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Abstract  

Recent advances in space geodetic techniques (including but is not limited to, Global 

Navigation Satellite System, GNSS, Very-long-baseline interferometry, VLBI) allow 

us to observe changes in continental water storage (CWS) depending on the extend 

and the amplitude of the load. Among the geodetic techniques, GPS is the most 

common observational tool because of its global distribution. GPS observations are 

used for many fields of studies, including seismology and tectonics. This thesis pre-

sents a method to obtain regional changes in continental water storage by inverting 

the three-dimensional GPS time series. 

The error sources from a regional study are studied first. In theory, the surface mo-

tions from each GPS station are caused by loads acting over the entire surface of 

the Earth. As we are only interested in the changing water storage in a particular 

region, the loading signal from the far field, outside the region of interest, must be 

accounted for. From our simulation studies, we conclude that the mass changes lo-

cate outside of the study region cannot be neglected. We find that the coverage of 

the area need to extend to about 20 degrees (about 20 000 km) of the basin center 

for a regional study. 

The second concern is the GPS time series.  We find discrepancies over the globe 

between GPS observed displacements and forward modelled displacements using 

models of water storage. At annual periods, the thermal expansion of the GPS mon-

uments and underlying bedrock, atmospheric loading, and the draconitic signal if not 
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accounted for will introduce an error into the inversion. These errors may contribute 

to the disagreement between our forward modelled and observed ground motions.  

For 88% of the stations analyzed, we are able to reduce the WRMS on the GPS 

vertical time series by removing the modelled displacements using estimates CWS 

loading obtained from WaterGAP. We conclude that the most likely cause of the dis-

crepancies come from the GPS observations themselves. Due to the observed dis-

crepancy, we find that the uncertainties of the GPS time series should be re-esti-

mated in any inversion study. 

Finally, we determine monthly CWS variations from GPS three-dimensional coordi-

nate time series for the major river basins in Europe and North America. The results 

at the basin scale are validated against GRACE and hydrological models, the corre-

lation between inferred CWS and GRACE or models are close to 0.9 and WRMSR 

are as high as 50% for some basins. We also demonstrate that the relative contribu-

tions of the GPS horizontal coordinates are about one third those of the vertical sig-

nals.  We prove that by including the horizontal coordinates in the inversion that we 

are able to improve the inversion results. 
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Chapter 1. Introduction 

1.1. GPS for mass loading research 

The circulation of water from the ocean and land surfaces into the atmosphere and 

back again represents a large transport of matter in the Earth system. Continental 

fresh water, consisting of groundwater, soil moisture, surface water, ice, and vege-

tation storage, is an important natural resource, which is required by all terrestrial 

species including humans. Understanding changes in continental water storage are 

essential for water resource management and the support of daily life.  In this thesis, 

we define continental water storage (CWS) as the total water in all its forms stored 

on the continents at any time epoch.  

Changes in CWS  had been observed  by the Global Navigation Satellite System 

(GNSS) (e.g. van Dam et al., 1994; Wahr et al., 2001; Plag and van Dam, 2002) and 

Very-long-baseline interferometry (VLBI) (e.g. van Dam and Herring, 1994; Petrov 

and Boy, 2004; Tesmer et al., 2009; McMillan et al., 2013). In the literatures, GPS 

observations are the most common technique for observing CWS reported due to its 

global distribution. These stations are used for many fields of studies, especially 

seismology and tectonics. 

The theory of estimating the amplitude of environmental loading signals in geodetic 

observations using global atmospheric mass was first introduced by (van Dam and 

Wahr, 1987). van Dam and Wahr  (1987) demonstrated that GPS coordinate time 

series could be explained by atmospheric loading induced displacements. Since 
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then, may papers have been written on the analysis of environmental loading using 

GPS. Based on classical loading theory from Farrell (1973), we know that surface 

displacements observed by any GPS site are particularly sensitive to the mass 

changes in the near field. For example, numerous studies have demonstrated that 

GPS is able to detect the elastic response of the Earth to changes in water storage 

(or ice mass) at regional scales (Sauber et al., 2000; Heki, 2001; Wahr et al., 2001; 

Bevis et al., 2012) and local scales (Bevis et al., 2004; Wahr et al., 2013). 

Surface displacements due to environmental loading observed by GPS have also 

been observed with the Gravity Recovery and Climate Experiment (GRACE) satellite 

mission derived mass changes. Davis et al. (2004) found a good agreement between 

the GPS height coordinate time series in the Amazon Basin with predictions of sur-

face displacements derived from the GRACE monthly gravity fields, as the WRMS 

differences between GRACE and GPS is at level of 1.5 mm. These results are in 

contrast to the analysis of van Dam et al. (2007) who found only moderate agree-

ment between the GPS and GRACE signals in Europe. The differences were at-

tributed to the signal-to-noise ratio (SNR). In the Amazon Basin, that ratio of water 

storage to the noise is significantly greater than that over Europe. In addition, van 

Dam et al. (2007) proposed that the difference between GPS and GRACE can be 

partly explained by errors in the GPS technique. Subsequent comparisons of 

GRACE with reprocessed GPS coordinate time series (Tregoning and Watson, 2009; 

Tesmer et al., 2011; Fritsche et al., 2012) show slightly improved agreement (as 

compared to van Dam et al. (2007)) but the signals still do not agree at all sites. On 

the other hand, GRACE estimates of water storage agree with models of water stor-

age at long spatial wavelengths (Swenson and Milly, 2006; Fritsche et al., 2012). 

The consensus in the community is that some of the disagreement between GPS 

and GRACE can be attributed to the GPS technique. However, some of the disa-

greement is also likely due to the inability of GRACE to observe short-wavelength 

changes in water storage.  
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Changes in regional water storage from models have also been observed in time 

series of GPS vertical components. van Dam et al. (2001) compared estimates of 

vertical surface displacements predicted from a water storage model with GPS ver-

tical coordinates. They found a reasonable agreement, the phase of annual signal in 

height residuals differs by less than 1.2 month. Recently Fritsche et al. (2012) com-

pared GPS coordinate time series with predicted surface displacements from the 

Water Global Assessment and Prognosis (WaterGAP) Hydrology Model. They found 

admittances between the north and east signals of 0.74 ±0.09 and 0.66 ± 0.10 re-

spectively. In the vertical coordinate, the admittance is 0.90 ± 0.06. These compari-

sons of GPS with GRACE and GPS with water storage models, indicate that GPS is 

sensitive to CWS variations. 

Various authors have used three-dimensional surface displacements from the global 

GPS network to derive low-degree CWS estimates. The non-uniform site distribution, 

errors in the GPS products, and sparse distribution of GPS stations in Asia, Africa, 

South America, and over the oceans limit these inversions. Blewitt et al. (2001) used 

data from sixty-six globally distributed GPS sites to invert for annual variations in the 

degree-1 load. They were the first to identify the global annual and semi-annual wa-

ter mass exchange between the northern and southern hemispheres. Their results 

were limited by the network of stations as the stations were restricted to continental 

areas. The higher spatial degrees of the water storage effect aliased into their de-

gree-1 solution.  

Wu et al. (2003) used priori statistics about the GPS observation errors to determine 

the appropriate degree of truncation for the least squares estimation. The problem 

of the lack of observations over the ocean basins has led others to derive the low 

degree water storage variations from joint inversions of GPS and GRACE gravity 

data (Kusche and Schrama, 2005) or GPS with support of ocean bottom pressure 

models (Jansen et al., 2009; Rietbroek et al., 2012). 
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Wahr et al. (2013) recently introduced a method to use vertical and horizontal crustal 

motions from GPS to determine water storage changes in Lake Shasta in northern 

California. The results suggest that GPS horizontal coordinates are valuable for an-

alyzing regional and local mass changes, especially to unveil the potential source 

from the possible options. 

Recently, vertical GPS time series were used in a regional water storage inversion 

from a dense GPS network in Washington and Oregon (Argus et al., 2014; Fu et al., 

2015). The water storage changes inferred from the vertical GPS time series from 

dense GPS network have proven to be able to provide quantitative estimates of re-

gional CWS variations. 

1.2. Motivation 

Up until recently, the only way to detect the water storage was to use in situ obser-

vations that were usually only reliable at the basin or sub-basin scale.  In-situ obser-

vations, such as ground water depth from wells, lake levels, and soil moisture ob-

servations, can provide accurate information on the water storage but they are la-

bour intensive and only include point estimates of water storages (Famiglietti et al., 

1998; Rosenbaum et al., 2012). Observations of run-off from river gauging stations 

provide observations of water discharge but they are limited to the scale of catch-

ments or basins. Micro-wave remote sensing satellites are used for measuring the 

soil moisture, but they only provide information from the top surface (< 5 cm) (Jack-

son and Le Vine, 1996; Rosenbaum et al., 2012).  Groundwater levels are usually 

monitored using sparsely spaced wells, but the structure of the underground is not 

sufficient to derive precise groundwater storage. 

In the last decade, global observations of the temporal and spatial variability of water 

storage have become possible with GRACE (Tapley et al., 2004).  GRACE currently 

provides monthly observations of global water storage at wavelengths of about 500 
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km. GRACE observes gravity field variations by sensing range changes between the 

twin satellites with K-band microwave interferometer.  

Many publications have demonstrated that GPS observations of surface displace-

ment agree with modelled estimates of the displacement at maybe the 50% level. 

Figure 1.1 shows the GPS up coordinate, GRACE estimates of surface displacement, 

and the forward modelled estimates of the vertical component. The explanations of 

the discrepancies between the GPS and modelled displacements can be found in 

Chapter 5. 

 
Figure 1.1: GPS weekly vertical observations (black) from IGN overlapped with displace-

ments obtained from GRACE (blue) and GLDAS (red) at three GPS sites : AREQ, NLIB 

and POTS, showed in red dots on the corresponding maps on the right side, respectively. 

Discrepancies between the GPS and modelled displacement require further analysis.  

One focus of this research is demonstrating that the contribution of signals load dis-

placements induced from the region outside of the study area. Commonly, when 

authors use GPS time series (after removing all the known effects, such as orbit 
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error, clock error, ionosphere and atmospheric delay, Tectonics, etc.)  to investigate 

changes in regional water storage, the consider that the load is only driven by  CWS 

changes from the region of interest (Argus et al., 2014; Fu et al., 2015), e.g. Fu et al. 

(2015) extended the inversion to include one degree of coverage outside the region 

of interest for the inversion study. However, according to the classical loading theory 

(Farrell, 1972), mass changes over the whole globe contribute to the surface dis-

placement at any point. In the inversion, this far-field effect (details in Section 4.1) 

can introduce an error into the inversion. Similar studies show that the loading sig-

nals from the far field are small for a constant load or disk load (Schrama, 2005).  

But in the terrestrial gravitational observations, far-field load signals cannot be ig-

nored (Spratt, 1982; Merriam, 1992). Thus, the far-field effects for the loading dis-

placements will be discussed in section 4.1. 

The horizontal GPS coordinates are compared with the GRACE estimates. For the 

regions where large hydrologic signals occurs (e.g. Amazon River basin) the corre-

lation between GRACE and GPS can reach as high as 0.9 (Tregoning et al., 2009). 

The horizontal coordinates of the GPS time series have been used to determine the 

mass changes, inferring lake level and glacial mass loss determination by introduc-

ing the ratio between vertical and horizontal coordinates (Wahr et al., 2013). We 

demonstrate that the horizontal displacements can and should be used in the inver-

sion, more details in Section 3.4. 

Vertical displacements are the mostly used in loading displacements studies, both 

for environmental displacement comparison and for inferring the water storage vari-

ations. Recently, the ratio between the horizontals and vertical displacements of 

GPS observations are used in the continental water storage determination at re-

gional scale (Wahr et al., 2013). Unlike other observation techniques (such as 

GRACE), GPS observations are relatively sparse except in some regions, e.g. Japan 

and California. Including as many as available observations from GPS should, in 
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theory, make the water storage determination more stable, as more redundant ob-

servations are included in the inversion. GPS horizontal displacements have proven 

to be useful for global low degree mass field variation determinations (Wu, 2003; 

Kusche and Schrama, 2005; Rietbroek, 2014). Thus, a new inversion scheme is 

required to make use of the horizontal observations for regional continental water 

storage determination. 

1.3. Outline 

This thesis is organized according to the motivations presented in the previous sec-

tion. We first introduce the theoretical basis in Chapter 2, then present the inversion 

applications in Chapter 3. The pre-studies of the inversion schemes and the corre-

sponding findings are described in Chapter 4 and Chapter 5. 

Chapter 2 introduces the mass loading theory for a point load and global mass load 

as well as the inversion methodologies. We demonstrate the requirements of the 

loading calculation using mass loading Green’s functions as well as its properties for 

near-field regions. Then, the inversion schemes for determining the continental wa-

ter storage from the displacements are introduced and described. 

Chapter 3 presents three inversion schemes developed in this thesis, and we apply 

them to different regions demonstrating their applicability. Three-dimensional GPS 

observations are all used in the inversion schemes and the contributions from the 

horizontal displacements are shown with the analysis. The results demonstrated that 

the horizontal coordinates improves the inversion. 

Chapter 4 discusses the commonly ignored signals/errors for the regional studies 

and their impact amplitudes. The results in this chapter are based on simulations 

and are presented and discussed for all regions over the globe. The goal is to provide 

a better approach to make use of the GPS observations for regional studies and to 

determine the amplitude of the error if the far-field or near-field loads are ignored. 
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Chapter 5 compares GPS time series and forward modelled displacements from 

GRACE and hydrological models. The discrepancies between GPS and modelled 

displacements are determined and then discussed. The possible cause of these dis-

crepancies, such as some local effects, thermal expansion of the monument and 

bedrocks are discussed. In this thesis, the comparisons of all the time series are 

performed both in the temporal and the spectral domain. 
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Chapter 2. Inferring surface 
displacements from 
changes in surface mass 

2.1. Mass loading Green’s function 

Farrell (1972) derived mass loading Green’s functions for a Guttenberg-Bullen (GB) 

Earth model. For this problem, vertical and horizontal surface displacements U  and 

,V  at a particular location are provided as a function of the angular distance between 

the point and the point load,   and its mass m : 

 
( )

( )  ,

u

v

U G m

V G m








  (2.1) 

where ( )uG   and ( )vG   are vertical and horizontal mass load Green’s functions, 

respectively, shortened here to Green’s function. 

Green’s functions are obtained from the loading Love numbers (Longman, 1963), h  

and l , and the Legendre polynomials of degree n , nP , as follows: 
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






 (2.2) 

where a  denotes the radius of the Earth and em  represents the total Earth mass. 

Loading Love numbers differ from the original Love numbers (Love, 1909) as the 

former are used to determine the response of the Earth to tidal forcing driven by 

the moon and sun. In this thesis, only surface mass loading is discussed. Thus, the 

term mass loading Love numbers will be shortened to Love numbers. 
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Green’s functions are obtained by summing Eq. (2.2) from degree 0 (or 1) to infinity 

for the vertical and horizontal displacements, respectively. In practice, the Love 

number used in Eq. (2.2) are calculated using a limited degree, e.g. 10,000. rather 

than infinity (Farrell, 1972).  

Although the Love numbers of high degree are available, the direct summation is 

not suggested due to the low speed of convergence, as (1) 1nP  . Kummer's series 

transformation (Abramowitz and Stegun, 1964) is applied to enhance the speed of 

convergence: 
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 (2.3) 

 where the h and l are constants, following the definition in (Farrell, 1972): 

 lim
n

n n

h h

nl l



 

   
   

   
 (2.4) 

for n  sufficiently large. Then the first summation in Eq. (2.3) become constants. 

The second summation approaches zero since 0nh h    and 0nnl l   , re-

spectively, for the n  larger than the cut-off degree. Francis and Dehant (1987) fur-

ther discussed the convergence error for the second terms and provide a routine 

to compute the Green’s function depending on the value of , in order to reduce 

the error of computing the Green’s function. 

Green’s functions for the displacements are usually normalized by 12( ) 10F a   

(more details in Section 2.2.1) and provided in tabular form (e.g. Farrell, 1972; 

Francis and Dehant, 1987). Normalized Green’s functions for GB and Preliminary 

Reference Earth Model (PREM) (Dziewonski and Anderson, 1981) are plotted in 

Figure 2.1. The GB Earth model is conveniently listed in (Alterman et al., 1961) 

and the corresponding Green’s function is obtained in (Longman, 1963; Farrell, 
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1972; Francis and Dehant, 1987). The Love numbers for the one-dimensional 

PREM model is presented in (Wahr et al., 1998) and the corresponding Green’s 

function is presented in (Plag and van Dam, 2002). The differences in Love num-

bers  between different Earth models are on the order of 1-1.5 percent (Plag and 

van Dam, 2002). Discrepancies mainly exist in the near field, i.e. for loads at an 

angular distance 1   degree (see Figure 2.1). Thus, we conclude that Green’s 

function derived for PREM are more sensitive to the mass change in the near 

field, but the differences between GB and PREM for 1  degree are not signifi-

cant.  

 
Figure 2.1: Vertical and horizontal normalized Green's function for the GB and PREM 

Earth models. 

 

2.2. Obtaining displacements from Green’s func-
tion 

Implementing Green’s functions from the corresponding Earth model into Eq. (2.1), 

a point mass located at position P  would induce a 3-D displacement in local topo-

centric coordinate system, , N E and U at position A  as showed in Figure 2.2: 
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  (2.5) 

For a global surface mass load, ( , )PAP    which is in units of pressure in the 

hydrological implementations (e.g. van Dam and Wahr, 1987; van Dam et al., 1994), 

the displacements can be obtained by integrating the effects of all the induced dis-

placements from each infinitely small element within  : 
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   (2.6) 

where g   denotes the gravitational acceleration and A   is the surface area. The 

spherical coordinate system is defined as in Figure 2.3, the system is simplified as 

the z-axis can be rotated to the point A  (Farrell, 1972). In this polar coordinate sys-

tem, the point on the sphere can be presented from the angular distance and azimuth, 

( ), .   The surface integration element is 

 2 sinA a d d     (2.7) 

By introducing spherical coordinate system, the displacements can be determined 

using the following integrals: 
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   (2.8) 

Suppose there is a homogenous load over the globe, ,( )P P   , and we perform 

the integral in Eq. (2.8): 
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Figure 2.2: 3-D displacement induced by a point load placed at P . 

 

 
Figure 2.3: Displacements induced at P from mass load in spherical coordinates. 
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 (2.9) 

The horizontal displacements are zero due to the fact that the induced displacements 

cancel each other when two equal masses positioned on each side of the observa-

tion position at the same distance, the amplitude of the horizontal displacements are 

the same but in opposite directions. 

Surface mass loading of the Earth is often provided on latitude and longitude grid 

such as the mass of water in forms of soil moisture, ice/snow depth etc. provided by 

the Global Land Data Assimilation System (GLDAS) (Rodell et al., 2004), by Wa-

terGAP Global Hydrology Model (WaterGAP, WGHM is also commonly used in other 

articles) version 2.2 (Döll et al., 2003; Müller Schmied et al., 2014) or atmospheric 

pressure provided by European Center for Medium Range Weather Forecasts 

(ECMWF).  

The spatial grid datasets have a natural advantage in the regional study as the 

boundary of the study region is normally clear. Spherical harmonics are a set of the 

orthogonal functions on sphere, representing the surface of the whole globe. For the 

regional application, an ultra-high degree of Stokes coefficient is required in order to 

present regional details. High degree Stokes coefficients also largely increase the 

size of the parameterization. In the inversion study, increasing the size of the un-

known matrix might lead to rank deficient. This draw back the usage of the Stokes 

coefficient in the regional application. 

To calculate the displacement  TX N E U  from a latitude-longitude grid within 

a region  , we insert spherical surface element: 
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 2 sin ,ddA da      (2.10) 

into the Eq. (2.6). The surface displacement induced by the mass variation repre-

sented on a latitude and longitude grid: 
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The required spatial resolution for obtaining the displacements induced from the sur-

face mass loads will be discussed in Section 2.2.2.  

2.2.1 Small angular distance exceptions 

Loads at small angular distances from the point of where we want to calculate the 

loading have three influences on the calculation of Green's function. First, in terms 

of the Green's function determination, the Green's function does not converge fast 

enough for the close distance case, i.e. 0.01o   (Francis and Dehant, 1987): Due 

to (1) 1nP  , the
0

(cos )nn
P 




  . Secondly small angular distance also leads to a 

singularity as the distance term,  , is in the denominator. Thirdly, the sharp change 

of Green's function and the effect for close distance calculation as Green's function 

is proportional to 1 / . In this section, we focus on the singularity problem of vertical 

and horizontal displacements when 0  .  

Reformulate Green’s function for small distance 

Green’s functions provide the displacement factor between the loading mass and 

the induced displacements. For calculating the displacements from a very near-field 

load, a precise modelling of the loading mass is required. Green’s function changes 

quickly at very short distances. So loads here will have a bigger effect than loads at 

a much greater distance for the equivalent amount of load. To account for this 

change in Green’s functions, and to improve the numerical approximation, we must 

divide the normal grid unit into much smaller units. Thus, a grid unit close to the 
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observations is usually smaller than a unit further away (e.g. van Dam et al., 2001). 

(Further discussion about the spatial resolution requirement is presented in Section 

2.2.2). On the other hand, proper modelling of the Green’s function itself is required 

for the close distances as well. 

Green's function is normalized by ( )F  , where the vertical and horizontal normaliz-

ing factor are both 12( ) 10F a  . Based on the Boussinesq solution (Boussinesq, 

1885), normalized Green's function ( ) ( )FG C     when 0    (Francis and 

Dehant, 1987), the C  is a constant. For the near load, the normalized Green's func-

tion, ( ) ( ),G F    can be fitted using third order polynomials, ( ) ( )G F  

2.a b c    Higher order polynomials were tested but not found to be significant 

for the regression. The vertical and horizontal Green's function within 1  , corre-

sponding to ~100 km, can be rewritten as: 
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(2.12) 

These polynomials can be used to obtain Green’s function for 0.0001    as well as 

for the easier integration of the local effect with less calculation effort. 

Re-normalizing Green's function (Agnew, 2012) provides another solution for the 

close distance exception, In this case, the normalization factor ( )F  used in (Farrell, 

1972) is replaced by 

 2( ) 2 sin
2

F a



    
 

  (2.13) 

for both vertical and horizontal displacements. As the displacements induced from 

the surface element are calculated as 
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Then insert Eq. (2.13) into above, the displacement integral is 
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where 'G  denotes the renormalized Green’s function. 

Singularity in Green’s function for small distance 

When the distance between the mass load and the point where we want to know the 

surface displacement due to the load approaches zero, then the Green's function 

goes to infinity due to the singularity. 

In a spherical coordinate system, the loading mass dm  which is usually expressed 

in units of pressure (i.e. mbar). We can convert mass to pressure using 

 1 22 sin ,dm Pg a d      (2.16) 

where the P  is the pressure, g  denotes the gravitational acceleration and the factor 

2 sina d   represents the surface area of the ring with radius of   and width of d . 

For small  , the pressure changes can be treated as constant. Then the horizontal 

displacements are zero, according Eq. (2.9). The vertical displacement u  can be re-

formulated as: 
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  (2.17) 

where the G  is normalized Green’s function, ( ) ( ).G G F     

2.2.2 Unit size requirements along the distance 

It is reasonable to divide a region into small segments or integration elements, which 
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can be smaller grid units for the displacement calculation. We consider the integra-

tion element as point mass located in the middle of the grid unit. Here we plot the 

vertical and horizontal Green’s function within 5 degrees of distance in black in Fig-

ure 2.4. 

In Figure 2.4, we show two sets of examples for discretization. The blue line uses 

the 1 1   latitude and longitude size of integration element and the red line indicates 

the ..1 10 0   size. The difference between the stair-step graphs and the black ver-

tical Green’s function line are discretization error, ( ).dG   By reducing the size of 

the integration element, ( )dG   drops accordingly. 

 
Figure 2.4: Vertical and horizontal normalized Green's function for the close distance in 

Right and Left Panels, respectively. 

The discretization error can be theoretically removed when an infinitely small grid is 

employed for the calculation. But it is not worth the trouble due to limited computation 

power. Thus, the question arises how to avoid wasting too much computational 

power and provide accurate loading displacements? Due to the fact that Green’s 

function is proportional to 1 ,  the curve is steep for   close to zero and flattens 

over larger .  The common solution is to introduce step functions (adaptive sam-

pling) according to .   The sampling rate d   is smaller when    is small, larger  

d  for larger   (see example in Figure 2.4). In this way, the calculation efficiency 

and accuracy can be balanced.  
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In principle, the boundaries of the region can be picked randomly. Here we divide 

the globe into three regions: 0.5 0.5 5,         and 5 .   In order to estimate the 

discretization error, a closed-loop simulation is performed based on the monthly 

gravity field from GRACE CSR Rel051 from Jan. 2003 to April 2013. This dataset 

includes 124 months of observations excluding six months without datasets. 

The time variable gravity field in terms of the spherical harmonic ( , )lm lmC S  is syn-

thesized to the mass variation on the Earth surface in terms of the water equivalent 

height ( , )m     at the spatial resolutions from , )( 0.001dd      to ( 10, )d d     . 

Then it is divided into 0.5 0.5 5,         and 5   . The surface displacements in-

duced from these three regions are calculated for the corresponding spatial resolu-

tions. The deviation with respect to a case where the entire globe is divided down to 

the highest resolution are considered as the error from the discretization (see Figure 

2.5). 

From the simulation (the results are shown in Figure 2.5) the 0.5    have a strong 

fluctuation for 0.007 0.2   , the standard deviation reaches almost 0.2 mm for 

( , ) 0.11 .d d      For the ( , ) 0.01d d     , the standard deviation of the residuals, 

, 0.01( )U
d d      is smaller than 0.05 mm for vertical component and 

,( ) 0.003NE
d d    mm which is about two orders of magnitude lower than the GPS 

observation error as the error budget of GPS coordinate is on the order of 0.7, 0.7 

and 2.2 mm for weekly north, east and up samples, respectively (Ray et al., 2011). 

Thus, the spatial resolutions of the mass load are chosen as 0.01 0.1,   and 1 for 

0.5 0.5 5,         and 5 ,    respectively. 

                                                             
1 A standard approach of preparing GRACE gravity field is applied. The degree-1coefficients are 

replaced by coefficient from Swenson et al (2008), C20 from SLR observations (Cheng and Tapley, 

2005) and de-striping filter from Swenson and Wahr (2006) is applied. No Gaussian smoothing 

filter is applied here to preserving the local signal. 
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Figure 2.5: Discretization errors of the global displacement which divided into three re-

gions. Top left: standard deviation of the ( )dG  for 0.5   different spatial resolution, 

the blue, green and red lines for North, East and Up direction, respectively. Top right and 

bottom: represent the ( )dG   for 0.5 5    and 5 ,   respectively. 

In order to show the effects of the different discretization methods, we calculate the 

displacements at GPS station BUCU (26.13 44.46 )E, N  , using an adaptive grid (Ta-

ble 2.1). The displacements at the BUCU GPS station, located in the east of the 
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Danube basin, are obtained from different spatial resolution grids. The single month 

global water storage load comes from GLDAS. August 2003 is chosen, as in summer 

time, the load is at a minimum and causes the larges uplift. From this calculation, we 

see that the displacements are effected by the discretization method. By improving 

the spatial resolution of the grid, from 1 degree to 0.1 degree, the east and up dis-

placements approach the result from the adaptive grid. For the vertical displace-

ments, the displacements calculated in the degree grid are the same as the result 

derived from the adaptive grid calculation in the third digits, while the horizontal dis-

placement only meets second digits. 

Table 2.1: Displacements at BUCU forward modelled from GLDAS CWS for different 

spatial resolution 

Displacements (mm) North  East Up 

1 1o o  -0.91 0.32 6.13 

0.1 0.1o o  -0.85 0.39 6.36 

Adaptive grid -0.89 0.42 6.36 

 

2.2.3 Displacements induced by global mass variations: 
spherical harmonic approach 

The gravitational potential of the Earth, ,V  satisfies the Laplace equation: 

 0,V   (2.18) 

where   is the Laplace operator. The solution of Eq.(2.18) in spherical coordinates 

leads to the spherical harmonics series (Heiskanen and Moritz, 1967; Moritz, 1980): 
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with ( , , )V r   represents the gravitational potential at the location ( , , )r   in polar 

coordinates: longitude, co-latitude and distance to the geocenter;GM  stands for the 
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gravitational parameter; l  and m  are the degree and order of the spherical harmon-

ics coefficients, respectively; lmC  and lmS  are the normalized Stoke coefficients for 

the cosine and sine terms.  

Recent gravity satellite missions, CHAllenging Minisatellite Payload (CHAMP) and 

GRACE, provide, time variable gravity fields up to degree 120 (Mayer-Gürr et al., 

2014) after subtracting the long-term mean gravity field. The surface density anom-

aly is often used to present mass changes or mass anomaly in spherical harmonic 

expansions (Kusche and Schrama, 2005; Sneeuw, 2006):  

 
,

( ) (( , ) cos sin cos )lmw lm lm
l m

a C m S m P          (2.20) 

where w   denotes the density of water, is assumed as 31000 . kg/mw   Stokes 

load coefficients lmC
   and lmS

   are fully normalized spherical harmonic coefficients 

mapping the mass variations on the Earth surface. From Wahr et al. (1998), Stokes 

load coefficients are obtained from 
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where e   denotes the average density of the Earth, 5517 3kg/me   . nk   are the 

load Love numbers similar as l  in Eq. (2.2). Adopting the loading theory from (Far-

rell, 1972) in combination with Eq. (2.5), and according to  (Kusche and Schrama, 

2005), the displacements are:  
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2.3. Inverse approach: displacements to loading 
mass 

Expanding the Eq. (2.6) for m discrete mass loads and N GPS stations, then the 

following system of linear equations can be formed as follows for the 3-D displace-

ments: 

 y = Ax+  (2.23) 

where the masses of the x  discrete mass loads. y  denotes the 3-D displacements 

and A represents Green’s functions including the azimuth term.   denotes the in-

consistencies of the observables which are GPS time series in this case, but are not 

limited to GNSS technology. For the well distributed and redundant observations (the 

number of the observation is more than the number of the unknowns), classical 

weighted least-squares (WLS) adjustment can be implemented to solve the linear 

system by 

 
2

( ) minW Ax y   (2.24) 

in which W is the weight matrix, obtained by inverting the variance-covariance matrix 

of the GPS displacements, as 1
yW Q  . 

2
... denotes the sum of weighted residual. 

The estimated mass load is  

  T -1 Tx= (A WA) A Wy. (2.25) 

The matrix TA WA  is known as the normal matrix .N  After applying of the error prop-

agation law, the covariance matrix of the x  and y , which are denoted respectively 

as xQ  and yQ , is obtained as: 

 


  ,

T -1 T
y

T
y

T -1
x

Ay A

Q = (A WA) A WQ WA(A WA)

Q = P Q P
 (2.26) 

where T -1 T
AP A(A WA) A W,   more properties about this projector can be found in 
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Teunissen (2000, p. 55). 

2.3.1 Rank-deficient and ill-posed problems 

In inverting the linear system of equations, if the results can be properly obtained 

from the Least Squares (LS) or Weighted Least Squares (WLS) methods, then the 

linear system is called well-posed system. Two basic inverse problems arise when 

inverting surface from limited observations: the rank-deficient and the ill-posed prob-

lems. 1. Rank-deficient problem: For the linear system which can generally formed 

by y Ax   , the rank-deficient  problem arises when the design matrix of the linear 

system has a rank smaller than the number of the unknowns ,n  ( ) .rank A n  This is 

typically caused if one or more rows and columns of A  are linear combinations of 

some or all remaining rows and columns (Hansen, 1998, p. 9). 2. The ill-posed prob-

lem is another concern in inversion theory. For many reasons, e.g. the irregular dis-

tribution of the data (GPS network in this study) or gaps in the datasets, the linear 

problems are ill-posed if the eigenvalues of the normal matrix, ,N gradually decay to 

zero, while the condition number is large (Sneeuw, 2000; Hansen, 2010). This is due 

to the nearly linear combinations in the design matrix. Detailed examples regarding 

the well-posed, ill-posed and rank-deficient problems can be found in Petrov and 

Sizikov (2005). 

Excluding the well-posed problem, rank-deficient and ill-posed problems both re-

quire including condition matrix or regularization, in order to avoid the ambiguity 

which comes from the infinite or unstable solutions, respectively.  

2.3.2 Regularization 

For the linear system ,y Ax     regularization is further applied additional con-

straints on the normal matrix. The different types of additional information that may 

be introduced into the regularization can be generally classified into two approaches: 
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mathematic regularization and regularization by prior information. 

The singular value decomposition 

Singular value decomposition (SVD) is powerful tool for analyzing inversion prob-

lems (Hansen, 2010, p. 28). Any matrix, m nA   with m n , can be reformed as: 

 TA U V   (2.27) 

where the diagonal matrix 1 2, , ,( )ndiag        and 21 n     0.   The 

condition number which was originally defined as (Cheney and Kincaid, 2012, p. 321) 

 1( ) ,A A A   (2.28) 

can be reformulated as 

 1( ) .
n

A





  (2.29) 

The condition number indicates the sensitivity of the linear system to the level of the 

noise. If ( ) 10 ,kA   then the solutions of the linear equations are expected to lose 

at least k -th digit of precision (Cheney and Kincaid, 2012, p. 321).  

Tikhonov regularization and L-curve regularization 

The most commonly used regularization method is Tikhonov regularization (Hansen, 

2010, p. 60), which is named after Andrey Tikhonov for his ground-breaking work 

(Tikhonov and Arsenin, 1977). Tikhonov regularization introduces a priori information 

about the noise level to and invert the matrix with the desired smoothness. It is de-

fined by solving the inversion by minimizing: 

 
2 2

( ) min ,W Ax y x    (2.30) 

where the regularization parameter, ,  influences the strength of smoothness for 

the result.  
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The trade-off between adding too much artificial smoothing and the too little regular-

ization is the perturbation bound which can be determined from the L-curve (details 

explained in (Hansen, 1998, p. 83, 2010, p. 71)). The L-curve is represented by 

  log( ), log( ) .Ax y x   (2.31) 

where x  denotes the solution for the corresponding regularization parameter. Alter-

natively   can be determined by the simulation in order to compensate other un-

modelled error sources. 

In this thesis, the regularization parameter   is determined from closed-loop simu-

lations in North America and Europe. The flowchart in Figure 2.6 demonstrates the 

simulation and how the   is obtained. The GPS sites and the analysis area is illus-

trated in Figure 3.5 and Figure 3.10 for North America and Europe region, respec-

tively. This simulation is performed in following process: 

1. Closed-loop simulation starts from forward modelling the displacements from the 

GLDAS monthly model between Jan. 1998 and Dec. 2011 at the GPS sites. The 

forward modelled displacements are interpolated at the monthly GPS time series 

epochs (monthly averaged from GPS weekly time series) in order to keep the 

same availability at each GPS site.  

2. The simulated GPS error is consist of a combination of white, flicker and random 

walk noise, the amplitude and more details are presented in Section 5.2.5. The 

vertical uncertainties are not conserved is that study, thus we enlarged the orig-

inal vertical uncertainties from GPS time series which base on the comparison 

between the original GPS time series and forward modelled displacement from 

the reference resources. Then the error time series are added into the simulated 

GPS time series. 

3. Basin mean CWS variations are inverted with whole series of different  . We 
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compare the inverted basin mean CWS with the original monthly basin mean 

CWS variations from GLDAS. The square sum of the residuals for each basin 

are plotted in Figure 2.7 for North America and Figure 2.8 for Europe, respec-

tively. 

 

Figure 2.6: Flowchart for obtaining optimal   from closed-loop simulation. 

Firstly, larger regularization parameters generally result in a lower level of the resid-

ual, but when regularization parameters continue to increase, the residuals also in-

crease. We choose the cut-off at 0.05  , as most of the basins are close to their 

minimums and not too much regularization is introduced. 
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Figure 2.7: Chosen optimized regularization parameter (dash line) in North America in-

version region. 

 
Figure 2.8: Chosen optimized regularization parameter (dash line) in Europe inversion 

region. 

2.3.3 Relative contribution  

The observations in a linear system determine the inversion results, but different 
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observables have different contributions to the least squares solutions. After intro-

ducing the unresolved observation into the linear system e.g. ,y Ax    then the 

system can be represented as: 

 
1

2 3a a a

y A A x

y A A x





       
        

       
 (2.32) 

where the , xa ay  and a   are the unresolved terms. 1 2 3, , A A A   and the original A  

forms the combined design matrix cA . Here after reformulating Eq. (2.32) as the 

new linear system: 

 .c c c cy A x    (2.33) 

The relative contribution r and ar , which indicate the share of the original and extra 

observables from Eq. (2.32), can be obtained from: 

 1
cR N N  (2.34) 

 1
ca aR N N  (2.35) 

where cN  is the normal matrix for the combined system: 

 T
c c ccN A W A  (2.36) 

Contributions of the two sets of the observations for all unknowns are 
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  (2.37) 
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Chapter 3. Inferring Continen-
tal Water Storage from GPS 
3-D time series 

In this chapter, we focus on regional inversions case studies with GPS observations. 

The corresponding inversion methodology is described in Chapter 2. There are three 

inversion methods introduced in this chapter: the single basin inversion, multiple ba-

sin joint inversion and regularized inversion. Each method is appropriate for a spe-

cific application.  

The single basin inversion is suitable for spatially extensive basins (e.g. the Ama-

zon River basin) where the displacements within the basin are expected to be much 

larger than those in the surrounding regions. The multiple basin joint inversion is 

used to determine the CWS at the center of an extensive basin or set of basins within 

a larger spatial extent. This method can be used if the number of observations and 

the data quality is sufficient. Joint inversion with regularization is a more stable 

inversion method which can be implemented to infer mass changes in all the major 

basins within a region using the GPS time series. 

3.1. Inversion applications in Amazon River basin 

The single basin inversion scheme is the simplest inversion to invoke. In this case, 

the CWS within one basin is inferred from the displacements observed nearby.  

The Amazon River basin is the largest hydrological basin in terms of annual mass 

variations on the Earth (Lutgens et al., 1995). The water mass loading induced dis-

placements are observed in GPS time series that are highly correlated with GRACE 

(Blewitt et al., 2001; Davis et al., 2004). But to date, there has been no regional GPS 

inversion study performed in this region, possibly due to the sparse network around 
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this region and the short time span of the stations in that region. 

The Amazon River Basin, mapped in dark grey in Figure 3.1, is surrounded by five 

GPS stations indicated by the red dots in the figure. In contrast to the station distri-

bution used in Wahr et al. (2013), the GPS sites around Amazon River basin are 

relatively distant from the load, e.g. the site BOGT is 1.04o (~100 km) away from 

Amazon River basin and farthest station, BRAZ is located 4.5o (~450 km) from basin 

border. Direct inversions of these data without considering the Spatial Truncation 

Error (STE, discussed in Section 4.1) leads to a CWS amplitude more than twice the 

GRACE observed CWS change for stations 20 km apart (Wahr et al., 2013). Thus, 

accounting for the STE is essential for the Amazon case study. The displacements 

induced by the far field the mass changes, i.e. loads outside of the area where we 

are inverting for changes in water storage, is obtained from monthly GLDAS CWS 

variations and the corresponding Green’s functions. Then these displacements are 

subtracted from the GPS observations. 

The GPS observations, with outliers removed, from the Amazon River Basin are 

shown by the black lines in Figure 3.1. The vertical displacements before 2006 were 

treat as outliers and removed in the BOGT time series as the GPS observations 

were extremely noisy during those period. The time series of the horizontal displace-

ments from AREQ between 2002 and 2004 and from 2007 to 2008 are removed due 

to the same reason.  

After removing the outliers in the GPS observations, we invert the three-dimensional 

time series to determine water storage in the Amazon River basin.  The inversion is 

done in processing stages: 

1. Choosing the GPS site surrounding Amazon basin, see Figure 3.2, and re-

moval of the linear trends in GPS observations to avoid any tectonics. The 
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trends are estimated for the entire time span for each site and each direc-

tional component. The GPS time series are averaged from weekly to monthly. 

2. Atmospheric loading and non-tidal ocean loadings are removed from the 

GPS time series based on the atmospheric barometric pressure variations 

provided by National Center for Environmental Prediction (NCEP)/National 

Center for Atmospheric Research (NCAR) (Kalnay et al., 1996) and the 

Ocean Bottom Pressure (OBP) product from Circulation and Climate of the 

Ocean (ECCO) (Fukumori, 2002; Kim et al., 2007), respectively. More details 

can be found in Section 5.1.3. The Greatbach approach  (Greatbatch, 1994) 

is adopted for removing the trends of the atmospheric and non-tidal ocean 

loadings in order to be consistent with GPS time series. 

3. We re-estimate the GPS uncertainties for CWS loading applications. The 

horizontal uncertainties are replaced by the standard deviation of the dis-

crepancy between simulated displacements and GPS observations. Error 

amplitudes of the vertical GPS time series are increased by a factor of five. 

The reason of introducing this factor is explained in the discussion of the 

error amplitudes in Section 5.2.5. 

4. We estimate the CWS load displacements due to the mass changes outside 

of the Amazon River basin.  These are estimated using the continental water 

storage derived from GLDAS model. These signals from the GPS observa-

tions are removed.  

5. The design matrix A   in Eq. (2.23) is obtained by convolving the Green’s 

functions ( )G   for all the integral elements within the Amazon basin.   is 

the spherical distance between the GPS sites and each integral element. 

The unknown x   in Eq. (2.23) is the mean CWS within Amazon basin. Sim-

ulated displacements at the GPS sites forms observation matrix y . Then the 
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CWS variations are inferred from the GPS observations according to 

Eq. (2.25).  

3.1.1 Simulation 

Before inverting the GPS observations, we first performed a closed simulation of the 

inversion. Without introducing any error into the forward modelled GPS time series, 

the residuals of the closed simulation study are at the level of numerical truncation 

error (relative error at the level of 1610 ). This algorithm is robust in error-free simu-

lation.  

We then repeat the simulation including the error information. The displacements 

that we attribute to the simulated GPS time series are obtained by forward modelling 

displacements of the mass variations within the Amazon River basin using water 

storage from the GLDAS model from Jan. 2000 to Dec. 2010. We obtain mass load 

variations using the soil moisture and snow/ice mass. The CWS in Greenland is ex-

cluded from the water storage model due to the unrealistic glacier dynamics there 

(Jiang et al., 2013). The GLDAS estimates of CWS are provided at a monthly reso-

lution and at 1 degree by 1 degree spatial sampling over the continents. Before using 

the GLDAS data, Greatbatch correction  (1994) is applied, allowing us to remove the 

trends for each grid cell. Then, we simulate the GPS error as white, flicker, and ran-

dom walk noise (Williams, 2003). The amplitude of these three error models are 

based on the re-estimated weekly noise amplitudes in units of mm as described in 

Section 5.2.5: 
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  (3.1) 

The simulated displacements at the GPS sites in the Amazon River basin are illus-
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trated as the blue lines in Figure 3.2. The uncertainties on the simulated displace-

ments are presented as the shaded regions in the figure. These simulated displace-

ments are introduced in the inversion scheme described above and the correspond-

ing CWS time series are presented in Figure 3.4. The statistical differences between 

the loading displacements signal and the simulated time series are presented in Ta-

ble 3.1. 

Table 3.1: Statistical comparison between simulated GPS and forward modelled 

displacements 

GPS 
correlation WRMSR(%) RMS signal (mm) RMS simu. (mm) 

N E U N E U N E U N E U 

UNSA 0.52 0.11 0.18 5.00 0.38 6.75 0.3 0.1 0.8 1.1 1.2 2.6 

KOUR 0.39 0.22 0.45 1.62 1.29 5.74 0.4 0.2 0.9 1.1 1.2 2.7 

BRAZ 0.31 0.38 0.34 5.14 9.78 6.79 0.2 0.3 0.9 1.1 1.0 2.1 

BOGT 0.05 0.33 0.18 2.19 1.89 0.49 0.3 0.2 0.7 1.2 1.2 2.6 

AREQ 0.37 0.32 0.33 1.20 3.36 15.95 0.4 0.3 1.5 1.2 1.0 2.7 

We can glean a number of results from the table above. Firstly, the loading displace-

ment signal is small, compared to the GPS noise, as the RMS of the simulated time 

series is two to three times larger than the RMS of the difference of the signal in 

vertical. The ratio is even worse for the horizontal components. Secondly, a small 

Weighted Root Mean Square (WRMS) (definition in Section 5.2.1) can be found after 

subtracting the original loading displacement from the simulated time series. The 

largest WRMS appears for the AREQ vertical signal as this station is located closest 

to the center of the basin. WRMS Reduction (WRMSR, definition in Section 5.2.1) 

for all the other time series are smaller than 10%. Thirdly, relatively small correlations 

between the simulated time series and the loading displacements are found. All 

these features are due to the strong noise introduced into the simulation. Thus, if we 

could inversion CWS from the simulated time series and be able to present better 
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statistical result than Table 3.1, then it can be defined as a successful inversion al-

gorithm. 

 

Figure 3.1: Amazon basin map (dark grey) with surrounding five GPS stations (red dots). 

The inverted CWS from the simulation generally follows the original GLDAS CWS. 

The WRMS of the obtained CWS after subtracting GLDAS reduces to 8.4 cm of 

Equivalent Water Height (EWH) from 11.5 cm EWH, thus the WRMSR is 26.7%, see 

Table 3.2. In the ideal case, WRMSR reaches 100% when this simulation is error 

free. The simulated errors in the GPS time series are the reason for decreasing 

WRMSR. In this simulation, the inverted CWS is aligned with the original GLDAS 

CWS. We calculated the cross correlation and we find no phase delay between the 

inverted CWS and original CWS. The correlation between the inverted CWS and the 

original signal are up to 0.69. Comparing to Table 3.1, significant improvements are 

found. The correlation is almost doubled and the WRMSR are significantly higher 

than the best WRMS between the simulated GPS time series (based on GLDAS) 

and loading displacements. 

The results from the simulated displacements, thus, provide the qualitative evidence 

that this sparse GPS network around Amazon River basin can be used for determin-

ing CWS variations. 
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Table 3.2: Statistical comparisons between the CWS obtained from simulated GPS and 

from reference sources. 

 Correlation WRMSR (%) RMS (cm) 

GRACE 0.55 -10.5 14.1 

GLDAS 0.69 26.7 7.8 

WaterGAP 0.61 18.4 9.7 

GPS - - 11.9 

3.1.2 GPS-inferred results 

Using GPS observations in the inversion, we obtain the results in Figure 3.4. The 

CWS changes in terms of equivalent water height (EWH) from the GPS 3-D coordi-

nates are shown in black, and the CWS from GRACE (blue), GLDAS (red) and Wa-

terGAP (green) over Amazon. WaterGAP is similar to GLDAS except that surface 

water, canopy water, and ground water, are included in the model. The grey shaded 

areas indicate the range of uncertainty on the estimated CWS. The inverted CWS 

matches the CWS obtained from the reference sources. The correlations between 

the CWS from GPS and from references are all above 0.7 and show positive 

WRMSR, see Table 3.4.  

The comparisons between the CWS from GPS and GRACE show good agreements, 

with a correlation up to 0.75 and WRMSR of 31.6%, which is significantly better than 

the results in the simulated case. We also estimated the annual terms in the obtained 

CWS time series and the residuals between comparisons, in order to determine 

whether the main signal content is captured in the GPS inversion.  
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Figure 3.3: Inversion using the simulated GPS time series from GLDAS (black), with 

CWS obtained from GRACE (blue), GLDAS (red) and WaterGAP (green). The shaded 

regions represent the one sigma error on the inverted CWS. The differences are shifted 

with -0.5m EWH for better visualization (dash lines). 

 

Figure 3.2: The GPS observations 

(black) and simulations (blue) 

around the Amazon River basin. The 

shaded areas represent the one 

sigma of the corresponding time se-

ries. 
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Table 3.3: Statistical comparisons between the CWS obtained from GPS time series and 

from reference sources. 

 Correlation WRMSR (%) RMS (cm) 

GRACE 0.75 31.6 14.1 

GLDAS 0.52 14.7 7.8 

WaterGAP 0.67 24.9 9.7 

GPS - - 15.5 

 

The RMS of the modeled CWS from the simulated GPS observations is almost dou-

ble of the CWS amplitude from hydrological models (GLDAS and WaterGAP) and it 

shows a similar amplitude to GRACE. This indicates that the hydrological models in 

Amazon basin under-estimate the water storage. The high correlation between all 

the CWS time series indicates a proper phase of the inferred CWS. 

 
Figure 3.4: CWS obtained from GPS time series (black) in Amazon.  

3.2. Inferring CWS in North America 

Unlike the sparse GPS distribution around Amazon River basin, a much denser GPS 

network exists in North America (see Figure 3.5). Recently, the applications of GPS 

observations in this region were extended to the hydrology field, such as monitoring 

groundwater (Amos et al., 2014) and estimating water storage (Argus et al., 2014; 
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Fu et al., 2015).  

In this section, we focus on estimating the CWS of the St. Lawrence River basin. 

Unlike the Amazon River basin where no major basins are located to its east or west 

direction, the St. Lawrence River basin is surrounded by other river basins in North 

America. An area outside of the St. Lawrence is co-estimated in the inversion. Inclu-

sion of the surrounding basins helps to reduce the far-field effect error (details in 

Section 4.1). 

3.2.1 Inferring CWS for the St. Lawrence basin 

The St. Lawrence River basin (blue in Figure 3.5) includes all the five Great Lakes 

in North America and makes it the largest fresh water basin in terms of volume in the 

world. In order to estimate the CWS within this basin, we co-estimate all the basins 

within a certain distance of this basin. The single basin inversion approach is not 

suitable for this basin, as St. Lawrence basin is surround by many major basins. The 

amplitude of the direct inverted CWS is far larger than that obtained from our refer-

ence source (GRACE, GLDAS and WaterGAP). This fact arises because of the STE 

from the surrounding basins. Subtracting displacements from hydrological models 

cannot reduce STE to an acceptable level. In the next section, we present the inver-

sion method for estimating all the river basins from all the GPS time series with the 

support of the regularization. In this section regularization is not employed for esti-

mating St. Lawrence River basin CWS from the GPS time series. 

Although the suggested geographic coverage for the inversion as discussed in Sec-

tion 4.1 is 20 degrees from the center of the basin, the coverage applied in this basin 

extends to 30 degrees as we find that this improves the stability of the inversions 

and reduces the STE. There are 38 river basins and 138 GPS sites (the correspond-

ing stations and their locations are listed in Appendix A) within this coverage, see 
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Figure 3.5. But on average, only ~70 GPS have the observation time series simulta-

neously (see Figure 3.6). 

 
Figure 3.5: The analysis area for North America includes major river basins in dark grey 

and GPS sites in red dots. 

We estimate the CWS in St. Lawrence River basin with Eq. (2.24) without regulari-

zation. The uncertainties in the GPS time series are re-estimated as described in 

Section 5.2.5. The inferred CWS variations are presented in Figure 3.7. They show 

a better agreement with the CWS from WaterGAP as compared to our other CWS 

standards. No significant phase delay can be found from the comparisons between 

GPS and reference sources. The correlation between GPS inferred results and our 

reference sources reaches up to 0.76 (WaterGAP). 

Statistical comparisons of the GPS estimated CWS with our reference sources 

(GRACE, GLDAS and WaterGAP) are presented in Table 3.4. GPS inferred CWS 

have the largest RMS as compared to the CWS from our reference sources. RMS 

of the CWS from WaterGAP is close to our inferred results. The under estimated 

GRACE monthly solution likely comes from two sources: first, GRACE is not sensing 
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the small-scale mass changes and second it is effected by the leakage for the re-

gional basin studies. The GLDAS CWS consists of soil moisture (partly groundwater) 

and snow/ice water. Components such as the remaining groundwater, canopy, and 

surface water, however, are missing in this model. These missing components of 

water storage represent the main differences as the peak to peak water level of the 

Great Lakes can be up to 0.5 m to 1 m, depending on the specific lake. If this surface 

water is spread out over the whole basin, peak to peak difference is up to 0.1 m. In 

St. Lawrence basin, surface water is obligate to include in the CWS study. The dif-

ferences between the GLDAS and WaterGAP in Table 3.4 confirm that soil moisture 

and snow/ice are not sufficient to represent the seasonal CWS variation amplitude.  

 
Figure 3.6: Available GPS sites during the entire time span for the inversion. The dash 

line shows the number of basins which are inferred from GPS time series. 

Strong correlations are found in all the comparisons, which would indicate that the 

phase of the annual signal is properly determined from the inversion. This can also 

be visually observed in Figure 3.7. Thus, these statistical results proof that CWS can 

be directly inferred from GPS time series without regularization, in condition of a 

proper coverage selected. 

After 2007, the number of available GPS sites that could be used in the inversion 

drop from ~90 to ~50, the amplitude of the inferred CWS start to be overestimated 
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comparing with the CWS from reference sources, especially after May 2008. 

 
Figure 3.7: CWS obtained from GPS (black), GRACE (blue), GLDAS (red) and Wa-

terGAP (green), differences are shifted with -0.3m EWH.  

Table 3.4: Statistical results comparing the CWS from GPS and from reference sources 

 Correlation 
WRMSR 

(%) 

RMS 

(cm EWH) 

WRMSD 

(cm EWH) 

GRACE 0.72 28.9 4.6 5.6 

GLDAS 0.71 28.6 5.0 4.8 

WaterGAP 0.76 27.5 8.0 1.9 

GPS - - 8.0 - 

3.2.2 Co-estimating the river basins in North America with 
regularization 

From the simulation of the Amazon River basin in Section 3.1.1, we obtain the signal-

to-noise ratio (SNR), the ratio between the power of signal and noise that is below 

0.4. The horizontal SNR are worse than the vertical components. The loading signals 

in North America are lower than they are in Amazon River basin. Thus, the SNR in 

North America is smaller than in Amazon. Meanwhile, when we present the condition 

number of the inversion system in North America in Figure 3.8. From the condition 

number, the normal matrix in North America is not ill-posed, but the condition number 
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are still too high due to the low SNR value. Thus, regularization is required in the co-

estimation of the CWS in North America. 

 
Figure 3.8: Condition numbers of the inversion for both North America and Europe 

Co-estimating the CWS change in the river basins using regularization follows the 

inversion approach described in Section 2.3.2 and adopts the GPS uncertainties re-

estimation described in the section above. Based on the simulation using the forward 

simulated GPS time series in Section 2.3.2, the regularization parameter, 0.05  , 

is chosen which reduces the remaining error without too much signal attenuation in 

the solutions. 

The coverage of the basins in Figure 3.9, are shown in Figure 3.5. The inversion 

results for small basins which have less than 15 000 km2 are not represented in 

Figure 3.9, as the GRACE solution within the small basins are not suitable for use in 

the validations.  

From Figure 3.9, majorities of inferred CWS time series agree with the reference 

sources (GRACE, GLDAS, and WaterGAP), except the Mackenzie basin (2002-

2005, 2009-2011) and the Nelson basin (2009-2011). Both basins are located at the 

west border of the analysis area and both lack of GPS stations inside. We suggest 

not using the inferred CWS from those basins located around boarder due to the 
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influence of the STE, even after subtracting the forward modelled displacements 

induced by mass from outside the region. 

 
Figure 3.9: Inferred CWS in  North America from the GPS 3-D time series. The basin 

names are on the right side. CWS obtained from GRACE, GLDAS and WaterGAP are 

plotted in blue, red, and green solid lines, respectively. The shaded areas indicate the 

uncertainties of the inferred CWS. 

After introducing the regularization, the inferred CWS of St. Lawrence River basin 

become smoother, as compared with the CWS in Figure 3.7. The influence of the 

GPS error is reduced. The peaks between the 2008 and 2009 are still visible in the 

inversion results, which is consistent with the inversion without the regularization. 

This result suggests that the peaks are mass changes not seen by GRACE mission 

but observed in in the GPS time series, as GPS is more sensitive to the near-field 

mass changes.  
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The statistical results of the comparison between CWS inferred from GPS time se-

ries and from reference sources are presented in Table 3.5. Inverted CWS of the 

majority basins (9 out of 13) show relative high correlation, larger than 0.5 to the 

reference resource. Majority basins (8 out of 13) show positive Weight RMS Reduc-

tion (WRMSR). For the big basins in North America, such as the Mississippi Basin, 

the inferred CWS from GPS time series show a very nice agreement with GRACE, 

GLDAS, and WaterGAP, the WRMSR is up to 42.5%. These results confirm GPS 

has the ability to be an independent observation tool for monitoring the water storage 

variations at the large scale. 

Table 3.5: Satistical summary of the results in North America.  GR, GL and WG are 
GRACE, GLDAS and WaterGAP, respectively. The last column WRMS is in unit of cm 
and presents the WRMS of the CWS inferred from GPS time series 

basin 
corr. WRMSR (%) WRMS (cm) WRMSD (cm) WRMS 

NEU U NE NEU U NE NEU U NE NEU U NE GPS 

Gulf of Mexico 0.56  0.69  0.71  -23.5  -17.8  -21.0  3.96  4.21  4.15  4.89  4.96  5.02  6.79  

Rio Brovo 0.33  0.19  0.34  -31.0  -17.4  7.3  2.83  2.99  2.94  3.70  3.51  2.73  2.35  

Gulf Coast 0.48  0.60  0.62  -117.4  -121.9  -179.0  2.30  2.30  2.15  5.00  5.10  6.00  6.05  

Mississppi 0.82  0.84  0.80  36.5  42.5  34.2  4.67  4.49  4.17  2.97  2.58  2.75  4.19  

Colorado 0.38  0.42  0.29  -31.6  -2.8  -15.7  2.98  2.86  2.73  3.92  2.94  3.16  2.57  

Great Basin 0.32  0.32  0.20  -206.6  -110.8  -113.5  1.66  1.64  1.67  5.07  3.46  3.56  3.59  

North Atlantic 
Coast 

0.74  0.73  0.78  30.8  -2.7  10.9  5.55  5.66  5.61  3.85  5.81  4.99  8.31  

St Lawrence 0.73  0.82  0.84  29.5  39.7  43.7  8.11  8.01  8.16  5.72  4.83  4.60  4.96  

Columbia and 
NW US 

0.88  0.82  0.81  52.4  42.2  41.1  8.17  8.28  8.34  3.89  4.78  4.91  7.06  

Nelson 0.59  0.58  0.58  17.6  16.6  9.7  5.31  5.15  5.18  4.37  4.29  4.68  3.61  

Hudson Bay 
Coast 

0.84  0.82  0.78  31.1  37.4  37.0  7.82  7.60  7.80  5.39  4.76  4.91  4.32  

Fraser 0.86  0.82  0.86  32.0  23.6  47.8  7.36  7.18  7.33  5.00  5.48  3.82  8.67  

Mackenzie 0.66  0.54  0.54  24.8  15.2  15.9  7.03  6.96  7.01  5.29  5.90  5.89  4.32  

3.3. Inferring CWS in Europe 

Many permanent GPS stations are located all over Europe. Especially in Western 

Europe, the dense permanent GPS station network which used in the calculation of 

the ITRF provide us another opportunity to apply the multi-basin inversion scheme. 

The Danube river basin is the second largest river basin in Europe, it includes the 
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territories of 19 countries and is home to 83 million people. We cover the region up 

to 20 degree of spherical distance to the Danube River basin which includes 59 ma-

jor river basins and 133 GPS stations (see Figure 3.10 and listed in Appendix B).  

3.3.1 Inferring CWS of Danube River basin 

We invert the CWS of Danube River basin using all the GPS 3-D displacements 

within this region without the regularization, i.e. the same approach used in the last 

section. The results of the Danube River basin are presented in Figure 3.12. The 

inverted CWS have been compared with the CWS obtained from GRACE, GLDAS 

and WaterGAP.  

 
Figure 3.10: Analysis area for the inversion in Europe. 58 river basins (dark grey) and 

Danube (blue) are included in the inversion (within 20 degrees of distance to the Danube 

basin). The red dots are the GPS sites. 

Although all the dark grey basins in Figure 3.10 are estimated in the inversion, we 

first discuss the estimated CWS of the Danube River basin itself. We design this 

approach to minimize the STE for the center basin, see details in Section 4.1. Due 

to STE effect and the low SNR, the inferred result for the co-estimated basin cannot 
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be used directly, the time series are dominated by noise. The inferred center basins 

are appropriate due to the well distributed GPS stations. 

 
Figure 3.11: Available GPS sites over the time span considered for the inversion. The 

dashed line shows the number of basins which are referred from GPS time series. 

 
Figure 3.12:  CWS of Danube River basin in meters of EWH inferring from GPS time 

series from GLDAS (black), with CWS obtained from GRACE (blue), GLDAS (red) and 

WaterGAP (green). The shade range represents the one sigma on the inverted CWS. 

The differences are shifted with -0.3m EWH for better visualization (dash lines) 

Due to the gaps in the GPS time series, the number of available GPS observations 

for the time period being investigated is presented in Figure 3.11. Before 2002 and 

after 2008, the number of GPS stations drops dramatically, even below 59 stations 

before 1999. For the case when the available GPS sites falls below the number of 
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the basins, direct inversion of the vertical observations would result in rank deficien-

cies. In the remaining period, the system of equations can be inverted with the GPS 

3-D displacements, the inferred CWS is not stable as the number of observations 

are not sufficient. Even for the optimal period between 2002 and 2008, only about 

60-75% of all the GPS stations collect data simultaneously. 

Table 3.6: Statistical results comparing the CWS from GPS with that from reference 

sources in Danube river basin. 

 Correlation 
WRMSR 

(%) 

RMS 

(cm EWH) 

WRMSD 

(cm EWH) 

GRACE 0.79  38.76  7.55  4.63  

GLDAS 0.82  38.11  7.43  4.60  

WaterGAP 0.87  46.20  7.53  4.05  

GPS - - 7.56 - 

The inferred CWS of Danube river basin as well as CWS from the reference sources 

are presented in Figure 3.12. The corresponding statistical results are given in Table 

3.6. It shows the inverted CWS from GPS 3-D time series are highly correlated with 

the CWS from references sources, up to 0.87 for WaterGAP. The CWS from the 

references sources are found within the one sigma range to the inferred CWS. All 

the results provide evidence that the inverted CWS variations have a strong agree-

ment with the reference sources, especially with WaterGAP. 

3.3.2 Co-estimating the river basins within Europe with regu-
larization 

In order to co-estimate the CWS from all the basins in Europe, we invert the GPS 

time series with the approach described in Section 2.3.2 and applied in Section 3.2.2. 

The inferred results for basins larger than 150 000 km2 are plotted in Figure 3.13. 

The corresponding statistical results are tabulated in Table 3.7. 
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Figure 3.13: Inferred CWS in the Europe from the GPS 3-D time series.  The basin names 

are on the right side. CWS obtained from GRACE, GLDAS and WaterGAP are plotted in 

blue, red, and green, respectively. The shaded area indicates the uncertainties in the 

estimated CWS. 

The inversion results in Table 3.7 presents better agreement with the reference re-

sources in terms of correlation and WRMSR, than it is in North America. Basins 

which locate close to the center of the analysis area performs better in terms of cor-

relations with the reference resources, this is similar to what is presented in Section 

3.2. This explains why Rhine, Danube, Wisla and Dnieper River basins performs 

better statistical results.  

It is obvious from Figure 3.13 that the inversion for Sweden fails. The inferred CWS 

is about twice the amplitude from the reference sources. This is expected as this 

region is close to the northern border (See Table 3.7). In contrast to Sweden, the 
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Neva river basin CWS is under estimated. For basins not located close to the center 

of inversion area, a pre-assessment of the inferred results before the inversion is 

mandatory. 

Table 3.7: Statistical results from the inversion over  Europe.  GR, GL and WG are 
GRACE, GLDAS and WaterGAP, respectively. The last column WRMS is in unit of cm 
and presents the WRMS of the CWS inferred from GPS time series 

basin 
corr. WRMSR (%) WRMS (cm) WRMSD (cm) WRMS 

GR GL WG GR GL WG GR GL WG GR GL WG GPS 

Danube 0.61  0.81  0.73  -10.3  0.9  14.3  4.88  4.76  4.55  5.39  4.72  3.90  7.68  

Don 0.80  0.82  0.78  39.5  40.1  35.9  8.26  9.07  8.84  4.99  5.43  5.67  7.83  

Volga 0.76  0.84  0.84  34.3  45.4  38.6  8.86  9.11  9.05  5.83  4.98  5.55  7.65  

Dnieper 0.80  0.77  0.82  37.5  32.4  42.8  8.55  8.38  8.35  5.35  5.67  4.78  7.05  

Rhine 0.77  0.75  0.76  23.0  -1.2  28.6  4.71  4.96  5.06  3.63  5.02  3.61  7.25  

Wisla 0.63  0.58  0.62  15.4  18.2  20.8  10.93  11.38 11.57  9.25  9.31  9.16  5.88  

Sweden 0.80  0.68  0.68  -0.9  -50.4  -66.4  3.62  3.75  3.74  3.66  5.64  6.22  7.47  

Neva 0.69  0.56  0.61  22.6  16.0  19.0  8.29  9.07  9.19  6.41  7.62  7.44  6.04  

Finland 0.69  0.63  0.70  28.0  15.3  19.2  6.92  7.40  7.41  4.99  6.27  5.99  7.17  

3.4. Contribution of horizontal displacements  

Building on the inversion approaches used in previous studies (Argus et al., 2014; 

Fu et al., 2015), the inversion scheme applied in our study includes the horizontal 

GPS displacements. Although the horizontal displacements at the GPS sites are only 

one fifth to one third of the vertical displacements, the GPS observations in the hor-

izontal directions have better precisions than the vertical displacements. In this sec-

tion, we focus on the contributions of the horizontal observations in the inversion 

scheme, to address the following question: Do the horizontal displacements contrib-

ute to the inferred CWS or does it just bring more errors into the results? 

To answer this question, we discuss the horizontal displacements in the multiple in-

version scheme. For the single basin inversion case, Wahr et al. (2013) found that 

the scaled GPS horizontals can be used in the lake level inversion and reasonably 

agreement with vertical displacements. 
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3.4.1 Horizontal displacements in Multi-basin inversion 
scheme 

The influences of one set of observations to the inverted result is commonly dis-

cussed using the relative contribution, r , as described in Section 2.3.3. We obtain 

the relative contributions of vertical and horizontal displacements for the Danube 

River basin from Eq. (2.38). The variance of the horizontal GPS time series is re-

placed by the re-estimated GPS error variance and for vertical time series, the vari-

ance is enlarged by five times, see more details in Section 5.2.5. The weight matrix 

is inverted from the variance matrix. The co-variance information is not available 

from the provided GPS time series and excluded in this study. The contributions 

along the time are plotted in Figure 3.14.  

 
Figure 3.14: Relative contribution of the horizontal displacements to Danube river basin 

in the Europe inversion scheme.  

From Figure 3.14, it is obvious that the horizontal displacements significantly con-

tribute to the inferred CWS of Danube River basin. The mean contribution over the 

whole period is 0.32. The rest comes from the verticals. But the contributions for the 

other basins within Europe are location dependent. No pattern is found after com-

paring with the basin properties such as basin sizes, distances to the Danube River 

basin and distances to the GPS stations. From the Green’s functions in Eq. (2.5), 

the obtained design matrices in Eq. (2.23) depend both on the GPS distributions and 

the basin distributions. In this inversion approach, no regularization is introduced. 

This method is designed to obtain the CWS for the center basin among all the basins 



Chapter 3 Inferring Continental Water Storage from GPS 3-D time series 

52   

in the analysis area. The inferred CWS of the center basin can be used in the hydro-

logical applications and the inferred results show agreements with GRACE and hy-

drological models. The CWS of the other basins are excluded, due to the poor quality 

of the GPS data. 

3.4.2 Contribution from horizontal displacements in the inver-
sion scheme: closed-loop simulation 

We obtain the relative contribution of horizontal displacements for the Danube River 

basin in the inversion approach including the regularizations. Regularizations in the 

inversion approach are designed to reduce the error and make the solution smoother. 

But when a too strong regularization is applied, the inferred results would be too 

smooth and are mainly defined by the regularization. 

 
Figure 3.15: Relative contributions of the verticals, horizontal displacements and the reg-

ularization for the Danube river basin for our Europe inversion scheme. 

From Figure 3.15, the relative contributions of horizontal and vertical displacements, 

as well as the regularization are presented. The average contributions are 0.24, 0.54 

and 0.23 for horizontal displacements, verticals and regularizations, respectively. 

The summation of the three contributions exceeds one, due to round error. As ex-

pected, the inversion approach is dominated by the vertical displacements, due to 

the stronger response of the load in the vertical direction.  
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3.4.3 Test the contribution of the horizontal displacement in 
simulation 

From the relative contribution of the horizontal displacements, we can conclude that 

horizontal displacements significantly contribute to the inversion results. In order to 

test if extra information is introduced from horizontal displacements, we also perform 

extra vertical only and horizontal only inversion with the same regularization strength 

( 0.05  ) in a closed-loop simulation. This simulation follows the steps presented in 

Section 2.3.2, except that we compare the inverted CWS with GLDAS for the se-

lected basins. The inversion results are plotted in Figure 3.17 for Europe and Figure 

3.16 for North America, respectively. 

Table 3.8: Statistical result of the closed-loop simulation in North America.  NEU, U and 

NE stand for CWS inferred from 3D, vertical only and horizontal only dispalcements. The 

last column WRMS is in units of cm and presents the WRMS of the CWS obtained from 

GLDAS 

basin 
corr. WRMSR (%) WRMS (cm) WRMSD (cm) WRMS 

NEU U NE NEU U NE NEU U NE NEU U NE GLDAS 

Gulf of Mexico 0.91 0.92  0.52  37.1  45.7  -7.6  4.79  5.20  5.56  3.02  2.82  5.98  6.79  

Rio Brovo 0.21 0.25  -0.01  -46.1  -34.5  -15.0  1.97  2.15  4.67  2.87  2.89  5.37  2.35  

Gulf Coast 0.74 0.71  0.38  -10.3  0.7  -32.1  3.98  4.62  4.75  4.39  4.59  6.28  6.05  

Mississppi 0.92 0.90  0.85  57.5  55.6  42.2  5.55  5.52  6.36  2.36  2.45  3.68  4.19  

Colorado 0.60 0.59  0.17  19.0  24.5  -12.0  3.00  3.54  4.51  2.43  2.67  5.05  2.57  

Great Basin 0.65 0.62  0.36  -64.9  -81.9  -11.0  1.80  1.73  3.54  2.97  3.15  3.93  3.59  

North Atlantic 
Coast 

0.87 0.87  0.51  23.1  29.0  -20.1  5.58  5.97  5.77  4.29  4.24  6.93  8.31  

St Lawrence 0.95 0.94  0.74  67.9  64.4  30.7  5.77  5.96  7.03  1.85  2.12  4.87  4.96  

Columbia and 
NW US 

0.90 0.92  0.54  50.0  57.9  2.3  6.01  6.50  6.34  3.00  2.74  6.19  7.06  

Nelson 0.75 0.73  0.40  36.0  33.6  12.5  4.42  4.67  5.65  2.82  3.10  4.95  3.61  

Hudson Bay 
Coast 

0.84 0.83  0.68  40.6  34.7  24.3  4.26  4.12  5.87  2.53  2.69  4.44  4.32  

Fraser 0.75 0.77  0.50  -116.5  
-

132.0  
-67.8  3.18  2.98  4.46  6.88  6.92  7.49  8.67  

Mackenzie 0.74 0.72  0.41  23.2  21.7  -4.2  4.05  4.33  4.46  3.11  3.39  4.65  4.32  

It is clear, that the inferred CWS from horizontal only displacements are worse than 

CWS obtained from 3D or vertical only displacements in terms of accuracy. No sig-

nificant difference between inverted CWS from 3D displacements and from vertical 
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only displacements, from both Figure 3.17 and Figure 3.16. The corresponding sta-

tistical results are tabulated in Table 3.8 and Table 3.9 for simulations in North Amer-

ica and Europe, respectively. The statistical results present the differences between 

the simulation input, GLDAS CWS variations and the inferred CWS from the dis-

placements at GPS site.  

 
Figure 3.16: Closed-loop simulation for the 3D, vertical only and horizontal only inversion 

in North America. CWS inferred from simulated 3D, vertical only and horizontal only are 

in black, cyan and yellow, respectively. The displacements are simulated from GLDAS 

(red). 

Significant improvement after introducing the simulated horizontal displacements are 

founded comparing with the vertical only inversion results, as eight basins preforms 

better correlation, seven shows larger WRMSR and ten have lower WRMSD, all out 

of total 13 basins in North America. Majorities show improvements after introducing 

horizontal displacements. Similar results are found in Europe, and even more basins 
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shows improvements, as seven, eight and seven out of nine shows better correlation, 

WRMSR and WRMSD, respectively. 

 
Figure 3.17: Closed-loop simulation for 3D, vertical only and horizontal only inversion in 
Europe.   

Table 3.9: Statistical result for closed-loop simulation in Europe.  NEU, U and NE are the 

CWS inferred from 3D, vertical only and horizontal only dispalcements. The last column 

WRMS is in unit of cm and presents the WRMS of the CWS obtained from GLDAS. 

basin 
corr. WRMSR (%) WRMS (cm) WRMSD (cm) WRMS 

NEU U NE NEU U NE NEU U NE NEU U NE GLDAS 

Danube 0.80  0.83  0.47  -6.6  -16.0  -10.3  4.48  4.01  6.57  4.78  4.65 7.25  7.68  

Don 0.89  0.87  0.72  55.4  51.0  29.0  9.55  9.90  9.18  4.26  4.85 6.52  7.83  

Volga 0.95  0.92  0.72  67.7  59.6  33.1  8.31  8.23  10.63 2.69  3.32 7.11  7.65  

Dnieper 0.92  0.92  0.62  60.7  58.4  17.8  7.80  8.21  7.39  3.07  3.41 6.07  7.05  

Rhine 0.90  0.87  0.66  51.3  48.0  5.6  7.01  7.46  6.42  3.41  3.88 6.06  7.25  

Wisla 0.87  0.86  0.39  51.8  49.9  -4.7  6.96  7.60  7.18  3.35  3.81 7.52  5.88  

Sweden 0.86  0.83  0.57  9.1  -3.5  -1.0  4.65  4.38  6.68  4.23  4.53 6.75  7.47  

Neva 0.85  0.84  0.45  28.4  21.4  -1.7  4.69  4.60  6.23  3.35  3.62 6.34  6.04  

Finland 0.75  0.83  -0.09  6.5  36.2  -47.5  5.07  6.12  7.33  4.74  3.90 10.82 7.17  
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Due to the low SNR in the horizontal time series, the horizontal only inversion does 

not perform as well as the vertical only or 3D inversion scheme. But the contribution 

from the horizontal time series cannot be ignored. From this closed-loop simulation, 

we conclude that the horizontal displacements are able to bring extra information 

into the 3D information scheme. In the next section, we test this again from the GPS 

time series to see if extra information is introduced in the 3D inversion. 

3.4.4 Contribution from horizontal displacements in the inver-
sion scheme: GPS time series 

We repeat the comparison in the last section with the GPS time series and the results 

in both regions presented in Figure 3.18 for North America and Figure 3.19 for Eu-

rope. The differences between the inferred CWS from 3D, vertical only and horizon-

tal only displacements are larger than simulation presented in the last section. The 

differences between the 3D and vertical only displacements are relatively small, sug-

gesting that major signals are contributed from vertical time series. The inverted 

CWS as well as the CWS obtained from reference source plotted in Figure 3.18 and 

Figure 3.19. The corresponding statistical comparison of the correlation and 

WRMSR are presented from Table 3.10 to Table 3.13. 

Improvements are found for majority of the basin in both North America and Europe, 

when horizontal time series is employed in the inversion. For total 13 basins, 8, 10 

and 10 basins show larger correlation comparing with CWS from GRACE, GLDAS 

and WaterGAP, respectively. Meanwhile, nine basins show larger WRMSR, when 

compared with the reference sources. Thus, extra information is introduced into the 

inversion by the horizontal time series in North America. 
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Figure 3.18: CWS inversion from GPS time series in North America. CWS inferred from 

simulated 3D, vertical only and horizontal only are in black, cyan and yellow, 

respectively. CWS from GLDAS (red) is used as reference source. Shade area 

represents the corresponding one sigma standard deviation. 

Table 3.10: Correlation between inferred CWS and reference sources in North America 

basin 
GRACE GLDAS WaterGAP 

NEU U NE NEU U NE NEU U NE 

Gulf of Mexico 0.56  0.66  0.18  0.69  0.56  0.44  0.71  0.64  0.41  

Rio Brovo 0.33  0.26  0.03  0.19  0.10  0.08  0.34  0.27  0.03  

Gulf Coast 0.48  0.39  0.39  0.60  0.54  0.37  0.62  0.54  0.35  

Mississppi 0.82  0.76  0.46  0.84  0.78  0.44  0.80  0.74  0.37  

Colorado 0.38  0.41  0.04  0.42  0.50  -0.06  0.29  0.38  -0.14  

Great Basin 0.32  0.61  0.01  0.32  0.63  -0.01  0.20  0.64  -0.14  

North Atlantic 
Coast 

0.74  0.72  0.36  0.73  0.71  0.48  0.78  0.77  0.47  

St Lawrence 0.73  0.68  0.73  0.82  0.80  0.70  0.84  0.81  0.75  

Columbia 
and NW US 

0.88  0.90  0.20  0.82  0.83  0.14  0.81  0.84  -0.02  

Nelson 0.59  0.54  0.46  0.58  0.53  0.39  0.58  0.55  0.43  

Hudson Bay 
Coast 

0.84  0.80  0.76  0.82  0.80  0.69  0.78  0.75  0.67  

Fraser 0.86  0.87  0.60  0.82  0.81  0.58  0.86  0.84  0.65  

Mackenzie 0.66  0.58  0.62  0.54  0.44  0.57  0.54  0.46  0.49  
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The improvements in the inversion in Europe are not as significant as in North Amer-

ica after introducing horizontal time series into the inversion. About half of the basins 

shows an improvement in the correlation (six for GRACE, three for GLDAS and four 

for WaterGAP out of nine basins) and WRMSR (five for GRACE, four for both 

GLDAS and WaterGAP). The reason of the differences can be explained by the con-

dition number, shown in Figure 3.8. The condition number in North America is at the 

level of 310  which is about the same magnitude of the regularization parameter, but 

the condition number in Europe are mostly above the magnitude of 510 , except after 

the year of 2010 when condition number falls to order of 410 . The higher the condi-

tion number, the stronger of the effect of the noise in the linear inversion system, and 

in our inversion scheme the regularization contributes more. 

Table 3.11: WRMSR of the inferred CWS from GPS comparing to CWS from reference 

sources in North America 

basin 
GRACE GLDAS WaterGAP 

NEU U NE NEU U NE NEU U NE 

Gulf of Mexico -22.04 -17.96 -10.68 -15.75 -38.64 2.96 -18.97 -35.13 -1.53 

Rio Brovo -27.18 -17.90 -14.69 -13.52 -11.89 -4.26 7.84 5.11 -0.43 

Gulf Coast -134.98 -155.47 -28.04 -138.15 -138.03 -37.26 -186.38 -166.07 -64.86 

Mississppi 35.49 33.80 6.40 42.50 36.83 7.80 33.68 33.62 1.54 

Colorado -28.62 -28.57 -17.06 0.36 6.71 -9.00 -10.72 -4.86 -11.79 

Great Basin -199.79 -238.00 -37.53 -104.75 -127.80 -16.25 -103.56 -107.24 -22.53 

North Atlantic 
Coast 

32.19 30.95 -18.07 -1.44 9.35 -80.00 12.13 22.39 -84.65 

St Lawrence 31.36 27.69 32.12 39.89 36.55 29.38 43.26 38.95 29.16 

Columbia and 
NW US 

54.36 52.80 -29.15 43.43 42.88 -40.24 42.00 42.28 -50.11 

Nelson 19.87 17.37 2.85 18.40 15.92 -4.68 6.76 5.04 -15.69 

Hudson Bay 
Coast 

30.40 28.65 23.08 35.95 33.32 25.14 35.11 31.66 25.64 

Fraser 32.61 33.51 -50.99 29.75 28.75 -44.31 48.07 44.53 -7.68 

Mackenzie 27.84 21.87 23.06 16.58 10.13 18.18 19.45 14.73 14.90 
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Table 3.12: Correlation between inferred CWS and reference sources in Europe 

basin 
GRACE GLDAS WaterGAP 

NEU U NE NEU U NE NEU U NE 

Danube 0.61 0.72 0.23 0.81 0.84 0.39 0.73 0.78 0.30 

Don 0.80 0.82 0.28 0.82 0.88 0.26 0.78 0.85 0.16 

Volga 0.76 0.72 0.45 0.84 0.81 0.38 0.84 0.81 0.29 

Dnieper 0.80 0.75 0.66 0.77 0.73 0.63 0.82 0.79 0.63 

Rhine 0.77 0.73 0.39 0.75 0.76 0.40 0.76 0.80 0.29 

Wisla 0.63 0.56 0.55 0.58 0.53 0.48 0.62 0.55 0.56 

Sweden 0.80 0.77 0.56 0.68 0.78 0.35 0.68 0.77 0.38 

Neva 0.69 0.71 0.52 0.56 0.65 0.39 0.61 0.67 0.48 

Finland 0.69 0.68 0.35 0.63 0.65 0.22 0.70 0.68 0.35 

 

 
Figure 3.19: CWS inferred from GPS time series in Europe.  CWS inferred from simu-

lated 3D, vertical only and horizontal only are in black, cyan and yellow, respectively. 

CWS from GLDAS (red) is used as reference source. Shade area represents the corre-

sponding one sigma standard deviation. 
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Table 3.13: WRMSR of the inferred CWS from GPS comparing to CWS from reference 

sources in Europe 

basin 
GRACE GLDAS WaterGAP 

NEU U NE NEU U NE NEU U NE 

Danube -10.71  2.77  -19.03  -0.87  5.83  -17.51  14.45  23.35  -9.82  

Don 40.24  42.99  1.86  40.79  51.03  -2.07  37.04  48.08  -7.15  

Volga 34.84  30.19  3.57  45.44  40.26  -11.33  39.55  34.42  -2.29  

Dnieper 37.46  32.20  24.22  33.95  29.27  15.10  44.23  39.96  19.12  

Rhine 22.10  24.63  -25.40  0.13  10.93  -49.73  30.29  39.21  -33.58  

Wisla 15.05  12.74  12.69  17.17  14.39  10.52  19.91  15.22  14.70  

Sweden 1.10  -3.51  -12.39  -46.69  -40.01  -49.93  -62.34  -57.71  -60.18  

Neva 22.25  28.96  10.97  15.15  13.72  7.54  18.94  8.22  11.99  

Finland 27.85  26.03  2.24  13.75  20.56  -26.09  18.10  21.10  -24.41  

 

3.5. Conclusions 

In this chapter, we used 3-D GPS to invert for water storage over the Amazon River 

basin, North America, and Europe. Due to the different GPS station density in the 

two regions, two different approaches to the inversion were applied: single basin 

inversion and multiple basin joint inversion. For the regions where there are very few 

GPS sites and strong mass loads, such as the Amazon, CWS can be obtained using 

our single basin inversion scheme. For the basins which do not have a significantly 

larger load than the surrounding regions and a large coverage of GPS sites available, 

the multiple basin inversion is suggested. 

From the GPS time series simulation, we found that the uncertainties in the GPS 

observations need to be re-estimated for the inversion. In this thesis work, we re-

estimate the horizontal uncertainties from the discrepancies between the GPS ob-

servations and the hydrological models. As the hydrological models are consistent 

with one another and with GRACE, this re-estimation can provide reasonable uncer-

tainties in the GPS time series for the mass load studies. Vertical uncertainties are 

the original uncertainties scaled up by a factor of five of the original uncertainties. 

After re-estimating the GPS uncertainties, the inferred CWS uncertainties become 

reasonable. 
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The CWS inferred from the GPS three-dimensional time series consistently agree 

with the CWS from GRACE and the hydrological models in all three regions. The 

correlation between the inferred CWS and from the reference sources reaches 0.87 

with the WRMS being reduced by up to 46.2%. All the statistical comparison results 

between the inferred CWS and from reference sources confirm that the GPS can be 

used to infer the CWS changes. 

Horizontal displacements of GPS observables contribute significantly to the inver-

sion scheme. In the multiple basin inversion scheme without regularization, the hor-

izontal displacements have relative contributions of about one third for the center 

basin. The main contributor to the multiple basin inversion scheme is the vertical 

signals, as the loading response for the verticals are stronger than the horizontal 

displacements. 

In order to test if the GPS horizontal displacements driven by the loading signal im-

proved the inversion, we performed closed-loop simulations and found significant 

improvement on the estimated CWS. We extend the comparison with the GPS time 

series, majority of the basins show improvements after we include the horizontal 

coordinate time series in North America. No significant improvements are found in 

Europe, due to the high condition number of the direct inversion scheme (without 

regularization). After introducing the regularization parameter, signals in the horizon-

tal time series as well as the noise are suppressed. 
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Chapter 4. Unresolved signals 
in regional inversion study 

Before trying to invert the GPS observations for estimates of water storage, a clear 

understanding of the error sources within the linear system is required. This and the 

following chapters are devoted to systematic error assessments of the inversion. 

This chapter discusses the unresolved signals in the analysis area: the far-field and 

near-field effects. In the regional study, the mass variations outside of the research 

interest is commonly excluded. This exclusion leads to what we call the far-field ef-

fect that is discussed in the following section. In contrast to the far-field effect, near-

field effects are the omission of the spatial details in the regional modelling and cal-

culation. 

4.1. Spatial truncation error: far-field effect 

The vertical surface displacements recorded at any GPS site represent the integral 

of mass loading over the whole globe. In the regional studies by (Amos et al., 2014; 

Argus et al., 2014; Borsa et al., 2014; Fu et al., 2015), the authors assume that the 

surface displacements are driven only by mass changes in the near field of the GPS 

stations. Certainly, most of the surface displacement come from loads in the near 

field but not all. The difference between the surface displacements driven by the 

global mass variations and those caused by regional mass changes is what we here 

call the STE.  

STE is caused by omitting the far-field load. Schrama (2005) discussed the far-field 

effect and near-field contribution. Small differences were found for the near-field ef-

fect within 10 20,   and 40  for a constant load layer. However, the conclusions de-

rived for the constant load may differ from the displacement time series from the 
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geographical distribution of the true load. 

Similar issues have been discussed for the atmospheric pressure variations on grav-

ity. Spratt (1982) found the local pressure variations cannot precisely correct gravity 

for global atmospheric mass variations. Merriam (1992) found that a zone between 

50 km and 1000 km from the gravity station contributes a couple of Gal  as the 

same amplitude from  the remainder of the globe. It is important to highlight that the 

gravity changes decay faster than the vertical displacement with distance from the 

observation (Farrell, 1972). A more recent study (Boy et al., 2003) shows ocean tidal 

gravity variations are mostly dependent on tidal height variations within a radius of 

50 spherical degrees of a gravity station using the highly precise observations from 

super-conducting gravimeters.  

The remove-compute-restore technique is widely used for regional geoid determina-

tion. The low wavelength geoid is removed from the regional calculation scheme, 

later restored, with the obtained high wavelength geoid signal to cover the regional 

details and avoids the need to implement Stokes’ integral to an ultra-high order 

(Sjöberg, 2005). This technique can also be introduced into the regional loading dis-

placements study for the high spatial continental water storage determination. Cur-

rently the inversion in this thesis focuses on the basin mean variations, which are 

mainly the low wavelength signal, and thus it will not be employed for this stage. 

Unlike the regional CWS inversion studies, the global mass redistribution studies 

from inverting displacement observations (e.g. Kusche and Schrama, 2005; Kusche 

et al., 2007; Wu et al., 2010, 2012) are not affected by STE as the far-field effect is 

included in the global modelling usually through the global Stokes coefficients. Due 

to the uneven distribution of the stations (GNSS, VLBI, SLR etc.), regional inversions 

can benefit from the dense network in some regions (e.g. Europe, North America, 

and Japan) to infer regional mass changes (e.g. Borsa et al., 2014). Then STE 

should be used as an estimate of one of the errors in the inversion. 
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In this section, a series of simulations are performed to estimate the amplitude of 

STE in CWS inversions. CWS is obtained from the hydrological models. The vertical 

surface displacements are obtained using input from soil moisture and snow (equiv-

alent water thickness) from the GLDAS model. Then the surface displacements are 

recalculated using mass data within increasing angular distances of the sites. When 

the inversion area extends up to 20° of the distance from the observation site, STE 

falls below the GPS noise level, i.e. it can be ignored. The nature of reducing the 

STE in regional inversions includes removing the STE using a given hydrological 

model. Our simulations show that after subtracting the far-field effect using a hydro-

logical model, the STE is significantly reduced. 

4.1.1  Homogeneous load case study 

Suppose we have a spherical Earth without oceans that is covered by a homogene-

ous load .P  From Eq.(2.9), the horizontal displacements are zero. The vertical dis-

placement, ( )u   which is induced by the mass load within the spherical distance ,  

is obtained from Eq.(2.8). Then the ratio, ( ),r   of the displacement driven by the 

regional mass U  and the displacement from the global mass field, gU  is: 

 0

0

( )sin

( )sin
( )  .

g

G x xdx

G x xdx

U
r

U






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


 (4.1) 

The ratio with respect to as a function of increasing the area of the mass included in 

the displacement calculation (angular radius) is shown in Figure 4.1. The ratio is zero 

when 0 ,    then it increases to a maximum at around 40 degrees then decays to 

a minimum at around 105 degrees. The fluctuation is caused by the sign change of 

Green’s function with increasing angle, see Figure 2.1. 
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Figure 4.1: The displacement ratio for homogeneous load over the Earth. 

4.1.2 STE for the whole globe 

We obtain CWS variations using the soil moisture and snow/ice mass from the 

GLDAS from Jan. 1999 to Dec. 2008. The CWS in Greenland is excluded due to the 

unrealistic glacier dynamics there (Jiang et al., 2013). GLDAS data are provided at 

a monthly resolution and at 1 degree by 1 degree spatial sampling over the conti-

nents. Before using the GLDAS data, Greatbatch approach (1994) is adopted, thus 

the trends are removed for each grid cell. Due the trend in GPS coordinate time 

series are dominated by the tectonics and the post glacial rebound, the correspond-

ing linear trends are removed in GPS time series. For the consistency reason, the 

linear trends within the hydrological models, currently GLDAS in use, are removed. 

Water storage variations dominate the annual signals in GPS vertical coordinate time 

series (Blewitt et al., 2001; van Dam et al., 2001). The soil moisture and snow/ice 

equivalent water thickness from GLDAS model have been compared with mass es-

timates derived from the GRACE time variable gravity field and GPS data, agree-

ments between GLDAS CWS and observations have been demonstrated (Landerer 

and Swenson, 2012; Jiang et al., 2013 among others). These studies demonstrate 

that GLDAS represents a reasonable estimate of the periodic CWS variation. Thus, 

GLDAS can be used to simulate real changes in water storage to analyze STE. 
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Mass-loading Green’s functions (Farrell, 1972) estimate the displacements at a point 

due to a load at another location and are derived on a spherically symmetrical, non-

rotating, elastic and isotropic Earth. Although regional differences in the Earth’s lith-

osphere can cause differences in the predicted displacements (Wang et al., 2013), 

so far no evidence really demonstrates that a regional Earth structure difference is 

the main cause of the disagreement between predictions and observations of sur-

face displacement. Green’s functions derived for regional crust (Seitz and Krügel, 

2009) produce differences up to 2 mm in predicted surface displacements. However, 

the difference between Green’s functions from the spherically symmetric Earth 

model and half-space approximations are not significant at the global scale (Gegout, 

2013).  

The 3-D displacements, [ ]N E U TX X X X , at a point on the Earth’s surface ( ,p p  ) 

due to mass variations, im  , distributed over the globe can be discretized from 

Eq.(2.6) as 
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where gN  is the total number of load units of the decomposed mass load acting 

over the Earth’s surface. i  and i  represent the latitude and longitude of the given 

point on the Earth where the loading effect is being determined. i  is the angular 

distance between ( , )p p    and ( , )i i   . The spatial grid of ( , )i i    is defined by 

resampling the GLDAS grid into rings as it is shown in Figure 2.3. The rings 1    

are divided into 0.01  degree step size and for the rings locate further away are di-

vided with 0.1  degree step size. Each ring is subdivided into 100 azimuth units for 

10    and 360 azimuth units for 10   . 

To estimate the displacement due to mass changes within a specific region, i.e. for 

0,   the limits of the summation in Eq. (4.2) would extend only over 
0

N , the 
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total number of load units for 0  . Thus, 
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Then STE is defined as the difference between the displacements from global and 

regional mass variations: 

  .STE  g ψX X   (4.4) 

4.1.3 Results and Discussions 

Three groups of simulation studies are performed in this section. In the first part, the 

STE effects at the center of two major river basins demonstrate the STE effect with 

increasing load extent. Then surface displacements are determined based on a 

global analysis. In the last part of this section, the error of using the hydrological 

model to remove the far-field effects is discussed. 

STE at the center of the Danube and Amazon River basins 

The simulation is carried out at the center of the Danube and Amazon River basins 

from GLDAS monthly CWS. We estimate the Root-Mean Square (RMS) of   and 

plot the results in Figure 4.2. When 0 ,     ( ) ( )RMS RMS  gX   and when 

180    which means a global loading covering, ( ) 0.RMS =  In Figure 4.2, for   

greater than 10 degrees, ( )RMS U
  of both Amazon and Danube River basins fall in 

sub-mm level, meanwhile, the horizontal STE decreases more slowly than that for 

the vertical component. The horizontal NE
  of Danube Basin reaches its first mini-

mum at ~ 40  degrees and for NE
  of Amazon Basin around 20 .  For Amazon Ba-

sin, the N
  stay above 0.1 mm even up to 130 .  The horizontal motion is more sen-

sitive to the far-field mass load.  
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Figure 4.2: STE for the Amazon and Danube River Basins. Top Panel: horizontal 

RMS( )  at the center of the Amazon and Danube River basins as a function of the 

angular distance from the site, ,  from which data are included in the calculation of the 

displacements. Bottom Pane: vertical RMS( )U
  at the center of Amazon and Danube 

River basins.  

 
Figure 4.3: RMS of CWS induced displacements using 10 years of GLDAS data.  Top 

Left Panel: North component; Top Right Panel: East component; Bottom Panel: Up com-

ponent.  

The results from the Amazon and the Danube River basins indicate that the regional 
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contribution to the displacement at any point (angular distance, ,  from the site) 

varies from site to site. For a better understanding of how much data is required to 

obtain reliable estimates of surface displacements comparable to those obtained 

using a global dataset for all points on the surface of the continents, we performed 

a simulation study for the STE effect for continental sites on a 1 1   degree grid. 

 

 
Figure 4.4: Coverage requirement derived from the RMS and correlation threshold.  

Coverage requirement for regional CWS study 

The error budgets of GPS coordinates are on the order of 0.7 0.7 and 2.2 mm for 

weekly north, east and up samples, respectively (Ray et al., 2011). If 

 0.7 0.7 2.2
T

  mm, then beyond this limit of  , the STE can be neglected. In 
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the discussion below, we define the values of acceptable )RMS(  

 0.7 0.7 2.2 2
T  0.5 0.5 1.5 mm

T
  and the correlation between the regional 

and global vertical surface displacements, ( , ) ( , )( , ) 0.9.gU U        In order to 

determine the required coverage radius ,    is estimated at each grid unit (1 1 )   

for each    from 0   to 180   with a 0.1  step size. Then the corresponding ( , )    

from ( , )( ) 1.5RMS mm    and ( , )( , gU   ( , ) )U   0.9  are solved using a spline 

interpolation, see Figure 4.4. The RMS amplitude of the displacements induced from 

CWS, ( )RMS gX  is plotted in Figure 4.3. 

Two main factors are found which strongly influences the load coverage requirement, 

.  The first is the distance of the given site to the ocean. For sites near coastlines, 

the CWS load is located to one side of the site (there are no CWS mass changes 

over the oceans). CWS is smaller for the same ,  as compared to a point in the 

middle of a continent with the surrounding load of the same amplitude. The vertical 

displacement at coastal sites is smaller. Thus, a larger percentage of the displace-

ments are driven by mass changes further away than for sites located inland. 

 

The second factor is the amplitude of the nearby regional CWS variations. For loca-

tions with small CWS signals, e.g. the Danube (the RMS of CWS is ~ 10 cm of Equiv-

alent Water Height for the entire time span from GLDAS), the displacement induced 

by loads in the near field is small as compared to a site in the Amazon River Basin. 

Thus, for the same displacement amplitude, a larger area for the input mass change 

is required. The larger the regional signal, the less data is required to approach the 

global signal. Contrarily, for desert regions such as the Sahara in North Africa and 

the Arabian Peninsula, the RMS of the CWS variations are less than 5 cm of Equiv-

alent Water Height (EWH) for the entire time span from GLDAS. Load induced dis-

placements in these locations are driven by distant mass changes. 
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Figure 4.5: The STE for 20   . Right Panels: RMS of the STE for North (Top), East 

(Middle) and Up (Bottom) components in mm. Left Panels: Correlation between the 

regional CWS induced motion ( 20 )    and globally induced motion for North (Top), 

East (Middle) and Up (Bottom) components. 

In Figure 4.3, the top panel shows ( )RMS gX  from ten years of GLDAS data. Only 

about 60% of the points in this figure have a ( )RMS gX  2 mm, i.e. ( )RMS U
gX  above 

the GPS noise threshold. The coverage requirement of the RMS threshold, 

( ) 1.5RMS  mm   is mapped in Figure 4.4 (right panels). The area over which we have 

a load that gives the minimum correlation threshold, ( , )
g ψX X is plotted in Figure 4.4 

(left panels). In the middle of the Amazon, using mass change over an area of only 
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seven degrees of angular distance from the center, the displacements can be reliably 

determined (below the GPS vertical error) rather than using data from the entire 

globe. For most other locations, a sufficiently precise estimate of the global CWS 

loading effects can be calculated using CWS data within 10  degrees of the site. The 

correlations require higher coverage for the desert/dry and coastal region, due to the 

small loading. 

Three conclusions can be drawn from Figure 4.4. Firstly, 60% of the continental re-

gions have a RMS of the vertical displacement above the minimum noise level of 2 

mm. Though the RMS threshold is fulfilled, global information on the mass load is 

suggested for the regional CWS study. Second, for most of the continental regions, 

load data within 20  of a station is sufficient for a regional CWS study except in the 

deserts and coasts. Third, the minimum requirement of area from which we require 

loading information shows that the displacements are a localized signal and have an 

amplitude considerably larger than the noise level in the GPS data. 

Choosing the 20    over the globe, the 20( )RMS     and 20( ),g  XX   are calcu-

lated for the corresponding grids, see Figure 4.5. The RMS of STE from the far field 

(further than 20 ) reaches up to 0.5 mm. The maxima appears mainly along the 

coastal regions and the center of Eurasia. The correlation falls below 0.9 in the de-

sert, coastal and island regions. 

4.1.4 Far-field effect eliminated from external hydrological 
model/dataset 

Rather than ignoring the mass in the far-field, another solution could be to use a 

hydrological model to remove displacements from mass variations distant from the 

site. Since there are no precise global CWS observations at a high spatial resolution 

and the accuracy information of the hydrological model is unavailable, in this study, 

we assume that the residual of the CWS between two individual hydrological models 
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is noise.  

 
Figure 4.6: 20( )RMS    between GLDAS and WaterGAP in north (up left), east (up right) 

and up (bottom) directions, in units of mm. 

A second CWS is obtained from WaterGAP version 2.2 (Döll et al., 2003). Then, the 

calculation in the last sub-section is repeated by replacing the GLDAS with the re-

siduals between GLDAS and WaterGAP, GLDASH   WaterGAP,H  where H  is the 

equivalent water height from each of the hydrological models. The RMS of the far-

field effect for 20 ,  
20( )RMS ,    is shown in Figure 4.6. By subtracting the sur-

face displacement driven by the mass in a hydrological model, the amplitude of 

20( )RMS     is only half of the 20( )RMS     in Figure 4.5. For removing the effect 

of distant masses in GLDAS from the WaterGAP model, the error for coastline sites 

is greatly reduced. Applying the correction for the far-field masses is suggested for 

any regional CWS inversion study. Although this approach will introduce an error due 

to the uncertainty of the used hydrological model. Compared to the amplitude of STE, 
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the error introduced by mis-modelling (assume the difference between GLDAS and 

WaterGAP are the mis-modelling error) of the far-field load is smaller.  

4.1.5 Conclusions 

Omitting the far-field mass variations in the inversion of GPS data for regional CWS 

leads to what we have termed a spatial truncation error (STE). The displacements 

at any place are driven by the mass variations over the globe. The spatial truncation 

error, which represents the differences between displacements calculated using a 

global or regional mass can, in general, be mitigated by using data within 20  de-

grees of the station. 

Within the 20   degrees around the site, the continental water storage (CWS) in-

duced vertical surface displacement is a proper approximation of global CWS in-

duced displacements. The RMS of the STE is only 0.5 mm for the coastal regions 

and for the desert/dry regions where the CWS amplitude is also small.  Using data 

from a larger area is suggested even for regional studies in dry regions, as displace-

ments induced from the far-field are significant compared to the loading signal in the 

dry region. The spatial requirement of the data coverage for the regional study is 

affected by the mass redistribution in the surrounding area.  

For the regional water storage study, removing the far field effect (larger than 20  

degrees of arc) from a proper hydrological model is suggested. In the simulation, by 

subtracting hydrological model, the far-field effect can be removed, while the mis-

modelling error introduced to the displacement time series is only half of the ampli-

tude of the removed STE. 

4.2. Parameterization error: near-field effect 

Regional continental water storage is commonly modelled as mass variation on the 
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spatial grid (Argus et al., 2014; Fu et al., 2015) or analysed at the basin scale (Swen-

son and Wahr, 2002; Swenson et al., 2003; Hirschi, Seneviratne, et al., 2006; Hirschi, 

Viterbo, et al., 2006; Hirschi et al., 2007). Due to limited observations of the displace-

ments (GPS sites), the spatial resolution of the regional inversion is limited as well, 

no matter what the spatial grid or the basin scale. In the thesis, the mass changes 

are modelled as mean basin variations. The differences between the displacements 

induced from real mass distribution and the mean basin variations are the unre-

solved near field errors. 

Two aspects of this problem are discussed in the following sub-sections. In the first 

sub-section we estimate the parameterization error from the modelling with a series 

of closed simulations based on ten years of WaterGAP (sum of the canopy, snow/ice, 

soil moisture, surface water and groundwater storage) (Döll et al., 2012) from Jan. 

1999 to Dec. 2008. An inversion for regional CWS is usually modelled as a basin 

average, over a grid, or using local base functions. The basic unit of the hydrology 

is the drainage basin (Lutgens et al., 1995), which is the most common analysis unit 

in term of the hydrological effect including the continental water storage (e.g. Rodell 

and Famiglietti, 1999). Excluding the mass variations within the basin leads to an 

error of the near field. In the second sub-section, we discuss the near-field effects 

for the globe as well as the spatial resolution influence in the mass loading displace-

ments. 

4.2.1 Basin mean variations 

Due to the limited availability of data, the spatial resolution of the inversion is limited. 

As the inversion study here is at the basin scale, the near-field effect of the unre-

solved signal (NFE) is the discrepancy between basin mean versus the actual spa-

tially distributed mass changes. The NFE, ,m  between the displacement induced 

from the Global CWS variations and the basin average is defined as 



Chapter 4 Unresolved signals in regional inversion study 

76   

 m m m  X X   (4.5) 

where ( ), im E m i   , denotes the mean mass variation within the basin  . 

The logic of the simulations is shown in the flowchart in Figure 4.7. The mass loading 

displacements are calculated from the mean mass variations and the original CWS 

within the basin. The surface displacements are obtained from the mass variations 

and then compared with the displacements induced from basin mean. The near-field 

effect is first investigated in selected basins (Amazon, Danube and St. Lawrence 

River basin) then extended to all river basins. 

The results for the Danube River Basin are presented in Figure 4.8. The maxima of 

horizontal displacements, N
mX   and ,m

EX   are located at the side of the river basin 

while the vertical displacements ,m
UX  the maximum appears in the center of the ba-

sin. The horizontal displacements located at the “median line” of the basin are zero, 

due to the fact that the load on one side of the basin cancels the load on the other 

side of the basin if the mass is evenly distributed on the both sides. The vertical 

displacements, however, result from mass contributions from the both sides that ac-

cumulate as the load pushes the crust downward at its center. The effects are pre-

sented in Eq. (2.9) without considering the basin shape. 

 
Figure 4.7: Simulation flowchart for analyzing parameterization error of modelling basin 

average excluding the spatial information within the basin. 

From the residuals ,m it is obvious that the near-field signal/high spatial resolution 

signal is missing in mX . The ( )RMS m  in the right column of Figure 4.8, due to the 
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unresolved high spatial resolution signal, the near-field effect represents a significant 

error for all three components. Moreover, the influence is larger for the horizontal 

displacements, as no significant RMS Reduction (RMSR) can be found for all the 

basins in Table 4.1, compared to the mean RMS of the induced displacements 

( )RMS .mX  Vertical components are less effected, the ( )RMS m  reduced to half of 

the ( )RMS mX .  

 
Figure 4.8: Near-field effect in Danube Basin. RMS of the displacements (North in Top 

Left, East in Middle Left and Up in Bottom Left) induced from the mean CWS derived 

from 10 years of WaterGAP data. Right Panels present the RMS of the differences be-

tween the displacement derived from mean CWS, mX , and from spatial distributed CWS, 

mX . The unit is in mm. 

4.2.2 Close field effect over the globe 

The NFE of the single basin case was discussed in the former section, but NFE is 
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also accumulating for the whole globe. To understand this, a case study is performed 

in Figure 4.9, by comparing the displacements derived from the WaterGAP and basin 

averaged WaterGAP CWS data. Extending this investigation from one basin to the 

globe cannot be avoided for quantifying the error of the basin mean model. 

Table 4.1: Statistics of NFE. Unit: mm  

Basin 
Max( )mX  ( )RMS m  ( )R M S mX  

 N   E   U   N   E   U   N   E   U  

Amazon 3.46 3.20 21.54 0.47 0.31 2.60 0.30 0.29 4.32 
Danube 0.63 0.78 4.86 0.06 0.07 0.38 0.11 0.09 1.31 

St. Lawrence 3.61 3.71 35.50 0.18 0.20 1.05 0.17 0.14 2.21 

As expected, the vertical components do not show a strong deviation except in re-

gions with large loading signal regions such as Amazon or the Himalaya Mountain 

regions. Correlation differences are mostly located at the coast, which is understood 

as being due to the fact that the load signals are small here. The ( )RMS m  exactly 

represents the details within the basin, which can be seen clearly from Amazon Ba-

sin and others. The correlations of the horizontal displacements fall below 0.5 mostly 

in the median line of all the basins, as shown in Figure 4.8. 

4.2.3 Influence of the spatial scale on the response of load 

Improving the regional mass variation model can surely reduce the NFE, but at the 

same time, the increase of the spatial resolution dramatically increases the number 

of unknowns in the inversion system. The balance between the spatial resolution 

and NFE is discussed in this section. 

The spatial resolution in spatial domain is represented as the grid size, while in spec-

tra domain then the spatial resolution depends on degrees of the Stokes coefficients. 

Here we extend the spatial resolution study in the spectra’s domain for only vertical 

displacements in (Yan et al., 2016) to all the three dimensional displacement com-

ponents. 
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The Stokes coefficients2  ( , )lm lmC S   of CWS obtained from GLDAS are provided 

through GGFC Special Bureau for Hydrology. Then the displacements parameters 

are obtained based on Eq. (2.22) and Eq. (2.21): 
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  (4.6) 

In order to analyse the influence of different spatial resolutions on the displacements, 

the degree RMS of displacements Stokes coefficients are obtained from: 
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where { , , }d N E U
lm lm lm lmC C C C  and { , , }d N E U

lm lm lm lmS S S S . The factor used to transfer dis-

placement Stokes coefficients from the fully normalized Stokes coefficients is given 

in Eq. (4.6). 

The stacked RMSl  obtained from the monthly GLDAS (from Jan. 2002 to Dec. 2014) 

and GRACE data (from Jan. 2003 to April 2013, details are presented in Section 

2.2.2) are illustrated in Figure 4.10. The amplitude of the degree RMS gradually de-

creases and follows a power law (not the Kaula curve as it is not for the displacement 

Stokes coefficient). GRACE degree RMS deceases for the low degrees and in-

creases again for the higher degrees, due to the error in GRACE time variable gravity 

field. The sin  in Eq. (4.6) and the differences between the normalized Legendre 

polynomial lmP  and the first derivative (cos ) /lmP     are excluded in the spectra 

discussion.  

                                                             
2 Monthly fully normalized Stoke’s coefficient is obtained from the soil moisture and snow equiva-

lent water from GLDAS NOAH model. Time span: Jan. 2002 to Dec. 2014. Maximum degree/order: 

100 (Chen, 2015) 
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Figure 4.9: Near-field effect for unresolved mass variations within major basins. Right 

Panels: RMS of NFE for North (Top), East (Middle) and Up (Bottom) components in mm; 

Left Panels: Correlation between the basin mean CWS induced motion and globally in-

duced motion for North (Top), East (Middle) and Up (Bottom) components. 

From Figure 4.10, it is clear that after degree 20 (corresponding to ~1000 km spatial 

resolution), no significant contribution to the accumulated degree RMS can be de-

tected for GLDAS CWS derived displacements.  This result is true for all the three 

components. Horizontal displacement Stokes coefficients, in practice, can fully rep-

resent the loading behaviour in the spectral domain due to the missing components 

discussed above. We recognize that this a weak point of this analysis of the spatial 

resolution discussion. This conclusion can also be found in Table 4.2, as the signal 

of the horizontal displacements are dominated by the low degrees. 
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Figure 4.10: Global degree RMS spectra of the 3-D displacements (North, East and up 

components in the left, middle and right panels, respectively) from GLDAS (black) and 

GRACE gravity field (blue) with different Gaussian smoothing radius (250km, 300km, 

350km and 400km in red, green, cyan and magenta, respectively). Dashed black lines 

represent the accumulated degree RMS obtained from GLDAS. 

Table 4.2: Accumulated degree RMS in percent of the total displacements Stokes coef-

ficient degree RMS from the GLDAS continental water storage variations. 

Degree 

Accumulated degree  
RMS (%) Spatial resolution  

(km) 
N E U 

2 93.2 93.2 75.5   

24 99.9 99.9 97.6 ~750 

36 100.0 100.0 98.9 ~500 

72 100.0 100.0 99.8 ~150 

The accumulated degree RMS for the up component in Table 4.2 shows that up to 

36 degree (~500 km spatial resolution on ground) of the spherical harmonics can 

restore about 99% of the displacement amplitude. Most of the major river basins are 

at this spatial resolution, except for some very large river basins such as Mississippi 

River and Amazon basins. For those river basins whose radii are below the 500 km, 

most (~99%) of the vertical loading signal can be restored. 

4.2.4 An empirical basin averaging function 

After the spatial resolution discussion above, one solution for minimizing the NFE is 
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implemented here by introducing an averaging function for each basin. Basin aver-

aging functions are commonly applied in the mass studies at the basin scale using 

the GRACE time variable gravity field implementation (Baur et al., 2009; Huang et 

al., 2012; Landerer and Swenson, 2012; Rietbroek, 2014 among others), to reduce 

the leakage signal. 

As we discussed in the Section 4.1, the surrounding loading signals are restored by 

extending the study region and introducing additional basins into the inversion sys-

tem. The averaging function then can be introduced to reduce the NFE. The basin 

average, ,m  can be computed by convolving the averaging kernel ,( )w    with the 

mass variations, ,( )m   : 
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where   denotes the basin. Unlike the averaging function used in (Huang et al., 

2012 among others), the averaging kernel is not larger than the area of the basin. 

The empirical averaging kernel ,( )w    is derived from the available mass transpor-

tation models/data according to the RMS of the mass variation within the basin: 
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where ( ),    and ( , )RMSm    denotes the mean RMS of the CWS within the ba-

sin. ( , )RMSm    of the whole globe is presented in Figure 4.11 which is obtained from 

WaterGAP. The corresponding ,( )w    is shown in Figure 4.12 with the constraint 

that the kernel cannot be larger than two to avoid the basin mean being dominated 

by a small region. 
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Figure 4.11: RMS of the globe CWS obtained from WaterGAP. Greenland region is ex-

cluded and the Greatbatch approach (Greatbatch, 1994) is implemented to remove the 

linear trend of the whole globe. 

This empirical averaging kernel physically means that the location within the basin 

that does not show a strong mass variation is down weighted and locations with a 

strong mass variation is given more weighting. Due to the fact that the spatial distri-

bution of the CWS is influenced by many environmental factors such as altitude, 

distance to the coast, temperature etc., the simple average over the basin cannot 

sufficiently represent the real distribution of the mass variations and this causes the 

discrepancies presented in Figure 4.9. 

After applying the averaging kernel, the NFE (in terms of the RMS of the residuals 

and the correlations) are presented in Figure 4.13. Clear improvements for both the 

correlation and RMS around Amazon River basin and middle of Africa can be seen 

by comparing with NFE without the averaging kernel (Figure 4.9). After introducing 

the averaging kernel, the NFE is significantly reduced for all the components, see 

Table 4.3. 
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Figure 4.12: Basin averaging kernel for the global major river basins based on the RMS 

of the CWS. 

Table 4.3: Statistics of the NFE and after applying averaging kernel with respect to orig-

inal displacements. 

comparison 
components 

Unit 
N E U 

  
 

0.164 0.156 0.855 mm 
 

 

0.141 0.136 0.715 mm 
 

 

0.881 0.792 0.936 - 

  
 

0.911 0.843 0.943 - 

The correlation for the vertical component in North Africa is reduced after employing 

the averaging kernel, due to the small displacement within this region. From this 

case study, it is obvious that, the horizontal displacements are more influenced by 

NFE as the error is more sensitive to displacements with a higher spatial resolution. 

RMS������(��� )

RMS������(��� ×�)
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�̅(��� ×�, ��)
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Figure 4.13: Near-field effect for unresolved mass variations within the major river basins 

after applying the averaging kernel. Right Panels: RMS of NFE for North (Top), East 

(Middle) and Up (Bottom) components in mm; Left Panels: correlation between the basin 

mean CWS induced motions and globally induced motions for North (Top), East (Middle) 

and Up (Bottom) components. 

4.2.5 Conclusions 

Solving for a basin mean variation in a regional inversion results in what we term the 

near-field effect in the displacements. The high spatial resolution of the mass varia-

tion signal is missing in the displacement time series. From the study in spectra do-

main, the displacement signals are dominated by the lower degree signal. However, 
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the horizontal displacements do not display the interior properties in the spectra do-

main. Omitting this near-field effect can cause significant error in the displacements 

(up to 0.5 mm and 5 mm for the horizontal and vertical displacements, respectively, 

for the region where massive mass variations are found). 

For the vertical displacements study, major river basins that have a suitable spatial 

resolution (~500 km) can be resolved, as about 99 percent of the displacement am-

plitude is covered. The correlations of the vertical displacement derived from global 

mass variations and mean basin mass changes are close to 1, except for a few 

coastal regions. 

One empirical averaging kernel obtained from the hydrological model is suggested 

from the case study, as NFE can be significantly reduced, see Table 4.3. This aver-

aging kernel is calculated as the scale parameter around the basin that includes the 

high spatial resolution signal excluded by the mean basin variation. 
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Chapter 5. Discrepancies be-
tween GPS time series and 
modelled displacements 

In this chapter, GPS observed displacements are compared with the continental wa-

ter storage obtained from the hydrological models and GRACE time variable gravity 

field.  The discrepancies between the GPS observation and reference sources are 

discussed in three parts: the behaviour of the discrepancies in the spatial and spec-

tral domains, the possible cause of the discrepancies, and the re-estimated GPS 

observation quality based on the discrepancies. 

5.1. Data descriptions 

5.1.1 GPS time series 

The 3-D GPS weekly time series from (2011), are reprocessed ITRF2008 residuals 

that preserve the non-linear crustal displacements, especially the seasonal varia-

tions. The seismic discontinuities within the time series have been removed (Colli-

lieux et al., 2011).  

GPS sites that have less than two years of weekly observations (less than 104 weeks) 

are excluded from the inter-comparison study to insure statistical significance. The 

GPS sites located on islands are also ignored as the displacements here are not 

dominated by the continental water storage variations. The GPS sites in Greenland 

and Antarctica are also excluded due to lack of data in the reference models or lack 

of quality. In summary, 344 GPS stations (red and green) out of 891 permanent GPS 

(all triangles) sites remain for inter-comparison and are shown in Figure 5.1. 
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Figure 5.1: 891 GPS sites from the ITRF2008 provided from IGN  (in triangles), 547 GPS 

sites have less than two years of observations or which are not located over the conti-

nental regions are excluded in comparison (in blue), 14 GPS time series plotted in Sec-

tion 5.2 are mapped in Green triangles. 

5.1.2 GRACE observed mass variations 

The time variable gravity field observed by GRACE, has been providing a global 

view of the water storage variations, since its launch on the March 17, 2002. GRACE 

observations have been the subject of various water storage publications, such as 

glacial melting (Velicogna and Wahr, 2005, 2013; Velicogna, 2009), groundwater de-

pletion (Rodell et al., 2009; Famiglietti et al., 2011; Muskett and Romanovsky, 2011; 

Huang et al., 2012), extreme hydrological events (Reager and Famiglietti, 2009; 

Chen et al., 2010; Steckler et al., 2010; Houborg et al., 2012; Li et al., 2012; Long et 

al., 2013; Thomas et al., 2014) and more. The mass variations observed by GRACE 

mission provides an independent way to examine the mass loading displacements 

at the GPS sites. 

CSR Rel05 level-2 product is chosen for this inter-comparison. Besides the CSR 

product, JPL and GFZ also provide solutions. According to Sakumura et al. (2014), 

the discrepancies between different solutions lie within the error bounds of the 

GRACE solutions themselves. CSR Rel05 is sufficient to perform as the reference 
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gravity field solution rather than an averaging over different products. 

A standard approach for preparing the GRACE time variable gravity field is applied. 

The degree-1 coefficients are added from Swenson et al. (2008). 20C coefficients are 

replaced by SLR observations (Cheng and Tapley, 2005). The de-striping filter is 

applied and obtained from Swenson and Wahr (2006). Gaussian smoothing with a 

filter width of 250 km radius in spectral domain is implemented in order to suppress 

the short wavelength noise, and to preserve the small-scale mass variations 

(Wouters et al., 2008). Before calculating the displacements, the mean field of the 

Stokes coefficient is removed. 

After the preprocessing, the 3-D displacements of the Earth’s surface can be ob-

tained from Eq. (2.22). The GRACE mission orbits around the Earth’s center of mass 

and naturally exists in the Center of Mass (CM) reference frame. After replacing the 

degree-1 coefficient (Swenson et al., 2008), the GRACE gravity field lies in the Cen-

ter of Earth (CE) reference frame. Thus, the displacements obtained from GRACE 

are transferred from CE to the Center of Figure (CF) reference frame in order to be 

consistent with the GPS observations. Transformations over different reference 

frames are essentially adjusted using the degree one term (Blewitt, 2003): 
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  (5.1) 

where CE  and CF  denotes the load Love number in CE and CF reference frame, 

respectively. 
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5.1.3 Other environmental induced loading displacements 

In order to avoid the external influences on the un-modelled displacement, the envi-

ronmental loading other than the CWS are removed from the GPS observations. 

Atmospheric loading  

The atmosphere covers the entire Earth’s surface.  Variations in atmospheric mass 

load and deform the Earth’s crust. The monthly atmospheric loading (ATML) is for-

ward modelled using pressures provided by the National Center for Environmental 

Prediction (NCEP)/National Center for Atmospheric Research (NCAR) (Kalnay et al., 

1996). 

Nontidal Ocean loading 

GPS observed displacements include the effect of mass variations over oceans. The 

mass variations over the ocean are composed of the tidal and non-tidal ocean mass 

changes. These mass variations load the Earth’s surface and induce displacements. 

Tidal ocean loading is normally removed at the observation level processing and will 

not be discussed further here. The non-tidal component is based on ocean bottom 

pressure from the Circulation and Climate of the Ocean (ECCO) (Fukumori, 2002; 

Kim et al., 2007), and it is the same dataset used in (2012). 

5.2. Inter-comparison between displacements 
from GPS and reference sources 

The GPS time series can be considered as independent observations of the envi-

ronmental loading displacements. In order to understand the GPS time series as the 

displacement observations, inter-comparison between the displacements obtained 

from GPS and the models is performed here. 344 GPS sites over the continents are 

selected for the comparison.  These are stations having more than two years of data 

and are not located on islands. 
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Figure 5.2: Exemplary GPS time series (black) in north direction overlapping with the 

forward modelled North displacements obtained from GRACE (blue), GLDAS (red) and 

WaterGAP (green). The corresponding GPS station names can be found on the right 

side of the figure. The GPS one sigma error is shown in grey. Legends are in Figure 5.4. 

Note that the time series are shifted for better visualization. 

Fourteen exemplary GPS sites are selected out of 44 in total which have more than 

12 years of observations overlapping with the displacements obtained from the 

GRACE and hydrological models. They are shown in Figure 5.2, Figure 5.3 and Fig-

ure 5.4 in north, east and up directions, respectively. The distribution of the GPS 

sites is shown by the Green triangles in Figure 5.1. The GPS displacements from 

ZIMM, POTS, NLIB, GODE, DUBO, AREQ and ALBH show a close match with the 

forward modelled displacements using GLDAS, WaterGAP, and GRACE. The other 

sites show more moderate matches. The peak-to-peak vertical amplitude is at the 1-

2 cm level. The amplitudes of the horizontal displacements in GPS are about one 

third the vertical displacements. Moreover, the horizontal displacements obtained 

from GRACE and hydrological model are smaller than those from GPS. 
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Figure 5.3: Exemplary GPS time series (black) in East direction.  

 
Figure 5.4: Exemplary GPS time series (black) in Up direction. 
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5.2.1 Statistical evaluation metrics of the inter-comparison 

In order to statistically evaluate the inter-comparison of the displacement, the metrics 

are evaluated in terms of the correlations, Weighted Root Mean Squares (WRMS), 

WRMS reduction (WRMSR) and WRMS ratio (van Dam et al., 2007; Jiang et al., 

2013). The displacement time series obtained from the reference sources are 

resampled from monthly to weekly. Then these interpolated displacements are com-

pared with the GPS observations. 

Correlation 

Correlation is the statistical linear dependence between two time-series. It is defined 

as 
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where [ , , ]N E UX X X X  and 21[ ( ) ( ) ( )], , , nX X t X t X t  . The correlation between 

two, time series shows the phase differences, and it is not sensitive to the amplitude 

differences between the time series. The agreement in amplitude is evaluated by 

using metrics that will be discussed in the next section. 

WRMS and WRMSR 

WRMS of the time series indicates the signal amplitude, obtained by 
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where iw  is the weight and it is inverted from the variances of the observations, as 

21/i iw  . i  is the standard deviation. For the reference datasets and models, 

WRMS is the same as RMS when the standard deviations of the models are not 

available. 

If the modelled displacements contain real signal, then removing a forward model 
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from the observations may reduce the WRMS. Then the percentage of WRMSR at 

one particular site is a function of the WRMS of the two, time series being compared 

as 

WRMS( ) WRMS( )
WRMSR( , )

WRM
0%

S )
0

(
1 .

GPS GPS ref
GPS ref

GPS

X X X
X X

X


 
  (5.4) 

The WRMSR measures the deviations of the phase and amplitude deviations be-

tween two, time series. The higher WRMSR means two, time series are similar. The 

uncertainty information from GRACE is excluded in the inter-comparison for two rea-

sons: the objective of this study is to understand the GPS time series and the uncer-

tainties in the GPS data; remain the consistencies between the inter-comparisons 

(GPS with GRACE and GPS with hydrological models). The error on the hydrological 

models are not available. Introducing the error information from GRACE results in 

inconsistency while comparing with the result with hydrological models. This is for-

mally improper for the error propagation, but commonly adopted in similar inter-com-

parison studies (van Dam et al., 2007; Tesmer et al., 2011; Jiang et al., 2013). 

WRMS ratio 

In order to understand the signal quality of the GPS observations, a comparison 

between the amplitude of the signal is performed as obtaining the WRMS ratio be-

tween the GPS time series and displacements derived from the reference sources: 

 WRMS
.

WRMS( )

WRMS( )
 .GPS

ref

X
ratio

X
    (5.5) 

This WRMS ratio, WRMS,ratio   presents the amplitude ratio between the displace-

ments from GPS and the reference sources. If the displacements obtained from the 

reference sources are perfect and GPS is error free, then the ratio will be equal to 

one. 
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5.2.2 Comparisons in temporal domain 

After the data preparation described in the former sections, the GPS displacements 

are compared with the displacements from the reference sources at GPS sites 

around the globe. For all 344 stations, the spatial distribution of the WRMSR is plot-

ted in Figure 5.5 (Please note the scale differences between the horizontal and ver-

tical directions). The positive WRMSR (in warm colors) shows that the WRMS was 

reduced after subtracting the forward modelled displacements from the GPS obser-

vations. 

Figure 5.5 shows the spatial distribution of the displacements compared in the tem-

poral domain for the three coordinates. If the CWS induced displacement is perfect 

at representing the displacements and the GPS observations observed the true 

CWS signal, then all the WRMSR circles in this figure should be red with an ampli-

tude of 100%. The right column presents comparison of the WRMSR for vertical 

coordinate. The majority of the stations (154, 68.9% for GRACE; 232, 87.1% for 

GLDAS and 244, 88% for WaterGAP, out of 344 stations) have their WRMS reduced. 

The remaining stations (WRMSR are negative) are mostly located in coastal regions 

where the CWS loading displacements are smaller than those further inland. Wa-

terGAP reduces the WRMS on the greatest number of GPS sites, and from the his-

togram, WaterGAP performs best. 

The WRMSR of the horizontal components are shown in the left (north) and middle 

(East) columns. In the north direction, the WRMS is reduced on 46.1%, 69.5% and 

73.1% of the GPS time series using GRACE, GLDAS and WaterGAP, respectively. 

Let’s look at the stations where the WRMS is not reduced for the WaterGAP com-

parison (left bottom panel in Figure 5.5). Certainly, some patterns can be observed 

over those stations, which are located in coastal regions and in Western Europe. 

The discrepancies in the north component of the GRACE comparison are bigger 

than the discrepancy with the hydrological models. Less than half of the stations 
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have a positive WRMSR when GRACE is removed. The WRMS increases after sub-

tracting GRACE in North America for most of the GPS sites located at latitudes 

greater than 40 degrees. From the left panels in Figure 5.7, it is obvious that Wa-

terGAP is more clustering on the positive axis which meaning larger WRMSR and 

higher correlations. This indicates WaterGAP performs the best among the compar-

isons in the north direction. 

In the East, fewer stations have their WRMS reduced after removing the forward 

modelled displacements from GPS, only 41.6%, 51.5% and 55.1% for GRACE, 

GLDAS and WaterGAP. The distribution of the increased WRMS sites are fewer than 

the comparison in vertical and north directions. The hydrological models again per-

form better than GRACE. 

From the comparison results, the vertical displacements are consistent match be-

tween the GPS observations and displacements obtained from reference sources. 

Up to 88% of the GPS time series have their WRMS reduced after subtracting the 

WaterGAP modelled loads. This is not the case for the horizontal displacements. 

WRMSratio  is shown in Figure 5.9 with the a similar arrangement as in Figure 5.5. 

The corresponding histograms are presented in Figure 5.8. In contrast of the 

WRMSR comparison results, the WRMS ratio shows that GRACE has a better per-

formance among the reference sources in all the three components. The amplitudes 

of the GRACE induced displacements are closer to the GPS observations than those 

of the hydrological models. For the coastal regions, the mass loading induced dis-

placements are smaller than for the stations located inland with the same equivalent 

water height (EWH). Then the displacements from hydrological models, especially 

the vertical displacements are smaller than the GPS observations. This leads to a 

bigger WRMS ratio, e.g. Japan and the coast around Australia. 
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Figure 5.7: Histogram of the WRMSR and correlation coefficients for the 344 GPS sites 

between the GPS observations and the forward modelled displacements from GRACE, 

GLDAS and WaterGAP. 

For the north and vertical components, the amplitudes of the displacements from 

GPS and GRACE are more similar than those in the east. From Figure 5.8, it is 

obvious that the majority of the GPS sites have WRMS ratio larger than 2 for both 

GRACE and hydrological models. Thus, the signal content in the east direction might 

be dominated by other signal or errors rather than the displacements induced by the 

water storage. 

 
Figure 5.8: RMS ratio histograms of the GPS versus the GRACE, GLDAS and WaterGAP 

for the three directions. 
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5.2.3 Comparison in spectra domain 

In order to understand the signal content within the time series, looking at the time 

series in the frequency domain is a common way to analyse the error and signal 

content (Williams, 2004; Amiri-Simkooei, 2013). In this section, we compare the dis-

placements in the spectral domain. The CWS time series are dominated by the sea-

sonal, semi-annual and long-term variations(Dong et al., 2002; van Dam et al., 2007; 

Tesmer et al., 2011). Recently, an anomalous harmonic of 1.04 years (351.4 days) 

and its higher order harmonics was revealed in the GPS observations (Collilieux et 

al., 2007; Ray et al., 2008; Tregoning and Watson, 2009). This frequency coincides 

with the GPS constellation and is named as GPS draconitic frequencies. 

GPS observations and the displacements obtained from the reference sources are 

presented in Lomb-Scargle periodogram (Lomb, 1976) as an amplitude spectra with 

units of a millimeter. The amplitude spectra of the displacements over the 344 GPS 

sites are stacked and plotted in Figure 5.10 along with the displacements obtained 

from reference sources. The amplitudes of the GPS observations are generally 

larger than the amplitudes from GRACE, GLDAS, and WaterGAP, except for the 

annual signals in the vertical displacements.  

With the illustration of all the amplitude spectra, it is clear that GRACE and the hy-

drological models are consistent in their signal content for frequencies smaller than 

two cycles per year (cpy). When comparing GRACE to the CWS variations, we find 

that GRACE observes the same amplitude. The amplitude spectrum of GRACE fluc-

tuates around 0.04, 0.03 and 0.3 mm in the north, east and up directions, respec-

tively, for frequencies larger than two cpy. The GRACE amplitude curves are rela-

tively flat indicating the GRACE noise level. Amplitude spectrum curves from GPS 

show peaks around the draconitic frequencies and gradually decease. 

The vertical GPS amplitude spectrum is generally larger than the amplitude of the 

displacements derived from GRACE. But for the high frequencies, the amplitudes of 
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the displacements from GPS and GRACE are closer to each other, especially after 

3.5 cpy. The amplitudes of the annual signal from GPS and GRACE match very well. 

In contrast to the vertical amplitude spectrum, the horizontal spectra, especially in 

the east, the amplitudes of the GPS time series are about one order of magnitude 

larger than the GRACE time series. 

The displacements obtained from the CWS of the reference sources has a lower 

amplitude with respect to GPS time series for the whole spectrum. This can be ex-

plained from the GPS noise. As the amplitude of the annual signal in vertical direction 

are very close to that derived from GRACE and the annual signals are the largest 

signal in the time series. Unlike the annual and semi-annual frequency, the signal in 

GPS are within the level of the GPS error. The WRMS ratio comparison in Figure 5.8 

also confirmed that GPS time series have larger amplitudes with respect to reference 

sources, especially for the horizontal displacements. And the noise level of the hori-

zontal GPS time series is close to the annual signal strength derived from the refer-

ence source. 

The CWS model displacements are subtracted from the GPS observations and the 

corresponding amplitude spectra are presented in Figure 5.11. The original GPS 

amplitude spectra are plotted in black. 

For the vertical GPS displacements, the GPS annual amplitudes are reduced to 2.3, 

2.0, and 1.9 mm from original 3.7 mm after subtracting the displacements from 

GRACE, GLDAS and WaterGAP, respectively. Thus 40-50% of the GPS observed 

vertical displacement can be explained by the CWS variations.  
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Figure 5.10: The stacked amplitude spectrum of the displacement time series at the GPS 

sites obtained from GPS (black), GRACE (blue), GLDAS (red) and WaterGAP (green). 

The black dash lines indicate the draconitic frequencies. 

Conversely, no significant reduction can be found in horizontal displacements. In the 

north direction, after subtracting the forward modelled displacements, the annual 

amplitudes are reduced to 1.4, 1.3 and 1.3 mm from 1.4 mm. This reduction is not 

statistically significant. The reduction is not clear in the east component. In fact, after 

subtracting WaterGAP, the amplitude of the annual signal is increased. 
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Figure 5.11: Stacked amplitude spectra of the GPS displacements after removing the 

displacements forward modelled by GRACE (blue), GLDAS (red) and WaterGAP (green). 

The spectra of the original GPS time series are plotted in black lines. The black dash 

lines indicate the draconitic frequencies. 

For the other frequency range, after removing GRACE, the amplitude spectrum is 

increased. This is possibly due to the error of these independent observations, GPS 

and GRACE, is combined together. Similar effects are not found after subtractions 

of hydrological models from GPS time series. 

5.2.4 The possible causes of the discrepancies 

We have shown the discrepancies between the GPS and reference sources. Any of 
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a number of non-geophysical factors could introduce those discrepancies including 

the tropospheric delay (Schüler, 2001), monument thermal expansion (Yan et al., 

2009), bedrock thermal expansion (Dong et al., 2002; Fang et al., 2014), phase cen-

ter mismodelling (Schmid and Rothacher, 2003; Schmid et al., 2007), GPS constel-

lation (Ray et al., 2008) etc.  

Local mass loading signals have been considered as another suspected discrep-

ancy sources (Dong et al., 2002; van Dam et al., 2007; Flouzat et al., 2009; Tesmer 

et al., 2011). But from the simulation study from van Dam et al. (2007), they conclude 

that the local signal CWS is the main source of the discrepancy. 

Dong et al. (2002) summarized all the possible discrepancies sources and found that 

environmental loading can explain about 40% of the vertical displacements, bedrock 

thermal expansion can account for ~0.5 mm of the displacements. Yan et al. (2009) 

extended the study of (Dong et al., 2002) and found the thermal vertical displace-

ments including the bedrock and monument displacements are generally smaller 

than 2 mm, with maximum displacements of 3.9 mm. Fang et al. (2014) further ex-

tended the study of (Dong et al., 2002; Yan et al., 2009) and obtained the global 

thermal displacements in three directions with ~2 mm for radial expansion and ~1 

mm for transverse displacements. 



Chapter 5 Discrepancies between GPS time series and modelled displacements 

106   

 

In this section, the thermal expansion displacements, plotted in Figure 5.12, are 

taken from (Fang et al., 2014) for the monthly temperature differences between Jan-

uary 2006 and July 2006. The thermal expansions at the GPS sites are bi-linearly 

interpolated from the global thermal expansion field. As the thermal expansions are 

driven by the temperature variations, the consistencies in the Figure 5.13 can be 

found as temperature in the northern hemisphere is higher, the vertical expansions 

are positive in the northern hemisphere. At the same time, the mass loads in the 

summer time in northern hemisphere are smaller, thus, uplifts are also driven by 

these mass loads. This could partly explain why GPS observes larger displacements 

than those sensed by GRACE. Consistency between GPS and thermal expansion 

can be found in the vertical and north components. In the east direction, the thermal 

expansions are smaller, the amplitudes of mostly continental regions are smaller 

than 0.3 mm (within -0.6 to -0.3 mm level in West Europe), neither the amplitude nor 

the sign have a consistent match between the GPS displacements and the thermal 

expansions, due to the small amplitudes of the thermal expansions. 

Another comparison following the discussion in (Davis et al., 2004; Hao et al., 2016) 

presents the GPS observed displacements and the modelled displacements be-

tween January 2006 and July 2006 in Figure 5.13. The regressed ratios between 

Figure 5.12: Three components of the 

thermal elastic displacements between 

Jan. 2006 and July 2006, with GPS 

timeseries difference in circles.  
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GPS and modelled displacements are presented as dashed lines in the correspond-

ing color. As a reference, the unit slope is presented as grey dashed lines. This plot 

is commonly used for comparing the annual amplitude of the different observations, 

here it is extended to the comparison of whole signal content. Naturally, the compar-

ison results are not as good as comparing the annual signal, as the noise is filtered 

out by deriving the annual signals. In this study, our objective is to understand the 

GPS noise and the discrepancies between GPS and modelled displacements. Thus, 

the original signals are used rather than only implemented at the annual period. 

In Figure 5.13, the estimated vertical linear ratios are 0.42, 0.28, 0.32 and 0.05 for 

GRACE, GLDAS, WaterGAP and thermal expansions, respectively. The vertical ra-

tios are well distributed along the ratio lines, especially the thermal expansions, alt-

hough the amplitude of the thermal expansion (-1 mm to 2mm) is much smaller than 

the GPS observations (-1cm to 2 cm). In the north direction, the ratios of all the 

modelled displacements are around 0.1. Among all the modelled displacements, Wa-

terGAP ratio is the highest (0.14) and GRACE ratio is the lowest (0.10). Thus, the 

modelled displacements can represent a small portion of the total GPS observations 

which corresponds to ~10%. In the east direction, the distribution is very scattered 

for all the modelled displacements and no promising ratio can be derived. 
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From all the comparison studies presented above, it is obvious that the thermal ex-

pansion can be excluded as a main source of the discrepancies. Although consistent 

improvement can be presented in vertical GPS observations if removing the thermal 

expansion, but the amplitude of the thermal expansion (mm level) is far smaller than 

the discrepancies (cm level). 

From the inter-comparison presented in Figure 5.5, Figure 5.8, Figure 5.10 and Fig-

ure 5.13, it is obvious that the displacements modelled from GRACE, GLDAS and 

WaterGAP are consistent with one another, though GRACE and WaterGAP agree 

better with the GPS time series. The discrepancies among the GPS and modelled 

displacements are much larger than discrepancies between the modelled displace-

ments. This also indicates that the discrepancies seem to come from the GPS ob-

servations or the processing techniques, especially in the horizontal. 

Figure 5.13: Modelled displacements 

and the thermal expansion in terms of 

the GPS observations changes be-

tween Jan. 2006 and July 2006.  X-axis 

shows the GPS time series in the cor-

responding directions, y-axis is the 

modelled displacements, dash lines 

present the estimated ratios between 

the modelled displacements and GPS 

observations 
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5.2.5 Re-estimate uncertainties of the GPS observed dis-
placements 

Before the discussion, we would like to clarify two definitions: GPS uncertainties and 

GPS uncertainties for loading studies. GPS uncertainties provided in GPS time se-

ries represent the quality of the GPS observations. But it is not necessary standing 

for the quality for the use of the loading studies as we assume all the GPS time 

series come from the mass redistributions. In fact, the motions observed in GPS time 

series can be caused by other effects.  

The discrepancies between the GPS and modelled displacements are discussed in 

the last two sections. From the illustrated uncertainties in the Figure 5.2, Figure 5.3 

and Figure 5.4, the uncertainties in the GPS time series account for the discrepan-

cies between the GPS observations and modelled displacements. Thus, the GPS 

uncertainties for the loading studies need to be re-estimated for the loading studies. 

GPS has long been used as an independent sensor for mass loading displacements 

(van Dam and Wahr, 1987; van Dam et al., 2001; Blewitt, 2003). Recently, research 

has demonstrated that GPS can be used to infer the continental water storage (Wu, 

2003; Wahr et al., 2013; Amos et al., 2014; Fu et al., 2015). But up to recently, the 

uncertainties for using the GPS time series for inferring the water storage has not 

been fully understood. Although many studies focus on the GPS time series error 

sources and amplitudes (Williams, 2004; Cohenour and Van Graas, 2011; Griffiths 

and Ray, 2013), errors in the GPS measurements differ from the errors in the conti-

nental water storage study.  

In the study comparing GPS time series to the load variations, the displacements 

observed in the GPS time series are assumed to represent the displacements de-

rived from the true mass load changes plus the observation errors. Thus, direct use 

of GPS uncertainties is not proper for this purpose of study, as the GPS uncertainties 

in the time series measures the uncertainties of the GPS time series rather than 
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mass loading induced displacements. From the comparison of the former sections, 

it is obvious that GPS observes more than the signal of loading displacements, such 

as the thermal expansions. Amplitudes of the discrepancies between GPS and mod-

elled displacements are larger than the uncertainties presented in the GPS time se-

ries, while displacements derived from different models and GRACE observations 

are consistent. To prevent over-estimating the CWS uncertainties, the GPS uncer-

tainties need to be re-estimated. 

344 GPS stations over the globe are selected as showed in Figure 5.1. After remov-

ing the annual, semi-annual and linear trend, the residuals in the displacements are 

considered to be errors in the GPS technique or unmodeled signal, as the CWS 

signal mainly consists of signal at these frequencies. First, we tried to analyzing the 

GPS uncertainties from the commonly used time series analysis software, CATS 

(Williams, 2004) and Hector (Bos et al., 2013). The results are not stable for all the 

GPS sites. This result is due to only a few GPS sites (44 stations) of all GPS time 

series used in our study have long observation time series (longer than 12 years). 

Thus, we estimate the errors from forward time series simulator. 

GPS errors are station dependent, and from the previous studies we know that the 

GPS errors are pink and mainly consist of white noise, flicker noise, and random 

walk (Williams, 2004; Amiri-Simkooei et al., 2007; Teunissen and Amiri-Simkooei, 

2008; Bos et al., 2013). Power-law noise is simulated based on (Williams, 2003) for 

the white noise standard deviation up to 5 mm, flicker, and random walk noise up to 

3 mm. The original GPS uncertainties are below 1 mm for horizontal displacements 

and below 5 mm for verticals. Then GPS residuals are compared with the simulated 

error in the spectral domain after square spectral analysis (Lomb, 1976). Then the 

sum of the differences squared are obtained and presented in Figure 5.14. 

In Figure 5.14, the illustrated surfaces present the equivalent square sum of the dif-

ferences. The minimum square sum represents the best fit of the error model with 
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the GPS residuals. For the north and east directions, the minimums appear at the 

0 1 2( , , ) (0.7,2.9,0.1)f f f N       and 0 1 2( , , ) (0.6,3,0.3)f Ef f      , where 

f = 0, -1 and -2 correspond to the white, flicker, and random walk noise, respectively. 

The vertical deviations are not conserved within the estimation range. 

As the inversion method that we use here is based on the Gaussian error behaviour, 

this is a caveat of this inversion study. Then the GPS error is estimated based on the 

standard deviation of the discrepancies between the GPS time series and the for-

ward modelled displacements for the horizontal direction. The vertical uncertainties 

of the GPS observation are increased five times to match the discrepancies in am-

plitude between GPS observations and modelled displacements. 

 
 

5.3. Conclusions 

In this chapter, we investigated the CWS variation induced displacement observed 

Figure 5.14: Forward simulations for the 3-

D GPS residuals after remove linear, an-

nual and semi-annual signal with the dif-

ferent amplitude and type of noises. The 

values in the figures are the square sum of 

the residual between the simulated noise 

and actual GPS noise. The layers in the 

figure stand for the equal value surface. 
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by the GPS and derived from GRACE and hydrological models, in order to under-

stand the GPS signal content and its quality for determining CWS. The GPS time 

series and modelled displacements are compared in time and spectral domains, 

later the possible source of the discrepancies is discussed. The distribution of the 

discrepancies in spatial and spectral domains show that the main source of disa-

greement between the observations and the forward modelled surface displace-

ments is not from the unresolved signal missing in the displacements (such as ther-

mal expansion, local effect). The possible cause of the discrepancies is the error in 

GPS time series, such as the draconitic signals due to the GPS constellation, or from 

the GPS observation quality, especially for the horizontal displacements. 

For the vertical displacements, 40% -50% of the GPS observation amplitudes can 

be explained by the CWS loading derived displacements. By subtracting the mod-

elled displacements modelled using WaterGAP, up to 88% of the GPS stations show 

WRMS reduced. The remaining stations are mostly located near coastal regions 

where the CWS loading displacements are relatively lower than the same amplitude 

of loading inland. The vertical GPS displacements are generally larger than the mod-

elled displacements. This is partly due to the error in GPS time series or other pos-

sible physical process, which so far have not been modelled, such as local mass 

variation loadings. 

The horizontal GPS displacements are 2-3 times the amplitude of the modelled dis-

placements when compared to both GRACE and hydrological models, on average. 

For the north direction, up to 73% of the stations show a reduced WRMS after sub-

tracting WaterGAP derived displacements, but less than a half for GRACE. The qual-

ity of the horizontal GPS observations in comparison is not as good as the vertical 

displacements, especially for the east direction. 

Significant agreements between the displacements derived from GRACE and hy-
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drological models and vertical GPS time series suggest that the CWS variation ob-

served in vertical GPS time series and GRACE are reliable, as GPS and GRACE 

can be considered as independent observation techniques. Significant amplitude re-

duction (40% - 50%) is observed in the annual signal after subtracting GRACE from 

GPS. Although the GPS error amplitude is relatively high in the weekly solution, the 

annual signal is significant for any seasonal study. 

Due to the error in the GPS time series, we re-estimate the GPS uncertainties, as 

the original uncertainties only represent the quality of the GPS observations rather 

than the quality of the displacements at the GPS site. For the inversion study, the 

GPS horizontal uncertainty is recalculated based on the deviation with respect to the 

CWS loading displacement from reference sources. 
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Chapter 6. Conclusions 

The motivation of this thesis work was to estimate the continental water storage var-

iations from the GPS three-dimensional observations for regional studies. Inverting 

the continental water storage from the GPS observations at the regional scale is a 

typical ill-posed inversion problem that makes the inversion scheme challenging due 

to the generally sparse GPS network, error in the GPS time series, and the regional 

mass parameterizations.  

Due to the low availability of the GPS data, it is not cost efficient to pre-select GPS 

stations for a better network, as permanent GPS stations in most of regions are al-

ready sparse. Thus, here we focus on improving the inversion study by analyzing 

the unresolved signals and understanding the GPS observed time series. Then we 

apply our developed inversion scheme in different regions. 

6.1. Unresolved signals in regional study 

As there is a strong concern that there will be a likely gap between the GRACE and 

GRACE-Follow-On missions, the geodetic and hydrological community has started 

to use GPS observations for inferring continental water storage (CWS). But for re-

gional scale inversions, the loading effect from mass changes outside the region of 

interest are commonly neglected (Argus et al., 2014; Fu et al., 2015). In this thesis, 

the spatial truncation error from this omission is discussed with various simulations. 

We found that for the mass loading calculation in most regions around the globe, 

only the load outside a specific spherical distance can be ignored.  

Within the 2 0   degrees of a site, the vertical surface displacement driven by the 

CWS can be approximated as global continental water storage induced vertical mo-

tion. But for desert/dry regions where the mass load is small, a larger coverage of 
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mass change information is suggested. Displacements induced from the far-field can 

be significant as displacement from the dry regions are usually very small. 

Further reduction of the spatial truncation error can be achieved if the mass load 

from the far-field is removed using a proper model of CWS. In our simulation, after 

subtracting the far field effect from the hydrological model, the spatial truncation can 

be reduced by up to half of its original amplitude. But in this case, mismodelling error 

will be introduced into the displacement time series. 

In this thesis work, we estimate the CWS at the basin scale. This approximation of 

basin averages does not consider the mass distribution within the basins. Near-field 

effects show the difference in the displacements between the mean basin changes 

and the real mass distribution. We studied this effect in the spatial and spectral do-

main and found that loading displacements in the vertical are dominated by lower 

degree signals. Omitting this near-field effect introduces significant error into the dis-

placements (up to 0.5 mm and 5 mm for the horizontal and vertical displacements). 

CWS changes in the major river basins can be determined using GPS stations within 

~500 km in most regions around the globe, as about 99 percent of the displacement 

amplitude is from this area. The correlation of the vertical displacements derived 

from global mass variations and mean basin mass changes are close to 1, except 

for a few coastal regions. 

We developed an empirical averaging kernel obtained from the hydrological model 

to reduce the near-field effect. This averaging kernel performs as a regional scaling 

parameter over the basin. 

6.2. Discrepancies between GPS time series and 
modelled displacements 

GPS has been compared with GRACE and other hydrological models in many pre-

vious studies. In this thesis, we re-examine the GPS observations for the CWS study 
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and provide some suggestions for the inversion. 

We cross validate the GPS observations with GRACE and hydrological models and 

confirm the findings provided in Dong et al. (2002) that 40% -50% of the GPS ob-

served annual amplitudes can be explained by the continental water storage loading 

derived displacements. Comparisons here are extended to horizontal displacements. 

We found that the amplitude of the horizontal GPS displacements are 2-3 times of 

the amplitude of the modelled displacements both for GRACE and hydrological mod-

els. In general, GPS shows a better agreement in the north than in the east. 

We discussed the possible sources for these discrepancies. The contribution of ther-

mal expansion of the bedrock explains some of the discrepancies. We exclude the 

local signal, thermal expansion of the bedrock and the monuments as the amplitude 

of these sources are much smaller than the amplitude of the discrepancies. We con-

clude that the main reason for the discrepancies lies in the GPS observations. 

The uncertainties of the GPS time series cannot present the quality of the observed 

loading signals. The discrepancies between the GPS and modelled displacements 

are much larger than the uncertainties in the GPS time series. We suggest re-esti-

mating the GPS uncertainties based on the discrepancies for the inversion study. 

6.3. Inversion schemes and their applications 

Three inversion schemes are developed in this thesis: single basin inversion, multi-

ple basin inversion, and regularized multiple basin inversion. The single basin inver-

sion can be applied to regions where there are located very few GPS sites but strong 

mass loads.  This situation arises in the Amazon. The multiple basin inversion can 

be used to estimate CWS changes in a central basin surrounded by GPS network.  

This situation arises in the Danube and St. Lawrence River basin. The regularized 

multiple basin invasion can be used to co-estimate the basin used in the multiple 

basin inversion. 
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From the inversion scheme, we found that the continental water storage inferred 

from the GPS three-dimensional time series consistently agrees with the storage 

derived from GRACE and hydrological models. Strong correlations (0.75 in Amazon, 

up to 0.88 in North America and 0.80 in Europe) have been found between the in-

ferred CWS and from reference sources. This confirms that GPS can be used to 

infer the water storage changes. 

In this thesis, we extend the regional inversions that only make use of the vertical 

displacements to using three-dimensional surface displacements. Significant contri-

butions of the horizontal displacements have been found in the inversion result, with 

a relative contribution about 0.3 for Danube River basin. We also found that the hor-

izontal displacements contribute signal to the inverted results making the horizontal 

displacements a valuable contribution to the water storage study. 
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Appendix A. GPS stations used 
in North America 

ID 
latitude 

(degree) 

longitude 

(degree) 
ID 

latitude 

(degree) 

longitude 

(degree) 

ADKS 29.79  264.41  NANO 49.30  235.91  

AL70 31.78  274.04  NCDK 36.18  284.25  

ALBH 48.39  236.51  NCG1 36.07  280.26  

ALGO 45.96  281.93  NCG5 36.07  280.26  

ANP1 39.01  283.39  NDBC 30.36  270.39  

ANTO 29.49  261.42  NETP 29.79  264.67  

AOML 25.74  279.84  NIST 40.00  254.74  

ARP3 27.84  262.94  NISU 40.00  254.74  

ASHV 35.60  277.45  NJI2 40.74  285.82  

AUS5 30.31  262.24  NLIB 41.77  268.43  

AZCN 36.84  252.09  NPRI 41.51  288.67  

AZCO 31.39  250.07  NRC1 45.45  284.38  

BAIE 49.19  291.74  ODS5 31.87  257.69  

BAKE 64.32  264.00  P105 39.39  247.50  

BARH 44.40  291.78  P121 41.80  247.30  

BAYR 43.45  276.11  PASO 31.77  253.59  

BEA5 30.16  265.82  PATT 31.78  264.28  

BLYT 33.61  245.29  PGC5 48.65  236.55  

BREW 48.13  240.32  PICL 51.48  269.84  

CAGS 45.59  284.19  PIE1 34.30  251.88  

CCV3 28.46  279.46  PNCY 30.21  274.32  

CHA1 32.76  280.16  PRDS 50.87  245.71  

CHB1 45.65  275.53  PSU1 40.81  282.15  

CHL1 38.78  284.91  PUC1 39.60  249.19  

CHR1 36.93  283.99  QIKI 67.56  295.97  

CHUR 58.76  265.91  RED1 39.56  284.43  

CORC 27.74  262.56  RESO 74.69  265.11  

CPXF 46.84  237.74  SAG1 43.63  276.16  

DNRC 39.16  284.48  SASK 52.20  253.60  

DRAO 49.32  240.38  SAV1 32.14  278.30  
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ID 
latitude 

(degree) 

longitude 

(degree) 
ID 

latitude 

(degree) 

longitude 

(degree) 

DUCK 36.18  284.25  SEAT 47.65  237.69  

DWH1 47.77  237.92  SHE2 46.22  295.45  

DYER 37.74  241.96  SHK1 40.47  285.99  

EKY1 27.60  277.24  SOL1 38.32  283.55  

ENG1 29.88  270.06  STB1 44.80  272.69  

EPRT 44.91  293.01  STJO 47.60  307.32  

ESCU 47.07  295.20  SUM1 34.83  257.49  

FLIN 54.73  258.02  TN22 35.39  274.62  

FMC1 34.70  283.32  TXES 32.37  263.14  

FRDN 45.93  293.34  UNIV 42.29  275.61  

GAL1 29.33  265.26  USMX 29.82  250.32  

GLPT 37.25  283.50  USNA 38.98  283.52  

GODE 39.02  283.17  USNO 38.92  282.93  

HAMM 30.51  269.53  VALD 48.10  282.44  

HLFX 44.68  296.39  VCIO 36.07  260.78  

HNPT 38.59  283.87  VIMS 37.61  284.31  

HOUS 29.78  264.57  VTSP 43.28  287.52  

IDDR 43.75  248.89  WDC1 38.92  282.93  

IQAL 63.76  291.49  WDC3 38.92  282.93  

JCT1 30.48  260.20  WES2 42.61  288.51  

KELS 46.12  237.10  WILL 52.24  237.83  

KJUN 30.22  267.96  WIS1 46.71  267.99  

KUUJ 55.28  282.26  WNFL 31.90  267.22  

KYSC 37.06  275.38  WSLR 50.13  237.08  

LEBA 39.43  275.72  YELL 62.48  245.52  

LKHU 29.91  264.85  YESX 28.38  251.08  

LUMC 29.26  269.34  AMCX 38.80  255.48  

MCD1 27.85  277.47  ANGX 29.30  264.52  

MDO1 30.68  255.99  MCNX 32.70  276.44  

MEM2 35.47  269.79  MLFX 32.09  272.61  

MIL1 43.00  272.11  PORX 43.07  289.29  

MOB1 30.23  271.98  UNBX 45.95  293.36  

NAIN 56.54  298.31  USNX 38.92  282.93  

   MIAX 25.73  279.84  
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Appendix B. GPS stations used 
in Europe 

ID 
latitude (de-

gree) 

longitude 

(degree) 
ID 

latitude (de-

gree) 

longitude 

(degree) 

ABER 57.14  357.92  MOPI 48.37  17.27  

ALAC 38.34  359.52  MORP 55.21  358.32  

ALME 36.85  357.54  NEWL 50.10  354.46  

ANKR 39.89  32.76  NPLD 51.42  359.66  

ANTA 36.83  30.61  NSSP 40.23  44.50  

BELL 41.60  1.40  NSTG 55.01  358.56  

BOGI 52.48  21.04  OBET 48.08  11.28  

BOGO 52.48  21.04  ONSA 57.40  11.93  

BOR1 52.28  17.07  OPMT 48.84  2.34  

BORK 53.56  6.75  ORID 41.13  20.79  

BRST 48.38  355.50  OS0G 57.40  11.93  

BRUS 50.80  4.36  PADO 45.41  11.90  

BUCU 44.46  26.13  PENC 47.79  19.28  

BUDP 55.74  12.50  POLV 49.60  34.54  

BZRG 46.50  11.34  POTS 52.38  13.07  

CANT 43.47  356.20  PTBB 52.30  10.46  

CEBR 40.45  355.63  REDU 50.00  5.15  

CHIZ 46.13  359.59  RIGA 56.95  24.06  

COSE 39.20  16.31  SASS 54.51  13.64  

COST 44.16  28.66  SCOA 43.40  358.32  

CRAO 44.41  33.99  SHEE 51.45  0.74  

CREU 42.32  3.32  SJDV 45.88  4.68  

DLFT 51.99  4.39  SKE0 64.88  21.05  

DRES 51.03  13.73  SOFI 42.56  23.40  

DUBR 42.65  18.11  SPLT 43.51  16.44  

EBRE 40.82  0.49  SPT0 57.72  12.89  

EIJS 50.76  5.68  STAS 59.02  5.60  

FFMJ 50.09  8.67  SULP 49.84  24.01  

GANP 49.04  20.32  SVTL 60.53  29.78  

GENO 44.42  8.92  TERS 53.36  5.22  
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ID 
latitude (de-

gree) 

longitude 

(degree) 
ID 

latitude (de-

gree) 

longitude 

(degree) 

GLSV 50.36  30.50  TGDE 58.01  7.56  

GOPE 49.91  14.79  TORI 45.06  7.66  

GRAS 43.76  6.92  TRAB 41.00  39.78  

GRAZ 47.07  15.49  TRON 63.37  10.32  

HELG 54.17  7.89  TUBI 40.79  29.45  

HERS 50.87  0.34  UNPG 43.12  12.36  

HERT 50.87  0.33  UPAD 45.41  11.88  

HFLK 47.31  11.39  UZHL 48.63  22.30  

HOER 54.76  8.29  VAAS 62.96  21.77  

HRM2 51.45  358.72  VALE 39.48  359.66  

HRRN 37.18  39.00  VENE 45.44  12.33  

IENG 45.02  7.64  VIL0 64.70  16.56  

ISTA 41.10  29.02  VILL 40.44  356.05  

JOEN 62.39  30.10  VIS0 57.65  18.37  

JOZ2 52.10  21.03  VLUC 40.23  15.27  

JOZE 52.10  21.03  WAB2 46.92  7.46  

KARL 49.01  8.41  WARN 54.17  12.10  

KHAR 50.01  36.24  WLAD 54.80  18.42  

KLPD 55.72  21.12  WROC 51.11  17.06  

KOSG 52.18  5.81  WSRT 52.92  6.61  

LAMA 53.89  20.67  WTZA 49.14  12.88  

LROC 46.16  358.78  WTZJ 49.14  12.88  

M0SE 41.89  12.49  WTZR 49.14  12.88  

MAD2 40.43  355.75  WTZS 49.15  12.88  

MAR6 60.60  17.26  WTZT 49.14  12.88  

MARS 43.28  5.35  WTZZ 49.14  12.88  

MAT1 40.65  16.71  YEBE 40.53  356.91  

MATE 40.65  16.70  ZECK 43.79  41.57  

MDVJ 56.02  37.22  ZIM2 46.88  7.47  

MDVO 56.03  37.22  ZIMM 46.88  7.47  

MEDI 44.52  11.65  ZWE2 55.70  36.76  

MERS 36.57  34.26  ZWEN 55.70  36.76  

METS 60.22  24.40  OBEX 48.09  11.28  

METZ 60.22  24.40  PFAX 47.52  9.79  

MIKL 46.97  31.97  TLSX 43.56  1.48  
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MOBJ 55.12  36.57  ZIMX 46.88  7.47  

MOBN 55.12  36.57     
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