))

I, = (I} ~ —accept(AC))

I3 = (ZSS,IQ ~ J—)

I, = (ProofbyContrad(I3, —existence_proof_requires_definition))
Now I, directly rebuts L9 and thus indirectly rebuts L9°.

This is an example of an implicit argument that is not explicitly stated in the
debate that we model, but that can be derived from other rules in the model.
One of the strengths of our methodological approach is precisely that it allows
to identify such implicit arguments that no one has put forward, but that could
be put forward and that could have a relevance influence on the outcome of the
debate.

Note that a similar implicit argument can be built based on Z¥* (Zermelo’s
first argument for the Axiom of Choice), but given that we will in Section
introduce a preference relation that gives preference to the rules needed for
constructing L3® over the rules needed for constructing Z2%, this alternative
implicit argument is not going to successfully rebut L9, so we can safely ignore
it.

While the model described here has not led to philosophically relevant im-
plicit arguments, we believe that the methodology we are proposing has the
potential to bring to light such arguments once more sophisticated formal mod-
els of debates in the formal sciences are constructed. We expect the use of
automated theorem provers to be helpful in order to discover philosophically
relevant implicit arguments in more sophisticated models, just like they already
have been used by |Benzmiiller and Woltzenlogel Paleo| [2016] and Benzmiiller
et al.| [2017] to discover philosophically relevant mistakes and insights in ax-
iomatic theories of metaphysics.
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Figure 1: The relevant arguments and attacks from the example

1.8 Depicting the relevant arguments

The specified set of rules of our model allow for infinitely many arguments to be
constructed, so that the EAF corresponding to the model will also be infinite.
However, only a small finite subset of this infinite EAF contains attacks that
are relevant for the overall status of the acceptability of the Axiom of Choice,
which was the focus of attention of the debate that we have formally modeled.
For example, an implicit argument similar to I could be built based on Z*
instead of on Z35, but as Z%* will not be accepted in any argumentative core
extension of the overall EAF, this implicit argument will also never be accepted.
In Figure [} we depict the small subset of relevant arguments and the defeats
between them.

Restricted to this set of relevant arguments, there are two argumentative core
(AC) extensions: Sy = {P9¢, 7295 Z95, H® I}, and So = {PY6, Z98 L9 L9°}.
This means that arguments P9® and Z{§ are accepted in every AC-extension
of our model, while P$, Z8 and Z%* are rejected in every AC-extension, and
the status of the arguments Z3, Iy, LY and L9® depends on the choice of AC-
extension. Note that this set of relevant arguments contains two arguments with
conclusion accept(AC), namely Z%* and Z8§. While the first one gets rejected
in both extensions, the second one gets accepted in one and rejected in the other
extension, so that overall, the status of the claim accept(AC) depends on the
choice of the AC-extension.

These properties of our formal model intuitively correspond to the situation
that on the one hand there are compelling arguments both in favor and against
the Axiom of Choice, and purely formal methods will not decide which of the
two stands is “correct” (if there even is a single “correct” answer here), while
on the other hand certain arguments in favor or against the axiom of choice
are so weak that they do not hold up against the scrutiny provided by certain
counterarguments against them.

Of course, the fact that the status of the Axiom of Choice in our formal
model of the debate is not determined but depends on the choice of the AC-
extension is to a certain extent an artifact of the choice of arguments that we
formalized and of the preference order that we imposed. We could have gotten a
different result, for example if we had chosen to formalize only strong arguments
in favor of the Axiom of Choice and weak arguments against it, or if we had
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just made significantly different judgments about the preference order on the
rules involved in our model. So at the current level of development, such a
model cannot be seriously defended as a method for deciding which side in a
debate is right. What it can do, however, is to help us discover relevant implicit
arguments like argument I, in our model (and hopefully with a more developed
model also philosophically more relevant implicit arguments), to help us get a
more precise understanding of what assumptions are made and what is at stake
in a given debate, and to point towards weaknesses of the current methodology
of structured argumentation theory, like the lack of a methodological guidance
for choosing a preference order on the rules.

1.9 Conclusion and proposed extensions to the model

The parts of the debate presented and formalized in this subsection were, of
course, only a small part of the debate that mathematicians had about the Ax-
iom of Choice in the early 20th century, and additionally some of the considered
arguments have been formalized in a simplified way. So it is obvious that the
model could be expanded to a more extensive formal model of that debate.
One obvious extension that has already been alluded to above is to include the
proof of the Well-Ordering Theorem, so that attacks on the Axiom of Choice
would also be attacks on the Well-Ordering Theorem, as actually intended by
the mathematicians involved in the debate.

Some of the points that were raised during the debate touch on other issues
from the foundations of mathematics that were discussed at the time. For
example, the German mathematician Felix Bernstein criticized Zermelo’s proof
of the Well-Ordering Theorem not for the usage of the Axiom of Choice, but for
its similarity to Burali-Forti’s Paradox [see Moore, |1982} p. 110]. Bernstein had
somewhat peculiar ideas about how Burali-Forti’s Paradox should be resolved,
ideas which later turned out not to be tenable, but which at the time led him
to think that the resolution of Burali-Forti’s Paradox also blocks the possibility
of a construction that Zermelo used in his proof of the Well-Ordering Theorem.
The face that this idea of Bernstein, unlike rejection of the Axiom of Choice,
turned out to not be a viable position, should be explainable by a formal model
that incorporates his argumentation.

Zermelo wrote his 1908 response to his critiques |Zermelo, 1908a] in con-
junction with another paper |Zermelo, [1908b|, in which he proposed an ax-
iomatization of set theory including his new Axiom of Choice as well as other
set-theoretic principles. This axiomatization, which after later modifications by
Fraenkel gave rise to ZFC, also had to avoid the two set-theoretic paradoxes that
were hotly discussed at the time, namely Russel’s Paradox and Burali-Forti’s
Paradox. An interesting extension of the model from this paper would be one
that covers these as well as other competing resolutions to these paradoxes. This
will also bring into the picture the notion of explanation of a paradox defined
in this paper.

A model of the debate about these paradoxes could also be naturally com-
bined with a model of the debate about semantic paradoxes like the Liar Para-
dox, which we have already looked at superficially in the model in Section 4
of [Dauphin and Cramer| [2017]. Semantic paradoxes are a topic that many
philosophical logicians continue to work on and that has given rise to a num-
ber of relatively novel non-classical logics like paraconsistent logic [see [Priest,
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2006a], paracomplete logic [see [Field, [2008] and substructural logics [see Beall
and Murzi, [2013]. This area of research is characterized by a combination of
formal rigor, philosophical depth and debate about the acceptability of vari-
ous logical principles, which is likely to make it a fruitful field for testing the
applicability of structured argumentation theory to debates in the formal sci-
ences. As works like that of [Field| [2006] show, the topic of semantic paradoxes is
also connected to the philosophical interpretation of Gédel’s Second Incomplete-
ness Theorem, which has also been studied intensively within the philosophy of
mathematics.

An overarching formal model of these foundational debates across multiple
formal sciences is certainly still a distant goal. But given the potential insights
that it could provide into foundational research in the long run, this distant goal
could become a driving force for research on structured argumentation models
of debates in the formal sciences.

2 Closure and rationality postulates

In this section, we present four rationality postulates that ASPIC-END satisfies
and that are analogous to the four postulates that Modgil and Prakken| [2013]
have established for ASPIC+, as well as two new postulates motivated by the
application of structured argumentation to debates in the formal sciences.

The first postulate concerns the closure of the extensions under the sub-
argument relation. The idea is that one cannot accept an argument while re-
jecting part of it.

Theorem 1. Let ¥ = (£, R,n, <) be an argumentation theory, A = (4, X, —,
--+) be the EAF defined by ¥ and S be an AC-extension of A. Then, for all
A€ S, Sub(4) CS.

The proof of Theorem [1| rests on the following lemma, which can be proven
in a straightforward way as in the case of ASPIC+ (see Lemma 35 of Modgil
and Prakken| [2013]):

Lemma 1. Let ¥ = (£,R,n, <) be an argumentation theory, A = (A, X, —,
--») be the EAF defined by X, S C A4 and A, B € A. We have that:

1. If S defends A and S C S’, then S’ defends A.
2. If A defeats B’ and B’ € Sub(B), then A defeats B.
3. If S defends A and A’ € Sub(A), then S defends A’.

We now show another intuitive result which will be needed in the proof of the
postulates. This result is that given a satisfactory set of arguments, including
additional arguments which do not interfere with the admissibility of the set,
does not prevent the set from being satisfactory.

Lemma 2. Let ¥ = (£,R,n, <) be an argumentation theory, A = (A, X, —,
--») be the EAF defined by ¥ and 5,5" C A with S satisfactory. If S’ is
admissible and S C §’, then S’ is also satisfactory.

Proof:

Assume S’ D S is admissible. Now, suppose for a contradiction that S’ is
not satisfactory. Then, since S’ is admissible, there exists S” D S’ such that
S"” >, 5" and S” is admissible.
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We will now show that S” >, S. Since S” D §" and S" O S, we have S” D S.
For each explanandum e for which S offers an explanation X[e], X[e] € S”, so
S also offers an explanation for e. Hence, S” offers an explanation for at
least as many explananda as S. However, since S” >, S’, there exists an
explanandum e’ for which S” offers an explanation but for which S’ does not
offer an explanation. S C S’, hence S does not offer an explanation for ¢’ either.
Therefore, S offers an explanation for strictly more explananda as S and thus

S" >, 8.
So we have S” > 5, 8" >, S and S” is admissible. However, since S is
satisfactory, this is a contradiction. Hence, S’ is satisfactory. O
Proof of Theorem [1k

Let A€ S and A’ € A. Assume A’ € Sub(A). Suppose for a contradiction
that SU{A’} is not conflict-free. Since S is an AC-extension of A, S is conflict-

free. Hence, either A’ defeats some argument B € S, or some argument B € S
defeats A’

e Suppose first that A’ defeats some argument B € S. Then, since S is an
AC-extension of A, there exists some argument B’ € S which defeats A’.
Thus, by Lemma 2, B’ also defeats A. But S is conflict-free. We have a
contradiction.

e Suppose now that some argument B € S defeats A’. Then, by Lemma
[[}2, B also defeats A. But S is conflict-free. We have a contradiction.

Since both cases lead to a contradiction, we can conclude that S U {A'} is
conflict-free.

Now, S defends A and so, by Lemma 37 S defends A’. Since S is an AC-
extension of A, S also defends S. Thus, S defends SU{A’}. Hence, by Lemma
[M1, SU{A’} defends S U{A’}. Since SU{A’} is also conflict-free, S U {A’} is
admissible.

Also, by Lemmal2] since S is satisfactory and SU{A'} is admissible, SU{A4’}
is also satisfactory.

Now suppose for a contradiction that A’ ¢ S. Then, S U{A’} is a proper
superset of S which is also satisfactory. Hence, S is not an AC-extension of A.
So we have a contradiction, and thus A’ € S. O

Notice that this postulate does not hold for EC-extensions, as they are by
definition minimal in their inclusion of arguments, and thus will often leave out
low-level sub-arguments.

The second postulate concerns the closure of the conclusions under intu-
itively strict rules. In the case of ASPIC+, the corresponding postulate con-
cerned the closure of the conclusions under all strict rules (see Theorem 13 in
Modgil and Prakken [2013]). But since ASPIC-END allows for the rejection
of intuitively strict rules, it is undesirable to consider the closure under all of
them. Instead, we consider the closure under a set of intuitively strict rules
which are deemed acceptable. The following two definitions define the set of
accepted intuitively strict rules and the closure under a given set of intuitively
strict rules:
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Definition 1. Let ¥ = (£, R, n, <) be an argumentation theory, A = (A, X, —,
--+) be the EAF defined by ¥ and S be an extension of A. The set of intuitively
strict rules accepted by S is Risq(S) = {r € Ris|VA € A st. As(A) = 0 and
Conc(A) = —n(r) or ~Conc(A) =n(r),IB € S s.t. B defeats A}.

Definition 2. Let ¥ = (£,R,n,<) be an argumentation theory, P C £ and
R’ C R;s. We define the closure of P under the set of rules R’, denoted Clg/ (P),
as the smallest set such that P C Clg/ (P), and when (¢1, ..., ~> 1) € R and
D1,y on € Clp/(P), then ¢ € Clr/ (P).

Now the postulate on the closure under accepted intuitively strict rules can
be formulated as follows:

Theorem 2. Let ¥ = (£, R,n, <) be an argumentation theory, A = (4, X, —,
--+) be the EAF defined by ¥ and S be an AC-extension of A. Then, Conc(S) =
Clg,,.(s)(Concs(S)).

Proof:

Let S be an AC-extension of A. We want to show that Concs(S) =
Clg,..(s)(Concs(S)). First, notice that Concs(S) C Clg,,,(s)(Concs(S5)). Hence,
we only need to show that if (¢1,...,00n ~ V) € Risa(S) and ¢1,...,0n €
Concs(S), then ¢ € Concs(S).

Suppose that (@1, ..., 0 ~ V) € Risq(S) and @1, ..., o, € Concs(S). Then,
by the definition of Concs, there exists Ay, ..., A, € S such that Conc(4;) = ¢;
and As(4;) = 0 for 1 < i < n. Hence, we can construct the argument A =
Aq, ..y Ay~ 1p, and thus A € A with As(A) = ().

Assume B € A defeats A. Then, B either undercuts, assumption-attacks or
successfully rebuts A. Let us first consider the case of undercut. Then, As(B) =
() and either Conc(B) = —n(p1, ..., on ~ ) or =Conc(B) = n(p1, ..., on ~ V).
However, since (¢1,...,0n ~ %) € Risa(S), there exists C € S such that C
defeats B. Also, since A cannot be rebutted nor assumption-attacked, S defends
A.

Now suppose there is an argument D € S such that D defeats A. Then,
since S defends A, there is an argument C' € S which defeats D. However, S
is conflict-free, so we have a contradiction. Hence, there is no argument in S
which defeats A.

Let us now assume A defeats some argument D € S. Since S is admissible,
there is an argument in S which defeats A. However, we have just concluded
that no such argument exists, hence we have a contradiction. Therefore, A does
not defeat any of the arguments in S.

Thus, SU{A} is conflict-free. Also, since S defends A, SU{A} is admissible.
By Lemma [2| and since S is satisfactory, S U {A} is also satisfactory.

Assume A ¢ S. Then, since (SU{A}) D S is satisfactory, S is not an AC-
extension of A. This is a contradiction of one of our initial assumptions. Hence,
A € S. Therefore, 1) € Concs(S) and thus Concs(S) = Clg,_,(5)(Concs(S)). O

The last two postulates presented by [Modgil and Prakken| [2013| are direct
and indirect consistency, which state that when the set of strict rules is con-
sistent, the set of conclusions and the closure of this set under strict rules are
consistent.
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While consistency postulates are not relevant for the application of ASPIC-
END to argumentation about paradoxes, we also want ASPIC-END to be appli-
cable to more standard domains in which the consistency postulates are relevant.
For this reason, we also establish consistency postulates for ASPIC-END.

In order to show the consistency of the conclusions, we will have to show
that no two arguments with contradictory conclusions may co-exist in the same
extension. While these two arguments may have intuitively strict TopRules,
and thus not attack each other, we will show that one of their sub-arguments
is attacked and undefended. For the purpose of gradual inspection of the sub-
arguments, we first define direct sub-arguments.

Definition 3. Let ¥ = (£, R, n, <) be an argumentation theory, A = (4, X, —,
--») the EAF defined by ¥ and A, A" € A. We say that A’ is a direct sub-
argument of A iff A’ € Sub(A) and there is no A” € Sub(A) s.t. Sub(4’) C
Sub(A”).

Then, in order to identify those potential points of attack, we define max-
imal fallible sub-arguments, which represent the top-most sub-arguments with
defeasible top rules.

Definition 4. Let ¥ = (£, R, n, <) be an argumentation theory, A = (4, X, —,
--+) the EAF defined by ¥ and A € A. We define the multiset M(A) of the
maximal fallible sub-arguments of A as:

{4} if TopRule(A4) € Rq

U if DefRules(A) = 0

Lﬂ M(A;) Otherwise, where {41, ..., Ay} is
the set of direct sub-arguments of A.

For a set of arguments S, we write Subs(S) as a shorthand for |J Sub(A).
AesS

Definition 5. Let ¥ = (£, R, n, <) be an argumentation theory, A = (4, X, —,
--+) the EAF defined by ¥ and S C A. We say that A € A is an intuitively
strict continuation of S iff:

e Subs(S) C Sub(A);
o {r| for some X € Sub(A) \ Subs(S),r = TopRule(X)} C R4

We then show some intuitive results from our preference lifting. These results
are closely related to the properties of a reasonable argument ordering as defined
in [Modgil and Prakken| [2013].

Lemma 3. Let ¥ = (£,R,n, <) be an argumentation theory and < the pref-
erence relation over A lifted from <. We have that:

1. for all A, B € A, if DefRules(A) = (), then A £ B;
2. for all A, B € A, if DefRules(A) = () and DefRules(B) # (), then B < A;

3. for any finite multiset {C1, ..., Cy, } of arguments, it is not the case that for
all i € {1,...,n}, C*\* < C; (where C*\? is an intuitively strict continua-
tion of {C,...,Cr} \ {Ci}).
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Proof:

1. Suppose for a contradiction that A < B. Then, by definition, there exists
roq € DefRules(A) such that for all r, € DefRules(B), r, < 7. However,
since DefRules(A) = ), no such r, exists. Hence, A £ B. O

2. Take any r, € DefRules(B). Since DefRules(4) = @, it holds that for all
T4 € DefRules(A), r, < r,. Hence, B < A. O

3. Suppose for a contradiction that for all ¢ € {1,...,n}, there exists an
intuitively strict continuation C*T\* such that C*t\! < C;. Take an ar-
bitrary C; with 1 < j < n. We have that there exists C*\/ such
that C*\ < ;. Hence, there exists r € DefRules(C*+\7) such that
for all r; € C;, r < r;. Select a least preferred such r (for all r; €
DefRules(C+V), 7, # r). Take any argument C € {Cj,...,C,} such
that » € DefRules(Cy). Since r < r; for all r; € C; and r; £ r for all

r, € DefRules(Ct\V) = D DefRules(C;), we have that r,, < r for all
i=1,i#j
Tm € L_J DefRules(C;), and hence 7, &£ r for all r,,, € L_J DefRules(C;).
i=1 i=1,ik
For all intuitively strict continuations CT\* of {C1,...,Ck-1,Cks1,...,Cpn},

we have DefRules(C+\F) = |J DefRules(C;). Hence, we have C*+\F %
i=1,i#k

Cr. This is a contradiction, and hence it is not the case that for all

ie{l,..,n}, Ct\t < C;. O

We have three requirements for applying the consistency postulates. The
first is that there cannot be non-defeasible arguments which contradict each
other. The second requirement ensures that a formula and its negation are
considered as contradictory and the third guarantees that no assumptions for
proof by contradiction are prevented. The last two requirements are motivated
by the consideration that in the applications of ASPIC-END not related to
paradoxes, one would likely accept classical or intuitionistic logic, for both of
which these requirements hold.

Definition 6. Let ¥ = (£,R,n, <) be an argumentation theory. We say that
3 is consistency-inducing iff:

1. there are no A,B € A such that DefRules(4) = DefRules(B) = () =
As(A) = As(B) and Conc(A) = =Conc(B),

2. for each ¢ € L there is a rule r, of the form ¢, —¢p ~ L € R;s such that
n(r,) is undefined,

3. there is no rule r € R such that Assumable-(p) appears in r.

The following theorem establishes direct consistency for ASPIC-END:

Theorem 3. Let ¥ = (£,R,n,<) be a consistency-inducing argumentation
theory, A = (A, X, —,--») be the EAF defined by ¥ and S be an AC or EC-
extension of A. Then, there does not exist ¢ € Concs(S) such that —¢ €
Concs(S).
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Proof:

Suppose for a contradiction that there exists ¢ € Conc(S) such that —¢ €
Conc(S). Then, there exist two arguments A, B € S such that Conc(A) = ¢,
Conc(B) = —p and As(A) = ) = As(B).

Consider the multiset S = M (A)wM(B). By Lemma[3]3, there exists C € S
such that for all intuitively strict continuations S” of S\ {C}, we have S’ £ C.
Without loss of generality, suppose C' € M(A). Let ¢’ = Assume—(Conc(C))
and construct A’ from A by replacing C with C’. We now have that Conc(A’) =
¢ and As(A’) = {Conc(C)}. Since ¥ is consistency-inducing, ¢, ~p ~ L € R;s.
Thus, we can construct A” = A’, B ~ L with As(A”) = {Conc(C)}. Hence,
we can also construct D = ProofByContrad(—Conc(C'), A”). Since Conc(D) =
—Conc(C), D attacks C. Also, D is an intuitively strict continuation of S\ C,
thus we have D £ C and therefore D defeats C.

By Theorem [I] since C' € Sub(A), C € S.

Similarly, for all A; € M(A), A; € S by Theorem|[I] A’is an intuitively strict
continuation of M(A)\ C which uses the same rules as A. Hence, S defends A’,
and thus A’ € S.

Suppose an argument F defeats D. Then, F' cannot defeat D on A" by
rebut since TopRule(A”) € R;s. Also, F cannot defeat D on A” by undercutting,
since X is consistency-inducing and thus n(TopRule(A”)) is undefined. F cannot
defeat D nor A” on C’ by —-assumption-attack, again because X is consistency-
inducing. Since D = ProofByContrad(—Conc(C), A”), F cannot defeat D on D
either.

So F defeats D on D', where D' # A", D' # D and D # C’. Hence,
D' € Sub(A") or D’ € Sub(B). By Theorem [1] and since A’, B € S, we have
D’ € 5. Hence, S defends D from F and so D € S.

But D defeats C, so S is not conflict-free, which is a contradiction. Therefore,
no such ¢ € Concs(5) exists and thus Concs(S) is consistent. O

Indirect consistency of AC-extensions follows from closure under accepted
intuitively strict rules together with direct consistency:

Theorem 4. Let ¥ = (£,R,n,<) be a consistency-inducing argumentation
theory, A = (A, X, —,--3) be the EAF defined by ¥ and S be an AC-extension
of A. Then, there does not exist ¢ € Clg,_ ,(5)(Concs(S)) such that —p €
Clg,..(s)(Concs(S5)).

We want ASPIC-END to be applicable to debates in the formal sciences, in
which the correctness of logical rules can be up for debate. For example, among
the proposals made by philosophers of how to handle the semantic paradoxes,
there is paraconsistent dialetheism [Priest| 2006b], which accepts some inconsis-
tencies as true and uses a paraconsistent logic to avoid that everything can be
derived. And in order to be able to show the internal structure of the paradox,
we need to have an inconsistency arise from intuitively strict rules under no
assumptions. For these reasons, the consistency postulates do not make sense
for this kind of application of ASPIC-END.

However, there is a property similar to consistency that should still hold
even when the intuitively strict rules lead to paradoxes and when the output
extensions contain one that accepts paraconsistent dialetheism, namely that an
extension should never be trivial, i.e. conclude everything.
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For the non-triviality of the extensions, we require every intuitively strict
rule, except for the ones of conjunction elimination from 1, to have a name so
that it can be attacked. We say that the argumentation theory is well-defined
if it satisfies this requirement, and assume well-definedness in the non-triviality
postulate stated in Theorem [5}

Definition 7. Let ¥ = (£, R,n,<) be an argumentation theory. We say that
Y is well-defined if and only if for each rule 1’ € Ris \ Ree, n(r’) € L.

Theorem 5. Let ¥ = (£,R,n,<) be a well-defined argumentation theory,
A= (A X, —, --+) be the EAF defined by X, and S be an AC or EC-extension
of A. Then, L ¢ Concs(S).

Proof: Suppose for a contradiction that L € Concs(S). Then there exists a
minimal (under sub-argument relation) argument A € S such that Conc(A) = L
and As(A4) = 0.

We have two cases:

1. TopRule(A) is undefined. Then, A must be of the form ReasonByCases(L, Ay,
Ag, As). We have two sub-cases:

(a) DefRules(A) # ). Then, there must be a minimal (w.r.t. <) argument
A" such that TopRule(A’) € R4. Let B = A ~» —Conc(A’). Then,
since A’ is minimal w.r.t. <, B 4 A’ and so B successfully rebuts
A’ so B defeats A.

(b) DefRules(A) = 0. If As is of the form ReasonByCases(_L, A}, A}, A%),
set A := A% and repeat this process until you obtain an argument A
which is not a reasoning by cases. Now As is such that Conc(As) =
¢V ¢ for some ¢ € L and DefRules(A3) = () since DefRules(A) = 0, so
Az must be of the form Py, Py, ..., P, ~ ¢V¢'. Since X is well-defined,
TopRule(Aj3) is defined, and so let B = A ~» —n(TopRule(43)). So B
undercuts Az and thus defeats A.

2. TopRule(A) is defined. Let » = TopRule(A4). If r € R;s, then n(r) € L and
so let B = A ~» —n(r). Otherwise, let B = A ~» —1. By the definition of
< and the construction of B, B £ A. Then B undercuts or successfully
rebuts A on A, so B defeats A.

Since S is an AC- or EC-extension of A, it defends itself, so there exists C € S
such that C defeats B. Suppose for a contradiction that C defeats B on B’ # B.
Since Sub(B) = Sub(A) U {B}, B’ € Sub(A). Then, by Lemma [1]2, C defeats
A on B’. But S is conflict-free, so we have a contradiction. Hence, C defeats B
on B. Since B = A ~» —n(r), B cannot be rebutted nor assumption-attacked.
Hence, C undercuts B on B. But since TopRule(B) € R, n(TopRule(B)) is
undefined, i.e. no argument undercuts B on B, a contradiction.

Hence, 1 ¢ Concs(.5). O

Indirect non-triviality of AC-extensions then follows from closure under ac-
cepted intuitively strict rules and direct non-triviality:

Theorem 6. Let ¥ = (£,R,n,<) be a well-defined argumentation theory,
A= (A, X,—,--») be the EAF defined by ¥ and S be an AC-extension of A.
Then, L ¢ Clg,_,(s)(Concs(S5)).
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