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FIG. S1. (a) Electrical conductivity σ as a function of gate voltage Vg of the suspended graphene

sample before and after current annealing. Measurements are taken at T = 4.2 K. (b) Double

logarithmic graph of the conductivity σ after current annealing as a function of charge carrier

density for holes (black) and electrons (red). The red and black dashed lines are linear fits outside

the regime of charge inhomogeneity. The purple, horizontal, dashed line indicates the minimum

conductivity due to charge inhomogeneity. The crossing point of these lines defines n∗. The left

inset shows the onset of SdHO at approx. 25 mT, indicating a mobility µ≈ 400 000 cm2/(Vs). The

right inset depicts a false-color scanning electron micrograph of the measured device. The scale

bar represents 2µm. (c) Electrical conductivity as a function of magnetic field and gate voltage,

used to determine back gate the lever-arm α = 3.15× 1010 cm−2V−1.

THEORY OF MAGNETO-PHONON RESONANCES IN SINGLE-LAYER GRAPHENE

Following Ando [1], Goerbig et al. [2], and Neumann et al. [3], we calculate the Raman

G mode phonon frequency ωG and line width ΓG as the real and doubled negative imaginary

part, respectively, of the root of the following equation:

ω2 − (ω0 − iγ0/2)2 = 2(ω0 − iγ0/2)Π(ω), (S1)
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FIG. S2. (a) Raman intensity around the G peak plotted as a function of the magnetic field around

the T1-MPR at Vg = 0 V and Vg = 14.5 V. The arrows indicate the positions of the T1-MPRs as

extracted in the main text. (b) Raman spectrum taken at Vg = 0 V and B = 0 T. the inset depicts

a Lorentzian fit of the G peak. (c) Illustration of the change in ωG required to observe the shift in

BT1 as seen in Fig. 2 in the main text under the assumption of a constant vF = 1.06×106 m/s (red

dots). Black squares represent the actually measured ωG as a function of charge carrier density at

zero magentic field.

where the phonon self-energy Π(ω) is given by

Π(ω) = ev2
FBλ

∞∑
n=0

[(
ν̄−n − ν̄n+1 − ν̄n + ν̄−(n+1)

)
(Tn − iγel/2)

ω2 − (Tn − iγel/2)2
+

2

Tn − iγel/2

]
. (S2)

Here, Tn = 1
h̄
|εn+1 + εn| are the frequencies associated with the inter-Landau level transi-

tions, and ε±n = ±vF,n

√
2eh̄Bn is the energy of the ±nth Landau level as stated in the

main text. ν̄n = (ν − 4n + 2)/4 denotes the partial filling factor, which depends on the

filling factor ν = nelh/(eB) and obeys 0 ≤ ν̄n ≤ 1. γel introduces a damping of the Landau

level excitations to account for their finite lifetimes and γ0 represents the damping of the

phonon mode due to anharmonic effects. The dimensionless electron-phonon coupling con-

stant is denoted by λ. By fitting the root of Eq. S1 to all our MPR measurements we get

a set of average parameters leading to: ω0 = 1584.8 cm−1, γ0 = 7.6 cm−1, γel = 395 cm−1,
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λ = 4× 10−3 and vF = 1.33× 106 m/s, which we then use to calculate the maximum width

Γmax
G,T1

at the resonance BT1 as a function of charge carrier density, as represented by the blue

line in Fig. 2a in the main text.

TIGHT-BINDING MODEL

We use a third-nearest neighbor tight-binding description of graphene [4] to evaluate

the Coulomb and exchange contributions required for the self-energy correction ΣHF
±n. We

include the magnetic field via a Peierls phase factor and eliminate edge states by a finite

mass boundary term at the zigzag edges [4]. We use an Arnoldy-Lanczos algorithm in

conjunction with shift-invert [5] to calculate approximately 3000 eigenstates (in groups of

400 for efficiency) of a quadratic graphene flake of size 40 × 40 nm2 at a magnetic field of

200 T. The Coulomb and exchange contributions are evaluated as

vHart.
i,j = e2 〈ij| 1

|~r1 − ~r2|
|ij〉 (S3)

and

vFock
i,j = e2 〈ji| 1

|~r1 − ~r2|
|ij〉 . (S4)

Considering the scaling invariance of the Dirac equation, we rescale our results down to

the experimental field strength (lB ∝ 1/
√
B). Effectively, our results thus correspond to an

≈ 330×330 nm2-sized flake. We evaluate both contributions for all pairs of eigenstates. The

state indices i and j can each be split into a Landau level index ±n and a quantum number

m, that labels the degenerate states, as described in the main manuscript, i.e., i = (±n,m),

j = (±n′,m′). Eigenstates are assigned to specific Landau levels ±n and ±n′ based on their

energy. Due to the finite size of our system, there are a few states within the energy gaps

between the Landau levels, which we do not include in the evaluation of the self energy.

TEMPERATURE-DEPENDENT SHUBNIKOV-DE-HAAS OSCILLATIONS

To extract the renormalization of vF at low magnetic fields, we closely follow the method

used by Elias et al. [6] and perform temperature-dependent Shubnikov-de Haas oscillation

measurements. We measure the conductivity σ as a function of charge carrier density for

different temperatures in a range of T = 4 K to T = 60 K at a magnetic field of B = 0.25 T
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FIG. S3. (a) Electrical conductivity as a function of applied gate voltage Vg for different tempera-

tures at a magnetic field of B = 0.25 T. The dashed line represent a fit of a polynomial background

for both electron and hole doping. (b) Shubnikov-de Haas oscillations at B = 0.25 T after subtrac-

tion of a polynomial background. (c) Height of the oscillations ∆σ as a function of temperature

for different charge carrier densities.

(see Fig. S3a). For electrons and holes we separately fit a 4th-order polynomial to the

smooth, high temperature data and subtract this background from all measurements. The

resulting conductivity oscillations δσ are shown exemplary in Fig. S3b for the hole side. We

extract the amplitude of the Shubnikov-de Haas oscillations as the difference ∆σ between

maxima and minima (see label in Fig. S3b). This makes the extracted amplitude almost

independent of the chosen background. The amplitude as a function of temperature (T ) for

different hole densities are presented in Fig. S3c. The amplitude follow the Lifshitz-Kosevich

formula [7]:

∆σ ∝ T/sinh
(

2π2kBT
mc

eh̄B

)
, (S5)

where mc = h̄
√
πnel/vF is the cyclotron mass at a given nel. By fitting this expression to

our data (see Fig. S3c), we are able to extract vF for different charge carrier densities, which

is shown in the inset in Fig. 3 in the main text.

FINITE RENORMALIZATION OF THE FERMI VELOCITY IN PRESENCE OF

LANDAU LEVELS

As shown by González et al. [8], for two-dimensional massless Dirac fermions interacting

via the Coulomb potential, the Fock contribution to the Fermi velocity is logarithmically
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divergent in the limit of zero temperature and chemical potential. The corresponding Fock

contribution to the Hamiltonian is:

ĤF =
∑
~k

∑
α,β

Ψ̂†α(~k)hαβ(~k)Ψ̂β(~k), (S6)

where Ψ̂β(~k) is the annihilation operator for the Dirac fermion with the quasi-wave vector

~k and pseudospin projection β,

hαβ(~k) = −2πe2
∑
~k′

ρβα(~k′)

|~k − ~k′|
, (S7)

and ρβα(~k) = 〈Ψ̂†~kαΨ̂~kβ
〉 is the single-particle density matrix ([9], Sect. 8.4). Its spinor

structure is given by the expression:

ρ̂~k = n~kÎ + ~m~k~̂σ, (S8)

where Î is the 2×2 unit matrix, ~̂σ are the Pauli matrices and the pseudospin density ~m~k has

the form ~m~k = ~kF (k). Following Ref. [9], Sect. 7.2, for chemical potential and temperature

equal to zero

F (k) =
1

2k
. (S9)

Then the Fock contribution to the Fermi velocity reads ([9], Sect. 8.4):

δvF =
πe2

h̄

∑
~k

F (k)

k
=
e2

2h̄

∫ Λ

0

dk F (k), (S10)

where Λ ∝ 1/a is the ultraviolet (UV) cutoff due to the inapplicability of the Dirac model

at large wave vectors and a is the interatomic distance of the graphene lattice. Explicit

numerical calculations on a lattice for the case of a pure Coulomb interaction [10] give the

value Λ ≈ 0.8/a. When substituting Eq. S9 into Eq. S10 we have a divergence at the lower

limit, which, at finite charge carrier density, is cut off at the Fermi wave vector kF. The

result reads:

δvF =
e2

4h̄
ln

(
Λ

kF

)
. (S11)

In the presence of a magnetic field, the density matrix Eq. S8 and therefore the function

F (k) can be calculated using the explicit expression for the Green’s function of massless

Dirac electrons in the presence of a magnetic field found in Ref. [11]. The result is

F (k) =
lB

2
√
π

∫ ∞
0

ds
exp(−k2l2B tanh(s))√

s cosh(s)2
, (S12)
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where lB =
√
h̄/(eB) is the magnetic length. Substituting Eq. S12 into Eq. S10 and changing

the order of integrations we obtain

δvF =
e2

8h̄

∫ ∞
0

ds
erf(ΛlB

√
tanh(s))√

s tanh(s) cosh(s)2
, (S13)

where

erf(x) =
2√
π

∫ x

0

ds exp(−x2) (S14)

is the error function. Assuming that ΛlB � 1, one can calculate the integral in Eq. S13

by splitting the integration interval into two parts: (0,∞) = (0, C) + (C,∞) with some

1/(ΛlB)2 � C � 1. With logarithmic accuracy, one has, instead of Eq. S11,

δvF =
e2

4h̄
ln(ΛlB). (S15)

Thus the infrared divergence (Eq. S11) is cut off at wave vectors on the order of the inverse

magnetic length and the dependence of the Fermi velocity on the electron filling factor is no

longer singular in the presence of a magnetic field.
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