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Motivation: non-technical
losses (NTL)

Example of NTL: Two Inspectk{\
assumed occurrences of |
NTL due to significant = /\ izaang
consumption drops
followed by inspections ¢

(visualized by vertical ..
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About us

 We work on real-world machine
learning problems together with
industry partners

e Recent research includes
detection of electricity

theft/non-technical losses, o

correction of biases in data and || 'l l I ll

augmented reality °
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Goals of this tutorial

* Providing an introduction to machine learning

* Understanding the three pillars of machine
earning

* Knowing when to use which model
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* Introduction
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Introduction

"Artificial intelligence is
the science of knowing
what to do when you
don't know what to do."
(Peter Norvig)

https://www.youtube.co
m/watch?v=rtmQ3xIt-4A
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Learn how to
train Watson
Conversation.

Watson




Introduction

Arthur Samuel (1959): “Field of study that gives computers the ability
to learn without being explicitly programmed”.
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Introduction

What do customers buy after viewing this item?

Best Selling Top Rated
Lenovo Inateck
N22 11.6-Inch HD 13-13.3 Inch Macbook Air/
Chromebook Laptop (Black) - Macbook Pro / Pro Retina

(Intel Celeron N3060, 2 GB Sleeve Case Cover
RAM, 32 GB EMMC, Chrome Protective Bag Ultrabook
0S) Netbook Carrying Protector

R 271 WR R R 35
£10999 Prime £1699 Prime
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Introduction

Artificial \
Intelligence®

Terminator - Rise of The Machines
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Introduction

“Machine Learning is a subset of Artificial Intelligence
techniques which use statistical models to enable
machines to improve with experiences”

Use cases: data mining, autonomous cars, recommendation...

(EEE https://rapidminer.com/artificial-intelligence-machine-learning-deep-learning/
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Introduction

Tom Mitchell (1998): "A computer program is said to learn from
experience E with respect to some class of tasks T and performance

measure P if its performance at tasks in T, as measured by P, improves
with experience E."
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Introduction
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Introduction: three pillars of

machine learning

® Supervised learning: induce a function that maps
from input to output.

® Unsupervised learning: find hidden structure in
data.

® Reinforced learning: reward-based learning.




Power & Energy Society®

15

Supervised learning

Raw Data

Features

7 Models
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Supervised learning

Regression Classification
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Supervised learning

Regression Classification
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Supervised learning

Regression Classification
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Supervised learning

Regression Classification
Class 1
Class 2
0 50 100 150 200 250 300 I ‘0-5 -ol4 _0-3 _0-2 _0.1 ° ? 0.1 012
Continuous values Discrete values (categories)
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Supervised learning: use cases

* Detection of anomalies
* Forecasting
* Medical diagnosis
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Supervised learning: models

* Linear/logistic regression
e Decision tree, random forest
e Support vector machine

* Neural networks, Deep Learning
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Supervised learning: workflow

Training
set
Learning
algorithm

X —»‘ h |—> y
features prediction

hypothesis
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Supervised learning: regression

How to represent ‘h’ (hypothesis)
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Supervised learning: regression

How to represent ‘h’ (hypothesis)

Rl cxfil \ he(X) = B + O

y=ax+b
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Supervised learning: regression

How to represent ‘h’ (hypothesis)

il :'. Iy \ he(X) = @0 + OiX

y=ax+b
For example, housing price.
2014 2015 2016 2017 2018
~180k ~182k ~184k ~186k ?7?7?
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Supervised learning: regression

How to represent ‘h’ (hypothesis)

*

he(x) = 1.5 + Ox
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Supervised learning: regression

How to represent ‘h’ (hypothesis)

L \ he(X) = B + O

Choose 6,0 so that he(x) is close to
y for our training set
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Supervised learning: regression

How to represent ‘h’ (hypothesis)

. :, | ::. \he(X)=90+e1X

0 ] 4 Choose 6,0 so that he(x) is close to
; y for our training set
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The idea is to minimize 6.0+, so that he(x)-y tends to decrease.

Thus, we can define the cost function J(6.0:) aiming to minimize ©.0::

J(©) = V23 (ho(x) - y)*
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Supervised learning: classification

Example of non-
technical losses (NTL):
Two assumed
occurrences of NTL due
to significant
consumption drops
followed by inspections
(visualized by vertical
bars).

kwh

200 - /\

Inspection

Inspection
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Supervised learning: decision tree

Weather
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Supervised learning: decision tree

Sunny

Weather Cloudy

Rain
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Supervised learning: decision tree

High Humidity
Sunny <

Normal Humidity
Weak Wind
Weather Cloudy <
Strong Wind

no

Rain
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.
Supervised learning: decision tree

High Humidity yes
Sunny <
Normal Humidity no
Weak Wind yes
Weather Cloudy <
Strong Wind no

no

Rain
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Unsupervised learning

Supervised

X
X
xX
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Known labels
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Unsupervised learning

Supervised
X
. g X
0°0
O
. \

Known labels
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Unknown labels
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Unsupervised learning

Supervised Unsupervised
X O
X O
X, o5 X X X, - O ©
O O O O
O 0
\
X1 X1
Known labels Unknown labels
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Unsupervised learning

Supervised Unsupervised
X
X
Xy o5 X - X,
O O OOO
O O
y :
X1 %
Known labels Unknown labels
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Unsupervised learning: clustering

O
_ . OO0
K-means algorithm X, O

1: Define K centroids randomly. O O
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Unsupervised learning: clustering

K-means algorithm O
[ C()) O
X
1: Define K centroids randomly. ; O
2: Associate every observation according to the nearest O O (]
centroid. O
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Unsupervised learning: clustering

K-means algorithm

1: Define K centroids randomly.
2: Associate every observation according to the nearest
centroid.
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Unsupervised learning: clustering

K-means algorithm

O
1: Define K centroids randomly. . 8 O
2: Associate every observation according to the nearest ’ b ¢
centroid. O O
3: Define new centroids according to the mean of the O
clusters.
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Unsupervised learning: clustering

K-means algorithm

1: Define K centroids randomly. O
2: Associate every observation according to the nearest . 8 O
centroid. ’ b '
3: Define new centroids according to the mean of the O O
clusters. O
4: Repeat step 2 and 3 to converge.
X1
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Unsupervised learning: use cases

* Market segmentation
* Clustering of customers, news, etc.

* Dimensionality reduction of data
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Unsupervised learning: models

* k-means clustering
* Expectation-maximization clustering

* Principal component analysis




Reinforcement learning
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Reinforcement learning: use cases

* Planning
* Playing games, e.g. the game of Go
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Reinforcement learning: models

* Value/policy iteration
* Q-learning
* Deep reinforcement learning
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Deep Learning:
neural network

| hidden units
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Deep Learning

Diagonal
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Conclusions

* Machine Learning allows to learn complex
statistical patterns from data

* Not much domain knowledge required

 Many applications in daily life

* Tell us more about your workflows so that we
can figure out how Machine Learning can help
you!
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