
Machine Learning for Data-Driven 
Smart Grid Applications

Patrick Glauner, Jorge Augusto Meira and Radu State 
Interdisciplinary Centre for Security, Reliability and Trust, 

University of Luxembourg

1

May 22, 2018



Motivation: non-technical
losses (NTL)
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Example of NTL: Two 
assumed occurrences of 
NTL due to significant 
consumption drops 
followed by inspections 
(visualized by vertical 
bars).



About us

• We work on real-world machine 
learning problems together with 
industry partners

• Recent research includes 
detection of electricity 
theft/non-technical losses, 
correction of biases in data and 
augmented reality
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Goals of this tutorial

• Providing an introduction to machine learning

• Understanding the three pillars of machine 
learning

• Knowing when to use which model
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Contents

• Introduction
• Supervised learning
• Unsupervised learning
• Reinforcement learning
• Deep Learning

• Conclusions
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Introduction
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"Artificial intelligence is 
the science of knowing 
what to do when you 
don't know what to do." 
(Peter Norvig)

https://www.youtube.co
m/watch?v=rtmQ3xlt-4A



Introduction
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Arthur Samuel (1959): “Field of study that gives computers the ability 
to learn without being explicitly programmed”.
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Introduction
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“Machine Learning is a subset of Artificial Intelligence 
techniques which use statistical models to enable 

machines to improve with experiences”

Use cases: data mining, autonomous cars, recommendation... 

https://rapidminer.com/artificial-intelligence-machine-learning-deep-learning/



Introduction
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Tom Mitchell (1998): "A computer program is said to learn from 
experience E with respect to some class of tasks T and performance 
measure P if its performance at tasks in T, as measured by P, improves 
with experience E."



Introduction
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source: https://www.forbes.com
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Introduction: three pillars of 
machine learning
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● Supervised learning: induce a function that maps 
from input to output. 

● Unsupervised learning: find hidden structure in 
data.

● Reinforced learning: reward-based learning.



Supervised learning
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Raw Data

Features

Models



Supervised learning
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Regression Classification



Supervised learning
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Regression Classification



Supervised learning
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Regression Classification



Supervised learning
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Regression Classification

Continuous values Discrete values (categories)

Class 1

Class 2



Supervised learning: use cases
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• Detection of anomalies

• Forecasting

• Medical diagnosis

• ...



Supervised learning: models
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• Linear/logistic regression

• Decision tree, random forest

• Support vector machine

• ...

• Neural networks, Deep Learning



Supervised learning: workflow
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How to represent ‘h’ (hypothesis)

Supervised learning: regression
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How to represent ‘h’ (hypothesis)

Supervised learning: regression

hᵐ(x) = ᵐ0   + ᵐ1x
y = ax + b
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hᵐ(x) = ᵐ0   + ᵐ1x
y = ax + b

How to represent ‘h’ (hypothesis)

Supervised learning: regression

For example, housing price.
2014 2015 2016 2017 2018

~180k ~182k ~184k ~186k ???
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hᵐ (x) = 1.5   + 0 x hᵐ (x) = 0.5x hᵐ (x) = 1   + 0.5x
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How to represent ‘h’ (hypothesis)

Supervised learning: regression
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Choose ᵐ0ᵐ1 so that hᵐ(x) is close to 
y for our training set

hᵐ(x) = ᵐ0   + ᵐ1x

How to represent ‘h’ (hypothesis)

Supervised learning: regression
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The idea is to minimize ᵐ0ᵐ1, so that hᵐ(x)-y tends to decrease.

Thus, we can define the cost function J(ᵐ0ᵐ1) aiming to minimize ᵐ0ᵐ1:

J(ᵐ) =  ⅟2⅀ (hᵐ(x) - y)²

Choose ᵐ0ᵐ1 so that hᵐ(x) is close to 
y for our training set

hᵐ(x) = ᵐ0   + ᵐ1x

How to represent ‘h’ (hypothesis)

Supervised learning: regression



Supervised learning: classification
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Example of non- 
technical losses (NTL): 
Two assumed 
occurrences of NTL due 
to significant 
consumption drops 
followed by inspections 
(visualized by vertical 
bars).
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Weather

Supervised learning: decision tree
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Weather

Sunny

Rain

Cloudy

Supervised learning: decision tree
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Weather

Sunny
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Cloudy
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Strong Wind

Weak Wind

Normal Humidity

High Humidity

Supervised learning: decision tree
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Weather

Sunny

Rain

Cloudy

no

Strong Wind

Weak Wind

Normal Humidity

High Humidity

no
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no
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Supervised learning: decision tree



Unsupervised learning
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Supervised 

Known labels



Unsupervised learning

35

Unknown labels

Supervised Unsupervised

Known labels



Unsupervised learning
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Supervised Unsupervised

Unknown labelsKnown labels



Unsupervised learning

37

Supervised Unsupervised

Unknown labelsKnown labels



Unsupervised learning: clustering
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K-means algorithm

1: Define K centroids randomly.



Unsupervised learning: clustering
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K-means algorithm

1: Define K centroids randomly.
2: Associate every observation according to the nearest 

centroid.
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K-means algorithm

1: Define K centroids randomly.
2: Associate every observation according to the nearest 

centroid.

Unsupervised learning: clustering
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K-means algorithm

1: Define K centroids randomly.
2: Associate every observation according to the nearest 

centroid.
3: Define new centroids according to the mean of the 

clusters.

Unsupervised learning: clustering
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K-means algorithm

1: Define K centroids randomly.
2: Associate every observation according to the nearest 

centroid.
3: Define new centroids according to the mean of the 

clusters.
4: Repeat step 2 and 3 to converge.

Unsupervised learning: clustering



Unsupervised learning: use cases
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• Market segmentation

• Clustering of customers, news, etc.

• Dimensionality reduction of data



Unsupervised learning: models
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• k-means clustering

• Expectation-maximization clustering

• Principal component analysis

• ...



Reinforcement learning
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Reinforcement learning: use cases
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• Planning

• Playing games, e.g. the game of Go

• ...



Reinforcement learning: models
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• Value/policy iteration

• Q-learning

• Deep reinforcement learning

• ...
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Deep Learning:
neural network
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Deep Learning



Conclusions

• Machine Learning allows to learn complex 
statistical patterns from data

• Not much domain knowledge required
• Many applications in daily life
• Tell us more about your workflows so that we 

can figure out how Machine Learning can help 
you!
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