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ABSTRACT

Neurological disorders comprise a group of diseases that affect brain, spine and the nerves that
connect them. Many people worldwide are affected by neurological disorders irrespective of their
ethnicity, age or gender. Currently, >800 neurological disorders have been identified and the list
is still growing. Parkinson’s disease (PD) and epilepsy are two of the most common neurological
disorders that cause a significant burden globally. It has been well established that in both PD
and epilepsy, genetics play a significant role in the generation and progression of the disease,
while both the diseases have a monogenic or polygenic origin. A review of literature shows that
both PD and epilepsy are caused due to the symphony of common, rare and ultra-rare variants.
However, there is a high degree of heterogeneity with regard to genetics, which is evident from
the lack of confirmation from various studies and the minute overlap between linkage and genome
wide association studies (GWAS). Hence, in order to understand the underlying mechanisms of
disease generation and progress, there is a need for unification of results obtained from multiple
studies and a multifaceted approach studying variants occurring with different allele frequencies.
Advances in the field of next generation sequencing (NGS) provided us an opportunity to identify
and characterize the genetic variants associated to a disease more efficiently. Two of such useful
techniques are whole genome sequencing (WGS) and whole-exome sequencing (WES) where the
DNA of an individual is sequenced to identify disease-causing variants. In this thesis, we aimed
to uncover the role of rare/ultra-rare variants in PD and epilepsy, using WGS/WES data. To
achieve the aforementioned goal, state-of-the-art bioinformatic tools and statistical methods were
used on various datasets generated by different studies.

The work on epilepsy was divided into three parts. First, the burden analysis of rare variants
in typical rolandic epilepsy (RE) and atypical rolandic epilepsy (ARE) was conducted, where we
observed an increased burden of rare loss of function (LoF) variants across several disease genesets
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in RE/ARE cases. Whereas, in the second part, burden analyses of rare variants in several
genesets were conducted in genetic generalized epilepsy (GGE). A significant burden was observed
for rare nonsynonymous variants in GABAA receptors in the discovery cohort. Furthermore, the
observed burden was replicated in two independent datasets, of which one was a WES study while
the other was a targeted panel sequencing of GABAA receptor genes. From the identified variants
in GABAA receptors in the discovery cohort, selected variants were functionally validated. Third,
in RE/ARE and GGE, analysis of rare copy number deletions showed a significant burden and
several novel candidate genes were identified. In PD, firstly private variants in the Parkinson’s
Progression Markers Initiative (PPMI) dataset were studied, where we observed a genome-wide
burden of private LoF variants and prediction models were constructed based on the burden
score. Second, the genome-wide burden of U1 splice variants was observed in the PPMI dataset
and the observation was confirmed in the Parkinson Disease Genetic Sequencing Consortium
(PDGSC) dataset. Finally, we discovered several rare, novel variants (coding, non-coding and
CNVs) belonging to multiple families from two familial PD studies (>50 families) that were
segregating with PD. Altogether, this work demonstrates the utility of NGS in discovering novel
genes and genesets found to be implicated in PD and epilepsy and show their heterogeneous
contribution to the disease aetiology. These discoveries could improve the diagnostics of both
PD and epilepsy by expanding the knowledge of molecular mechanisms underlying the disease
and potentially help in establishing modern therapeutic applications.
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CHAPTER 1

INTRODUCTION

1.1 Human Genome
In humans, the genetic information is encoded in the form of deoxyribonucleic acid (DNA)

which was discovered by a Swiss biochemist named Friedrich Miescher in 1869. The building
blocks of DNA are four nucleotides namely Adenine (A), Thymine (T), Guanine (G) and Cytosine
(C). The human genome is comprised of ~3 billion nucleotides. Of the four nucleotides, A and G
belong to a group of nitrogenous bases called purines, whereas C and T belong to pyrimidines.
The DNA has a double helix structure, which was first discovered by Watson and Crick. The
double helical structure of DNA is formed by a specific bonding between the nucleotides (A->T
and G->C ). DNA is present in each cell of the human body and it occurs in the form of a tightly
coiled structure known as chromosome.

Human cells typically contain 23 pairs of chromosomes, out of which 22 pairs are called
autosomes while the 23rd pair of chromosomes determine the sex of an individual and are referred
to as either allosomes or sex chromosomes. The autosomes remain the same between male and
females, whereas in allosomes, females have two X chromosomes and males have one X and
Y chromosome each. Any change in the number of chromosomes may lead to chromosomal
aberrations. For example, Turner syndrome in females, where one of the X chromosomes is
lost or abnormally formed. Similarly, there are other chromosomal abnormalities such as Down
syndrome, Klinefelter syndrome etc.

The human genome can be broadly divided into two parts namely the coding and non-coding
part. The coding part comprises a set of nucleotides known as exons. The exons are interspersed
by the non-coding regions known as introns. Both exons and introns together form a gene and
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human genome comprises of ~20,000 genes. The regions between genes are also non-coding and
are known as intergenic regions.

The landmark achievement in the history of human genome was The Human Genome Project
[1] (HGP), where the entire sequence of human genome was decoded in 2001. It changed the
way scientists identify genetic causes of diseases in a minimal amount of time compared to the
pre-HGP period. The HGP allowed us to compare the genomes of different species and helped
us understand the conserved and key regions. The HGP is beginning to dramatically affect the
way drugs are prescribed by enabling the prediction of side effects or benefits of a given drug on
individuals. It took nearly 13 years and ~$2.7 billion for the project to complete, and since then
the cost of sequencing has continued to reduce considerably. Current trends indicate that the
price for sequencing a human genome is approaching ~$1000 as shown in Figure 1.1.

Figure 1.1: The reducing cost of sequencing per sample. The image was downloaded from https://www.genome.
gov/27541954/dna-sequencing-costs-data/

1.2 Genetic code and variants
Genetic code is a collection of rules followed by the living cells to decipher the information

from DNA to proteins. The conversion of DNA to protein occurs in two steps namely: 1)
Transcription: DNA is transcribed to messenger RNA (mRNA) and 2) Translation: mRNA is
converted to protein. During the process of translation, there are six possible ways to read a
nucleotide sequence called reading frames and the resulting protein depends on the choice of
reading frame. The reading frame divides information from mRNA into sets of three consecutive
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and non-overlapping nucleotides called codons. In total, there is a possibility of having 64
codons based on the permutation of four nucleotides (A, U, G and C). Out of 64 codons, 61
code for an amino acid whereas the remaining three act as stop signal for the translation and
hence called “stop codons”. During translation, the codons from mRNA are read in a particular
order beginning from “start codon” which is typically AUG and it codes for an amino acid
named methionine. Human genetic code follows a principle called “degeneracy” which was first
discovered by Lagerkvist [2]. According to this principle, human genetic code is redundant
because multiple codons can code for the same amino acid, but there is no ambiguity as they
always code for the same amino acid. Due to the degeneracy in human genetic code there are 61
codons, while they only code for 20 amino acids.

The term genetic variation refers to changes occurring in the DNA. Genetic variation occur as
a result of errors during the process of DNA replication. It is an important driver of the evolution,
as genetic variation inherits from one generation to the other. Genetic variation is what makes
an organism unique, be it in humans or other organisms. Mutations are the irreversible changes
occurring in the DNA and they are one of the major sources of genetic variation along with
the recombination. An inverse relationship between the minor allele frequency (MAF) and the
effect size of a mutation has been observed previously [3]. Hence, if a mutation is common it
is assumed to be less harmful, on the other hand if it is rare it could be harmful and lead to a
disease. As a result, for a mutation that is rare, a term “variant” is used instead of “mutation”.
The major types of genetic variants are shown in the Figure 1.2 and are briefly described below.

1

Reference  

Single nucleotide variants (SNVs) 

Deletions 

Insertions 

Copy number variants (CNVs)

TTATTTCAACACACACAAAAAAAGTTTGCCTGTATATGCTCCACGATGCCTG

TTATTTCAACACACACAAAAAA-------------CTCCACGATGCCTG 

TTATTTCAACACACACAAAAAAAGTTTATATGCTCCACGATGCCTG 

TTATTTCAACACACACAAAAAAAGTGTATATGCTCCACGATGCCTG 

Large deletions or duplications >1kb

Figure 1.2: Types of major genetic variants. They are shown with respect to the reference genome.

1.2.1 Single Nucleotide Variants (SNVs)

SNVs are single nucleotide changes in the DNA strand compared to a reference genome. If a
SNV is common (occurs in >1% of the population), it is called a single nucleotide polymorphism
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(SNP). Based on their functional effect, SNVs can be further classified into various functional
categories as described below.

• Coding variants: As the name suggests, coding variants originate from the protein-coding
regions of the genome. Based on the outcome of whether or not a given variant results in
a change in amino acid, they can be broadly/further classified as follows:

– Synonymous variants: According to the concept of degeneracy, multiple codons
code for the same amino acid. Hence, if a SNV produces a new codon which codes
for the same amino acid, then the translation process will go on normally and there
will be no change in the protein production. Such variants are called synonymous
variants and these are the variants that are assumed to be functionally neutral. But,
certain synonymous variants can also be disease causing [4] based on their functions,
for instance synonymous variants involved in splicing.

– Nonsynonymous variants: However, if a SNV changes the amino acids of resulting
proteins they are termed nonsynonymous variants. They are further subdivided into
missense variants, where they just change the amino acid and nonsense variants where
they cause a premature gain or loss of stop codon.

• Non-coding variants: These are the SNVs occurring at the non-coding regions of the
genome. Their functional importance is vastly unknown and are currently a major focus
of research in the field.

1.2.2 Insertion and Deletions (INDELs)

Insertions and deletions which are collectively called INDELs are small insertions or deletions
occurring in the human genome with their size ranging from 1-10,000 bp [5]. They occur very
frequently and are often detected along with the SNVs. Based on their effect on the reading
frame, there are two major types of INDELs.

• Frameshift: An Indel is termed frameshift if the resulting change causes a shift in the
reading frame during translation. The result of a frameshift Indel is that, the reading frame
is not divisible by three anymore.

• Non-frameshift: These are INDELs which do not result in the shifting of reading frame
and hence the reading frame length is divisible by three. They may cause amino acid
insertions/deletions and might block the synthesis of proteins [6].

1.2.3 Structural variants (SVs)

Larger genomic alterations that are typically >1kb long are defined as SVs. There are several
types of SVs, however compared to the SNVs, they are not studied extensively and currently
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represents and active area of research. SVs can be further classified into the categories described
below:

Copy Number Variants (CNVs)

CNVs are the widely studied and common type of SVs. These are large insertions, deletions or
duplications occurring in the human genome. CNVs are responsible for a considerable proportion
of phenotypic variation [7] and they make up for ~12% of the human genome [8] and ~100
genes can be deleted completely without any supposed phenotypic effect [9]. Depending on
their rate of occurrence they can be broadly divided into recurrent and non-recurrent CNVs.
The probable reason for the generation of recurrent CNVs is homologous recombination among
repeated sequences during meiosis. While, non-recurrent CNVs are generally caused by non-
homologous mechanisms that arise in the entire genome and typically occur at sites with limited
homology of 2 to 15 base pairs [10]. These CNVs can be either elementary, where a piece of DNA
is eliminated from a position in the genome and the ends are merged, or they can be complex
where a deletion is succeeded by a duplication or insertion of DNA.

CNVs vary in their size and based on a study comprising of a large collection of CNVs [9]
, the mean lengths of copy number gains and copy number losses were 35,581 bp and 9,181bp
respectively. CNVs can alter the expression of genes and induce phenotypic changes by varying
the genome organization [11]. As a result, they can impact the susceptibility of a person to a
particular disease or his/her response to a drug [12].

Not all the CNVs are disease causing in the human genome and based on their ability to
cause a disease CNVs can be divided into various categories such as benign, likely benign, disease
causing or CNVs of unknown significance [13]. CNVs are often linked to various complex and
common nervous system disorders. Recently, there have been studies showing the role of CNVs
in causing the diseases such as autism, schizophrenia and epilepsy [14, 15].

Inversions and other SVs

Inversions, as the name suggests are regions in the genome, where the DNA is reversed with
respect to rest of the genome. Diseases caused by inversions include Hunter syndrome, Angelman
syndrome, Sotos syndrome [16] etc. There are other SVs which include genomic translocations
or segmental uniparentral disomy [16]. They are relatively rare and hence not well studied.

1.3 Technologies to detect genetic variants

1.3.1 Sanger sequencing

Sanger sequencing is a well known method to sequence the DNA. It was first developed by
the British biochemist named Frederick Sanger and his colleagues in 1977 [17]. In HGP, Sanger
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sequencing was used to decode the human genome. Since then, it has been applied in many
studies successfully to identify the nucleotide sequences. However, it has a very low throughput
and is expensive to perform it on large-scale compared to next-generation sequencing (NGS). Due
to the efficiency reasons, Sanger sequencing has been replaced by NGS platforms. But still, it is
widely used to validate the variants identified via NGS and considered to be the gold standard
due to its lower error rate.

1.3.2 Microarrays

To date, microarrays especially SNP arrays are being widely used to identify common genetic
variants associated to the diseases/traits via genome-wide association studies (GWAS). Microar-
rays can be used to find SNP or large SVs. The main advantage of the microarrays is that, the
genotyping quality is high and they are economical. However, novel variants cannot be detected
through this technology and hence, cannot be used in the context of detecting novel disease
causing variants.

However, it is possible to design a customized microarray, adding more variants such as the
NeuroX chip [18] from Illumina which is customized for neurodegenerative diseases. Thus, can be
used to replicate novel variants identified via NGS technology in a larger population for instance.
It had already been employed in several studies related to Parkinson’s disease (PD) [19].

1.3.3 NGS

Instead of defining the variants of interest a priori, with the aid of NGS a high throughput
DNA sequencing can be achieved much efficiently. NGS generates millions of sequences per run,
thus allowing researchers to sequence and if needed to resequence at a much faster pace compared
to the pre-NGS era. Now a days, generating the data is often not the problem as it has become
very fast and affordable to perform NGS (see Figure 1.1). Today, there are several platforms
which offer NGS services such as 454, Illumina, Qiagen, Ion Torrent (Thermo Fisher) and Oxford
Nanopore. Each of them has their own proprietary technologies, but Illumina holds the biggest
chunk in the NGS market by holding upto 70% of the market share. Various NGS technologies
used to identify genetic variants are described below.

Targeted panel sequencing (TPS)

TPS is a technique where, only a subset of genes or regions of the genome are isolated by
employing different methods. The commonly used method is solution hybridization, where the
probes are used to pull down the regions of interest. Other methods include, enrichment by
applying polymerase chain reaction (PCR), during which every targeted region is amplified by
a specific primer pair in a multiplexed reaction. There are also other methods which employ a
different procedure for PCR multiplexing and hybridization. Targeted analysis can comprise of
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the exome, specific genes of interest (can be customizable), targets within genes and/or mitochon-
drial DNA. Hence, targeted sequencing enables researchers to focus on specific areas of interest,
thereby saving time on data analysis and cost, as it is cheaper than whole genome sequencing
(WGS) and whole exome sequencing (WES).

WES

WES is the process of sequencing only the coding regions of a genome instead of the whole
genome. It is a cheaper alternative to the WGS and is a widely accepted technique. The
application of WES has been shown in numerous studies to identify the causal coding variants
in diseases such as Amylotropic Lateral Sclerosis (ALS), brain defects etc [20]. The major
drawback and the feature of the WES is that, it can only sequence the coding regions. However,
it is currently a widely applied technology as there is limited knowledge regarding the function
of non-coding regions.

WGS

WGS is a way of determining the entire DNA sequence of an individual. With the ad-
vent of Illumina X10 machines the 1000$ genome has now become a reality and many research
groups/clinics across the globe have started using WGS for a wide range of diseases and traits.
Though it is expensive to perform WGS compared to WES or TPS, WGS has many advantages
compared to the other two technologies. The first being the ability to analyze the entire genome.
Recently, several studies focusing on the non-coding regions are being conducted and WES or
TPS cannot be applied in such context. The other advantage being, WGS provides an uniform
coverage across the exome [21] compared to WES. As a result, WGS is better at detecting more
exonic variants and high-quality CNVs compared to WES [22].
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1.4 Processing of NGS data

Figure 1.3: A schematic representation of the different steps performed in a typical NGS analysis.
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The main goal of NGS data processing is to convert the raw sequencing reads to high-quality,
annotated variant calls, in human readable format. The processing of human genome derived
NGS data is both time consuming and computationally intensive, thus requiring high perfor-
mance computing nodes (and facilities), especially in large scale (cohort) sequencing studies.
There are multiple ways of processing NGS data, however in the recent years the best practices
pipeline using Genome Analysis Toolkit (GATK) from the Broad institute has become a gold
standard [23]. The main steps of NGS data processing are described below and shown in the
Figure 1.3.

1.4.1 Pre-processing and variant detection

Quality Control (QC) of FastQ files

The high-throughput NGS platforms can generate millions of sequencing reads in a single run.
The raw files obtained from the sequencers are called FastQ files which contain the stretches of
short DNA sequences known as raw reads. NGS platforms generate two kinds of reads namely
paired-end reads and single-end reads. Paired-end reads are generated by sequencing from both
ends of the DNA and as a result, two FastQ files are generated per sample. Whereas, in the
single-end sequencing DNA is sequenced only from one direction. In order to obtain meaningful
and reliable biological results, one must ensure that the raw data is of high-quality, as biases exist
within the data which may lead to unreliable results, affecting downstream analyses. Majority
of the NGS vendors provide a summary report of their pipeline. However, it is specific to their
proprietary pipeline and do not necessary reflect the quality of the data. Hence, a tool such as
FastQC[24] provides a QC report which can detect and highlight the problems originating from
the sequencing which are reflected in the quality of the data.

FastQC runs several tests on a FastQ file to generate a detailed QC report. FastQC assesses
data quality by evaluating: read length, duplicated sequences, over-represented sequences, per
sequence quality scores, nucleotide content, per base quality score and GC content. Based on
the FastQC report one can setup the appropriate filtering steps for the downstream analyses.
Contaminant oligonucleotide sequences such as, primers and adapters, can occur in both ends of
NGS reads. These adapter sequences have to be removed as they may hinder correct mapping
of the reads and influence the SNP calling and other downstream analyses. Two tools that are
widely used for adapter removal are namely cutadapt [25] and Trimmomatic [26].

Mapping/Alignment

One of the crucial steps in performing the WES/WGS data analysis is the alignment of reads
generated from the sequencer to the human genome. The outcome of read mapping may vary
based on the read mapper that is used. Hence, it is crucial to choose a reliable mapper. A read
mapper takes the FastQ files as input and produces either a sequence alignment map (SAM) or
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binary alignment format (BAM) file [27], based on the desired output. SAM/BAM format is a
well accepted file format for storing the NGS data along with their mapping information. Two
of the most widely used mappers are bowtie [28] and BWA-mem [29]. BWA-mem is part of the
BWA suite of algorithms which uses Burrows-Wheeler algorithm to perform the read mapping.
It is also the recommended aligner according to GATK best practices [23]. The algorithm is
robust to sequencing errors and is shown to perform better compared to several other state of
the art mappers. It is especially suited to the reads with a length of ~100bp, which is typically
the read length generated by NGS platforms.

Removal of PCR duplicates

One major artifact of NGS procedures is the duplication of sequencing reads (defined as reads
with the same start point and direction) generated as an artifact/effect of PCR. In an alignment
scenario, the PCR duplicates tend to share the same DNA sequence and same alignment position.
It is very important to identify and remove duplicate reads, as they may influence the downstream
variant calling. The well known tool for this purpose is “mark duplicates” tool, which is part
of the Picard suite (Picard http://sourceforge.net/projects/picard/). Other tools for this
purpose include sambamba [30].

Picard tools are Java-based command-line tools to manipulate SAM or BAM files. It re-
moves all the read pairs with identical coordinates, only retaining the pair with the highest
mapping quality and examines aligned records in the supplied SAM/BAM file to locate dupli-
cate molecules. In the end, it generates a SAM/BAM output file that includes all aligned reads
without the duplicate records. Additionally, it also generates a file that contains information on
the percentage of PCR duplicates found in the original aligned file.

INDEL Realignment

It is possible that even after read level and alignment level QC there might be some regions
in the genome where the reads are misaligned due to various confounding factors such as the
complexity in certain genomic regions. Mis-alignment in those regions may lead to the mismatch
of many bases in those regions to the genome which might in turn lead to identification of those
bases as SNPs. Also, there might me some regions where there is an Insertion or deletion in
some reads, whereas the other reads might carry a SNP for the same position.

In order to mitigate this effect, one needs to correctly realign the reads in those regions.
INDEL local realignment is recommended and can be performed by using the “IndelRealigner”
tool from Genome Analysis Tool Kit [23] (GATK). Prior to using the “IndelRealigner” tools, a
list of regions that require realignment has to be identified using the “RealignerTargetCreator”
tool. These regions then undergo a local realignment which will alter the misaligned regions due
to INDELs and are converted into higher quality reads containing a consensus INDEL, thereby
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increasing the reliability of downstream variant calling.

Base Quality Score recalibration (BQSR)

During the process of generation of FastQ reads, each base of the read is assigned a quality
score generated on the phred-scale [31]. These scores estimate the errors generated by the
sequencers. The scores generated by the sequencers are subject to various technical errors,
leading to either over or under estimated base quality scores. GATK’s BQSR [32] is one step
where a machine learning model is applied to estimate the errors empirically and adjust the
quality scores. Variant calling algorithms depend heavily on the per base quality score while
identifying SNPs and INDELs. Hence, it is very important to adjust the quality scores in order
to perform a reliable variant calling. This process of empirical adjustment allows users to obtain
more accurate quality scores per base. The BQSR process is done in two major steps. First, a
model is built based on a list of known variants and assumes that all the mismatches are errors
and thus generates the estimates. In the second step the model is applied to all the variants and
the variant quality scores are adjusted empirically.

Variant calling

The input for a variant caller is a SAM/BAM file and the output is a variant call format
(VCF) file [33]. VCF is a generic file format that allows to store the information about genetic
variants such as SNPs, INDELs and SVs along with their functional annotations. VCF is typi-
cally stored as a compressed file and can also be indexed to obtain the information quickly by
providing a range of positions in the genome. The format was initially developed for the 1000
Genomes Project [34] and since then, it has been widely accepted for many studies. A typical
VCF file contains a header line, the meta-information about the various steps employed in the
variant calling followed by the information about genomic position and its respective genotypic
information. There are two ways to detect a variant from the NGS data. The first is using one
sample at a time and performing the variant calling. The most widely used tools for this step
are samtools [27] and the unified genotyper from GATK. The main drawback of this approach
is that, in the studies involving multiple samples, the variant quality and genotypic information
is often lost, which makes it difficult to interpret the result.

Nowadays, this approach has been replaced by haplotype-based variant calling. Haplotype-
based callers work by constructing a haplotype from the sequencing data instead of relying only
on one position at a time [35]. This approach allows haplotype-based callers to identify vari-
ants in the regions which are difficult to analyze using a standard variant caller, especially to
identify high-quality INDELs. Several tools are available following this approach such as Hap-
lotypeCaller from GATK, freebayes [35] and platypus [36]. However, the HaplotypeCaller from
GATK is the extensively used tool and it works by performing a local de-novo assembly of the
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regions of interest which makes HaplotypeCaller superior to other variant caller of GATK called
UnifiedGenotyper. Another advantage of GATK haplotype caller is to generate an intermedi-
ate genomic VCF (gVCF) file which contains the genotype information for every position of a
genome or an exome. Generation of gVCF allows the users to perform a more robust multi-
sample variant calling compared to the traditional single sample variant calling. The advantage
in multi-sample variant calling is that, it calls multiple samples together, due to which, the prob-
ability to call a variant increases even if some samples do not have enough coverage at a variant
position or if it occurs in low allele frequencies. Further, multi-sample variant calling gives the
leverage to identify additional variants of high-quality which cannot be identified via individual
sample calling. The idea behind multiple sample calling is; if there is a strong evidence for a
variant to be called in sample 1 and on the other hand, if there is a weak evidence in the sample
2, GATK’s haplotype caller takes the evidence from sample 1 to call the variant in sample 2.

In exome sequencing, often many off-target (non-exonic) regions also have sufficient depth
of coverage to call the variants. However, these off-target regions do not have similar coverage
across all the samples. Henceforth, these variants are unreliable and including such regions
during variant calling leads to low-quality variant calling. In order to exclude those low-quality
variants, a common exonic interval file is used in case of WES based variant calling.

1.4.2 Variant Quality Control (QC)

Variant Quality Score Recalibration (VQSR)

After the variant calling by GATK’s haplotype caller, the recommended way to filter low-
quality variants is through VQSR tool from GATK. The advantage of VQSR is that, instead of
defining hard thresholds in order to exclude low-quality variants, a continuous, covarying estimate
of the relationship between SNP call annotations (such as QD, MQ, and ReadPosRankSum) and
the probability of a SNP being a real variant versus an artifact. VQSR uses a list of “true sites”
as one of the input. The commonly used sites for this purpose are HapMap3 sites [37] and those
sites that are found to be polymorphic on the Omni 2.5M SNP chip array.

After building a model based on the “true sites” this adaptive error model can then be applied
to both known and novel variations discovered in the call set of interest to evaluate the probability
that each call is real. A variant quality logarithm of odds (VQSLOD) score is generated for each
variant and added to INFO field of the VCF file. VQSLOD score represents the log odds of
being a true variant versus being false under the trained Gaussian mixture model [38]. VQSR
runs in two-steps: The first step works by generating a Gaussian mixture model based on the
distribution of annotation values over a high-quality subset of the input call set and then scoring
all the input variants according to the model. The second step consists of filtering the variants
by applying the cut-offs based on the scores generated in the first step of VQSR.

12



Hard filtering of variants

Although VQSR is an efficient way to exclude low-quality variants, it requires a minimum of
30 samples to generate an efficient model. Also, there might be still some unreliable variants even
after performing VQSR. In order to be more stringent a hard filtering approach is often performed
as an extension to VQSR. In the hard filtering, variants are filtered based on various quality scores
generated during the variant calling. This method of employing VQSR along with hard filtering
has shown to be more efficient in reducing the false positives. There are no consensus hard
filtering parameters, however the recommended criteria according to GATK best practices are
[23]. a) For SNVs: Variants were filtered for QD < 2.0, FS > 60.0, MQ < 40.0, MQRankSum
< -12.5, ReadPosRankSum < -8.0, DP<10.0, GQ_MEAN<20.0, VQSLOD<0, ABHet >0.75 or
<0.25 and Hardy Weinberg Phred scale P value of >20. b) For INDELs: QD < 2.0, FS > 200.0,
ReadPosRankSum < -20.0, DP<10.0, GQ_MEAN<20.0, Hardy Weinberg Phred scale P value
of >20, VQSLOD>0. However, these parameters tend to be adjusted according to the study,
while it also depends on the methods used to generate the variant calls.

1.4.3 Sample QC

After the filtering of low-quality variants, the subsequent steps of sample QC include selecting
the samples of high-quality. This is an important step because in an NGS study, there are various
sources of errors, for example a gender or a relationship mislabeling could lead to completely
erroneous results. Hence, in order to control for such errors, various steps are employed as part
of a standard NGS data processing.

Sample filtering based on quality metrics

Number of alternate alleles, number of heterozygotes, transition/transversion ratio (Ti/Tv),
number of singletons and call rate, serve as an evidence for the quality of the data. They
can be calculated by tools such as PLINK/SEQ i-stats parameter at different stages of data
filtering. One way to filter the low-quality samples, is to exclude any sample with >3 standard
deviation (SD) from the mean in the above mentioned metrics. After excluding the low-quality
variants and samples, only bi-allelic SNVs that are concordant with hapmap3 vcf (version 3.3)
[37] are typically selected for checking the cryptic relatedness, deviations from reported sex and
population stratification. The most widely used tool for this purpose is PLINK [39].

Relatedness and sex check

It is extremely important to check for unreported and cryptic relatedness in association
studies. For relatedness and sex check, the well known tool is PLINK. For relationship detection,
it works by identifying the fraction of genome shared between each pair of samples. Other tools
available for this purpose are KING [40], genetic relationship by averaged blocks (GRAB) [41],
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etc. Typically, in an association study only one sample is selected from an identified pair of
relatives based on, either it’s quality, if there is any difference or one sample will be chosen
randomly from the related pair. In a family based study, this approach can be used to check
the reported relationships and take further QC steps if needed. To determine the gender of a
sample, PLINK works by using the data from X chromosome. However, the cut-off to determine
the sex has to be set based on the study, as each study has a different depth of coverage. In an
association study, a sample is often excluded if there is a mismatch between the reported and
calculated sex.

Population stratification

Population stratification is one of the main criteria that needs to be accounted in an asso-
ciation analysis. Otherwise, it might lead to spurious results. The widely used strategy is to
merge the NGS data with 1000 genomes data [34] and then compare the ethnicity of the sample
under current study with respect to the samples from 1000 genomes. Two tools are most com-
monly used for this purpose and they are multi dimensional scaling (MDS) available as part of
PLINK and Eigenstrat [42] which is available as part of Eigensoft tool. Eigenstrat performs a
principal component analysis (PCA) and produces a list of outliers with >6SD (default) itera-
tively based on the first ten principal components. Whereas typically in PLINK, the cut-off to
determine outliers has to determined manually by visual inspection of first and second principal
components.

Sample contamination

Along with the above mentioned criteria, contamination between different samples can be
checked by using inbreeding coefficient as a means of measure. Similarly, missingness can also
be used as one of the criteria to select high-quality samples. PLINK and vcftools [33] are the
well known tools for calculating these metrics.

1.4.4 Functional Annotation

After generating a set of high-quality calls, the information that is obtained about the chro-
mosomal position, the nucleotide level change and the genotype per sample. To utilize this
information in a meaningful way and select the functionally relevant variants, it is requires to
annotate the variants with information from multiple sources such as the the functional conse-
quence (missense, synonymous etc.), location in the genome (intron or exon), name of the gene it
is effecting (within the gene, upstream, downstream , regulator etc.,) and the frequency at which
the variant is occurring in general population such as ExAC [43] or a disease related database
such as Human Gene Mutation Database [44]. This entire process is called as variant annotation
and the annotations are chosen depending on the application and the study. As, a first step in
annotation the multi-allelic variants should be decomposed using tools such as variant-tests [45]
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and left normalized by bcftools [46]. In the next steps, tools such a ANNOVAR [47], variant effect
predictor (VEP) [48] or Snpeff [49] can be used for annotation. Each tool has it’s own naming
convention for the predicted consequence of the variant and hence needs to be chosen based on
the application. The main resources typically used for gene annotation are RefSeq of National
Center for Biotechnology Information (NCBI), Ensembl and Consensus coding sequence (CCDS).
Each of them has different number of coding transcripts and it is also possible that the variant
predicted to be benign using one resource could be predicted as a damaging variant in the other
resource. Hence, the choice of transcript has an important effect on the variant annotation [50].
Typically, if there are more than one transcripts for a variant, then the tools have an option
to produce the annotation with the most severe consequence. Databases such as dbNSFP [51]
provide various scores for nonsynonymous and splice site SNV consequences. To determine the
rarity of a variant, databases like 1000 genomes, dbSNP [52], ExAC [43] (release 0.3, NFE and
ALL), and the Exome variant server (EVS) http://evs.gs.washington.edu/EVS/ are available.
These databases include the genetic data from various ethnicities and hence, one can filter for
ethnicity specific frequency when required. Further, the filtering criteria for rarity of a variant
is often arbitrary and there is no single definition of the rarity. It should be adapted according
to the study and it could range from (0.01% to 3%).

Variant prioritization and analysis

Depending on the aim of a study, variants can be prioritized in a different manners. However,
a brief description on functional prioritization is given below:

• Nonsynonymous variants: These are amino acid changing variants. RefSeq, Ensemble
and CCDS annotations can be used to define a variant as nonsynonymous variant.

• Loss of function variants (LoF): Any SNV annotated as “splicing”, “stop gain” or “stop
loss” or any INDEL (especially frameshift) can be defined as a LoF variant. Although, they
are named as LoF variants not all of them cause loss of function per se.

• Synonymous variants: These are the variants which do not change the amino acid. They
were assumed to be functionally neutral and used in majority of studies a negative control.
However, there might be some synonymous variants which are functionally important such
as those involved in splicing [4].

• Deleterious scores: There are several deleteriousness prediction scores such as SIFT
[53], PolyPhen2_HDIV [54], LRT [55], MutationTaster [56], PROVEAN [57], CADD [58],
DANN [59], fathmm [60], GERP++_R [61] and SiPHy [62] are available for estimating
the delteriousness of a variant. Some of them are available for the entire genome such
as CADD, GERP++_R and SiPHy. It really depends how one can use these scores to
prioritize a variant, sometimes a combination of these scores are used [63], while the other
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times only one of them is used such as CADD [64, 65].

1.4.5 CNV detection

Various methods to detect CNVs include the traditional methodologies, such as karyotyp-
ing and fluorescence in situ hybridization (FISH) [66] or the array-based comparative genomic
hybridization [67]. These approaches have several drawbacks including hybridization noise, con-
strained coverage, inferior resolution, and also similar to the detection SNPs using arrays the
detection of novel and rare CNVs is not possible. With the advent of NGS, detection of CNVs has
become much reliable and fast. The methods to detect CNVs from NGS data can be based on
paired-end mapping, read depth, split reads, de-novo assembly of the genome and combination
of the above approaches [68]. Each method has it strengths and weaknesses and out of the five
methods the most well known method is by using read depth.

Typically, read depth based methods work by mapping the reads to a genome, normalization
of the read count across the genome, calculation of exact copy number, and the final step is the
segmentation. First, in the mapping step, the reads from FastQ files are aligned to the genome
of interest and the number of reads covering each position of genome (Depth of coverage) is
calculated. In the next steps the depth of coverage is normalized in order to avoid potential
biases arising due to varying GC content or the repeat regions within the human genome. Once,
the normalized read depths are obtained an estimation of copy number is performed in order to
determine whether there is a gain or a loss. Finally, segmentation of genomic regions is performed
to detect conflicting copy number regions. Further, these methods are divided into two based on
whether the copy number detection is performed on one sample or multiple samples together. A
detailed summary of all the different tools is provided in the study [68]. An example of a typical
CNV detection workflow from WES data by employing XHMM [69, 70] is shown in Figure 1.4.
Conceptually, XHMM works in a similar fashion as GATK’s multiple sample calling where we
give multiple files as input and based on the coverage in all the samples CNVs are discovered.
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Figure 1.4: Various steps involved in the detection and processing of CNVs from WES data by using XHMM.
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1.4.6 QC and prioritization of CNVs

In order to select high-quality CNVs each tool generates a quality score, for example CNVs
detected by XHMM can be filtered using Z score and Q_SOME score. The main advantage of
detecting CNVs via NGS is to discover rare and novel events. Hence, several publicly available
databases such as CNVmap [9], the DGV gold standard data-set [71] and 1000 genomes SV [72]
can be used for this purpose. Further, CNVs arising from the questionable regions of the human
genome often have poor quality [73]. To mitigate this effect, the CNVs overlapping the regions
such as centromeres, telomeres and Immunoglobulins can be excluded. Further, filtering criteria
can be employed based on the study.

1.4.7 Association testing

Typically, association testing of SNVs/INDELs is performed in the case-control studies to
determine the variants causing a significant burden. While studying the effect of rare variants,
it is normal to not find any significant association of a variant to the disease mainly due to small
sample sizes. Hence, it is a common practice to perform the association at gene, geneset and
genome-wide levels. There are various methods to perform association testing. The common
methods being burden analysis using Fisher method, kernel based methods such as SKAT or
SKAT-O or a more recent method using linear models. Each of them have their own pros and
cons. The standard burden tests work by collapsing the rare variants in a region such as gene or
a pathway into a single burden variable and then regress the phenotype on the burden variable in
order to test for the aggregated effects of rare variants in the defined region. However, the typical
burden tests often tend loose their power if a region consists of both protective and deleterious
variants or many non-causal variants acting in opposite direction.

In such conditions, advanced methods like sequence kernel association test (SKAT) [74] tend
to be more powerful. Instead of aggregating variants, SKAT aggregates the associations between
variants and the phenotype through a kernel matrix and can allow for SNP-SNP interactions.
We used an optimized version of SKAT called SKAT-O [75] which is more powerful compared to
SKAT, as SKAT-O behaves like the burden test by default when the burden test is more powerful
than SKAT. Otherwise, if SKAT is more powerful than the burden test then SKAT is performed
instead of burden test. These days several tools are available that take a VCF file as an input and
perform a series of burden or kernel based tests such as rvtests [76], epacts (https://genome.sph.
umich.edu/wiki/EPACTS) or PLINK/SEQ (https://atgu.mgh.harvard.edu/plinkseq/).

Association testing of CNVs is performed by burden testing and the most widely used tool
for this purpose is PLINK [77]. It has a special module to perform the burden testing of CNVs
with a combination of permutation.

Linear models were used to perform association analysis of genesets carrying SNVs/INDELs
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[65, 78]. The main advantage of linear models is that, one can account for various confound-
ing variables such as population differences, study wide coverage differences or other technical
differences and it also allows to estimate the odds ratios. Based on the odds ratios, one can de-
termine the direction of effects of variants. Similarly, linear models can also be used to perform
association testing of CNVs to the trait of interest [79].

1.4.8 Mode of Inheritance (MOI) filtering

In contrast to association studies, family studies employ a MOI based variant filtering. Based
on an individual study, different inheritance patterns can be tested for any kind of variants such
as SNVs/INDELs or CNVs as described below.

• Autosomal dominant inheritance: Out of the two copies of a gene, if a mutation in
one copy could induce the disease phenotype then such type of MOI is called Autosomal
dominant inheritance. In this type of inheritance, as even one of the mutated gene can
lead to disease phenotype, even if one of the parent is affected, there is 50% chance for the
offspring to inherit the disease.

• Autosomal recessive inheritance: In the case of autosomal recessive MOI, both alleles
of the gene have to be mutated in order to induce the disease phenotype. If only one allele of
the gene is mutated the other other allele could compensate for the mutated allele thereby
preventing the disease. However, the person carrying one mutated allele becomes a carrier
and their off-springs can have three possible phenotypes: He/she could become a carrier
themselves (50% chance) They could inherit the mutated gene from both the parents and
become susceptible to the disease (25% chance) They could inherit the healthy alleles and
stay normal with respect to the disease (25%)

• De-novo inheritance: These are the newly emerged mutations occurring either in
germline cells of the parents or at some point in life after conception. These kind of
mutations are commonly identified via trio based studies.

• Compound heterozygous variants: If an individual carries a variant in gene on one
allele and another variant in the same gene on the second allele then the inheritance is
called compound heterozygous inheritance.

1.5 Neurological disorders
Neurological disorders constitute a wide range of diseases affecting the nervous system. They

affect several people worldwide irrespective of age, gender or race. Further, they not only damage
the nervous system, but also affect the quality of life and cause a major financial burden [80].
More than 800 neurological disorders have been identified till date. They range in severity and
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the symptoms are often different from person to person ranging from cognitive dysfunction to
manic behavior or depression [81]. An indicator of the disease burden is disability-adjusted life
years (DALY). It is expressed as the the number of years lost due to disability, ill-health or
early death. According to a study published in 2017 [82], the neurological disorders included
in this analysis caused 250,692 million DALYs, comprising 10.2% of global DALYs, and 9,399
million deaths, comprising 16.8% of global deaths showing the burden caused by the neurological
diseases alone. Large variations related to geographical and sex differences [83] for neurological
disorders were also found.

A recent survey of world-wide literature [84] has shown that alzheimer’s disease (AD), chronic
low back pain (CLBP), stroke, traumatic brain injury (TBI), migraine headache, epilepsy, mul-
tiple sclerosis (MS), spinal cord injury, and Parkinson’s disease have been found as the most
common neurological disorders. There is no clear definition of age at onset (aao) for the neu-
rological disorders as a whole. For example, autism spectrum disorder (ASD), Cerebral Palsy
(CP) and Tourette syndrome are early-onset [85]. Whereas, disorders such as AD and PD affect
mostly elderly people although with few exceptions. Similarly, there are several neurological
disorders such as migraine, epilepsy, Multiple Sclerosis (MS), stroke and brain or spinal cord
injuries can affect at any point of an individual’s life time.

One of the main components that is believed to play a role in etiology of neurological disorders
is genetics. By now, from various studies it has been well established that genetics and genomics
play an important role in the etiology of neurological disorders [81]. Majority of the neurological
disorders are found to be complex disorders, where often there is more than one factor that
cause or aid in the progression of the disease [86]. Due to the complexity of these diseases,
traditional methods studying limited genes and pathways cannot always give a full picture of
the underlying mechanisms [81]. Despite the critical role of genetics in neurological disorders,
the consequences of genetic variants are diverse. For instance, in Huntington’s Disease (HD) the
disease is caused by an extension of CAG repeat of huntingtin gene (HTT) which leads to the
production of pathogenic huntingtin protein [87]. In the same way, the CAG repeat expansion of
ATXN1 produces abnormal ataxin-1 protein and leads to Spinocerebellar ataxia type 1 (SCA1).
In contrast, in the case of diseases such as PD, AD, schizophrenia, epilepsy etc., the genetics is
more complex and is often found that several genes contribute to the disease. Moreover, it is
also multi-factorial and seen that there is a complex interplay of genes and environment [86, 88].
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Measurement All-age numbers (thousands) Age-standardized rate (per 100000)
2015 Change from 1990 to 2015 2015 Change from 1990 to 2015

PD
DALYs 2,059 (1,832 to 2,321) 111·2% (102.4 to 118.1) 33 (30 to 37) 10·8% (6.5 to 14.3)
Deaths 117 (114 to 121) 149·8% (135.0 to 161.4) 2 (2 to 2) 22·6% (15.7 to 28.4)
Prevalence 6,193 (5,726 to 6,777) 117·8% (113.2 to 122.8) 98 (90 to 107) 15·7% (13.3 to 18.3)

Epilepsy
DALYs 12,418 (10,438 to 14,479) 2·5% (-5.7 to 11.2) 168 (141 to 195) –22·5% (–28·2 to –16.8)
Deaths 125 (119 to 131) 18·9% (6.4 to 32.1) 2 (2 to 2) –15·6% (–23·0 to –8.0)
Prevalence 23,415 (21,550 to 25,419 39·2% (33.4 to 45.2) 320 (295 to 347) 1·9% (–2·1 to 6·1)

Table 1.1: An increase in the number of DALYs from 1990 to 2015 due to epilepsy and PD. This table is modified
from study [82]

According to a recent study [82], in the past few years there is a substantial increase in the
DALYs due to PD and epilepsy Table 1.1. This emphasizes the fact that there is an increase
in the global burden of neurological diseases and measures have to be taken in order to account
for the increased burden. In the same study, it was shown that when stratified according to
age, epilepsy caused the most burden in children and young adults. Whereas, the burden of PD
increased along with age, similar to other neurological diseases [82].

In my current work, I have focused on genetics of two of the major neurological disorders
namely, PD and epilepsy. Both, PD and epilepsy follow a common pattern where there is a
symphony of common, less common, rare and ultra-rare variants with varying effect sizes as
shown in Figure 1.5. The inception of Arrays, Next Generation Sequencing (NGS) and their
combination with the latest systems biology approaches have discovered several novel risk genes,
biomarkers and drug targets [89]. As, shown in Figure 1.5 common SNPs associated to the
disease are usually identified by using arrays, whereas low frequency variants are identified using
NGS technologies.
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Figure 1.5: A figure describing the pattern of various variants commonly found associated to neurological
disorders and their varying effect sizes.

As PD and epilepsy are complex diseases with more than one gene effecting the disease,
instead of studying variants belonging to one frequency spectrum, variants belonging to different
allele frequencies and predicted biological effect were studied in this thesis. The work that has
been done in this thesis provided us a glimpse of convoluted architecture of PD and epilepsy.
Majority of this work has been conducted by using either Whole Exome Sequencing (WES) or
Whole Genome Sequencing (WGS) data.

1.6 Parkinson’s Disease

1.6.1 Background

PD is a severe neurodegenerative disease affecting several regions of brain, especially sub-
stantia nigra. Due to its substantial variability in phenotypic, neuropathological, and genotypic
characteristics, it is being recognized as a heterogeneous disorder. It is a slow progressing disease,
the average aao for PD is 60 years and it reaches a prevalence of 5% in individuals with an age
>85 years [90], however some people (5%) were diagnosed with PD below 60 years. In brain, an
important chemical messenger called dopamine is produced by the cells of substantia nigra and
it aids to control the movement of human body. In PD, the loss of dopamine producing neurons
occurs, which results in the uncontrolled movement of the patients. The cardinal symptoms of
PD include resting tremor, rigidity and slowness of movement (bradykinesia). In PD, typically
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the symptoms start from one side of the body and then proceed to the other side. The motor
symptoms are often accompanied by several non-motor symptoms. Some of the major non-motor
symptoms for PD include loss of sense of smell, sleeplessness, speech problems, constipation, trou-
bled swallowing, low blood pressure and drooling when standing [91]. Unfortunately, there is no
confirmatory test like a blood test, EEG or brain scan to make a clear diagnosis of PD.

The diagnosis of PD usually depends on the expertise of neurologist who performs a thorough
neurological examination. Especially, an investigation will be conducted for the presence of two
or more of the cardinal symptoms. Also, the doctor could also check the patient’s response to
PD medications, which serves as a further evidence of PD. The first test approved by Food and
Drug Administration (FDA) in order to diagnose PD is an imaging technique called DaTscan
which serves as the measurement of dopamine activity in brain.

According to a recent report, more than 4 million individuals in Europe’s five most and the
world’s ten most populous countries are currently afflicted with PD [92]. In United States alone
PD is estimated to affect 630,000-1,000,000 people and by 2050 these numbers are projected to
be doubled approximately. Ratio of men and women affected by PD is disproportional (2:1) as
it more predominantly affects men [93] and is typically late-onset (>60 years). An estimated
direct and indirect costs sum up to a total of $15.5 billion per year for PD [84]. The estimated
direct costs are at $13,786 per patient, with an aggregate direct medical cost of $8.1 billion. The
aggregate direct cost includes outpatient and institutional care, retail prescriptions, supplies and
equipment. Additionally, indirect costs are estimated to be $10,816 per patient, or $6.8 billion
in aggregate, including number of working days lost due to illness, reduced employment and
household income, adult day care, higher disability payment, any other formal care, and various
household expenditures. PD is an incurable disease, apart from the financial burden, it mainly
affects the quality of life. However, few medications and techniques such as deep brain simulation
can help in the management of PD. Based on the cause, PD can be broadly classified into two
types namely Idiopathic PD and PD with mendelian inheritance. They are described below.

1.6.2 Idiopathic PD

The most common type of PD is Idiopathic PD (IPD), affecting >2% of those over 75 years.
IPD occurs in individuals having no family history of PD. The etiology of IPD is incompletely
understood. Hence, in IPD various factors could contribute to the disease etiology. Ageing is
one of the major risk factor, similar to other neurodegenerative diseases. Smoking is one of the
factors that is believed to play an important role in IPD, a negative association has been observed
between PD and smoking. It is believed that smoking has a neuroprotective affect, as people
who smoke cigarette are less likely to develop PD [94]. However, the findings linking smoking
and IPD are very controversial as the studies did not account for smokers dying younger, and
therefore being less likely to develop a condition that is more common in old age.
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Several weak associations between PD and head injury [95], use of psychoactive medication,
middle-age obesity, lack of exercise, rural living, well-water ingestion, and pesticide exposure
(paraquat, organophosphates, and rotenone) have also been reported. Environmental toxins
such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine MPTP [96] can produce a similar but not
identical clinical scenario [97]. But, majority of studies lack a large sample size and thus re-
main inconclusive. In order to estimate the genetic contribution to the pathogenesis of PD,
several twin studies have been conducted [98–100]. However, majority of them showed low con-
cordance rates in monozygotic and dizygotic twins. A major criticism of these studies was that
the cross‐sectional study designs used did not exclude the possibility of a later disease onset in
unaffected siblings. This obstacle has been overcome by using positron emission tomography
studies (PET), which is sufficiently sensitive to identify pre‐symptomatic subjects by detecting
decreased striatal (18F)6‐ fluorodopa as a metric for decreased striatonigral dopaminergic func-
tion. Based on PET scan data, the concordance rate was significantly higher for monozygotic
twins, than for dizygotic twins [101–103] (55% versus 18%), suggesting a substantial genetic
contribution to the PD pathogenesis.

1.6.3 Mendelian/Familial PD

PD occurs as a sporadic disorder in vast majority of patients, but in 5%-10% of cases, the
disease occurs as a Mendelian disorder. It has been previously thought that there is no genetic
basis for PD. However, the discovery of mutations in SNCA (α-synuclein) [104] has changed the
perception of PD etiology. Since, the discovery of SNCA as a PD associated gene, a substantial
number of genes related to PD were identified as shown in Table 1.2, including mutations in genes
responsible for rare monogenic forms of PD. It could be seen in Figure 1.5 that, PD is caused by
variants in multiple genes and they vary in the conferred risk depending on their allele frequency.
Previous methods that considered PD as a monogenic disease were successful to develop ther-
apies that compensate for the dopaminergic deficit responsible for the motor symptoms of PD.
However, they fall short in terms of developing neuroprotective treatment strategies. Focusing
on patho-mechanisms and understanding the underlying molecular pathology of neurodegenera-
tion is essential, and genetic stratification of patients into subgroups provide an important entry
point for precision medicine.

The monogenic forms of PD have become a valuable resource for PD research, as patient-
based cell models display disease-specific cellular phenotypes that recapitulate the phenotypes
found in post-mortem brain tissue. According to this concept, the validation of clinicogenetic
subtypes of PD may be achieved based on rare but strong molecular signatures and subsequently
applied to the different pathophysiological tiers within each disease subtype. As genes were
identified to cause monogenic forms of PD, they were assigned PARK loci and numbered in
chronological order of their identification. However, the PARK loci do not contain genes which
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only cause monogenic forms of PD, but also loci identified from genome-wide linkage screens,
some of which have not been replicated in subsequent studies. To date, 18 PD-associated loci
(PARK1-18) have been described Table 1.2.

Locus Position Gene Inheritance Function Implications age at onset
PARK1 & 4 4q21-23 α-synuclein

(SNCA)
Dominant Unclear

(presynap-
tic protein)

Protein aggre-
gation

LOPD/EOPD

PARK2 6q25.2-27 Parkin Recessive Ubiquitin lig-
ase

Aberrant
protein &
mitochondrial
homeostasis

EOPD

PARK3 2p13 Unknown Dominant - - LOPD
PARK5 4p14 UCHL1 Dominant Ubiquitin hy-

drolase
Aberrant pro-
tein homeosta-
sis

LOPD

PARK6 1p35-36 PINK1 Recessive Putative ser-
ine/threonine
kinase

Aberrant mi-
tochondrial
homeostasis

EOPD

PARK7 1p36 DJ-1 Recessive Redox sensor Oxidative
stress

EOPD

PARK8 12p11.2-q13.1 LRRK2 Dominant Putative ser-
ine/threonine
kinase

Aberrant
phosphoryla-
tion

LOPD

PARK9 1p36 ATP13A2 Recessive Lysosomal P-
type ATPase

Aberrant pro-
tein homeosta-
sis

EOPD

PARK10 1p32 Unknown Unknown - - LOPD
PARK11 2q37.1 GIGYF2? Dominant - - LOPD
PARK12 Xq21-q25 Unknown X-linked - - LOPD
PARK13 2p12 Omi/HtrA2 Dominant Mitochondrial

serine pro-
tease

Aberrant mi-
tochondrial
homeostasis?

LOPD

PARK14 22q13.1 PLA2G6 Recessive Phosopholipase Aberrant lipid
homeostasis?

EOPD

PARK15 22q12-q13 FBXO7 Recessive Component of
SCF E3 com-
plex

Aberrant pro-
tein homeosta-
sis?

EOPD

PARK16 1q32 Unknown Unknown - - LOPD
PARK17 16p12.1-q12.1 VPS35 Risk - Aberrant

endosomal
recycling?

LOPD

PARK18 3q27, 1q21,
4p15, 17q21,
12q12 and
14q32

EIF4G1,
GBA, BST1,
MAPT,
ATXN2 and
ATXN3

Risk - - LOPD

Table 1.2: A table describing all the PARK loci that were discovered till date and their implications. This table
is a combination of two tables from the studies [92, 105]. LOPD = Late onset Parkinson’s disease and EOPD =
Late onset Parkinson’s disease
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1.6.4 Genetics

Familial PD genes

Linkage analysis is a powerful approach for the discovery of disease associated genes in fami-
lies and it has led to the discovery of two genes SNCA and LRRK2 which were further strongly
supported by the evidence from GWAS. It has been functionally shown that expression levels of
SNCA are inversely correlated to the aao [106]. For LRRK2 the mutation p.G2019S was seen
to be major risk factor for PD. The penetrance seems to be ethnicity specific varying from 22%
Ashkenazi Jews (residents in US), 45% for Norwegians and 80% for Arab-Berbers [106]. This
ethnicity related penetrance is very important, especially while conducting genetic counselling.
However, only ~1% of PD seems to be explained by the p.G2019S mutation. Whereas, in the
Asian population, another mutation p.G2385 has more penetrance (11.37%) compared to the pre-
vious one [107]. Several genes were identified recently that are shown to be causing Familial-PD.
The autosomal dominant genes causing PD include SNCA, LRRK2, EIF4G1, VPS35, DNAJC13,
CHCHD2, TMEM230 and RIC3. Whereas, the monogenic causes for autosomal recessive or X-
linked PD include PARK2, DJ-1, PINK1, FBXO7, 22q11.2del, SYNJ1, RAB39B, DNAJC6,
PODXL, VPS13C and PTHRHD1 [108]. However, functional studies are further required in
order to confirm the role of these genes in the familial forms of PD.

GWAS genes

Several GWAS have been conducted to discover the PD associated genes including the recent
large-scale meta-analysis where they used 26,035 cases and 403,190 controls and discovered 17
novel associated loci. In total, there are >50 loci that are found to be associated to PD [109].
The large-scale GWAS have supported the association of LRRK2 and SNCA to PD. Similarly,
several genes such as UCHL1, PARK16, GAK, MAPT, GBA, NAT2, INOS2A, GAK, HLA-DRA
and APOE have also been identified as risk factors for PD [110].

Modifiers

As described previously in section 1.6.4 the mutation p.G2019S accounts for 1% of PD in
Caucasians, whereas it is higher in other populations. However, it has been noted that the carriers
of p.G2019S mutations have varying phenotypes. Some of them have early-onset parkinsonism,
while some remain asymptomatic of PD despite their old age. Hence, it has been claimed that
there must be some modifiers which alter the aao and the development of PD. A recent study
[111] has identified that DNM3 might be a genetic modifier of aao for parkinsonism by LRRK2
p.G2019S.
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CNVs in PD

There have several studies which detected the genomic triplications and duplications in SNCA.
The first study to report the genomic triplicationss in chromosome 4q21 22 of SNCA was per-
formed in a large family with PD following AD inheritance. The triplication was confirmed by
PCR and FISH technology [112]. Since then, several studies have reported the duplications and
triplications in SNCA [113]. Interestingly, all of the CNVs in SNCA suggest a gain of function
[114]. However several forms of PD are early onset, suggesting a LoF mechanism in PD and
one of the major genes that was shown to be associated to PD via LoF is PARK2. There have
been some reports where heterozygous CNVs in PARK2 have been found to be associated to the
increased risk of PD [115, 116]. While, some other studies did not confirm such an association
[117, 118]. Hence, it remains to be seen whether any rare CNVs in PARK2 will be found in
the near future. The other PD associated gene that is found to harbor a heterozygous deletion
is PINK1. In a study [119], it was found that the entire PINK1 is deleted and the deletions
span a length of 56kb. Similarly, other studies have also found heterozygous deletions in PINK1
[120, 121]. The deletions in DJ1 have been found in genetically segregated cohorts of Nether-
lands and Italy [122, 123]. Further, deletion involving DJ1 were also found in a family of Iranian
origin[124]. All the families carrying these deletions are consanguineous. In one family of Iranian
origin, a deletion was reported in ATP13A2, but no other CNVs were reported in the same gene
till date [124]. Other CNVs affecting single gene include TH, VPS35, PGRN and HMOX1 [113].

1.7 Epilepsy

1.7.1 Background

Epilepsy is a chronic neurological condition affecting over 65 million people worldwide. 2.8
million Americans are affected by epilepsy which is approximately 1% of the general popula-
tion [84]. Epilepsy disproportionately affects black men (https://www.cdc.gov/mmwr/pdf/wk/
mm6145.pdf) as well as the elderly [125]. Epilepsy is one of the less studied neurological disease
despite of it high prevalence and economic burden. According to a study, direct medical costs in
both children and adults in the year 2009 epilepsy is estimated to a cause a burden of $9.6 billion.
Another study from 2004 also estimated the prevalence and burden of epilepsy, however they
did not assume indirect costs and considering the static disease prevalence from 2004 to 2014,
adjusting to 2014 [84], the direct medical costs of epilepsy for 2014 are estimated at $13.4 billion.
However, the same study showed that by including the indirect costs for epilepsy patients, the
total cost burden (direct and indirect) is estimated at $36.8 billion.

The primary feature of epilepsy is the spontaneous seizure activity, which occurs due to
the sudden bursts of electrical activity in the brain. Epilepsy is a disease with a combination
of multiple syndromes [126]. More than 50 syndromes have been found to be part of epilepsy
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[127]. Based on their location of origin, epilepsy can be broadly divided into focal epilepsy and
generalized epilepsy. Focal epilepsies originate from a specific area of a brain, whereas the origin
of epileptogenesis is unclear in generalized epilepsies. According to the International League
Against Epilepsy (ILAE) [128], the practical definition of epilepsy is described as below.
Epilepsy is a disease of the brain defined by any of the following conditions

• At least two unprovoked (or reflex) seizures occurring >24h apart

• One unprovoked (or reflex) seizure and a probability of further seizures similar to the general
recurrence risk (at least 60%) after two unprovoked seizures, occurring over the next 10
years

• Diagnosis of an epilepsy syndrome: Epilepsy is considered to be resolved for individuals
who had an age-dependent epilepsy syndrome but are now past the applicable age or those
who have remained seizure-free for the last 10 years, with no seizure medicines for the last
5 years.

Although, epilepsy can occur at any age it is more common amongst children and people
above 65 years of age. Not all epilepsy sub-types are life long, some forms are confined to
childhood. The prevalence of epilepsy in general population is 3.3-7.8/1000 and 3.4-5.8/1000 in
pediatric studies with an age limit ranging from 0 to 18 years [129]. There are several sub-types
of Epilepsy. A recent classification of epilepsy according to the ILAE 2017 (Instruction manual
for the ILAE 2017) [130] can be seen in the Figure 1.6.
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Figure 1.6: A figure describing the 2017 classification of epilepsy according to ILAE

1.7.2 Genetics

One of the factors that is believed to play an important role in many epilepsy syndromes is
genetics. Several genes were identified by Genome-wide association studies (GWAS) [131, 132],
Trio-based studies [133] and segregation-based studies in the families. They are briefly described
below.

Ion-channel and non ion-channel variants in epilepsy

In the central nervous system and excitable tissues such as skeletal and heart muscle, ion
channels form the basis of excitability regulation. There are various types of ion-channels such as
sodium, potassium, calcium or chloride channels depending on the ions they allow to pass through
them. The ion-channels play a major part in controlling the excitability and any defect in the
ion-channels could lead to hyper or hypo-excitability of the concerned tissue [134]. The change
in excitability might ultimately lead to epileptogenesis. About 25% of the genes that are known
to be mutated in epilepsy are in the ion-channels [127]. The first concept of “channelopathy” in
epilepsy has been led by the discovery of variants in KCNQ2 and SCN1A [135]. Till date, several
variants occurring in the voltage or ligand gated ion-channels were found to be major cause of
epilepsy. Table 1.3 shows the ion-channel genes that are mutated in diverse forms of epilepsies.
The mutations in ion-channels are known to cause rare monogenic idiopathic epilepsies, however
they were also found in some common epilepsies such as juvenile myoclonic epilepsy or childhood
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and juvenile absence epilepsies [136].

Gene Phenotype Protein
Voltage-Gated

SCN1A Dravet syndrome; GEFS+ NaV 1.1
SCN1B GEFS+, temporal lobe epilepsy, an early infantile epileptic encephalopathy NaVb1
SCN2A BFNIE, early-onset epileptic encephalopathies, neurodevelopmental disorders NaV1.2
SCN8A BFIE, epileptic encephalopathy Nav1.6
KCNA1 Partial epilepsy and episodic ataxia KV1.1
KCNA2 Epileptic encephalopathy KV1.2
KCNB1 Epileptic encephalopathy KV2.1
KCNC1 Progressive myoclonus epilepsy KV3.1
KCNMA1 epilepsy and paroxysomal dyskinesia KCal.1
KCNQ2 BFNE, epileptic encephalopathy KV7.2
KCNQ3 BFNE KV7.3
KCNT1 ADNFLE, EIMFS KNal.1
KCTD7 Progressive myoclonus epilepsy KCTD7
HCN1 GGE HCN1
CACNA1A Epilepsy, episodic ataxia, epileptic encephalopathy CaV2.1
CACNA1H GGE CaV3.2

Ligand-Gated

GRIN1 Epileptic encephalopathy GluNl
GRIN2A Epileptic encephalopathy GluN2A
GRIN2B Epileptic encephalopathy GluN2B
GRIN2D Epileptic encephalopathy GluN2D
GABRA1 GGE, Epileptic encephalopathy GABRA1
GABRB3 CAE, Epileptic encephalopathy GABRB3
GABRG2 FS/GEFS+, epileptic encephalopathy GABRG2
CHRNA2 ADNFLE CHRNA2
CHRNA4 ADNFLE CHRNA4
CHRNB2 ADNFLE CHRNB2

Table 1.3: Various ion-channel genes known to be involved in idiopathic epilepsies and epileptic encephalopathies.
The table has been adapted from the study [127]. BFIE, benign familial infantile epilepsy; BFNIE, benign familial
neonatal-infantile epilepsy; EIMFS, epilepsy of infancy with migrating focal seizures; FS, febrile seizures.

Apart from ion-channels, several mutations in the non-ion channel genes have been discovered
in epilepsy and they are shown in the Table 1.4.
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Gene Gene Name
NHLRC1 NHL repeat containing E3 ubiquitin protein ligase 1
SLC6A1 solute carrier family 6 member 1
KCTD7 potassium channel tetramerization domain containing 7
CPA6 carboxypeptidase A6
SLC25A22 solute carrier family 25 member 22
CLN8 CLN8, transmembrane ER and ERGIC protein
CDKL5 cyclin dependent kinase like 5
SNIP1 Smad nuclear interacting protein 1
RELN reelin
PNKP polynucleotide kinase 3’-phosphatase
EPM2A EPM2A, laforin glucan phosphatase
SRPX2 sushi repeat containing protein, X-linked 2
STXBP1 syntaxin binding protein 1
WWOX WW domain containing oxidoreductase
ST3GAL5 ST3 beta-galactoside alpha-2,3-sialyltransferase 5
SZT2 SZT2, KICSTOR complex subunit
PRICKLE1 prickle planar cell polarity protein 1
ASAH1 N-acylsphingosine amidohydrolase 1
STRADA STE20-related kinase adaptor alpha
IER3IP1 immediate early response 3 interacting protein 1
SPTAN1 spectrin alpha, non-erythrocytic 1
PCDH19 protocadherin 19
SCARB2 scavenger receptor class B member 2
SLC35A2 solute carrier family 35 member A2
ARX aristaless related homeobox
ARHGEF9 Cdc42 guanine nucleotide exchange factor 9
CNTNAP2 contactin associated protein like 2
PRICKLE2 prickle planar cell polarity protein 2
CSTB cystatin B
PLCB1 phospholipase C beta 1
SYN1 synapsin I
SLC13A5 solute carrier family 13 member 5
SIK1 salt inducible kinase 1
DEPDC5 DEP domain containing 5
CHD2 chromodomain helicase DNA binding protein 2
GNAO1 G protein subunit alpha o1
ST3GAL3 ST3 beta-galactoside alpha-2,3-sialyltransferase 3
PRRT2 proline rich transmembrane protein 2
DNM1 dynamin 1
GOSR2 golgi SNAP receptor complex member 2
MEF2C myocyte enhancer factor 2C
SLC2A1 solute carrier family 2 member 1
STX1B syntaxin 1B
ALDH7A1 aldehyde dehydrogenase 7 family member A1
HNRNPU heterogeneous nuclear ribonucleoprotein U
TBC1D24 TBC1 domain family member 24
LGI1 leucine rich glioma inactivated 1
PNPO pyridoxamine 5’-phosphate oxidase
ALG13 ALG13, UDP-N-acetylglucosaminyltransferase subunit
EEF1A2 eukaryotic translation elongation factor 1 alpha 2 height

Table 1.4: A list of non-ion channel genes that were found to carry mutations in epilepsy. This table was modified
from the study [137].

31



CNVs in epilepsy

Various studies carried out in GGE, EE or focal epilepsies have shown a clear role of CNVs
in epilepsy. The CNVs involved in epilepsies are rare and consist of genes causing the epilepsies.
One such example is deletion Xp22 which disrupts the gene CDKL5 [138]. In the same study
they found a deletion 5q33-q34 which spans the GABRA1 and GABRG2 genes both of which
were shown to be associated to different forms of epilepsy [139, 140]. Similarly, various CNVs
spanning genes such as NRXN1, SCN1A, SCN2A, BMP5, AUTS2, PODXL, CNTNAP2, NIPA2,
CYFIPI, CHNRNA7, NDE1, GRIN2A and PRRT2 have also found to be identified in various
forms of epilepsies [141].

1.7.3 Rolandic Epilepsy

Background

Rolandic epilepsy (RE), is also known as benign epilepsy with centrotemporal spikes (BECT).
It is one of the most common epilepsies occurring during childhood and it accounts for about
10–20% of the childhood epilepsies. The typical aao for RE is 3–13 years, with a peak incidence
between 7–9 years old, and invariably shows remission by 14 years. The core clinical characteristic
includes a focal seizure with sensorimotor symptoms, involving the face and laryngeal muscle, or
secondary generalized tonic–clonic seizures, mainly during sleep. Characteristic centrotemporal
spikes (CTS) and typical seizures are sufficient for diagnosis. The prognosis of RE is relatively
benign, as the name indicates; however, moderate behavior and learning problems may exist
in some patients. Compared to typical RE, atypical RE (ARE) includes more severe symptoms
such as atypical benign partial epilepsy (ABPE), Landau–Kleffner syndrome (LKS), and epileptic
encephalopathy with continuous spike and waves during sleep (CSWS). The symptoms observed
in ARE occur together with speech and language dysfunction. The genetic origin of RE has been
the subject of much speculation but remains largely unknown as most RE patients do not show
a simple Mendelian inheritance pattern. Given their overlapping clinical characteristics, RE and
ARE are presumed to have a shared genetic etiology. Hence, in this thesis they were studied
together.

Genetics

There have been several family studies in the 1990s showing the genetic basis of RE. However,
the twin studies did not provide a strong support to this hypothesis [142, 143]. All the studies
that have been conducted till date on RE have remained inconclusive and the different genes
emerging from different studies are pointing RE to be a complex disease [144].

Familial genes: A previous genome-wide linkage analysis of 38 families has shown that
a chromosomal region 11p13 showed a significant linkage [145]. A further candidate SNP
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analysis across the linkage region identified three SNPs rs964112, rs11031434 and rs986527 all
present in the intron region of ELP4 gene with significant association. The result was replicated
in a separate set of 120 controls and 40 cases from Canada, additionally a novel SNP rs2104246
also showed significant association. However, no such association for ELP4 gene was found in
a separate study [146] indicating that further larger sample sizes and functional studies are
required in order to corroborate the findings.

Candidate gene studies: A study conducted on six CNVs has shown that a duplica-
tion in the chromosomal locus 16p11.2 increases the risk of RE and ARE which was supported
by the association analysis. However, no such association was seen for temporal lobe epilepsy
and Genetic generalized epilepsy (GGE)indicating an enrichment selectively towards RE and
ARE. Further, candidate gene studies on RE cases with severe symptoms identified that
mutations in GRIN2A and GABAergic receptors could play a potential role [147–149].

1.7.4 Genetic generalized epilepsy or Idiopathic generalized epilepsy (IGE)

Background

GGE is one of the most common types of epilepsy and constitute about one-third of epilepsies
[150]. GGEs are believed to have a strong genetic component underlying the disease development
and progression. According to the ILAE classification, the following are sub-types of GGE.

1. Benign myoclonic epilepsy in infancy (BMEI)

2. Generalized epilepsies with febrile seizures plus (GEFS+)

3. Epilepsy with myoclonic–astatic seizures (EMAS)

4. Childhood absence epilepsy (CAE)

5. IGEs with variable phenotypes (IGEVP)

• Juvenile absence epilepsy(JAE)

• Juvenile myoclonic epilepsy(JME)

• Epilepsy with generalized tonic–clonic seizures only (EGTCSO)

Genetics

GGEs are considered to be of genetic origin and till date several twin studies have been
conducted with high concordance [151]. About 2-8% of GGEs are considered to be monogenic
and majority of the genes that are implicated in GGEs include ion-channel sub-units [152].
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Although few genes apart from ion-channel sub-units are shown to be responsible for develop-
ing GGEs [153] their role remains inconclusive as it is often difficult to define the mechanism
of epileptogenesis and assumed to have a functional interference by the ion-channel proteins [153].

Familial genes: Several genes implicated in GGE have been successfully identified by
studying the families. Such genes include SCN1A, KCNQ2, KCNQ3, EFHC1, GABRA2 and
CHRNA4. Early studies based on twins have been conducted and further strengthened the
argument that GGEs are genetic disorders. Till date about 2-8% of GGEs are considered to be
monogenic [151]. Vast majority of the monogenic GGEs are associated to variants in voltage
gated ion-channel receptors (Na and K channel subunits). The largest linkage study of 379
multiplex families has identified only two loci namely 5q34 and 13q31.3 as linked to GGE,
whereas suggestive evidence was found for additional six loci 1p36.22, 3p14.2, 5q34, 13q12.12,
13q31.3, and 19q13.42 [154]. However, the linkage peak at 5q34 is interesting as it encodes for
several GABA receptor sub-units(GABRB2, GABRA6, GABRA1, GABRG2).

Association studies: A GWAS study based on 3020 GGE cases and 3975 controls
identified two loci 2p16.1 and 17q21.32 that are significantly associated to the GGE [155].
Other than that, the GWAS studies did not identify many significant genes. A large-scale
meta-analysis comprising of GGEs identified a locus 4p15.1 harboring the gene PCDH7 [156].
Although there are few common variants that were found to be associated to GGEs, a large
proportion of genetic components is still missing and this could be potentially explained
by the rare variants. But, there has not been much success in identifying the rare variants
associated to GGEs via association studies. Especially, the studies using exome sequencing
have failed to identify any significant rare variants [157]. Recently, a large-scale WES based
association study comprising of 640 cases with familial GGE and 3877 controls did not detect
any gene with genome wide statistical significance. However, an increased burden was ob-
served when rare, deleterious variants in a group of genes with analogous function were collapsed.

CNVs in GGE: A large-scale association study including 1223 cases and 3,669 controls
showed that micro deletions in the 15q13.3 region were present in 12/1223 cases but not present
in any of the controls [158]. In the same line several micro deletions (1q21.1, 15q11.2, 15q13.3,
16p11.2, 16p13.11 and 22q11.2) were found to be associated to GGE [159, 160]. Another
association study involving 1,408 GGE cases and 2,256 controls have identified large rare
deletions in the gene RBFOX1 [161] that are associated to GGE.
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1.8 Aims of the thesis
Although several rare variants and genes associated to PD and epilepsy have been identified

till date, there is still a large portion of missing heritability. Hence, we hypothesized that both
PD and epilepsy are genetically heterogeneous and in my thesis I aimed to fill in that missing
gap by applying state-of-the art statistical and analytic methods to the WES and WGS data to
both the diseases. My main focus was on rare/ultra-rare variants as they have the highest effect
size compared to the common ones Figure 1.5. As part of it, I developed several pipelines in
order to detect and analyze the variants from WES/WGS data and in the next steps they were
applied to various data-sets belonging to epilepsy and PD.

The specific aims of my thesis were:

1. To discover disease-causing variants in different kinds of epilepsies namely RE/ARE and
GGE.

2. To identify the differential burden of genetic variants in sporadic PD.

3. To discover potential novel disease causing variants in familial-PD.

4. To build disease prediction models based on WES/WGS data.

1.9 Contributions
• Chapter 1

– Description: This chapter provides the background information regarding human
genome and various neurological disorders.

– Contributions: I wrote the text in full.

• Chapter 2

– Description: Role of rare variants in Typical and Atypical rolandic epilepsy using the
WES data were studied in this chapter. This chapter is a full reprint of the article
published in European Journal of Human Genetics.

– Contributions: Data analysis, interpretation of results, writing and revision of
manuscript.

• Chapter 3

– Description: Rare variants in a group of GABAA receptors in GGE were studied
using the WES data in this chapter. This chapter is currently under revision in
Lancet Neurology.
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– Contributions: Data analysis, interpretation of results, writing and revision of
manuscript.

• Chapter 4

– Rare copy number variants in RE/ARE and GGE using the WES data were studied
in this chapter. This chapter is currently submitted in PLOS ONE.

– Contributions: Data analysis, interpretation of results, writing and revision of
manuscript.

• Chapter 5

– Description: Role of ultra-rare variants in PD using the WES of 367 cases and 159
controls were studied in this chapter. This chapter is currently submitted in Movement
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CHAPTER 2

ROLANDIC EPILEPSY

2.1 Abstract
Rolandic Epilepsy (RE) is the most common focal epilepsy in childhood. To date no

hypothesis-free exome-wide mutational screen has been conducted for RE and Atypical RE
(ARE). Here we report on whole-exome sequencing of 194 unrelated patients with RE/ARE
and 567 ethnically matched population controls. We identified an exome-wide significantly en-
riched burden for deleterious and loss-of-function variants only for the established RE/ARE
gene GRIN2A. The statistical significance of the enrichment disappeared after removing ARE
patients. A nominally significant enrichment for loss-of-function variants was detected for several
disease-related gene-sets.

2.2 Introduction
Rolandic Epilepsy (RE), or epilepsy with Centro-Temporal Spikes (CTS), is one of the most

common epilepsy syndromes of childhood. RE is related to rarer, and less benign epilepsy syn-
dromes, including atypical benign partial epilepsy, Landau-Kleffner syndrome and epileptic en-
cephalopathy with continuous spike-and-waves during sleep, referred to as RE related syndromes,
or Atypical Rolandic Epilepsy (ARE) [162]. In up to 20% sib pairs or families, mutations af-
fecting GRIN2A, a subunit of the excitatory glutamate receptor NMDA, were found implicated
as major risk factor for RE and ARE by us and others [147, 148]. Recently, the association
of the genes RBFOX1, RBFOX3, DEPDC5, GABRG2 and genomic duplications at 16p11.2 in
1,5-2,0% was identified in patients with RE and ARE [149, 161, 163] through candidate gene
and loci screens. In the current study, an unbiased exome-wide survey was conducted in the
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RE/ARE cohort.

2.3 Patients and Methods

2.3.1 Study participants

204 unrelated European Rolandic cases (182 RE, 22 ARE) and 728 population control subjects
were included [149]. Written informed consent was obtained from participating subjects and, if
appropriate, from both patients and adolescents.

2.3.2 Data generation and processing

Exome sequencing of all individuals was performed with the Illumina HiSeq 2000 using the
EZ Human Exome Library kit (NimbleGen, Madison, WI). Sequencing adapters were trimmed
and samples with <30X mean depth or <70% total exome coverage at 20X mean depth of
coverage were excluded from further analysis. Variant calling was performed in targeted exonic
intervals with 100bp padding using the GATK best practices pipeline [23] against the GRCh37
human reference genome followed by multi-allelic variant decomposition and left normalization.
Samples were excluded from further analysis if they (i) were not ethnically matched, (ii) were
related, (iii) showed discrepancy with reported sex, (iv) had an excess heterozygosity >3SD in
any of the quality metrics (NALT, NMIN, NHET, NVAR, RATE and SINGLETON statistics as
calculated by PLINKseq i-stats parameter [164]. The genotypes of variants with read depth <10
or genotype quality <20 were set to missing. Variants were excluded if they (i) failed variant
quality score recalibration (VQSR) or GATK recommended hard filter, (ii) showed missingness
>3%, (iii) were present in repeat regions or (iv) had an average read depth <10 in either cases
or controls. The ExAC variants were restricted to the exonic intervals used for variant calling in
this study, not present in the repeat regions and passed the VQSR threshold.

2.3.3 Variant annotation and filtering

Variants were annotated using ANNOVAR [165] version 2015 Mar 22 with RefSeq and En-
sembl, Combined Annotation Dependent Depletion (CADD) scores [58], allele frequencies and
dbNSFP (v3.0) annotations. The sample used in this study are of NFE ancestry, hence to inves-
tigate rare variants, we selected variants having a minor allele frequency (MAF) <0.005 in the
European populations of the 1000 genomes, Exome Variant Server (EVS) and the Non-Finnish
European (NFE) data from ExAC. We generated three classes of variants for further analyses:
(1) deleterious variants (CADD15) which were defined as missense variants with a CADD Phred
score >15, (2) loss-of-function (LOF) variants comprising all rare indels, stop gain, stop loss
and splice site variants (2nt plus/minus the exon boundary), (3) CADD15+LOF variants as the
union of the above two datasets, and (4) rare synonymous variants.
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2.3.4 Single variant and gene association analysis

For the statistical analysis, we employed two independent control cohorts (available in-house
and ExAC) to increase reliability and power of the statistical tests. For single variant burden
analysis, we applied the single score method in RVTESTS [76] to cases and in-house controls,
for which individual genotypes were available. For gene burden analysis, a 2x2 contingency
table was constructed by counting the number of alternate allele counts per gene in patients
vs. controls (in-house controls and NFE ExAC controls). We then obtained a one-sided p-value,
odds ratios and the 95% confidence intervals [166] by using Fisher’s exact test. Resulting p-values
were corrected for 18,668 RefSeq protein-coding genes [133] by Bonferroni approach. Finally, to
ensure the exclusion of false positive association results and following the “rare variant of large
effect hypothesis”, we selected those genes that are present in the first quartile of the Residual
Variant Intolerance Score (RVIS) distribution [167].

2.3.5 Selection of gene-sets

We investigated the following four neuron-related gene-sets: (1) genes encoding pro-
teins at synapses downloaded from the SynaptomeDB [168] database (“SYNAPTIC_GENES”,
N=1887), (2) genes of postsynaptic signalling complexes including N-methyl-D-aspartate re-
ceptors (NMDARs) and the neuronal activity-regulated cytoskeleton-associated protein (ARC)
[169] (“NMDAR_ARC_COMPLEX”, N=80), (3) genes encoding proteins at the inhibitory
synapses (“INHIBITORY”, N=5,941) and excitatory synapses (“EXCITATORY”, N=5,261)
[170], (4) glutamate receptor subunit encoding genes (“GLUTAMATE_RECEPTORS”,
N=18). In addition, we included five gene-sets associated with disease and/or muta-
tional intolerance: (1) genes encoding targets of Fragile-X-Mental-Retardation-1-Protein [171]
(“FMRP_TARGETS_DARNELL”, N=1,772), (2) genes intolerant for mutations from ExAC
(“EXAC_CONSTRAINED_GENES”, N=3,230), (3) genes intolerant for loss-of-function mu-
tations [172] (“constrained”) (“CONSTRAINED_GENES_SAMOCHA”, N=1,004), (4) a cu-
rated list of dominant genes associated with developmental delay obtained from the DECIPHER
database [173] (“DDG2P_MONOALLELIC”, N=299), and (5) genes found related before to
epileptic encephalopathies [174] (EPILEPTIC_ENCEPHALOPATHY, N=73). As control data
sets we used (1) for each dataset the corresponding set of synonymous variants, and (2) the ‘non-
constraint’ gene-set including RefSeq genes that have been found tolerant to loss-of-function
mutations (“GENES_WITHOUT_CONSTRAINT”, N=14,417). GRIN2A, as the most signifi-
cant single gene from the burden analysis, it was excluded from all gene-sets in order to test if
other genes also contribute to the disease association.
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2.3.6 Gene-set association analysis:

The gene-set association analysis for the different types of variants was performed by using
a logistic regression approach using R (version 3.2) and adjusting for the following confounding
variables: the total number of called genotypes per sample, the total number of rare coding
variants per sample, the total number of rare coding singletons (variants observed only once in
the entire dataset) per sample, calculated sex, the first four principal components and the total
number of variants per sample for each variant class.

2.4 Results

2.4.1 Exome sequencing and variant filtering

We performed whole-exome sequencing on 204 patients with RE/ARE and 728 population
controls. After QC, the final dataset consisted of 19 ARE, 175 RE and 567 control samples.
From the total of 761 samples, 226,521 exonic and splice site variants were called. The mean
transition/transversion ratio equalled 3.39 per sample. After the final filtering 45,881 CADD15,
10,326 LOF and 38,802 synonymous variants were analyzed.

2.4.2 Association analysis

To investigate the mutational burden within the RE spectrum, all associations were assessed
for both RE and ARE separately and by combining cases from both phenotypes while assuming
them to be a single disease. In comparison to 567 in-house controls we did not observe statistically
significant burden in any of the variants or genes in cases after multiple-testing correction. In
order to increase the statistical power, we used the Non-Finnish European (NFE) ExAC cohort
as an additional control dataset. Association testing against the much larger NFE-ExAC cohort
(N=33,370) identified an exome-wide significant burden for CADD15, CADD15+LOF and LOF
variants for GRIN2A within the combined typical and atypical (RE+ARE) cohort. No other
variant-intolerant gene (i.e. being present in the first quartile of RVIS) was significantly enriched
for variants in any of the tested patient groups. Although, variant enrichment for GRIN2A was
not found to be significant after correction for RE and/or ARE separately, the odds ratio for
GRIN2A consistently exceeded unity in all considered datasets (Figure 2.1A).

2.4.3 Exome-wide and gene-set burden analysis

Assuming a shared mutational burden in patients across gene-sets of convergent function
and/or pathways, we performed gene-set burden analyses by using the in-house controls. A
logistic regression approach was used to account for various confounding variables (see Methods).
No significant exome-wide burden was observed across the different variant classes (Figure 2.1B).
Despite the fact that none of the gene-sets showed a significant result after multiple-testing
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correction, we found several gene-sets with an odds ratio >1 for the CADD15, CADD15+LOF
and LOF variant classes, especially for the LOF variants, but not for synonymous variants (Figure
2.2). A similar result was seen when we performed the analysis with ARE and RE independently.

(A) (B)

Figure 2.1: Burden analysis of RE/ARE. Typical Rolandic Epilepsy is represented as RE, Atypical Rolandic
Epilepsy as ARE and RE plus ARE as ROLANDIC. On the x-axis, the odds ratios in cases vs controls are given.
The names of the variant classes are given on the y-axis. Each panel represents a different dataset. The dashed
vertical line represents the expected odds ratio of 1. The horizontal lines indicate 95% confidence intervals. (A)
Assessment of risk for deleterious mutations in GRIN2A against two control groups (ExAC and In-house). The
values on top of each point represent multiple-testing corrected p-values, the ones in red are significant p-values
and the ones in black are the p-values that are not significant after multiple-testing correction. The odds ratios
are restricted to a maximum value of 50. (B) Exome-wide burden analysis by different variant classes. The values
on top of each point represent the p-value. Synonymous variants serve as a control functional group.
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Figure 2.2: Gene-set burden across different variant classes. Each panel represent a different variant class. The
synonymous variants serve as a control variant class. GRIN2A was removed from all gene-sets to identify other
contributing genes. On the x-axis, the odds ratios in cases vs controls are given. On the y-axis the names of
different gene-sets are given. The red vertical line represents the expected odds ratio of 1. The horizontal lines
indicate 95% confidence intervals and are restricted to the maximum of odds ratios over all gene-sets. In that case,
points are represented as the points without error bars to their right. The uncorrected p-values are shown on top
of each point. CADD15=Deleterious predicted missense variants. LOF=Loss-of-function variants.

2.5 Discussion
We performed the first exome-wide association study investigating rare genetic variants of

large effect in 194 patients with childhood focal epilepsies with centro-temporal spikes in compar-
ison with 567 in-house and online available 33,370 population controls from the ExAC database.
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By performing an unbiased gene-burden analysis of patients against the in-house and ExAC
controls (Figure 2.1A), we show that only for GRIN2A rare CADD15, CADD15+LOF and LOF
variants are significantly more frequent in typical and Atypical Rolandic Epilepsy (RE and ARE,
respectively, odds ratio >1). Owing to the small sample size and genetic heterogeneity, no other
gene or gene-set was significantly enriched for variants after correction for multiple-testing (Fig-
ure 2.2). However, we could observe a consistent trend in the odds ratios for the enrichment of
LOF variants in several diseases associated gene-sets comprising genes under negative selection,
glutamate receptors and genes associated with epileptic encephalopathies (Figure 2.2). These
patterns indicate that besides the major disease gene GRIN2A, we identified several novel vari-
ants (that have not been seen in ExAC) in Table 1 from other less frequently mutated genes such
as DEPDC5, GABRG2 etc., indicating that they also contribute to RE and ARE. Availability of
larger cohorts in the future should allow us to identify these other genes associated to RE/ARE.
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CHAPTER 3

GENETIC GENERALIZED EPILEPSY

3.1 Abstract
Generalized epilepsy with genetic etiology (GGE) is the most common type of inherited

epilepsy characterized by absence, myoclonic and generalized tonic-clonic seizures typically oc-
curring with generalized spike-and-wave discharges on electroencephalography. Despite a high
concordance rate of 80% in monozygotic twins, the genetic background is still largely unknown.
Individuals included in the study were clinically evaluated for GGE. Whole-exome sequencing
(WES) was performed for the discovery case cohort, the first replication case cohort and for
two independent control cohorts. A second replication case cohort underwent targeted next-
generation sequencing of the 19 known genes encoding subunits of GABAA receptors and was
compared to the respective GABAA receptor variants of a third independent control cohort.
Functional investigations were performed using automated two-microelectrode voltage clamping
in Xenopus oocytes.

Statistical comparison of 152 familial index cases with GGE in the discovery case cohort
to 549 ethnically matched controls revealed significant enrichment of rare missense variants in
the ensemble of GABAA receptor encoding genes in cases. The enrichment for these genes
could be replicated in a second WES cohort of 357 sporadic and familial GGE cases and 1485
independent controls. Comparison of these genes in a second independent replication cohort
of 635 familial and sporadic GGE index cases, based on candidate-gene panel sequencing, to a
third independent control cohort confirmed the overall enrichment of rare missense variants in
cases. Functional studies for two selected genes (GABRB2, GABRA5) showed significant loss-
of-function effects with reduced current amplitudes in five of seven tested variants compared to
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wild-type receptors. Our results suggest that functionally relevant variants in GABAA receptor
subunit encoding genes constitute a significant risk factor for GGE. This conclusion is based
on an enrichment of rare variants in those genes in three independent case-control datasets and
physiological studies revealing a loss of function for tested variants which are supposed to favor
a neuronal dis-inhibition which is a well-known mechanism in epilepsy.

3.2 Introduction
In the recent past, gene discovery in monogenetic diseases, including familial and severe

epilepsy syndromes, has been boosted by next generation sequencing yielding a steadily increas-
ing number of disease-causing genetic defects. Unraveling the genetic origin of complex inherited
disorders has, however, been more difficult. GGE comprises common epilepsies with generalized
absence, myoclonic and tonic-clonic seizure [175]. It has a high heritability, as has been shown
in twin studies [176] and represents a kind of ‘prototype’ of genetic epilepsy with complex inher-
itance.

A few single nucleotide polymorphisms in genome-wide association studies and altered copy
number variations have been the major common risk factors identified so far in GGE. These,
however, only explain a small part of the high heritability. Single gene defects in larger fami-
lies with autosomal dominantly inherited GGE have been identified as disease-causing, e.g. in
GABRA1 or GABRG2 encoding subunits of GABAA receptors [139, 177], or in SLC2A1 encod-
ing the glucose transporter type 1 [178, 179]. Larger candidate gene or whole exome sequencing
(WES) studies have not revealed a significant burden of mutations in single genes or groups of
genes thus far [157, 180]. Only recently, a study running in parallel to the one reported here
demonstrated mutational burdens of ultra-rare variants in gene-sets related to epilepsy [133].

We set out to investigate the burden of genetic mutations in mainly familial GGE by first
testing hypothesis-free sets of genes related to the disease and disease-relevant pathways, vali-
date the findings and follow-up with hypothesis-driven functional studies. We demonstrate the
presence of such a genetic burden in one gene-set encoding the main inhibitory receptors in
the mammalian brain, replicate the finding in two independent GGE cohorts and prove their
functional significance by physiological investigations.

3.3 Patients and Methods

3.3.1 Participants

The discovery GGE exome sequencing case cohort included 152 subjects (after quality control
(QC) of the exome sequencing data) with GGE from multiplex families which were collected by
the Epicure and the EuroEPINOMICS-CoGIE consortia. All subjects were of European descent
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(Italian n=69, German n=51, Dutch n=11, Danish n=8, British n=6, Finnish n=4, Swedish
n=2, Greek n=1). The cohort included 88 females (58%). The primary GGE-diagnoses were
childhood absence epilepsy (CAE, n=68), juvenile absence epilepsy (JAE, n=16), juvenile my-
oclonic epilepsy (JME, n=37), GGE with generalized tonic-clonic seizures alone (EGTC, n=24),
early-onset absence epilepsy (EOAE, defined as beginning below 3 years of age, n=4), epilepsy
with myoclonic absences (EMA, n=1) and unclassified GGE (n=2) (see Section 3.6 Table 3.1).

The age of epilepsy onset ranged from 1.5 to 38 years with a median of 10 years and all
subjects had a normal development without obvious developmental delay or intellectual disability,
although most were not formally tested. We included the few cases with EOAE, EMA and
unclassified GGE since these entities in our view are close to classical GGE. For EOAE it has
been recently suggested by a large study that it is likely genetically similar to classical CAE
[181]. EMA may also have genetic overlaps with GGE [182] and we often find in family studies
both well classified and unclassified GGE cases in the same pedigrees. The majority of cases
(n=143, 94%) derived from multiplex families with at least two affected family members, thereof
76 families with three or more affected members. All cases had EEG changes consistent with
GGE (see Table 3.1 Section 3.6).

The replication case cohort 1 consisted of 357 GGE cases (after QC) that were collected in
six European countries (Belgium n=5, Germany n=174, Ireland n=22, Italy n=23, Netherlands
n=61, and UK n=72) by the EpiPGX consortium. The cohort included 225 females (63%) and
132 males (37%). GGE diagnosis included CAE (n=55), JAE (n=28), JME (n=157), EGTC
(n=19), and unclassified GGE (n=98). 92 cases (26%) derived from multiplex families with at
least two affected members. 131 cases were sporadic, for the remaining 134 cases, familial history
was not known. Age of epilepsy onset ranged from 0 to 49 years with a median of 13 years. All
cases had EEG changes consistent with GGE (see Table 3.2 Section 3.6).

Two independent control cohorts for the case discovery and the replication cohort 1 were
obtained from two independently sequenced cohorts from the Rotterdam study [183, 184] which
were matched for ethnicity and sex (Section 3.6). All the control samples were at least 55 years
old or older and were checked for several neurological conditions at baseline. As GGE is a disease
with typical onset from childhood to adolescence, it is unlikely that people from this older control
cohort could still develop GGE.

For the GABAA receptor panel cohort (replication cohort 2), individuals were collected by
referral from neurologists or pediatricians in Quebec, Canada, and in Europe by Epicure or Co-
GIE partners. The replication cohort 2 consisted of 631 subjects (after QC) with GGE that were
collected from Canada (n=290) and five European countries (Germany n=153, Denmark n=58,
Belgium n=71, Netherlands n=58, and Finland n=1). They included 390 females (62%) and 241
males (38%). Subjects were diagnosed with CAE (n=109), JAE (n=92), JME (n=189), EGTC
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(n=104), or unclassified absence epilepsy (n=137) not otherwise specified according to ILAE
definitions [175] (Section 3.6 Table 3.3). 154 cases were familial with at least 2 affected family
members, for 51 there was a positive family history of epilepsy but only one affected member
was available, and the remaining 426 cases were sporadic. All cases had EEG changes consistent
with GGE. A third independent set of controls was obtained from the UK10K project consortium
[185]. A full list of the investigators who contributed to the generation of the UK10K data is
available from www.UK10K.org. Funding for UK10K was provided by the Wellcome Trust un-
der award WT091310 (EGAS00001000101,129,130,131,242,306). Data transfer agreements were
made between the CRCHUM and the appropriate instances. A total of 639 ethnically matched
individuals were selected from the exome control cohort (324 females and 315 males). The di-
agnosis of GGE in all case cohorts was based on detailed clinical interview, a full neurological
examination and respective EEGs. Written informed consent was obtained from all subjects or
their respective relatives and the study was approved by the local Ethical Committees. One
affected individual of each family was selected for sequencing.

3.3.2 Procedures

For the discovery stage, paired-end whole-exome sequencing (WES) of cases and controls
was performed with the Illumina HiSeq 2000 using the EZ Human Exome Library v2.0 kit
(NimbleGen, Madison, WI). Cases and controls were sequenced at different locations, cases at
the Cologne Center for Genomics, the controls in Rotterdam [183]. Sequencing adapters were
trimmed and samples with <30X mean depth or <70% total exome coverage at 20X mean depth
of coverage were excluded from further analysis. Variant calling was performed by using the
GATK [23] best practices pipeline with the GRCh37 human reference genome (see Section 3.6).

The replication case cohort 1 was paired-end whole-exome sequenced at deCODE genetics
(Iceland) on the Illumina HiSeq 2500 using the Nextera Rapid Capture Expanded Exome kit
(Illumina). A second set of Rotterdam control samples was sequenced again in Rotterdam [184]
using the EZ Human Exome Library kit (NimbleGen, Madison, WI). For all WES samples, we
applied standard procedures for assessing potential population stratification for the European
population as well as a relatedness check (Figure 3.73.83.6). To exclude low quality variants, we
performed an additional filtering based on quality metrics of individual genotypes, using read
depth and genotype quality as the filtering criteria. We excluded any variant position with
mean depth of <10 in either cases or controls. For all WES samples the same exome regions
file from the EZ Human Exome Library v2.0 kit was used. For the WES analysis, only samples
with more than 30X mean coverage or more than 70% of the exome intervals covered by at
least 20x mean coverage were included for the analysis (Section 3.6). For replication case cohort
2, a total of 19 genes encoding for all known subunits of GABAA receptors were selected for
deep sequencing (GABRA1, GABRA2, GABRA3, GABRA4, GABRA5, GABRA6, GABRB1,
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GABRB2, GABRB3, GABRD, GABRE, GABRG1, GABRG2, GABRG3, GABRP, GABRQ,
GABRR1, GABRR2, GABRR3, altogether referred to as GABRX herein).

Exon targets were generated based on RefSeq, representing 184 exons from 19 genes. Primer
design was made using the Primer3 oligonucleotide design tool and in silico PCR tool for validat-
ing the specificity of each amplicon. Target regions were enriched by PCR using the 48.48 Access
Array Integrated Fluidic Circuit (IFC) (Fluidigm, San Francisco, CA). In the final assay, 185
amplicons targeted the protein-coding sequence of 19 GABRX genes with an overhang at exon
boundaries in order to capture splice site variants. GABRX exon-specific primers with Fluidigm
tags were tested along with materials and reagents as recommended in the Access Array System
User Guide (Fluidigm, South San Francisco, CA). Finally, GABRR3 had to be dropped because
of QC reasons having not enough good quality reads covering this gene. After quality trimming
the reads were mapped against the GRCh37 human reference genome using the GATK [23] suite
and the MUGQIC pipelines (https://bitbucket.org/mugqic/mugqic_pipelines). Data from
the control cohort were processed using the same pipelines. Coverage comparisons were made
to keep bases covered in at least 95% of the subjects as well as the control cohort. RefSeq gene
annotation information was used for the classification into missense and synonymous variants
and to filter for rare (allele frequency smaller than 0.5%) variants using the ExAC database [43]
(for details see Section 3.6).

3.3.3 Population stratification

We applied principal-components analysis (PCA) to assess potential population substructure
separately for each case-control cohort, using the implementation in Eigenstrat [42]. Population
outliers were defined as SD of >3 based on the first 10 PC and excluded from further analysis
(Section 3.6).

3.3.4 Statistical analysis

Due to the limited sample size, single-gene collapsing analysis for the discovery stage was
performed using Combined and Multivariate Collapsing [186] (CMC) method for collapsing and
combining rare variants together with a two-sided Fisher’s exact test, as implemented in the Exact
CMC method in rvtests [76] (Section 3.6). P-values for single-gene collapsing tests were corrected
for multiple testing by use of the Bonferroni method (as implemented in the R function p.adjust)
for 18,668 protein-coding genes. For all three stages, gene-set collapsing tests were performed
using the regression-based two-sided SKAT-O test method [75], as implemented in rvtests [76].
For the two WES cohorts, SKAT-O was used and we included sex and the first 10 PC from
the Eigenstrat analysis as covariates to account for possible gender and population substructure
effects. Gene-set collapsing tests were applied separately to missense and to synonymous variants
of specific sets of candidate genes. Seven different disease- and process-specific gene sets were
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constructed based on their relation to GGE together with a control gene set not related to GGE.

A description of the gene-set construction is given in the Section 3.6 and the gene sets are
given in the Section 3.6 in Table 3.5. In order to control the family-wise error rate, we applied
Holm’s correction for multiple testing 14 hypotheses, namely seven gene sets combined with two
sets of variant type (missense and synonymous), in the discovery cohort, while correction was
done for only two hypotheses in each of the two replication cohorts, since only the GABAA

receptor gene set was carried forward the replication (Section 3.6). The odds ratio (OR) for a
given gene-set was determined by comparing the presence of qualifying rare (nonsynonymous or
synonymous) variants in all genes within each gene-set between cases and controls.

3.3.5 Functional analysis

Functional experiments were performed using automated two-microelectrode voltage clamp-
ing in Xenopus oocytes. All methods for functional studies have been described in Section 3.6.

3.4 Results
We first performed WES in a cohort of 238 independent, mainly familial cases of classi-

cal forms of GGE, i.e. childhood or juvenile absence epilepsy (CAE/JAE), juvenile myoclonic
epilepsy (JME) and epilepsy with generalized tonic-clonic seizures on awakening (EGTCA), col-
lected by the Epicure and EuroEPINOMICS-CoGIE consortia. As controls, we used ethnically
and sex matched (Section 3.6 Figure 3.6, 3.7) population control individuals from the Rotterdam
Study [183], that underwent WES using the same enrichment and sequencing procedures, albeit
with a somewhat lower coverage than in the GGE cohort. After quality control (QC) and popula-
tion outlier removal, the final dataset consisted of 152 unrelated GGE and 549 unrelated control
samples. To adjust for the different coverage between case and control samples, we considered
only variants with an average read depth of >10 both in case and in control samples (see Section
3.6, Figure 3.7).

From the total of 701 samples, 204,023 exonic and splice site variants were called. The mean
exonic transition/transversion ratio equaled 3.46, indicating good data quality. Rare variants
(MAF<0.005) were classified as missense (Nonsyn) and silent (Syn) variants. 82,579 Nonsyn
and 48,450 Syn variants constituted the analysis data set (see Section 3.6, Table 3.4). First,
we tested hypothesis-free all individual RefSeq genes separately for association but could not
identify any single gene enriched for any variant type (Section 3.6). Therefore, we next applied
an independent hypothesis-driven analysis by testing the enrichment of rare variants in seven
gene sets related to epilepsy and its underlying molecular processes.

These gene sets represented (i) all voltage-gated cation channels, (ii) all excitatory postsy-
naptic receptors, (iii) all GABAA receptors as the main inhibitory postsynaptic receptors, (iv)
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more broadly the GABAergic pathway (since such genes have been associated specifically with
generalized epilepsies), and genes associated (v) with generalized epilepsies, (vi) with epileptic
encephalopathies, (vii) with focal epilepsies (Section 3.6 Table 3.5). We tested separately for each
variant type; silent variants were expected to show no difference between cases and controls. We
found a significant enrichment for missense variants in a set of GABAA receptor genes (19 genes,
pNonsyn=0.019, OR=2.40, 95% CI=[1.41,4.10]) by use of the SKAT-O test after multiple-testing
correction (Figure 3.1). None of the other gene sets showed a significantly increased burden
of rare variants. Synonymous variants, used as a negative control, did not show a significant
enrichment in any of the gene sets (Section 3.6, Tables 3.6.6, 3.8).

To replicate the finding for the GABAA receptor encoding genes, we first used the replication
case cohort 1 collected by the EpiPGX consortium, consisting of 724 individuals with GGE from
six European countries. They were mainly sporadic (n=268) or of unknown familial history
(n=265) and diagnosed with classical forms of GGE (Section 3.6, Table 3.2). For the analysis of
this cohort, an independent matched subset of control samples from the Rotterdam Study [184]
was used. After applying the same QC steps as applied to the discovery cohort, the final dataset
consisted of 357 unrelated GGE and 1,485 unrelated control samples [184]. We confirmed the
significant enrichment of rare missense variants in GABAA receptor genes in cases compared to
controls after multiple-testing correction for two sets of variants (nonsyn and syn; pNonsyn=0.016,
OR=1.46, 95% CI=[1.05,2.03]) by use of the SKAT-O test (Section 3.6 Table 3.6). Synonymous
variants showed again no significant enrichment.

For a second replication cohort, we designed a targeted enrichment panel comprising all 19
GABAA receptor genes. All genes were sequenced in an independent cohort of 631 cases with
familial or sporadic GGE (Section 3.6, Table 3.3). GABRR3 was excluded for QC reasons.
We obtained control samples from the UK10K project (https://www.uk10k.org/) and selected
639 gender matched individuals after sample QC. Additional variant QC reduced the number
of individuals to 583 cases and 635 controls in the final sample set. We found a significant
enrichment of rare missense variants for the GABAA receptor genes in cases compared to controls
(pNonsyn=0.027, OR=1.46, 95% CI=[1.02,2.08]) by use of a SKAT-O test and after correction
for two sets of variants (Nonysn, Syn). No significant enrichment was observed for synonymous
variants. Thus, we can conclude that enrichment of rare missense variants in GABAA receptor
genes are reproducibly present in individuals with GGE when compared to controls. All detected
case-only variants are given in the Section 3.6, Tables 3.6.6,3.8. Case-only rare missense variants
were found in all GABAA receptor genes except in GABRR3 (Table 3.8).
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Figure 3.1: Rare variant gene-set odds ratios and burden enrichment for rare variants in the whole-exome
sequencing GGE discovery cohort. Cases from the CoGIE discovery cohort, matched with controls from the
Rotterdam study. Gene-set collapsing analysis by use of a SKAT-O test was performed on seven epilepsy-related
gene sets for missense (NONSYN) and synonymous (SYN) variants. The gene sets are described in the Section
3.6. The star denotes the enriched gene-set collapsing p-value after Holm correction.

The combination of two α1-, two β2- and one γ2- subunit (genes GABRA1, GABRB2,
GABRG2) represents the most common form of a functional GABAA receptor in the brain
[187], and variants in GABRA1 and GABRG2 have been shown to play an important role in
familial GGE, febrile seizures and EE [139, 177, 188–191].

It is important to note that the enrichment of missense variants in in GABAA receptor
genes was not driven by variants in those known epilepsy genes. The signal was no longer
significant when reducing the analysis only to those two genes (Table 3.8). Instead, the qualifying
variants were evenly distributed over all GABAA receptor encoding genes. The α5 subunit (gene
GABRA5) is supposed to mediate extrasynaptic tonic inhibition [192], and tonic inhibition has
been described to be altered in genetic mouse models of epilepsy [193, 194]. GABRB2 and
GABRA5 have not previously been associated with GGE, although GABRB2 mutations were
described recently in patients with intellectual disability and epilepsy [195–197].
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For functional studies, we selected seven missense variants in GABRB2 and GABRA5 (Sec-
tion 3.6, Table 3.9) for electrophysiological studies in Xenopus oocytes (Section 3.6). Five of
these variants were selected since they co-segregated with the phenotype of available members
in nuclear families. Another variant (p.R3S) was found in three different French-Canadian pedi-
grees, so we hypothesized whether this could be a more common causal variant in a specific
population (Figures 3.2a and 3.3a). The last variant, p.P453L, did not co-segregate, but was
selected as another variant in GABRA5 which is localized in a different protein region (the C-
terminus) than the other variants. All missense variants were predicted to be deleterious by at
least three out of seven missense prediction tools and were highly conserved (Table 3.9). Three
of these variants were consistently of ultra-low frequency in the European population in different
public databases (dbGAP, 1000G, ExAC; Section 3.6,Table 3.9).

The localization of the variants in the GABAA subunits is shown in Figures 3.2b and 3.3b.
After application of 1 mM GABA, we observed a significant reduction in current amplitudes
of GABAA receptors containing either p.K221R or p.V316I variants in the β2-subunit, and
p.M1I, p.S238N, or p.E243K in the α5-subunit, in comparison to respective compositions of WT
receptors. No significant reductions were observed for p.R3S in the β2- and for p.P453L in the
α5-subunit (Figures 3.3d, 3.3e, 3.2d, 3.2e, ). The GABA sensitivity was studied by applying
different GABA concentrations with no significant changes observed for receptors containing any
of the studied variants (Figures 3.2e and 3.3e). Thus, five out of seven variants suggest a loss of
receptor function predicting postsynaptic or extrasynaptic neuronal disinhibition.

All variants showing significantly reduced current amplitudes co-segregated with the disease
phenotype in family members that were available for testing (Figures 3.2a and 3.3a), corroborat-
ing their contribution to the disease phenotypes. In two families, we observed co-segregating vari-
ants in two different GABAA receptor subunits: p.V316I in the β2- and p.M1I in the α5-subunit
co-occurred in the same nuclear family, and p.E243K in the α5-subunit was accompanied by a
deleterious frameshift mutation in GABRG2 in another family (Figures 3.2a and 3.3a). Variants
with altered receptor function were all located in the N-terminus containing GABA binding sites
or in the pore region. p.M1I suppresses the start codon such that translation starts six amino
acids later, which shortens the signalling peptide consisting of the first 20 amino acids.

While the peptide is removed and not part of the mature GABAA receptor in the plasma
membrane, this alteration could still affect the protein biogenesis and lead to reduced expression
of functional receptors. p.R3S, which also affects the signalling peptide, and p.P453L, located
in the functionally less relevant C-terminus, did not lead to a significant change in receptor
function. p.R3S recurred in three French-Canadian families and p.P453L was detected in only
one of several affected members of a larger family indicating that they might represent benign
polymorphisms.
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Figure 3.2: GABRB2 mutations associated with GGE. (a) Pedigree of the families. (b) Schematic representation
of the β2 subunit of the GABAR and predicted positions of the R3S and K221R mutations located in the N-terminal
domain and V316I located in the transmembrane domain 3. (c) Examples of GABA-induced currents after 1 mM
GABA application for WT, R3S, K221R and V316I mutations. (d) Current responses normalized to 1 mM GABA
application for WT (n=30), R3S (n=24), K221R (n=21) and V316I (n = 16); ***p<0.001, Kruskal Wallis test,
with Dunn´s comparison test. (e) Dose-response curve for α1 β2 γ2s WT (n=30), R3S (n=14), K221R (n=10),
V316I (n=7) obtained using application of different GABA concentrations and normalization to the maximal
GABA response for each cell.
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Figure 3.3: GABRB2 mutations associated with GGE. (a) Pedigree of the families. (b) Schematic representation
of the α5 subunit of the GABAAR and predicted positions of the M1I, S238N and E243K mutations located in
the N-terminal domain and P453L located in the C-terminal domain. (c) Examples of GABA-induced currents
after application of 1 mM GABA for WT, M1I, S238N, E243K and P453L mutations. (d) Normalized current
responses to 1 mM GABA application for WT (n=43), M1I (n=10), S238N (n=13), E243K (n=14) and P453L
(n=11); *<p0.05, ***p<0.0001, Kruskal Wallis test, with Dunn´s comparison test. (e) Dose-response curve for
α1 β2 γ2s WT (n=37), M1I (n=15), S238N (n=11), E243K (n=8) and P453L (n=8) obtained after application of
different GABA concentrations and normalization to the maximal GABA response for each cell.

3.5 Discussion
Our results show an excess of rare missense variants in GABAA receptor subunit encoding

genes in three independent cohorts of altogether >1000 familial and sporadic GGE index cases.
Five selected variants in two genes, GABRB2 and GABRA5, previously not associated with
GGE (i) clearly changed receptor function and (ii) co-segregated in nuclear families, suggesting
an important contribution to the disease phenotype and inheritance in those pedigrees. Previous
studies in smaller cohorts failed to show a significant excess of variants in cases versus controls
either in a test for the set of all ion channel encoding genes [180] or in whole exomes [157],
Our findings indicate that the enrichment of rare genetic variants in a set of inhibitory GABA
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receptors does play a significant role in the pathogenesis of GGE. The difference between these
previous studies and ours could be explained by (i) a larger sample size in our study across all
cohorts and (ii) by testing different gene-sets that had not been considered before.

In a parallel study [133], a similar effect could be shown for ultra-rare deleterious variants in
gene-sets comprising known epilepsy genes or genes associated with epileptic encephalopathies.
Due to our smaller sample size and the associated low number of ultra-rare variants, we here
chose a different approach considering all variants with a MAF<0.005, which proved to yield
significant results in other studies [65, 198, 199]. Both studies failed to identify single genes with
a genome-wide significant burden of rare variants in individuals with GGE. It will be interesting
in future studies to combine different cohorts to increase sample size and power for such analyses
to shed further light on the complex genetic architecture of GGE.

One limitation of the current study is that the cohorts, due to funding restrictions of the
individual projects, were sequenced at different locations using different technologies. Combining
and analyzing such data in an unbiased way is still a major challenge in large genetic sequencing
projects. An a priori selection bias for the targeted genes yielding a false significance can also
not be completely ruled out. The careful choice of gene sets was based on purely biological and
published evidence and did not change the selection afterwards. This approach should minimize
any potential selection bias and associated false-positive findings. We addressed these issues by
using a stringent QC and consistent processing of all datasets (Section 3.6), and by using two
different GGE cohorts to replicate our data in independent case and control datasets.

One of the variants detected and functionally examined in our study (p.V316I in GABRB2)
has been described in the meantime as a de novo mutation in a different dataset of cases with se-
vere developmental and epileptic encephalopathies, in which whole genome sequencing of parent-
patient trios was used [195]. This finding clearly corroborates the pathogenicity of this variant.
The association of genetic variants with different phenotypes is well-known as the phenomenon
of pleiotropy, and has also been described in other GABAA receptor encoding genes [140, 188]
including large phenotypic variability within one extended pedigree [140].

We have also recently characterized the variant p.T336M in GABRA3 – which was detected
in our discovery cohort (Table 3.8) – as part of another study in which we identified GABRA3
as a new epilepsy gene associated with highly heterogeneous epileptic phenotypes including
asymptomatic variant carriers [200]. This variant also causes a severe loss-of-function effect but
does not co-segregate in the respective pedigree, so that other factors must contribute to the GGE
at least in two family members. While co-segregation is a strong indicator for the pathogenicity
of genetic variants, we have to be aware that GGE is a common disease with complex inheritance.
Variants in GABAA receptor encoding genes could therefore still contribute to the disease in the
carriers, whereas other family members not carrying the respective variants must have other
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genetic causes of their epilepsy. Similarly, copy number variations often do not co-segregate
within nuclear families but have been replicated several times as a significant risk factor for
GGE [158, 160, 201, 202].

Given the reproducibility of our results in three independent datasets together with co-
segregation and functional evidence for GABAA receptor dysfunction, many but not all of the
detected variants probably contribute to the etiology of GGE in our three cohorts. This disease-
relevant contribution may range from a major gene effect – as observed in ‘monogenic’ Mendelian
epilepsies – to relatively small effect sizes in the variant carriers, depending on the amount of
the electrophysiological dysfunction and probably other unknown factors, such as the genetic
background. Overall, we therefore consider the detected increase in GABAA receptor variants
in cases vs. controls as a significant risk factor to develop GGE.

Lastly, our results indicate a genetic overlap among rare and common forms of epilepsy, since
there is increasing evidence that de novo variants in GABAA receptor encoding genes cause severe
forms of epileptic encephalopathies [187, 188, 190, 191, 200, 203, 204] and they re-iterate a central
role of GABAergic mechanisms in generalized epilepsies [139, 140, 177, 188, 191–194, 197, 203–
206]

3.6 Additional methods and results

3.6.1 Patient cohorts

CoGIE (discovery cohort (European))

Gender 64 males, 88 females
Age of Onset Mean 9.98 years, Median 10 years
Affected family mem-
bers (n)

1 (9), 2 (67), 3 (43), 4 (23), 5 (5), 6 (3), 7 (1), 8 (1)

Origin (n) Italian (69), German (51), Finnish (4), Dutch (11), British (6), Danish
(8), Swedish (2), Greek (1)

Epilepsy diagnosis (n) CAE (68), JME (37), EGTC (24), JAE (16), EOAE (4), EMA (1),
unclassified GGE (2)

Table 3.1: Discovery cohort: GGE diagnosis, phenotype data.
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EpiPGX (Replication cohort 1, European)

Gender 132 males, 225 females
Age of Onset Mean 9.98 years, Median 13 years
Affected family members
(n) 0

92

Origin (n) Belgium (5), Germany (174), Ireland (22), Italy (23), Netherlands
(61), UK (72)

Epilepsy diagnosis (n) CAE (55), EGTC (19), JAE (28), JME (157), unclassified GGE
(98)

Table 3.2: Replication cohort 1: Patients with GGE diagnosis, phenotype data.

GABAA panel cohort (Replication cohort 2, European/French-Canadian)

Gender 132 males, 225 females
Age of Onset Mean 9.98 years, Median 13 years
Affected family members
(n) 0

92

Origin (n) Belgium (5), Germany (174), Ireland (22), Italy (23), Netherlands
(61), UK (72)

Epilepsy diagnosis (n) CAE (55), EGTC (19), JAE (28), JME (157), unclassified GGE
(98)

Table 3.3: Replication cohort 2 for GABAA receptor gene panel sequencing: GGE diagnosis, phenotype data.

Rotterdam Study control samples

The WES control samples used in this study were both part of the Rotterdam study [183,
184] but were sequenced independently. The Rotterdam samples were obtained from Ommoord
district in the city of Rotterdam in The Netherlands. All the control samples were at least
55 years old or older. They were checked for several neurological conditions at baseline. Only
population matched control samples of European origin were selected for the discovery and
replication cohort 1, respectively, using the Eigenstrat [42] selection procedure described above.
The control samples for the discovery cohort included 177 males and 372 females (68%), the
control samples for the EpiPGX replication cohort 1 included 596 males and 889 females (60%).
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3.6.2 Exome sequencing analysis (Discovery cohort)

Data pre-processing

Sequencing adapters were removed from the FastQ files by using cutadapt [207]. GATK
[23] best practices (https://software.broadinstitute.org/gatk/best-practices, version
3.2). were followed for the next steps of data pre-processing and variant calling. Alignment
was performed using bwa-mem [29] with default parameters to the GRCh37 human reference
genome. Conversion of sam to bam files was done by samtools [27]. Sorting of bam files, marking
of duplicate reads that remain after PCR amplification and addition of read group information
was done by using picard with default parameters. Using GATK version 3.2, base quality scores
recalibration, local realignment for small insertions and deletions (InDels) was performed. All
samples with less than 30X mean coverage or less than 70% of the exome intervals covered by at
least 20x mean coverage were excluded from the analysis. A multiple sample calling approach
was employed using GATK.

Sample filtering based on quality metrics

Number of alternate alleles, number of heterozygotes, number of variants called, number of
minor alleles, number of singletons and call rate served as data quality parameters. They were cal-
culated by using PLINK/SEQ (https://atgu.mgh.harvard.edu/plinkseq) i-stats command.
Any sample with >3 standard deviations (SD) from the mean in any of the used metrics was
excluded from the analysis. Next, we selected the variants that are common between hapmap
[37] (version 3.3) and the current dataset. The selected variants were further filtered to be: 1)
Only bi-allelic SNVs, 2) with a call rate >98% and 3) not in linkage disequilibrium. The vari-
ants selected above were used to check cryptic relatedness, deviations from reported sex and to
perform correction of population stratification by using Eigenstrat [42].

Relatedness and sex check

In order to check the relatedness between each pair of samples within a cohort, the PLINK
[77] “–genome” command was used to identify the fraction of genome shared identical-by-descent
(IBD). For pairs with PI_HAT score of >0.25 (see Figure 3.6), the sample with lower mean depth
of coverage was removed from further analysis.

Sample contamination

We checked for sample contamination between different samples by using the inbreeding co-
efficient as measure. PLINK [77] “–het” command was used with default parameters to calculate
the inbreeding coefficient. Any sample exceeding >3SD in the output “F” value was excluded
from the analysis. Individuals with high missingness can lead to bias in the results. High het-
erozygosity is an indicator of possible sample contamination. Hence, to mitigate this effect we
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excluded samples with missingness > 10%.

Population stratification

We merged our data with the 1000genomes [34] (1000g) data and assessed individual ancestry
by use of a principal-components analysis, using Eigenstrat [42] with default parameters. Except
for few outliers, cases and controls clustered with the samples of European origin in 1000g data
(Figure 3.7). We then merged our data with only the Central European (CEU) and Toscanian
Italian samples (TSI) from the 1000genomes cohort. Then, by using Eigenstrat with a sigma
value of 3, which excludes all the samples with a SD of >3 based on the first 10 principal
components, we excluded population outliers (Figure 2B, bottom).

Filtering of low quality variants

Initial filtering of variants was performed based on quality metrics over all the samples with
the parameters below, for VQSR: Tranches chosen, VQSRTrancheSNV99.90to100.00. The QC
parameters for hard filtering over all samples were: a) for SNVs: QD < 2.0, FS > 60.0, MQ < 40.0,
MQRankSum < -12.5, ReadPosRankSum < -8.0, DP<10.0, GQ_MEAN<20.0, VQSLOD<0,
<5% missingness, ABHet > 0.75 or < 0.25 and Hardy Weinberg Phred scale P value > 20. b)
for InDels: QD < 2.0, FS > 200.0, ReadPosRankSum < -20.0, DP < 10.0, GQ_MEAN < 20.0,
Hardy Weinberg Phred scale P value>20, VQSLOD>0.

In-order to exclude low quality variants, we performed an additional filtering based on quality
metrics of individual genotypes, using read depth and genotype quality as the filtering criteria.
Therefore, variant genotypes with a read depth of <10 and GQ of <20 were converted to missing
by using bcftools [46]. In addition, we calculated the mean read depth of each position by using
vcftools [33] 12 in cases and controls separately, and any variant position with mean depth of
<10 in either cases or controls was excluded. Different quality metrics were calculated by the
GATK ‘varianteval’ tool and are shown in Table 3.4.

Variant annotation and filtering

Multi-allelic variants were decomposed using variant-tests and left normalized by bcftools.
Variants were annotated using ANNOVAR [208](version 2015Mar22) using RefSeq and Ensembl
versions 20150322 and the dbNSFP [51] (version 2.6) annotations and pathogenicity scores. As
we were interested in rare variants, we filtered the variants for a minor allele frequency (MAF)
< 0.005 in the European populations of public databases like 1000 genomes, dbSNP, ExAC [43]
(release 0.3, NFE and ALL), and the Exome variant server (EVS). In addition, we excluded all
variants with an AF > 0.005 in the dataset from this study. We created two variant subsets
on which we performed the statistical analysis: 1) nonsynonymous variants (NONSYN) and 2)
synonymous variants (SYN).
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Variant statistics

Quality metric After QC
Number of samples 152 cases

549 controls
Number of variants 472,970
Number of exonic/splicing variants 204,023
Ti/Tv ratio per sample 2.84
Ti/Tv ratio of exonic/splicing variants per sample 3.46
Number of rare (MAF<=0.005) exonic/splicing variants 147,941
Number of rare nonsynonymous variants 82,579
Number of rare synonymous variants 48,450

Table 3.4: Statistics of discovery cohort after quality filtering

Gene collapsing analysis

In the current study, we were interested in rare-variant associations and, due to our limited
sample size, for some genes the variant count per variant class was very low. Kernel-based meth-
ods such as SKAT and SKAT-O [75] tend to be anti-conservative in such cases [209, 210]. Hence,
for the hypothesis-free single-gene collapsing analysis we used the two-sided Exact CMC [186]
test, as implemented in the rvtests [76] package. The CMC19 method collapses and combines
rare variants, followed by a Fisher’s exact test. The method has the drawback that we could
not adjust for covariates as we can do using the SKAT-O test. We used Bonferroni’s correc-
tion for multiple testing, which tends to be conservative for correlated hypotheses, using the R
function p.adjust(method=”bonferroni”), R version 3.30, namely for 18,668 protein-coding genes.
Quantile-quantile plots (Q-Q plots) were generated for the p-values obtained from the single-gene
collapsing analysis. Top 5 genes with the lowest p-values were labelled. R version 3.30 was used
to generate the qqplots (Figures 3.4, 3.5). The observed p-value distribution was overwhelmingly
very close to the expected distribution under the null hypothesis of no association, indicating
good control for potentially confounding factors.
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Figure 3.5: Q-Q plot of single-gene collapsing analysis for synonymous variants of the discovery cohort.

Gene-set burden analysis

Gene-set collapsing analysis was performed using the SKAT-O [75] test, as implemented in
rvtests [76] while also including the first 10 principal components from the Eigenstrat [42] 3
analysis and sex as covariates. A detailed description of the seven gene lists, including the gene
names and literature sources, are given in Table 3.5. We compiled panels of candidate genes for
generalized (GGE) and focal epilepsies (FE), as well as epileptic encephalopathies (EE) on the
basis of the published literature. For the gene lists of FE and GGE we selected genes that cause
epilepsy as the main symptom without severe intellectual disability or any other predominant
syndromic symptoms. If genes preferentially predispose to either FE or GGE, they were only
assigned to one of the groups. For the list of EE genes, we only included genes that cause
epilepsy as the predominant disease phenotype and excluded those genes that display severe
developmental disorders with facultative associated seizures. The GABAergic pathway gene list
was compiled on the human “GABAergic synapse” pathway defined in Kyoto Encyclopedia of
Genes and Genomes [211] (KEGG) (http://www.genome.jp/dbget-bin/www_bget?pathway+
hsa04727), and also included ion channels specifically expressed in inhibitory neurons.
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Figure 3.6: Percentage of genome shared across each pair of samples. Each dot in the plot represents a pair of
samples. DUP = duplicate or monozygotic twins samples, PO = parent offspring pair, SIBS = siblings pair, UN
= unrelated pair of samples.
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Figure 3.7: Top: Population stratification of the discovery cohort together with samples from the 1000 genomes
study. Each color represents different ethnicities and each shape represents the super population to which the
samples belong to. The abbreviations of the legend are given below. ASW: Americans of African Ancestry in SW
USA, CEU, CHB: Han Chinese in Beijing, China, CHS: Southern Han Chinese, FIN: Finnish in Finland, GBR:
British in England and Scotland, JPT: Japanese in Tokyo, Japan, LWK: Luhya in Webuye, Kenya, MXL: Mexican
Ancestry from Los Angeles, PUR: Puerto Ricans from Puerto Rico, TSI: Toscani in Italia, YRI: Yoruba in Ibadan,
Nigeria. AFR: African, AMR: Ad Mixed American, EAS: East Asian, EUR: European. Bottom) Samples included
in the analyses after final QC.
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Gene-
set
(size)

Genes Source

Focal
epilep-
sies (20
genes)

CHRNA2, CHRNA4, CHRNB2, CPA6, DEPDC5, GRIN2A, KCNA1, KCNQ2, KCNQ3, KCNT1, LGI1, PRRT2,
RBFOX1, RBFOX3, SCN2A, SCN8A, TBC1D24, NPRL2, NPRL3, GRIN2B

Literature (see Suppl. Table S5 E)

Generalized
epilep-
sies (28
genes)

ALDH7A1,CACNA1A, CACNA1H, CACNB4, CASR, CNTN2, EFHC1, EPM2A, GABRA1, GABRB3,
GABRD, GABRG2, GPHN, KCNA2, KCNC1, KCNMA1, NIPA2, NRXN1, PCDH7, PLCB1, RBFOX1, RORB,
SCN1A, SCN1B, SCN9A, SLC2A1, STX1B, TBC1D24

Literature (see Suppl. Table S5 GGE)

Epileptic
en-
cephalopathies
(53
genes)

AARS, ALDH7A1, ALG13, ARHGEF9, ARX, BOLA3, CACNA1A, CDKL5, CHD2, COQ4, DNM1, DOCK7,
EEF1A2 ,GABRA1, GABRB3, GABRG2, GNAO1, GRIN1, GRIN2A, GRIN2B, HCN1, KCNA2, KCNB1,
KCNC1, KCNQ2, KCNT1, MEF2C, NECAP1, NRXN1, PCDH19, PIGA, PLCB1, PNKP, ROGDI, SCN1A,
SCN1B, SCN2A, SCN8A, SIK1, SIK2, SLC13A5, SLC25A22, SLC2A1, SLC35A2, SLC6A1,SPTAN1,ST3GAL3,
STX1B, STXBP1, SYNGAP1, SZT2, TWNK, WWOX

Literature (see Suppl. Table S5 EE)

GABAA
recep-
tors (19
genes)

GABRA1, GABRA2, GABRA3, GABRA4, GABRA5, GABRA6, GABRB1, GABRB2, GABRB3, GABRD,
GABRE, GABRG1, GABRG2, GABRG3, GABRP, GABRQ, GABRR1, GABRR2, GABRR3

http://www.genenames.org/cgi-bin/
genefamilies/set/563

GABAergic
pathway
(113
genes)

ABAT, ADCY1, ADCY2, ADCY3, ADCY4, ADCY5, ADCY6, ADCY7, ADCY8, ADCY9, ANK2, ANK3,
ARHGEF9, DISC1, DLC1, DLC2, DNAI1, FGF13, GABARAP, GABARAPL1, GABARAPL2, GABBR1,
GABBR2, GABRA1, GABRA2, GABRA3, GABRA4, GABRA5, GABRA6, GABRB1, GABRB2, GABRB3,
GABRD, GABRE, GABRG1, GABRG2, GABRG3, GABRP, GABRQ, GABRR1, GABRR2, GABRR3, GAD1,
GAD2, GLS, GLS2, GLUL, GNAI1, GNAI2, GNAI3, GNAO1, GNB1, GNB2, GNB3, GNB4, GNB5, GNG10,
GNG11, GNG12, GNG13, GNG2, GNG3, GNG4, GNG5, GNG7, GNG8, GNGT1, GNGT2, GPHN, HAP1,
KCNB2, KCNC1, KCNC2, KCNC3, KCNJ6, KIF5A, KIF5B, KIF5C, MAGI, MKLN1, MYO5A, NLGN2,
NRXN1, NSF, PFN1, PLCL1, PRKACA, PRKACB, PRKACG, PRKCA, PRKCB, PRKCG, RAFT1, RDX,
SCN1A, SCN1B, SCN2B, SCN3A, SCN8A, SEMA4D, SLC12A2, SLC12A5, SLC32A1, SLC38A1, SLC38A2,
SLC38A3, SLC38A5, SLC6A1,SLC6A11, SLC6A13, SRC, TRAK1, TRAK2

Literature http://www.genome.jp/
dbget-bin/www_bget?pathway+hsa04727
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Voltage-
gated
ion chan-
nels (86
genes)

SCN10A, SCN11A, SCN1A, SCN1B, SCN2A2, SCN2B, SCN3A, SCN3B, SCN4A, SCN4B, SCN5A, SCN7A,
SCN8A, SCN9A, CACNA1A, CACNA1B, CACNA1C, CACNA1D, CACNA1E, CACNA1F, CACNA1G,
CACNA1H, CACNA1I, CACNA1S, CACNA2D1, CACNA2D2, CACNA2D3, CACNA2D4, CACNB1, CACNB2,
CACNB3, CACNB4, KCNA1, KCNA10, KCNA2, KCNA3, KCNA4, KCNA5, KCNA6,KCNA7, KCNAB1, KC-
NAB2, KCNAB3, KCNB1, KCNB2, KCNC1, KCNC2, KCNC3, KCNC4, KCND1, KCND2, KCND3, KCNE1,
KCNE1L, KCNE2, KCNE3, KCNE4, KCNF1, KCNG1, KCNG2, KCNG3, KCNG4, KCNH1, KCNH2, KCNH3,
KCNH4, KCNH5, KCNH6, KCNH7, KCNH8, KCNQ1, KCNQ2, KCNQ3, KCNQ5, KCNQ4, KCNRG, KCNS1,
KCNS2, KCNS3, KCNT1, KCNV1, KCNV2, HCN1, HCN2, HCN3, HCN4

Voltage-gated sodium channels
(http://www.genenames.org/cgi-bin/
genefamilies/set/184) Voltage-
gated calcium channels (http://www.
genenames.org/cgi-bin/genefamilies/
set/253) Voltage-gated potassium
channels (http://www.genenames.
org/cgi-bin/genefamilies/set/274)
Hyperpolarization-activated cyclic
nucleotide–gated channels 22

Excitatory
receptors
(34
genes)

CHRNA1, CHRNA10, CHRNA2, CHRNA3, CHRNA4, CHRNA5, CHRNA6, CHRNA7, CHRNA9, CHRNB1,
CHRNB2, CHRNB3, CHRNB4, CHRND, CHRNE, CHRNG, GRIA1, GRIA2, GRIA3, GRIA4, GRIK1, GRIK2,
GRIK3, GRIK4, GRIK5, GRIN1, GRIN2A, GRIN2B, GRIN2C, GRIN2D, GRIN3A, GRIN3B, GRID1, GRID2

Ionotropic glutamate receptors
(http://www.guidetopharmacology.
org/GRAC/FamilyDisplayForward?
familyId=75) Cholinergic receptors
(http://www.genenames.org/cgi-bin/
genefamilies/set/173)

Table 3.5: Gene-sets for gene-set burden analysis. All gene sets were tested for the neutral synonymous variants in order to exclude technical bias. P-value
correction was performed by Holm’s procedure, as implemented in the R function p.adjust(method=“holm”), R version 3.30. Gene-set analysis p-values
were adjusted for 14 tests (7 gene-sets and 2 types of variants, non-synonymous and synonymous).
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http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=75
http://www.genenames.org/cgi-bin/genefamilies/set/173
http://www.genenames.org/cgi-bin/genefamilies/set/173


3.6.3 Exome sequencing analysis (EpiPGX, replication cohort 1)

Alignment and variant calling

Reads were mapped to the human genome version GRCh37 for EpiPGX samples and ver-
sion hg19 for Rotterdam controls, which were further converted to GRCh37 version. From
the BAM files we generated gVCFs using the bcbio-nextgen (https://github.com/chapmanb/
bcbio-nextgen) pipeline framework (version 0.8.9). The variant calling pipeline used pi-
card (http://broadinstitute.github.io/picard)(version 1.96) to clean BAM files, marked
duplicates with biobambam2 (https://github.com/gt1/biobambam2) (version 2.0.8), recali-
brated, realigned with GATK and gVCFs were generated by using GATK HaplotypeCaller.
Finally, joint calling was performed using GATK GenotypeGVCFs (version 3.5) with the
bcbio-nextgen reference data (dbSNP build 138 [5]) and the options --read_filter BadCigar
--read_filter NotPrimaryAlignment --standard_min_confidence_threshold_for_calling 30.0 --
downsample_to_coverage 2000 --downsampling_type BY_SAMPLE.

QC (sample and variant)

The QC at sample and variant level were performed similar to the discovery cohort as de-
scribed above. Majority of the samples were of European descent as it could be seen in Figure
3.8 (top) and outliers were excluded the same way as described for the discovery cohort. Only
ethnically matched samples were used in the subsequent burden analysis Figure 3.8 (bottom).
Various QC metrics are shown in Table 3.6. Variant annotation was performed by using AN-
NOVAR [208] and the variants were further divided into various classes (Nonsynonymous and
Synonymous) as described above.
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Figure 3.8: Ethnicity of EpiPGX samples with samples within 1000 genomes study. Each color represents differ-
ent ethnicities and each shape represents the super population to which the samples belong to. The abbreviations
of the legend are given below. ASW: Americans of African Ancestry in SW USA, CEU, CHB: Han Chinese in
Beijing, China, CHS: Southern Han Chinese, FIN: Finnish in Finland, GBR: British in England and Scotland,
JPT: Japanese in Tokyo, Japan, LWK: Luhya in Webuye, Kenya, MXL: Mexican Ancestry from Los Angeles,
PUR: Puerto Ricans from Puerto Rico, TSI: Toscani in Italia, YRI: Yoruba in Ibadan, Nigeria. AFR: African,
AMR: Ad Mixed American, EAS: East Asian, EUR: European. Bottom) Samples included in the analyses after
final QC.
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Quality metric After QC
Number of samples 357 cases

1,485 controls
Number of variants 353,173
Number of exonic/splicing variants 335,630
Ti/Tv ratio per sample 3.28
Ti/Tv ratio of exonic/splicing variants per sample 3.38
Number of rare (MAF<=0.005) exonic/splicing variants 278,184
Number of rare nonsynonymous variants 164,233
Number of rare synonymous variants 92,129

Table 3.6: Statistics of replication cohort 1 after quality filtering.

Gene-set collapsing analysis

Similar to the discovery cohort, association analysis was performed for the GABAA receptor
gene set using SKAT-O, as implemented in rvtests [76], using the first ten principal components
from the Eigenstrat [42] analysis as covariates. P-values for missense and synonymous were
corrected using the Holm procedure.

3.6.4 GABAA receptor gene panel (replication cohort 2)

Alignment, enrichment assessment and variant calling

Using Trimmomatic [26] all reads were trimmed and clipped to remove Illumina MiSeq
adapters and bad quality bases. BWA [29] mem was used to align reads to the GRCh37 hu-
man reference genome. All alignments files were stored in the BAM format and the Picard suite
was used to merge all alignment in a single file (http://picard.sourceforge.net). GATK [23] suite
was used to produce metrics file and to perform variant calling using UnifiedGenotyper.

QC (sample and variant) and annotation

Samples were filtered based on the PLINK/SEQ QC metrics as described above and outlier
samples (>3SD) were excluded in a similar way as described in the discovery cohort. Variants
were filtered by using the same parameters as discovery cohort. Finally, ANNOVAR was used
to annotate the variants and they were divided into various classes as defined above.
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Quality metric After QC
Number of samples 583 cases

635 controls
Number of variants 260
Number of exonic/splicing variants 260
Number of rare (MAF<=0.005) exonic/splicing variants 212
Number of rare nonsynonymous variants 102
Number of rare synonymous variants 95

Table 3.7: Statistics of replication cohort 2 after QC

Gene-set collapsing analysis

Similar to the discovery cohort, association analysis was performed for GABAA receptor
genes using Skat-O test. Multiple-testing correction was performed using the Holm procedure.

3.6.5 Functional analysis

Mutagenesis and RNA preparation

We used the Quick Change kit (Stratagene) to engineer the missense mutations in the
GABRB2 and GABRA5 cDNAs (NM_021911 and NM_000810, respectively) inserted in the
pcDNA3 vector (kind gift from Dr. Patrick Cossette and Dr. Steven Petrou, Melbourne).
Primers are available upon request. Mutations were confirmed and additional changes were
excluded by Sanger sequencing. cRNA was prepared using the T7 RNA polymerase kit from
Ambion.

Oocyte preparation and injection

Oocytes were obtained from the Institute of Physiology I, Tübingen, or purchased from
EcoCyte Bioscience (Castrop-Rauxel). Experiments were approved by local authorities
(Regierungspräsidium Tübingen, Germany). The preparation of oocytes for two-microelectrode
voltage-clamp recordings included treatment with collagenase (1mg/ml of type CLS II collage-
nase, Biochrom KG) in OR-2 solution (mM: 82.5 NaCl, 2.5 KCl, 1 MgCl2 and 5 Hepes, pH 7.6),
followed by thorough washing and storing at 17°C in Barth solution (mM: 88 NaCl, 2.4 NaHCO3,
1 KCl, 0.41 CaCl2, 0.82 MgSO4 and 5 Tris/HCl, pH 7.4 with NaOH) supplemented with 50µg/ml
gentamicin (Biochrom KG) as described previously 24,25. We injected a total amount of 70 nl
at a concentration of 2 µg/µl of cRNA encoding respective mixtures of WT or mutant subunits
into oocytes using the Robooinject® (Multi Channel Systems). Oocytes were stored for 1-3 days
at 17°C before the experiment. The combination of the different subunits used was α1 β2 γ2s or
α5 β2 γ2s in 1:1:2 ratios. Current amplitudes of WT and mutant receptors were recorded and
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compared on the same day using the same batch of oocytes so that data of different days could
be pooled when normalized to the WT.

Automated oocyte two-microelectrode voltage clamp

GABA-evoked ionic currents in oocytes were recorded at room temperature (20-22°C) using
a Roboocyte2® system (Multi Channel Systems). Prepulled and prepositioned intracellular glass
microelectrodes had a resistance of 0.3–1 MΩ when filled with 1 M KCl and 1.5 M KAc. ND96
was used as extracellular bath solution (in mM: 93.5 NaCl, 2 KCl, 1.8 CaCl2, 2 MgCl2, 5
Hepes, pH 7.5). Currents were sampled at 1 kHz. To activate the receptors, increasing GABA
concentrations (in µM: 1, 3, 10, 40, 100, 300, 1000) diluted in ND96 solution were applied for 15
s each.

Electrophysiological data analysis

Oocytes were held at -70 mV. The amplitude of the GABA-induced currents was analyzed
using Roboocyte2+ (Multi Channel Systems), Clampfit (pClamp 8.2, Axon Instruments), Mi-
crosoft Excel (Microsoft) and GraphPad Prism (GraphPad Software). The current response
of each GABA concentration was normalized to the maximum response evoked by the highest
GABA concentration (1 mM). The following four parameter logistic equation:

Y (X) = min + (max−min)
1+10((LogEC50−X)∗nh

was fit to the normalized GABA responses of each oocyte, with max and min being the
maximum and minimum evoked responses, X the corresponding GABA concentration, EC50 the
concentration of the agonist at which half of the maximum response is achieved, and nh the
Hill coefficient reflecting the steepness of the dose-response curve. For each oocyte, EC50 values
were determined and then averaged for each combination of receptor subunits used. Current
amplitudes in response to 1 mM GABA application for mutant channels were normalized to the
mean value of the WT channel response recorded on the same day.

Statistical analysis

For statistical evaluation, GraphPad Prism 6 was used. Normalized current amplitudes were
compared between different groups (WT and different variants) using one-way ANOVA on ranks
(Kruskal Wallis rank sum test) with Dunn´s post-hoc test. All data are as mean ± standard error
of the mean (SEM). Statistical differences are indicated in the figure legends using the following
symbols: *p<0.05, **p<0.001, ***p<0.0001.

3.6.6 Annotation of functional tested GABAA receptor variants

As described above, the functionally tested GABAA variants were annotated with AN-
NOVAR [47] using the RefSeq gene annotations, allele frequencies from ExAC [43], 1000g
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[34] and ESP, dbSNP (https://www.ncbi.nlm.nih.gov/projects/SNP), and pathogenicity
and conservation scores from dbNSFP [51] (Supplemental Table S7). The following missense
pathogenicity prediction scores and thresholds for pathogenicity were used: SIFT [53] (D
deleterious), PolyPhen2_HDIV [54](D damaging), LRT [55] (D deleterious), MutationTaster
[56] (A disease causing automatic, D disease causing), PROVEAN [57] (D deleterious), CAD
[58] phred score > 10, fathmm [60](D deleterious). For conservation, we used GERP++_R
[61] (>3) and SiPHy [62] (>10) for conservation evaluation. Details on different scores and
their prediction classes, ranges and thresholds can be found on the ANNOVAR webpage:
http://annovar.openbioinformatics.org/en/latest/user-guide/filter.
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Geneset Variant class Number of variants Number of cases Number of controls Skat-O P-value uncorrected Skat-O P-value (corrected by Holm) OR lowerCI upperCI
Epileptic encephalopathies SYN 284 152 549 0.292299 1 1.25 0.87 1.80
Excitatory receptors SYN 151 152 549 0.212472 1 1.43 0.97 2.11
Focal epilepsies SYN 110 152 549 0.416506 1 1.066 0.68 1.66
GABAergic pathway SYN 444 152 549 0.0628653 0.8172489 1.33 0.92 1.92
GABA-A receptors SYN 64 152 549 0.574707 1 1.37 0.78 2.40
Generalized epilepsies SYN 177 152 549 0.237372 1 0.99 0.67 1.47
Voltage-gated ion channels SYN 471 152 549 0.771146 1 1.19 0.81 1.74
Epileptic encephalopathies NONSYN 259 152 549 0.528544 1 1.42 0.98 2.07
Excitatory receptors NONSYN 241 152 549 0.708729 1 1.01 0.69 1.48
Focal epilepsies NONSYN 142 152 549 0.523553 1 1.42 0.93 2.17
GABAergic pathway NONSYN 564 152 549 0.442513 1 1.66 1.12 2.46
GABA-A receptors NONSYN 63 152 549 0.0013633 0.0190862 2.40 1.41 4.10
Generalized epilepsies NONSYN 194 152 549 0.166314 1 2.17 1.49 3.17
Voltage-gated ion channels NONSYN 664 152 549 0.601852 1 1.78 1.17 2.70

EpiPGX
Geneset Variant class Number of variants Number of cases Number of controls Skat-O P-value uncorrected Skat-O P-value (corrected by Holm) OR lowerCI upperCI
GABA-A receptors SYN 99 357 1485 0.587127 0.58712700 0.82 0.54 1.25
GABA-A receptors NONSYN 107 357 1485 0.00805992 0.01611984 1.46 1.05 2.03

GABA_panel
Geneset Variant class Number of variants Number of cases Number of controls Skat-O P-value uncorrected Skat-O P-value (corrected by Holm) OR lowerCI upperCI
GABA-A receptors SYN 95 583 635 0.0613778 0.0613778 0.86 0.60 1.24
GABA-A receptors NONSYN 103 583 635 0.0133277 0.0266554 1.458 1.019 2.08 height
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Table 3.8: For all cohorts, the rare, case-only missense variants are listed together with their RefSeq annota-
tions and ExAC (NFE=Non-Finnish European) allele frequencies. An overview table gives information for which
GABAA gene variants were found in which cohort and if variants from this gene were functional tested.

https://dropit.uni.lu/invitations?share=bc14f52de9820cfd80bf&dl=0

Table 3.9: Annotations for the tested GABAA variants for which sample material was available. Genome
position in hg19, allele counts (AC) and frequencies (AF) information in ExAC (ALL=all populations, NFE=Non-
Finnish European population), allele frequencies in 1000g and ESPdbSNP identifier, type of variant (snp/insertion)
and exonic type (frameshift insertion/missense), and for missense mutations the prediction scores from SIFT,
Polyphen2, LRT, MutationTaster, Provean, CADD and fathmm as well as the conservation scores from GERP and
SiPhy are given. Deleterious predictions are given as D, conserved sites are shown in bold text. Additionally, the
number of prediction tools with a deleterious prediction per variant is given as well as the number of conservation
scores showing conservation per variant.
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CHAPTER 4

CNVS IN EPILEPSY

4.1 Abstract
Genetic Generalized Epilepsy (GGE) and benign epilepsy with centro-temporal spikes or

Rolandic Epilepsy (RE) are common forms of genetic epilepsies. Rare copy number variants have
been recognized as important risk factors in brain disorders. We performed a systematic survey
of rare deletions affecting protein-coding genes derived from exome data of patients with common
forms of genetic epilepsies. We analysed exomes from 390 European patients (196 GGE and 194
RE) and 572 population controls to identify low-frequency genic deletions. We found that 75 (32
GGE and 43 RE) patients out of 390, i.e. ~19%, carried rare genic deletions. In particular, large
deletions (>400 kb) represent a higher burden in both GGE and RE syndromes as compared to
controls. The detected low-frequency deletions (1) share genes with brain-expressed exons that
are under negative selection, (2) overlap with known autism and epilepsy-associated candidate
genes, (3) are enriched for CNV intolerant genes recorded by the Exome Aggregation Consortium
(ExAC) and (4) coincide with likely disruptive de novo mutations from the NPdenovo database.
Employing several knowledge databases, we discuss the most prominent epilepsy candidate genes
and their protein-protein networks for GGE and RE.

4.2 Introduction
Epilepsies are among the most widespread neurological disorders with a lifetime incidence of

~3% [212]. They represent a heterogeneous group of different disease entities that, with regard
to aetiology, can be roughly divided in epilepsies with an exogenous/symptomatic cause and
those with a genetic cause. Genetic generalized epilepsies (GGE; formerly idiopathic generalized
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epilepsies) are the most common genetic epilepsies accounting for 30% of all epilepsies. They
comprise syndromes such as juvenile myoclonic epilepsy, childhood absence epilepsy and juvenile
absence epilepsy. In general, they tend to take a benign course and show a good response to
pharmacotherapy. Among focal genetic epilepsies, benign epilepsy with centro-temporal spikes
or Rolandic epilepsy (RE) is the most common form. RE has its onset in childhood or early
adolescence and usually tapers off around the age of 15.

High-throughput genomic studies raised the number of epilepsy-associated candidate genes to
hundreds; nowadays, frequently mutated ones are included in diagnostic gene panels (for recent
reviews see [14, 213]. Large consortia initiatives such as Epi4k [190] enrolled 1,500 families, in
which two or more affected members displayed epilepsy, as well as 750 individuals, including 264
trios, with epileptic encephalopathies and infantile spasms, Lennox-Gastaut syndrome, polymi-
crogyria or periventricular heterotopias. In addition to the detection of known and unknown risk
factors, the consortium found a significant overlap between the gene network of their epilepsy
candidate genes and the gene networks for autism spectrum disorder (ASD) and intellectual
disability. Intriguingly, epilepsy is the medical condition most highly associated with genetic
autism syndromes [214].

Genomic disorders associated with copy number variations (CNVs) appear to be highly pen-
etrant, occur on different haplotype backgrounds in multiple unrelated individuals and seem to
be under strong negative selection [215–217]. A number of chromosomal locations suspected to
contribute to epilepsy have been identified [218–222].

A genome-wide screen for CNVs using array comparative genomic hybridization (aCGH)
in patients with neurological abnormalities and epilepsy led to the identification of recurrent
microdeletions on 6q22 and 1q22.31 [223]. A deletion on 15q13.3 belongs to the most frequent
recurrent microdeletions in epilepsy patients; it is associated with intellectual disability, autism,
schizophrenia, and epilepsy [224, 225]. The recurrence of some CNVs seems to be triggered by the
genome structure, namely by the chromosomal distribution of interspersed repetitive sequences
(like Alu transposons) or recently duplicated genome segments (large blocks of sequences >10with
>95% sequence identity that constitute five to six percent of the genome) that give rise to
nonallelic homologous recombination [215, 226].

CNV screening in large samples showed that 34% of heterozygous deletions affect genes
associated with recessive diseases [227]. CNVs are thought to account for a major proportion of
human genetic variation and have an important role in genetic susceptibility to common disease,
in particular neuropsychiatric disorders [228]. Genome-wide surveys have demonstrated that
rare CNVs altering genes in neuro-developmental pathways are implicated in epilepsy, autism
spectrum disorder and schizophrenia [14, 15].
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Considering all types of CNVs across two analysed cohorts, the total burden was not signif-
icantly different between subjects with epilepsy and subjects without neurological disease [229];
however, when considering only genomic deletions affecting at least one gene, the burden was
significantly higher in patients. Likewise, using Affymetrix SNP 6.0 array data, it has recently
been shown that there is an increased burden of rare large deletions in GGE [221]. The drawback
of the latter approach is that smaller CNVs cannot be detected. Systematic searches of CNVs
in epilepsy cohorts using whole-exome sequencing (WES) data, which provides the advantage to
identify smaller deletions along with the larger ones, are still missing.

In the present study, we provide the CNV results of the largest WES epilepsy cohort re-
ported so far. We aimed at (1) identifying the genome-wide burden of large deletions (>400kb),
(2) studying the enrichment for deletions of brain-expressed exons, in particular those under neg-
ative selection, (3) detecting deletions that overlap with previously defined autism and epilepsy
candidate genes, and (4) browsing knowledge databases to help understand the disease aetiology.

4.3 Patients and Methods
The study protocol was approved by the local institutional review boards of the contributing

clinical centres. Written informed consent was obtained from participating subjects and, if
appropriate, from both patients and adolescents.

4.3.1 Data

GGE cohort: This cohort included 196 subjects with genetic generalized epilepsy. All subjects
were of European descent (Italian 81, German 54, Finnish 22, Dutch 11, British 9, Danish 8,
Turkish 6, Swedish 3, French 1, Greek 1). The cohort included 117 female subjects (60%). The
GGE-diagnoses were childhood absence epilepsy (CAE; n=94), juvenile absence epilepsy (JAE;
21), juvenile myoclonic epilepsy (JME; 47), genetic generalized epilepsy with generalized tonic-
clonic seizures (EGTCS, 27), early-onset absence epilepsy (EOAE, 4), epilepsy with myoclonic
absences (EMA, 1), and unclassified GGE (2). Age of epilepsy onset ranged from 1 year to 38
years with a median of 8 years. The majority of subjects derived from multiplex families with at
least 2 affected family members (n=183), thereof 90 families with 3 or more affected members.

RE cohort: This cohort included 204 unrelated Rolandic patients of European ancestry which
were recruited from centers in Austria (n�=�107), Germany (n�=�84), and Canada (n�=�13).

Control cohort: We used 445 females and 283 males (728 in total) from the Rotterdam Study
as population control subjects [230]. The same cohort was recently used for the screening of 18
GABAA-receptor genes in RE and related syndromes [149].

Our primary analysis workflow included three major steps as shown in Figure 4.1. These are
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1) data pre-processing, 2) SNV/INDEL analysis and 3) copy number variant analysis.

Figure 4.1: Flowchart of the analysis steps. Parameters used in each step are described in detail in the methods
section.

4.3.2 Data pre-processing

Sequencing adapters were removed from the FASTQ files with cutadapt [25] and sickle [231].
GATK best practices were followed for the next steps of data pre-processing and variant calling
[23]. Alignment to the GRCh37 human reference genome was performed using BWA-MEM
[29] with default parameters. Conversion of SAM to BAM files was done with SAMtools [27].
Sorting of BAM files, marking of duplicate reads due to PCR amplification and addition of
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read group information were done using Picard (https://github.com/broadinstitute/picard) tools
with default parameters. Base quality score recalibration and local realignment for INDELs was
performed using GATK version 3.2.

4.3.3 Coverage

Mean depth of coverage and target coverage of exons were calculated from the BAM files
using the depth of coverage tool from GATK. The same files were also used as input for calling
of CNVs.

4.3.4 Variant calling

The GATK haplotype caller (version 3.2) was chosen to perform multiple sample variant
calling and genotyping with default parameters. To include splice site variants in the flanking
regions of the exons, exonic intervals were extended by 100each upstream and downstream. Mul-
tiple sample calling is advantageous in deciding whether a variant can be identified confidently
as it provides the genotype for every sample. It allows filtering variants based on the rate of
missing genotypes across all samples and also according to the individual genotype.

4.3.5 Sample QC

Samples were excluded from the analysis based on the following criteria: 1) Samples with a
mean depth <30x or <70% of exon targets covered at <20x were excluded from further analysis;
2) samples with >3 standard deviations from mean in number of alternate alleles, number of
heterozygotes, transition/transversion ratio, number of singletons and call rate as calculated with
the PLINK/SEQ i-stats tool (https://atgu.mgh.harvard.edu/plinkseq/); 3) call rate <97%;
4) ethnically unmatched samples as identified by multi-dimensional scaling analysis with PLINK
version 1.9 [39]; 5) PI_HAT score>0.25 as calculated by PLINK version 1.9 to exclude related
individuals.

4.3.6 Variant QC

Initial filtering of variants was performed based on quality metrics over all the samples with
the following parameters for VQSR: Tranches chosen, VQSRTrancheSNV99.90to100.00. QC over
all samples (INFO column) was done as follows: a) for SNVs, variants were filtered for QD < 2.0,
FS > 60.0, MQ< 40.0, MQRankSum <=12.5, ReadPosRankSum <=8.0, DP <10.0, GQ_MEAN
< 20.0, VQSLOD < 0, more than 5% missingness, ABHet > 0.75 or < 0.25 and deviation from
Hardy-Weinberg equilibrium (Phred scale p-value of > 20); b) for INDELs, the same was done
as for SNVs except for the following parameters for variant filtration: QD <2.0, FS >200.0,
ReadPosRankSum <=20.0, DP <10.0, GQ_MEAN <20.0, missingness <5%, Hardy-Weinberg
Phred scale value of >20, VQSLOD >0.
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To further exclude low quality variants, we also applied filtering based on quality metrics
for each genotype using read depth and quality of individual genotypes. Genotypes with a read
depth of <10 and GQ of <20 were converted to missing by using BCFtools [27]. Multi-allelic
variants were decomposed using variant-tests [232] and left-normalized using BCFtools.

4.3.7 Variant annotation

Variants were annotated with ANNOVAR [47] version 2015, Mar22 using RefSeq and En-
sembl versions 20150322 and the dbNSFP [51] version 2.6 annotations including nine scores for
missense mutations (SIFT, PolyPhen2 HDIV, PolyPhen2 HVAR, LRT, MutationTaster, Muta-
tionAssessor, FATHMM, MetaSVM, MetaLR), the CADD score, and three conservation-based
scores from GERP++, PhyloP and SiPhy. Splicing variants were defined to include 2 bp before
and after the exon boundary position. To obtain rare variants, we filtered the variants for a
minor allele frequency (MAF) of <0.005 in public databases such as 1000 genomes [34], dbSNP
[52], ExAC (release 0.3) and the exome variant server (EVS). We defined deleterious variants
as those variants that fulfil any of the following three criteria: 1) all the variants except the
synonymous variants predicted to be deleterious by at least 5 out of 8 missense prediction scores,
CADD score >4.5, or 2 out of 3 conservation scores (GERP>3, PhyloP>0.95, SiPHy>10) show
high conservation; 2) variants annotated as “splicing”, “stop gain” or “stop loss”; 3) any insertion
or deletion.

4.3.8 CNV detection

In the remaining high quality samples, CNVs were detected by using XHMM as described in
[69]. In the current study, we focused only on deletions, as the false positive rate for duplications
is too high to allow for meaningful interpretation. CNV calls were annotated using bedtools
version 2.5 [233]. NCBI RefSeq (hg19, 20150322) was used to identify the genes that lie within
the deletion boundaries.

4.3.9 CNV filtering

The detected deletions were filtered based on the following criteria: 1) Z score <~–3, given
by XHMM; 2) Q_SOME score � 60, given by XHMM.

4.3.10 Burden analysis of large and rare deletions

Excess deletion rate of the large deletions (length >400 kb) in subjects with epilepsy compared
to the controls was measured as described in [221] using PLINK version 1.9 [39]. We set the
overlap fraction to 0.7 (70%) and the internal allele frequency cut-off <0.5% and evaluated the
significance empirically by 10,000 case-control label permutations.
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4.3.11 Case-only CNVs

The CNVs that are unique for cases (not present in any of the in-house controls) and occur
at a low frequency, i.e., present in �2 independent cases, while having a frequency of �1% in the
CNVmap, the DGV gold standard dataset [71] and 1000 genomes SV [72] were selected and
subjected to further analysis as described below.

4.3.12 Validation of CNVs

We proceeded by visual inspection of depth variation across exons of the filtered deletions; we
also performed qPCR validations of three small deletions, two of which, NCAPD2 and CAPN1,
stood the filtering procedure (see Table A.3). For RE patients, genomic DNA samples were anal-
ysed using the Illumina OmniExpress Beadchip (Illumina, San Diego, CA, USA) [221]. Twenty-
three of 60 CNVs present in the RE patients were validated by available array data (Table A.5).
Generally, small CNVs cannot be reliably identified with SNP arrays [234]. Indeed, of the 37
CNVs that were not identified in the beadchip data, 23 have a size of <10, whereas only 2 of the
23 validated CNVs have a size of less than 10according to the array data.

4.3.13 Compound heterozygous mutations and protein-protein interactions

We checked for concurrence of a deletion in one allele and a deleterious variant in the second
allele. We included the first order interacting partners from the protein-protein interaction
network (PPIN) in this analysis [235] and assessed if any gene or its first order interacting
partner carries a deletion in one allele and a deleterious variant in the other. We excluded all
genes that had no HGNC (HUGO Gene Nomenclature Committee) entry resulting in a network
of 13,364 genes and 140,902 interactions. This network was then further filtered for interactions
likely to occur in brain tissues using a curated data set of brain-expressed genes [236]. The final
brain-specific PPIN consisted of 10,469 genes and 114,533 interactions.

4.3.14 Gene-set enrichment analysis

Genes that were expressed in brain [236]. and located within deletion boundaries were used
as input for an enrichment analysis using the Ingenuity Pathway Analyser (IPA®) [237]. We
performed the enrichment analysis with all deleted genes from the RE and GGE samples together
as well as for each phenotype separately.

4.3.15 Over-representation analysis

To assess whether the deleted set of genes were enriched in known epilepsy-associated genes,
we retrieved genes that were associated with the disease term “epilepsy” from the DisGeNET
database [238]. Then we compared the overlap between the brain-expressed genes that are deleted
in RE (n=85), GGE (n=49) and RE+GGE (n=134) against the brain-expressed epilepsy-related
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genes in DisGeNet (n=674). We used the total number of brain-expressed genes (n=14,177) as the
background. The R GeneOverlap package (https://bioconductor.org/packages/release/
bioc/html/GeneOverlap.html) was used to compute the p-value.

4.3.16 CNV tolerance score analysis

The CNV tolerance score was used as defined in [239]. The CNV tolerance and deletion
scores for the genes that are deleted in our study were obtained from the ExAC database [43]
and their enrichment in GGE and RE cases was assessed by the Wilcoxon rank sum test.

4.3.17 Overlap with different databases

The overlap between the different data sets was obtained by gene symbol matches between
the detected gene deletions and the gene lists from different databases; more details are given in
the discussion section. A workflow depicting the steps above is shown in Figure 4.1.

4.4 Results
After quality control, exomes of 390 epilepsy cases (196 GGE, 194 RE) and 572 controls were

used for downstream analyses (Figure 4.1). The final RE and GGE datasets comprised 26,476
and 30,207 variants, respectively.

4.4.1 Epilepsy-associated microdeletions

75 out of 390 epilepsy patients (~19%) carried a total of 104 case-only deletions spanning
260 genes (see Table A.3), which covered a wide size range between 915 bp and 3.11 Mbp. 43
out of 194 RE patients carried deletions compared to 32 out of 196 patients with GGE, thus,
we did not observe any significant difference in the total number of deletions between the two
disease entities (p-value = 0.68). In the combined dataset, 35 out of 73 were large multigene
deletions. Among them were several recurrent deletions (see Table A.3), including those located
on 15q13.3 and 16p11.2 that were previously reported to be associated with epilepsy and other
brain disorders.

4.4.2 Comparative analysis of Rolandic and GGE candidate genes

Because our cohort is composed of GGE and RE patients, we sought to compare the functional
differences between the two subtypes of epilepsies by studying the pathways and functions that
are enriched in the respective deleted genes (see Table 4.4). Initially we performed GO term
enrichment without applying any additional filter to the deletion calls. As shown in Table 4.3,
synaptic and receptor functions are more prominent in RE cases. If the deletion calls were filtered
for brain-specific gene expression, we observed that, separately and together, GGE and RE-
deleted genes are enriched for the functional terms “nervous system development and function”,
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“behavior” and “tissue morphology”; this functional convergence might have been expected when
selecting for brain-expressed genes.

When analyzing GGE and RE datasets separately, the top PPIN enriched in GGE is as-
sociated with “carbohydrate metabolism”, “small molecule biochemistry” and “cell signaling”,
whereas the top networks associated with RE are “neurological disease”, “organismal injury and
abnormalities” and “psychological disorders” (see Table 4.4). The enriched network including
GGE and RE-deleted genes (Figure 4.2) is described below.

4.4.3 Deletion burden analysis

We performed 10,000 case-control label permutations to test whether there is an increased
burden of large and rare deletions in cases as compared to the controls (Table 4.1). We noticed
that (1) the deletion rate per individual with at least one deletion in cases compared to the
controls showed statistical significance in both GGE and RE (p-value = 1e-04, p-value = 0.011)
and (2), considering cumulative length of all large and small deletions, no significant difference
between cases and controls was observed in both GGE and RE (p-value = 0.16, p-value = 0.41),
indicating that there is no difference in the length of CNVs in cases and controls.

Dataset Deletion rate per
person

Proportion of samples
with at least one dele-
tion

Total length of
deletions

Average length of dele-
tions

IGE+RE 1,0E-04 1,0E-04 2,7E-01 2,8E-01
IGE 1,0E-04 1,0E-04 1,7E-01 1,8E-01
RE 1,1E-02 3,0E-03 4,1E-01 2,3E-01

Table 4.1: Burden test showing empirical p values of cases/controls permutation statistics. RE = Rolandic
epilepsy (Typical/Atypical), IGE = Idiopathic generalized epilepsy.

4.4.4 Enrichment for known epilepsy and autism-associated genes

To check the overlap between the deletions detected in our study and genes known to be
associated with epilepsy, we searched for overlap with the genes listed (n=499) in the Epilepsy-
Genes database [240]. This led to the following set of 8 genes: CHRFAM7A, CHRNA7, SCN1A,
CNTNAP2, GABRB3, GRIN2A, IGSF8, ITPR1. The GRIN2A deletion is from the same pa-
tient published earlier [148] and which we used as one of the positive controls in our primary
CNV detection pipeline [241]. One should notice that genes such as CHRNA7 and GABRB3 are
located within larger deletions containing other genes; so they might be questionable as bonafide
epilepsy-associated genes.

Using the core autism candidate genes (n=455 genes) present in brainspan, [242], we identified
13 deleted genes: APBA2, ATP10A, CDH22, CDH8, GABRA5, GABRG3, NDN, NDNL2,
CNTNAP2, GABRB3, GRIN2A, SCN1A and SHANK1 (Table 4.2). This set is particularly
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enriched in GO terms “neuron parts” and “transporter complexes”. Note that GABRB3 and
GABRG3 belong to multigenic large deletions (Table A.3).

PSD genes BCG genes Autism brainSpan EpilepsyDB clinVar
NDUFS3 APBA2 APBA2 CHRFAM7A SACS
RIMBP2 ATRNL1 ATP10A CHRNA7 CNTNAP2
TJP1 CDH22 CDH22 SCN1A GABRB3

CNTN1 CSMD1 CDH8 CNTNAP2 GRIN2A
CNTNAP2 ETV1 GABRA5 GABRB3 ITPR1
GABRB3 FAN1 GABRG3 GRIN2A SCN1A
GRIN2A GMFB NDN IGSF8
HSPA1L IGSF8 NDNL2 ITPR1
IGSF8 NPR2 CNTNAP2

PTPRZ1 OTUD7A GABRB3
SHANK1 PLXDC2 GRIN2A

SCN1A SCN1A
ZFAND1 SHANK1
ZNF343
ZNF568
CNTN1

CNTNAP2
GABRB3
GRIN2A
ITPR1
PTPRZ1
SHANK1

Table 4.2: Overlap with specific sets. In grey are genes common to at least 2 of the compared sets. PSD
(post-synatric density); BCG (Brain Critical Genes).

4.4.5 Deletions of brain-critical exons

Reduced fecundity associated with disorders such as autism, schizophrenia, mental retarda-
tion and epilepsy puts negative selection pressure on risk alleles. A recent report [216] combined
exome and transcriptome data from large human population samples and defined a class of brain-
expressed exons that are under purifying selection, namely those that are highly expressed in
brain tissues and at the same time exhibiting suppressed accumulation of missense mutations
in population controls (low mutation burden). These exons were called “brain-critical exons”
(n=3,955), the associated genes were accordingly called “brain-critical genes” (BCG, n=1,863)
[14].
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Twenty-two deleted genes are in common with the BCG set (see Table 4.2). The SHANK1
deletion is found in a single RE case. It spans 7,339 bp (8 exons out of 9). There is only one
report on the possible implication of the deletion of this gene in childhood epilepsy [243]. A
deletion of ITPR1 is observed in another RE case; this deletion affects also SUMF1, but this
gene was filtered out by the BCG overlap selection. The deletion of CNTN1 in a GGE patient
encompasses in addition MUC19 and LRRK2, the latter is a known Parkinson candidate gene
[244].

4.4.6 Exome Aggregation Consortium deletions

The ExAC data comprise 60,706 unrelated individuals sequenced as part of various disease-
specific and population genetic studies. Deletions annotated in ExAC (release 0.3.1 of 23/08/16)
were identified, similar to the present study, by read depth analysis using XHMM [239]. We
sought to compare those CNV calls with the ones detected in the present work. Out of the 260
deleted genes detected in our study, 164 genes (67%) showed deletions in ExAC too (see Table
A.4). Several genes highlighted in the previous paragraphs were ranked high using the CNV
tolerance score defined by [239]. However, we did not identify a significant difference, neither
in CNV tolerance scores (p-value = 0.53) nor in CNV deletion scores (p-value = 0.22), between
GGE and RE-deleted genes. This may indicate that GGE and RE deletions are equally likely to
fall into the same category of ExAC deletion calls.

4.4.7 Compound heterozygous and first order protein-protein interaction mu-
tations

Compound heterozygous mutations play a role in many disease aetiologies such as autism and
Parkinson’s disease [245–247]. We searched for possibly deleterious non-synonymous changes in
the parental undeleted gene copy, but we did not detect any hemizygous variant that had a critical
intolerance score (see Methods). Subsequently, we hypothesised that simultaneous mutations
in proteins which interact directly (first-order protein interactors) may increase the associated
deleterious effect. Within a curated brain-specific PPIN (see Methods, [235]), we inspected
first order interacting proteins with potentially deleterious mutations or exon losses (see Table
4.4.7) and found a few interesting hits, including SPTAN1 that interacts directly with SHANK1;
SPTAN1 encodes alpha-II spectrin and is known to be associated with epilepsy [248, 249]. A
remarkable and unique case of multiple hits was observed in a patient who accumulated four hits:
the originally detected ITPR1 deletion and three potentially deleterious non-synonymous SNVs
in RYR2, HOMER2 and STARD13. RYR2 (ryanodine receptor 2) and ITPR1 (inositol-1,4,5-
trisphosphate receptor 1) have been independently reported to be implicated in brain disorders.
RYR2 de novo mutations have been identified in patients with intellectual disability [250] and
activation of ITPR1 and RYR2 can lead to the release of Ca2+ from intracellular stores affecting
propagating Ca2+ waves [251]. HOMER2, a brain-expressed gene, has been reported to be
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involved in signalling defects in neuropsychiatric disorders [252]. The STARD13 locus has been
reported to be associated with aneurysm and sporadic brain arteriovenous malformations [253,
254].
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Sample Gene (dele-
terious
SNV/Indel)

Gene in deletion boundaries Case Chr Position Ref Alt Annotation

SN10600087_4671_E145b_1 LACTB MRPS27 RE 15 63421767 T C exonic
SN7640113_5312_E677d_1 SPEN SF3B3;SNORD111;SNORD111B RE 1 16254645 G A exonic
SN7640113_5312_E677d_1 NRG1 SF3B3;SNORD111;SNORD111B RE 8 32406278 A G exonic
SN7640113_5314_S97_1 SPTAN1 SHANK1 RE 9 131367308 T G splicing
SN7640113_5548_ROL_0451_1 STARD13 ITPR1;ITPR1-AS1;SUMF1 RE 13 33700223 C T exonic
SN7640113_5548_ROL_0451_1 RYR2 ITPR1;ITPR1-AS1;SUMF1 RE 1 237730032 A G exonic
SN7640113_5548_ROL_0451_1 HOMER2 ITPR1;ITPR1-AS1;SUMF1 RE 15 83561556 G C exonic
SN7640113_5558_ROL_0481_1 EPS15L1 AGFG2 RE 19 16528403 C T exonic
SN0000000_8623_PND5133937_1 DDX41 U2SURP IGE 5 176939650 G C splicing
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4.4.8 Over-representation of gene-disease associations

DisGeNET is a discovery platform integrating information on gene-disease associations from
public data sources and literature [255]. The current version (DisGeNET v4.0) contains 429,036
associations between 17,381 genes and 15,093 diseases ranked according to supporting evidence.
Over-representation analysis of genes that are deleted in both GGE and RE together (134 genes)
showed significant over-representation (empirical p-value = 0.012) of epilepsy-associated genes
(APBA2, CHRNA7, CNTNAP2, F5, GABRA5, GABRB3, GRIN2A, KCNQ1, MT1E, PTPRZ1,
SCN1A, SGCG, SSTR4). We observed a similar result for GGE (49 genes; empirical p-value =
0.009; overlapping genes: CNTNAP2, F5, MT1E, PTPRZ1, SCN1A, SGCG, and SSTR4), but
we did not see an over-representation in RE (85 genes; empirical p-value = 0.217; overlapping
epilepsy genes are APBA2, CHRNA7, GABRA5, GABRB3, GRIN2A, and KCNQ1). This may
reflect the heterogeneous risk factors in adulthood epilepsies compared to RE.

4.4.9 Protein-protein interaction network analysis

We searched for network modules carrying a higher deletion burden with Ingenuity Pathway
Analyser (IPA®). Considering GGE and RE together and using brain-expressed genes as an
input for IPA we identified a total of 12 networks. The identified network scores ranged from
two to 49 and the number of focus molecules in each network ranged from one to 24. Of all the
12 identified networks (see Supplementary Material), the network shown in Figure 4.2 is the top-
ranked network with a score of 49 and 24 focus molecules. It is associated to the terms “Nervous
system development and function”, “Neurological disease” and “Behavior”. The network reveals
an interesting module where the genes CAPN1, GRIN2A, ITPR1, SCNA1 and CHRNA7 are
central. Interestingly, CAPN1 is well ranked (no deletion or duplication) in the ExAC CNV
records (Table A.4) and it is not covered by BCG, epilepsy and autism data sets used in this
study.
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Physiological System Development and Function
Name p-value
IGE+RE
Nervous System Development and Function 2.74E-02 - 3.36E-06
Tissue Morphology 2.62E-02 - 4.20E-06
Behavior Auditory and Vestibular System Development
and Function

2.37E-02 - 3.63E-05

Organ Morphology 2.43E-02 - 5.29E-04
RE
Nervous System Development and Function 4.90E-02 - 3.89E-05
Tissue Morphology 4.90E-02 - 1.34E-04
Behavior 4.90E-02 - 2.56E-04
Auditory and Vestibular System Development and Func-
tion

4.53E-02 - 2.59E-04

Organ Morphology and Vestibular System Development
and Function

4.90E-02 - 2.59E-04

IGE
Nervous System Development and Function 4.91E-02 - 2.28E-04
Tissue Morphology 4.07E-02 - 2.28E-04
Behavior 4.47E-02 - 4.62E-04
Hematological System Development and Function 3.81E-02 - 6.79E-04
Immune Cell Trafficking 3.81E-02 - 6.79E-04

Table 4.3: Physiological System Development and Function
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Top Networks
IGE+RE Associated Network Functions
1 Nervous System Development and Function, Neurological Disease, Behavior
2 Connective Tissue Disorders, Developmental Disorder, Skeletal and Muscular

Disorders
3 Cell-To-Cell Signaling and Interaction, Molecular Transport, Small Molecule

Biochemistry
4 Cancer, Organismal Injury and Abnormalities, Reproductive System Disease
5 Carbohydrate Metabolism, Lipid Metabolism, Small Molecule Biochemistry
RE
1 Neurological Disease, Organismal Injury and Abnormalities, Psychological

Disorders
2 Cell Morphology, Nervous System Development and Function, Tissue Mor-

phology
3 Cellular Development, Cellular Growth and Proliferation, Hematological Sys-

tem Development and Function
4 Embryonic Development, Organismal Development, Tissue Morphology
5 Cellular Compromise, Cell Cycle, Amino Acid Metabolism
IGE
1 Carbohydrate Metabolism, Small Molecule Biochemistry, Cell Signaling
2 Cancer, Organismal Injury and Abnormalities, Endocrine System Disorders
3 Cancer, Dermatological Diseases and Conditions, Organismal Injury and Ab-

normalities
4 Lymphoid Tissue Structure and Development, Tissue Morphology, Behavior

Table 4.4: Top enriched networks from the IPA analysis.
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Figure 4.2: Network analysis of brain-expressed genes. The genes were filtered by the CNVs identified in both
GGE and RE together. The top network from the pathway analysis generated by Ingenuity Pathway Analyser
(IPA®) is shown.

4.4.10 Enrichment for likely disruptive de-novo mutations

Many studies on neuropsychiatric disorders such as autism spectrum disorder, epileptic en-
cephalopathy, intellectual disability and schizophrenia have utilized massive trio-based whole-
exome sequencing (WES) and whole-genome sequencing (WGS). Epilepsy candidate genes with
de novo mutations (DNMs) were searched in the NeuroPsychiatric De Novo Database, NPden-
ovo [256]. DNMs were found in GABRB3, SHANK1, ITPR1, GRIN2A, SCN1A, PCDHB4 and
IQGAP2.

4.5 Discussion
We analysed a WES dataset of 390 epilepsy patients (196 GEE, 194RE) for microdeletions.

The deletion rate per individual with at least one deletion in cases compared to 572 controls
showed statistical significance in both GGE and RE. Enrichment for known epilepsy and autism
genes led to gene sets with synaptic and receptor functions which were mainly represented in
Rolandic cases (Table 4.3). The top PPIN enriched in GGE was associated with “carbohy-
drate metabolism”, “small molecule biochemistry” and “cell signaling”, whereas the top net-
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works associated with RE are “neurological disease”, “organismal injury and abnormalities” and
“psychological disorders”, this is reminiscent of our previous attempt to classify metabolic and
developmental epilepsies [14].

Among single-gene deletions, CDH22, CDH12 and CDH8 are of particular interest; CDH12
is a cadherin expressed specifically in the brain and its temporal pattern of expression seems to
be consistent with a role during a critical period of neuronal development [257]. Moreover, a
group of cadherins, CDH7, CDH12, CDH18 and PCDH12, are reported to be associated with
bipolar disease and schizophrenia [258]. The smallest deletion (1,166 bp) that we could detect
in this study concerns NCAPD2; this gene is annotated in the autismkb database [259]. It is
an important component of the chromatin-condensing complex, which is highly conserved across
metazoan. This gene was previously found to be associated with Parkinson’s disease [234] and
its paralog NCAPD3 is associated with developmental delay [260].

Deletions of brain-critical exons pointed to the ITPR1 deletion, which has been reported to be
associated with spinocerebellar ataxia type 16 [261, 262]. CNTN1 is another deletion of interest,
the gene is highly expressed in fetal brain, it encodes a neural membrane protein which functions
as a cell adhesion molecule and may be involved in forming axonal connections/growth and in
neuronal migration in the developing nervous system [263, 264]. Moreover, its paralogs CNTN2
and CNTN4 are associated with epilepsy [265] and autism [266], respectively. Interestingly, in
the ExAC data, the brain-expressed genes ITPR1 and CNTN1 show the third and fourth highest
intolerance score ranks, respectively (Table A.4).

Protein-Protein interaction network analysis revealed the CAPN1 deletion as an interesting
candidate gene; this is a double gene loss (4,270 bp) spanning CAPN1 (exon 17 to 22 out of 22
exons) and SLC22A1 (exon 1 out of 10 exons). SLC22A1, a transporter of organic ions across
cell membranes, is lowly expressed in the brain, whereas CAPN1 is highly expressed in the
brain. Calpain1 (CAPN1) belongs to the calcium-dependent proteases, which play critical roles
in both physiological and pathological conditions in the central nervous system. They are also
recognized for their synaptic and extra-synaptic neurotoxicity and neuro-protection [267]. Several
ion channels, including GRIN2A, [268] are calpain substrates. Further, a missense mutation in
CAPN1 is associated with spino-cerebellar ataxia in the Parson Russell terrier dog breed [269]
and has recently been reported in humans with cerebellar ataxia and limb spasticity [270].

Additional candidate genes can be identified on the periphery of the IPA network (see Fig 2):
1) CNTN1 (commented on above), 2) SACS, for which a large deletion (> 1Mb) was found, and 3)
the single gene deletion of KCNQ1 (~ 57 kb). For SACS, a SNV is reported to be associated with
spastic ataxia [271] and epilepsy [272]. KCNQ1 and its paralog KCNQ3 are subunits forming an
expressed neuronal voltage-gated potassium channel. Further, hypomorphic mutations in either
KCNQ2, an established epilepsy-associated gene [273], or KCNQ3 are reported to be highly
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penetrant [274]. KCNQ1 is co-expressed in heart and brain; it is found in forebrain neuronal
networks and brainstem nuclei, regions in which a defect in the ability of neurons to repolarize
after an action potential can produce seizures and dysregulate autonomic control of the mouse
heart [275], yet one should be cautious as no validation is available for human.

Enrichment for likely disruptive de novo mutations in several genes suggests that deletions
of these genes could cause a similar phenotype as in the NPdenovo and consequently will be
penetrant in the heterozygotic state. This is indeed the case for ITPR1, for which recessive and
dominant de novo mutations causing Gillespie syndrome [276], a rare variant form of aniridia
characterized by non-progressive cerebellar ataxia, intellectual disability and iris hypoplasia, have
been described. Two of the genes, which we have identified as ITPR1 interactors, RYR2 and
SPTAN1, are also DNM genes in DPdenovo.

In summary, by filtering and comparison to genes that are (1) evolutionary constrained in
the brain, (2) implicated in autism and epilepsy, (3) spanned by ExAC deletions, or (4) af-
fected by neuropsychiatric associated de novo mutations, we observed a significant enrichment of
deletions in genes potentially involved in neuropsychiatric diseases, namely GRIN2A, GABRB3,
SHANK1, ITPR1, CNTN1, SCN1A, PCDHB4, IQGAP2, SACS, KCNQ1 and CAPN1. Interac-
tion network analysis identified a hub connecting many of the epilepsy candidate genes identified
in this and previous studies. The extended search for likely deleterious mutations in the first
order protein-protein interactions and NPdenovo database pointed to the potential importance
of ITPR1 deletion alone or in combination with RYR2 and SPTAN1 deleterious mutations.

We are aware that the set of epilepsy exomes that we screened for CNVs in the present study,
although the largest analyzed so far, is still small given the genetic complexity of the disease
and its population frequency. However, this study appears to provide a contrasting view to the
genetic bases of childhood and juvenile epilepsies, as the top protein–protein interactions showing
that GGE deleted proteins are preferentially associated with metabolic pathways, whereas in RE
cases the association is biased towards neurological processes. Scrutinizing of additional patients’
exomes/genomes and transcriptomes should provide an efficient way to understand the disease
aetiology and the biological processes underlying it. The results presented here may contribute
to the understanding of epilepsy genetics and provide a resource for future validations to improve
diagnostics.
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CHAPTER 5

EXCESS OF SINGLETON LOSS-OF-FUNCTION VARIANTS IN
PARKINSON’S DISEASE

5.1 Abstract
Parkinson’s disease (PD) is a complex disease. Besides variants in high-risk genes, multiple

other genes associated to sporadic PD were discovered via genome-wide association studies. Yet,
there are a large number of genetic factors that remain unexplored. In order to unravel the
genetic factors that play a role in PD, we studied the whole-exome sequencing data available
as a part of Parkinson Progression Markers Initiative (PPMI). After quality filtering, the final
dataset comprised of 352 PD cases and 149 ethnically matched controls. We performed burden
tests at exome-wide level for different variant classes. We observed a significant exome-wide bur-
den of singleton loss-of-function variants in cases compared to the controls (corrected Pglm=0.01,
OR=1.09, CI=1.03-1.16 and corrected Pemp=0.002) but not in the singleton synonymous vari-
ants (corrected Pglm= 1, OR=0.99, CI=0.97-1.02 and corrected Pemp = 0.55). Furthermore,
no burden of singleton loss-of-function (LoF) was identified in a group of genes identified via
genome-wide associated genes, pointing into the direction of polygenic burden. Additionally,
no significant exome-wide burden of rare variants was detected either. Our study supports the
complex disease notion of PD by highlighting its convoluted architecture. Finally, we built a
prediction model with an AUC=0·709 ± ·0047 (95% CI) based on logistic regression with a
combination of singleton LoF variants, common poly risk variants, and family history of PD as
the features. Our results outperform the state-of-the-art classification model for the PPMI data
set [277], which reached an AUC=0.639 based on common variants. By just adding two more
features we reached an AUC=0·709 and we show that the addition of a novel singleton LoF score
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per individual substantially improves the AUC. The main finding of this study is to discover the
complex genetics of PD at an exome-wide level and to show that prediction models based on
rare/ultra-rare variants plus common variants perform better. Such prediction models could aid
the clinicians in decision making during the diagnosis of PD.

5.2 Introduction
Parkinson’s disease is a neurodegenerative disorder and is linked to several genetic and envi-

ronmental factors. Several genes were identified by sequencing studies that were conducted under
familial design [278]. Large scale meta-analyses have identified several genes that are associated
to PD [109] in the case-control setting [279, 280]. As the common variants alone lack to explain
the entire heritability of PD, there might be other causes such as DNA methylation levels [281],
rare [19], ultra-rare or singleton variants (seen in only one sample in the cohort), variants which
could fill in the missing gap [282].

In order to identify the disease associated variants/genes, an array of burden tests [199,
283] have been developed to aggregate the signal from rare or common variants acting in a
similar direction or with different directions. Even after aggregating the variants at the level of
genes, there is still a limited power to attain genome-wide statistical significance and we often
require larger sample sizes to uncover novel disease associations. To increase the statistical power,
variants can be aggregated at a higher level instead of gene sets and pathways, or across the whole
genome. For instance, it has been previously shown that, in schizophrenia there is an excess of
genome-wide ultra-rare variants [78] in cases versus controls and also in a group of genes [284].
Whereas, in sudden unexpected death in epilepsy [285] there is a genome-wide excess of rare
disruptive variants. In this study, we investigated the whole exome sequencing (WES) data from
PPMI consortium [286] and performed an exome-wide burden analysis by aggregating the rare
and singleton variants in the entire exome.

Previous studies have also conducted the analyses based on the genetic data from PPMI to
build predictive models in order to differentiate PD cases from the healthy controls [287–289] and
to sub-type the PD cases [290]. Similarly, the PPMI exome sequencing data has been employed
as a replication dataset to show a significant burden in a group of 54 lysosomal genes in PD
[291] and to test the burden of rare loss-of-function (LoF) variants in 27 candidate genes [19].
Further, it was utilized to describe LoF variants in TRAP1 [292]. But, an unbiased exome-
wide study to test the burden in PD cases versus healthy controls is still missing. A previous
study also aimed to identify the rare variants in PD by conducting the burden analyses [293]
and showed the partial role of rare variants in PD. In our study, we performed burden analyses
at exome-wide level and showed an increased burden of singleton LoF variants in cases versus
controls. Our findings implicate non-synonymous as well as stop-altering and splice site variants
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at a genome-wide level and highlight the polygenic nature of PD.

On the basis of polygenic risk score (PRS), singleton count, and the family history of PD,
we trained a logistic regression and a random forest to classify PD and healthy controls with a
relatively high AUC of 0·709. This approach highlights that, rare/ultra-rare variants along with
the common variants confer a risk for PD and they should also be included in generating the PRS
for PD. The significance of singleton count alongside standard polygenic risk could translate to
improved prediction models for PD.

5.3 Patients and methods
The Parkinson’s Progression Markers Initiative (PPMI) study is an effort to identify the

biomarkers of PD progression [286]. Detailed information about this initiative and the data
can be found on their website (http://www.ppmi-info.org). Exome sequencing was performed
on whole-blood extracted DNA samples collected according to the PPMI Research Biomarkers
Laboratory Manual using Illumina Nextera Rapid Capture Expanded Exome Kit. Nextera Ex-
panded Exome targets 201,121 Exons, UTRs and miRNA and covers 95.3% of Refseq exome.
>340,000 probes are constructed against the human NCBI37/hg19 reference genome. Targeted
genomic footprint is 62Mb. Library preparation for next-generation sequencing using Nextera
Rapid Capture Expanded Exome Kit was performed per manufacturer’s protocol (Illumina, Inc.
San Diego). Exome- enriched libraries (multiplexed sets of 12 samples) were sequenced on the
Illumina HiSeq 2500 sequencing platform using 2 x 100 bp paired-end read cycles. Briefly, the
variants were called following GATK [23] best practices. The initial PPMI exome dataset com-
prised of 404 PD and 183 healthy controls, which were filtered by several criteria as described
below.

5.3.1 Low quality samples filter

Number of alternate alleles, number of heterozygotes, Ti/Tv ratio, number of singletons
and call rate served as data quality parameters. They were calculated by PLINK/SEQ (https:
//atgu.mgh.harvard.edu/plinkseq) i-stats command. Any sample with >3 standard deviation
(SD) from the mean in any of the above mentioned metrics was excluded from the analysis. Next,
we selected the variants that were common between HapMap(version 3.3) [37] and the current
dataset. The selected variants were further filtered to be: 1) Only bi-allelic SNVs, 2) with a call
rate >98% and 3) not in linkage disequilibrium. The variants filtered above were included to
check cryptic relatedness, deviations from reported sex and to perform population stratification
analysis via eigenstrat [42].
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5.3.2 Relatedness filter

Cryptic relatedness check was performed via both PLINK [39] and KING [40] algorithms
based on the same set of SNVs as described above. We checked up to second degree relatedness
(Pi_Hat score >0.25) and randomly chose one sample of the identified relative pairs to be
included in the final analyses.

5.3.3 Ethnicity filter

We merged our data with the 1000 genomes (1000g) data and performed population strat-
ification employing eigenstrat with default parameters to confirm the ethnicity of our samples.
Except for few outliers, both cases and controls were clustered with the samples of European
origin in the 1000g data Figure 5.2. In order to determine the ethnicity outliers from the eigen-
strat analysis, a sigma value of 3 was applied as a cut-off (which excludes all the samples with
a SD of >3 based on the first 10 principal components). Additionally, we excluded the samples
>3SD based on the first and second principal components from the eigenstrat analysis.

5.3.4 Variant QC

The downloaded PPMI vcf file had already been filtered for high quality variants according to
the variant quality score recalibration approach as part of GATK best practices by the authors
of original study. In order to be more stringent, we applied additional filters as described below:
1) For SNVs: Variants were filtered for QD < 2.0, FS > 60.0, MQ < 40.0, MQRankSum <
-12.5, ReadPosRankSum < -8.0, DP<10.0, GQ_MEAN<20.0, VQSLOD<0, ABHet >0.75 or
<0.25 and Hardy Weinberg Phred scale P-value of >20. 2) For indels: Parameters for variant
filtration were QD < 2.0, FS > 200.0, ReadPosRankSum < -20.0, DP<10.0, GQ_MEAN<20.0.
Additionally, filtering based on individual genotype quality and read depth is performed by
converting the variant genotypes with a read depth of <10 and GQ of <20 to missing by the
bcftools [27]. Finally, only variants with a call rate of >0.9 were kept for further analyses.

5.3.5 Variant annotation

Multi-allelic variants were decomposed based on variant-tests [45] and left normalized by
bcftools [27]. Variants were annotated by ANNOVAR [47] version 2016 June17 using RefSeq and
Ensembl gene annotations, the dbNSFP v3.0 [51] prediction and conservation scores as well as
genome-wide CADD [58] scores. Exonic and splice site variants (EXONSPLICING) were selected
according to RefSeq and Ensembl annotations. Rare variants were defined as variants with minor
allele frequency(MAF) < 0.005 in European population of public databases such as 1000 genomes
[34], ExAC (release 0.3) [43], and the Exome variant server (http://evs.gs.washington.edu/
EVS). Singleton variants were defined as the variants present in only one sample in the entire
dataset (AC=1). We divided the rare and singleton exonic and splicing variants into different
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variant classes such as: a) nonsynonymous+LoF variants (NONSYN+LoF), b) loss-of-function
(LoF) variants defined as stop gain, stop loss, splice site variants and all insertions/deletions
(LoF), c) NONSYN variants with a CADD phred score >10 (CADD10), d) NONSYN variants
with a CADD phred score >20 (CADD20) and e) synonymous variants (SYN) as a control
variant set, as they are assumed to be functionally neutral. All the analyses described below
were performed separately for each variant class for both rare and singleton variants.

5.3.6 Excess of singleton variants

We checked whether rare and singleton variants (variants present in only one sample, AC=1)
were overrepresented in cases compared to the controls. In order to do that, first we generated
an individual burden score for each sample by counting number of variants in each variant class.
Then we compared the individual burden score of cases and controls by two different approaches:
First, for each variant class, we constructed a generalized linear model by correcting for total
number of singleton variants called in that sample, gender and first 10 principal components
from the eigenstrat analysis as covariates and a P-value(Pglm) was generated. Second, coverage
or sample size bias could lead to an increased number of singletons, in order to account for this
bias, we performed 10,000 sample label permutations and for each permutation we computed the
one-sided Wilcoxon rank sum test [294, 295] to calculate a P-value, by comparing the individual
burden score per sample between cases and controls. Then, the permutation P-values were
compared with the original P-value to generate an empirical P-value (Pemp). We chose the
Wilcoxon rank sum test because it accounts for differences in sample sizes and the presence
of any outlier samples [296]. R version 3.4.2 was employed to calculate all the P-values. We
corrected for 10 comparisons for multiple variant classes (5 variant classes in rare and singleton
groups) according to the “bonferroni” method implemented in function “p.adjust” in R version
3.4.1.

5.3.7 Geneset burden analysis

In order to identify whether there was a polygenic burden or only a few genes contribute to
the observed burden, we restricted our burden analysis as described above to a group of 74 PD
associated genes that were identified previously in a large-scale meta-analysis [109].

5.3.8 PRS generation

After the QC, the final dataset comprised of 352 cases and 149 controls, the summary of
the samples along with the clinical scores are given in Table 5.1. In order to generate PRS per
sample, summary statistics of 43 SNPs that were found to be genome wide significant from the
meta analysis [109] were selected are given in Table A.2. PRSice [297] with default parameters
was used to calculate PRS per each sample. In addition, we also included the LRRK2 p.G2019S
into the PRS calculation (PRS_LRRK2). However, we did not include it in the final analysis as
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it showed inferior predictive ability (Table 5.1) compared to PRS without accounting for LRRK2
p.G2019S variant. A clear difference in the distribution of PRS in cases and controls can be seen
in Figure 5.1.
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Figure 5.1: Distribution of PRS. There is a clear shift in PRS in the cases compared to the controls.
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Feature Cases (n=352) Controls (n=149) ANOVA/Chi-sq
P-value

F-statistics

Clinical features

QUIP Score 0.285 (0.621) 0.262 (0.728) 7.157 E-1 0.13
ESS score 5.949 (3.500) 5.581 (3.470) 2.837 E-1 1.15
Benton Summary Score 12.835 (2.127) 13.148 (1.919) 1.234 E-1 2.38
Total Semantic Fluency Score 48.855 (11.544) 51.987 (11.009) 5.182 E-3 7.88
T Anxiety 32.137 (9.284) 28.456 (6.773) 1.571 E-5 19.02
Family history of PD (%) 87 (24.71) 7 (4.69) 1.553 E-7 27.52
MoCA Total Score 27.182 (2.260) 28.242 (1.127) 8.673 E-8 29.52
SCOPA-AUT Total Autonomic 12.273 (8.757) 7.824 (6.840) 6.014 E-8 30.27
REM Sleep Behavior Score 4.233 (2.690) 2.812 (2.236) 2.551 E-8 32.04
S Anxiety 32.906 (10.087) 27.349 (7.516) 3.069 E-9 36.45
Symbol Digit Modalities Total Correct 41.392 (9.655) 47.456 (10.814) 1.302 E-9 38.24
UPDRS Score Part I 5.500 (4.021) 2.716 (2.518) 3.986 E-14 60.65
UPDRS Score Part II 5.923 (4.171) 0.392 (0.984) 0.000 E+0 253.26
UPSIT Raw Score 22.429 (8.251) 34.443 (4.394) 0.000 E-0 280.91
UPDRS Total Score 32.125 (12.808) 4.304 (4.114) 0.000 E+0 666.62
UPDRS Score Part III 20.719 (8.751) 1.196 (2.195) 0.000 E+0 714.66

Non-clinical features
Male (%) 235 (66.76) 97 (65.10) 7.193 E-1 0.13
age at onset/age of last examination 61.841 (9.584) 60.934 (10.463) 3.472 E-1 0.89
PRS_LRRK2 0.093 (0.008) 0.091 (0.007) 1.168 E-2 6.41
Singleton Count 12.165 (4.326) 10.631 (3.739) 1.861 E-4 14.18
PRS -0.012 (0.008) -0.015 (0.007) 2.268 E-5 18.3
Family history of PD (%) 87 (24.71) 7 (4.69) 1.553 E-7 27.52

Table 5.1: Summary statistics and predictive ability of various clinical scores available from the PPMI consortium
and the features generated in this study. For independence/significance testing we applied ANOVA for continuous
data and Chi-square for binary data. The values in brackets indicate SD values unless stated otherwise.

5.3.9 Construction of risk models

Several PD risk models were built previously [277] by utlilizing a PRS which is generated
based on common variants. However, in our study we observed a significant difference in the
count of singleton LoF variants between cases and controls (Figure 5.3). Hence, as an additional
variable the count of singleton LoF variant per individual was applied as an additional variable
and built an improved prediction model. Two state of the art approaches namely logistic re-
gression and random forest were chosen to construct and test the prediction models. All the
analyses were performed using Ada, a novel data exploration and analytic platform developed
at Luxembourg Centre for Systems Biomedicine (publication in progress).

Ada is a performant and highly configurable system for secured integration, visualization, and
analysis of heterogeneous clinical and omics data sets. Ada allows users to conveniently explore
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and filter data and produce dynamic and personalized “views” containing charts and widgets for
various statistics. Ada currently harbors around 1300 data sets from diverse studies including
LuxPark, DeNoPa, PPMI, TREND, GBA, ADNI, and mPower.

For more advanced statistical analysis and machine learning, Ada employs Spark ML li-
brary (https://spark.apache.org), which is a performant and scalable distributed computing
library. This covers a wide variety of classification, regression, clusterization, feature selec-
tion, normalization, and time-series processing routines. Ada is available for registered users at
https://ada.parkinson.lu.

5.3.10 Input Features and Classification Models

A final list of input features was generated by evaluating various clinical and non-clinical
features for their predictive ability by employing one way ANOVA for continuous features and
Chi-square test for categorical variables. A one way ANOVA compares the means from two
independent (unrelated) groups by using the F-distribution. The principle behind ANOVA is
that, according to null hypothesis, the means of different groups being compared are equal.
Hence, a significant P-value (0.05 in our case) shows that the means of two groups are unequal.
The F-statistics and P-values obtained from ANNOVA/Chi-sq test are shown in the Table 5.1.
After the selection of input features, we built four models as described below:

• A model based on PRS only (modelPRS)

• A model based on singleton LoF score only (modelsingleton)

• A model based on singleton LoF score and PRS (modelsingleton_PRS)

• Finally, an integrated model comprising of singleton LoF score, PRS and PD family history
(modelintegrated).

The parameters of our classification models were set to defaults provided by Spark ML library:

• Binomial logistic regression - L2 regularization, fitting the intercept, max. 100 iterations,
and tolerance of 10E-6.

• Random forest with depth 2 - max. 32 bins, 20 trees, without subsampling of training
data.

As we discuss in Section 5.4.4 the reason for a rather shallow architecture of the random forest
is a small amount of input features, which leads to overfitting. Before training we normalized the
features to z-scores and obtained two sets: with and without 50% subsampling of cases. Each
iteration we split the sets randomly with 0.9 training-test ratio and fed the training part to our
classifiers. We repeated this process 1000 times and reported the mean test AUC as a target
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evaluation metric.

5.4 Results

5.4.1 Population stratification and relatedness check

As it can be seen from Figure 5.2, except for a few outliers both the cases and controls were
clustered together with the European samples of the 1000 genomes data. This observation is in
line with the previous observations from another study based on PPMI data which was performed
on genotype array data [287]. After the filtering based on ethnicity, cryptic relatedness and
quality parameters the final dataset comprised of 367 PD and 159 control samples. The quality
metrics are shown in Table 5.2, the Ti/Tv ratios of exonic/splicing variants is >3 indicating the
good quality.
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Figure 5.2: A) A figure representing the ethnicity of samples in the current study. The sample were represented
along with samples within 1000 genomes study. Each colour represents different ethnicities and each shape rep-
resents the super population to which the samples belong to. The abbreviations of the legend are given below.
ASW: Americans of African Ancestry in SW USA, CEU, CHB: Han Chinese in Beijing, China, CHS: Southern
Han Chinese, FIN:Finnish in Finland, GBR: British in England and Scotland, JPT: Japanese in Tokyo, Japan,
LWK: Luhya in Webuye, Kenya, MXL: Mexican Ancestry from Los Angeles, PUR: Puerto Ricans from Puerto
Rico, TSI: Toscani in Italia, YRI: Yoruba in Ibadan, Nigeria. AFR: African, AMR: Ad Mixed American, EAS:
East Asian, EUR: European. B) Samples included in the analyses after final QC.
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Number of cases 367
Number of controls 159
Number of variants 4,87,024
Number of exonic/splicing variants 2,32,762
Ti/Tv ratio of exonic/splicing variants 3.07

Table 5.2: Metrics of PPMI dataset after QC.

5.4.2 Excess of rare singleton LoF variants

Exome-wide burden was not seen when we performed the burden analysis of rare variants,
however as shown in Figure 5.3, when we restricted our analysis only to singleton variants it could
be seen that there is an excess of singleton LoF (corrected Pemp=0.002, corrected Pglm=0.01)
variants in cases compared to controls [298]. Whereas, no significant difference was seen between
cases and controls in neither the SYN variants (corrected Pemp =0.55, corrected Pglm=1) nor in
the other variant classes.

Figure 5.3: Plot representing the excess of singleton variants in cases versus the controls. Each dot represents the
odds ratio generated by the glm. The values on top of each point represents corrected P-value from glm, empirical
P-value from wilcoxon rank sum test respectively, they are separated by “/”. If both the corrected P-values were
below 0.05 they are highlighted in red with an “*” on top.
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5.4.3 Evidence of polygenic burden in PD

When we restricted our analysis to a group of genes that were significantly associated to PD,
we did not detect an increased burden of singleton LoF variants (Pemp= 0.5, Pglm=0.49). This
shows the polygenic nature of PD where there is a distribution of burden across the genome
rather than being confined to a group of already known PD associated genes.

5.4.4 Prediction Performance

We trained our prediction models on non-clinical features only. It is due to the fact that,
undoubtedly, the clinical scores are designed to distinguish the PD cases from healthy controls,
the very classification problem we aim to predict. Therefore, they make the prediction rather
trivial.

For instance, the clinical scores of University of Pennsylvania Smell Identification Test (UP-
SIT) and Unified Parkinson’s disease rating scale (UPDRS), which describe certain aspects of
PD phenotypes, separate the cases and controls into two distinct groups as can be seen in Figure
5.4. In our experiments the prediction models based on these two features could easily reach an
AUC>0.95 (results not reported here). Additionally, by performing ANOVA/chi-square test we
demonstrated that a majority of the clinical features have a very low P-value and thus posses a
high predictive power (Table 5.1).

Figure 5.4: UPDRS score versus the UPSIT score of the samples in PPMI dataset. The cases and controls are
separated into two distinct groups.
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In our final construction we shortlisted our features to three: PRS, singleton count and
family history of PD as they are shown to have the most significant predictive power out of all
non-clinical features we considered (Table 5.1). Moreover, since we aimed for a minimal set of
predictive features we did not feed gender and age of onset to our models, which were commonly
employed in previous studies [277, 287].

Our main result is that by combining PRS, singleton LoF count and PD family history we
reached an AUC of 0·709 ± ·0047 (95% CI). Performance of the partial models with the PRS
only, the singleton LoF count only, as well as the PRS and singleton LoF count combined were
substantially lower: 0·621 ± ·0054 (95% CI), 0·604 ± ·0051 (95% CI), and 0·654 ± ·0053 (95%
CI) respectively. The reported AUC is a mean over 1000 repetitions on test sets randomly drawn
with 0.9 training-test split for the binomial logistic regression.

Our predictor that is built on the combination of common and singleton count with an AUC
of 0·653 ± ·0·005 (95% CI) outperforms the state-of-the-art classification model for PPMI dataset
built on the basis of PRS [277] with an AUC=0.639, which also employed a logistic regression.
By feeding solely the PRS to our logistic regression we are reaching an AUC=0·621 ± ·0054,
which is comparable to the previous study [277]. The difference in performance could be due
to different utilization of SNPs, samples, and methods to generate the PRS. Finally, by adding
the family history of PD an AUC climbs to 0·709 ± ·0047. That is more than 10% performance
improvement compared to the state-of-the-art by applying only 3 non-clinical variables.

The study [277] also presented an UPSIT-score-only model with a very high performance
(AUC = 0·901 ± ·027 (95% CI)). By adding the demographic features and PRS they attained an
AUC = 0·923 ± ·23 (95% CI). Even though, it is a significant increase as shown in the study based
on DeLong’s test for correlated ROC curves (|z| = 3.027, p-value = 0.002), in relative terms the
PRS could increase the AUC only marginally and thus, the prediction is almost fully dominated
by the UPSIT score. We wanted to avoid that and perform a more challenging prediction without
including any clinical scores as discussed on the top of this section.

Besides the logistic regression we trained also another machine learning classifier, a random
forest. As presented in Figure 5.5, the logistic regression performs better than the random forest.
This is due to the fact that our classifiers were fed with a very few variables (1-3), which makes
the task too simple for the random forest. As opposed to the logistic regression, which has almost
identical performance on the training and test sets, the random forest overfits the training data
(AUC=0.739). This would even worsen for random forests with larger depths (hence the shallow
setting). In future work, instead of being minimalistic we will utilize dozens or hundreds of
partial or intermediate genetic variables, which are expected to favor the random forest.
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Figure 5.5: The AUC values of various models at 95%CI. Two predictors namely logistic regression and ran-
dom forest were applied. PRS = PRS only model, Singleton = A model based on singleton LoF score only,
PRS+Singleton = A model based on singleton LoF score and PRS and Integrated = Model comprising of single-
ton LoF score, PRS and PD family history.

5.5 Discussion and Conclusion
Even 200 years after the first description of PD by James Parkinson, its diagnosis is still

a challenge and no curative treatment available. By studying the WES data of 367 PD cases
and 159 controls we have shown a polygenic burden increases risk for PD. This burden mainly
consists of multiple singleton LoF variants distributed across the exome.

Identification of individual genes that show a genome-wide significance is often difficult pri-
marily due to the small sample sizes and multiple testing correction. However, our results
indicate the additive contribution of singleton LoF variants of an individual to the aetiology of
PD. This finding cannot be attributed to a bias as we have corrected for various confounding
variants by applying the generalized linear models and additionally by performing sample label
permutations. Moreover, to further strengthen our findings, we see a significant burden of sin-
gleton LoF variants but not in functionally neutral singleton synonymous variants in PD. Based
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on the evidence from the current study, we speculate that the genetic risk of PD is not confined
to a group of genes but instead, is distributed across the exome. Hence, in summary our results
support the polygenic inheritance and complex genetic architecture of PD.

In the second logical part of our paper, we trained two classifiers, binomial logistic regression
and random forest, on three features: singleton LoF variants, common variants, and family
history of PD. Our logistic regression model with an AUC of 0·709 ± ·0047 (95% CI) outperforms
the state-of-the-art classification model for PPMI data set for non-clinical features. Also, we
have shown that the predictive models built on the features based on rare and common variants
perform better compared to the models built on common variants alone. In PD research, a
general consensus is that, in very broad terms, PD is triggered by a combination of genetic and
environmental factors. Nevertheless, because acquiring clinical scores is expensive and laborious,
by limiting ourselves to genetics we make potential diagnostic applications of our models more
practical and scalable, acknowledging the evident deficiency of the information provided.

Despite the fact that there is a exome-wide significance of singleton LoF variants, our study
should be considered preliminary and needs replication in larger PD cohorts. Identification of
variants associated to PD along with the integration of PD specific pathway information that is
represented in resources such as PD map [283, 299] could lead to a genetic diagnosis of PD and
there is an imperative need to decipher such variants to understand the PD aetiology.

The major limitation of the current study is the small sample size. When studying rare
and singleton variants, larger samples sizes are needed to adequately pinpoint certain genes or
variants that are associated with the disorder. Another limitation of our study and of WES
studies in general is that we could only perform burden analyses of coding variants. However,
there might be additional factors such as variants in the non-coding regions which could also
contribute to the progression of PD. Clearly, this could be only tested when WGS data is made
available. We expect that with an increasing number of samples more accurate predictive models
can be constructed and contribution of rare variants in generating these models will improve
significantly. In the future more refined strategies to include rare variants in the construction of
PRS is warranted. It is our hope that we can extend this work and refine our strategy in order
to build an accurate diagnostic model that can be employed in the clinical setting. The PRS
could be also applied to stratify the patients for a personalized medical treatment.
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CHAPTER 6

BURDEN ANALYSIS OF U1 SPLICE VARIANTS

6.1 Abstract
Parkinson’s disease (PD) is a heterogeneous neurodegenerative disorder with monogenic forms

representing prototypes of the underlying molecular pathology and reproducing to variable de-
grees the sporadic forms of the disease. There have been several reports of variants causing an
abnormal splicing in PD especially the U1 splice variants. However, a large-scale study mea-
suring the effect of U1 splice variants in PD is still missing. In our study, we performed an
exome-wide burden analysis of less common U1 splice variants predicted to be deleterious in the
PPMI cohort comprising of 372 cases and 161 controls. Our analysis of exomes revealed that
U1 splice-site mutations were enriched in sporadic PD patients compared to the healthy controls
and majority of the signal is coming from the genes that are expressed in brain. The observed
finding was replicated in a larger independent cohort.

6.2 Introduction
Parkinson’s disease (PD) is increasingly recognized as a heterogeneous disorder, as reflected

by its substantial phenotypic, neuropathological, and genotypic variability [300]. Therefore,
previous models that considered PD as a single disease entity, although successful for devel-
oping symptomatic therapies that compensate for the dopaminergic deficit responsible for the
motor symptoms of PD, fall short in terms of developing neuroprotective treatment strategies
[301]. Focusing on pathomechanisms and understanding the underlying molecular pathology
of neurodegeneration is essential, and genetic stratification of patients into subgroups provides
an important entry point for precision medicine [302]. During the last 20 years, a substantial
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number of genes related to PD were identified, including mutations in genes responsible for rare
monogenic forms of PD. These monogenic forms of PD have become a valuable resource for PD
research, as patient-based cell models display disease-specific cellular phenotypes that recapit-
ulate the phenotypes found in post-mortem brain tissue [303]. According to this concept, the
validation of clinicogenetic subtypes of PD may be achieved based on rare but strong molecular
signatures and subsequently applied to the different pathophysiological tiers within each disease
subtype [304].

Mutations disrupting splicing in monogenic PD have recently come into focus, and variants
predicted in silico to cause aberrant splicing have been described for PINK1, GBA, PARK7, and
PARK2 [121, 305–307]. We show for the first time for the common sporadic form of PD that yet
unrecognized mutations in U1 splicing sites are overrepresented in exomes from patients com-
pared to controls. Our findings are in line with large-scale characterization of disease-associated
mutations that found splicing mutations largely underestimated and open the door for the mech-
anisms involving splicing aberrations in PD [308].

6.3 Patients and Methods

6.3.1 Discovery cohort (PPMI)

The Parkinson’s Progression Markers Initiative (PPMI) study is an effort to identify the
biomarkers of PD progression [286]. We used the whole exome sequencing (WES) data available
as part of this project. Detailed information about this initiative and the data can be found on
the project website (http://www.ppmi-info.org/). Briefly, the variants were called following
GATK [23] best practices by the authors of the original study. The data was obtained in the
form of a Variant Call Format file (VCF).

6.3.2 Sample QC

Samples with >3 standard deviation (SD) from the QC metrics (number of alternate alleles,
number of heterozygotes, Ti/Tv ratio, number of singletons and call rate) that were calculated by
using PLINK/SEQ i-stats (https://atgu.mgh.harvard.edu/plinkseq/) were excluded from
the analysis. For population stratification we selected the variants that were common between
our dataset and hapmap version 3.30 [37], present in autosomal chromosomes, not in linkage
equilibrium, call rate > 80%, allele frequency >5% and Hardy-Weinberg equilibrium P-value <
0.001 and used PLINK [39] multi-dimensional scaling (MDS) as described in the study [284] to
identify outliers. Each sample that was >3 SD of the first and the second principal components
was considered as ethnicity outlier and excluded from further analyses. By using the same set
of variants as described above, relatedness check was performed up to second degree applying
PLINK [39] and KING [40] algorithms. From the identified related sample pairs one sample was
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chosen randomly to be included in the final analyses.

6.3.3 Variant QC

Multi-allellic variants were decomposed by using variant-tests [45] and left normalized by
bcftools [27]. The authors of the PPMI study used the variant quality score recalibration (VQSR)
method as recommended by GATK best practices [23] to filter out low quality variants. Addi-
tionally, we used GATK hard filtering to select only high quality SNVs. Variant genotypes with
a read depth (DP) <10 and genotype quality (GQ) < 20 [133] were converted to missing by
using bcftools [27] and only variants with a call rate of >0.9 were kept for further analyses.

6.3.4 Variant annotation and filtering

As the current study is focused on U1 splice site variants we restricted our further analyses
to the 5’ consensus splice site positions, i.e., +3 to -6 from the exon/intron boundary. The exon-
intron intervals were obtained from the UCSC table browser based on hg19 reference genome.
Variants were annotated by using ANNOVAR [47] version 2016December05 using RefSeq gene
annotations and the dbNSFP v3.0 [51] prediction scores. Only rare variant [309], as defined by
variants with a minor allele frequency of < 5% in the European population of 1000 genomes
[309], ExAC (NFE (non-finnish Europeans), release 0.3) [43], and the Exome variant server
(http://evs.gs.washington.edu/EVS) were selected. In order to prioritize the 5’ splice variants
based on their deleteriousness, we used three different scores. The first score is generated by using
the MaxEntScan method [310] which is based on the maximum entropy principle. The other two
scores were ensemble scores (dbscSNV_ADA and dbscSNV_RF) generated from multiple splice
site prediction tools [311] which are available as part of dbNSFP database [51].

6.3.5 Generation of MaxEntScan score

To prioritize variants using MaxEntScan method, for each SNV that lies in the consensus
splice site region a wild type 9 mer (WT) was extracted from the reference genome (hg19).
Then, the variant was introduced within the WT sequence by using the python module pyfaidx
[312], hence creating a mutated consensus splice site (MUT) sequence for each variant. In the
next steps, the scores were calculated for both WT and MUT sequences by using the scripts
provided in the MaxEntScan website (http://genes.mit.edu/burgelab/maxent/Xmaxentscan_
scoreseq.html). The relative percentage change (maxentscan_change) was calculated by using:

maxentscan_change = (wild_score−mut_score
wild_score ) *100

6.3.6 Benchmarking of MaxEntScan score

We were interested in the highly deleterious splice variants and, in line with our hypothesis,
one recent study has shown that, 21 variants out 30 variants tested within BRCA1 genes were
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predicted by MaxEntScan method and were later confirmed by the functional validation. Out
of the 21 variants that were predicted to be deleterious 18 of them had a wild_score>5 and a
maxentscan_change>70. In order to benchmark our methods and determine reliable cut-offs,
we used two datasets: 1) The professional version of Human Gene Mutation Database (HGMD)
[44] version February 2017, and 2) gnomAD [43], which comprises of variant data from 123,136
exome sequences and 15,496 whole-genome sequences from individuals which were sequenced as
part of various disease-specific and population genetic studies.

We only selected the variants annotated as high confidence and pathogenic (“DM” flag) in
HGMD (HGMDpatho) variants. VCF files were generated for HGMD and gnomAD datasets
for only those variants that were present within the U1 consensus splice regions annotated in
a similar way as we did for the discovery cohort. Density plots based on various scores were
generated for HGMDpatho variants and gnomAD splice variants (see Figure 6.1).

6.3.7 Splice site burden tests

The wild_score generated from the wild type 9mer by MaxEntScan is used to identify a
true splice site. The higher the wild_score the higher the probability of being a true splice site
[311]. We separated the variants into different classes: 1) All the deleterious splicing variants
(DEL.splicing), 2) DEL.splicing variants in coding regions (DEL.exonic.splicing), 3) DEL.splicing
variants within intronic regions (DEL.intronic.splicing), 4) DEL.exonic.splicing variants present
in the genes that are expressed in brain (DEL.exonic.brain.splicing) [236], 5) DEL.exonic.splicing
variants present in the genes that are not expressed in brain (DEL.exonic.nonbrain.splicing), and
6) rare synonymous variants as a negative class. We used a previously published list of brain
expressed genes [236] to test if there is an increased burden in brain expressed genes (n= 14,177)
compared to the non-brain expressed genes (n=6,428). Our hypothesis was that cases carry a
higher number of DEL.splicing variants compared to the controls. For each variant class a VCF
file was generated and the variant counts per sample was calculated by using bcftools [27] stats
command.

We performed burden testing by constructing the generalized linear regression models using
R version 3.4.1 while correcting for various confounding factors for each sample such as: 1) Sex 2)
total number of variants remaining after final QC, 3) TiTv ratio of novel variants relative to the
dbSNP version 138 [52], 4) TiTv ratio of variants present in dbSNP version 138, 5) heterozygous
variants to homozygous variants ratio, 6) first ten principal components derived from the multi-
dimensional scaling.

6.3.8 Replication cohort (PDGSC)

We used the WES data available as part of the ongoing Parkinson’s Disease Genome Se-
quencing Consortium (PDGSC) project. The PDGSC dataset is an effort to integrate PD WES
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data generated from multiple studies across different sequencing centres. The variant calling was
performed by the consortium using GATK best practices version 3.4. Similar to the discovery
cohort, we obtained the data in the form of VCF file. Since the PPMI samples are also part
of the PDGSC cohort, all samples overlapping between PPMI and PDGSC were excluded in
beforehand from the PDGSC dataset. PPMI samples within PDGSC were identified based on
their sample ids as well as using relatedness test (see above).

6.3.9 Sample QC

Sample QC was performed by the PDGSC consortium. Briefly, samples were excluded based
on the following parameters: 1) <15x mean coverage 2) discordance between genetic and reported
sex, 3) <85% call rate, 4) outliers for various parameters such as variant counts (all, non-reference
genotypes, hets, singletons, mean minor allele rates), TiTv ratio, mean quality scores for non-
reference variants and mean depth for non-reference variants, 5) heterozygosity outliers (-0.1<
F<0.1) , 6) ancestry outliers >6 SD from means of CEU and TSI for PC1 and PC2 , 7) extract
probands randomly from pairs related at >12.5% and 8) exclude samples<18 years of age or
with missing age data.

6.3.10 Variant QC

Similar to the discovery cohort a VQSR filtering method was employed by the authors of
original study. In addition, we used the same filtering procedure as described above for the
discovery cohort with one difference in the threshold for call rate. As the data was generated at
multiple centres by employing different sequencing protocols we might lose true positive variants
if we would filter too stringently leading to loss of statistical power ultimately. Hence, we used
a less stringent, although a standard threshold [64] of call rate >0.8 for a variant to be included
in the analysis.

6.3.11 Variant detection and annotation

Variants were annotated and splice variants were scored using the same procedure as for the
discovery cohort.

6.3.12 Burden testing

We employed the same procedure for burden testing by adjusting for all the covariates that
were described above for discovery cohort. In order to further adjust for study wide differences, we
used the total number of sites that were fully called within each sample as an additional covariate
along with the other covariates. This approach allowed us to account for any exome-wide biases
arising due to different sequencing protocols that were employed at different sequencing centres
and other confounding factors arising from technical differences. The same can also be noted from
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the fact that there is no statistically significant difference between the number of synonymous
variants (neutral variants) between cases and controls (Fig 6).

6.3.13 Multiple testing adjustment

The P-values from burden analysis of both discovery and replication cohorts were corrected
for multiple testing by the function “p.adjust” (R version 3.4.1) using the false discovery rate
(FDR) method for discovery and replication cohort separately.

6.4 Results

6.4.1 Benchmarking

In the current study, we were interested in variants having a high likelihood causing splice
changes. Hence, in Figure 6.1 (A) and (B) based on HGMDpatho variants, it could be seen
that there is a clear separation in the distribution of majority of variants at a wild_score of 5
(red-dashed line) and at a maxentscan_change of 70% (blue-dashed line). Whereas, a reversed
distribution could be seen for the gnomAD variants Figure 6.1 (C) and (D). HGMDpatho variants
(Figure 6.1 (A) and (B) showed dbscnv_RF and dbscnv_ADA scores of >0.9 GnomAD variants
in Figure 6.1 (C) and (D) showed scores on the opposite part of the distribution. Based on the
above inferences and the results based on previous study [313], we choose the following cut-offs
for further processing: Deleterious splice site variants (DEL.splicing) were defined as SNVs with
the following criteria: wild_score>5 and maxentscan_change>70 and dbscSNV_ADA score>0.9
and dbscSNV_RF score>0.9. If the ensemble scores were not available for any particular variant
only MaxEntScan method (wild_score>5 and maxentscan_change>70) was used.
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Figure 6.1: Determination of cut-offs for wild_score and maxentscan_change. Dashed lines in each plot indi-
cate the cut-offs that were used to define a variant as deleterious (DEL.splicing). (a) Distribution of wild_score
and mutated_score of HGMDpatho variants, (b) distribution of maxentscan_change of HGMDpatho variants,
(c) distribution of wild_score, and mutated_score of gnomAD variants, (d) distribution of maxentscan_change
of gnomAD variants, (e) distribution of dbscnv_RF score of HGMDpatho variants, and (f) distribution of db-
scnv_ADA score of HGMDpatho variants. mutated_score = maxentscan score of mutated 9mers and wild_score
= maxentscan score of all wild type 9mers
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6.4.2 Burden analysis

6.4.3 Discovery cohort (PPMI)

After filtering based on ethnicity, cryptic relatedness, quality parameters and without miss-
ing information for sex, the final dataset comprised of 372 PD and 161 control samples. A total
of 128 DEL.splicing variants (Supplemental Table 2) were included in the final analysis. We
observed a genome-wide burden in cases compared to the controls Figure 6.2 (P-value=0.012,
OR=1.39, CI=1.08 - 1.82, P-value FDR corrected=0.074). The signal is coming mainly from
the DEL.exonic.splicing variants (P-value=0.028, OR =1.37, CI=1.04-1.84, P-value FDR cor-
rected=0.08) rather than from the DEL.intronic.splicing variants (P-value=0.25, OR=1.50,
CI=0.76- 3.21, P-value FDR corrected=0.25). For the DEL.exonic.splicing variants, the major-
ity of the burden is caused by the DEL.exonic.brain.splicing variants (P-value=0.06, OR=1.47,
CI=0.99-2.24, P-value FDR corrected=0.12), compared to the DEL.exonic.nonbrain.splicing vari-
ants (P-value=0.24, OR=1.24, CI=0.86-1.85, P-value FDR corrected=0.25).

6.4.4 Replication cohort (PDGSC)

The final dataset comprised of 2,710 cases and 5,713 controls. A total of 2,328 DEL.splicing
variants were included in the final analysis. Similar to the discovery cohort we observed
an overall burden of DEL.splicing variants in cases compared to the controls (P-value=0.007,
OR=1.04, CI=1.01-1.08, P-value FDR corrected=0.014) here even after multiple testing cor-
rection. The majority of burden after FDR correction is due to the DEL.exonic.splicing
variants (P-value=0.003, OR=1.11, CI=1.03-1.19, P-value FDR corrected=0.011) rather than
the DEL.intronic.splicing variants (P-value=0.09, OR=1.03, CI=0.99-1.08, P-value FDR cor-
rected=0.138). In the DEL.exonic.splicing variants, the burden after FDR correction is com-
ing from the DEL.exonic.brain.splicing variants (P-value=5.774e-05, OR=1.20, CI=1.10-1.32,
P-value FDR corrected=0.0003) compared to the DEL.exonic.nonbrain.splicing variants (P-
value=0.69, OR=0.97, CI=0.86-1.09, P-value FDR corrected=0.69).
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Figure 6.2: A forest plot representing the burden analysis across different variant classes. Each dot represents
the odds ratio, the value on top of each dot represents the corresponding uncorrected P-value. Values in red
indicate FDR corrected P-values<0.05. (left) Results of the PPMI discovery cohort analysis, the upper limit
of confidence interval in the plot is restricted to the maximum of odds ratios, (right) results for the PDGSC
replication cohort. SYN = rare and low frequency synonymous variants, DEL.splicing = deleterious splicing
variants, DEL.intronic.splicing = deleterious variants in intronic regions, DEL.exonic.splicing = deleterious variants
in coding regions, DEL.exonic.brain.splicing = DEL.exonic.splicing variants present in genes expressed in the brain,
DEL.exonic.nonbrain.splicing = DEL.exonic.splicing variants present in genes that are not expressed in the brain.

6.5 Discussion
Herein, we describe a novel mechanistic concept for the pathogenesis of PD related to U1

splice-site mutations. Our findings indicate that the pathogenic relevance of exonic splicing
mutations was underestimated in PD. These results are in line with a recent study showing that
approximately 10% of pathogenic missense variants predicted to alter protein coding essentially
disrupt splicing [308]. Although defective pre-mRNA processing is known to represent a common
cause of human diseases, with approximately 15% of all mutations causing aberrant splicing [314],
for PD pathogenesis, the dysregulation of splicing as an alternative mechanism contributing to
the neurodegenerative process was not systematically addressed [315]. Our analysis of exonic
mutations affecting U1-mediated splicing using a large dataset for sporadic PD, including WES
results from the PPMI study and from the PDGSC cohort consistently revealed a higher burden
of rare and low frequency exonic variants affecting U1 snRNA binding sites among sporadic PD
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patients [286]. Together, these data indicate an enrichment of disease-associated variants in the
exon-intron boundary of brain expressed genes in PD and underscore the therapeutic potential
of compounds acting on pathological splicing also in sporadic PD cases.

Our study illustrates the promise for treatment approaches in precision medicine in PD
that focus on genetic and molecular stratification. To account for the increasingly recognized
heterogeneity in PD and other neurodegenerative disorders, new strategies need to be developed
for the stratification of patients along shared pathogenic mechanisms. By employing a text
mining approach one can identify the candidate drugs based on the abnormal splicing which may
translate into basket studies referring to patients sharing the same underlying mechanism, as
already shown for precision medicine approaches in cancer, and will allow for clinical trials in
patients across groups that share certain molecular signatures [316].
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CHAPTER 7

FAMILIAL-PD

7.1 Abstract
Until today, several variants associated to PD were discovered via large-scale GWAS. Fa-

milial studies conducted via NGS approaches provide an advantage to identify the true cause
of the disease and hence are more powerful. However, a comprehensive study of rare variants
to understand the etiology of PD by large-scale genome sequencing was still missing. Hence,
we conducted a Whole genome sequencing (WGS) based study of familial-PD by analyzing two
independent familial-PD cohorts and a replication case control cohort. By employing WGS and
prioritizing variants based on various functional annotations, we identified several likely candi-
date variants that are rare, predicted to be deleterious and co-segregating with PD. Some, of
them were found in the genes already associated to PD, but majority of them are novel with
regards to their association to PD. Hence, the list of variants generated in this study could serve
as reference to perform functional validations in the future.

7.2 Introduction
Parkinson’s disease (PD) is one of the common neurological disorders in the elderly patients.

In majority of the individuals it is late onset (>58), however there are also some early onset forms
of PD. Till date >70 loci have been shown to be associated to PD [109] via large-scale meta-
analysis and family based studies but the genetic architecture of PD still remains complicated.
Genome-wide association studies (GWAS) have been successful in deciphering novel regions
which increase the genetic risk of PD. The main drawback of GWAS is that, identification of
causal variants is highly unlikely and often, it is necessary to have large cohorts of individuals
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to increase the statistical power to discover rare variants associated to the disease. In contrast,
whole genome sequencing (WGS) or whole exome sequencing (WES) provides an opportunity to
locate rare variants in genes with medium to large effects, especially by sequencing the individuals
in a family and thereby reducing the number of samples that need to be sequenced. Upto 20% of
PD cases are believed to have a familial origin and the genes identified via classic linkage analysis
in families include PINK1, PARK2, PARK7, LRRK2, and SNCA [104, 122, 123, 244, 317, 318].
WGS/WES studies have been highly successful in identifying several novel variants in PD. One
such example is VPS35 [319] in which two novel variants p.Asp620Asn and p.Pro316Ser were
found via WES. A recent study [320] has identified likely deleterious variants in two genes
TNK2 and TNR that are segregating with PD and present in multiple families. Similarly, a
WES based study has identified rare variants in PLXNA4 [321] in PD although their role in PD
remain inconclusive. Hence, family studies are of paramount importance in identifying the causal
variants of PD. Further, studying the families could provide a chance to unravel the complexity
of the disease by showing how multiple variants may act together to influence the disease risk.
For example, in a recent study [111], the rs2421947 variant in DNM3 was found to reduce the
age at onset (aao) of PD by ~12.5 years in the carriers of LRRK2 p.G2019S variant.

In the current study, we analyzed the WGS data available from two familial-PD studies
without any known genetic cause in the families. The first is a two-stage study in which the
discovery cohort comprised of 16 families consisting a minimum of two affected siblings with PD
and the replication study was conducted with the WES data from 369 PD cases and 159 ethnically
matched controls provided by the PPMI consortium [286]. In our second familial-PD study, WGS
of 90 samples from 36 families with both autosomal dominant and recessive inheritance patterns
was performed. We prioritized the variants by a combination of mode of inheritance analysis,
burden analysis, machine learning and pathway enrichment based approaches and identified
potential candidate genes.

7.3 Identification of novel genes involved in nervous system de-
velopment by whole genome sequencing in PD

7.3.1 Patients and methods

Data generation

Discovery cohort: The discovery cohort comprised of 44 samples of which 16 samples were
female and 28 were male. The mean aao was 57.67 years and all the families were of German
origin. WGS of affected samples was performed by the Complete Genomics, Inc (CGI). Whereas,
the control samples were sequenced by the illumina Hiseq. The complete genomics data was
processed as described in the study [322]. In brief, WGS was performed by Complete Genomics
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using a proprietary paired-end, nanoarray-based sequencing-by-ligation technology [323, 324].
The pedigrees of families selected for the WGS are given in the Figure 7.0

Replication cohort: The replication cohort comprised of WES data of 369 cases and
159 controls generated as part of PPMI [286] consortium. WES was performed on whole-blood
extracted DNA samples that were collected according to the PPMI Research Biomarkers
Laboratory Manual. Illumina Nextera Rapid Capture Expanded Exome Kit which targets
201,121 Exons, UTRs and miRNA and covers 95.3% of Refseq exome was used to perform the
WES. >340,000 probes were constructed against the human NCBI37/hg19 reference genome
with a targeted genomic footprint of 62Mb. Exome- enriched libraries (multiplexed sets of 12
samples) were sequenced on the Illumina HiSeq 2500 sequencing platform using 2 x 100 bp
paired-end read cycles.

Variant detection and quality control (QC)

Discovery cohort: After QC, DNA samples were sent to Complete Genomics for sequencing.
Next steps of QC, mapping and variant calling for the sequencing data were performed by
Complete Genomics as part of their sequencing service using the Standard Sequencing Service
pipeline version 2.0 (http://www.completegenomics.com/documents/Standard_Sequencing_
Service_Getting_Started_Guide_2.4-2.5.pdf). Sequencing reads were mapped against
NCBI Build 37. For the samples sequenced by illumina, genomic variant call format (gVCF,
https://support.illumina.com/help/BaseSpace_App_WGS_BWA_help/Content/Vault/
Informatics/Sequencing_Analysis/BS/swSEQ_mBS_gVCF.html) files for each sample were
provided by the vendor. In addition to the family controls, we selected an additional 17 controls
from the study [325]. These controls are super centenarians and these are the individuals who
survived beyond 110 years without any known neurological disease. As these samples were
healthy with an age beyond 100 years, we assumed that if a variant is present in these samples
it is not likely to be disease causing. Hence, we excluded all the variants that were concordant
between our study and super centenarians. Furthermore, we excluded the variants present in
the low confidence regions of the human genome such as repeat regions etc., according to the
study [65].

Replication cohort: Variant calling was performed by the PPMI consortium and pro-
vided a variant call format file (VCF) [33]. In brief, the multi-sample VCF was generated by
following the GATK best practices [23] which applies the standard bwa-picard-GATK haplotype
caller pipeline. In order to select only the high quality, unrelated and the samples whose
calculated gender was matched to the reported sex we employed the QC procedure as employed
in [65]. Population stratification analysis to select only the European samples was performed via
eigenstrat [42]. In order to determine the ethnicity outliers from the eigenstrat analysis, a sigma
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value of 3 was applied as a cut-off (which excludes all the samples with a SD of >3 based on the
first 10 principal components). Additionally, we excluded the samples >3SD based on the first
and second principal components from the eigenstrat analysis. The downloaded PPMI vcf file
had already been filtered for high quality variants by the authors of original study according to
the variant quality score recalibration (VQSR) approach as part of GATK best practices. In
order to be more stringent, we applied additional filters as described in the study [65]. Finally,
only variants with a call rate of > 0.9 were kept for further analyses.

Mode of inheritance (MOI) analysis and detection of shared genomic regions

As an intitial step in the discovery cohort, we first combined all the variants from all affected
samples into the union of variants for each set using the CGAtools listvariant command and
CG var-files as input. CGAtools (CG Analysis Tools) version 1.5 was used as provided by CG
and available under (http://cgatools.sourceforge.net). We used the CGAtools testvariant
command to test each genome for the presence of each variant. Only variants that were called in
all genomes within one family were selected for further analysis. We first removed variants that
were not called in at least one genome as high-quality calls (VQHIGH) by CG.

The WGS data of parents was not available in any pedigree, hence we defined the segregating
variants as those that were present in all the PD samples per family and not present in any of
the control samples in the cohort. Due to the fact that, the control samples in our study were
sequenced using a different technology (Illumina), for every variant found to be present in all the
cases per family, we checked for its presence in the control samples and excluded it if present in
any of the sample. Additionally, any variant present in the super centenarians was also excluded
from further analysis. In our study, variants that were shared between two individuals within
the same pedigree should be located within a region that shares one or two identical haplotypes
between the two genomes and is inherited from the same ancestor, a concept, which is also
called identity by descent (IBD). ISCA version 0.1.9 [323, 326, 327] was employed to search for
identical haplotype blocks between all pairs of genomes within each of two sets. Afterwards we
built the intersection of all regions between all of pairs of genomes to determine the regions that
were shared by all genomes from one set. For each set, we filtered out all variants following
autosomal dominant inheritance outside the shared regions and excluded the variants outside
the IBD intervals thereby reducing our variants of interest.

Annotation

The remaining high quality segregating variants in the discovery and all the high quality
variants of the replication cohort were functionally annotated by ANNOVAR [47] version 2016
June17 with RefSeq and Ensembl gene annotations. The dbNSFP v3.0 [51] prediction and
conservation scores as well as genome-wide CADD [58] scores were also applied. Exonic and
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splice site variants were selected according to RefSeq and Ensembl annotations. Rare variants
were defined as variants with minor allele frequency (MAF) < 0.01 and < 0.05 for autosomal
dominant and autosomal recessive hypothesis respectively. In order to determine the MAF,
European population of public databases such as 1000 genomes [34], ExAC (release 0.3) [43],
and the Exome variant server (http://evs.gs.washington.edu/EVS) were used. From the rare
exonic and splicing variants variants, we selected the variants for downstream analysis based on
the following criteria: 1) Loss of function (LoF) variants were defined as stop gain, stop loss,
splice site variants and all insertions/deletions or 2) Nonsynonymous variants with a CADD
phred score >15 according to the study [65].

Phenolyzer

The variants prioritized using above approaches were collapsed into genes and for each family
the list of candidate genes was generated. The generated list of genes per family was given as an
input to Phenolyzer [328] for ranking them based on their relevance to PD. Phenolyzer works in
three steps, first it converts the phenotype of interest which is “parkinson disease” in our case
into a group of professional disease names based on the Human Phenotype Ontology (HPO), a
resource developed to define a standard ontology for human phenotypes [329]. Second, the entire
list of genes having an association to all the diseases will be generated; Third, it finds more genes
by generating a database of gene-gene relation and as a last step it provides a score for each gene
by integrating all the information together. The score provided by Phenolyzer can be used to
rank the given list of genes. From the phenolyzer output, we selected the top 5 genes per family
for downstream analysis.

Statistical analysis of replication data-set

In the PPMI data-set, in order to identify the genes carrying higher number of deleterious
variants in cases versus the controls we collapsed all the selected variants as described in the
Section 7.3.1 into genes. Then, for each gene we calculated the odds ratios (OR) based on the
samples carrying atleast one variant in that gene. The analysis was performed using R version
3.4. An OR >1 for a gene means more number of cases carry a variant in that gene compared
to the controls. Hence, we only selected those genes with an OR > 1 for further analysis.

Ingenuity Pathway Analyser

An intersection of genes prioritized in the discovery cohort using Phenolyzer and the genes
with an OR > 1 in the replication data-set were selected for the Ingenuity Pathway and network
analysis (IPA®) [237]. IPA is a commercial tool comprising of manually curated interactions and
hence is more reliable. The IPA relies on their proprietary database called Ingenuity Knowledge
Base which is an exhaustively curated resource composing of high quality knowledge on functional
annotations and biological interactions.
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7.3.2 Results

Data generation

Discovery cohort: The pedigrees of the families sequenced in this study are shown in Figure
7.0. We identified a total of 19,165,307 variants that were present in all the affected samples
per family. When we excluded all the variants present in the super centenarians, we reduced
the list to 6,003,751 variants. Finally, by excluding the variants present in any of the control
samples and not present in the regions of low confidence in the human genome we were left with
a total of 6,21,221 variants.

Replication cohort: The final data-set after sample QC comprised of 369 PD cases
and 159 controls. They are both ethnically and sex matched. After the variant QC, 73,904
variants have remained in the analysis, of which 68,036 were SNVs and 5,868 were indels.

Segregating variants

After the functional annotation, we conducted the analysis per family. In total, 9 families
followed autosomal dominant (AD), one family followed autosomal recessive and 6 families fol-
lowed either AR/AD hypothesis. After the QC and functional annotation an average of 57 SNVs
per family and 9 indels per family were collapsed to the genes and included in the phenolyzer
analysis. The number of SNVs and indels that were functionally prioritized and co-segregating
with PD were different between each family as shown in the Table 7.1. Based on the output
from Phenolyzer, top 5 genes per family were selected for the subsequent analysis in the replica-
tion data-set. Some of the families did not have five segregating genes. In total, 76 genes were
assessed for their ORs in the PPMI data-set. Out of the 76 genes, 71 genes carried at least one
variant fulfilling our criteria (rare, nonsynoymous variants with a CADD phred > 15 or LoF) in
the replication PPMI data-set. In the PPMI data-set 33 unique genes had an OR > 1 as shown
in the Table 7.2 and were selected for Ingenuity pathway analysis.

Enrichment analysis

33 genes were selected after restricting the analysis to rare deleterious variants and priori-
tization using Phenolyzer. Enrichment analysis of the 33 genes using IPA revealed interesting
pathways and functions such as “Carbohydrate metabolism”, “Nervous System Development and
Function” and “Tissue morphology”. Further, we identified that the top enriched network has
a function related to the nervous system development as shown in Figure 7.1 and in total 14 of
the 33 genes as seen in the Table 7.3 were present in the network from the input genes.
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Variants in novel genes

By employing a two-stage approach, we identified several novel candidate gene/variants which
are co-segregating with PD, highly conserved, predicted to be damaging and occurring at very
low allele frequencies. Due to the different effect sizes of the variants, we might not be able to
replicate the association of all segregating genes from our discovery cohort. The main reason
is that our discovery cohort comprised of families with PD, whereas in the replication cohort,
majority of the patients do not have a family history of PD. Hence, in addition to including
genes with an OR > 1 and prioritized based on IPA, we also included the variants present in
the genes that were selected to be involved in various neurological disorders based on literature
search. The main rationale behind this approach is to not miss any potential PD associated
variant. The entire list of variants selected by both the approaches is given in the Table 7.3.

It could be seen that NOS1 and IRS1 were present in the both the categories of prioritized
genes Tbale 7.3. Further, some of the families have more than one proposed candidate genes
showing the complexity of PD and highlighting the difficulty in identifying the causal variants
in small families. Few genes were prioritized in more than one family. However, no variant was
identified in more than one family indicating the heterogeneity of PD.

Majority of the prioritized genes were found to be mutated in a single family, suggesting a low
incidence of novel mutations in PD Table 7.3. USP25 is one of the genes carrying variants in two
families, it is present in our PD candidate gene list but not prioritized by IPA. It carries a p.P784L
mutation in Family FN9984 and p.V846I mutation in Family pd_M009_M023. USP25 has been
previously identified to be in a suggestive locus in a GWAS comprising of 3,426 cases and 29,624
controls [330]. However, it failed to reach a genome wide significance in the replication study.
Similarly, another gene ITSN2 carries two variants p.I995T and p.A1515V in two different families
FN17908 and M013 respectively. ITSN2 has been shown to be associated to Schizophrenia
according to Disgenet database [238]. However, in the family FN17908 there is another variant
p.T335I prioritized by IPA and the gene harboring that variant is SLC2A1. GRIN2A has been
associated to various forms of epilepsy[65, 147, 148] and in the current study we found a variant
p.N1076K in GRIN2A of family FN10364. The same variant has been found in another familial-
PD study [320], however the variant could not make it to their final list of candidate variants.
Even in our study GRIN2A did not have an OR > 1 in the PPMI data-set, but it could also
be due to the fact that the penetrance of this variant is low and sample size of our replication
dataset is small. Hence, larger sample sizes are needed to replicate such associations.
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Figure 7.0: Pedigrees analyzed in the study.
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Variant prioritization

Family_name MOI AD_SNVs AR_SNVs AD_indels AR_indels
DE02 AD 40 2 8 0
DE03 AD 38 1 6 0
DE07 AD 123 3 23 0
DE10 AD 137 4 14 0
DE33 AD 4 0 0 0
DE43 AR 40 1 11 1
FN10364 AD 59 2 14 0
FN13966 AD 96 1 14 0
FN17908 AR/AD 50 1 8 6
FN9984 AD 105 5 8 0
M009_M023 AR/AD 43 1 9 0
M013 AR/AD 60 1 10 0
M014_M015 AR/AD 17 0 7 0
M040 AD 53 1 7 0
F16 AR/AD 29 3 5 0
T10381 AR/AD 1 0 0 0

Table 7.1: Possible MOI per family and the number of different kinds of prioritized variants segregating per
family. AD = Autosomal dominant, AR = Autosomal recessive, AD/AR = Both types of inheritance is possible,
AD_SNVs = SNVs following AD inheritance, AR_SNVs = SNVs following AR inheritance, AD_indels = Indels
following AD inheritance and AR_indels = Indels following AR inheritance

Gene LowerCI UpperCI OR

AKT2 0.103 45.45 2.17
AP1G1 0.052 32.04 1.29
APC 0.521 2.74 1.19
DDIT3 0.210 73.38 3.92
EEF1D 0.380 2.67 1.00
FGF6 0.542 159.97 9.31
GORASP1 0.832 7.24 2.45
GPI 0.264 87.57 4.81
HSPA9 0.103 45.45 2.17
IRS1 0.853 4.60 1.98
ITPR3 0.578 2.76 1.26
LTA4H 0.419 9.18 1.96
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MAPKAP1 0.434 28.23 3.50
MYC 0.251 18.72 2.17
N6AMT1 0.052 32.04 1.29
NFRKB 0.451 4.38 1.40
NOS1 0.493 2.62 1.139
NOTCH1 0.573 3.27 1.37
NUP205 0.823 9.67 2.82
PSMB11 0.963 8.22 2.81
PTRH2 0.052 32.04 1.29
SEC16A 0.985 3.17 1.77
SLC2A1 0.133 12.54 1.29
SNX1 0.133 12.54 1.29
SP1 0.156 59.32 3.04
SPTAN1 0.411 2.83 1.08
SPTBN1 0.619 5.65 1.87
SPTBN2 0.545 3.14 1.31
SPTBN5 1.004 2.81 1.68
SRMS 0.744 14.57 3.29
TSC2 0.526 2.55 1.15
UBA7 0.613 4.55 1.67

USP42 0.496 31.44 3.95

Table 7.2: Genes harboring variants that were predicted to be deleterious and co-segregating with the PD. Only
genes carrying higher number of variants in cases versus controls (OR > 1) are shown here. OR = odds ratio,
LowerCI = Lower confidence interval and UpperCI = Upper confidence interval.
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Family_name Chrom Position aa.change Function Gene Category
DE02 2 54858253 p.E1010D exonic SPTBN1 IPA
DE03 1 111861782 p.D158fs exonic CHIA PD genes
DE03 17 76823418 p.H200N exonic USP36 PD genes
DE07 4 188924601 p.P214A exonic ZFP42 PD genes
DE07 11 66488550 . intronic,splicing SPTBN2 IPA
DE07 17 17700037 p.1259_1260del exonic RAI1 PD genes
DE10 5 112179359 p.A2672T exonic APC IPA
DE10 9 18776904 p.T893P exonic ADAMTSL1 PD genes
DE10 15 49031277 p.I1375fs exonic CEP152 PD genes
DE10 15 62238002 p.A1644V exonic VPS13C PD genes
DE10 19 40742161 . intronic,splicing AKT2 IPA
DE43 2 228884530 p.S347F exonic SPHKAP PD genes
DE43 8 139838989 p.A294D exonic COL22A1 PD genes
DE43 15 48726830 p.E2193K exonic FBN1 PD genes
DE43 15 89872343 . splicing,intronic POLG PD genes
FN10364 9 131380339 p.A1826V exonic SPTAN1 IPA
FN10364 12 4543445 p.R188Q exonic FGF6 IPA
FN10364 16 9858173 p.N1076K exonic GRIN2A PD genes
FN13966 8 11710985 . splicing,UTR5 CTSB PD genes
FN13966 9 121971061 p.R361G exonic BRINP1 PD genes
FN13966 12 57910666 p.E169K exonic DDIT3 IPA
FN13966 12 53777215 p.447_448del exonic SP1 IPA
FN13966 21 43274890 p.T145I exonic PRDM15 PD genes
FN17908 1 43394673 p.T335I exonic SLC2A1 IPA
FN17908 2 24475269 p.I995T exonic ITSN2 PD genes
FN9984 6 75855921 p.G322V exonic COL12A1 PD genes

130



FN9984 7 146818170 p.G285A exonic CNTNAP2 PD genes
FN9984 9 128321981 p.S68N exonic MAPKAP1 IPA
FN9984 9 35236570 p.R86H exonic UNC13B PD genes
FN9984 16 56692993 p.S35P exonic MT1F PD genes
FN9984 20 57019129 . splicing,intronic VAPB PD genes
FN9984 21 17222109 p.P784L exonic USP25 PD genes
M009_M023 2 227663330 p.A42G exonic IRS1 IPA, PD genes
M009_M023 8 119391814 p.Q150X exonic SAMD12 PD genes
M009_M023 21 17238604 p.V846I exonic USP25 PD genes
M013 2 24431159 p.A1515V exonic ITSN2 PD genes
M013 9 139405111 p.R912W exonic NOTCH1 IPA
M013 14 23511778 p.R115Q exonic PSMB11 IPA
M014_M015 17 17718592 p.R812Q exonic SREBF1 PD genes
M040 12 117710246 p.G259S exonic NOS1 IPA, PD genes
F16 17 67282371 p.Y708C exonic ABCA5 PD genes

Table 7.3: A list of genes and variants prioritized either by using the IPA or present in the candidate PD genes list. aa.change = predicted amino change
based on RefSeq by ANNOVAR, Function = function of the variant predicted by ANNOVAR based on RefSeq, Gene = HGNC symbol of the gene harboring
the variant, Category = method by which the variant was prioritized.
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Figure 7.1: Top scoring network from IPA network analysis. It is enriched with functions related to nervous
system development and function.

7.3.3 Discussion

In this study, we adopted a two-step strategy in order to identify and replicate the genes that
might harbor rare deleterious variants contributing to PD. All the 14 variants identified in this
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study via prioritization by IPA were from a different gene and present in only one family. This
distribution of variants in different genes further supports the complexity of PD where there is a
presence of variants with very small effect size and emphasizes the fact that we need much larger
sample sizes in order to detect meaningful association of variants to diseases.

However, we mitigated this lack of larger sample size by using a two-stage approach and could
show that the genes prioritized in this study were both segregating with the disease and have an
increased burden in cases compared to controls in an independent case-control study. Together,
all the 14 genes SPTBN1, SPTBN2, APC, AKT2, SPTAN1, FGF6, DDIT3, SP1 ,SLC2A1
,MAPKAP1, IRS1, NOTCH1, PSMB11 and NOS1 are involved in the “nervous system develop-
ment and function” indicating that the results are not obtained by chance. Additionally, it could
also be seen that one of the top enriched pathway is “carbohydrate metabolism”. Dysregulation
of glucose metabolism was found to be an early sign of sporadic PD [331]. A previous study [332]
has shown that there is an association between alpha-synuclein and IRS1 expression suggesting a
novel mechanism for alpha-synuclein associated pathogenesis. Variants in NOS1 has been linked
to PD [333, 334] and suggested that mutations in NOS1 could be a potential risk factor for PD
and other pyschiatric disorders [335].

Mutations in SLC2A1 have been previously associated to Glucose Transporter Type 1 Defi-
ciency Syndrome and epilepsy [336] and the symptoms of GLUT1 deficiency syndrome are similar
to PD including parkinsonism [337]. Hence it is possible that SLC2A1 is the candidate gene in
the family FN17908 rather than ITSN2. But, we need to perform functional validation in order
to solidify these results. SPTAN1 has been known to be involved in the disease pathology of early
infantile epileptic encephalopathy [249, 338, 339] and could be a potential link between PD and
epilepsy. In a recent study, it has been shown that PD gene ATP13A2 [340] regulates SYT11 via
ubiquitination of TSC2 thereby causing an impairment of autophagy-lysosomal pathway, hence
the variants in TSC2 could be of functional importance. In total, we identified likely disease
causing variants in ~87% (14/16) of the families. Our intention in this study was to provide
the list of potential candidate genes which could help accelerate the future research aiming for
genetic diagnosis of PD. Overall, we show that a two stage approach can be employed in order
to identify the plausible candidates especially in case of variants occurring at very low allele
frequencies. However, this study should be considered preliminary and further replication in
families affected with PD is warranted.
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7.4 Integrated analysis of WGS data reveals potential candidate
genes

7.4.1 Patients and methods

Data generation and processing

A total of 180 samples, were sequenced via WGS at macrogen (www.macrogen.com/eng).
Briefly, samples were prepared according to the Illumina TruSeq Nano DNA library preparation
guide and libraries were sequenced using Illumina HiSeqX sequencer (www.illumina.com). How-
ever, only the results from 36 families comprising of 90 samples were presented in this work due
to the collaborative agreement. The results from the families excluded here were already pub-
lished elsewhere [341, 342]. 50 females and 40 male samples were included in the final analysis.
The mean aao was 62.22 years. Our study comprised of ethnically different families (Italy (4),
Dutch (13), Portugal (1), Spain (6), Tunisia (3) and Turkey (9)). Out of the 36 families, 23 were
tested for AD inheritance and 13 families were tested for AR inheritance mainly.

A multi-sample variant calling approach was employed on all the samples together. The
standard BWA-mem-picard-GATK pipeline was applied according to GATK best practices [23]
for variant calling. The procedure we employed in this study is similar to the study [65]. Further,
we performed variant level QC by using GATK’s VQSR and hard filtering to select the high
quality variants as described previously in the study [65]. We annotated the variants following
the same procedures as described in the Section 7.3.1. Briefly, ANNOVAR [47] was used to
annotate the variants with their respective allele frequencies, predicted functions and deleterious
score. Furthermore, to identify functionally important non-coding variants, additional databases
were also used for annotation such as 1. CAGE clusters identified in the frontal lobe of 119
control individuals as described in the study [343]. This data is generated by performing an
eQTL analysis based on cap analysis gene expression sequencing (CAGEseq) data which was
created from human postmortem frontal lobe tissue and it is combined with genotypes obtained
through genotyping arrays, exome sequencing, and CAGEseq. 2. CAGE clusters identified in
7 brain regions (Frontal, Temporal, Caudate, putamen, Cerebellum, Occipital) in FTD cases
and controls (60 individuals in total) and 3. Bidirectionally expressed enhancers (eRNA) in
the previous data-set. Additionally, the GnomAD data-set for allele frequency filtering (http:
//gnomad.broadinstitute.org/) was also taken into account. GnomAD is an extension of
ExAC database [43] which includes the data from 123,136 exomes and 15,496 genomes.

Functional prioritization

We defined a variant as rare if it has a MAF of < 1% in the GnomAD [43]. Once the rare
variants were selected, different strategies for coding and non-coding variants were applied in
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order to prioritize them. They are described below.

• Coding variants: Only nonsynonymous variants with a CADD phred score > 20 were
selected.

• Non-coding variants: In order to select the potentially deleterious variants, the criteria
mentioned below were chosen and the qualifying variant has to satisfy at least one of them.
Subsequently, only the qualifying variants with a CADD phred score > 20 were selected
similar to coding variants. We chose a CADD threshold of 20 because the variants above
that threshold were supposed to be the top 1% most deleterious variants [58].

– If it was already identified in the human gene mutation database (HGMD) [44] or
ClinVar [344]

– Annotated as an UTR5 or UTR3 variant based on RefSeq

– If it was present in the upstream or downstream of a gene based on RefSeq

– If it was present in the transcription factor binding sites according to ENCODE and
ANNOVAR annotations

– If it was present in the DNAse hyper sensitivity regions according to ENCODE anno-
tations

– If the variant was identified in any known GWAS previously

– If the variant was a known miRNA target

– If the variant is present in the regions sequenced by CAGE technology using the brain
tissues from the study [343]

In addition to the variants prioritized by above mentioned criteria, we also generated a list
of coding and non-coding variants annotated as disease causing with high confidence in HGMD
and given in Table A.8.

CNV calling

CNV calling was performed by using RCP [345]. It works by using the depth of coverage
information that is available in the BAM file [27] that is generated after the mapping of raw reads
to the genome. For each sample of interest, RCP detects the CNVs by comparing the depth of
coverage in the sample of interest to joint profiles that were pre-computed from a broad set of
> 6000 high quality genomes sequenced at a depth of > 40X. In order to account for various
confounding factors such as %GC, multi-genome profiles were constructed which represent the
observed or inferred diploid depth of coverage for every position in the genome and they are
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called Reference Coverage Profiles (RCPs). By normalizing the scaled coverage of sample of
interest to the RCP and employing a Hidden Markov model (HMM) segmentation approach, the
CNVs were detected for each sample.

QC and filtering of CNVs

From the UCSC browser, we obtained a list of CNVs that were found previously and present
in the questionable regions of the genome. They are described below and any CNV overlapping
with the regions below was excluded using bedtools [233]. CNVs that are small or found on sex
chromosomes (X and Y) are often unreliable and the false positive rate is high. Hence, we only
selected CNVs with a minimum length of > 10kb and present only on autosomes for subsequent
analyses. Although, we might loose potential candidates by this stringent approach, we wanted
to focus only on the highly reliable candidates for prioritization. Further, we only selected the
complete deletions (copy number=0) and duplications with a minimum copy number of 4 for the
downstream analysis.

• Centromeres (extracted from Chromosome band file): start co-ord - 500 kb ; end co-ord
+500 kb

• Telomeres

• Immunoglobulins

• Mappability: DAC blacklist , Duke excluded and wgEncode CrgMappabilityAlign100mer
(datavalue <= 0.25)

• GC percent (>=90 and <=10) : positions are merged by 10 bp with bedtools

• Common CNVs from DGV

• Repeat masker

• Gap locations

• Hiseq depth of 0.1%

Prioritization of genes

We employed various steps in order to identify the potential candidate genes as shown in the
Figure 7.2 and obtained the list of genes harboring rare and variants co-segregating with disease.
In the next step, we used Phenolyzer [328] as described in the Section 7.3.1 with the search term
“parkinson” in order to narrow down the candidate genes.
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Figure 7.2: Different steps employed for the variant prioritization in the Courage-PD data-set.
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7.4.2 Results

Variant calling and QC

A total of 23,646,530 variants were called across all the samples and the Ti/Tv ratio equaled
to 1.95 before performing QC. After the QC, 21,609,473 remained in the final data-set and the
Ti/Tv ratio has increased to 2.08. On an average, each sample had 3,662,556 SNPs and 1,243,632
indels after QC.

Selection of candidate genes

As shown in the Figure 7.2, we prioritized the genes based on multiple evidences and selected
the top 15 ranked genes carrying coding, non-coding and CNVs. Some families did not have
segregating genes in all the coding, non-coding and CNVs categories. Of the 36 families that we
analyzed, there were 164 genes following autosomal dominant inheritance and 26 genes following
autosomal recessive inheritance and carrying coding deleterious variants. In the similar lines, for
genes carrying non-coding deleterious variants there are 149 genes following autosomal dominant
and 15 genes following autosomal recessive inheritance respectively. From the CNV analysis,
only 12 genes were found to carry a deletion and only one gene was found to carry a duplication.
An entire list of all the prioritized genes is given in the Table A.6. A few interesting findings
were mentioned below.

Heterozygous variants in LRRK2, TRAP1 and GRIN2A

The most studied variant in LRRK2 gene is p.G2019S with regard to PD. However, we
identified two additional variants in LRRK2 in two families. The first variant p.R1514Q was
found in a pedigree from Turkey which comprises of an affected and an unaffected sibling as
shown in the PD296 of Figure 7.3. This variant was already studied in two previous studies in
PD [320, 346]. In the study [346] it was found in 6/98 PD patients and in the study [320] it
was segregating with the disease, however it did not withstand their prioritization step. In our
study, the variant was present in only one individual effected with PD whereas it was absent in
the unaffected sibling. The affected sibling had an early age-of-onset of 36 years. The second
variant in LRRK2 which fulfilled our criteria is a nonsynonymous variant p.M96T found in a
pedigree of Spanish ethnicity. It has not been linked to PD in any previous study. It is present
in heterozygous state in both the affected siblings and they had an aao of 65 and 53 years. The
pedigree is shown in the HCB4 of Figure 7.3. The same GRIN2A variant as identified in the
Section 7.3.2 p.N1076K was also identified in another family in this part of the study making
it a total of three families in which the variant was detected. Recently, in a separate study we
found a LoF variant in TRAP1 [292] in a PD case. In this study, we identified a heterozygous
nonsynonymous variant p.R469H which is present in two affected individuals and not present in
the unaffected individual as shown in the HCB5 of Figure 7.3.
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Figure 7.3: Pedigrees carrying variants in LRRK2: HCB4 carries LRRK2 p.M96T variant, PD296 carries LRRK2 p.R1514Q variant, HCB5 carries
TRAP1 p.R469H variant, GRIP315 carries MECP2 p.T311M variant, PD313 carries SBF1 p.R1053W, GRIP_164 carries 13:47812108 A>G variants and
FAM_175 carries p.G199S and p.S438G variants in ATP13A2 and FBXO7 respectively. The arrows indicate the samples that underwent WGS.
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Homozygous variants in MECP2 and SBF1

We identified a recessive p.T311M nonsynonymous variant in MECP2. It is present in one
affected male individual and not in the unaffected individual. The same mutation was identified
in Rett syndrome in previous studies [347, 348] and the pedigree is shown in GRIP315 of Figure
7.3. We identified a nonsynonymous homozygous variant p.R1053W in SBF1, it is present as a
homozygous variant in the affected sample and as a heterozygous variant in the unaffected. The
pedigree is shown in the PD313 of Figure 7.3.

Compound heterozygous variants in PARK2

By using our integrated approach, we identified a compound heterozygous variant in PARK2
in a family comprising of an affected and unaffected sibling. One of the variant is an intronic
variant (6:162855008-T>C) predicted to be affecting the Transcription factor binding site and
the other one is p.R256C which is a nonsynonymous variant and has been previously studied
[349].

Heterozygous variants in FBXO7 and ATP13A2 in the same family

We discovered two heterozygous variants p.G199S and p.S438G in two recessive genes names
FBXO7 and ATP13A2 respectively in an Italian family FAM_175 of Figure 7.3. Previously,
it was also seen in an Italian family, that the affected samples carry homozygous variant in
ATP13A2 and also a heterozygous variant in FBXO7 [350].

Variants in ERBB4 and KIF2A

In addition to the coding variants identified in this study, we also identified several non-coding
variants according to our criteria as defined in the Section 7.4.1. The genes harboring deleterious
non-coding variants are associated to various neurological disorders. One such example is ERBB4,
which was found to be involved in Schizophrenia [351]. In the same family another variant is
found in the KIF2A. In a previous study, it has been shown that KIF2A which is an anterograde
motor protein [352] could serve as a biomarker for PD. Further, KIF2A was also found to carry
a mutation in another family in our study.

Promoter variant in ATG7

In a previous study in PD, a promotor variant of ATG7 was found (3:11313449 G>A) and in
our study also we identified the same variant based on the HGMD annotation. However, it has
a CADD phred score 1.74 and moreover it is present in the same family in which the LRRK2
p.M96T. All the variants annotated as disease causing with high confidence are given in the
Table A.8.
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Variants in HTR2A

A variant (13:47812108 A>G) affecting the transcription factor binding site of HTR2A is
discovered in our study. Previously, a genetic variant in HTR2A is associated to the repeti-
tive behavior and impulse control [353] in PD. The pedigree carrying this variant is given in
GRIP_164 of Figure 7.3.

7.4.3 Discussion

Familial studies have been successful in the past to identify several genes related to PD [108],
still there is a paucity in the discovery of novel genes underlying familial-PD. In this study,
our objective was to identify meaningful genes by employing WGS in several small families and
a multiple evidence based approach. In our quest to identify potential candidate genes, we
discovered various interesting variants/genes (Table A.6). The most promising candidates are
discussed in this section. A variant p.R1514Q in LRRK2 is found in our study and it has been
previously found in more than one study [320, 346] but has not been followed up, it is especially
interesting because the variant is found in a pedigree of Turkish origin but a previous study
mainly composing of North European samples [346] found that this variant has higher frequency
in cases. This indicates that p.R1514Q might not be just restricted to North European population
and additional studies including samples from other countries are warranted. Another variant
in LRRK2 p.M96T with no previous association to PD was found in our study, but in the
same family another variant in the promotor region of ATG7 was also discovered. The variant
11313449G>A in ATG7 has been previously shown to be implicated in PD [354] by significantly
decreasing transcriptional activities of the gene promotor of ATG7. The proposed mechanisms
of actions were probably by either completely abolishing, modifying and creating binding sites
for putative transcription factors. Hence, it is probable that 11313449G>A variant is the causal
gene in the family HCB4 rather than p.M96T, but further functional studies are needed to be
done to validate this finding.

PARK2 is known to have an autosomal recessive inheritance requiring both the alleles to
carry a variant to induce an early-onset PD. In our study, we detected an exonic variant and a
deleterious intronic variant in the same individual constituting a compound heterozygous variant.
The exonic heterozygous variant p.R256C was also identified in a previous study comprising of
early onset sporadic PD cases of French origin [355], but the pedigree in which the variant was
identified is of Dutch origin. One, shortcoming of the previous study was that they excluded the
intronic variants from the analysis and maybe it is worth to also look into the intronic PARK2
variants. Interestingly the variant p.R256C is present within RING finger 1 of Parkin protein
and could cause a gain-of-function [356]. Another study showed that this variant is a risk factor
for nigrostriatal dysfunction [357]. In view of this findings it would be interesting to see whether
p.R256C acts alone or if it acts in conjunction with the intronic variant discovered in this study.
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TRAP1 is shown to be involved in mitochondrial dysfunction and in our previous study we found
an individual affected with PD carrying a LoF variant in TRAP1 [292]. We identified a recessive
variant in MECP2 and the variant has been previously identified in the context of Rett syndrome
[347, 348].

A combination of ATP13A2 and FBXO7 heterozygous variants was found in an Italian family.
Interestingly, in an earlier study also the same combination of genes were found to be mutated
in an Italian pedigree [350]. Although, in that study the variant in ATP13A2 was homozygous,
it has been shown recently that heterozygous variants in ATP13A2 could also implicate PD by
causing the cellular dysfunction [358]. In this context, it could be possible that this combination
is specific to Italian population and maybe the variants in ATP13A2 and FBXO7 together
increase the risk of PD, but it is speculative and remains to be checked. MECP2 acts on neuronal
development and function and it has been proposed to be a drug target for PD [359] based on
the functional studies. Previous studies conducted on mice have shown that MECPH2 knock-
out has resulted in PD like symptoms such as loss of motor deficits indicating the disruption of
nigrostriatal pathway [360]. Hence, it is a very prominent candidate and needs to be investigated
in the future.

SBF1 mutations have been previously associated to Charcot-Marie-Tooth disease [361, 362]
and axonal neuropathy [363] and the patient carrying the homozygous SBF1 variant has a very
early aao of 27 years and hence it is possible that it is associated to the early onset PD. In
summary, this study shows the power of integrating multiple evidences to discover putative
novel candidate genes. All the variants identified in this study need to be further followed up
either in a familial setting or in a large case-control cohort.
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CHAPTER 8

CONCLUSIONS AND OUTLOOK

8.1 Conclusions
NGS has provided us with a unique opportunity to identify genetic variants underlying a

disease. Currently, generating the massive amounts of data is not the issue, however the process-
ing and interpretation of data is the bottleneck. Especially, the interpretation of variants found
via familial studies is often quite challenging because we often end up with several variants that
co-segregate with the disease. This problem is similar to finding a needle in a haystack and it gets
even severe if the families that are being analyzed are small, which was also the case in our study.
Hence, to overcome this problem we integrated several sources of knowledge in this thesis to find
meaningful associations. Our main goal was to focus on variants occurring at low frequency with
larger effect size and identify those causing a significant burden in the case-control studies and in
familial-PD we aimed to find the putative candidate variants/genes causing the disease. In order
to achieve these goals, we developed the variant analysis pipelines and processed several data-sets
generated via WES and WGS belonging to two of the most common diseases PD and epilepsy.
Although PD and epilepsy are two distinct brain diseases, their underlying genetic architecture
is complex and polygenic. By employing state of the art statistical and analytic methods, we
shed further light on the genetics of both PD and epilepsy and found several imperative and
interesting findings in this thesis.

In RE/ARE, several twin studies have been performed and majority of them remained dis-
cordant [142, 143]. Similarly, various candidate gene studies have been performed [148, 149, 163],
where the emphasis was only on one or few genes. However, an unbiased genome wide study
focusing on the burden of rare variants in RE/ARE was absent. In this work (Chapter 2), we
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carried out a first ever exome-wide association study in RE/ARE. In this study, we investigated
the genetic variants occurring at very low frequency (0.5%) and causing large effect in RE/ARE
cases compared with the in-house and the ExAC database. We performed the gene-level burden
analysis and showed that GRIN2A is the only gene reaching a genome-wide significance. Al-
though there might be other genes also contributing to the disease, we could not detect such
genes mainly due to the sample size. Hence, in order to compensate the smaller sample size of
our cohort, we extended the burden analysis to geneset level and showed that there is a consis-
tent increase in the odds ratios for the LoF variants in several disease associated gene-sets. The
genesets are comprised of genes under negative selection, glutamate receptors and genes associ-
ated with epileptic encephalopathies. GRIN2A was excluded from the selected genesets to show
that besides GRIN2A, there are other genes also which are contributing to the disease etiology.
Additionally, we identified several interesting novel LoF variants (Not present in ExAC) and
provided in the Table A.1, which could be used as a future references for other research groups
to perform functional validations.

GGE has always been believed to have a strong underlying genetic cause and many variants
in ion-channel genes have been identified via various familial studies. Nonetheless, no study
has shown an excess of variants in ion-channel genes via whole-exome sequencing, keeping the
genetic cause of GGE under the wraps. In this study (Chapter 3), we performed the burden
analysis in a cohort comprising of familial and sporadic GGE cases (>1000 cases combined)
and showed, for the first time there is a significant burden of rare nonsynonymous variants in a
group of 19 GABAA receptor genes. In total, similar findings were observed in 3 independent
cohorts (1 discovery and 2 replication cohorts). Furthermore, functional studies of selected
segregating variants in GABAA receptors showed that they induced a change in the receptor
function, providing a compelling evidence that GABAA receptors and GABAergic mechanism
play a role in the GGE supporting the previous studies [139, 177, 188, 191, 192, 204–206].

To our knowledge, we performed the largest WES based CNV study in RE/ARE and GGE
in Chapter 4. A significant burden of rare and large deletions were observed in cases compared
to the controls was observed. This finding was similar to a study performed using array data
[221] comprising a larger number of samples. We performed the functional enrichment analysis
of the deletions belonging to RE/ARE and GGE separately and showed that there is a difference
between both the diseases at the biological pathway level. This finding was in line with a previous
effort to classify metabolic and developmental epilepsies [14]. In an effort to identify interesting
deletions which could be either be followed up by functional validation or as a list for other
researchers, we found several candidate single-gene deletions which are described in detail in
the section 4.5. We also integrated the SNV/Indels identified in chapters 2 and 3 along with
the deletions identified in Chapter 4 and found several interesting candidates which are also
described in detail.

144



By using the WES data in Chapter 5 we have shown a genome-wide burden of multiple
singleton LoF variants. Similar to the studies in epilepsy as described above, it is difficult to
identify single genes with a genome-wide significance mainly due to the multiple testing correction.
Hence, alternate approaches are a need of the hour to compensate for the loss of power in studies
with small sample sizes. In the current study, we employed an alternative approach and our
results show that there is an increase of singleton LoF variants within the PD samples compared
to the controls. Based on the evidence provided by our study, it could be contemplated that
in PD, the burden is distributed across the entire exome rather than being confined to a group
of PD associated genes (Section 5.4.3). In summary, our findings support the complex genetic
architecture of PD and show that there is still a lot of missing heritability in PD which needs
to be unearthed. Along with the major limitation of our study which is the small sample size,
there might be additional factors such as variants in the non-coding regions which could also
contribute to the progression of PD. The second limitation would be the non-availability of a
replication cohort, therefore despite the fact that there is a exome-wide significance of singleton
LoF variants, our study should be considered preliminary and needs replication in larger PD
cohorts.

The work from Chapter 6 indicated an enrichment of disease-associated variants in the exon-
intron boundary of brain expressed genes in PD and underscore the therapeutic potential of
compounds acting on pathological splicing also in sporadic PD cases. Our study illustrates
the promise for treatment approaches in precision medicine in PD that focus on genetic and
molecular stratification. To account for the increasingly recognized heterogeneity in PD and
other neurodegenerative disorders, new strategies need to be developed for the stratification of
patients along shared pathogenic mechanisms. Our study highlights the importance of variants
regulating splicing mechanism in PD, especially the U1 splice variants.

In the first part of Chapter 7, we used a two-stage approach of a discovery and replication
cohort where we identified 14 genes involved in the nervous system pathway. The variants
harbored by those genes are predicted to be rare and well conserved. However, neither the
variants nor the genes were present in more than 1 family in the discovery cohort warranting
further evidence of their involvement in PD, although it is partially supported by their odds ratio
of >1 in an independent case-control study. In the second part, we identified various interesting
variants harboring heterozygous, compound heterozygous and homozygous variants in genes that
were either associated to PD or related diseases. We identified several interesting coding, non-
coding and CNVs from the WGS of familial-PD. The list of variants could be further prioritized
and functional validation can be performed on the most promising candidates.

Taken together, the studies presented in this thesis involve a broad range of methods and
topics that are expected to become increasingly important in the genetic study of PD and epilepsy,
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as well as other common diseases, in the years to come. In my opinion the key message of this
work is that the genetics of PD and epilepsy is more bewildering than we expected.

8.2 Outlook

8.2.1 Larger cohort sizes for increased statistical power

It could be seen clearly from the results in Chapter 2, that there are increased odds ratios of
LoF variants in several disease related genesets in RE/ARE. In the future, more patients should
be recruited and more comprehensive burden analyses at single variant, gene and geneset levels
needs to be performed to get significant results. For the GGE, a meta-analysis of various cohorts
described in the study or a combined analysis where a multiple-sample calling on all the samples
together could be performed in order to have an increased power. This approach will increase the
sample size significantly, thereby providing more evidence and not just at the geneset level, but
also at a single gene level. Additionally, a new statistical approach could be developed in-order
to combine the SNV/Indel and CNV data to untangle the genetic complexity of RE/ARE and
GGE. In the near future the findings from Chapter 7 should be replicated in larger datasets such
as the latest dataset from Courage-PD comprising of >5000 PD cases that are currently being
genotyped on the Neurochip platform [364].

8.2.2 Polygenic risk score (PRS)

Although, the clinicians are very well trained and follow stringent classification criteria, it
could be still possible that patient might be wrongly classified into a different disease. One
possible reason of the complexity of genetics in PD and epilepsy is the phenotypisation of patients.
Hence, instead of looking at one type of disease maybe we are actually looking at a combination
of different diseases. More precise phenotypes together with higher samples sizes would allow to
untangle the genetic architecture of complex diseases. To help classify the patients into more
precise phenotypes, one could take advantage of the avalanche of clinical data that is available
along with the genetic information in the form of PRS. Robust machine learning and clustering
algorithms could be built in order to tackle this problem. At the current stage, PRS is not
utilizing the complete genetic information because it is generated based on the common variants
only. A more robust method to generate PRS based on rare and common variants needs to be
developed. The benefits of generating an accurate PRS are plenty, as it can be generated for any
trait of interest. One possible application of PRS would be to build better prediction models
in order to detect the predisposition for a trait/disease earlier, as one could be better prepared
for the engagement in early stage or treatment prevention strategies. The models built on the
basis of PRS could aid the clinicians in decision support and counseling the patients. Another
example would be to predict the age at onset of a disease or other continuous variables such as
any clinical scores. To achieve this one could use genetic data, already existing clinical data or
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a combination of both, thereby reducing the medical treatment costs as well as the burden for
patients due to the diagnostics.

8.2.3 Regulatory, splice variants and genome-wide deleterious score

In Chapter 6 we only looked at variants disrupting the U1 splice sites. However, there is a
possibility that a variant could generate a new U1 splice site. Hence, in the future, variants that
generate putative splice sites should also be predicted. Similarly, the pipelines developed in this
work (Chapter 6) can also be extended to predict deleterious 3’ splice site variants. Splicing is
not a PD specific mechanism and it has been shown to be disrupted in various diseases [365].
Hence, the same methodology developed in Chapter 6 can also be applied to other disorders. The
current state of variant prioritization methods are focused mostly on identifying disease causing
variants in coding regions. However, from the recent studies it is clear that, we have begun
only scratching the surface of the problem and there is an enormous dearth of knowledge with
regard to the non-coding variants and their potential role in the diseases. One such example
of functionally important non-coding variants are regulatory variants. They drive the gene
expression by acting on enhancers, gene promoters, or binding sites for RNA or proteins. Due
to their importance in the functioning of cells in the body, variants disrupting or creating new
regulatory regions should be investigated in more depth. One resource that could be of great
help to achieve this goal is the ENCODE project [366]. It is a valuable resource comprising
of information about several important regulatory regions such as transcription factor binding
sites, DNAse hyper sensitivity sites, histone modification regions etc. Currently, we have several
WGS/WES datasets belonging to various disorders and the pipelines that will be developed in
the future to predict disease causing non-coding variants could be applied to all the in-house
datasets.

The predicted disease causing ability of a variant can be converted into a single metric
called as deleterious score. Few examples of such scores that are widely used include SIFT [53],
PolyPhen2_HDIV [54], LRT [55], MutationTaster [56], PROVEAN [57], CADD [58], fathmm
[60], GERP++_R [61], DANN [59] and SiPHy [62]. Some of them such as CADD, DANN,
GERP++_R and SiPHy are available for all the variants in the human genome including the
non-coding variants. Nonetheless, they are not yet reliable for non-coding variants mainly due
to the fact that there is no gold standard dataset available to evaluate their performance, unlike
the coding variants. Albeit discovering meaningful associations and variants in this thesis, it is
quite possible that this work missed several variants due to the lack of appropriate standards to
evaluate them, especially the variants occurring in the non-coding regions of the human genome
which is often referred to as the “dark genome”. This is an area where there is an enormous
potential to be improved and one can take the advantage of large collection of data that is publicly
available and use sophisticated machine learning algorithms to predict the potential deleterious
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non-coding variants and generate a genome-wide score. Experimental biologists should also come
up with new methods to functionally validate the non-coding variants, such that they are able
to generate and provide more experimental data which can then be used in formulating a robust
genome-wide deleterious score.

A statistical framework needs to be established in order to integrate the information from
coding, non-coding variants and CNVs. A network guided approached could be used to identify
important biological pathways. One way to perform network analysis is to use the p-values
generated from the association analysis as weights for the genes and project the genes onto a
protein-protein interaction network (PPIN) and find the enriched modules. Such modules could
show us which pathways are over represented in a particular disease or across different diseases.
In order to be more specific to neurodegenerative disease, we can use a PPIN generated from
brain as a whole or specific sub-tissues like substantia nigra or cell types like dopaminergic
neurons or astrocytes. Such integration of transcriptomic and genomic data from the human
brain tissue that is available publicly from repositories such as The Genotype-Tissue Expression
project (GTEx) [367] or from single-cell transcriptomic data available for various cell types of
brain [368] would help us to delineate the complexity of PD and epilepsy.

Personalized medicine in practice

We are living in exciting times, technologies such as NGS and artificial intelligence (AI)
driven by machine learning have absolutely changed the way we look at the data. They enabled
researchers to make sense of big data by revealing interesting patterns in the human genome. In
my opinion, by combining NGS, AI and CRISPR/cas technologies, one can achieve wonders in
the field of personalized medicine. For instance, we perform the WGS of a patient, utilize either
or a combination of: risk scores, regression models, machine learning algorithms to identify the
genetic cause and correct the genetic mutation by applying CRISPR/Cas technology, thereby
restoring the original function of a gene. Although, we are still at the beginning of this phase,
with the dropping NGS costs and the amount of research that is being performed in these areas,
it is quite possible that we will witness the era of personalized medicine in the near future.

To achieve the goal of precision medicine in epilepsy and PD, we need to address the following
points: Much larger cohorts are need to be built such as Epi25 for epilepsy (http://epi-25.
org/ which aims to conduct WES of 25,000 patients) and they have to be cautiously defined
both phenotypically and genomically; functional characterization of the mutations identified via
various studies have to be conducted and results should be carefully interpreted by the domain
experts; standard guidelines should be established to define the pathogenicity of variants. These
goals can only be achieved through the collaboration and integration of research groups and by
bringing the researchers with genetic, clinical and biological expertise under one umbrella.
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APPENDIX A

SUPPLEMENTARY MATERIAL

This chapter contains all manuscripts authored as a first author or co-author along with the
supplementary material for each chapter. Journal formatted articles are provided for published
manuscripts. Submitted manuscripts or manuscripts that are ready for submission are provided
as the submitted versions.

A.1 Rolandic Epilepsy

https://dropit.uni.lu/invitations?share=44877c4da9f8c3cc51b8&dl=0

Table A.1: CADD15+LOF variants in the epilepsy associated genes that were identified in the present study.
The variants are represented according to the GRCh37 human reference genome.
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A.2 Excess of singleton loss-of-function variants in Parkinson’s
Disease

CHR BP A1 A2 OR P
1 155135036 G A 0.58 2.59e-35
3 52816840 G A 0.68 2.25e-7
17 43994648 T C 0.78 1.26e-68
2 169110394 C T 0.83 5.68e-26
3 182762437 A G 0.85 2.11e-30
6 32666660 T C 0.85 1.26e-13
1 205723572 C T 0.89 1.12e-2
2 135539967 T C 0.89 8.24e-24
12 123303586 G A 0.90 2.05e-20
4 15737101 C A 0.90 1.22e-19
14 55348869 T C 0.91 4.30e-16
15 61994134 G A 0.91 3.94e-14
7 23293746 G A 0.91 3.51e-18
8 16697091 A G 0.91 2.38e-11
9 17579690 T G 0.91 1.99e-12
1 226916078 C T 0.92 2.40e-10
4 77198986 T C 0.92 1.43e-14
10 15569598 C A 0.93 2.37e-8
11 83544472 A G 0.93 3.72e-9
3 48748989 G T 0.93 6.80e-8
2 166133632 T C 0.94 9.73e-7
8 22525980 T C 1.06 9.06e-7
16 19279464 T G 1.07 1.46e-9
20 3168166 A G 1.07 1.99e-6
2 102413116 C T 1.07 3.83e-8
14 88472612 T C 1.08 1.20e-9
16 31121793 A G 1.08 5.44e-12
16 52599188 T C 1.08 8.29e-8
19 2363319 T C 1.08 6.64e-7
11 133765367 T C 1.09 1.11e-13
14 67984370 T A 1.09 9.61e-11
18 40673380 G A 1.10 5.56e-16
8 11707174 A G 1.10 9.54e-11
3 18277488 G T 1.11 3.02e-9
1 232664611 T C 1.12 8.41e-13
6 27681215 A G 1.12 3.44e-13
4 114360372 C T 1.14 2.11e-9
12 40614434 T C 1.15 1.21e−19
5 60273923 C A 1.15 1.69e-11
3 87520857 C G 1.21 1.22e-4
4 951947 C T 1.23 1.47e-50
4 90626111 G A 1.33 5.21e-123
10 121536327 A G 1.65 2.23e-19

Table A.2: Summary statistics of SNVs used to generate PRS. The statistics were obtained from the study [109].
The variants are represented according to the GRCh37 human reference genome. CHR = chromosome, BP =
Position of SNP on the genome, A1 = reference allele, A2 = alternate allele, OR = odds ratio and P = p-value.
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A.3 CNVs in epilepsy

https://dropit.uni.lu/invitations?share=79ef062953955ad9255f&dl=0

Table A.3: Deletions detected in our study. RE = Rolandic epilepsy (typical and atypical), IGE = Idiopathic
generalized epilepsy and Z_score = score generated by XHMM.
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Gene Brainchr start end gene_ensembl cds_len gene_length del dup del.score dup.score cnv.score
USP24 + 1 55532032 55680786 ENSG00000162402.8 7740 148754 0 2 2,042565836 1,53282633 1,884072981
TJP1 + 15 29991571 30261068 ENSG00000104067.12 5441 269497 0 12 1,752442713 -0,803995937 -0,081921889
CNTN1 + 12 41086244 41466220 ENSG00000018236.10 3278 379976 0 1 1,728174309 1,425101777 1,802168696
ITPR1 + 3 4535032 4889524 ENSG00000150995.13 8519 354492 0 6 1,725139512 0,253387244 0,753565178
PCDHB6 + 5 140529683 140532868 ENSG00000113211.3 2391 3185 5 2 1,667827598 2,38494211 1,914791919
PCDHB3 + 5 140480234 140483406 ENSG00000113205.2 2397 3172 1 5 1,657469966 0,899130927 0,99912774
SF3B3 + 16 70557691 70608820 ENSG00000189091.8 3804 51129 0 2 1,529650601 0,972523491 1,375089727
TIMELESS+ 12 56810903 56843187 ENSG00000111602.7 3665 32284 0 4 1,522050316 0,446777062 0,919722383
SHANK1 + 19 51165084 51222707 ENSG00000161681.11 6323 57623 0 3 1,140663112 0,46950049 0,789092733
ZNF417 + 19 58411664 58427978 ENSG00000173480.6 1746 16314 0 6 1,088952526 -0,308218506 0,076195049
ATG16L2 + 11 72525353 72554719 ENSG00000168010.6 2355 29366 0 4 1,005027614 0,048613563 0,425402526
GABRB3 + 15 26788693 27184686 ENSG00000166206.9 1772 395993 0 9 0,988016767 -0,97958815 -0,465274823
EPG5 + 18 43427574 43547240 ENSG00000152223.8 8017 119666 1 1 0,987628271 1,386597994 1,417300608
GABRG3 + 15 27216429 27778373 ENSG00000182256.8 1428 561944 0 6 0,852648846 -0,593942874 -0,170777176
CAPN1 + 11 64948037 64979477 ENSG00000014216.11 2230 31440 0 0 0,821376542 1,16710151 1,305530475
ZNF343 + 20 2462463 2505348 ENSG00000088876.7 1824 42885 0 10 0,81624114 -1,361324352 -0,795199446
GABRA5 + 15 27111510 27194354 ENSG00000186297.7 1416 82844 0 6 0,802404149 -0,548812563 -0,157511534
LRRC4C + 11 40135753 41481323 ENSG00000148948.3 1929 1345570 0 0 0,710652242 0,483380747 0,758829916
NDUFS3 + 11 47586888 47606114 ENSG00000213619.5 1663 19226 1 0 0,695145694 1,400181735 1,327943672
EXD3 + 9 140201348 140317714 ENSG00000187609.11 2707 116366 0 13 0,684156271 -1,725317858 -1,203058829
AGFG2 + 7 100136834 100165842 ENSG00000106351.8 1291 29008 2 3 0,6545631 0,895985923 0,849625612
ST6GALNAC3+ 1 76540404 77100286 ENSG00000184005.9 987 559882 0 1 0,635401501 0,481903843 0,71332483
CGRRF1 + 14 54976530 55005567 ENSG00000100532.7 1039 29037 0 2 0,565795517 0,150343318 0,414022933
CNTNAP2 + 7 145813453 148118090 ENSG00000174469.13 4037 2304637 5 6 0,563947177 0,204322538 0,472669463
APOC2 + 19 45449243 45452822 ENSG00000234906.4 336 3579 0 2 0,552719577 0,182312534 0,423901026
ATG14 + 14 55833110 55878576 ENSG00000126775.8 1539 45466 0 4 0,551818028 -0,357672317 -0,034249132
SAMD4A + 14 55033815 55260033 ENSG00000020577.9 2366 226218 1 0 0,549832768 1,285731173 1,193637347
SVEP1 + 9 113127531 113342160 ENSG00000165124.13 11061 214629 2 6 0,548008965 0,157194253 0,329345173
ZNF317 + 19 9251056 9274100 ENSG00000130803.10 1758 23044 0 1 0,546852862 0,473517186 0,670057364
APBA2 + 15 29129629 29410518 ENSG00000034053.10 2647 280889 1 10 0,542886965 -1,055651771 -0,625635589
GMFB + 14 54941202 54955914 ENSG00000197045.8 508 14712 0 0 0,526211632 0,841351244 0,980023489
GCH1 + 14 55308726 55369570 ENSG00000131979.14 892 60844 0 1 0,509578001 0,480372822 0,661531792
NDNL2 + 15 29560353 29562033 ENSG00000185115.4 921 1680 0 0 0,501962417 0,785228916 0,870913319
ATP10A + 15 25922420 26110317 ENSG00000206190.7 4795 187897 1 5 0,501326386 -0,175277912 0,074763692
CNIH1 + 14 54893654 54908149 ENSG00000100528.7 381 14495 0 0 0,494550985 0,806566767 0,947001865
ERMAP + 1 43282795 43310660 ENSG00000164010.9 1551 27865 1 8 0,480748455 -0,823379015 -0,425215558
KBTBD4 + 11 47599277 47599823 ENSG00000231880.1 677 546 0 0 0,477900568 0,734800622 0,865962201
SNX16 + 8 82711816 82755101 ENSG00000104497.9 1077 43285 1 2 0,456422625 0,505492858 0,576511245
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KERA + 12 91444268 91451760 ENSG00000139330.5 1071 7492 0 2 0,446874734 -0,000114033 0,250670659
SSTR4 + 20 23016057 23017314 ENSG00000132671.4 1173 1257 0 0 0,405605223 0,623262855 0,729431166
HSPA1L + 6 31777396 31783437 ENSG00000204390.8 1932 6041 0 0 0,401632891 0,531737845 0,661692239
SOCS4 + 14 55493948 55516206 ENSG00000180008.8 1329 22258 0 1 0,392612172 0,162471626 0,368963914
GHRL + 3 10327359 10334631 ENSG00000157017.11 483 7272 1 0 0,372479739 1,214689608 1,048091047
GRIN2A + 16 9852376 10276611 ENSG00000183454.9 4549 424235 1 1 0,370715677 0,729710664 0,721094991
RIMBP2 + 12 130880682 131200826 ENSG00000060709.9 3261 320144 1 7 0,349561229 -0,727894178 -0,409028887
IP6K3 + 6 33689444 33714762 ENSG00000161896.6 1263 25318 0 0 0,335329745 0,724944238 0,801391166
IGSF8 + 1 160061130 160068733 ENSG00000162729.9 1808 7603 0 1 0,287817859 0,301696075 0,423784119
RAPGEFL1+ 17 38333263 38351908 ENSG00000108352.7 1540 18645 2 17 0,264748813 -1,793686773 -1,216594689
MAPK1IP1L+ 14 55518349 55536910 ENSG00000168175.10 922 18561 0 0 0,211003259 0,614292596 0,680394542
FBXO34 + 14 55738021 55828636 ENSG00000178974.5 2142 90615 0 2 0,175325399 -0,364821598 -0,160408258
C1orf54 + 1 150240600 150253327 ENSG00000118292.4 546 12727 3 12 0,124516266 -1,045379554 -0,641860823
CDKN3 + 14 54863567 54886936 ENSG00000100526.15 672 23369 1 0 0,123183899 0,934097692 0,787426186
ZNF318 + 6 43274872 43337216 ENSG00000171467.11 6798 62344 1 0 0,119892425 0,965453183 0,79947501
ATRNL1 + 10 116853124 117708503 ENSG00000107518.12 4386 855379 3 5 0,10741737 0,044128336 0,111085788
CSMD1 + 8 2792875 4852494 ENSG00000183117.13 10919 2059619 7 30 0,106786859 -1,998685059 -1,148652918
SCO1 + 17 10583654 10601692 ENSG00000133028.6 942 18038 1 8 0,084061561 -1,125325984 -0,799948209
LGALS3BP+ 17 76967320 76976191 ENSG00000108679.8 1932 8871 0 0 0,083204782 0,538583426 0,54880306
DLGAP5 + 14 55614830 55658396 ENSG00000126787.8 2649 43566 2 56 0,02444499 -2,531252393 -2,471627899
ZNF691 + 1 43312280 43318148 ENSG00000164011.13 1096 5868 0 0 0,022331951 0,493769336 0,503231742
CLPTM1 + 19 45457842 45496599 ENSG00000104853.11 2500 38757 2 5 -0,002170243 -0,219791442 -0,136935675
ZNF568 + 19 37407231 37489602 ENSG00000198453.8 3501 82371 3 3 -0,015287437 0,752761724 0,404110078
NDN + 15 23930565 23932450 ENSG00000182636.4 972 1885 0 0 -0,052273904 0,331001753 0,330868612
IMPA1 + 8 82570196 82598928 ENSG00000133731.5 1061 28732 2 2 -0,062286695 0,494818479 0,324510263
WDHD1 + 14 55405668 55493823 ENSG00000198554.7 3540 88155 3 4 -0,075497723 0,242811576 0,174122536
PLXDC2 + 10 20105168 20578785 ENSG00000120594.12 1674 473617 2 1 -0,086459784 0,734142595 0,487533876
TMEM176A+ 7 150497491 150502208 ENSG00000002933.3 751 4717 2 0 -0,169683976 1,154291398 0,700844273
FCHSD2 + 11 72547790 72853306 ENSG00000137478.10 2271 305516 2 4 -0,198729335 -0,160404265 -0,177850106
MRPS27 + 5 71515236 71616473 ENSG00000113048.12 1642 101237 2 1 -0,277487506 0,63115712 0,340595652
LGALS3 + 14 55590828 55612126 ENSG00000131981.11 869 21298 2 1 -0,386319462 0,528835801 0,228501941
ADPRM + 17 10600911 10614550 ENSG00000170222.11 1059 13639 2 11 -0,406990988 -1,67909556 -1,353159743
F5 + 1 169483404 169555826 ENSG00000198734.6 6838 72422 4 1 -0,449909425 1,137009467 0,5336849
SLC24A4 + 14 92788925 92962596 ENSG00000140090.13 1990 173671 3 7 -0,48267106 -0,681136634 -0,630949501
SUMF1 + 3 3742498 4508965 ENSG00000144455.9 1179 766467 4 9 -0,513018336 -0,908525108 -0,764074106
KCNQ1 + 11 2465914 2870339 ENSG00000053918.11 2168 404425 3 3 -0,518480243 0,154714284 -0,106873975
ANKRD16 + 10 5903580 5931869 ENSG00000134461.11 1128 28289 2 3 -0,532263044 -0,149995699 -0,304101007
CDH8 + 16 61681146 62070939 ENSG00000150394.9 2528 389793 3 2 -0,573570084 0,328517197 -0,008246912
STARD10 + 11 72465774 72504726 ENSG00000214530.3 853 38952 2 2 -0,614402312 0,070403966 -0,194948524
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ETV1 + 7 13930853 14031050 ENSG00000006468.9 1624 100197 3 6 -0,672793719 -0,645347304 -0,682951535
ZFAND1 + 8 82613569 82645138 ENSG00000104231.6 1037 31569 3 3 -0,713229432 -0,029152124 -0,288960927
MT1F + 16 56691606 56694610 ENSG00000198417.5 245 3004 3 75 -0,732291441 -2,531252393 -2,471627899
COL10A1 + 6 116440086 116479910 ENSG00000123500.5 2055 39824 3 1 -0,75927544 0,440689832 -0,066585525
TECR + 19 14627897 14676792 ENSG00000099797.7 1328 48895 5 14 -0,762158576 -1,361274273 -1,144196973
TMEM220 + 17 10602332 10633633 ENSG00000187824.4 441 31301 3 13 -0,850692716 -1,910378895 -1,640173244
SGCG + 13 23755091 23899304 ENSG00000102683.6 918 144213 7 23 -0,867575065 -1,730521173 -1,415064654
NT5DC1 + 6 116422012 116570660 ENSG00000178425.9 1605 148648 4 3 -1,027729486 0,024943674 -0,400335605
USH1C + 11 17515442 17565963 ENSG00000006611.11 2942 50521 6 1 -1,083452944 1,162495114 0,188844589
SACS + 13 23902965 24007841 ENSG00000151835.9 2135 104876 8 23 -1,203293261 -1,815881184 -1,563224422
ZNF790 + 19 37308330 37341689 ENSG00000197863.4 1935 33359 8 3 -1,236542756 0,955106418 -0,035262877
NCAPD2 + 12 6602522 6641121 ENSG00000010292.8 4392 38599 8 4 -1,341991076 0,505722435 -0,21514961
RIOK2 + 5 96496571 96518964 ENSG00000058729.6 1978 22393 6 18 -1,509592757 -2,256647924 -1,976393386
PTPRZ1 + 7 121513143 121702090 ENSG00000106278.7 7128 188947 8 2 -1,568023817 0,841591482 -0,198054466
CDH22 + 20 44802372 44937137 ENSG00000149654.5 2555 134765 5 0 -1,578268618 0,88145143 -0,26589405
OCA2 + 15 28000021 28344504 ENSG00000104044.11 2714 344483 9 9 -1,660380988 -0,543931674 -0,906499272
LRRK2 + 12 40590546 40763087 ENSG00000188906.9 8008 172541 11 19 -1,750477101 -1,477247598 -1,376714468
MT1A + 16 56672578 56673999 ENSG00000205362.6 204 1421 7 73 -1,761405278 -2,531252393 -2,471627899
SCN1A + 2 166845670 166984523 ENSG00000144285.11 6186 138853 9 5 -1,810908478 0,043445991 -0,670522876
ZNF692 + 1 249144205 249153343 ENSG00000171163.11 1540 9138 6 24 -1,868951238 -2,531252393 -2,471627899
RECQL5 + 17 73622925 73663269 ENSG00000108469.10 3188 40344 9 4 -1,875607855 0,249072756 -0,624359689
TNFRSF19+ 13 24144509 24250232 ENSG00000127863.11 1335 105723 12 26 -2,042544874 -1,987046267 -1,865746884
MTMR10 + 15 31231144 31283810 ENSG00000166912.12 2396 52666 14 28 -2,293892804 -2,030503686 -1,928391813
MT1E + 16 56659387 56661024 ENSG00000169715.10 492 1637 10 85 -2,454760427 -2,531252393 -2,471627899
CCDC86 + 11 60609544 60618554 ENSG00000110104.7 1107 9010 11 2 -2,623544152 0,070262779 -1,498783415
ZNF276 + 16 89786808 89807311 ENSG00000158805.7 2703 20503 11 15 -2,623544152 -1,847806105 -2,06366487
NPR2 + 9 35792151 35809729 ENSG00000159899.10 3356 17578 19 13 -2,623544152 -1,04407072 -1,716095807
TOP1MT + 8 144386554 144442149 ENSG00000184428.8 2288 55595 22 8 -2,623544152 -0,919375543 -2,360916245
SLC3A1 + 2 44502599 44548633 ENSG00000138079.9 2365 46034 23 45 -2,623544152 -2,531252393 -2,471627899
MT1M + 16 56666145 56667898 ENSG00000205364.3 315 1753 23 78 -2,623544152 -2,531252393 -2,471627899
IQGAP2 + 5 75699074 76003957 ENSG00000145703.11 5978 304883 32 13 -2,623544152 -1,141733115 -2,435588281
ABCA7 + 19 1040102 1065571 ENSG00000064687.8 6865 25469 33 12 -2,623544152 -0,850864983 -2,33107997
PCDHB4 + 5 140501581 140505201 ENSG00000081818.1 2394 3620 40 3 -2,623544152 2,201582277 -0,988534575
IQCC + 1 32671236 32674288 ENSG00000160051.7 1669 3052 41 1 -2,623544152 0,583195479 -2,471627899
PCDHB5 + 5 140514800 140517703 ENSG00000113209.6 2394 2903 41 4 -2,623544152 2,02513866 -0,646985259
FANCA + 16 89803957 89883065 ENSG00000187741.10 5500 79108 67 32 -2,623544152 -2,531252393 -2,471627899
ZNF517 + 8 146024261 146036554 ENSG00000197363.5 1529 12293 81 4 -2,623544152 -0,583788753 -2,471627899
OR5A1 - 11 59210617 59211667 ENSG00000172320.2 954 1050 0 3 2,00330315 0,889007708 1,398695608
MRPS17 - 7 55954970 56022932 ENSG00000249773.3 744 67962 0 3 1,863136567 1,131022766 1,4653264
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IFNA6 - 9 21349834 21351377 ENSG00000120235.3 576 1543 1 4 1,588574969 0,766991953 1,142146273
KRT222 - 17 38785049 38821393 ENSG00000264058.1 2051 36344 0 5 1,373846734 0,016502355 0,537578278
IFNA8 - 9 21409146 21410184 ENSG00000120242.3 576 1038 1 1 1,259921833 1,402169953 1,50898953
IFNA2 - 9 21384254 21385396 ENSG00000188379.5 573 1142 2 3 1,131156808 1,057697756 1,164000809
KRT1 - 12 53068520 53074191 ENSG00000167768.4 961 5671 0 1 1,079983152 0,943547389 1,203262807
NPR1 - 1 153651113 153666468 ENSG00000169418.9 3418 15355 0 17 1,025095634 -1,936764709 -1,247399084
DCAF8 - 1 160185505 160254920 ENSG00000132716.14 5519 69415 0 1 0,957237464 0,852765373 1,108323503
MC3R - 20 54823788 54824871 ENSG00000124089.4 1089 1083 0 0 0,902668364 1,011532036 1,208983609
ZMYM6 - 1 35447134 35497342 ENSG00000271741.1 2449 50208 0 2 0,869513173 0,40436517 0,718198843
OR51A7 - 11 4928600 4929538 ENSG00000176895.8 945 938 0 4 0,804757994 -0,335079833 0,064676549
NDUFB8 - 10 102265385 102289638 ENSG00000255339.2 1649 24253 0 3 0,754240813 0,086982104 0,392793167
PSMA2 - 7 42948872 42971773 ENSG00000256646.3 2050 22901 0 3 0,712238121 -0,008386022 0,321602379
APOC4 - 19 45445495 45452820 ENSG00000267467.2 738 7325 0 4 0,704400162 -0,22857705 0,115620434
APOC4-
APOC2

- 19 45445495 45452822 ENSG00000224916.4 738 7327 0 4 0,704400145 -0,228577243 0,11562026

TBPL2 - 14 55880259 55923444 ENSG00000182521.5 1170 43185 0 2 0,701161562 0,274519725 0,555543593
RNASE11 - 14 21051051 21077954 ENSG00000259060.2 1076 26903 0 2 0,698384565 0,192699302 0,488118713
ITGB3 - 17 45331212 45421658 ENSG00000259207.3 2815 90446 1 7 0,627821824 -0,513338287 -0,133480891
GPR179 - 17 36481413 36499730 ENSG00000188888.7 7170 18317 0 16 0,603751417 -2,140538837 -1,575368664
ZNF829 - 19 37379026 37407193 ENSG00000185869.9 1417 28167 2 1 0,591881786 1,521491092 1,195510211
NDUFA7 - 19 8373167 8386263 ENSG00000167774.2 514 13096 0 9 0,585504558 -1,2918201 -0,829600132
CCDC15 - 11 124824017 124911385 ENSG00000149548.10 2827 87368 0 1 0,582799287 0,530860254 0,723666949
ZNF223 - 19 44529506 44591471 ENSG00000267022.1 3615 61965 1 9 0,547366961 -0,957878289 -0,506746903
SDHD - 11 111957497 111990353 ENSG00000204370.4 504 32856 1 1 0,508725421 0,923249361 0,892855517
SNURF - 15 25200133 25223729 ENSG00000273173.1 999 23596 1 9 0,494625639 -0,958452948 -0,535054016
TIMM10B - 11 6502677 6505909 ENSG00000132286.7 285 3232 0 2 0,475098274 0,128493226 0,34415333
FPR3 - 19 52298416 52329442 ENSG00000187474.4 1068 31026 0 79 0,470221145 -2,531252393 -2,471627899
UQCR11 - 19 1578338 1605444 ENSG00000267059.2 979 27106 0 3 0,469648729 -0,140174772 0,102481605
TLR9 - 3 52255096 52273183 ENSG00000239732.2 4095 18087 0 0 0,467351633 0,842277503 0,940676644
PSTPIP2 - 18 43563502 43652238 ENSG00000152229.14 1084 88736 1 4 0,461399435 -0,010655736 0,200411894
MDGA2 - 14 47308826 48144157 ENSG00000139915.14 3166 835331 1 3 0,454860699 0,114755413 0,295758017
FPR2 - 19 52255279 52273779 ENSG00000171049.8 1062 18500 0 44 0,431212051 -2,531252393 -2,471627899
PSMA1 - 11 14515329 14541890 ENSG00000256206.2 1333 26561 1 4 0,39544599 -0,090300325 0,123998029
TMEM239 - 20 2795614 2798712 ENSG00000241690.3 811 3098 0 8 0,339550937 -1,36434384 -0,965477352
F11R - 1 160965001 160991138 ENSG00000158769.13 960 26137 1 4 0,300400902 -0,128137195 0,049469062
DDX60L - 4 169277886 169458937 ENSG00000181381.9 5232 181051 2 3 0,294031669 0,513298286 0,489947409
FFAR2 - 19 35934809 35942669 ENSG00000126262.4 999 7860 0 0 0,284150195 0,561513087 0,647392864
C6ORF165 - 6 88117701 88174183 ENSG00000272514.1 1965 56482 1 2 0,2777637 0,349712688 0,415185071
PI4K2A - 10 99344131 99433667 ENSG00000249967.1 1410 89536 1 1 0,271314355 0,711172925 0,66933108
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HOXC4 - 12 54410715 54449813 ENSG00000198353.6 807 39098 0 0 0,262721096 0,632613766 0,703834732
TM9SF1 - 14 24658349 24682679 ENSG00000100926.10 2681 24330 2 3 0,245780253 0,420389432 0,414767658
TAP2 - 6 32781544 32806599 ENSG00000250264.1 2779 25055 1 9 0,221428691 -1,148708643 -0,784288693
OR5A2 - 11 59189416 59190449 ENSG00000172324.4 981 1033 0 3 0,20882175 -0,491335651 -0,252152641
FOXA2 - 20 22561643 22566093 ENSG00000125798.10 1402 4450 0 0 0,164701281 0,522494276 0,570225949
MFRP - 11 119209652 119217368 ENSG00000259159.1 2342 7716 1 13 0,155107232 -1,759853362 -1,303418727
SOGA3 - 6 127759551 127840146 ENSG00000255330.4 4995 80595 1 0 0,115177061 0,934397255 0,779176604
ZNF668 - 16 31072164 31085641 ENSG00000167394.8 1942 13477 0 4 0,110829178 -0,750576 -0,525767985
NPAP1 - 15 24920541 24928593 ENSG00000185823.2 3477 8052 0 0 0,046415865 0,167295388 0,241857986
CELF6 - 15 72559087 72612287 ENSG00000273025.1 985 53200 1 0 0,03683415 0,937300396 0,732061151
MRPL30 - 2 99771461 99811761 ENSG00000273155.1 469 40300 1 97 0,028964383 -2,531252393 -2,471627899
IER3IP1 - 18 44661027 44702652 ENSG00000267228.2 633 41625 1 2 0,025075437 0,166352983 0,180038148
SLC5A3 - 21 35445870 35478559 ENSG00000198743.5 2214 32689 0 2 -0,008765236 -0,363896839 -0,220639291
ZNF747 - 16 30537244 30546173 ENSG00000261459.1 2688 8929 0 0 -0,039583786 0,365128257 0,360116263
AQP1 - 7 30893010 30963427 ENSG00000250424.3 1720 70417 3 2 -0,067720053 0,829709529 0,519393278
ALG9 - 11 111652919 111742305 ENSG00000086848.10 1799 89386 2 2 -0,102760105 0,439840777 0,292094762
ZFP41 - 8 144328991 144344875 ENSG00000181638.13 603 15884 1 0 -0,109732969 0,717745364 0,510519046
MT1B - 16 56685811 56687116 ENSG00000169688.10 231 1305 2 74 -0,110008246 -2,531252393 -2,471627899
CRIP1 - 14 105952654 105955284 ENSG00000213145.5 212 2630 1 2 -0,136071241 0,091043029 0,045688945
SYCP2 - 20 58438618 58508710 ENSG00000196074.8 4933 70092 4 9 -0,141331208 -0,473549305 -0,316503603
CHMP4C - 8 82644669 82671750 ENSG00000164695.4 732 27081 1 3 -0,1488854 -0,230913621 -0,192377797
DENND2C - 1 115125469 115213043 ENSG00000175984.10 2721 87574 3 1 -0,166017758 1,016912902 0,613251714
EFNA3 - 1 155036224 155059283 ENSG00000251246.1 732 23059 1 0 -0,284459084 0,686259544 0,412188207
SLC10A5 - 8 82605842 82608409 ENSG00000253598.1 1323 2567 2 2 -0,291947566 0,104626332 -0,066575942
ZNF709 - 19 12571998 12624668 ENSG00000242852.2 1950 52670 2 2 -0,347885862 0,165404134 -0,004170961
IFNA13 - 9 21367371 21368075 ENSG00000233816.2 577 704 1 4 -0,375814849 -0,724692337 -0,663193596
LTB4R2 - 14 24774940 24781259 ENSG00000213906.5 1315 6319 1 0 -0,384529414 0,51856652 0,242996017
SOX7 - 8 10581278 10697357 ENSG00000171056.6 1618 116079 1 9 -0,385358363 -1,61821428 -1,380663381
LSP1 - 11 1874200 1913497 ENSG00000130592.9 938 39297 2 3 -0,431311613 -0,049404415 -0,199708948
ZNF8 - 19 58790317 58807254 ENSG00000083842.8 1680 16937 2 3 -0,499181617 -0,199688553 -0,334719242
ASGR2 - 17 7004641 7019019 ENSG00000161944.12 906 14378 3 4 -0,606254293 -0,156681805 -0,333131143
ACE - 17 61554422 61599205 ENSG00000159640.10 4273 44783 4 2 -0,630531362 0,711424805 0,190219613
CCDC178 - 18 30517366 31021065 ENSG00000166960.12 2730 503699 4 1 -0,639756324 0,86839966 0,260166627
SLC25A10 - 17 79670401 79687569 ENSG00000262660.1 1404 17168 4 5 -0,692123393 -0,152211722 -0,351092297
C2ORF15 - 2 99757948 99767950 ENSG00000273045.1 390 10002 3 86 -0,751355563 -2,531252393 -2,471627899
LIPN - 10 90521163 90537999 ENSG00000204020.5 1224 16836 3 3 -0,80807055 -0,090253703 -0,374849419
PIK3R2 - 19 18263928 18281350 ENSG00000105647.10 1678 17422 3 0 -0,818207213 0,966641614 0,234346542
MYH3 - 17 10531843 10560626 ENSG00000109063.10 6057 28783 8 9 -0,83613782 -0,059029141 -0,227385648
CFB - 6 31895475 31919825 ENSG00000244255.1 4797 24350 8 3 -1,21655474 0,860292159 0,019899919
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OC90 - 8 133036467 133071627 ENSG00000253117.4 1424 35160 4 4 -1,22297483 -0,318979538 -0,70733283
UGT2A1 - 4 70454135 70518965 ENSG00000173610.7 1620 64830 5 8 -1,452397597 -1,157114238 -1,290499802
CDRT1 - 17 15468797 15469590 ENSG00000181464.2 735 793 5 13 -1,583552773 -1,987581379 -1,933008812
ZNF763 - 19 12035890 12090105 ENSG00000267179.1 3340 54215 7 13 -1,672130671 -1,613127348 -1,620374567
PCDH15 - 10 55562531 57387702 ENSG00000150275.13 7759 1825171 15 5 -1,70907171 0,649013663 -0,270961846
TMBIM4 - 12 66517697 66563765 ENSG00000228144.2 1009 46068 6 7 -1,713035924 -0,935854517 -1,24193792
NAA60 - 16 3415099 3536960 ENSG00000262621.2 1755 121861 5 3 -1,7214776 -0,241712945 -0,899431715
KLK9 - 19 51499274 51512837 ENSG00000269741.1 1530 13563 7 2 -1,737563801 0,543418516 -0,486487867
TM4SF19 - 3 196042953 196065244 ENSG00000273331.1 1067 22291 6 8 -1,74542378 -1,052405841 -1,353431098
ITFG3 - 16 284545 319942 ENSG00000167930.11 2047 35397 8 17 -2,119119744 -2,137781451 -2,083388631
MYH1 - 17 10395624 10421860 ENSG00000109061.9 6048 26236 14 66 -2,145800473 -2,531252393 -2,471627899
KIAA0391 - 14 35591052 35743271 ENSG00000100890.11 1858 152219 8 17 -2,363937756 -2,388528159 -2,349853415
PGBD2 - 1 249200395 249214145 ENSG00000185220.7 1791 13750 10 44 -2,372034031 -2,531252393 -2,471627899
F2RL2 - 5 75911307 75919259 ENSG00000164220.6 1137 7952 9 1 -2,394665006 0,582109157 -0,860471779
MS4A10 - 11 60552821 60568778 ENSG00000172689.1 758 15957 11 2 -2,623544152 0,341150501 -1,151351654
MS4A15 - 11 60524426 60544205 ENSG00000166961.10 627 19779 11 2 -2,623544152 0,386350104 -1,100406599
FAM170A - 5 118965254 118971517 ENSG00000164334.11 1064 6263 12 2 -2,623544152 0,470445528 -1,080167359
OR51T1 - 11 4903049 4904113 ENSG00000176900.2 1071 1064 12 3 -2,623544152 -0,312879774 -1,741515134
GALT - 9 34638130 34651032 ENSG00000213930.7 1279 12902 18 6 -2,623544152 -0,256425303 -1,622835199
PAGR1 - 16 29827285 29841948 ENSG00000185928.7 914 14663 19 28 -2,623544152 -2,218653397 -2,356307677
MYH2 - 17 10424465 10453274 ENSG00000125414.14 6112 28809 20 20 -2,623544152 -1,479661087 -1,744933332
LCN6 - 9 139632619 139642905 ENSG00000204003.4 1113 10286 21 7 -2,623544152 -1,050552283 -2,471627899
MUSK - 9 113431051 113563859 ENSG00000030304.8 2867 132808 24 10 -2,623544152 -0,962658632 -2,194517064
LRRC37A3- 17 62850430 62915598 ENSG00000176809.6 4656 65168 29 32 -2,623544152 -2,531252393 -2,471627899
SHPK - 17 3468738 3539543 ENSG00000262304.1 4111 70805 67 14 -2,623544152 -1,803423642 -2,471627899
TRPM1 - 15 31293264 31453476 ENSG00000134160.9 5046 160212 68 32 -2,623544152 -1,725519217 -2,471627899
CAPN11 - 6 44126548 44152139 ENSG00000137225.8 2274 25591 88 106 -2,623544152 -2,531252393 -2,471627899
KRT77 - 12 53083410 53097247 ENSG00000189182.5 1510 13837 165 3 -2,623544152 0,387708152 -2,471627899
AOC1 - 7 150521715 150558592 ENSG00000002726.15 2336 36877 251 1 -2,623544152 0,502388617 -2,471627899

Table A.4: Deletions common to ExAC CNVs. Data is sorted from low to high deletion score (del.score) and duplication (dup) frequencies. ”+” indicates
expression in the brain. Deletion score increases with increasing intolerance.
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Chr Start End Sample Length Genes Regions
to filter

20 54823759 54824900 SN7640114_5535_ROL_0391_1 1141 MC3R No
1 53320120 53329849 SN7640113_5560_ROL_0501_1 9729 ZYG11A Yes
6 33693196 33703280 SN7640116_5738_ROL_0691_1 10084 IP6K3 No
5 96506883 96518935 SN7640099_3853_D202_1 12052 RIOK2 Yes
5 71519462 71533975 SN10600087_4671_E145b_1 14513 MRPS27 No
19 45447959 45465365 SN10410083_4605_EPW_10381_1 17406 APOC2, APOC4, APOC4-APOC2, CLPTM1 No
1 43296070 43317484 SN7640116_5714_ROL_0591_1 21414 ERMAP, ZNF691 No
14 77302503 77327178 SN7640113_5314_S97_1 24675 LRRC74A No
4 169362457 169393930 SN7640116_5718_ROL_0631_1 31473 DDX60L No
1 115137047 115168530 SN7640114_5320_E130f_1 31483 DENND2C No
10 49383834 49420140 SN10410083_4604_EPW_10371_1 36306 FRMPD2 No
2 44502637 44539912 SN7640110_4834_EPW_10651_1 37275 SLC3A1 No
17 73623470 73661285 SN10410083_4602_EPW_10311_1 37815 RECQL5, SMIM5, SMIM6 Yes
5 140482462 140531165 SN7640097_3840_E650_1 48703 PCDHB3, PCDHB4, PCDHB5, PCDHB6 Yes
18 30873076 30928981 SN7640110_4822_EPW_10561_1 55905 CCDC178 Yes
5 75858199 75914495 SN7640110_4823_EPW_10571_1 56296 F2RL2, IQGAP2 No
3 4403776 4562816 SN7640113_5548_ROL_0451_1 159040 ITPR1, ITPR1-AS1, SUMF1 No
16 9856958 10032248 SN7640112_5141_EPW_11111_1 175290 GRIN2A No
8 82571539 82752251 SN10410083_4581_EPW_10181_1 180712 CHMP4C, IMPA1, SLC10A5, SNX16, ZFAND1 No
17 10403892 10632442 SN7640097_3843_E91_1 228550 ADPRM, MAGOH2P, MYH1, MYH2, MYH3, MYHAS,

SCO1, TMEM220
No

14 54863694 55907289 SN7640113_5558_ROL_0481_1 1043595 ATG14, CDKN3, CGRRF1, CNIH1, DLGAP5, FBXO34,
GCH1, GMFB, LGALS3, MAPK1IP1L, MIR4308,
SAMD4A, SOCS4, TBPL2, WDHD1

No

15 29346087 32460550 SN7640113_5549_ROL_0461_1 3114463 APBA2, ARHGAP11B, CHRFAM7A, CHRNA7,
DKFZP434L187, FAM189A1, FAN1, GOLGA8H,
GOLGA8J, GOLGA8R, GOLGA8T, HERC2P10, KLF13,
LOC100288637, LOC283710, MIR211, MTMR10, NDNL2,
OTUD7A, TJP1, TRPM1, ULK4P1, ULK4P2, ULK4P3

No

15 23811123 28525396 SN7640112_5240_EPW_11321_1 4714273 ATP10A, GABRA5, GABRB3, GABRG3, GABRG3-
AS1, HERC2, IPW, LINC00929, LOC100128714,
MAGEL2, MIR4715, MKRN3, NDN, NPAP1, OCA2,
PWAR1, PWAR4, PWAR5, PWARSN, PWRN1, PWRN2,
PWRN3, PWRN4, SNORD107, SNORD108, SNORD109A,
SNORD109B, SNORD115-1, SNORD115-10, SNORD115-
11, SNORD115-12, SNORD115-13

No

Table A.5: Deletions detected via WES data and validated by array data.
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A.4 Familial-PD

https://dropit.uni.lu/invitations?share=6dc8ba728b76345dd71c&dl=0

Table A.6: Top 15 genes containing coding, non-coding and CNVs per family. When a variant is not present
in a gene it is represented as ”NA”. coding_dom_gene = coding variants following autosomal dominant in-
heritance, coding_dom_score = phenolyzer score of coding variants following autosomal dominant inheritance,
coding_dom_cand_gene = Whether coding variants following autosomal dominant inheritance are present in the
candidate gene list or not, coding_dom_gene = coding variants following autosomal recessive inheritance, cod-
ing_rec_gene coding_rec_score = phenolyzer score of coding variants following autosomal recessive inheritance,
coding_rec_cand_gene = Whether coding variants following autosomal recessive inheritance is present in the can-
didate gene list or not, noncoding_dom_score = noncoding variants following autosomal dominant inheritance,
noncoding_dom_score = phenolyzer score of noncoding variants following autosomal dominant inheritance, non-
coding_dom_cand_gene = Whether noncoding variants following autosomal dominant inheritance are present in
the candidate gene list or not, noncoding_rec_gene = noncoding variants following autosomal recessive inheri-
tance, noncoding_rec_score = phenolyzer score of noncoding variants following autosomal recessive inheritance,
noncoding_rec_cand_gene = Whether noncoding variants following autosomal recessive inheritance are present
in the candidate gene list or not, cnv_ del_gene = Genes spanning a deletion, cnv_ del_score = Phenolyzer
score of genes spanning a deletion, cnv_ del_cand_gene = Whether genes spanning a deletion are present in the
candidate gene list or not, cnv_ dup_gene = Genes spanning a duplication, cnv_ dup_score = Phenolyzer score
of genes spanning a duplication, cnv_ dup_cand_gene = Whether genes spanning a duplication are present in
the candidate gene list or not

Family MOI
102 AD
104 AD
14 AD
164 AD
251 AD
252 AD
253 AD
259 AD
292 AD
3065 AD
3070 AD
315 AD
326 AD
332 AD
338 AD
3401 AD
HCB1 AD
HCB2 AD
HCB4 AD
PD290 AD
PD291 AD
PD317 AD
PD320 AD
307234 AR
3086 AR
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3886 AR
Fam_034 AR
Fam_158 AR
Fam_175 AR
Fam_176 AR
HCB5 AR
PD172 AR
PD257 AR
PD296 AR
PD300 AR
PD313 AR

Table A.7: Name of the family and the mode of inheritance that was tested.
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Family MOI Chr Pos Ref Alt Function Gene AA.change HGMD disease
3065 AD 7 107350620 G C ex SLC26A4 p.E737D Hearing loss
3065 AD 17 78079509 T G int GAA . Glycogen storage disease 2
3065 AD X 47315839 T G spl ZNF41 . Mental retardation
3070 AD 10 55955444 T G ex_spl PCDH15 p.D398A Usher syndrome 1
3070 AR 1 98502934 G T ncRNA_int MIR137HG . Schizophrenia%2C increased risk
3070 AR 6 6320808 T G int F13A1 . Factor XIII deficiency
3086 AD 7 117307052 G A ex CFTR p.D1445N Cystic fibrosis
3086 AD 8 100832259 A G ex VPS13B p.N2993S Cohen syndrome
3086 AD 9 111911955 A AT ex FRRS1L p.I146fs Encephalopathy%2C epileptic-

dyskinetic
3086 AD 21 44480591 G A ex CBS p.R264C Homocystinuria
3401 AD 1 76211574 C A ex ACADM p.T39N Medium chain acyl CoA dehydrogenase

deficiency
3401 AD 1 94466625 G A ex ABCA4 p.R2107C Stargardt disease
3401 AD 3 37089131 A C ex MLH1 p.K377T Colorectal cancer%2C non-polyposis
3401 AD 5 74981103 C T ex POC5 p.A421T Scoliosis
3401 AD 8 55542540 G A ex RP1 p.C2033Y Retinitis pigmentosa
3401 AD 9 136494594 G T intgen FAM163B_DBH . Altered enzyme activity
3401 AD 12 114837349 C A ex TBX5 p.D61Y Holt-Oram syndrome
3401 AD 16 56906568 C T ex_spl SLC12A3 p.A322V Gitelman syndrome
3401 AD 16 89986130 T C ex MC1R p.I155T Red hair%2C increased risk
3401 AD 20 33763985 C T ex PROCR p.R113C Venous thromboembolism
3401 AD X 153171698 GCGCCGCAGGGGA G ex AVPR2 p.247_250del Diabetes insipidus%2C nephrogenic
3886 AD 5 135391462 A G ex TGFBI p.M502V Corneal dystrophy
3886 AR 7 94227276 T G ex SGCE p.S432R Myoclonus dystonia syndrome
GRIP_102 AD 1 22202483 G A ex HSPG2 p.P1020L Schwartz-Jampel syndrome type 1
GRIP_102 AD 1 150530505 T TG ex ADAMTSL4 p.F754fs Ectopia lentis%2C isolated form
GRIP_102 AD 1 196620941 C T up CFH . Haemolytic uraemic syndrome%2C

atypical
GRIP_102 AD 2 157369961 C T ex GPD2 p.P205L Intellectual disability
GRIP_102 AD 6 26091179 C G ex HFE p.H63D Haemochromatosis%2C association

with
GRIP_102 AD 15 28230247 C T ex OCA2 p.V419I Albinism%2C oculocutaneous II
GRIP_102 AD 17 7576841 A G int TP53 . Breast and:or ovarian cancer
GRIP_102 AR 14 95581899 G A int DICER1 . Breast cancer
GRIP_102 AR 17 78079509 T G int GAA . Glycogen storage disease 2
GRIP_104 AD 3 15686693 G C ex BTD p.D444H Biotinidase deficiency%2C partial
GRIP_104 AD 3 48627789 C A ex_spl COL7A1 p.G636V Epidermolysis bullosa%2C recessive

dystrophic
GRIP_104 AD 5 177638965 T A ex PHYKPL p.E396V Phosphohydroxylysinuria
GRIP_104 AD 8 61693942 G GAAAGCA ex CHD7 p.K683delinsKKA Kallmann syndrome
GRIP_104 AD 9 99064254 G A ex HSD17B3 p.R45W Hypospadias
GRIP_104 AD 11 108124486 T G int ATM . Breast cancer
GRIP_104 AD 13 52542680 A G ex ATP7B p.V536A Wilson disease
GRIP_104 AD 14 94847262 T A ex SERPINA1 p.E288V Antitrypsin alpha 1 deficiency%2C par-

tial
GRIP_104 AD 16 88904097 A C ex GALNS p.F167V Mucopolysaccharidosis IVa
GRIP_104 AR 1 98502934 G T ncRNA_int MIR137HG . Schizophrenia%2C increased risk
GRIP_104 AR 7 94227276 T G ex SGCE p.S432R Myoclonus dystonia syndrome
GRIP_104 AR 16 56917953 T C int SLC12A3 . Gitelman syndrome%2C without hypo-

magnesaemia
GRIP_104 AR 17 78079509 T G int GAA . Glycogen storage disease 2
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GRIP_14 AD 1 53662764 C A ex_spl CPT2 p.P50H Carnitine palmitoyltransferase 2 defi-
ciency

GRIP_14 AD 11 46747447 G A ex F2 p.E200K Dysprothrombinaemia
GRIP_14 AD 11 57365748 C T ex SERPING1 p.A2V Angioneurotic oedema
GRIP_14 AD 12 6234884 G A up VWF . Von Willebrand disease 1
GRIP_14 AD 16 14041848 C T ex ERCC4 p.R799W Xeroderma pigmentosum (F)
GRIP_14 AR 8 55542540 G A ex RP1 p.C2033Y Retinitis pigmentosa
GRIP_164 AD 16 56917953 T C int SLC12A3 . Gitelman syndrome%2C without hypo-

magnesaemia
GRIP_164 AD 17 7128292 G A ex ACADVL p.R593Q Very long chain acyl-CoA dehydroge-

nase deficiency
GRIP_164 AD 19 2435150 C T ex LMNB2 p.R235Q Lipodystrophy%2C partial%2C ac-

quired%2C susceptibility to
GRIP_251 AD 1 16091760 C T int FBLIM1 . Chronic multifocal osteomyelitis
GRIP_251 AD 5 137089865 C G UTR5 HNRNPA0 . Cancer%2C increased risk
GRIP_251 AD 6 26091179 C G ex HFE p.H63D Haemochromatosis%2C association

with
GRIP_251 AD 10 43598056 G A ex RET p.V202M Hirschsprung disease
GRIP_251 AD 13 39453010 G A ex FREM2 p.V2968I Congenital high airways obstruction

syndrome
GRIP_251 AD 16 56917953 T C int SLC12A3 . Gitelman syndrome%2C without hypo-

magnesaemia
GRIP_251 AR 17 78079509 T G int GAA . Glycogen storage disease 2
GRIP_252 AD 1 3329229 G C ex PRDM16 p.R823P Sudden unexpected death in infancy
GRIP_252 AD 1 16091760 C T int FBLIM1 . Chronic multifocal osteomyelitis
GRIP_252 AD 2 71896835 G A ex DYSF p.D1862N Muscular dystrophy%2C limb girdle :

Miyoshi myopathy
GRIP_252 AD 3 39226442 C T ex XIRP1 p.E182K Primary microcephaly
GRIP_252 AD 7 94227276 T G ex SGCE p.S432R Myoclonus dystonia syndrome
GRIP_252 AD 7 117199644 ATCT A ex CFTR p.507_508del Cystic fibrosis
GRIP_252 AD 9 12694274 G A ex TYRP1 p.R93H Albinism%2C oculocutaneous 3
GRIP_252 AD 10 55955444 T G ex_spl PCDH15 p.D398A Usher syndrome 1
GRIP_252 AD 11 64577603 G T spl MEN1 . Hyperparathyroidism
GRIP_252 AD 14 51382091 C T ex PYGL p.V422M Glycogen storage disease 6
GRIP_252 AD 15 89868870 G A ex POLG p.P587L Progressive external ophthalmoplegia
GRIP_252 AD 15 89873415 G A ex POLG p.T251I Progressive external ophthalmoplegia
GRIP_252 AD 20 21690094 A C int PAX1 . Klippel-Feil syndrome
GRIP_252 AD 22 36691696 A G ex MYH9 p.S1114P Alport syndrome with macrothrombo-

cytopaenia
GRIP_252 AR 1 98502934 G T ncRNA_int MIR137HG . Schizophrenia%2C increased risk
GRIP_252 AR 15 45408933 T C int DUOXA2 . Hypothyroidism
GRIP_252 AR 16 56917953 T C int SLC12A3 . Gitelman syndrome%2C without hypo-

magnesaemia
GRIP_253 AD 2 220439916 G A ex INHA p.A257T Premature ovarian failure
GRIP_253 AD 6 26091179 C G ex HFE p.H63D Haemochromatosis%2C association

with
GRIP_253 AD 8 55542540 G A ex RP1 p.C2033Y Retinitis pigmentosa
GRIP_253 AD 8 106431420 A G ex ZFPM2 p.E30G Tetralogy of Fallot
GRIP_253 AD 10 27389395 G C UTR5 ANKRD26 . Thrombocytopaenia 2
GRIP_253 AD 10 55955444 T G ex_spl PCDH15 p.D398A Usher syndrome 1
GRIP_253 AD 14 64676751 C T ex SYNE2 p.T6211M Muscular dystrophy%2C Emery-

Dreifuss
GRIP_253 AD 16 3706649 G A ex DNASE1 p.V111M Autoimmune thyroid disease
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GRIP_253 AD 16 81298282 C T ex BCO1 p.T170M Hypercarotenemia and hypovita-
minosis A

GRIP_253 AD 17 7127894 C T int ACADVL . Very long chain acyl-CoA dehydroge-
nase deficiency

GRIP_253 AD 19 11552120 G A ex PRKCSH p.R139H Polycystic liver disease
GRIP_253 AR 11 824789 T C ex PNPLA2 p.L481P Myopathy%2C late-onset
GRIP_253 AR 15 45408933 T C int DUOXA2 . Hypothyroidism
GRIP_253 AR 17 78079509 T G int GAA . Glycogen storage disease 2
GRIP_259 AD 1 98502934 G T ncRNA_int MIR137HG . Schizophrenia%2C increased risk
GRIP_259 AD 6 26091179 C G ex HFE p.H63D Haemochromatosis%2C association

with
GRIP_259 AD 7 94227276 T G ex SGCE p.S432R Myoclonus dystonia syndrome
GRIP_259 AD 16 29825015 G GC ex PRRT2 p.A214fs Paroxysmal kinesigenic dyskinesia
GRIP_259 AR 6 6320808 T G int F13A1 . Factor XIII deficiency
GRIP_259 AR 17 3561396 C T ex CTNS p.T260I Cystinosis%2C nephropathic
GRIP_292 AD 1 211654499 T C ex RD3 p.K87E Retinitis pigmentosa%2C autosomal re-

cessive
GRIP_292 AD 2 152385774 C G ex NEB p.D5516H Nemaline myopathy
GRIP_292 AD 11 22296266 C T ex ANO5 p.S795L Muscular dystrophy%2C limb girdle 2L
GRIP_292 AD 17 8140757 GCTTT G ex CTC1 p.K242fs Coats plus
GRIP_292 AD 17 78079509 T G int GAA . Glycogen storage disease 2
GRIP_315 AD 1 27684750 G A ex MAP3K6 p.P938L Gastric cancer%2C predisposition to
GRIP_315 AD 1 98502934 G T ncRNA_int MIR137HG . Schizophrenia%2C increased risk
GRIP_315 AD 1 161136225 G T UTR5 PPOX . Porphyria%2C variegate
GRIP_315 AD 1 161172233 C A ex NDUFS2 p.P20T Mitochondrial complex I deficiency
GRIP_315 AD 2 31805826 C T ex SRD5A2 UNKNOWN Hypospadias%2C mild
GRIP_315 AD 2 32289031 C T ex SPAST p.S44L Spastic paraplegia
GRIP_315 AD 4 128843111 C G ex MFSD8 p.E336Q Macular dystrophy%2C nonsyndromic
GRIP_315 AD 6 166574346 G A ex T p.A280V Vertebral malformation
GRIP_315 AD 7 94227276 T G ex SGCE p.S432R Myoclonus dystonia syndrome
GRIP_315 AD 7 117199644 ATCT A ex CFTR p.507_508del Cystic fibrosis
GRIP_315 AD 8 55542540 G A ex RP1 p.C2033Y Retinitis pigmentosa
GRIP_315 AD 8 61693942 G GAAAGCA ex CHD7 p.K683delinsKKA Kallmann syndrome
GRIP_315 AD 9 12702410 TACAA T ex TYRP1 p.T352fs Albinism%2C oculocutaneous 3
GRIP_315 AD 9 136495229 C G intgen FAM163B_DBH . Altered enzyme activity
GRIP_315 AD 10 13325784 C T ex PHYH p.R157Q Phytanoyl-CoA hydroxylase defi-

ciency%2C partial
GRIP_315 AD 10 55955444 T G ex_spl PCDH15 p.D398A Usher syndrome 1
GRIP_315 AD 16 56917953 T C int SLC12A3 . Gitelman syndrome%2C without hypo-

magnesaemia
GRIP_315 AD 16 86602272 A G ex FOXC2 p.Q444R Lymphoedema%2C primary
GRIP_315 AD 16 89595983 C CT ex_spl SPG7 p.A286fs Spastic paraplegia
GRIP_315 AD 18 3188778 C T ex MYOM1 p.E247K Cardiomyopathy%2C dilated
GRIP_315 AD 20 3687141 C A ex SIGLEC1 p.E88X SIGLEC1 deficiency
GRIP_315 AR 6 6320808 T G int F13A1 . Factor XIII deficiency
GRIP_315 AR 11 824789 T C ex PNPLA2 p.L481P Myopathy%2C late-onset
GRIP_315 AR 15 45408933 T C int DUOXA2 . Hypothyroidism
GRIP_315 AR 17 3561396 C T ex CTNS p.T260I Cystinosis%2C nephropathic
GRIP_315 AR 17 78079509 T G int GAA . Glycogen storage disease 2
GRIP_315 AR X 153296347 G A ex MECP2 p.T323M Rett syndrome
GRIP_326 AD 1 5927943 G A ex NPHP4 p.A598V Cardiovascular malformations
GRIP_326 AD 1 151139877 C T ex SCNM1_TNFAIP8L2-

SCNM1
p.R94C Epilepsy%2C idiopathic generalized
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GRIP_326 AD 1 247588858 C A ex NLRP3 p.Q705K Cryopyrin-associated periodic syn-
drome%2C atypical

GRIP_326 AD 2 215595159 T C ex BARD1 p.R146R Breast and:or ovarian cancer
GRIP_326 AD 3 15686693 G C ex BTD p.D444H Biotinidase deficiency%2C partial
GRIP_326 AD 6 162206909 G A ex PRKN p.R107C Parkinsonism%2C juvenile%2C autoso-

mal recessive
GRIP_326 AD 7 117230454 G C ex CFTR p.G576A Congenital absence of vas deferens
GRIP_326 AD 7 117232223 C T ex CFTR p.R668C Cystic fibrosis
GRIP_326 AD 7 117251692 G A ex CFTR p.R1066H Cystic fibrosis
GRIP_326 AD 9 34648167 A G ex_spl GALT p.Q79R Galactosaemia
GRIP_326 AD 9 136494594 G T intgen FAM163B_DBH . Altered enzyme activity
GRIP_326 AD 10 27389395 G C UTR5 ANKRD26 . Thrombocytopaenia 2
GRIP_326 AD 10 55955444 T G ex_spl PCDH15 p.D398A Usher syndrome 1
GRIP_326 AD 11 67816547 G A spl TCIRG1 . Osteopetrosis%2C autosomal recessive
GRIP_326 AD 14 94847262 T A ex SERPINA1 p.E288V Antitrypsin alpha 1 deficiency%2C par-

tial
GRIP_326 AD 15 65116390 C A ex PIF1 p.E49X Multiple sessile serrated adenoma
GRIP_326 AD 16 8905010 G A ex PMM2 p.R141H Congenital disorder of glycosylation 1a
GRIP_326 AD 16 28884858 C T ex SH2B1 p.A663V Obesity%2C severe%2C early-onset
GRIP_326 AD 16 56917953 T C int SLC12A3 . Gitelman syndrome%2C without hypo-

magnesaemia
GRIP_326 AD 16 86602272 A G ex FOXC2 p.Q444R Lymphoedema%2C primary
GRIP_326 AD 16 89595983 C CT ex_spl SPG7 p.A286fs Spastic paraplegia
GRIP_326 AD 17 7576841 A G int TP53 . Breast and:or ovarian cancer
GRIP_326 AD 17 18051447 C T ex MYO15A p.T2205I Sensorineural deafness in SMS
GRIP_326 AD 17 42337247 C T ex SLC4A1 p.R180H Spherocytosis
GRIP_326 AD 22 42463140 G C ex NAGA p.S160C N-acetylgalactosaminidase alpha defi-

ciency
GRIP_326 AD X 100630121 G A int BTK . Agammaglobulinaemia
GRIP_332 AD 1 43804305 G C ex MPL p.R102P Amegakaryocytic thrombocytopae-

nia%2C congenital
GRIP_332 AD 2 56145171 T G ex EFEMP1 p.D49A Cuticular drusen
GRIP_332 AD 2 166012375 C T ex SCN3A p.R357Q Epilepsy%2C focal
GRIP_332 AD 2 179599667 G C ex TTN p.P3751R Cardiac dysrhythmia
GRIP_332 AD 6 7586120 T A UTR3 DSP . Cardiomyopathy%2C arrhythmogenic

right ventricular
GRIP_332 AD 6 66417039 G A UTR5 EYS . Retinitis pigmentosa%2C autosomal re-

cessive
GRIP_332 AD 7 21882209 G A ex DNAH11 p.R3580H Primary ciliary dyskinesia
GRIP_332 AD 7 42007201 T C ex GLI3 p.I808M Greig cephalopolysyndactyly syndrome
GRIP_332 AD 11 22294441 C G ex ANO5 p.T713S Muscular dystrophy
GRIP_332 AD 11 118959807 C T ex HMBS p.T59I Porphyria%2C acute intermittent
GRIP_332 AD 15 75189391 G A ex MPI p.R245H Congenital disorder of glycosylation 1b
GRIP_332 AD 18 50848468 A G ex DCC p.N702S Mirror movements%2C congenital
GRIP_332 AD 19 35775902 G A ex HAMP p.G71D Haemochromatosis
GRIP_332 AD 20 5282973 G A ex PROKR2 p.P290S Kallmann syndrome
GRIP_332 AD 22 50962423 C T ex SCO2 p.E140K Cytochrome c oxidase deficiency
GRIP_332 AR 7 94227276 T G ex SGCE p.S432R Myoclonus dystonia syndrome
GRIP_338 AD 2 31805826 C T ex SRD5A2 UNKNOWN Hypospadias%2C mild
GRIP_338 AD 6 26091179 C G ex HFE p.H63D Haemochromatosis%2C association

with
GRIP_338 AD 9 136495229 C G intgen FAM163B_DBH . Altered enzyme activity
GRIP_338 AD 14 88452941 T C ex GALC p.T89A Krabbe disease
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GRIP_338 AD 16 56917953 T C int SLC12A3 . Gitelman syndrome%2C without hypo-
magnesaemia

GRIP_338 AD 16 89613145 C T ex SPG7 p.A510V Upper motor neuron syndrome
GRIP_338 AD 17 46022065 G A ex PNPO p.R116Q PNPO deficiency
GRIP_338 AD 17 47489162 C A ex PHB p.R43L Haemolytic uraemic syndrome%2C

atypical
GRIP_338 AR 7 94227276 T G ex SGCE p.S432R Myoclonus dystonia syndrome
Ital_034 AD 1 98502934 G T ncRNA_int MIR137HG . Schizophrenia%2C increased risk
Ital_034 AD 14 95581899 G A int DICER1 . Breast cancer
Ital_034 AD 22 30642690 G T UTR5 LIF . Female infertility
Ital_034 AR 6 6320808 T G int F13A1 . Factor XIII deficiency
Ital_034 AR 15 45408933 T C int DUOXA2 . Hypothyroidism
Ital_034 AR 16 56917953 T C int SLC12A3 . Gitelman syndrome%2C without hypo-

magnesaemia
Ital_034 AR 17 3561396 C T ex CTNS p.T260I Cystinosis%2C nephropathic
Ital_034 AR 17 78079509 T G int GAA . Glycogen storage disease 2
Ital_158 AD 10 72360577 G A ex PRF1 p.R28C Arthritis%2C juvenile
Ital_158 AD 11 824789 T C ex PNPLA2 p.L481P Myopathy%2C late-onset
Ital_175 AD 1 55509622 G A ex PCSK9 p.R105Q Hypercholesterolaemia
Ital_175 AD 2 38301847 C T ex CYP1B1 p.E229K Glaucoma%2C primary congenital
Ital_175 AD 7 84636183 G T ex SEMA3D p.P615T Hirschsprung disease
Ital_175 AD 8 106801042 G C ex ZFPM2 p.S210T Ovotesticular disorder of sex develop-

ment
Ital_175 AD 10 17113456 C T ex CUBN p.S865N Megaloblastic anaemia
Ital_175 AD 10 27389395 G C UTR5 ANKRD26 . Thrombocytopaenia 2
Ital_175 AD 10 43613907 T A ex RET p.Y791N Hirschsprung disease
Ital_175 AD 14 95581899 G A int DICER1 . Breast cancer
Ital_175 AR 1 98502934 G T ncRNA_int MIR137HG . Schizophrenia%2C increased risk
Ital_175 AR 6 6320808 T G int F13A1 . Factor XIII deficiency
Ital_175 AR 11 824789 T C ex PNPLA2 p.L481P Myopathy%2C late-onset
Ital_175 AR 17 3561396 C T ex CTNS p.T260I Cystinosis%2C nephropathic
Ital_175 AR 17 78079509 T G int GAA . Glycogen storage disease 2
Ital_176 AD 6 161006077 C T spl LPA . Lp(a) deficiency
Ital_176 AD 15 73615786 G C ex HCN4 p.P883R Sinus bradycardia & myocardial non-

compaction
PD172 AD 1 161172233 C A ex NDUFS2 p.P20T Mitochondrial complex I deficiency
PD172 AD 11 824789 T C ex PNPLA2 p.L481P Myopathy%2C late-onset
PD172 AD 15 28326942 C T ex OCA2 p.G27R Albinism%2C oculocutaneous II
PD172 AD 16 16272711 C T ex ABCC6 p.V787I Pseudoxanthoma elasticum%2C auto-

somal recessive
PD172 AR 10 55955444 T G ex_spl PCDH15 p.D398A Usher syndrome 1
PD257 AD 1 98502934 G T ncRNA_int MIR137HG . Schizophrenia%2C increased risk
PD257 AD 1 156085059 A G ex LMNA p.K117R Cardiac disease
PD257 AD 2 21249840 A T spl APOB . Hypobetalipoproteinaemia
PD257 AD 2 71738977 G A ex DYSF p.G129E Muscular dystrophy%2C limb girdle :

Miyoshi myopathy
PD257 AD 2 99006159 C T ex CNGA3 p.P145L Colour-blindness%2C total
PD257 AD 3 38603958 G A ex SCN5A p.T1250M Long QT syndrome
PD257 AD 7 94227276 T G ex SGCE p.S432R Myoclonus dystonia syndrome
PD257 AD 7 117250575 G C ex_spl CFTR p.L997F Congenital absence of vas deferens
PD257 AD 7 128043703 C T int IMPDH1 . Retinitis pigmentosa%2C autosomal

dominant
PD257 AD 9 100616939 C G ex FOXE1 p.A248G Thyroid carcinoma%2C non-medullary
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PD257 AD 10 55973755 G A ex PCDH15 p.L310F Hearing loss
PD257 AD 11 6631386 G C ex ILK p.Q301H Cardiomyopathy%2C hypertrophic
PD257 AD 11 22239825 C T ex ANO5 p.R57W Myopathy : muscular dystrophy
PD257 AD 12 103306579 C T ex PAH p.R53H Phenylketonuria
PD257 AD 13 23913549 T C ex SACS p.N1342S Intellectual disability%2C cerebellar

taxia
PD257 AD 13 28498702 C A ex PDX1 p.P239Q Diabetes mellitus%2C type 2
PD257 AD 17 78079509 T G int GAA . Glycogen storage disease 2
PD257 AD 18 44140279 CTCT C ex LOXHD1 p.942_943del Hearing loss
PD257 AR 6 6320808 T G int F13A1 . Factor XIII deficiency
PD257 AR 8 55542540 G A ex RP1 p.C2033Y Retinitis pigmentosa
PD257 AR 15 45408933 T C int DUOXA2 . Hypothyroidism
PD257 AR 16 56917953 T C int SLC12A3 . Gitelman syndrome%2C without hypo-

magnesaemia
PD257 AR 17 3561396 C T ex CTNS p.T260I Cystinosis%2C nephropathic
PD257 AR X 148044334 G A ex AFF2 p.R568H Autism
PD290 AD 1 216219858 C A ex USH2A p.K2080N Retinitis pigmentosa
PD290 AD 3 121491530 C T ex IQCB1 p.E348K Leber congenital amaurosis
PD290 AD 12 6232308 C T ex_spl VWF p.G19R Von Willebrand disease 1
PD290 AD 17 7576841 A G int TP53 . Breast and:or ovarian cancer
PD290 AD X 30327105 C T ex NR0B1 p.V126M Adrenal hypoplasia
PD290 AD X 55057617 G C up ALAS2 . Sideroblastic anaemia
PD290 AR 7 94227276 T G ex SGCE p.S432R Myoclonus dystonia syndrome
PD290 AR 11 824789 T C ex PNPLA2 p.L481P Myopathy%2C late-onset
PD290 AR 17 3561396 C T ex CTNS p.T260I Cystinosis%2C nephropathic
PD291 AD 1 161180482 G A ex NDUFS2 p.R323Q Isolated Complex I deficiency
PD291 AD 2 32289197 T TGCCTCG ex SPAST p.P99delinsPAS Amyotrophic lateral sclerosis
PD291 AD 2 128186202 C T ex PROC p.R356C Protein C deficiency
PD291 AD 8 55542540 G A ex RP1 p.C2033Y Retinitis pigmentosa
PD291 AD 9 136494594 G T intgen FAM163B_DBH . Altered enzyme activity
PD291 AD 20 52773755 G A ex CYP24A1 p.P437L Hypercalcaemia%2C idiopathic infan-

tile
PD291 AD 21 45709642 C T ex AIRE p.P252L APECED
PD291 AR 7 94227276 T G ex SGCE p.S432R Myoclonus dystonia syndrome
PD291 AR 16 56917953 T C int SLC12A3 . Gitelman syndrome%2C without hypo-

magnesaemia
PD296 AD 2 27726431 G A ex GCKR p.R232Q Elevated HDL-cholesterol
PD296 AD 5 13735418 G T ex DNAH5 p.S3861R Primary ciliary dyskinesia
PD296 AD 9 126135490 G A ex CRB2 p.G894S Focal segmental glomerulosclerosis
PD296 AD 11 116701353 C T ex_spl APOC3 p.R19X Apolipoprotein C3 deficiency with ap-

parent cardioprotection
PD296 AD 12 49430947 T C ex KMT2D p.M3398V Kabuki syndrome
PD296 AD 17 7128292 G A ex ACADVL p.R593Q Very long chain acyl-CoA dehydroge-

nase deficiency
PD296 AR 11 824789 T C ex PNPLA2 p.L481P Myopathy%2C late-onset
PD300 AD 1 5927943 G A ex NPHP4 p.A598V Cardiovascular malformations
PD300 AD 1 161172233 C A ex NDUFS2 p.P20T Mitochondrial complex I deficiency
PD300 AD 9 136494594 G T intgen FAM163B_DBH . Altered enzyme activity
PD300 AD 11 824789 T C ex PNPLA2 p.L481P Myopathy%2C late-onset
PD300 AD 15 31329942 G A ex TRPM1 p.A865V Stationary night blindness%2C congen-

ital
PD300 AD 15 45408933 T C int DUOXA2 . Hypothyroidism
PD300 AD 17 78079509 T G int GAA . Glycogen storage disease 2
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PD300 AD 18 44140279 CTCT C ex LOXHD1 p.942_943del Hearing loss
PD300 AD 19 50771512 G A ex MYH14 p.R933H Hearing loss
PD300 AR 1 98502934 G T ncRNA_int MIR137HG . Schizophrenia%2C increased risk
PD300 AR 6 6320808 T G int F13A1 . Factor XIII deficiency
PD300 AR 7 94227276 T G ex SGCE p.S432R Myoclonus dystonia syndrome
PD300 AR 17 3561396 C T ex CTNS p.T260I Cystinosis%2C nephropathic
PD313 AD 1 114372214 C G ex_spl PTPN22 p.K695N Diabetes%2C type 1%2C increased risk
PD313 AD 2 167138296 T C ex SCN9A p.K655R Febrile seizures
PD313 AD 5 139930460 A G ex SRA1 p.I151T Hypogonadotropic hypogonadism
PD313 AD 9 103046765 G C ex INVS p.A324P Nephronophthisis 2
PD313 AD 9 136494594 G T intgen FAM163B_DBH . Altered enzyme activity
PD313 AD 11 824789 T C ex PNPLA2 p.L481P Myopathy%2C late-onset
PD313 AD 15 89873364 C G ex POLG p.G268A Progressive external ophthalmoplegia
PD313 AR 7 94227276 T G ex SGCE p.S432R Myoclonus dystonia syndrome
PD317 AD 10 13151198 C G ex OPTN p.H26D Glaucoma 1%2C open angle
PD317 AD 11 71146886 C G spl DHCR7 . Smith-Lemli-Opitz syndrome
PD317 AD 13 52508989 G A ex ATP7B p.T1227M Wilson disease
PD317 AD 19 15302941 T C ex NOTCH3 p.H170R CADASIL
PD317 AD 19 50370404 G A ex PNKP p.P20S Epileptic encephalopathy
PD317 AR 1 98502934 G T ncRNA_int MIR137HG . Schizophrenia%2C increased risk
PD317 AR 15 45408933 T C int DUOXA2 . Hypothyroidism
PD317 AR 17 3561396 C T ex CTNS p.T260I Cystinosis%2C nephropathic
Tolosa_HCB1 AD 1 161172233 C A ex NDUFS2 p.P20T Mitochondrial complex I deficiency
Tolosa_HCB1 AD 3 37089131 A C ex MLH1 p.K377T Colorectal cancer%2C non-polyposis
Tolosa_HCB1 AD 6 129573388 AAG A ex LAMA2 p.K682fs Muscular dystrophy%2C merosin defi-

cient
Tolosa_HCB1 AD 10 55955444 T G ex_spl PCDH15 p.D398A Usher syndrome 1
Tolosa_HCB1 AD 17 73836585 C T spl UNC13D . Juvenile idiopathic arthritis
Tolosa_HCB1 AD 17 78079509 T G int GAA . Glycogen storage disease 2
Tolosa_HCB1 AD 19 34262922 C T ex CHST8 p.R77W Peeling skin syndrome%2C type A
Tolosa_HCB1 AD 22 18566288 C G ex PEX26 p.L153V Peroxisome biogenesis disorder
Tolosa_HCB1 AR 1 98502934 G T ncRNA_int MIR137HG . Schizophrenia%2C increased risk
Tolosa_HCB1 AR 6 6320808 T G int F13A1 . Factor XIII deficiency
Tolosa_HCB1 AR 15 45408933 T C int DUOXA2 . Hypothyroidism
Tolosa_HCB1 AR 17 3561396 C T ex CTNS p.T260I Cystinosis%2C nephropathic
Tolosa_HCB2 AD 3 193377336 C T ex OPA1 p.R745W Optic atrophy 1
Tolosa_HCB2 AD 9 139390585 C T ex NOTCH1 p.V2536I Aortic valve disease
Tolosa_HCB2 AD 10 55955444 T G ex_spl PCDH15 p.D398A Usher syndrome 1
Tolosa_HCB2 AD 20 21690094 A C int PAX1 . Klippel-Feil syndrome
Tolosa_HCB2 AR 1 98502934 G T ncRNA_int MIR137HG . Schizophrenia%2C increased risk
Tolosa_HCB2 AR 6 6320808 T G int F13A1 . Factor XIII deficiency
Tolosa_HCB2 AR 7 94227276 T G ex SGCE p.S432R Myoclonus dystonia syndrome
Tolosa_HCB2 AR 15 45408933 T C int DUOXA2 . Hypothyroidism
Tolosa_HCB2 AR 17 3561396 C T ex CTNS p.T260I Cystinosis%2C nephropathic
Tolosa_HCB2 AR 17 78079509 T G int GAA . Glycogen storage disease 2
Tolosa_HCB4 AD 3 11313449 G A up ATG7 . Parkinson disease
Tolosa_HCB4 AD 8 55542540 G A ex RP1 p.C2033Y Retinitis pigmentosa
Tolosa_HCB4 AD 10 55955444 T G ex_spl PCDH15 p.D398A Usher syndrome 1
Tolosa_HCB4 AD 10 73491873 A G ex CDH23 p.N1282S Hearing loss
Tolosa_HCB4 AD 11 824789 T C ex PNPLA2 p.L481P Myopathy%2C late-onset
Tolosa_HCB4 AD 11 64525266 C T ex PYGM p.K127K McArdle disease
Tolosa_HCB4 AD 14 95581899 G A int DICER1 . Breast cancer
Tolosa_HCB4 AD 16 56926915 T A ex SLC12A3 p.S833T Gitelman syndrome
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Tolosa_HCB4 AD 17 6331702 T A ex AIPL1 p.Y74F Leber congenital amaurosis IV
Tolosa_HCB4 AR 1 98502934 G T ncRNA_int MIR137HG . Schizophrenia%2C increased risk
Tolosa_HCB4 AR 7 94227276 T G ex SGCE p.S432R Myoclonus dystonia syndrome
Tolosa_HCB4 AR 15 45408933 T C int DUOXA2 . Hypothyroidism
Tolosa_HCB4 AR 17 3561396 C T ex CTNS p.T260I Cystinosis%2C nephropathic
Tolosa_HCB5 AD 15 44944037 C T ex SPG11 p.E370K Spastic paraplegia
Tolosa_HCB5 AD 16 3714438 C T ex TRAP1 p.R416H Congenital anomalies of the kidney and

urinary tract:CAKUT in VACTERL
Tolosa_HCB5 AR 17 78079509 T G int GAA . Glycogen storage disease 2

Table A.8: Variants annotated as disease causing with high confidence by HGMD. Fam = Family name, Chr = Chromsome, Pos = Position according
hg19 genome, Ref = Reference allele, Alt = Alternate allele, ex = Exonic, spl = splicing, int = Intronic, intgen = Intergenic, up = Upstream of a gene.
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Abstract
Rolandic epilepsy (RE) is the most common focal epilepsy in childhood. To date no hypothesis-free exome-wide mutational
screen has been conducted for RE and atypical RE (ARE). Here we report on whole-exome sequencing of 194 unrelated
patients with RE/ARE and 567 ethnically matched population controls. We identified an exome-wide significantly enriched
burden for deleterious and loss-of-function variants only for the established RE/ARE gene GRIN2A. The statistical
significance of the enrichment disappeared after removing ARE patients. For several disease-related gene-sets, an odds
ratio >1 was detected for loss-of-function variants.

Introduction

Rolandic epilepsy (RE), or epilepsy with centro-temporal
spikes (CTS), is one of the most common epilepsy
syndromes of childhood. RE is related to rarer and less
benign epilepsy syndromes, including atypical benign par-
tial epilepsy, Landau–Kleffner syndrome and epileptic
encephalopathy with continuous spike-and-waves during
sleep, referred to as RE-related syndromes or atypical
rolandic epilepsy (ARE) [1]. In up to 20% sib pairs or

families, mutations affecting GRIN2A, a subunit of the
excitatory glutamate receptor N-methyl-D-aspartate
(NMDA), were found implicated as major risk factor for RE
and ARE by us and others [2, 3]. Recently, the association
of the genes RBFOX1, RBFOX3, DEPDC5, GABRG2 and
genomic duplications at 16p11.2 in 1.5–2.0% was identified
in patients with RE and ARE [4–6] through candidate gene
and loci screens. In the current study, an unbiased exome-
wide survey was conducted in the RE/ARE cohort.

Patients and methods

Study participants

Two hundred and four unrelated European Rolandic cases
(182 RE, 22 ARE) and 728 population control subjects were
included [6]. Children with (typical) RE suffer from peri-
sylvian oromotor seizures frequently starting during sleep.
In adolescence, the epilepsy resolves spontaneously, fre-
quently without any intellectual sequels. ARE share the
essential electroencephalography feature with RE but show
a different seizure symptomatology by their own or in
addition to rolandic seizures. Seizures, like in RE, resolve
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spontaneously, but cognitive outcome is guarded in ARE.
In detail, these epilepsies are: atypical benign partial epi-
lepsy of childhood, with atonic seizures and atypical
absences in addition to rolandic seizures; Landau–Kleffner
syndrome, with loss of speech and cognitive decline; and
epilepsia-aphasia syndrome with seizures and language
dysfunction [1, 6]. Written informed consent was obtained
from participating subjects and, if appropriate, from both
patients and adolescents.

Data generation and processing

Exome sequencing of all individuals was performed with the
Illumina HiSeq 2000 using the EZ Human Exome Library
Kit (NimbleGen, Madison, WI). Sequencing adapters were
trimmed and samples with <30× mean depth or <70% total
exome coverage at 20× mean depth of coverage were
excluded from further analysis. Variant calling was per-
formed in targeted exonic intervals with 100 bp padding
using the GATK best practices pipeline [7] against the
GRCh37 human reference genome followed by multi-allelic
variant decomposition and left normalization. Samples were
excluded from further analysis if they (i) were not ethnically
matched, (ii) were related, (iii) showed discrepancy with
reported sex, (iv) had an excess heterozygosity >3 SD in any
of the quality metrics (NALT, NMIN, NHET, NVAR, RATE
and SINGLETON statistics as calculated by PLINKseq i-
stats parameter [8]. The genotypes of variants with read depth
<10 or genotype quality <20 were set to missing. Variants
were excluded if they (i) failed variant quality score recali-
bration (VQSR) or GATK recommended hard filter, (ii)
showed missingness >3%, (iii) were present in repeat regions
or (iv) had an average read depth <10 in either cases or
controls. The ExAC variants were restricted to the exonic
intervals used for variant calling in this study, not present in
the repeat regions and passed the VQSR threshold.

Variant annotation and filtering

Variants were annotated using ANNOVAR [9] version 2015
Mar 22 with RefSeq and Ensembl, Combined Annotation
Dependent Depletion (CADD) scores [10], allele fre-
quencies and dbNSFP (v3.0) annotations. The samples used
in this study are of Non-Finnish European (NFE) ancestry,
hence to investigate rare variants, we selected variants
having a minor allele frequency <0.005 in the European
populations of the 1000 genomes, Exome Variant Server and
the NFE data from ExAC. We generated three classes of
variants for further analyses: (1) deleterious variants
(CADD15), which were defined as missense variants with a
CADD Phred score >15 as it is the median value across all
missense and canonical splice site variants [10], (2) loss-of-
function (LOF) variants comprising all rare indels, stop gain,

stop loss and splice site variants (2 nt plus/minus the exon
boundary), (3) CADD15+LOF variants as the union of the
above two datasets, and (4) rare synonymous variants.

Single variant and gene association analysis

For the statistical analysis, we employed two independent
control cohorts (available in-house and ExAC) to increase
reliability and power of the statistical tests. For single variant
burden analysis, we applied the single score method in
RVTESTS [11] to cases and in-house controls, for which
individual genotypes were available. For gene burden analy-
sis, a 2× 2 contingency table was constructed by counting the
number of alternate allele counts per gene in patients vs.
controls (in-house controls and NFE ExAC controls). We then
obtained a one-sided p-value, odds ratios and the 95% con-
fidence intervals [12] by using Fisher’s exact test. Resulting p-
values were corrected for 18,668 RefSeq protein-coding genes
[13] by Bonferroni approach. Finally, to ensure the exclusion
of false positive association results and following the 'rare
variant of large effect hypothesis', we selected those genes that
are present in the first quartile of the Residual Variant Intol-
erance Score (RVIS) distribution [14].

Selection of gene-sets

We investigated the following four neuron-related gene-sets:
(1) genes encoding proteins at synapses downloaded from the
SynaptomeDB [15] database (“SYNAPTIC_GENES”, N=
1887), (2) genes of postsynaptic signalling complexes
including NMDA receptors (NMDARs) and the neuronal
activity-regulated cytoskeleton-associated protein (ARC) [16]
(“NMDAR_ARC_COMPLEX”, N= 80), (3) genes encoding
proteins at the inhibitory synapses (“INHIBITORY”, N=
5941) and excitatory synapses (“EXCITATORY”, N= 5261)
[17], and (4) glutamate receptor subunit encoding genes
(“GLUTAMATE_RECEPTORS”, N= 18). In addition, we
included five gene-sets associated with disease and/or muta-
tional intolerance: (1) genes encoding targets of Fragile-X-
Mental-Retardation-1-Protein [18] (“FMRP_TARGETS_-
DARNELL”, N= 1772), (2) genes intolerant for variants from
ExAC (“EXAC_CONSTRAINED_GENES”, N= 3230), (3)
genes intolerant for loss-of-function variants [19] ('con-
strained') (“CONSTRAINED_GENES_SAMOCHA”, N=
1004), (4) a curated list of dominant genes associated with
developmental delay obtained from the DECIPHER database
[20] (“DDG2P_MONOALLELIC”, N= 299), and (5) genes
found related before to epileptic encephalopathies [21] (“EPI-
LEPTIC_ENCEPHALOPATHY”, N= 73). As control data
sets, we used (1) for each dataset the corresponding set of
synonymous variants, and (2) the ‘non-constraint’ gene-set
including RefSeq genes that have been found tolerant to LOF
variants (“GENES_WITHOUT_CONSTRAINT”, N=
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14,417). GRIN2A, as the most significant single gene from the
burden analysis, was excluded from all gene-sets in order to
test if other genes also contribute to the disease association.

Data availability

All the CADD15+LOF variants from our study within the
“EPILEPTIC_ENCEPHALOPATHY” gene-set were depos-
ited in the Leiden Open Variation Database (LOVD) (https://
databases.lovd.nl/shared/genes). The accession numbers of the
deposited variants in LOVD are 188117–188549. Also, the
variants present in the cases within the “EPILEPTIC_ENCE-
PHALOPATHY” gene-set are available in the ClinVar
database (https://www.ncbi.nlm.nih.gov/clinvar/) with the
accession numbers SCV000588243–SCV000588353. The
variants that were described in our previous studies are indi-
cated in Supplementry Table 1.

Gene-set association analysis

The gene-set association analysis for the different types of
variants was performed by using a logistic regression
approach using R (version 3.2) and adjusting for the fol-
lowing confounding variables: the total number of called

genotypes per sample, the total number of rare coding var-
iants per sample, the total number of rare coding singletons
(variants observed only once in the entire dataset) per sample,
calculated sex, the first four principal components, and the
total number of variants per sample for each variant class.

Results

Exome sequencing and variant filtering

We performed whole-exome sequencing on 204 patients
with RE/ARE and 728 population controls. After quality
control, the final dataset consisted of 19 ARE, 175 RE and
567 control samples. From the total of 761 samples,
226,521 exonic and splice site variants were called. The
mean transition/transversion ratio equalled 3.39 per sample.
After the final filtering 45,881 CADD15, 10,326 LOF and
38,802 synonymous variants were analysed.

Association analysis

To investigate the mutational burden within the RE spec-
trum, all associations were assessed for both RE and ARE

Fig. 1 Burden analysis. Typical Rolandic epilepsy is represented as
RE, atypical rolandic epilepsy as ARE and RE plus ARE as
ROLANDIC. On the x axis, the odds ratios in cases vs controls are
given. The names of the variant classes are given on the y axis. Each
panel represents a different dataset. The dashed vertical line represents
the expected odds ratio of 1. The horizontal lines indicate 95% con-
fidence intervals. a Assessment of risk for deleterious variants in
GRIN2A against two control groups (ExAC and In-house). The values

on top of each point represent multiple-testing corrected p-values, the
ones in red are significant p-values and the ones in black are the p-
values that are not significant after multiple-testing correction. The
odds ratios are restricted to a maximum value of 50. b Exome-wide
burden analysis by different variant classes. The values on top of each
point represent the p-value. Synonymous variants serve as a control
functional group (colour figure online)

PTCH1 and PTCH2 mutations in rhabdomyosarcoma



separately and by combining cases from both phenotypes
while assuming them to be a single disease. In comparison
to 567 in-house controls, we did not observe statistically
significant burden in any of the variants or genes in cases
after multiple-testing correction. In order to increase the

statistical power, we used the non-Finnish European (NFE)
ExAC cohort as an additional control dataset. Association
testing against the much larger NFE-ExAC cohort (N=
33,370) identified an exome-wide significant burden for
CADD15, CADD15+LOF and LOF variants for GRIN2A

Fig. 2 Gene-set burden across different variant classes. Each panel
represent a different variant class. The synonymous variants serve as a
control variant class. GRIN2A was removed from all gene-sets to
identify other contributing genes. On the x axis, the odds ratios in cases
vs controls are given. On the y axis, the names of different gene-sets
are given. The red vertical line represents the expected odds ratio of 1.

The horizontal lines indicate 95% confidence intervals and are
restricted to the maximum of odds ratios over all gene-sets. In that
case, points are represented as the points without error bars to their
right. The uncorrected p-values are shown on top of each point.
CADD15= deleterious predicted missense variants. LOF= Loss-of-
function variants (colour figure online)
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within the combined typical and atypical (RE+ARE)
cohort. No other variant-intolerant gene (i.e., being present
in the first quartile of RVIS) was significantly enriched for
variants in any of the tested patient groups. Although var-
iant enrichment for GRIN2A was not found to be significant
after correction for RE and/or ARE separately, the odds
ratio for GRIN2A consistently exceeded unity in all the
considered datasets (Fig. 1a).

Exome-wide and gene-set burden analysis

Assuming a shared mutational burden in patients across
gene-sets of convergent function and/or pathways, we per-
formed gene-set burden analyses by using the in-house
controls. A logistic regression approach was used to account
for various confounding variables (see Methods section). No
significant exome-wide burden was observed across the
different variant classes (Fig. 1b). Despite the fact that none
of the gene-sets showed a significant result after multiple-
testing correction, we found several gene-sets with an
odds ratio >1 for the CADD15, CADD15+LOF and LOF
variant classes, especially for the LOF variants, but not for
synonymous variants (Fig. 2). A similar result was seen
when we performed the analysis with ARE and RE
independently.

Discussion

We performed the first exome-wide association study
investigating rare genetic variants of large effect in 194
patients with childhood focal epilepsies with CTS in com-
parison with 567 in-house and online available 33,370
population controls from the ExAC database. By perform-
ing an unbiased gene-burden analysis of patients against the
in-house and ExAC controls (Fig. 1a), we show that, only
for GRIN2A rare CADD15, CADD15+LOF and LOF var-
iants are significantly more frequent in RE and ARE,
respectively (odds ratio >1). Owing to the small sample size
and genetic heterogeneity, no other gene or gene-set was
significantly enriched for variants after correction for
multiple-testing (Fig. 2). Since we observe a consistent
trend in the odds ratios for the enrichment of LOF variants
in several disease-associated gene-sets, we are optimistic
that the availability of larger cohorts in the future can allow
to identify other genes associated with RE/ARE.
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Metformin reverses TRAP1 mutation-
associated alterations in mitochondrial
function in Parkinson’s disease

Julia C. Fitzgerald,1 Alexander Zimprich,2 Daniel A. Carvajal Berrio,3 Kevin M. Schindler,1,4

Brigitte Maurer,1 Claudia Schulte,1 Christine Bus,1 Anne-Kathrin Hauser,1 Manuela Kübler,1

Rahel Lewin,1 Dheeraj Reddy Bobbili,5 Lisa M. Schwarz,1,6 Evangelia Vartholomaiou,7

Kathrin Brockmann,1 Richard Wüst,1,8 Johannes Madlung,9 Alfred Nordheim,10 Olaf Riess,11

L. Miguel Martins,12 Enrico Glaab,5 Patrick May,5 Katja Schenke-Layland,3,13,14

Didier Picard,7 Manu Sharma,15 Thomas Gasser1 and Rejko Krüger1,5,16

The mitochondrial proteins TRAP1 and HTRA2 have previously been shown to be phosphorylated in the presence of the

Parkinson’s disease kinase PINK1 but the downstream signalling is unknown. HTRA2 and PINK1 loss of function causes

parkinsonism in humans and animals. Here, we identified TRAP1 as an interactor of HTRA2 using an unbiased mass spectrometry

approach. In our human cell models, TRAP1 overexpression is protective, rescuing HTRA2 and PINK1-associated mitochondrial

dysfunction and suggesting that TRAP1 acts downstream of HTRA2 and PINK1. HTRA2 regulates TRAP1 protein levels, but

TRAP1 is not a direct target of HTRA2 protease activity. Following genetic screening of Parkinson’s disease patients and healthy

controls, we also report the first TRAP1 mutation leading to complete loss of functional protein in a patient with late onset

Parkinson’s disease. Analysis of fibroblasts derived from the patient reveal that oxygen consumption, ATP output and reactive

oxygen species are increased compared to healthy individuals. This is coupled with an increased pool of free NADH, increased

mitochondrial biogenesis, triggering of the mitochondrial unfolded protein response, loss of mitochondrial membrane potential and

sensitivity to mitochondrial removal and apoptosis. These data highlight the role of TRAP1 in the regulation of energy metabolism

and mitochondrial quality control. Interestingly, the diabetes drug metformin reverses mutation-associated alterations on energy

metabolism, mitochondrial biogenesis and restores mitochondrial membrane potential. In summary, our data show that TRAP1

acts downstream of PINK1 and HTRA2 for mitochondrial fine tuning, whereas TRAP1 loss of function leads to reduced control of

energy metabolism, ultimately impacting mitochondrial membrane potential. These findings offer new insight into mitochondrial

pathologies in Parkinson’s disease and provide new prospects for targeted therapies.
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2 Medical University Vienna, Department of Neurology, Vienna, Austria
3 Department of Women’s Health, Research Institute for Women’s Health, University of Tübingen, Tübingen, Germany
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Introduction
Parkinson’s disease is an aetiologically heterogeneous syn-

drome caused by a combination of genetic and environ-

mental risk factors. At least 85% of cases are sporadic,

and at present, there are only symptomatic treatments

available, but the advancement of genetic testing and iden-

tification of patient endophenotypes has given hope for the

emerging field of individualized medicine. Mitochondrial

dysfunction, ensuing cellular energy failure and oxidative

stress may be one important disease pathway in a subgroup

of Parkinson’s disease patients (Kruger et al., 2017). The

aim is that these patients can be therapeutically targeted or

serve as an entry point for precision medicine.

TRAP1 (tumour necrosis factor type 1 receptor associated

protein, also known as HSP 75) is a chaperone that resides

in the mitochondrial matrix (Altieri et al., 2012). It has a

regulatory role in stress sensing in mitochondria allowing

cellular adaption to the environment. TRAP1 is recognized

as a potential effector protein in Parkinson’s disease signal-

ling, since it was found to be phosphorylated by the

Parkinson’s disease kinase PINK1 (Pridgeon et al., 2007).

Loss-of-function mutations in PINK1 and PARK2

(encoding parkin) cause familial Parkinson’s disease

(Kitada et al., 1998; Valente et al., 2004) and impair the

elimination of damaged mitochondria (Geisler et al., 2010;

Narendra et al., 2010). However, beyond mitophagy, there

is relatively little known about the mitochondrial quality

control pathways in Parkinson’s disease.

Chaperones and proteases maintain mitochondrial pro-

teostasis. Tight control of protein quality and turnover

inside mitochondria is essential for the function of electron

transport complexes, which provide energy through oxida-

tive phosphorylation. PINK1 has previously been shown to

be required for the phosphorylation of the mitochondrial

protease and Parkinson’s disease-associated protein

HTRA2 (Plun-Favreau et al., 2007). Here we highlight a

signalling pathway involving PINK1, HTRA2 and TRAP1,

where TRAP1 is the effector modulating mitochondrial

chaperone activities and metabolic homeostasis.

The hypothesis that TRAP1 is an important downstream

effector in mitochondrial signalling is underscored by re-

ports that TRAP1 rescues mitochondrial dysfunction in

neuronal models where PINK1 is silenced (Costa et al.,

2013; Zhang et al., 2013). TRAP1 also protects cells

from oxidative toxicity caused by respiratory complex I

inhibition via an a-synuclein variant known to induce a

genetic form of Parkinson’s disease (Butler et al., 2012).

TRAP1 protects mitochondria via its chaperone function

(Altieri et al., 2012; Rasola et al., 2014) and by reducing

reactive oxygen species (Masuda et al., 2004; Hua et al.,

2007; Im et al., 2007).

TRAP1 also acts as a metabolic switch controlling the

tumour cell’s preference for aerobic glycolysis (Yoshida

et al., 2013). ERK1/2 orchestrates the phosphorylation of

TRAP1 controlling the metabolic switch (Masgras et al.,

2017), which is reportedly via TRAP1 inhibition of succin-

ate dehydrogenase (Sciacovelli et al., 2013; Masgras et al.,

2017), although this remains controversial (Rasola et al.,

2014). TRAP1 deficiency promotes mitochondrial respir-

ation, accumulation of tricarboxylic acid cycle intermedi-

ates, ATP and reactive oxygen species (Yoshida et al.,

2013). TRAP1 deletion in mice does not affect viability

and delays the appearance of tumours in a breast cancer

model (Vartholomaiou et al., 2017).

Therefore, the identification of TRAP1 as a novel

HTRA2 interactor prompted us to further explore the

PINK1-HTRA2-TRAP1 pathway related to neurodegenera-

tion in Parkinson’s disease. Here we show that TRAP1

takes an important role as downstream effector in this

pathway and therefore provides an interface between

Parkinson’s disease and energy metabolism.

Materials and methods

Cell culture

Fibroblast culture from skin biopsies has been previously
described by our laboratory (Burbulla and Kruger, 2012). All
biopsies and DNA samples were obtained with patient’s
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consent and approval of the local ethics committee and accord-
ing to the Declaration of Helsinki. HeLa, SH-SY5Y, HEK293
cell culture has been described previously (Burbulla et al.,
2014). TRAP1 knockout mouse adult fibroblasts and
HTRA2 knockout mouse embryonic fibroblasts have been
described by Kieper et al. (2010) and Yoshida et al., (2013),
respectively. Human induced pluripotent stem cells from a
PINK1 knockout line generated in our laboratory and its iso-
genic control were used to generate small molecule neuronal
precursor cells (smNPCs) according to Reinhardt et al. (2013).
smNPCs were cultivated in 1:1 Dulbecco’s modified Eagle
medium (DMEM)/Ham’s F12 (Biochrom, Harvard
Bioscience) and Neurobasal� (Gibco, Thermo Fisher)
medium supplemented with 1% Pen/Strep, 1% GlutaMAXTM

(Gibco, Thermo Fisher), B-27 Supplement (Gibco, Thermo
Fisher), N2 (Gibco, Thermo Fisher), 200 mM ascorbic acid
(Sigma-Aldrich), 3mM CHIR 99021 (Axon Medchem) and
0.5 mM purmorphamine (Calbiochem, Merck Millipore) on
Matrigel� (Corning) coated cell culture dishes.

DNA constructs and RNAs

Human TRAP1 cDNA was cloned into the pIRES vector
(Clontech, Takara). GST-coupled wild-type HTRA2, A141S
HTRA2, and G399S HTRA2 have been previously described
(Martins, 2002). Cloning of wild-type HTRA2 and S306A
HTRA2 cDNA into the pcDNA3.1 vector was previously
described (Strauss et al., 2005). Short interfering (si)RNAs tar-
geting HTRA2 were purchased from Sigma Aldrich (Fitzgerald
et al., 2012) and targeting TRAP1 and non-targeting controls
from Dharmacon (siGENOME SMARTpool #D001206-13-05
POOL#1, non-targeting siGENOME SMARTpool).

Mass spectrometry

We used recombinant, mature GST-HTRA2 (wild-type
HTRA2, HTRA2-A141S, and HTRA2-G399S) as baits and
lysates from SH-SY5Y cells. The supernatant contained the
fusion proteins that were then bound to glutathione agarose
(Molecular Probes, Thermo Scientific) and eluted with imid-
azole. Analyses were performed on 1D gel pieces of the elu-
ates. The measurements of the peptides derived from tryptic in-
gel digest were performed using a nano-HPLC-ESI-MS/MS
system [Ultimate (LC Packings/Dionex, Germany)/QStar
Pulsar i (Applied Biosystems/Sciex)], described by Sauer et al.
(2006). Mass spectrometry data were processed against the
National Center for Biotechnology Information (NCBI) protein
sequence database with the search engine MASCOT (Matrix
Science, UK) (Perkins et al., 1999).

Co-immunoprecipitation

HeLa and HEK293 cell lysates were prepared using a lysis
buffer [1 % (v/v) TritonTM X-100, 1� protease inhibitor cock-
tail (Roche Complete, Roche), 1� phosphatase inhibitor
(Roche PhosStop, Roche)] and the nuclear material removed
following homogenization. Where wild-type HTRA2 was over-
expressed, HTRA2 was transiently transfected (48 h) using
Effectine transfection reagent (Qiagen, according to the manu-
facturer’s instructions). Mitochondrial enrichment was previ-
ously described (Fitzgerald et al., 2012). Brain tissue from
TRAP1 knockout mice previously described (Vartholomaiou

et al., 2017) was prepared by separating the cortices from
the basal ganglia (mid-brain) and cerebellum/brainstem (hind-
brain) on ice. Brain tissue lysates were prepared according to
Casadei et al. (2016). Immunoprecipitation was carried out
using HTRA2 (R and D Biosciences) or TRAP1 (BD biosci-
ences) antibodies or bovine IgG coupled to protein A
Sepharose beads (Sigma Aldrich P9424), according to
Fitzgerald et al. (2012).

SDS-PAGE and western blotting

Cell lysates were prepared as described for co-immunoprecipi-
tation and proteins electrophoresed on acrylamide gels and
transferred to membranes, as previously described (Fitzgerald
et al., 2012). Brain tissue lysates from non-transgenic and
HTRA2 overexpressing mice previously characterized and
described (Casadei et al., 2016) were prepared from whole
brain and the total extracts (nuclear material removed) were
prepared according to Casadei and colleagues (2016). Total
protein stain (copper pthalocyanine-3, 4’, 4’ 4’-tetra-sulphonic
acid tetra sodium salt in 12 mM HCl) and destain (12 mM
NaCl). Antibodies against TRAP1 (BD Biosciences), b-actin
(Sigma Aldrich), GAPDH (Invitrogen, Thermo Scientific)
Tom20 (Santa Cruz Biotechnology), Hsp60 (Bio-Rad), a-
tubulin (Sigma Aldrich), rodent OXPHOS (#MS604
Mitosciences, AbCam), Hsp70 (Santa Cruz Biotechnology),
Hsp90 (BD Biosciences), Human Total OXPHOS (all nuclear
encoded subunits from Mitosciences, Abcam), ERK1/2 and P-
ERK1/2 (Cell Signaling Technolgy) and mitobiogenesis anti-
body (containing SDH, GAPDH and COX, Abcam) were
used. Secondary antibodies were purchased from GE
Healthcare. Densitometry from western blot was carried out
using the ImageJ 1.41o software (Wayne Rasband; National
Institutes of Health, USA).

Live cell imaging

Mitochondrial morphology, mass and colocalization studies
were visualized using 100 nM MitoTracker� Green FM
(Thermo Scientific), lysosomes by 100 nM Lyostracker� Red
DND-99 (Thermo Scientific) as previously described
(Burbulla et al., 2014). Analyses were performed as previously
described (Burbulla et al., 2014). The series of images were
saved uncompressed and analysed with AxioVision software
(Zeiss) and ImageJ 1.41o software.

Fluorescence-activated cell sorting

Cells were trypsinized and centrifuged at 300g for 5 min and
the cells incubated in dye, buffer only or dye plus a control.
For early apoptosis, Annexin V-Pacific BlueTM in Annexin V
binding buffer (both from BioLegend) or Annexin V-Pacific
BlueTM plus staurosporine was used. For mitochondrial mem-
brane potential, 200 nM tetramethylrhodamine, ethyl ester,
perchlorate (TMRE, from Thermo Scientific) in Hanks buffer
or TMRE plus carbonyl cyanide-p-trifluoromethoxyphenylhy-
drazone (CCCP) 10 mM was used. For mitochondrial reactive
oxygen species, 2 mM MitoSoxTM (Thermo Scientific) in Hanks
buffer or MitoSoxTM plus 10 mM rotenone was used. Cells
were sorted using a MACSQuant� automated flow cytometer
(Mitenyi Biotechnology) according to their mean average fluor-
escence signal. All mean average fluorescence values were
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divided by the background fluorescence in the same channel in
the same unstained cells to account for autofluorescence.

Live cell kinetic measurement of
mitochondrial membrane potential

Cells were seeded in Ibidi� dishes and the media exchanged for
Hank’s balanced salt solution (HBSS) containing 200 nM
TMRE stain (Thermo Scientific) for 15 min at 37�C with
CO2. The TMRE was removed and replaced with 360 ml
Hanks buffer. The cells were imaged using a Zeiss inverted
confocal microscope at excitation HeNe1, 543 nm and emis-
sion LP 560 nm and brightfield for 20 � 4 s cycles. Followed
by the addition of 360ml (0.25 mg/ml oligomycin), measured
for 20 � 4 s cycles, 180ml (10 mM rotenone), measured for
20 � 4 s cycles and 100ml (10 mM FCCP) and measured for
20–40 � 4 s cycles. Using ImageJ, each transfected cell (de-
tected using ZsGreen-TRAP1) in each frame was analysed
for TMRE fluorescence intensity, mean fluorescence and total
area. The corrected total cell fluorescence (CTCF) over time
was calculated using the formula: CTCF = fluorescence inten-
sity� (cell area � mean background fluorescence).

Genetic screening by high resolution
melting analysis

Both polymerase chain reaction (PCR) and high resolution
melting analysis were performed in the presence of a saturating
DNA binding dye. Mutations were detectable because hetero-
zygote DNA forms heteroduplices that begin to separate in
single strands at a lower temperature and with a different
curve shape than homozygote DNA, as described previously
(Wust et al., 2016).

Whole exome sequencing and con-
sanguinity analysis

Whole exome data were generated from 200 Parkinson’s dis-
ease patients from Vienna (n = 100) and Tübingen (n = 100).
Genomic DNA (3 mg) was fragmented into �250 bp fragments,
end-repaired, adaptor-ligated and sample index barcodes were
included. Pooled libraries were enriched with SureSelect
Human All Exon 50 Mb kit (AgilentTechnologies) to capture
50 Mb of exonic and flanking intronic regions. Sequencing of
post-enrichment libraries was carried out on the Illumina
HiSeq 2000 sequencing instrument (Illumina) as 2 � 100 bp
paired-end runs. On average, this yielded �10 Gb of mapped
sequences and a 4100� average coverage for 90% of the
targeted sequence per individual. Raw image files were pro-
cessed by the Illumina pipeline. Reads were aligned to the
human reference genome hg19 with the Burrows-Wheeler
Aligner. SAM tools were used to identify single nucleotide
variants and small insertions and deletions. Patients were
screened for consanguinity using an implemented algorithm
of an analysing tool of the Helmholtz Zentrum, München.
Patients with homozygous regions encompassing a total of
more than 20 Mb were considered as likely consanguineous.
Particularly, stretches of 42 Mb were surveyed for rare homo-
zygous variants (missense, nonsense, frameshift and splice-site).
Variants were further filtered for a minor allele frequency

smaller than 1% in the in-house dataset of �10 000 control
exomes from patients with other unrelated diseases and
exomes and in public available databases (ExAC database
and 1000 Genomes).

Computational analysis of TRAP1
genetic variants

Computational analysis of TRAP1 variants can be found in
the Supplementary material.

Quantitative RT-PCR

Quantitative PCR reactions were performed using FastStart
SYBR� green Master mix (Roche) to amplify 1ml of the 1:10
diluted cDNA using 5mm of each primer h_TRAP1 5’ UTR
Forward: TTCCCATCGTGTACGGTCCCGC, h_TRAP1
Exon2 Reverse: GGCCCAACTGGGCTGTGGTCC, h_TRAP1
Spanning Exon2-3 Reverse: TGTTTGGAAGTGGAACCCT
GC. Housekeeping gene GAPDH primers: Forward: CCA
TCACCATCTTCCAGGAGCGA, Reverse: GGATGACCTT
GCCCACAGCCTTG. Standard curves of each amplified gene
were created to calculate the PCR efficiency and relative ex-
pression using the efficiency corrected delta–delta Ct method.
RNA was prepared from human fibroblasts using Qiashredder�

and RNAEasy� preparation kits (Qiagen). RNA (1mg) was re-
verse transcribed to cDNA using QuantiTECT� (Qiagen).

Oxygen consumption and
extracellular acidification rate

Oxygen consumption rates (OCR) were measured in whole
cells using a SeahorseTM XF96 Extracellular Flux Analyzer
(Agilent) according to Rogers et al. (2011). The concentrations
of mitochondrial toxins used were optimized by titration in
human fibroblasts according to the manufacturer’s recommen-
dations. The final concentration of all toxins used was 1 mM
and the volume of the toxin injected in each port was sequen-
tially increased by several microlitres to maintain the correct
final concentration. Human fibroblasts were plated in
SeahorseTM XF96 well plates 24 h prior to measuring at a
density of �15 000 cells per well. The OCR for each well
was corrected for cell number. Stained nuclei were counted
using high content image capture and analysis using the BD
Pathway 855 (BD Biosciences). Extracellular acidification rates
(ECAR) from the same experiments provide an indication of
glycolytic activity and were normalized to OCR/cell to account
for the cell numbers in each well in each experiment.

Complex I activity

Following isolation of crude mitochondria from approximately
five million cells, described previously by Burte et al. (2011),
complex I activity was measured according to Hargreaves and
colleagues (2007). The activity of complex I was normalized to
citrate synthase activity, also according to Hargreaves et al.
(2007) and data expressed as a ratio of complex I/citrate
synthase.
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ATP

The concentration of ATP per microgram of total protein was
measured using the ATPLiteTM Kit from Perkin Elmer. ATP
standards are used to determine the concentration of ATP in a
cell lysate replicated a minimum of three times in each experi-
ment. Concentration (mM) of ATP is expressed per microgram
of total protein in each well as measured by protein assay (Bio-
Rad).

Fluorescence lifetime imaging
microscopy

A detailed description of the fluorescence lifetime imaging mi-
croscopy (FLIM) method can be found in the Supplementary
material and is described in Lakner et al. (2017).

Measurement of NAD + /NADH levels

NAD + and total NAD + and NADH levels were measured
using a fluorometric assay kit (Abcam). The levels of NAD +

and NADH were quantified using standards and normalized to
total protein in each sample according to protein assay (Bio-
Rad).

Statistics

Analyses of statistical significance were performed using
GraphPad Prism 6.0 and the relevant statistical test. The stat-
istical test used and the P-values are shown in the figure le-
gends. All cell culture experiments [including all imaging and
fluorescence-activated cell sorting (FACS) experiments] were
performed a minimum of three times, using a different cell
passage and on different days. In the genetic studies, the initial
screening by high temperature melt analysis was performed on
280 German Parkinson’s disease patients and a group of 192
healthy individuals. The exome sequencing was performed on
the DNA from 200 Parkinson’s disease patients collected in
Tübingen, Germany and Vienna, Austria.

Results

TRAP1 interacts with HTRA2

We have previously reported loss-of-function mutations in

HTRA2 in Parkinson’s disease patients and therefore per-

formed unbiased mass spectrometry on GST-HTRA2

baited SH-SY5Y lysates to identify novel interaction pro-

teins (Fig. 1A). We identified TRAP1 as an interactor of

HTRA2 with the relevant controls.

To confirm the physical interaction, HTRA2 immunopre-

cipitations were performed in HeLa cells overexpressing

HTRA2 or not. Immunoblotting revealed the presence of

TRAP1 in the HTRA2 immunoprecipitation (endogenous

and overexpressed HTRA2) but not in the IgG control

(Fig. 1B), enriched in the mitochondrial fraction.

Knockdown of TRAP1 using siRNA reduced the amount

of TRAP1 interacting with HTRA2, confirming the specificity

of the immunoprecipitation (Fig. 1C). The interaction

between HTRA2 and TRAP1 occurs in mouse brain

(cortex, midbrain and hindbrain) as demonstrated by the

immunoprecipitation of TRAP1 with HTRA2 in extracts

from wild-type mice and not TRAP1 knockout mice

(Fig. 1D).

To investigate the relevance of the HTRA2-TRAP1 inter-

action we monitored the amount of TRAP1 immunopreci-

pitated with HTRA2 under several stress conditions. We

found that acute treatment with the mitochondrial toxins

rotenone and antimycin A abolished the interaction in

human HEK293 cells and this was due to reduced

TRAP1 and not a global reduction of total protein

(Fig. 1E). We then assessed the influence of several other

stressors, this time the concentrations of the toxins were

titrated for HeLa cells and for the cells to survive a chronic

treatment over a 24 h period. We found that dopamine

treatment had no effect on the interaction of HTRA2 and

TRAP1, whereas, the TRAP1 inhibitor 17-AAG, hydrogen

peroxide, the ionophore valinomycin and mitochondrial re-

spiratory inhibitors oligomycin, antimycin A, and rotenone

all largely reduced or abolished the interaction (Fig. 1F).

These data from two different human cell lines suggest that

the interaction of HTRA2 and TRAP1 serves the mitochon-

dria under normal physiological conditions, under starva-

tion and dopamine toxicity, but not respiratory inhibition.

TRAP1 rescues HTRA2 and PINK1 loss-of-function

phenotypes but is not a proteolytic substrate of

HTRA2

We hypothesized that HTRA2 interacted with TRAP1 to

degrade it since HTRA2 is a key mitochondrial protease

and the levels of TRAP1 appear to be a key factor in mito-

chondrial control (Kang et al., 2007; Zhang et al., 2015;

Amoroso et al., 2016; Lv et al., 2016). Using PhosTagTM

SDS-PAGE, we found a significant increase in the levels of

phosphorylated and non-phosphorylated TRAP1 when we

immunoprecipitated endogenous TRAP1 in the absence of

HTRA2 (Fig. 2A). We also found that stimulation of

PINK1 kinase with the ionophore valinomycin (at concen-

trations known to induce accumulation of PINK1)

(Rakovic et al., 2013), increased the amount of phosphory-

lated TRAP1 in wild-type HTRA2 mouse adult fibroblasts

(Fig. 2A). Phosphorylated TRAP1 levels were increased to

the same extent in HTRA2 knockout mouse adult fibro-

blasts, whether treated with valinomycin or not (Fig. 2A).

However, there was no significant effect of PINK1 knock-

out on TRAP1 phosphorylation status in neuronal progeni-

tor cells (Fig. 2A).

Overexpression of wild-type HTRA2 in human cells from

four independent experiments (Fig. 2B) or in mice (Fig. 2C)

results in reduced TRAP1 protein levels. However, over-

expression of a protease dead form of HTRA2 (S306A),

which is catalytically inactive but still targeted to the mito-

chondria (Martins et al., 2002) in human cells has the same

effect on TRAP1 levels as the wild-type, indicating that the

protease activity of HTRA2 is not important for the inter-

action between TRAP1 and HTRA2 (Fig. 2D).
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The HTRA2-TRAP1 interaction is not a protease-substrate

interaction, yet TRAP1 is likely downstream of HTRA2 since

the overexpression of TRAP1 rescues the HTRA2 knock-

down-induced loss of mitochondrial membrane potential

(Fig. 2E), reduced basal oxygen consumption (Fig. 2F),

increased mitochondrial reactive oxygen species (Fig. 2G)

and sensitivity towards serum starvation-induced apoptosis

(Fig. 2H). TRAP1 overexpression also rescues the reduced

mitochondrial membrane potential observed in PINK1-

deficient neuroprogenitor cells measured over a time course

inclusive of mitochondrial toxin controls (Fig. 2I).

TRAP1 loss-of-function in Parkinson’s
disease

Mutations in PINK1 cause early onset Parkinson’s disease

(Valente et al., 2004) and HTRA2 risk variants have been

reported in German (Strauss et al., 2005) and Belgian

A B

C D

E F

Figure 1 TRAP1 interacts with HTRA2. (A) A Coomassie-stained gel of GST-HTRA2 eluates from SH-SY5Y cells for unbiased mass

spectrometry. (B) Immunoblot (IB) of TRAP1 and HTRA2 in cytosolic (Cyto) mitochondrial (Mito) fractions from HeLa cells overexpressing wild-

type (WT) HTRA2 or an empty vector control. Input lysates (input), HTRA2 immunoprecipitates (IP HtrA2) and control immunoprecipitates

using bovine IgG (IP IgG). (C) Immunoblot of TRAP1 and HTRA2 in lysates in HeLa cells transfected with TRAP1 siRNA or a non-targeting siRNA

control. Input lysates (input), HTRA2 immunoprecipitates (IP HtrA2) and control immunoprecipitates using bovine IgG (IP IgG). (D) Immunoblot

of TRAP1 and HTRA2 in wild-type and TRAP1 knockout mouse brain lysates from cortex (CTx), basal ganglia/midbrain (Mid) and hindbrain (Hin).

Input lysates (input), HTRA2 immunoprecipitates (IP HtrA2) and control immunoprecipitates using bovine IgG (IP IgG). (E) Immunoblot of TRAP1

and HTRA2 in total cell lysates from untreated HEK293 cells (UT) or HEK293 cells treated with serum-free medium (starve), 1mM rotenone

(Rot) and 25 nM antimycin A (Ant A) for 24 h. Input lysates (input), HTRA2 immunoprecipitates (IP HtrA2) and control immunoprecipitates using

bovine IgG (IP IgG). (F) Immunoblot of TRAP1 in HeLa cell extracts either untreated (UT) or treated with 200 mM dopamine (DA), serum-free

media (starve), 2 mM Hsp90/TRAP1 inhibitor (17-AAG), 1 mM oligomycin and 0.4 mM antimycin A (OA), 40 mM hydrogen peroxide (H2O2), 5 mM

rotenone (Rot) or 100 nM valinomycin (Val) for 24 h. Input lysates (input) and HTRA2 immunoprecipitates (IP HtrA2) are shown.
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Figure 2 TRAP1 rescues HTRA2 and PINK1 loss of function phenotypes but is not a proteolytic substrate of HTRA2.

(A) Immunoprecipitation (IP) of TRAP1 from wild-type (WT) and knockout (KO) HTRA2 mouse embryonic fibroblasts and PINK1 knockout and

isogenic control (Ctrl) neuroprogenitor cells treated with or without 1mM valinomycin (Val) for 24 h to activate PINK1. Input lysates (input) and

TRAP1 immunoprecipitates were run on SDS-PAGE (A–C) and PhosTagTM SDS-PAGE gels (IP: TRAP1 PhosTag) to visualize all phosphorylated

TRAP1 enriched by the TRAP1 pulldown. (B) Immunoblot (IB) of TRAP1, HTRA2 and mitochondrial marker citrate synthase (CS) in SH-SY5Y

extracts from four experiments where wild-type HTRA2 or an empty vector (EV) control is overexpressed. (C) Immunoblot of TRAP1 and

HTRA2 in brain extracts from non-transgenic (NTG), overexpressing wild-type HTRA2 and overexpressing G399S mutant HTRA2 (Mut HtrA2)

mice. (D) Quantification of TRAP1 protein levels (normalized to GAPDH loading control) at 24 h and 48 h after transfection with wild-type
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(Bogaerts et al., 2008) Parkinson’s disease cohorts.

Therefore, we used the exome sequencing data from the

Parkinson’s Progression Markers Initiative (PPMI), to deter-

mine all non-synonymous TRAP1 single nucleotide variants

with a minor allele frequency 51% in the European non-

Finnish population (ExAC) (Lek et al., 2016) and an odds

ratio 41 in Parkinson’s disease patients compared to con-

trols. Variants (Supplementary Fig. 1C) were further filtered

by selecting those ‘damaging’, ‘probably damaging’ or ‘likely

damaging’ and where crystal structures are available. All

three resulting variants are located within known functional

domains: S221P falls within a histidine kinase-like ATPase

domain (HATPase_c, InterPro: IPR003594), and H311Q

and R469C are positioned within an HSP90 domain

(Pfam database: PF00183). However, none of these variants

overlapped with known ubiquitination, acetylation or phos-

phorylation sites (Supplementary Fig. 1A). The residues for

variants S221P and R469C are largely buried (5% and 13%

solvent accessibility), whereas variant H311Q affects a resi-

due that is partially accessible (25%) and could alter pro-

tein-protein interactions via residue size and charge

alterations. In a multiple sequence alignment, high sequence

conservation was observed for residues H311 and R469, but

not for S211 (Supplementary Fig. 1B). Correspondingly, a

destabilizing effect was predicted by the majority of algo-

rithms for H331Q and R469C, while the S221P variant

was estimated to be neutral. Notably, R469C was also pre-

dicted to decrease the chaperone binding function of TRAP1

(LIMBO software).

We used high resolution melting to screen for sequence

variations in the TRAP1 gene in the genomic DNA from

German Parkinson’s disease patients and a group of

healthy individuals. We detected several genetic variants,

further identified as single nucleotide polymorphisms

(listed in Supplementary Fig. 1C). Burden analysis of

TRAP1 was performed using the PPMI dataset (summar-

ized in Supplementary Fig. 1D). Truncating variants pre-

dicted to cause loss-of-function of TRAP1 are very rare

and were only observed in Parkinson’s disease patients

and not in controls. Interestingly, rare missense TRAP1

mutations were found to have significantly different

burden (P-values5 0.05) between patients and controls

(Supplementary Fig. 1D). In parallel, we analysed 200

exomes of Parkinson’s disease patients from Austria and

Germany for consanguinity. In addition to TRAP1 variants

(listed in Supplementary Fig. 1C), we found a moderate,

but significant consanguinity of �20 Mb in a German

Parkinson’s disease patient. One homozygous stretch

encompasses 5 Mb at Chr.16, including the TRAP1 gene.

Here we found a homozygous c.C1584T (R47X) mutation

(Fig. 3A). This mutation is not present in 10 000 control

exomes of the Helmholtz database; however, it occurs 12

times heterozygously in the ExAC database (60 000 con-

trols). The R47X TRAP1 Parkinson’s disease patient has

no rare variant in any of the other established

Parkinson’s disease genes (see Supplementary material for

the full list of genes).

The homozygous p.Arg47Ter single nucleotide exchange

(R47X) in exon 2 of TRAP1 leads to a premature stop

codon and truncation at the transit sequence of TRAP1

in a late-onset Parkinson’s disease patient (Fig. 3A). A

TRAP1 antibody that binds at a region of TRAP1 encom-

passing amino acids 253–464 (shown in Fig. 3B) was, as

expected, unable to detect TRAP1 protein in fibroblasts

biopsied from the R47X patient (Fig. 3C). Using PCR pri-

mers upstream and downstream of the mutation to amplify

patient cDNA, we found that TRAP1 RNA is present, sug-

gesting no nonsense-mediated RNA decay (Fig. 3D). The

R47X TRAP1 patient was diagnosed with Parkinson’s dis-

ease at age 70 years. There is no family history of

Parkinson’s disease but the mother of the index patient

had dementia. The R47X patient has also been diagnosed

with dilated cardiomyopathy, chronic pancreatitis, poly-

neuropathy and chronic kidney insufficiency (Table 1).

TRAP1 R47X Parkinson’s disease patient mitochon-

dria meet ATP demand but have reduced membrane

potential

To understand the relevance of the R47X TRAP1 muta-

tion, we assessed several readouts of mitochondrial form

and function in patient-derived fibroblasts. There were no

obvious differences in mitochondrial morphology between

controls and the index patient under basal or serum star-

vation conditions (binary z-stack images shown in Fig. 4A).

Figure 2 Continued

HTRA2 or HTRA2 protease dead mutant (S306A). (E) Mitochondrial membrane potential (��m) in HeLa cells transfected with HTRA2 siRNA

(HtrA2) or a non-targeting control (Ctrl) and overexpressing an empty vector or wild-type TRAP1 DNA construct. (F) Basal oxygen con-

sumption in HeLa cells transfected with HTRA2 siRNA (HtrA2) or a non-targeting control (Ctrl) and overexpressing an empty vector or wild-

type TRAP1 DNA construct. (G) Mitochondrial reactive oxygen species (ROS) using MitoSoxTM in HeLa cells transfected with HTRA2 siRNA

(HtrA2) or a non-targeting control (Ctrl) and overexpressing an empty vector or wild-type TRAP1 DNA construct. (H) Early apoptosis measured

by annexin V in HeLa cells either untreated (UT) or treated with 1 mM staurosporine (STS), serum-free media (starve) for 24 h and overexpressing

an empty vector or wild-type TRAP1 DNA ( + ) construct. (I) Reduced ��m in PINK1 knockout neuroprogenitor cells is rescued by over-

expression of wild-type TRAP1. TRAP1 (or empty vector control) transfected neuroprogenitor cells were identified using a ZsGreen tag.

Confocal images were taken every 4 s following incubation with TMRE, followed by washing (basal), oligomycin (oligo), rotenone (rot) and FCCP

(fccp). All statistical tests were the Student’s t-test assuming different standard deviation, except 2H, where two-way ANNOVA was used to

compare groups and condition. Error bars show standard deviation and *P5 0.05; **P5 0.01. TMRE = tetramethylrhodamine, ethyl ester,

perchlorate.

TRAP1 in Parkinson’s disease BRAIN 2017: 140; 2444–2459 | 2451

Downloaded from https://academic.oup.com/brain/article-abstract/140/9/2444/4096700/Metformin-reverses-TRAP1-mutation-associated
by guest
on 03 October 2017



Computational analysis of z-stack images revealed no dif-

ference in average mitochondrial size (Fig. 4B) or mito-

chondrial branching (Fig. 4C). However, after serum

starvation there was a significant fragmentation of

mitochondria in the R47X fibroblasts compared to controls

(Fig. 4D).

We measured the co-localization of mitochondria and

lysosomes in patient and control fibroblasts and the results

show similar co-localization of mitochondria with lyso-

somes under normal physiological conditions. Following

mild induction of autophagy by serum withdrawal, we

found that mitochondria to lysosome translocation was

more pronounced in TRAP1 R47X cells (Fig. 4E), suggest-

ing increased mitochondrial turnover.

Respiratory analysis of patient cells and controls, re-

corded oxygen consumption during a mitochondrial stress

test, where minimal, maximal and inhibited respiration is

induced by oligomycin, the uncoupler FCCP and antimycin

A, respectively (Fig. 4F). Basal respiration was significantly

increased in R47X fibroblasts (Fig. 4F). The extracellular

acidification rate (an indicator of glycolysis) normalized to

the rate of oxygen consumption per cell in R47X fibro-

blasts was generally higher than that of healthy controls

(Fig. 4G). However, the calculated glycolytic shift after

the addition of oligomycin is similar between patient and

controls (Fig. 4G). Complex I enriched in mitochondrial

extracts of R47X cells was significantly more active in oxi-

dizing NADH given as a substrate along with decylubiqui-

none in vitro than healthy individuals (Fig. 4H).

Furthermore, significantly more ATP was produced in

R47X fibroblasts compared to controls (Fig. 4I), indicating

that the complexes of the respiratory chain are not

damaged and suggesting that mitochondria in R47X pa-

tient cells have increased respiratory activity.

TRAP1 deficiency is reported to promote increases in

mitochondrial respiration, ATP levels and reactive oxygen

species in mice (Yoshida et al., 2013). Therefore, we iden-

tified the index patient in a previous study measuring mito-

chondrial reactive oxygen species in sporadic Parkinson’s

disease patient fibroblasts. The index patient has above

average levels of mitochondrial reactive oxygen species,

but are only mildly elevated in comparison to several

other sporadic Parkinson’s disease patients, genetic

Parkinson’s disease (PINK1, parkin and DJ-1 patients)

A

B

C D

Figure 3 TRAP1 loss-of-function in Parkinson’s disease.

(A) A diagram showing the position of the c.C158_T (R47X) mu-

tation within the amino acid sequence of TRAP1. (B) Diagram

showing the position of the c.C158_T (R47X) mutation in the

protein structure of TRAP1. The binding site of the TRAP1 antibody

(amino acid sequence 253–464) is also shown. (C) Copper stain

showing total protein loading of an immunoblot (IB) (top) probed

for TRAP1 (middle) and the loading control a-tubulin (bottom).

(D) Real-time PCR amplified TRAP1 transcripts normalized to

housekeeping gene GAPDH in healthy controls and in the TRAP1

R47X patient using primers amplifying a region starting at the 5’

UTR and spanning until exon 2 of TRAP1 upstream of the R47X

mutation and exon 3 downstream of the R47X mutation.

PD = Parkinson’s disease; WT = wild-type.

Table 1 R47X patient information

Patient Information Details Comments

Age of onset 2004 (71 years of age) Presented with pain in right shoulder and aching affecter (smaller)

with slowing down in general; later mild tremor when tired
Diagnosis 2004 Idiopathic Parkinson’s disease

Family history No Parkinson’s disease in family Mother with dementia

Other Dilatative cardiomyopathy No medication

Benign prostata hyperplasia

Pancreatitis Chronic

Polyneuropathy

Kidney insufficiency Chronic

Sleep apnoea

Cataracts
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Figure 4 TRAP1 R47X Parkinson’s disease patient mitochondria meet ATP demand but have reduced membrane potential.

(A) Representative binary images of mitochondria and the calculated (B) mitochondrial area, (C) form factor (mitochondrial branching) and

(D) aspect ratio (mitochondrial length) in fibroblasts from healthy individuals (CTRL) and a Parkinson’s disease patient carrying the R47X

mutation (PD R47X) untreated or serum starved (Starve) for 24 h. (E) Mitochondrial-lysosomal co-localization expressed as Pearson’s coefficient

in fibroblasts from healthy individuals (CTRL) and a Parkinson’s disease patient carrying the R47X mutation (PD R47X) untreated or deprived of

serum (Starve) for 24 h. (F, left) Mean average OCR of two healthy control fibroblasts and Parkinson’s disease patient carrying the R47X mutation

over a time course. Measurement of basal OCR is followed by the addition of oligomycin (oligo) 1 mM final concentration, FCCP 1mM final

concentration and antimycin A (Ant A, 1mM final concentration) and rotenone (AA) 1 mM final concentration. (Right) Statistical analysis showing

increased mean average basal OCR in Parkinson’s disease patient carrying the R47X mutation compared to the mean average OCR of two healthy

control fibroblasts. (G, left) Extracellular acidification rate (ECAR) normalized to OCR/cell to account for cell numbers of two healthy control

fibroblasts and Parkinson’s disease patient carrying the R47X mutation over a time course. (Right) Statistical analysis showing no changes in ECAR/

OCR under basal conditions, minimal OXPHOS (oligo) and the per cent shift from basal condition to minimal OXPHOS (glycolytic shift) in

Parkinson’s disease patient carrying the R47X mutation compared to the mean average OCR of two healthy control fibroblasts. (H) Complex I

enzyme activity (normalized to citrate synthase enzyme activity) in isolated mitochondria is increased in Parkinson’s disease patient carrying the

R47X TRAP1 mutation compared to two healthy control fibroblasts lines. (I) ATP levels (normalized to total protein) are increased in Parkinson’s

disease patient carrying the R47X mutation compared to two healthy control fibroblasts lines. (J) Mitochondrial reactive oxygen species (ROS)

levels in a Parkinson’s disease patient carrying the R47X TRAP1 mutation (highlighted in red), compared to the mean average mitochondrial ROS

measured in healthy controls (healthy), sporadic Parkinson’s disease patients (PD), Leigh syndrome patients (Leigh) and familial Parkinson’s disease

patients (genetic Parkinson’s disease, including PINK1, Parkin and DJ-1) in fibroblasts. (K) Mitochondrial membrane potential (��m) is signifi-

cantly reduced in Parkinson’s disease patient carrying the R47X mutation compared to two healthy control fibroblast lines. All statistical tests

were the Student’s t-test assuming different standard deviation. Error bars show standard deviation and *P5 0.05; **P5 0.01 and ***P5 0.001.

TMRE = tetramethylrhodamine, ethyl ester, perchlorate.
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and Leigh syndrome patient fibroblast lines (Fig. 4J).

Finally, mitochondrial membrane potential was signifi-

cantly reduced in TRAP1 R47X fibroblasts compared to

controls (Fig. 4K).

Metformin rescues the R47X
phenotype via a mechanism involving
mitochondrial biogenesis

In ovarian cancer, TRAP1 silencing causes resistance to

chemotherapy drugs because oxidative phosphorylation is

increased. Interestingly, the resistance to chemotherapy

could be reversed by mild inhibition of mitochondrial res-

piration by the diabetes drug metformin or oligomycin

(Matassa et al., 2016). Therefore, we treated TRAP1

R47X patient fibroblasts with 10 mM metformin, sublethal

concentrations of oligomycin and the antioxidant N-acetyl

cysteine (NAC) to see whether we could rescue the patient

phenotype. Metformin and oligomycin treatment restored

the mitochondrial membrane potential observed in the pa-

tient, whereas the antioxidant NAC could not (Fig. 5A).

We subjected human cancer cells to a range of toxins and

stressors and measured their effect on mitochondrial mem-

brane potential. Dopamine, hydrogen peroxide and the

ionophore valinomycin greatly reduced mitochondrial

membrane potential and this could not be rescued by met-

formin. Dopamine toxicity was protected by addition of the

antioxidant NAC and metformin treatment alone does not

reduce mitochondrial membrane potential (Fig. 5B).

Finally, reduced mitochondrial membrane potential induced

by the Hsp90 family/TRAP1 inhibitor 17-AAG could be

reversed by metformin (Fig. 5B), suggesting there is a spe-

cific effect of metformin in paradigms related to TRAP1.

To investigate further the mechanism by which metfor-

min is protective in our model, we measured the fluores-

cence lifetime of NADH in living cells from the TRAP1

R47X patient and healthy individuals with and without

treatment with metformin. Bound NADH indicates usage

in mitochondrial respiration, whereas free NADH is asso-

ciated with glycolysis (Bird et al., 2005; Blacker et al.,

2014). We found significantly reduced bound NADH and

increased free NADH following metformin treatment in all

cell types (Fig. 5C). This finding supports the observation

that metformin suppresses gluconeogenesis (Kim et al.,

2008), inhibits complex I (Owen et al., 2000) and shifts

the balance between coupling and uncoupling reactions via

the TCA cycle (Andrzejewski et al., 2014). We found a

similar bound/unbound NADH ratio in the untreated

R47X patient fibroblasts as in the metformin treated con-

trols and the addition of metformin in the patient did not

reverse the bound/unbound NADH ratio (Fig. 5C). These

data, although highly significant, represent overall a very

small shift in the total levels of bound versus unbound

NADH levels (Fig. 5C). The data suggest that the protective

mechanism of metformin in the R47X patient is not via the

metabolic switch between oxidative phosphorylation

(OXPHOS) and glycolysis. These data could mean that

either glycolysis is favoured in the R47X patient or mito-

chondrial turnover and/or the NAD + /NADH pool are

altered.

NAD + and combined NAD + and NADH levels are sig-

nificantly increased in TRAP1 R47X patient cells compared

to controls (Fig. 5D). Metformin treatment in healthy indi-

viduals and in TRAP1 R47X patient cells lowers both

NAD + and total NAD + and NADH levels in one control

and the patient, but not significantly (Fig. 5D).

We observe a significantly reduced ratio of succinate de-

hydrogenase (SDH) to cytochrome c oxidase (COX

mtDNA-encoded subunit) in both R47X patient fibroblasts

and TRAP1 knockout mouse adult fibroblasts compared to

controls (Fig. 5E), which indicates an imbalance between

nuclear and mitochondrially encoded mitochondrial pro-

teins (termed mitonuclear imbalance), likely induced by

the increased NAD + and NADH pool and in agreement

with the effect of NAD + boosters on the age-associated

metabolic decline and promotion of longevity in worms

(Mouchiroud et al., 2013).

Metformin is able to reverse the mitonuclear imbalance

in the TRAP1 R47X patient fibroblasts (Fig. 5E), indicating

that the mitonuclear imbalance is the converging step in the

survival pathway that can be targeted pharmacologically.

Mitonuclear protein imbalance controls longevity in mam-

mals via induction of the mitochondrial unfolded protein

response (mtUPR) (Houtkooper et al., 2013; Mouchiroud

et al., 2013). Therefore, we monitored the levels of Hsp60,

Hsp70 and mitochondrial Hsp90, three markers of the

mtUPR. We found that on average both Hsp60 and

mtHsp70 levels were higher in R47X TRAP1 patient fibro-

blasts compared to two healthy controls in three independ-

ent experiments (Fig. 5F). Hsp90 levels were also elevated

but the difference was not significant (Supplementary Fig.

2C). These data suggest that in TRAP1 loss-of-function

models, the mtUPR is upregulated. This is associated with

increased turnover of mitochondria and the significant ele-

vation of subunits of mitochondrial respiratory complexes

I, II, III and IV, which is also rescued by metformin

(Supplementary Fig. 2B). Phosphorylated ERK1/2 orches-

trates metabolic switching via TRAP1 (Masgras et al.,

2017). Here we found that the levels of phosphorylated

ERK1/2 are increased in the index patient fibroblasts and

can be reversed by metformin (Supplementary Fig. 2D).

Discussion
TRAP1 and HTRA2 are targets of the Parkinson’s disease

kinase PINK1 (Plun-Favreau et al., 2007; Pridgeon et al.,

2007). However, how these three proteins act together in

Parkinson’s disease signalling still remains to be elucidated.

One of the barriers to dissecting a pathway involving

HTRA2 and TRAP1 was the lack of mechanistic evidence

for the downstream mitochondrial function observed.
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Here we have shown that HTRA2 and TRAP1 physically

interact and regulate each other. The biochemistry of the

interaction is non-canonical and does not involve the pro-

tease activity of HTRA2, leaving us to speculate that

HTRA2 and TRAP1 perform in a common intra-mitochon-

drial chaperoning or quality control system. In this study,

overexpression of the catalytically inactive HTRA2 S306A

reduces TRAP1 protein levels to the same extent as wild-

A B

C

E

D

F

Figure 5 Metformin rescues the R47X phenotype via a mechanism involving mitochondrial biogenesis. (A) Mitochondrial

membrane potential (��m) is reduced in Parkinson’s disease patient carrying the R47X mutation (PD R47X) compared to the mean average of

two healthy control (CTRL) fibroblast lines. All fibroblasts were treated with DMSO vehicle (Veh), 0.5 mM antioxidant N-acetyl cysteine (NAC),

10 mM Metformin hydrochloride (MET) or 250 nM oligomycin (oligo) for 24 h, of which metformin and oligomycin reverted the phenotype. (B)

Mitochondrial membrane potential (��m) is reduced in HeLa cells treated (Tx) with 500 mM dopamine (DA), 400 mM hydrogen peroxide (H2O2),

2 mM 17-AAG, and 100 nM valinomycin (Val) but not the DMSO vehicle control (Veh) for 24 h. Antioxidant N-acetyl cysteine (NAC, 0.5 mM)

rescues the dopamine toxicity to some extent, whereas 10 mM metformin hydrochloride (MET) rescued the inhibition of TRAP1 by 17-AAG. (C,

top) The percentage of bound NADH in two healthy control fibroblast lines (CTRL) and in the Parkinson’s disease patient carrying the R47X

mutation (PD R47X), with or without treatment with 10 mM metformin for 24 h. (Bottom) The overall percentage of bound (green) and free (blue)

NADH in two healthy control fibroblast lines (CTRL) and in the Parkinson’s disease patient carrying the R47X mutation (PD R47X), with or

without treatment with 10 mM metformin for 24 h. (D) Levels of NAD + (left) and total NAD + /NADH (right) measured in two healthy fibroblast

lines and the Parkinsons’ disease patient carrying the R47X mutation with or without treatment with 10 mM metformin for 24 h. (E) Succinate

dehydrogenase (nuclear encoded) to mt COX (mitochondrial encoded) protein ratio in TRAP1 knockout mouse embryonic fibroblasts (left),

R47X Parkinson’s disease patient (middle) and R47X patient cells treated with metformin (right). (F) Immunoblots (IB) of Hsp60 and mtHsp70 in

three independent extractions from two healthy fibroblast lines (CTRL) and the R47X Parkinson’s disease patient (left), quantified for statistical

analyses (right). The Student’s t-test was used assuming different standard deviation to compare patient and control group. Two-way ANOVA was

used to compare cell types and treatments. Error bars show standard deviation and *P5 0.05; **P5 0.01 and ***P5 0.001.
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type HTRA2. As in mnd2 mice carrying the S276C

HTRA2 mutation, HTRA2 is catalytically inactive and as

the mice phenocopy the mitochondrial dysfunction and

neurodegeneration seen in HTRA2 knockout mice

(Martins et al., 2004), S306A is also unlikely to rescue

HTRA2 loss of mitochondrial function. However,

HTRA2 possesses chaperone activity in its basal state

(Li et al., 2002). Protease dead HTRA2 could still bind

TRAP1 via its PDZ domain. The PDZ domain of

HTRA2 has a ‘YIGV’ recognition pattern but also detects

long hydrophobic stretches (Zhang et al., 2007), preferen-

tially C-terminal peptides (Clausen et al., 2002).

Interestingly, analysis of TRAP1 hydrophobicity shows a

hydrophobic stretch at the C-terminal (Supplementary Fig.

2A) and therefore an alternative mode of interaction by

association should not be ruled out. Other mitochondrial

proteases could also be influencing TRAP1 and loss of

HTRA2 could trigger other proteases in order to maintain

proteostasis, which displays some redundancy.

One concept that links HTRA2 and TRAP1 in the con-

text of neurodegeneration is the mtUPR. The mtUPR is a

highly conserved cellular response activated when the accu-

mulation of unfolded or misfolded proteins goes beyond

the chaperone capacity of the mitochondria (Pellegrino

et al., 2013). The mtUPR activates transcription of nu-

clear-encoded mitochondrial chaperone genes to promote

protein homeostasis within mitochondria. HTRA2 levels

are increased during mtUPR (Spiess et al., 1999) and loss

of HTRA2 contributes to transcriptional stress response

(Moisoi et al., 2009). Overexpression of TRAP1 activates

mtUPR and extends lifespan in Drosophila (Baqri et al.,

2014) and TRAP1 inhibition promotes the mtUPR response

in Caenorhabditis elegans (Munch and Harper, 2016).

TRAP1 gain-of-function rescues PINK1 (Zhang et al.,

2013) and PINK1/parkin loss-of-function in Drosophila
(Costa et al., 2013) and here we can show that TRAP1 res-

cues HTRA2 and PINK1 loss-of-function in human cells. In

addition to its role as a chaperone, TRAP1 is also involved in

metabolic switching (Yoshida et al., 2013; Sciacovelli et al.,

2013; Rasola et al., 2014; Masgras et al., 2017) and there-

fore through the identification of a sporadic Parkinson’s dis-

ease patient homozygous for a premature stop mutation in

TRAP1 and data from the patient fibroblasts, we have un-

covered a mechanism involving mitochondrial metabolism.

TRAP1 mutations could be important for our understand-

ing of the underlying biological mechanisms that lead to

Parkinson’s disease and although the role and influence of

rare variants in complex diseases is a debated subject, data

generated so far indicate that common and rare variants are

not mutually exclusive. We used the PPMI repository (with

380 Parkinson’s disease cases and 162 controls) to perform

a comprehensive burden analysis. Truncating variants pre-

dicted to cause loss-of-function of TRAP1 are very rare and

were only observed in Parkinson’s disease patients and not

in controls. For rare missense TRAP1 mutations, we found a

significantly different burden (P-values50.05) between pa-

tients and controls. We also investigated whether there are

healthy individuals who have both alleles of the TRAP1

gene inactivated. Using our in-house Helmholtz database

and several available large datasets, we found no such

TRAP1 mutation, showing that biallelic loss-of-function mu-

tations are not well tolerated in healthy individuals. Overall,

the result of the burden analysis points to an association of

TRAP1 rare, missense variants in controls that may be pro-

tective for Parkinson’s disease. To further validate the find-

ings on low frequency variants in Parkinson’s disease, we

would need independent, larger sample sets.

In 2014, Luykx et al. (2014) hinted that TRAP1 variants

are associated with neurotransmitter metabolism and

Parkinson’s disease. The authors performed a genome-

wide association study (GWAS) analysis and found a sig-

nificant association of the ratio of HVA/5-HIAA, indicating

enhanced monoamine turnover in variants of six genes,

among them were PINK1 and TRAP1, further supporting

the genetic contribution of TRAP1 to Parkinson’s disease.

In the case reported here, a homozygous stop mutation in

TRAP1 in a Parkinson’s disease patient leads to complete

loss of the TRAP1 protein. TRAP1 mutations have previ-

ously been associated with chronic pain, fatigue and gastro-

intestinal dysmotility (Boles et al., 2015), a recognized

common dysfunction in Parkinson’s disease (Pfeiffer,

2003). One highly conserved variant in this study

(p.Ile253Val) was also identified in both German and

Austrian Parkinson’s disease patients. Furthermore, reces-

sive mutations in TRAP1 were identified in two families

with congenital abnormalities of the kidney and urinary

tract (CAKUT) and VACTERL association (congenital

abnormalities in multiple organs) (Saisawat et al., 2014).

Interestingly, the late-onset Parkinson’s disease patient with

a homozygous stop mutation (R47X) in TRAP1 described

here was also diagnosed with chronic pancreatitis and,

chronic kidney insufficiency but not diabetes. The R47X

patient also shows other symptoms related to mitochon-

driopathies such as cardiomyopathy, polyneuropathy,

sleep apnoea and cataracts. Studies in mice have shown

that TRAP1 overexpression protects against cardiac hyper-

trophy (Zhang et al., 2011) and underscores the link be-

tween TRAP1 defects and mitochondriopathy.

In line with previous work performed in TRAP1 knock-

out mice (Yoshida et al., 2013), TRAP1-deficient patient

fibroblasts show increased respiration, complex I activity

and ATP output. We also found more unbound NADH,

which indicates favouring of glycolysis. However, these

changes, although highly significant, are overall very

small, which might reflect the low metabolic demand in

fibroblasts compared to neurons. Unbound NADH could

also come from the NAD + /NADH pool, which is increased

in mitochondrial biogenesis. NAD + metabolism engages

key effectors of longevity, and interestingly modulating

NAD + levels has become a focus for intervention in age-

related diseases (Karpac and Jasper, 2013). NAD + signals

mitochondrial biogenesis via the sirtuin pathway, this im-

pacts mitonuclear protein balance and initiates the mtUPR,

promoting longevity (Mouchiroud et al., 2013).
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Altered stoichiometry between nuclear and mtDNA

encoded proteins (mitonuclear protein balance) is a con-

served longevity mechanism across many species.

Mitonuclear protein imbalance is coupled with the activation

of the mtUPR, activation of mitochondrial chaperones and

longevity (Houtkooper et al., 2013). Mitochondrial biogen-

esis, normal ageing, mitochondrial transcription and transla-

tion all influence the balance of nuclear and mtDNA

encoded mitochondrial proteins (Houtkooper et al., 2013).

The diabetes mellitus type 2 drug metformin was inves-

tigated in this study because of its ability to reverse

TRAP1-dependent chemotherapy resistance in ovarian

cancer (Matassa et al., 2016). The ability of metformin

(and not an antioxidant) to rescue the reduced mitochon-

drial membrane potential phenotype is of particular interest

as metformin has previously been shown to be protective in

Parkinson’s disease models (Patil et al., 2014; Perez-

Revuelta et al., 2014) and there are significantly fewer

cases of Parkinson’s disease in diabetes mellitus type 2 pa-

tients taking metformin (Wahlqvist et al., 2012). We pro-

pose that loss of TRAP1 hinders the fine tuning of energy

metabolism, proteostasis and the mtUPR response. It is this

fine tuning that over time, when not available, pushes the

cell in favour of meeting immediate energy needs, rather

than energy restriction. Further work to generate induced

pluripotent stem cells from the TRAP1 R47X patient fibro-

blasts and gene correct the mutation would confirm cause

of disease. In conclusion, loss-of-function mutations in

TRAP1 are rare, yet analyses of the biological pathway

involving TRAP1, show that TRAP1 is important for mito-

chondrial signalling in Parkinson’s disease. These data also

underscore the role of rare variants in the pathogenesis of

Parkinson’s disease and suggest that treatments other than

antioxidants should also be considered for individualized

therapies in aetiologically heterogeneous syndromes such

as Parkinsonism.
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Abstract
Objective
The aim of this study was to identify variants associated with familial late-onset Alzheimer
disease (AD) using whole-genome sequencing.

Methods
Several families with an autosomal dominant inheritance pattern of AD were analyzed by
whole-genome sequencing. Variants were prioritized for rare, likely pathogenic variants in
genes already known to be associated with AD and confirmed by Sanger sequencing using
standard protocols.

Results
We identified 2 rare ABCA7 variants (rs143718918 and rs538591288) with varying penetrance
in 2 independent German AD families, respectively. The single nucleotide variant (SNV)
rs143718918 causes a missense mutation, and the deletion rs538591288 causes a frameshift
mutation of ABCA7. Both variants have previously been reported in larger cohorts but with
incomplete segregation information. ABCA7 is one of more than 20 AD risk loci that have so far
been identified by genome-wide association studies, and both common and rare variants of
ABCA7 have previously been described in different populations with higher frequencies in AD
cases than in controls and varying penetrance. Furthermore, ABCA7 is known to be involved in
several AD-relevant pathways.

Conclusions
We conclude that both SNVs might contribute to the development of AD in the examined
family members. Together with previous findings, our data confirm ABCA7 as one of the most
relevant AD risk genes.

*These authors contributed equally to this work.

From the Luxembourg Centre for Systems Biomedicine (LCSB) (P.M., D.R.B., R.B., J.G.S.), University of Luxembourg, Esch-sur-Alzette; Department of Psychiatry and Psychotherapy
(S.P., D.H., M.M., C.S., M.R.), Saarland University Hospital, Saarland University, Homburg; and Department of Psychiatry and Psychotherapy (A.K.), Klinikum Rechts der Isar, TU-
Muenchen, Munich, Germany.

Funding information and disclosures are provided at the end of the article. Full disclosure form information provided by the authors is available with the full text of this article at
Neurology.org/NG.

The Article Processing Charge was funded by Prof Dr Riemenschneider, Klinik für Psychiatrie und Psychotherapie, Universität des Saarlandes.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND), which permits downloading
and sharing the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

Copyright © 2018 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. 1



Several genome-wide association studies (GWASs) have iden-
tified ABCA7 (ATP-binding cassette transporter A7) as a risk
factor for sporadic late-onset Alzheimer disease (AD).1–3ABCA7
encodes a protein with major function in lipid transport.4 The
protein is involved in AD pathology, as it was demonstrated to
play a role in formation, clearance, and aggregation of amyloid
beta, the etiologic agent in AD.5,6 Recently, multiple rare loss-of-
function variants in ABCA7 associated with AD risk and possible
causal variants in familial cases and pedigrees have been identi-
fied through sequencing efforts.7–11 Alterations in ABCA7 have
not only been observed in European but also in African Amer-
ican12 and Asian13,14 populations either by GWASs or targeting
sequencing with varying minor allele frequencies (MAFs). In
addition, a protective ABCA7 variant has also been described,
emphasizing the role of this gene in AD.15 We now present the
data of 2 rare variants of ABCA7 in 2 German families.

Methods
Standard protocol approvals, registrations,
and patient consents
All individuals provided written informed consent before their
participation in this study for the clinical evaluation and
genetic analysis of leukocyte DNA. Clinical phenotyping,
whole-genome sequencing (WGS), and genetic analysis were

approved by the Central Ethics Committee of the Bavarian
Medical Association and the Ethics Review Panel of the
University of Luxembourg.

Patient information
Two families with an autosomal dominant inheritance pattern
of AD were analyzed, and a pedigree chart is shown in figure 1.
The 3 patients with AD sequenced in family 1 had reported
ages at onset of <56, 70–75, and 71–77 years. The APOE status
for all 3 patients was e3/4. Family members 021, 022, and 122
died at the age of 47, 56, and 75 years, respectively. The patient
with AD in family 2 had an age at onset of 66 years; the APOE
status was e4/4. Familymembers 101 and 102 died at the age of
74 and 73, respectively. For 001, 002, and 122, the age at death
is unknown. Blood samples were taken from 7 (family 1) and
8 (family 2) family members, respectively, and DNA was
extracted from leukocytes using standard procedures.

WGS and analysis
WGS was performed by Complete Genomics Inc. (CG,
Mountain View, CA) using their proprietary paired-end,
nanoarray-based sequencing-by-ligation technology.16 Se-
quencing, quality control, mapping, and variant calling for the
sequencing data were performed by CG as part of their se-
quencing service using the Standard Sequencing Service
pipeline version 2.0. Sequencing reads were mapped against

Figure 1 Pedigree charts

The age at examination of each individual sequenced in this study is given beneath the identifier number. Individuals diagnosed with AD are indicated as
affected (dark gray), individuals with AD-like symptoms reported by their family members are indicated in light gray. (A) Pedigree of family 1. The genotypes
arewild type (G/G) or the alteration (G/A) that causes the ABCA7missensemutation. (B) Pedigree of family 2. The genotypes arewild type (T/T) or the alteration
(T/del) that causes the ABCA7 frameshift mutation.

Glossary
AD = Alzheimer disease; GWAS = genome-wide association study; MAF = minor allele frequency; WGS = whole-genome
sequencing; SNV = single nucleotide variant; LD = linkage disequilibrium.
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NCBI Build 37. For further analysis, only single nucleotide
variants (SNVs) and small insertions, deletions, and block
substitutions up to a size of about 50 nt (indels) were used.

Variant prioritization
Variants were annotated by ANNOVAR17 (version 2015
March 12) using the NCBI RefSeq release 60 and the
Ensembl release 74 genome. As input for our family WGS
analysis pipeline,18 we first combined all variants from all
genomes of every sequenced family member into the union of
variants using CG analysis software (CGATOOLS, version
1.5) listvariant tool and the CG “var” files of all individuals per
family as input. We used CGATOOLS testvariant to test each
sample for the presence of each allele at every variant position
from the union set of variants. We removed variants that were
not called as high-quality calls (VQHIGH) in at least 1 in-
dividual. For both families, we used ISCA version 0.1.919 to
search for shared haplotype blocks between pairs of samples
and determined the number of shared alleles per block. For
family 1, we filtered for haplotype blocks that shared 1 allele
between the cases that was not shared with the unaffected
individual 101 (figure 1A). For family 2, we excluded blocks
where any pair of unaffected siblings shared 2 alleles (figure
1B). For each family, we applied an autosomal dominant in-
heritance model and filtered for exonic variants excluding
synonymous variants and for variants in essential splice sites
(±2 nucleotides from the exon boundary).

Variants within regions that are known to show very high
mutation rates, like in mucins and olfactory receptors, were
excluded (commonly mutated region).20 We filtered for rare
variants having an MAF of less than 5% in the European
American population of the 1000 Genomes Project, the Eu-
ropean NHLBI ESP exomes, and the Non-Finnish European
population from the ExAC project as well as in the control
data set CG69 provided by CG. We annotated the remaining
variants for pathogenicity by considering either loss-of-
function variants (indels, stop-gain, stop-loss, and splice-site
variants) or missensemutations predicted to be deleterious by
SIFT, PolyPhen-2_HDIV, LRT, and MutationTaster or
mutated at highly conserved positions (GERP_RS>3). All
annotations were derived from dbNSFP3.0a.21 We further used
a list of AD candidate genes that was collected from various
GWAS in the dbGAP, the Alzgene database,22 and the Geno-
tator tool23 to prioritize variants.

Population stratification
We performed population stratification by using
EIGENSTRAT24 with default parameters. First, we merged
our data with the 1000 Genomes data. We chose only the
autosomal SNVs concordant with hapmap25 that were bial-
lelic and not in linkage disequilibrium (LD) with each other
by using PLINK (version 1.9)26 with the parameters—indep
50 5 2, MAF of at least 0.1, and minimum call rate of 0.99 to
perform the population stratification. To identify the ethnicity
of samples in the current study, the first and the second
principal components were visualized.

Genetic and linkage analysis
For linkage analysis, high-quality SNV positions (complete call
rate over all individuals from VQHIGH status in CG var files)
were extracted from theWGS data. Variants with high LDwere
removed using PLINK 1.926; further thinning of variants was
performed using mapthin.27 A set of 2,000 variants per chro-
mosome along with the identified variants segregating with the
disease through the pedigree were used to check for genotype
errors and mendelian inconsistencies using MERLIN28 and
were subsequently removed if they were identified as errors.
The remaining variants were used for linkage analysis and their
genomic positions were linearly interpolated based on the
hapmap genetic map (2011-01_phaseII_B37). MERLIN was
used to perform both haplotyping and multipoint parametric
linkage analysis with a rare autosomal dominant disease model
with a disease frequency of 0.0001 and penetrance of 0.0001,
1.0, and 1.0. Haplotyping results were visualized using Hap-
loPainter.29 Using the R package “paramlink,”30 we calculated
the power of each pedigree given as the maximal LOD scores
for each family under an autosomal dominant inheritance
model and 10,000 simulated markers. Relationship detection
between all individuals was performed using software GRAB.20

Validation by sanger sequencing
The presence of both variants identified by WGS were vali-
dated and replicated by Sanger sequencing in each family
member of both pedigrees using standard protocols with the
following oligonucleotide sets: ABCA7_delT_1055908_FWD:
39-TTGTCCACCCTTGACTCTGTGC-59; ABCA7_delT_
1055908_REV: 39-CTTGAGACTGTCCTGAGCATCC-59;
ABCA7_rs143718918_FWD: 39-ACAGGTCCATCTT-
GAGTGGC-59; ABCA7_rs143718918_REV: 39-GAGAC-
CAGCCCCACATCC-59.

Results
WeusedWGS to identify the genetic cause of AD in 10 families
with an autosomal dominant pattern of inheritance. Among
these families, variants in ABCA7 were identified in 2 families
(family 1 and family 2). In family 1, we sequenced the genomes
of 7 family members; 3 of them were diagnosed with AD
(figure 1A). In the second family (family 2), we sequenced
genomes of 4 family members, 1 affected index patient with AD
(age at diagnosis 66 years) and 3 unaffected siblings (figure
1B). Relationship estimation20 confirmed all relationships in
both families, given the original pedigree information. All
families were self-reported of German ethnicity. European
ancestry could be confirmed using EIGENSTRAT24 analysis
(figure e-1, links.lww.com/NXG/A38).

WGS fully called on average 97% of genome and 98% of
exonic regions. Seventy-seven percent of the genome and 86%
of the exome were covered with at least 30X. We detected on
average over all samples from both families 3,415,106 SNVs
and 577,534 indels and substitutions per genome (table e-1,
links.lww.com/NXG/A39).
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In total, 7,516,717 and 6,139,540 variants (SNVs and indels)
different from the reference genome were identified in at least
1 family member for family 1 and 2, respectively. Disease-
associated variants were searched using an autosomal domi-
nant inheritance model. In family 2, only variants present in
the affected and not present in the unaffected individuals
were considered. After strict quality, mode of inheritance,
shared haplotype and MAF < 0.05 filtering, 51,269 and
56,962 variants remained (table e-2, links.lww.com/NXG/
A39). After annotation using RefSeq, we screened for exonic
splice-site affecting variants. After excluding variants within
commonly mutated and brain-expressed genes, we priori-
tized the remaining variants according to their predicted
pathogenicity and conservation. In total, only 11 (family 1,
tables e-3 and e-5) and 8 (family 2, tables e-4 and e-6) var-
iants were found in AD-related genes (table e-7) and were
therefore considered to be relevant to AD. Strict variant fil-
tering revealed for each family rare ABCA7 variants,
rs143718918 (family 1) and rs538591288 (family 2) as best
candidate variants.

European (Non-Finnish) population allele frequencies for
rs143718918 and for rs538591288 add up to 0.0021 and
0.0016, respectively. Both variants are very rare (MAF < 0.01)
in the European population according to the ExAC31 and 1000
Genomes (tables e-3 and e-4, links.lww.com/NXG/A39).

In addition, the performed linkage (figure 2, A and B) and
haplotype block analysis (figure 3, A and B) show cose-
gregation and association of both variants with AD in both

German families. We confirmed the presence of both variants
in the initially screened and the additional family members by
Sanger Sequencing (figure 1).

The SNV rs143718918 identified in family 1 causes a mis-
sense mutation of ABCA7 (c.2693G>A) that affects the
ABC1 domain of the protein (p.R880Q). This variant was
previously identified in patients with AD and controls of
a larger Belgian cohort in a French as well as in an European
cohort with early-onset patients and in patients with AD
of a Caucasian cohort.7,32,33 We identified the SNV in all
sequenced family members except for 1 healthy member
(figure 1A). Three family members (201, 211, and 212)
also carrying the risk variant were not affected and/or
did not report cognitive deficits at the time of the last
consultation, but were considerably younger than the af-
fected family members and therefore possibly pre-
symptomatic at the time of examination. As such, genetic
counseling and clinical follow-up examinations will be
conducted.

The second variant (rs538591288) identified in family
2 causes a frameshift deletion in exon 31 of ABCA7
(c.4208delT; p.L1403fs). This variant was also previously
identified in patients with AD and controls of a larger
Belgian cohort as well as in a French and in a European
Cohort with early-onset AD patients.7,32,33 Of interest, in
one of these studies, additional Italian relatives with EOAD
carrying the deletion were reported.32 Furthermore, 2
groups have recently shown that p.L1403fs variant carriers

Figure 2 Linkage analysis of chromosome 19

(A) The maximum LOD score (1.8) over the whole chromosome is seen in the region containing ABCA7. (B) Linkage analysis of the ABCA7 region on
chromosome 19. The maximal LOD score (1.8) could be found on chromosome 19 in the region from 257,507 to 3,909,104 suggesting linkage, the region in
red spans the gene ABCA7. Of the combined LOD score of 1.8 in the region spanning ABCA7, family 1 and family 2 contributed LOD scores of 1.2 and 0.6,
respectively.
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had decreased ABCA7 protein levels but unchanged mRNA
levels.32,34

We have identified the SNV (rs538591288) in 3 family
members, including 2 children of the index patient (301 and
303, figure 1B), which were not diagnosed with AD but due to
young age possibly presymptomatic at the time of examina-
tion. Of interest, both so far unaffected carriers reported al-
ready having occasional memory problems.

Discussion
We conducted a whole-genome sequencing (WGS) study to
search for SNVs cosegregating with Alzheimer disease (AD)
cases in German families. Of interest, we identified 2 rare
variants of ABCA7 possibly contributing to AD pathogen-
esis in 2 families, respectively. ABCA7 is one of more than 20
AD risk loci that have so far been identified by GWASs and
sequencing studies. ABCA7 is also involved in AD-relevant

pathways (lipid metabolism, microglial phagocytosis, and
altered amyloid-beta processing) and abundantly expressed
in the brain.

We identified the rs143718918 to cosegregate with AD in family
1. The SNV causes a missense mutation of ABCA7 in exon 19
(c.2693G>A) that affects the ABC1 domain of the protein
(p.R880Q) and is probably damaging. This variant has pre-
viously been identified by GWASs in Caucasians with late-onset
AD.8 Furthermore, several studies reported the presence of this
variant in AD and in control subjects of (1) a Belgian cohort,7 (2)
a French EOAD cohort,33 and (3) an EOAD cohort including
samples of diverse origin.32 Overall, the variant was present with
higher frequency in AD cases compared with controls.

The rs538591288 cosegregated with AD in family 2 and causes
a frameshift mutation in exon 31 of ABCA7 (c.4208delT;
p.L1403fs). Initially, this SNVhas been reported in an Icelandic
cohort9 and was later also identified with higher frequency in

Figure 3 Segregating haplotype blocks

The affected, unaffected, and disease status of unknown individuals are filled in black, white, and gray, respectively. An asterisk indicates the individuals who
were not sequenced and their haplotypes were inferred. (A) The disease haplotype is indicated in purple. (B) The disease haplotype is indicated in light green.
In both families, cosegregation of the disease haplotype including the corresponding ABCA7 variant can be seen in all affected individuals.
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cases than controls of German, Swedish, Italian,32 French,33

and Belgian7 cohorts. Mutation carriers express lower levels of
full-length ABCA7 protein with unchanged mRNA expression
levels.32,34 However, it has been reported that by in-frame exon
skipping of the premature termination codon bearing exon 31,
the transcript escapes nonsense-mediated mRNA decay.7,32

Exon skipping leads to the production of a shorter version of
ABCA7 protein, which might partly compensate for the re-
duced full-length protein levels and might cause incomplete
penetrance of rs538591288.

It has to be mentioned that we cannot exclude that other varia-
tions might cause additive effects on the development of AD in
both families. Because of the previously shown involvement of
ABCA7 in AD, the presented variants represent the most
promising candidates. Together, our results support the notion
that rare variants of ABCA7 exert considerable risk to the de-
velopment of AD.
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Introduction
Chronic obstructive pulmonary disease (COPD) is a progressive 
chronic inflammatory lung disease characterized by persistent 
limited airflow caused by various environmental exposures 
such as cigarette smoke (CS), occupational hazards, and air 
pollution.1 Mechanisms underlying the disease include a com-
plex interplay of inflammation, proliferation, oxidative stress, 
tissue repair, and other processes driven by various immune, 
epithelial, and airway cell types.2,3 Understanding the 
molecular mechanisms associated with COPD is important for 
preventing disease onset, slowing down disease progression, 

and managing treatment. Biological network models offer 
a framework for understanding disease by describing the 
relationships between the molecular mechanisms involved 
in the regulation of a particular biological process. Kyoto 
Encyclopedia of Genes and Genomes (KEGG) and Reactome 
are open access pathway databases widely used by the scien-
tific community.4–7 They describe signaling in various areas 
of biology and can be used to interpret large-scale molecular 
data through integration and overlay on pathways to assess 
pathway overrepresentation. In contrast to these general 
pathway databases, we have developed a set of networks within 
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defined boundaries relevant to COPD that are available to the 
public on the Bionet website at https://bionet.sbvimprover.
com, where they can not only be viewed and downloaded but 
can also be actively commented on and edited.8,9 These net-
works can also be used to interpret large-scale molecular data 
to a fine-grained degree, due to their construction in Biologi-
cal Expression Language (BEL), a human-readable comput-
able language with the ability to capture precise biological 
information and associated context (www.openbel.org). The 
networks were based on a set of previously published lung-rel-
evant healthy biological networks, which along with the most 
current network versions are available for download at http://
www.causalbionet.com/.10–14

To ensure a comprehensive and up-to-date set of bio-
logical network models that cover a wide range of biological 
signaling, crowdsourcing can be used to gather input from 
the scientific community. Crowdsourcing is a powerful tool 
to efficiently gather feedback from a wide audience that cov-
ers expertise in many biological areas. Crowdsourcing efforts 
in biology are useful in the collection of creative solutions to 
challenging problems in various fields of biology such as sig-
naling networks, protein folding, RNA design, and sequence 
alignment.15–18 Crowdsourcing has also been harnessed to 
accomplish a large amount of manual work in annotation 
projects including disease-related genes, interactome path-
ways, and PubMed abstracts.19–21 We have previously reported 
the creation of a set of biological networks describing COPD 
processes that were improved by the scientific community 
during the first Network Verification Challenge (NVC).8,9 In 
this study, we show that the networks were further improved 
during a second NVC (NVC2), in which the crowd added 
mechanistic details in the form of new nodes and edges.

We illustrate possible network applications for the 
crowd-improved set of networks using network scoring by 
TopoNPA, a method to infer mechanism and network per-
turbation based on transcriptomics data and known activators 
and inhibitors of gene expression reported in the literature.22 
Quantitative scoring of networks is enabled by BEL, an open 
platform technology, where cause and effect relationships 
from the literature are described and annotated using a pre-
cise language and collected in a knowledgebase. This knowl-
edgebase is used to predict upstream regulators of measured 
transcriptomics data.23 This backward reasoning approach 
differs from other gene set enrichment approaches using gene 
sets defined as KEGG pathways or Gene Ontology (GO) 
classes for example,24 which make the assumption that RNA 
expression is equivalent to protein activity. Another limitation 
of methods such as gene set enrichment analysis (GSEA)25 
is that they do not take direction into account for each gene 
within the gene set. TopoNPA scoring of networks allows for 
quantitative scoring of inferred mechanisms and networks 
based on signed fold changes in the dataset. Using TopoNPA 
on a set of networks enables quantitative comparison between 
different compounds, disease subtypes, or other perturbations 

of interest.22 We describe here one application for how the 
improved set of 46 computable BEL-encoded NVC network 
models can be used by the scientific community for toxicology 
and drug discovery applications.

Materials and Methods
Biological expression language. BEL is a triple-based 

language, where statements consist of two biological entities 
connected by a relationship (for causal statements: cause, rela-
tionship, and effect). The BEL framework, including a data-
base of BEL statements and other tools to be used with BEL, 
is an open-platform technology available for download at 
http://www.openbel.org/. BEL captures specific entities from 
chemicals to proteins to biological processes and relationship 
links that are directional, providing information on activation 
or inhibition. Statements within BEL are derived from the 
published literature and are compiled together to express the 
existing causal knowledge in a graph-based, computable format. 
These entities connected by relationships are represented 
as nodes and edges within a BEL graph network and are 
linked to metadata such as literature support, which contains 
PubMed ID, tissue, disease, cell type, and species. A BEL 
node consists of a function, namespace, and entity. The func-
tion gives information about the type of entity (eg, abundance 
and activity), and the namespace is a standardized ontology 
that defines the entity that each node represents (eg, MeSH, 
ChEBI, GO, and HGNC). See Supplementary File 1 for a 
list of BEL functions and namespaces. Just as the networks 
are continuously improved by the crowd, the BEL language 
evolves based on suggestions made by the OpenBEL commu-
nity. Namespaces in the NVC networks version 2.0 reported 
here were updated from v1.0 BEL Namespaces to the most 
recent version (v20150611), which includes additional and 
refined namespaces.

Network Building
Networks were constructed in a three-phase process, as 
described previously.8 Briefly, networks were built using 
data and literature during Phase 1, enhanced with lung- and 
COPD-relevant mechanisms (represented by nodes in the 
networks) by the crowd during Phase 2 on the Bionet web-
site (https://bionet.sbvimprover.com/), and discussed during a 
jamboree meeting during Phase 3 in which the best perform-
ers were invited based on their point totals from the online 
phase. Networks with high crowd activity or interest were 
selected for discussion during the jamboree. Phases 2 and 3 
were repeated in NVC2. Fifteen networks were discussed 
during the NVC1 jamboree (apoptosis, cell cycle, dendritic 
cell signaling, growth factor, hypoxic stress, macrophage 
signaling, neutrophil signaling, NFE2L2 signaling, nuclear 
receptors, oxidative stress, response to DNA damage, mecha-
nisms of cellular senescence, Th1 signaling, Th2 signaling 
[Th1–Th2 signaling were merged as a result of the jamboree], 
and xenobiotic metabolism response) and nine networks were 
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discussed during the NVC2 jamboree (calcium, epigenetics, 
macrophage signaling, necroptosis, neutrophil signaling, 
oxidative stress, senescence, Th1–Th2 signaling, and xenobi-
otic metabolism response). After the NVC2, it was decided 
to merge the four senescence-related models (mechanisms 
of cellular senescence, regulation of CDKN2A expression, 
regulation by tumor suppressors, and transcriptional regula-
tion of the SASP) into one model called senescence. In both 
NVC1 and NVC2, changes were implemented by the orga-
nizers and new versions were uploaded to the Bionet website. 
The latest versions edited after the NVC2 jamboree are the 
version 2.0 networks.

Network Statistics
Network statistics and metrics were calculated on the net-
works presented to the crowd at the start of the NVC (v1.1) 
and on the most recent networks containing the outcomes of 
NVC1 and NVC2 (v2.0). Basic network metrics such as num-
ber of nodes, edges, activation edges, inhibition edges, and 
the proportion of inhibition edges were calculated. In addition 
to these basic network characteristics, the following metrics 
were computed:

v� Mean degree: the average of node degrees. This metric 
informs the overall topology of the network. A low aver-
age degree (�2) is typically observed in linear networks.

v� Max degree: the maximum degree in the network, repre-
senting the size of the largest hub.

v� Mean node betweenness (MNB) or betweenness cen-
trality: the number of shortest paths between pairs of 
other nodes that go through that node. Nodes with high 
betweenness centrality are considered as high traffick-
ing nodes. This metric characterizes the centrality of the 
nodes and hence the topology of the networks (for exam-
ple, bottlenecks for the paths in the network). A complete 
graph has a vanishing (�0) MNB.

v� Largest clique size: the number of nodes in the largest 
complete undirected subgraph in a network. This num-
ber is expected to be low because complete subgraphs 
that are not triangles are not expected to be biologically 
meaningful.

v� Mean path length (MPL): the average of the shortest 
path length between all pairs of nodes. This metric gives 
an indication of the density of the network. A low MPL 
characterizes networks for which the shortest path of 
causal statements, from one node to another, are made of 
few edges; for example, in a complete graph, this equals 1.  
It does not necessarily imply that the mean degree is 
high. A typical cascading signaling pathway with little 
feedback would be expected to have a high MPL.

v� Frustration: the minimum number of edges that should 
be removed to make the network balanced. Balance in a 
signed graph is characterized by the property that every 
path between two nodes has the same sign (the sign of 

a path is the product of its edge signs). Equivalently,  
a graph is balanced if and only if every cycle is positive. 
A negative feedback loop contributes to the network 
frustration. For example, tightly regulated processes such 
as cell cycle or apoptosis are expected to have a high frus-
tration metric.

v� # connected components: number of connected compo-
nents, that is, the number of disjoint (ie, not sharing any 
edge) subnetworks within the network.

For all of these network metrics, the differences 
between the pre-NVC networks (v1.1) and post-NVC2 
networks (v2.0) were calculated to understand crowd con-
tribution effects on the networks. For the Th1–Th2 signal-
ing and senescence networks, both of which were integrated 
from separate networks following jamboree discussions, 
the individual pre-NVC networks (v1.1) were combined for 
comparison with the already combined post-NVC2 net-
works (v2.0).

Datasets Analysis
The three datasets that were analyzed are shown in Table 1.

Network perturbation amplitude. The Network Pertur-
bation Amplitude (NPA) methodology aims at contextualiz-
ing high-dimensional transcriptomics data by combining gene 
expression (log2) fold-changes into fewer differential node 
values (one value for each node of the network), represent-
ing a biological entity (mechanism, chemical, biological pro-
cess).22,26,27 A node can be inferred as increased or decreased 
based on gene expression data, because there are signed rela-
tionships (increase or decrease) between the node and down-
stream mRNA abundance entities.23,27 The differential node 
values are determined by a fitting procedure that infers values 
that best satisfy the directionality of the causal relationships 
(positive or negative signs) contained in the network model, 
while being constrained by the experimental data (the gene 
log2-fold-changes, which are described as downstream effects 
of the network itself).

The differential values of the network are then used to cal-
culate a score for the network as a whole, called the TopoNPA 
score.22 For these network scores, a confidence interval 
accounting for the experimental variation and the associ-
ated P-value are computed. In addition, companion statistics 
are derived to inform the specificity of the TopoNPA score 
with respect to the biology described in the network model. 
These are depicted as *O and K* if their P-values are below 
the significance level (0.05). A network is considered to be sig-
nificantly impacted if all three values (the P-value for experi-
mental variation, *O, and K* statistics) are below 0.05.22

Leading nodes are the main contributors to the network 
score, making up 80% of the TopoNPA score. These nodes 
can be useful for interpreting the data to predict mecha-
nisms that might be driving the biological process that the 
network represents.22
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To increase the specificity and relevance of node scores 
and network scores, we consider only the nodes in the net-
work that are bounded by experimental evidence in the fol-
lowing sense: for any given node, at least one ancestor node (ie,  
a node from which a directed path to the node under consid-
eration exists) and at least one child node (ie, a node to which 
a directed path from the node under consideration exists) in 
the directed graph must have downstream RNA abundance 
nodes: their values can be directly inferred based on experi-
mental mRNA data. After removing the nodes that do not 
satisfy the above criteria, the largest connected component is 
kept (if the resulting network is not connected). Finally, the 
“causeNoChange” edges are disregarded for scoring. Selec-
tions of these simplified networks that have been scored using 
these criteria are shown in the results.

Results
Network resource comparison. We previously described 

novel aspects of the NVC networks compared with other net-
work resources.8,9 Herein, we select a particular network, cal-
cium signaling, to further illustrate the differences between 
the NVC networks constructed using BEL (https://bionet.
sbvimprover.com) and the pathways available in the KEGG 
(http://www.genome.jp/kegg/pathway.html) and Reactome 
Pathway Databases (http://www.reactome.org) (Fig. 1).

Network boundaries. The NVC Calcium Network (v2.0) 
is an example of a network with similar content and size as 
the KEGG Calcium Signaling pathway map (map04020) and 
Reactome Calmodulin pathway (R-HSA
111997.1). All three 
networks describe the increase of calcium as a result of inositol 
1,4,5-triphosphate activation (Fig. 1, box 1 highlighted in  
yellow) and the role of calcium in activating calmodulin kinase 
(CAMK) (Fig. 1, box 2 highlighted in yellow). However, the 
BEL network was constructed specifically to describe calcium 
signaling that leads to cell proliferation in the lung, while the 
KEGG and Reactome pathways describe calcium signaling in 
a more general manner that is tissue agnostic and can lead to 
proliferation as well as, for example, contraction, metabolism, 
apoptosis, and exocytosis in the KEGG pathway.

Network resource comparison. The NVC Calcium Net-
work (v2.0) contains 47 nodes (35 unique concepts when genes, 
proteins, and activity nodes are flattened together) and 52 edges, 
the KEGG pathway map contains 48 nodes/unique concepts 

and 60 edges, and the Reactome pathway contains 46 nodes 
(34 unique concepts) and 49 edges (Table 2). The NVC2 net-
work is supported by 38 unique literature references for specific 
edges, while there are 20 references for the KEGG pathway 
and 28 references for the Reactome pathways. There is no over-
lap in references between the three resources and the average 
date of publication for the NVC2 references is 2006, whereas 
the KEGG and Reactome average dates are 2002 and 2000, 
respectively. The NVC2 and Reactome refe rences support a 
particular edge, whereas the KEGG references are not specific 
to a particular edge. The NVC2 network contains multiple node 
functions such as abundance, activities, and phosphorylations 
that have been specifically tested in the literature, while the 
KEGG pathway depicts a single layer of gene symbol nodes 
that could represent RNAs, proteins, modified proteins, or pro-
tein activities. Reactome contains nodes that reflect activities 
and phosphorylations that can be repeated throughout the dia-
gram to indicate location.

The cellular localization graphics in KEGG and Reactome 
give a second layer of information, with inositol 1,4,5-triphos-
phate (IP3 in KEGG, I(1,4,5)P3) in Reactome activating 
inositol 1,4,5-trisphosphate receptor (IP3R) depicted on the 
endoplasmic reticulum (ER) membrane, increasing calcium 
in the cytoplasm (Fig. 1, box 1 highlighted in yellow). From 
the KEGG and Reactome diagrams, IP3R/IP3 receptor can 
be inferred to be a calcium channel transporting calcium 
across the ER, although it is not explicitly stated. In BEL, 
this relationship is described explicitly in the NVC network 
as three different family members defined by the HUGO 
Gene Nomenclature Committee (HGNC) database (http://
www.genenames.org/) with transporter activities (tport): 
tport(p(HGNC:ITPR1)), tport(p(HGNC:ITPR2)), and 
tport(p(HGNC:ITPR3)) that activate the bp(GOBP:“store-
operated calcium entry”) node defined by the GO biologi-
cal process database.28 The nodes in the NVC network have 
more granularity than the Reactome and KEGG networks, 
specifying the type of activity and particular residues that 
are phosphorylated.

Along with the IP3 receptor, another process that is 
described by all three network resources is CAMK activa-
tion by calcium (Fig. 1, box 2 highlighted in yellow), although 
the NVC2 network describes CAMK2 while KEGG and 
Reactome pathways describe CAMK4 (only obvious for the 

Table 1. Dataset overview.

DATA IDa TISSUE TREATMENT ENDPOINT

GSE28464 Human fibroblasts Oncogenic Ras (H-RasV12) expression 4 days Model of senescence; autophagic markers

E-MTAB-3150 Mouse lung Reference cigarette (3R4F) smoke, prototype  
modified risk tobacco product (pMRTP),  
switch, cessation for 7 months

Lung function; Immune cell numbers and  
inflammatory markers in bronchoalveolar  
lavage fluid (BALF); lung macrophage counts;  
pulmonary morphometry

GSE52509 Mouse lung Reference cigarette (3R4F) smoke for 4,  
6 months

B and T-cell counts and histology in lung; immune 
markers in bronchoalveolar lavage (BAL) and lung

Notes: aThe GSE datasets are from the NCBI GEO database and the E-MTAB dataset is from the EMBL-EBI ArrayExpress database.
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Figure 1. Comparison of the NVC (A), KEGG (B), and Reactome (C) calcium/calmodulin signaling pathways. Shared portions highlighted in yellow with 
corresponding numbers.

KEGG pathway after clicking on the node within the online 
pathway). The final group of overlapping nodes between NVC 
and KEGG networks include stromal interaction molecular 1  
(STIM1) and calcium release-activated calcium channel 

protein 1 (ORAI1), describing store-operated calcium entry 
(Fig. 1, box 3 highlighted in yellow), a concept that the Reac-
tome network does not cover due to its focus on calmodulin 
signaling. Despite the differences in biological content, these 
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networks illustrate the similarities in causal, computational 
formats and differences in detail and visualization features 
in the NVC, KEGG, and Reactome networks. The edges 
in the NVC, KEGG, and Reactome networks are similar in 
that they can represent causal increase or decrease relation-
ships and can be downloaded for computational use. However, 
the NVC networks contain more layers of information, with 
direct causal, indirect causal, correlative, and other noncausal 
relationships (eg, member, biomarker, and component).

Network crowd verification. Participant feedback. Scien-
tists had many options for engagement during the NVC, 
including commenting on networks, voting for or against 
the validity of evidence for specific edges, adding evidence 
to existing edges, or adding new edges (in order of easiest to 
most challenging according to a participant survey). The most 
impactful, but most challenging (and highest point value), 
action was to add new edges that represented missing biology 
in the networks. This action required participants to perform 
a sophisticated set of tasks beyond identifying relevant papers, 
namely, identify the correct network to include the paper and 
translate the biology to correct BEL statements in a format 
that contained direct, mechanistic biology relevant to the 
boundaries of the particular network. Most participants had 
expertise in identifying relevant papers that included biology 
that was missing in the network and overall, participants were 
able to easily learn BEL and construct correct statements that 
depicted the biology from the papers they identified. The most 
challenging task was assembling these statements into direct, 
mechanistic edges to integrate into the boundaries of a par-
ticular network. Participant feedback indicated that improved 
ways were desired to view networks, particularly to highlight 
areas of the networks that needed more development. Feed-
back also indicated that clearer network boundaries were 
necessary, highlighting the challenges that working with 
networks entails. With regard to participant engagement, 
feedback showed that participants were motivated by learning 
about biology in the networks, the BEL language, and about 
biological networks in general.

Network changes. The latest version of the NVC net-
works edited by the crowd during the NVC2 is available 
as version 2.0 at www.bionet.sbvimprover.com. These net-
works were changed in various ways throughout the two 
NVC challenges, as summarized in Figure 2. Networks 
before the NVC (v1.1) were compared with networks 

changed at the end of NVC2 (v2.0). Network statistics for 
each network version are available in Supplementary File 2. 
The largest amount of new biology in terms of new nodes 
that was added during NVC2 by the crowd and resulting 
from the jamboree was to the epigenetics, xenobiotic metab-
olism response, and calcium networks (Fig. 2). COPD- and 
lung-relevant contexts were added to the epigenetics and 
xenobiotic metabolism response networks, and cancer- 
and liver-related contexts, respectively, were removed. In 
the calcium network, growth factors and smoke-relevant 
mechanisms that lead to calcium signaling were added, as 
well as mechanisms of store-operated calcium entry.

Overall during the NVC1 and NVC2, the size of the 
networks (number of nodes and edges) grew, as seen in the 
four left columns of the heat map (Fig. 2). While the total 
number of edges increased, the proportion of negative edges 
also increased slightly, with a few exceptions such as Wnt and 
epigenetics signaling. This increase may reflect the addition of 
regulatory mechanisms to the networks.

Mean node betweenness (MNB) did not change substan-
tially, with noticeable exceptions for the cell cycle, autophagy, 
and Th1–Th2 signaling networks. For both cell cycle and 
autophagy, the number of nodes and edges stayed relatively 
constant. A difference in MNB may be indicative of a reor-
ganization of the network topology. These networks were all 
discussed during the jamborees where network topologies 
could more easily be changed than on a per user basis dur-
ing the open phase. For Th1–Th2 signaling, MNB went up 
tenfold from 15 to 152. This may be because these networks 
were originally two separate networks with linear (tree-like) 
structures that were then integrated after the jamboree.

The sizes of the largest cliques did not change, which 
suggests that the crowd did not add feedback loops. A clique 
of size 3 is a triangle that may be a simple positive or negative 
feedback of the form AmBmCmA (AmBmC-|A, respec-
tively). Most of the networks exhibit this property, while only 
eight networks have a clique of size 4 or more, the maximum 
being 5 (neutrophil signaling, after verification). A clique 
between four nodes implies that the set of nodes all regu-
late each other; for example, in the epithelial mucus hyper-
secretion network, the nodes A � cat(p(HGNC:ADAM17)), 
B � kin(p(HGNC:EGFR)), C � p(HGNC:MUC5AC), and 
D � bp(GOBP:mucus secretion)) are all related to each other 
as AmB,C,D; BmC,D; CmD.

The mean degree stayed stable while some maximum 
node degrees increased (ie, some nodes are stronger hubs). As a 
case in point, for the megakaryocyte differentiation network, 
the maximum degree went from 12 to 34. The MPL stayed 
stable for all networks, meaning that, on average, the shortest 
path between two nodes did not change (eg, no long hanging 
linear paths).

The frustration, representing the complexity of autoregu-
lation of a network, increased in half of the networks. After 
verification, only eight networks have a decreased frustration.

Table 2. Network resource comparison.

ATTRIBUTE NVC KEGG REACTOME

# Nodes 47 48 46

# Unique concepts 35 48 34

# Edges 52 60 49

# References 38 20 28

Average date of references 2006 2002 2000
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The number of connected components increased in the 
following networks (usually from one to two components): 
mTor, Mapk, Hox, growth factor, cell interaction, osmotic 
stress, NFE2L2 signaling, epithelial innate immune acti-
vation, wound healing, fibrosis, and ECM degradation. 

However, the ratio of the size of the second largest component 
to the size of the largest is less than 5% (except for cell inter-
action 12%, cytotoxic T-cell signaling 15%, and Hox 66%), 
meaning that, except for the Hox network, the largest com-
ponents comprise almost all the nodes. The extra components 
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added during network verification may be a starting point for 
further extending the biggest component. However, in the 
case of the Hox network, two components describing sepa-
rated processes are described in the context of this network. 
Besides the metrics discussed above, a scale-free property  
(ie, the degree distribution follows an exponential distribu-
tion) was tested. None of the networks (v1.1. and v2.0) exhibit 
a significant scale-free property (Supplementary File 2).

Network applications. Because the networks were con-
structed in BEL, they can be shared within the scientific 
community and used to understand data through overlay on 
to specific pathways of interest or implementing a more global 
process overview using computational inference approaches. 
We illustrate a few cases of how the networks could be used in 
toxicity assessment and drug discovery for network computa-
tion using the TopoNPA approach. This approach employs the 
two-layer network model to infer the activation or inhibition of 
model backbone nodes based on gene expression data.22 Using 
these inferences and the network model topology, TopoNPA 
computes the perturbation of the network as a whole. The 
approach differs from traditional pathway analyses, because 
it is quantitative and it uses backward reasoning instead 
of assuming that changes in gene expression directly imply 
changes in protein activity. The comparison of TopoNPA with 
other methods was described in detail by Martin et al.22

In vitro treatment effects on transcriptomics data are reflected 
in TopoNPA network scores. The NVC2 networks were scored on 
the in vitro dataset GSE28464 from the NCBI GEO database 
to illustrate that expected pathway activation can be inferred 
from transcriptomics data using network scoring.29 In this 
dataset, HRASV12 was expressed in fibroblasts, as a model for 
oncogene-induced senescence and cell cycle arrest. Consistent 
with the expectations, the senescence and cell cycle networks 
scored significantly in the HRASV12 dataset (Fig. 3). Within 
the senescence network, leading nodes that contribute to 80% 
of the senescence network score were predicted to be increased, 
including bp(GOBP:oncogene-induced cell senescence), repre-
senting oncogene-induced cell senescence, and p(HGNC:HRAS 
sub(G, 12, V)), representing HRASV12 mutation, ranking 
first and eighth in their contribution to the significant senes-
cence network score (Fig. 3A, boxed in yellow). Many nodes 
representing RAS, RAF, and MAPK mechanisms also scored 
highly and/or were high contributors to the network score as 
leading nodes. The relationship from angiotensin II activating 
CDKN1A protein is an example of an edge added to the senes-
cence network during the NVC process.

The cell cycle network also had a significant network 
score with cell cyclins and E2Fs inferred as decreased lead-
ing nodes (Fig. 3B, highlighted in yellow), while inhibitors 
of cyclins and E2Fs (CDKN1A and RB1) were inferred as 
increased leading nodes (Fig. 3B, highlighted in blue). NVC 
contributions include RRM1, MAD2L1, SIRT1, and TP53 
acetylation, which adds more detail to the role of THAP1 
and TP53 in regulating cell cycle. The nodes predicted in 

the senescence and cell cycle networks are consistent with an 
expected decrease in cell cycle due to HRASV12 signaling.

Quantification/comparison of toxicity in two related data-
sets using the network suite. Networks were used to evaluate 
and compare two recently published mouse lung datasets 
(E-MTAB-3150 and GSE52509), in order to quantify the 
effects of different exposures on biological processes at dif-
ferent time points.30 In the first study (E-MTAB-3150), mice 
were exposed to CS or aerosol from a prototype modified risk 
tobacco product (pMRTP). After two months, mice were 
switched from CS exposure to pMRTP or fresh air (cessa-
tion) for an additional five months and compared with mice 
subjected to CS for the whole duration (seven months). In the 
study reported in the GSE52509 dataset, mice were exposed 
to smoke for four or six months.31

Macrophage signaling is of particular interest in the first 
study (E-MTAB-3150). The NPA score for the macrophage 
signaling network significantly increased with smoke expo-
sure for all time points and decreased with switch and cessa-
tion (Fig. 4A). This trend matched the measured end points 
of macrophage count in bronchoalveolar lavage fluid (BALF) 
and pigmented macrophages in lung tissue (Fig. 4B).30 Lead-
ing nodes within the macrophage signaling network that con-
tributed most to the score are depicted by relative contribution 
to network scores in Figure 5. The Il1r1 protein and activity 
were top contributors to the network score for the first four 
months of smoke exposure, after which Irak4 and Myd88 
activity were top scoring contributors. These nodes also con-
tributed most to the five-month pMRTP, switch to pMRTP, 
and cessation scores. Irak4 and Myd88 act in the TLR path-
way that leads to macrophage activation induced by smoke for 
six months (Fig. 6, boxed in yellow). A number of new nodes 
were added during the NVC2 process, including detail around 
the TLR pathway and effects of macrophage activation. Two 
of these new nodes, prostaglandin E2 and nitric oxide, were 
leading nodes that contributed highly to the macrophage sig-
naling network score.

NPA scores can be calculated for the whole suite of net-
works and also allow to compare different datasets, as the rela-
tive signal compared with a control is used. Figure 7 shows that, 
as expected, most of the networks were predicted to be sig-
nificantly impacted with CS exposure in the E-MTAB-3150 
dataset, with an increasing impact over time. In contrast, 
most of the networks were predicted to be not impacted sig-
nificantly with pMRTP exposure. Upon cessation or switch to 
pMRTP from smoke exposure, the network scores decreased. 
Interestingly, this approach also proves powerful when applied 
to a dataset with fainter signal, as judged by the number of 
differentially expressed genes. Indeed, the number of differ-
entially expressed genes in GSE25209 is low (hundreds) com-
pared with those in the E-MTAB-3150 dataset (thousands) 
for smoke-exposed mice (Supplementary File 3). Despite the 
low signal, TopoNPA still detected a signal and predicted 
activation of key networks known to be involved in smoking, 
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was inferred and contributed to the significant Th17 signaling 
network score (Fig. 8, boxed in yellow). These network infer-
ences match measurements from the study, reporting a higher 
number of Th17 cells and IL17-positive cells in the six-month 
smoke-exposed lung tissue.31 Additionally, the study reported 
enrichment of innate and adaptive immune cell communica-
tion pathways by Ingenuity Pathway Analysis of transcrip-
tomics data, which matches the significant network scores in 
T-cell and other immune networks (Fig. 7).

Discussion
Network resources have different strengths. Many dif-

ferent network resources are available online, with different 
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Figure 3. Senescence (A) and cell cycle (B) networks scored with GSE28464 HRASV12 data from the NCBI GEO database. A selection from the 
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cell cycle inhibitors RB1, E2F4, and CDKN1A predicted increased. Predicted decreased nodes (blue) contain cell cyclins and E2Fs predicted decreased.

including the inflammatory, cell stress, cell proliferation, 
and tissue repair networks (Fig. 7). The networks that score 
significantly in GSE52509 were similar to those in the 
C57BL6-pMRTP-SW dataset, sharing 24 significant and 11 
nonsignificant networks out of the 46 total networks. Note 
that scores cannot be compared across datasets.

One of the networks that scored significantly for the 
impact of six-month smoke was the Th17 signaling net-
work. The network shows mechanisms that can contribute to 
Th17 signaling and were predicted to be increased or decreased. 
Il17 differential gene expression was not statistically signifi-
cant based on the microarray data; however, evidence of Il17a 
and Il17f activation from the overall transcriptomics signal 
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language formats, visualization, and download application 
capabilities.32,33 Out of these, we chose to compare two of the 
most widely used network resources, KEGG and Reactome, 
to the NVC networks focusing on the calcium signaling net-
work as a point of comparison. BEL networks enhanced in 
the NVC cover 46 different COPD-relevant processes. The 
KEGG pathway database is a well-known resource in the sci-
entific community that can be used to interpret data.4,5 Cre-
ated by a select team of biologists, KEGG contains hundreds 
of pathways covering a wide variety of processes including 
metabolism, cellular processes, diseases, and more. Reactome 
is an open-source, open-access collection of manually curated 
and peer-reviewed pathways and suite of data analysis tools 

to support pathway-based analysis.6,7 Similarly, the NVC 
networks are manually curated by a team of scientists and 
organized into discrete subject areas. However, unlike the 
KEGG and Reactome pathways, these network graphs are 
open to the crowd for editing and each of the edges that make 
up the network is supported by literature source(s) along with 
a quotation from the paper that supports the edge and experi-
mental context. The ability for the crowd to edit the networks 
facilitates a peer-review process, which ensures comprehensive 
and current networks.

The NVC networks have different edge and node types 
that describe the relationships between nodes in great detail 
to reflect exactly what was proven in the experiment the 
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Figure 4. Macrophage signaling network scores in the E-MTAB-3150 dataset and pigmented macrophage counts in the same study. (A) Macrophage 
signaling network score increased with time with smoke exposure and decreased with switch or cessation. pMRTP did not have significant macrophage 
signaling network scores at any time point. Green, blue, and red asterisks indicate significant O, K, and experimental P-values, respectively. (B) Pigmented 
macrophage in the alveolar lumen increased with smoke exposure over time and decreased with switch or cessation. pMRTP did not induce an increase in 
pigmented macrophages. 
Notes: *P � 0.05 compared with sham. #P � 0.05 compared with smoke exposure.
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Figure 6. Macrophage signaling network scores for seven-month smoke vs seven-month fresh air using the E-MTAB-3150 dataset. A selection from 
the TopoNPA-scored version is shown. Arrow edge indicates a positive relationship, while ball and stick edge indicates a negative relationship (includes 
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added within this section of the network during the NVC process are labeled in red. Nodes boxed in yellow reflect prediction of TLR pathway.



Namasivayam et al

62 GENE REGULATION AND SYSTEMS BIOLOGY 2016:10

*

*

*

*
*
*

*

*
*
*

*

*
*
*

*

*

*

*

*
*

*

*
*
*

*

*
*
*

* *

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*
*

*

*

*

*
*
*
*
*
*

*

*
*

*
*
*
*

*
*

*

*
*
*
*

*
*

*
*

*
*
*
*

*
*

*

*
*
*
*

*

*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*

*

* *

*

*

*
*

*

*

*
*

*
*
*

*

*

*

*

*

*

*

*
*
*

*

*

*

*

*
*
*

*

*
*

*

*

*

* *
*

*

*
*

*
*

*
*

*
*
*
*
*

*

*

*
* * *

*

*
* * *

*

*

*
*
*
*
*
*
*

*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*

*

*
*
*
*
*
*
*

*
*
*
*

*

*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*

*

*
*
*
*
*
*
*
*
*
*
*
*

*

*
*
*

*
*

*

*

*

*
*
*

*

*
*

*
*

*

*

*
*
*
*

*
*

*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*

*

*
*
*
*

*
*

*
*
*

*

*
*
*
*

*
*

*
*
*
*

*

*
*
*
*

*
*

*
*
*

*

*
*

*
*
*
*

*
*

*

*
*
*
*

*
*
*
*
*
*

*
*
*
*
*
*

*
*
*
*
*
*

*
*
*
*
*
*

*
*
*
*
*
*

*
*
*
*
*
*

*
*
*
*
*
*

*

*
*

*

*
*

*

*

*
*
*

*
*
*
*
*
*

*
*
*
*
*
*

*

*

*
*
*
*
*
*

*

*
*

*

*

Apoptosis

Autophagy

Necroptosis

Response to DNA damage

Senescence

Cell cycle

Cell interaction

Epigenetics

Growth factor 

Hedgehog

Jak stat

Mapk

mTor

PGE2

Wnt

Endoplasmic reticulum stress

Hypoxic stress

NFE2L2 signaling

Osmotic stress

Oxidative stress

Xenobiotic metabolism response

B−cell signaling

Cytotoxic T−cell signaling

Dendritic cell signaling

Epithelial innate immune activation

Epithelial mucus hypersecretion

Macrophage signaling

Mast cell activation

Megakaryocyte differentiation

Neutrophil signaling

NK signaling

Th17 signaling

Th1−Th2 signaling

Tissue damage

Treg signaling

Angiogenesis

ECM degradation

Endothelial Innate immune activation

Fibrosis

Immune regulation of tissue repair

Wound healing

Relative NPA

Normalized Network perturbation amplitude scores

E-MTAB-3150GSE52509

4mo 6mo 1mo 2mo 3mo 4mo 5mo 7mo

CS CS

1mo 2mo 3mo 4mo 5mo 7mo 3mo 5mo 7mo 3mo 5mo 7mo

pMRTP Cessation Switch

Tissue R
epair

and A
ngiogenesis 

Inflam
m

ation
C

ell stress
C

ell fate
C

ell proliferation

0 1

Figure 7. Heat map of network scores comparing the impact of CS exposure, pMRTP, and cessation in the E-MTAB-3150 and GSE52509 datasets. Each 
treatment is compared to fresh air at the same time point. Scores are normalized to the maximum scores for each network. A network is considered 
impacted if, in addition to the significance of the score with respect to the experimental variation, the two companion statistics (O and K) derived to inform 
the specificity of the score with respect to the biology described in the network, are significant.  
Note: *O and K statistic P-values below 0.05 and NPA significantly nonzero.

annotated reference describes. Nodes defined by a namespace 
serve to standardize the language and multiple functions such 
as abundance, activity, modifications (ie, phosphorylation), 
biological process, and pathology to describe the biology in a 
fine-grained manner. Edges are defined by causal, correlative, 
and other numerous noncausal relationships and each causal/
correlative edge is based on a literature reference containing 

tissue, species, disease, and experimental metadata. Like the 
NVC networks, KEGG and Reactome describe biological 
processes in a causal manner, though they have less granu-
lar information about the nodes and edges and, for the case 
of KEGG, no specific literature reference was found for each 
relationship. Reactome has references by edge in the net-
work downloads but not in an easily viewable format on the 
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graph itself. References for the NVC calcium network were, 
on average, more recent than the KEGG and Reactome net-
works, implying that the NVC network contains more up-to-
date information, most likely because of the crowdsourcing 
effort. Among the 86 references used to support the calcium 
pathways across all three resources, all references were unique. 
This illustrates the range of literature and boundaries that were 
used to build the calcium pathways across the three network 
formats. The visualization of the KEGG and Reactome path-
ways allows the viewer to easily traverse the networks within 
a graphical representation that includes cellular localization 
of the nodes. KEGG and Reactome pathway diagrams have 
detailed cellular localization information that the BEL net-
works do not show graphically. However, this information can 
be described in the edge annotation or the node label.

Many analysis tools are available to use with the KEGG 
and Reactome pathways to interpret data. NVC networks also 
support analytics for mapping nodes in a dataset as well as 
taking into account the relationships between the nodes with 
the exact edge data. NVC networks can be downloaded in 
JSON graph format (JGF) and viewed and applied to data 
using Cytoscape or other JGF-compatible network visualiza-
tion software. Edge information can be used to filter and com-
pute on the networks.

Other network resources that are geared toward a 
community-driven approach include WikiPathways34 and 
the Cell Collective.35 These resources do not have a calcium 
pathway appropriate for comparison, but like KEGG and 

Reactome, they are limited by less granular information about 
the nodes and edges compared with NVC networks and, like 
KEGG, no specific literature reference is given for each rela-
tionship. However, they do benefit from the contribution of 
information from the scientific crowd, where WikiPathway 
users can edit and contribute to existing pathways and Cell 
Collective users can contribute information to the Knowledge 
Base, collaboratively build models and simulate and analyze 
them in real time. Like KEGG and Reactome, WikiPathways 
provides a graphical representation, containing cellular locali-
zation information.

Each of these network resources offers advantages for 
viewing and interpreting biology. The NVC networks cover 
lung- and COPD-relevant processes in a very detailed and 
granular manner and are open to public feedback, and the data 
can be computed at the node and edge level. The KEGG and 
Reactome pathways cover a wide range of biology with many 
widely used node-centric analysis tools, the Cell Collective 
allows for quantitative computation of networks, and KEGG, 
Reactome, and WikiPathways provide a simplified represen-
tation for easy visualization.

NVC crowd excels at identifying and encoding lite-
rature. A review of the crowd changes and participant sur-
vey feedback after two iterations of the NVC allowed for an 
understanding of aspects that worked well and aspects that 
can be improved for subsequent challenges. One important 
finding was that the crowd was able to identify relevant lit-
erature that contained COPD mechanisms missing from the 
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Figure 8. Th17 signaling network scored with GSE52509 mouse lung exposed to 6 month smoke. The whole TopoNPA-scored version is shown. Arrow 
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networks. Keeping networks up-to-date with the constant 
stream of published literature is difficult for the small team 
of scientists who created the networks. Crowdsourcing this 
effort through the Bionet website allows for a diverse group 
of international scientists to share in this effort to collect rel-
evant literature and note missing areas in a network using each 
individual’s expertise and biological perspective. This process 
allows the community as a whole to benefit from up-to- 
date networks.

The main incentive for participants, according to a survey, 
was the learning process, and although educating the commu-
nity about BEL and network biology is an excellent outcome 
of the NVC, there were many challenges associated with this 
large, crowdsourced effort to edit the networks. These chal-
lenges included clearly defining and communicating rules and 
boundaries up front in a way that everyone can consistently 
follow, the follow-up effort required to edit the changes made 
to the networks to ensure consistency and adherence to the 
network framework rules, and the creation of accurate BEL 
statements capturing the biology stated in a publication.

An idea for future challenges is to separate knowledge 
creation from network construction. Adding new and relevant 
edges to a network was a heavily incentivized portion of the 
challenge and is an important mechanism for filling knowl-
edge gaps in the network and maintaining the networks with 
newer information from the literature. While the crowd par-
ticipants performed well at identifying relevant literature and 
representing key ideas in BEL, it was challenging for partici-
pants to select and add mechanistic, nonredundant paths that 
were well integrated with the rest of the network, especially 
for the larger networks. As seen from the network statistics, 
the crowd contributed to the number of nodes and edges but 
not necessarily to changing the topology of the network. Sep-
arating the curation and network building portions of the task 
could provide several advantages. For example, BEL evidences 
could be voted on by the crowd for accuracy and relevance and 
refined prior to incorporation into a network. It is difficult to 
edit evidences and statements once they are connected into a 
network, as all neighboring edges and all individual evidences 
supporting the same edge are affected. Moreover, evidences 
could be more readily shared across networks where applica-
ble, and evidences that are highly relevant, but not the most 
streamlined, direct connection within a given network, could 
be omitted from the network but retained for other applica-
tions. Making the challenge tasks more manageable and nar-
rowly defined in this manner could potentially attract more 
participants as well as increase the quality and value of the 
resulting networks and associated knowledge. Every year, as 
more biological experts participate in the challenge and more 
literature is published, the networks can be kept up-to-date 
with the current understanding of the biology contained in 
these networks.

Networks can be used in toxicity and drug discovery 
applications. In addition to application as a tool to understand 

signaling pathways regulating a disease process, biological 
networks can be used to predict active mechanisms driving 
measured biological changes based on a knowledgebase of 
known regulators of these measured changes. In this study, 
we use network scoring to infer upstream mechanisms known 
to regulate measured gene changes applied to three datasets. 
Networks that contain these mechanisms can then be scored 
to infer perturbation of biological processes represented by the 
networks in a quantitative manner. In the GSE28464 study, 
mutated HRASV12 was expressed in fibroblasts and acti-
vation of senescence and cell cycle was inferred by network 
scoring of the transcriptomics data. These results were consis-
tent with experimental expectations of HRASV12, inducing 
senescence and cell cycle arrest.36 This example illustrates the 
ability of the network scoring approach to infer known active 
mechanisms using transcriptomics data. Novel mechanisms 
predicted to be active from transcriptomics data as a result of a 
treatment could also be identified in biological networks using 
this approach.

A major advantage of this network-based transcrip-
tomics data scoring approach is the ability to quantitatively 
compare treatments and time points within a dataset within 
discrete biological processes. In the E-MTAB-3150 dataset, 
the effects of smoke, pMRTP, switch to pMRTP, and cessa-
tion were quantified on the biological process and mechanistic 
level through network and mechanism scores. Network scor-
ing indicated that smoke impacted lung biology captured by 
networks more than pMRTP, switch to pMRTP, or cessation 
and with a greater magnitude over time. pMRTP appeared 
to impact lung biology less than smoke, based on the lower 
pMRTP vs sham network scores and fewer networks scor-
ing significantly. Switching from smoke to pMRTP or ces-
sation showed a decrease in network perturbation compared 
with sham group over time. Additionally, scoring mechanisms 
within the network gives insights on which mechanisms are 
predicted to induce gene expression changes observed in the 
dataset. Il1 receptor signaling was predicted to impact mac-
rophage activation the most in early time points with smoke 
treatment, followed by an increased impact of Irak4 and 
Myd88 activity on macrophage activation in later time points 
(Fig. 5). Il1r1/MyD88 signaling has been shown to contrib-
ute to elastase-induced lung inflammation and emphysema,37 
and although there are no publications implicating Irak4 in 
emphysema or COPD, a recent conference poster reported 
MyD88/Irak4 promotion of lung fibrosis in a mouse model 
of COPD.38 This network approach can potentially high-
light novel mechanisms such as Irak4 that drive disease and 
increase our understanding of COPD progression. Findings 
such as these could lead to a list of potential biomarkers or 
novel targets that could then be confirmed in multiple datasets 
in the primary disease tissue and narrowed down by aspects 
of ease of targetability and low off-target effects to identify 
ideal targets. Additionally, the quantitative aspect to network 
scoring can be used in toxicity testing to rank the impact of 
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different treatments and study dosing and time effects for a 
particular perturbation.

Another advantage of the network approach is the 
ability to glean information from a dataset with a low tran-
scriptomics signal. Similar to the E-MTAB-3150 dataset, 
GSE52509 contained data from smoke-exposed mouse lungs 
for four and six months; however, this dataset had a much 
lower transcriptomics signal. This difference in signal could 
be attributed to a larger variation in the data, or potentially 
the lower dosage and duration per day of smoke exposure 
in GSE52509 compared with the E-MTAB-3150 dataset. 
In the E-MTAB-3150 study, mice were exposed to smoke 
2.4 times longer per day at 1.5 times higher concentration. 
Similar types of networks and leading nodes were inferred 
in both studies to be activated in processes relevant to CS 
exposure, and they matched experimental end points of pig-
mented macrophage and Th17 counts in E-MTAB-3150 and 
GSE52509 studies, respectively.

Although the networks focus on lung- and COPD-
relevant context and were scored on lung datasets, these net-
works can apply to other disesases and tissues. The networks 
include edges that are based on literature from lung-relevant 
cell types such as fibroblasts, smooth muscle, and immune 
cells; these cell types are not specific to lung but can apply to 
many other tissues and disease contexts. The networks to be 
scored should be evaluated based on the context of the data-
set. For the GSE28464 dataset, only the senescence and cell 
cycle networks were scored, while the immune networks were 
not scored since the experiment was performed in fibroblasts 
and not immune cells. Since many of the pathways that the 
networks describe such as canonical MAPK and NFKB sig-
naling are conserved across tissues, these networks provide an 
important resource that can be built on to include context-
specific mechanisms according to scientists’ needs.

Conclusion
The computable biological language BEL allows for encod-
ing of scientific literature with high granularity and is well 
suited for sharing mechanistic biology in a network context. 
The NVC takes advantage of the well-defined nature and ease 
of use of BEL to allow the scientific community to verify, 
enhance, and use these networks. These networks can then 
be used for toxicological and drug discovery applications. We 
illustrated one way to use these networks through quantitative 
network scoring based on transcriptomics data. Mechanisms 
were inferred from the data and could be quantitatively com-
pared within a dataset, leading to insights in disease-driving 
mechanisms and toxicity assessment.
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