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ABSTRACT

Neurological disorders comprise a group of diseases that affect brain, spine and the nerves that
connect them. Many people worldwide are affected by neurological disorders irrespective of their
ethnicity, age or gender. Currently, >800 neurological disorders have been identified and the list
is still growing. Parkinson’s disease (PD) and epilepsy are two of the most common neurological
disorders that cause a significant burden globally. It has been well established that in both PD
and epilepsy, genetics play a significant role in the generation and progression of the disease,
while both the diseases have a monogenic or polygenic origin. A review of literature shows that
both PD and epilepsy are caused due to the symphony of common, rare and ultra-rare variants.
However, there is a high degree of heterogeneity with regard to genetics, which is evident from
the lack of confirmation from various studies and the minute overlap between linkage and genome
wide association studies (GWAS). Hence, in order to understand the underlying mechanisms of
disease generation and progress, there is a need for unification of results obtained from multiple
studies and a multifaceted approach studying variants occurring with different allele frequencies.
Advances in the field of next generation sequencing (NGS) provided us an opportunity to identify
and characterize the genetic variants associated to a disease more efficiently. Two of such useful
techniques are whole genome sequencing (WGS) and whole-exome sequencing (WES) where the
DNA of an individual is sequenced to identify disease-causing variants. In this thesis, we aimed
to uncover the role of rare/ultra-rare variants in PD and epilepsy, using WGS/WES data. To
achieve the aforementioned goal, state-of-the-art bioinformatic tools and statistical methods were

used on various datasets generated by different studies.

The work on epilepsy was divided into three parts. First, the burden analysis of rare variants
in typical rolandic epilepsy (RE) and atypical rolandic epilepsy (ARE) was conducted, where we

observed an increased burden of rare loss of function (LoF') variants across several disease genesets
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in RE/ARE cases. Whereas, in the second part, burden analyses of rare variants in several
genesets were conducted in genetic generalized epilepsy (GGE). A significant burden was observed
for rare nonsynonymous variants in GABA 5 receptors in the discovery cohort. Furthermore, the
observed burden was replicated in two independent datasets, of which one was a WES study while
the other was a targeted panel sequencing of GABA 5 receptor genes. From the identified variants
in GABA 4 receptors in the discovery cohort, selected variants were functionally validated. Third,
in RE/ARE and GGE, analysis of rare copy number deletions showed a significant burden and
several novel candidate genes were identified. In PD, firstly private variants in the Parkinson’s
Progression Markers Initiative (PPMI) dataset were studied, where we observed a genome-wide
burden of private LoF variants and prediction models were constructed based on the burden
score. Second, the genome-wide burden of Ul splice variants was observed in the PPMI dataset
and the observation was confirmed in the Parkinson Disease Genetic Sequencing Consortium
(PDGSC) dataset. Finally, we discovered several rare, novel variants (coding, non-coding and
CNVs) belonging to multiple families from two familial PD studies (>50 families) that were
segregating with PD. Altogether, this work demonstrates the utility of NGS in discovering novel
genes and genesets found to be implicated in PD and epilepsy and show their heterogeneous
contribution to the disease aetiology. These discoveries could improve the diagnostics of both
PD and epilepsy by expanding the knowledge of molecular mechanisms underlying the disease

and potentially help in establishing modern therapeutic applications.
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CHAPTER 1

INTRODUCTION

1.1 Human Genome

In humans, the genetic information is encoded in the form of deoxyribonucleic acid (DNA)
which was discovered by a Swiss biochemist named Friedrich Miescher in 1869. The building
blocks of DNA are four nucleotides namely Adenine (A), Thymine (T), Guanine (G) and Cytosine
(C). The human genome is comprised of ~3 billion nucleotides. Of the four nucleotides, A and G
belong to a group of nitrogenous bases called purines, whereas C and T belong to pyrimidines.
The DNA has a double helix structure, which was first discovered by Watson and Crick. The
double helical structure of DNA is formed by a specific bonding between the nucleotides (A->T
and G->C ). DNA is present in each cell of the human body and it occurs in the form of a tightly

coiled structure known as chromosome.

Human cells typically contain 23 pairs of chromosomes, out of which 22 pairs are called
autosomes while the 23rd pair of chromosomes determine the sex of an individual and are referred
to as either allosomes or sex chromosomes. The autosomes remain the same between male and
females, whereas in allosomes, females have two X chromosomes and males have one X and
Y chromosome each. Any change in the number of chromosomes may lead to chromosomal
aberrations. For example, Turner syndrome in females, where one of the X chromosomes is
lost or abnormally formed. Similarly, there are other chromosomal abnormalities such as Down

syndrome, Klinefelter syndrome etc.

The human genome can be broadly divided into two parts namely the coding and non-coding
part. The coding part comprises a set of nucleotides known as exons. The exons are interspersed

by the non-coding regions known as introns. Both exons and introns together form a gene and



human genome comprises of ~20,000 genes. The regions between genes are also non-coding and

are known as intergenic regions.

The landmark achievement in the history of human genome was The Human Genome Project
[1] (HGP), where the entire sequence of human genome was decoded in 2001. It changed the
way scientists identify genetic causes of diseases in a minimal amount of time compared to the
pre-HGP period. The HGP allowed us to compare the genomes of different species and helped
us understand the conserved and key regions. The HGP is beginning to dramatically affect the
way drugs are prescribed by enabling the prediction of side effects or benefits of a given drug on
individuals. It took nearly 13 years and ~$2.7 billion for the project to complete, and since then
the cost of sequencing has continued to reduce considerably. Current trends indicate that the

price for sequencing a human genome is approaching ~$1000 as shown in Figure 1.1.
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Figure 1.1: The reducing cost of sequencing per sample. The image was downloaded from https://www.genome.
gov/27541954/dna-sequencing-costs-data/

1.2 Genetic code and variants

Genetic code is a collection of rules followed by the living cells to decipher the information
from DNA to proteins. The conversion of DNA to protein occurs in two steps namely: 1)
Transcription: DNA is transcribed to messenger RNA (mRNA) and 2) Translation: mRNA is
converted to protein. During the process of translation, there are six possible ways to read a
nucleotide sequence called reading frames and the resulting protein depends on the choice of

reading frame. The reading frame divides information from mRNA into sets of three consecutive
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and non-overlapping nucleotides called codons. In total, there is a possibility of having 64
codons based on the permutation of four nucleotides (A, U, G and C). Out of 64 codons, 61
code for an amino acid whereas the remaining three act as stop signal for the translation and
hence called “stop codons”. During translation, the codons from mRNA are read in a particular
order beginning from “start codon” which is typically AUG and it codes for an amino acid
named methionine. Human genetic code follows a principle called “degeneracy” which was first
discovered by Lagerkvist [2]. According to this principle, human genetic code is redundant
because multiple codons can code for the same amino acid, but there is no ambiguity as they
always code for the same amino acid. Due to the degeneracy in human genetic code there are 61

codons, while they only code for 20 amino acids.

The term genetic variation refers to changes occurring in the DNA. Genetic variation occur as
a result of errors during the process of DNA replication. It is an important driver of the evolution,
as genetic variation inherits from one generation to the other. Genetic variation is what makes
an organism unique, be it in humans or other organisms. Mutations are the irreversible changes
occurring in the DNA and they are one of the major sources of genetic variation along with
the recombination. An inverse relationship between the minor allele frequency (MAF) and the
effect size of a mutation has been observed previously [3]. Hence, if a mutation is common it
is assumed to be less harmful, on the other hand if it is rare it could be harmful and lead to a
disease. As a result, for a mutation that is rare, a term “variant” is used instead of “mutation”.

The major types of genetic variants are shown in the Figure 1.2 and are briefly described below.

Reference TTATTTCAACACACACAAAAAAAGTGTATATGCTCCACGATGCCTG

Single nucleotide variants (SNVs) TTATTTCAACACACACAAAAAAAGTTTATATGCTCCACGATGCCTG

Deletions TTATTTCAACACACACAAAAAA------------- CTCCACGATGCCTG
Insertions TTATTTCAACACACACAAAAAAAGTTIGCCTGTATATGCTCCACGATGCCTG
Copy number variants (CNVs) Large deletions or duplications >1kb

Figure 1.2: Types of major genetic variants. They are shown with respect to the reference genome.

1.2.1 Single Nucleotide Variants (SN'Vs)

SNVs are single nucleotide changes in the DNA strand compared to a reference genome. If a

SNV is common (occurs in >1% of the population), it is called a single nucleotide polymorphism



(SNP). Based on their functional effect, SNVs can be further classified into various functional

categories as described below.

e Coding variants: As the name suggests, coding variants originate from the protein-coding
regions of the genome. Based on the outcome of whether or not a given variant results in

a change in amino acid, they can be broadly/further classified as follows:

— Synonymous variants: According to the concept of degeneracy, multiple codons
code for the same amino acid. Hence, if a SNV produces a new codon which codes
for the same amino acid, then the translation process will go on normally and there
will be no change in the protein production. Such variants are called synonymous
variants and these are the variants that are assumed to be functionally neutral. But,
certain synonymous variants can also be disease causing [4] based on their functions,

for instance synonymous variants involved in splicing.

— Nonsynonymous variants: However, if a SNV changes the amino acids of resulting
proteins they are termed nonsynonymous variants. They are further subdivided into
missense variants, where they just change the amino acid and nonsense variants where

they cause a premature gain or loss of stop codon.

e Non-coding variants: These are the SNVs occurring at the non-coding regions of the
genome. Their functional importance is vastly unknown and are currently a major focus

of research in the field.
1.2.2 Insertion and Deletions (INDELSs)

Insertions and deletions which are collectively called INDELS are small insertions or deletions
occurring in the human genome with their size ranging from 1-10,000 bp [5]. They occur very
frequently and are often detected along with the SNVs. Based on their effect on the reading
frame, there are two major types of INDELs.

e Frameshift: An Indel is termed frameshift if the resulting change causes a shift in the
reading frame during translation. The result of a frameshift Indel is that, the reading frame

is not divisible by three anymore.

¢ Non-frameshift: These are INDELs which do not result in the shifting of reading frame
and hence the reading frame length is divisible by three. They may cause amino acid

insertions/deletions and might block the synthesis of proteins [6].
1.2.3 Structural variants (SVs)

Larger genomic alterations that are typically >1kb long are defined as SVs. There are several

types of SVs, however compared to the SNVs, they are not studied extensively and currently



represents and active area of research. SVs can be further classified into the categories described

below:
Copy Number Variants (CNVs)

CNVs are the widely studied and common type of SVs. These are large insertions, deletions or
duplications occurring in the human genome. CNVs are responsible for a considerable proportion
of phenotypic variation [7] and they make up for ~12% of the human genome [8] and ~100
genes can be deleted completely without any supposed phenotypic effect [9]. Depending on
their rate of occurrence they can be broadly divided into recurrent and non-recurrent CNVs.
The probable reason for the generation of recurrent CNVs is homologous recombination among
repeated sequences during meiosis. While, non-recurrent CNVs are generally caused by non-
homologous mechanisms that arise in the entire genome and typically occur at sites with limited
homology of 2 to 15 base pairs [10]. These CNVs can be either elementary, where a piece of DNA
is eliminated from a position in the genome and the ends are merged, or they can be complex

where a deletion is succeeded by a duplication or insertion of DNA.

CNVs vary in their size and based on a study comprising of a large collection of CNVs [9]
, the mean lengths of copy number gains and copy number losses were 35,581 bp and 9,181bp
respectively. CNVs can alter the expression of genes and induce phenotypic changes by varying
the genome organization [11]. As a result, they can impact the susceptibility of a person to a

particular disease or his/her response to a drug [12].

Not all the CNVs are disease causing in the human genome and based on their ability to
cause a disease CNVs can be divided into various categories such as benign, likely benign, disease
causing or CNVs of unknown significance [13]. CNVs are often linked to various complex and
common nervous system disorders. Recently, there have been studies showing the role of CNVs

in causing the diseases such as autism, schizophrenia and epilepsy [14, 15].
Inversions and other SVs

Inversions, as the name suggests are regions in the genome, where the DNA is reversed with
respect to rest of the genome. Diseases caused by inversions include Hunter syndrome, Angelman
syndrome, Sotos syndrome [16] etc. There are other SVs which include genomic translocations

or segmental uniparentral disomy [16]. They are relatively rare and hence not well studied.

1.3 Technologies to detect genetic variants

1.3.1 Sanger sequencing

Sanger sequencing is a well known method to sequence the DNA. It was first developed by
the British biochemist named Frederick Sanger and his colleagues in 1977 [17]. In HGP, Sanger



sequencing was used to decode the human genome. Since then, it has been applied in many
studies successfully to identify the nucleotide sequences. However, it has a very low throughput
and is expensive to perform it on large-scale compared to next-generation sequencing (NGS). Due
to the efficiency reasons, Sanger sequencing has been replaced by NGS platforms. But still, it is
widely used to validate the variants identified via NGS and considered to be the gold standard

due to its lower error rate.
1.3.2 Microarrays

To date, microarrays especially SNP arrays are being widely used to identify common genetic
variants associated to the diseases/traits via genome-wide association studies (GWAS). Microar-
rays can be used to find SNP or large SVs. The main advantage of the microarrays is that, the
genotyping quality is high and they are economical. However, novel variants cannot be detected
through this technology and hence, cannot be used in the context of detecting novel disease

causing variants.

However, it is possible to design a customized microarray, adding more variants such as the
NeuroX chip [18] from Illumina which is customized for neurodegenerative diseases. Thus, can be
used to replicate novel variants identified via NGS technology in a larger population for instance.

It had already been employed in several studies related to Parkinson’s disease (PD) [19].
1.3.3 NGS

Instead of defining the variants of interest a priori, with the aid of NGS a high throughput
DNA sequencing can be achieved much efficiently. NGS generates millions of sequences per run,
thus allowing researchers to sequence and if needed to resequence at a much faster pace compared
to the pre-NGS era. Now a days, generating the data is often not the problem as it has become
very fast and affordable to perform NGS (see Figure 1.1). Today, there are several platforms
which offer NGS services such as 454, Illumina, Qiagen, Ion Torrent (Thermo Fisher) and Oxford
Nanopore. Each of them has their own proprietary technologies, but Illumina holds the biggest
chunk in the NGS market by holding upto 70% of the market share. Various NGS technologies

used to identify genetic variants are described below.
Targeted panel sequencing (TPS)

TPS is a technique where, only a subset of genes or regions of the genome are isolated by
employing different methods. The commonly used method is solution hybridization, where the
probes are used to pull down the regions of interest. Other methods include, enrichment by
applying polymerase chain reaction (PCR), during which every targeted region is amplified by
a specific primer pair in a multiplexed reaction. There are also other methods which employ a

different procedure for PCR multiplexing and hybridization. Targeted analysis can comprise of



the exome, specific genes of interest (can be customizable), targets within genes and/or mitochon-
drial DNA. Hence, targeted sequencing enables researchers to focus on specific areas of interest,
thereby saving time on data analysis and cost, as it is cheaper than whole genome sequencing
(WGS) and whole exome sequencing (WES).

WES

WES is the process of sequencing only the coding regions of a genome instead of the whole
genome. It is a cheaper alternative to the WGS and is a widely accepted technique. The
application of WES has been shown in numerous studies to identify the causal coding variants
in diseases such as Amylotropic Lateral Sclerosis (ALS), brain defects etc [20]. The major
drawback and the feature of the WES is that, it can only sequence the coding regions. However,
it is currently a widely applied technology as there is limited knowledge regarding the function

of non-coding regions.
WGS

WGS is a way of determining the entire DNA sequence of an individual. With the ad-
vent of Illumina X10 machines the 1000$ genome has now become a reality and many research
groups/clinics across the globe have started using WGS for a wide range of diseases and traits.
Though it is expensive to perform WGS compared to WES or TPS, WGS has many advantages
compared to the other two technologies. The first being the ability to analyze the entire genome.
Recently, several studies focusing on the non-coding regions are being conducted and WES or
TPS cannot be applied in such context. The other advantage being, WGS provides an uniform
coverage across the exome [21] compared to WES. As a result, WGS is better at detecting more

exonic variants and high-quality CNVs compared to WES [22].



1.4 Processing of NGS data

Variant QC
Pre QC FASTQ FASTX Tool Kit
data Hard Filtering
Adapter
=
l Variants without
QD tag
Alignment
‘l' Reference
Mark
Duplicates Varantd 100}
INDEL
G2 LY baianca<. 75
Depth of Base Quality
I MI’“"“ GQ>20, DP>10
Samples above Generation of
20X and 70% GVCFs
1 Call rate < 0.97
Combine
GVCFs
GVCFs
Multisample
VCF
Variant Quality
Score
Recalibration

Figure 1.3: A schematic representation of the different steps performed in a typical NGS analysis.



The main goal of NGS data processing is to convert the raw sequencing reads to high-quality,
annotated variant calls, in human readable format. The processing of human genome derived
NGS data is both time consuming and computationally intensive, thus requiring high perfor-
mance computing nodes (and facilities), especially in large scale (cohort) sequencing studies.
There are multiple ways of processing NGS data, however in the recent years the best practices
pipeline using Genome Analysis Toolkit (GATK) from the Broad institute has become a gold
standard [23]. The main steps of NGS data processing are described below and shown in the
Figure 1.3.

1.4.1 Pre-processing and variant detection

Quality Control (QC) of FastQ files

The high-throughput NGS platforms can generate millions of sequencing reads in a single run.
The raw files obtained from the sequencers are called Fast(Q files which contain the stretches of
short DNA sequences known as raw reads. NGS platforms generate two kinds of reads namely
paired-end reads and single-end reads. Paired-end reads are generated by sequencing from both
ends of the DNA and as a result, two FastQ files are generated per sample. Whereas, in the
single-end sequencing DNA is sequenced only from one direction. In order to obtain meaningful
and reliable biological results, one must ensure that the raw data is of high-quality, as biases exist
within the data which may lead to unreliable results, affecting downstream analyses. Majority
of the NGS vendors provide a summary report of their pipeline. However, it is specific to their
proprietary pipeline and do not necessary reflect the quality of the data. Hence, a tool such as
FastQC[24] provides a QC report which can detect and highlight the problems originating from
the sequencing which are reflected in the quality of the data.

FastQC runs several tests on a FastQ file to generate a detailed QC report. FastQC assesses
data quality by evaluating: read length, duplicated sequences, over-represented sequences, per
sequence quality scores, nucleotide content, per base quality score and GC content. Based on
the FastQC report one can setup the appropriate filtering steps for the downstream analyses.
Contaminant oligonucleotide sequences such as, primers and adapters, can occur in both ends of
NGS reads. These adapter sequences have to be removed as they may hinder correct mapping
of the reads and influence the SNP calling and other downstream analyses. Two tools that are

widely used for adapter removal are namely cutadapt [25] and Trimmomatic [26].
Mapping/Alignment

One of the crucial steps in performing the WES/WGS data analysis is the alignment of reads
generated from the sequencer to the human genome. The outcome of read mapping may vary
based on the read mapper that is used. Hence, it is crucial to choose a reliable mapper. A read

mapper takes the FastQ files as input and produces either a sequence alignment map (SAM) or



binary alignment format (BAM) file [27], based on the desired output. SAM/BAM format is a
well accepted file format for storing the NGS data along with their mapping information. Two
of the most widely used mappers are bowtie [28] and BWA-mem [29]. BWA-mem is part of the
BWA suite of algorithms which uses Burrows-Wheeler algorithm to perform the read mapping.
It is also the recommended aligner according to GATK best practices [23]. The algorithm is
robust to sequencing errors and is shown to perform better compared to several other state of
the art mappers. It is especially suited to the reads with a length of ~100bp, which is typically
the read length generated by NGS platforms.

Removal of PCR duplicates

One major artifact of NGS procedures is the duplication of sequencing reads (defined as reads
with the same start point and direction) generated as an artifact/effect of PCR. In an alignment
scenario, the PCR duplicates tend to share the same DNA sequence and same alignment position.
It is very important to identify and remove duplicate reads, as they may influence the downstream
variant calling. The well known tool for this purpose is “mark duplicates” tool, which is part
of the Picard suite (Picard http://sourceforge.net/projects/picard/). Other tools for this

purpose include sambamba [30].

Picard tools are Java-based command-line tools to manipulate SAM or BAM files. It re-
moves all the read pairs with identical coordinates, only retaining the pair with the highest
mapping quality and examines aligned records in the supplied SAM/BAM file to locate dupli-
cate molecules. In the end, it generates a SAM/BAM output file that includes all aligned reads
without the duplicate records. Additionally, it also generates a file that contains information on

the percentage of PCR duplicates found in the original aligned file.
INDEL Realignment

It is possible that even after read level and alignment level QC there might be some regions
in the genome where the reads are misaligned due to various confounding factors such as the
complexity in certain genomic regions. Mis-alignment in those regions may lead to the mismatch
of many bases in those regions to the genome which might in turn lead to identification of those
bases as SNPs. Also, there might me some regions where there is an Insertion or deletion in

some reads, whereas the other reads might carry a SNP for the same position.

In order to mitigate this effect, one needs to correctly realign the reads in those regions.
INDEL local realignment is recommended and can be performed by using the “IndelRealigner”
tool from Genome Analysis Tool Kit [23] (GATK). Prior to using the “IndelRealigner” tools, a
list of regions that require realignment has to be identified using the “RealignerTargetCreator”
tool. These regions then undergo a local realignment which will alter the misaligned regions due

to INDELs and are converted into higher quality reads containing a consensus INDEL, thereby
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increasing the reliability of downstream variant calling.
Base Quality Score recalibration (BQSR)

During the process of generation of FastQ reads, each base of the read is assigned a quality
score generated on the phred-scale [31]. These scores estimate the errors generated by the
sequencers. The scores generated by the sequencers are subject to various technical errors,
leading to either over or under estimated base quality scores. GATK’s BQSR [32] is one step
where a machine learning model is applied to estimate the errors empirically and adjust the
quality scores. Variant calling algorithms depend heavily on the per base quality score while
identifying SNPs and INDELs. Hence, it is very important to adjust the quality scores in order
to perform a reliable variant calling. This process of empirical adjustment allows users to obtain
more accurate quality scores per base. The BQSR process is done in two major steps. First, a
model is built based on a list of known variants and assumes that all the mismatches are errors
and thus generates the estimates. In the second step the model is applied to all the variants and

the variant quality scores are adjusted empirically.
Variant calling

The input for a variant caller is a SAM/BAM file and the output is a variant call format
(VCF) file [33]. VCF is a generic file format that allows to store the information about genetic
variants such as SNPs, INDELs and SVs along with their functional annotations. VCF is typi-
cally stored as a compressed file and can also be indexed to obtain the information quickly by
providing a range of positions in the genome. The format was initially developed for the 1000
Genomes Project [34] and since then, it has been widely accepted for many studies. A typical
VCF file contains a header line, the meta-information about the various steps employed in the
variant calling followed by the information about genomic position and its respective genotypic
information. There are two ways to detect a variant from the NGS data. The first is using one
sample at a time and performing the variant calling. The most widely used tools for this step
are samtools [27] and the unified genotyper from GATK. The main drawback of this approach
is that, in the studies involving multiple samples, the variant quality and genotypic information

is often lost, which makes it difficult to interpret the result.

Nowadays, this approach has been replaced by haplotype-based variant calling. Haplotype-
based callers work by constructing a haplotype from the sequencing data instead of relying only
on one position at a time [35]. This approach allows haplotype-based callers to identify vari-
ants in the regions which are difficult to analyze using a standard variant caller, especially to
identify high-quality INDELs. Several tools are available following this approach such as Hap-
lotypeCaller from GATK, freebayes [35] and platypus [36]. However, the HaplotypeCaller from

GATK is the extensively used tool and it works by performing a local de-novo assembly of the
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regions of interest which makes HaplotypeCaller superior to other variant caller of GATK called
UnifiedGenotyper. Another advantage of GATK haplotype caller is to generate an intermedi-
ate genomic VCF (gVCF) file which contains the genotype information for every position of a
genome or an exome. Generation of gVCF allows the users to perform a more robust multi-
sample variant calling compared to the traditional single sample variant calling. The advantage
in multi-sample variant calling is that, it calls multiple samples together, due to which, the prob-
ability to call a variant increases even if some samples do not have enough coverage at a variant
position or if it occurs in low allele frequencies. Further, multi-sample variant calling gives the
leverage to identify additional variants of high-quality which cannot be identified via individual
sample calling. The idea behind multiple sample calling is; if there is a strong evidence for a
variant to be called in sample 1 and on the other hand, if there is a weak evidence in the sample

2, GATK’s haplotype caller takes the evidence from sample 1 to call the variant in sample 2.

In exome sequencing, often many off-target (non-exonic) regions also have sufficient depth
of coverage to call the variants. However, these off-target regions do not have similar coverage
across all the samples. Henceforth, these variants are unreliable and including such regions
during variant calling leads to low-quality variant calling. In order to exclude those low-quality

variants, a common exonic interval file is used in case of WES based variant calling.

1.4.2 Variant Quality Control (QC)
Variant Quality Score Recalibration (VQSR)

After the variant calling by GATK’s haplotype caller, the recommended way to filter low-
quality variants is through VQSR tool from GATK. The advantage of VQSR is that, instead of
defining hard thresholds in order to exclude low-quality variants, a continuous, covarying estimate
of the relationship between SNP call annotations (such as QD, MQ, and ReadPosRankSum) and
the probability of a SNP being a real variant versus an artifact. VQSR uses a list of “true sites”
as one of the input. The commonly used sites for this purpose are HapMap3 sites [37] and those

sites that are found to be polymorphic on the Omni 2.5M SNP chip array.

After building a model based on the “true sites” this adaptive error model can then be applied
to both known and novel variations discovered in the call set of interest to evaluate the probability
that each call is real. A variant quality logarithm of odds (VQSLOD) score is generated for each
variant and added to INFO field of the VCF file. VQSLOD score represents the log odds of
being a true variant versus being false under the trained Gaussian mixture model [38]. VQSR
runs in two-steps: The first step works by generating a Gaussian mixture model based on the
distribution of annotation values over a high-quality subset of the input call set and then scoring
all the input variants according to the model. The second step consists of filtering the variants

by applying the cut-offs based on the scores generated in the first step of VQSR.
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Hard filtering of variants

Although VQSR is an efficient way to exclude low-quality variants, it requires a minimum of
30 samples to generate an efficient model. Also, there might be still some unreliable variants even
after performing VQSR. In order to be more stringent a hard filtering approach is often performed
as an extension to VQSR. In the hard filtering, variants are filtered based on various quality scores
generated during the variant calling. This method of employing VQSR along with hard filtering
has shown to be more efficient in reducing the false positives. There are no consensus hard
filtering parameters, however the recommended criteria according to GATK best practices are
[23]. a) For SNVs: Variants were filtered for QD < 2.0, FS > 60.0, MQ < 40.0, MQRankSum
< -12.5, ReadPosRankSum < -8.0, DP<10.0, GQ_MEAN<20.0, VQSLOD<0, ABHet >0.75 or
<0.25 and Hardy Weinberg Phred scale P value of >20. b) For INDELs: QD < 2.0, FS > 200.0,
ReadPosRankSum < -20.0, DP<10.0, GQ__MEAN<20.0, Hardy Weinberg Phred scale P value
of >20, VQSLOD>0. However, these parameters tend to be adjusted according to the study,

while it also depends on the methods used to generate the variant calls.
1.4.3 Sample QC

After the filtering of low-quality variants, the subsequent steps of sample QC include selecting
the samples of high-quality. This is an important step because in an NGS study, there are various
sources of errors, for example a gender or a relationship mislabeling could lead to completely
erroneous results. Hence, in order to control for such errors, various steps are employed as part

of a standard NGS data processing.
Sample filtering based on quality metrics

Number of alternate alleles, number of heterozygotes, transition/transversion ratio (Ti/Tv),
number of singletons and call rate, serve as an evidence for the quality of the data. They
can be calculated by tools such as PLINK/SEQ i-stats parameter at different stages of data
filtering. One way to filter the low-quality samples, is to exclude any sample with >3 standard
deviation (SD) from the mean in the above mentioned metrics. After excluding the low-quality
variants and samples, only bi-allelic SN'Vs that are concordant with hapmap3 vef (version 3.3)
[37] are typically selected for checking the cryptic relatedness, deviations from reported sex and

population stratification. The most widely used tool for this purpose is PLINK [39].
Relatedness and sex check

It is extremely important to check for unreported and cryptic relatedness in association
studies. For relatedness and sex check, the well known tool is PLINK. For relationship detection,
it works by identifying the fraction of genome shared between each pair of samples. Other tools
available for this purpose are KING [40], genetic relationship by averaged blocks (GRAB) [41],
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etc. Typically, in an association study only one sample is selected from an identified pair of
relatives based on, either it’s quality, if there is any difference or one sample will be chosen
randomly from the related pair. In a family based study, this approach can be used to check
the reported relationships and take further QC steps if needed. To determine the gender of a
sample, PLINK works by using the data from X chromosome. However, the cut-off to determine
the sex has to be set based on the study, as each study has a different depth of coverage. In an
association study, a sample is often excluded if there is a mismatch between the reported and

calculated sex.
Population stratification

Population stratification is one of the main criteria that needs to be accounted in an asso-
ciation analysis. Otherwise, it might lead to spurious results. The widely used strategy is to
merge the NGS data with 1000 genomes data [34] and then compare the ethnicity of the sample
under current study with respect to the samples from 1000 genomes. Two tools are most com-
monly used for this purpose and they are multi dimensional scaling (MDS) available as part of
PLINK and Eigenstrat [42] which is available as part of Eigensoft tool. Eigenstrat performs a
principal component analysis (PCA) and produces a list of outliers with >6SD (default) itera-
tively based on the first ten principal components. Whereas typically in PLINK, the cut-off to
determine outliers has to determined manually by visual inspection of first and second principal

components.
Sample contamination

Along with the above mentioned criteria, contamination between different samples can be
checked by using inbreeding coefficient as a means of measure. Similarly, missingness can also
be used as one of the criteria to select high-quality samples. PLINK and vcftools [33] are the

well known tools for calculating these metrics.
1.4.4 Functional Annotation

After generating a set of high-quality calls, the information that is obtained about the chro-
mosomal position, the nucleotide level change and the genotype per sample. To utilize this
information in a meaningful way and select the functionally relevant variants, it is requires to
annotate the variants with information from multiple sources such as the the functional conse-
quence (missense, synonymous etc.), location in the genome (intron or exon), name of the gene it
is effecting (within the gene, upstream, downstream , regulator etc.,) and the frequency at which
the variant is occurring in general population such as ExAC [43] or a disease related database
such as Human Gene Mutation Database [44]. This entire process is called as variant annotation
and the annotations are chosen depending on the application and the study. As, a first step in

annotation the multi-allelic variants should be decomposed using tools such as variant-tests [45]
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and left normalized by bcftools [46]. In the next steps, tools such a ANNOVAR, [47], variant effect
predictor (VEP) [48] or Snpeff [49] can be used for annotation. Each tool has it’s own naming
convention for the predicted consequence of the variant and hence needs to be chosen based on
the application. The main resources typically used for gene annotation are RefSeq of National
Center for Biotechnology Information (NCBI), Ensembl and Consensus coding sequence (CCDS).
Each of them has different number of coding transcripts and it is also possible that the variant
predicted to be benign using one resource could be predicted as a damaging variant in the other
resource. Hence, the choice of transcript has an important effect on the variant annotation [50].
Typically, if there are more than one transcripts for a variant, then the tools have an option
to produce the annotation with the most severe consequence. Databases such as dbNSFP [51]
provide various scores for nonsynonymous and splice site SNV consequences. To determine the
rarity of a variant, databases like 1000 genomes, dbSNP [52], ExAC [43] (release 0.3, NFE and
ALL), and the Exome variant server (EVS) http://evs.gs.washington.edu/EVS/ are available.
These databases include the genetic data from various ethnicities and hence, one can filter for
ethnicity specific frequency when required. Further, the filtering criteria for rarity of a variant
is often arbitrary and there is no single definition of the rarity. It should be adapted according
to the study and it could range from (0.01% to 3%).

Variant prioritization and analysis

Depending on the aim of a study, variants can be prioritized in a different manners. However,

a brief description on functional prioritization is given below:

« Nonsynonymous variants: These are amino acid changing variants. RefSeq, Ensemble

and CCDS annotations can be used to define a variant as nonsynonymous variant.

bR A43

o Loss of function variants (LoF): Any SNV annotated as “splicing”, “stop gain” or “stop
loss” or any INDEL (especially frameshift) can be defined as a LoF variant. Although, they

are named as LoF variants not all of them cause loss of function per se.

e Synonymous variants: These are the variants which do not change the amino acid. They
were assumed to be functionally neutral and used in majority of studies a negative control.
However, there might be some synonymous variants which are functionally important such

as those involved in splicing [4].

e Deleterious scores: There are several deleteriousness prediction scores such as SIFT
[53], PolyPhen2_ HDIV [54], LRT [55], MutationTaster [56], PROVEAN [57], CADD [58],
DANN [59], fathmm [60], GERP++_R [61] and SiPHy [62] are available for estimating
the delteriousness of a variant. Some of them are available for the entire genome such
as CADD, GERP++_R and SiPHy. It really depends how one can use these scores to

prioritize a variant, sometimes a combination of these scores are used [63], while the other
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times only one of them is used such as CADD [64, 65].
1.4.5 CNYV detection

Various methods to detect CNVs include the traditional methodologies, such as karyotyp-
ing and fluorescence in situ hybridization (FISH) [66] or the array-based comparative genomic
hybridization [67]. These approaches have several drawbacks including hybridization noise, con-
strained coverage, inferior resolution, and also similar to the detection SNPs using arrays the
detection of novel and rare CNVs is not possible. With the advent of NGS, detection of CNVs has
become much reliable and fast. The methods to detect CNVs from NGS data can be based on
paired-end mapping, read depth, split reads, de-novo assembly of the genome and combination
of the above approaches [68]. Each method has it strengths and weaknesses and out of the five

methods the most well known method is by using read depth.

Typically, read depth based methods work by mapping the reads to a genome, normalization
of the read count across the genome, calculation of exact copy number, and the final step is the
segmentation. First, in the mapping step, the reads from FastQ files are aligned to the genome
of interest and the number of reads covering each position of genome (Depth of coverage) is
calculated. In the next steps the depth of coverage is normalized in order to avoid potential
biases arising due to varying GC content or the repeat regions within the human genome. Once,
the normalized read depths are obtained an estimation of copy number is performed in order to
determine whether there is a gain or a loss. Finally, segmentation of genomic regions is performed
to detect conflicting copy number regions. Further, these methods are divided into two based on
whether the copy number detection is performed on one sample or multiple samples together. A
detailed summary of all the different tools is provided in the study [68]. An example of a typical
CNV detection workflow from WES data by employing XHMM [69, 70] is shown in Figure 1.4.
Conceptually, XHMM works in a similar fashion as GATK’s multiple sample calling where we

give multiple files as input and based on the coverage in all the samples CN'Vs are discovered.
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Figure 1.4: Various steps involved in the detection and processing of CNVs from WES data by using XHMM.
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1.4.6 QC and prioritization of CNVs

In order to select high-quality CNVs each tool generates a quality score, for example CNVs
detected by XHMM can be filtered using Z score and Q_ SOME score. The main advantage of
detecting CN'Vs via NGS is to discover rare and novel events. Hence, several publicly available
databases such as CNVmap [9], the DGV gold standard data-set [71] and 1000 genomes SV [72]
can be used for this purpose. Further, CNVs arising from the questionable regions of the human
genome often have poor quality [73]. To mitigate this effect, the CNVs overlapping the regions
such as centromeres, telomeres and Immunoglobulins can be excluded. Further, filtering criteria

can be employed based on the study.
1.4.7 Association testing

Typically, association testing of SNVs/INDELSs is performed in the case-control studies to
determine the variants causing a significant burden. While studying the effect of rare variants,
it is normal to not find any significant association of a variant to the disease mainly due to small
sample sizes. Hence, it is a common practice to perform the association at gene, geneset and
genome-wide levels. There are various methods to perform association testing. The common
methods being burden analysis using Fisher method, kernel based methods such as SKAT or
SKAT-O or a more recent method using linear models. Each of them have their own pros and
cons. The standard burden tests work by collapsing the rare variants in a region such as gene or
a pathway into a single burden variable and then regress the phenotype on the burden variable in
order to test for the aggregated effects of rare variants in the defined region. However, the typical
burden tests often tend loose their power if a region consists of both protective and deleterious

variants or many non-causal variants acting in opposite direction.

In such conditions, advanced methods like sequence kernel association test (SKAT) [74] tend
to be more powerful. Instead of aggregating variants, SKAT aggregates the associations between
variants and the phenotype through a kernel matrix and can allow for SNP-SNP interactions.
We used an optimized version of SKAT called SKAT-O [75] which is more powerful compared to
SKAT, as SKAT-O behaves like the burden test by default when the burden test is more powerful
than SKAT. Otherwise, if SKAT is more powerful than the burden test then SKAT is performed
instead of burden test. These days several tools are available that take a VCF file as an input and
perform a series of burden or kernel based tests such as rvtests [76], epacts (https://genome.sph.
umich.edu/wiki/EPACTS) or PLINK/SEQ (https://atgu.mgh.harvard.edu/plinkseq/).

Association testing of CNVs is performed by burden testing and the most widely used tool
for this purpose is PLINK [77]. It has a special module to perform the burden testing of CNVs

with a combination of permutation.

Linear models were used to perform association analysis of genesets carrying SNVs/INDELs
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[65, 78]. The main advantage of linear models is that, one can account for various confound-
ing variables such as population differences, study wide coverage differences or other technical
differences and it also allows to estimate the odds ratios. Based on the odds ratios, one can de-
termine the direction of effects of variants. Similarly, linear models can also be used to perform

association testing of CN'Vs to the trait of interest [79].
1.4.8 Mode of Inheritance (MOI) filtering

In contrast to association studies, family studies employ a MOI based variant filtering. Based
on an individual study, different inheritance patterns can be tested for any kind of variants such
as SNVs/INDELs or CNVs as described below.

e Autosomal dominant inheritance: Out of the two copies of a gene, if a mutation in
one copy could induce the disease phenotype then such type of MOI is called Autosomal
dominant inheritance. In this type of inheritance, as even one of the mutated gene can
lead to disease phenotype, even if one of the parent is affected, there is 50% chance for the

offspring to inherit the disease.

e Autosomal recessive inheritance: In the case of autosomal recessive MOI, both alleles
of the gene have to be mutated in order to induce the disease phenotype. If only one allele of
the gene is mutated the other other allele could compensate for the mutated allele thereby
preventing the disease. However, the person carrying one mutated allele becomes a carrier
and their off-springs can have three possible phenotypes: He/she could become a carrier
themselves (50% chance) They could inherit the mutated gene from both the parents and
become susceptible to the disease (25% chance) They could inherit the healthy alleles and
stay normal with respect to the disease (25%)

e De-novo inheritance: These are the newly emerged mutations occurring either in
germline cells of the parents or at some point in life after conception. These kind of

mutations are commonly identified via trio based studies.

¢« Compound heterozygous variants: If an individual carries a variant in gene on one
allele and another variant in the same gene on the second allele then the inheritance is

called compound heterozygous inheritance.

1.5 Neurological disorders

Neurological disorders constitute a wide range of diseases affecting the nervous system. They
affect several people worldwide irrespective of age, gender or race. Further, they not only damage
the nervous system, but also affect the quality of life and cause a major financial burden [80].

More than 800 neurological disorders have been identified till date. They range in severity and
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the symptoms are often different from person to person ranging from cognitive dysfunction to
manic behavior or depression [81]. An indicator of the disease burden is disability-adjusted life
years (DALY). It is expressed as the the number of years lost due to disability, ill-health or
early death. According to a study published in 2017 [82], the neurological disorders included
in this analysis caused 250,692 million DALYs, comprising 10.2% of global DALYs, and 9,399
million deaths, comprising 16.8% of global deaths showing the burden caused by the neurological
diseases alone. Large variations related to geographical and sex differences [83] for neurological

disorders were also found.

A recent survey of world-wide literature [84] has shown that alzheimer’s disease (AD), chronic
low back pain (CLBP), stroke, traumatic brain injury (TBI), migraine headache, epilepsy, mul-
tiple sclerosis (MS), spinal cord injury, and Parkinson’s disease have been found as the most
common neurological disorders. There is no clear definition of age at onset (aao) for the neu-
rological disorders as a whole. For example, autism spectrum disorder (ASD), Cerebral Palsy
(CP) and Tourette syndrome are early-onset [85]. Whereas, disorders such as AD and PD affect
mostly elderly people although with few exceptions. Similarly, there are several neurological
disorders such as migraine, epilepsy, Multiple Sclerosis (MS), stroke and brain or spinal cord

injuries can affect at any point of an individual’s life time.

One of the main components that is believed to play a role in etiology of neurological disorders
is genetics. By now, from various studies it has been well established that genetics and genomics
play an important role in the etiology of neurological disorders [81]. Majority of the neurological
disorders are found to be complex disorders, where often there is more than one factor that
cause or aid in the progression of the disease [86]. Due to the complexity of these diseases,
traditional methods studying limited genes and pathways cannot always give a full picture of
the underlying mechanisms [81]. Despite the critical role of genetics in neurological disorders,
the consequences of genetic variants are diverse. For instance, in Huntington’s Disease (HD) the
disease is caused by an extension of CAG repeat of huntingtin gene (HTT) which leads to the
production of pathogenic huntingtin protein [87]. In the same way, the CAG repeat expansion of
ATXN1 produces abnormal ataxin-1 protein and leads to Spinocerebellar ataxia type 1 (SCA1).
In contrast, in the case of diseases such as PD, AD, schizophrenia, epilepsy etc., the genetics is
more complex and is often found that several genes contribute to the disease. Moreover, it is

also multi-factorial and seen that there is a complex interplay of genes and environment [86, 88].
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Measurement  All-age numbers (thousands) Age-standardized rate (per 100000)

2015 Change from 1990 to 2015 2015 Change from 1990 to 2015
PD
DALYs 2,059 (1,832 to 2,321) 111 - 2% (102.4 to 118.1) 33 (30 to 37) 10 - 8% (6.5 to 14.3)
Deaths 117 (114 to 121) 149 - 8% (135.0 to 161.4) 2 (20 2) 22+ 6% (15.7 to 28.4)
Prevalence 6,193 (5,726 to 6,777) 117 - 8% (113.2 to 122.8) 98 (90 to 107) 15 - 7% (13.3 to 18.3)
Epilepsy

DALYs 12,418 (10,438 to 14,479) 2+ 5% (-5.7 to 11.2) 168 (141 to 195) 22 5% (~28 - 2 to ~16.8)
Deaths 125 (119 to 131) 18- 9% (6.4 to 32.1) 2 (2 to 2) ~15 - 6% (~23 - 0 to —8.0)
Prevalence 23,415 (21,550 to 25,419 39 - 2% (33.4 to 45.2) 320 (295t0347) 1-9% (2-1to6-1)

Table 1.1: An increase in the number of DALYs from 1990 to 2015 due to epilepsy and PD. This table is modified
from study [82]

According to a recent study [82], in the past few years there is a substantial increase in the
DALYs due to PD and epilepsy Table 1.1. This emphasizes the fact that there is an increase
in the global burden of neurological diseases and measures have to be taken in order to account
for the increased burden. In the same study, it was shown that when stratified according to
age, epilepsy caused the most burden in children and young adults. Whereas, the burden of PD

increased along with age, similar to other neurological diseases [82].

In my current work, I have focused on genetics of two of the major neurological disorders
namely, PD and epilepsy. Both, PD and epilepsy follow a common pattern where there is a
symphony of common, less common, rare and ultra-rare variants with varying effect sizes as
shown in Figure 1.5. The inception of Arrays, Next Generation Sequencing (NGS) and their
combination with the latest systems biology approaches have discovered several novel risk genes,
biomarkers and drug targets [89]. As, shown in Figure 1.5 common SNPs associated to the
disease are usually identified by using arrays, whereas low frequency variants are identified using
NGS technologies.
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Figure 1.5: A figure describing the pattern of various variants commonly found associated to neurological
disorders and their varying effect sizes.

As PD and epilepsy are complex diseases with more than one gene effecting the disease,
instead of studying variants belonging to one frequency spectrum, variants belonging to different
allele frequencies and predicted biological effect were studied in this thesis. The work that has
been done in this thesis provided us a glimpse of convoluted architecture of PD and epilepsy.
Majority of this work has been conducted by using either Whole Exome Sequencing (WES) or
Whole Genome Sequencing (WGS) data.

1.6 Parkinson’s Disease

1.6.1 Background

PD is a severe neurodegenerative disease affecting several regions of brain, especially sub-
stantia nigra. Due to its substantial variability in phenotypic, neuropathological, and genotypic
characteristics, it is being recognized as a heterogeneous disorder. It is a slow progressing disease,
the average aao for PD is 60 years and it reaches a prevalence of 5% in individuals with an age
>85 years [90], however some people (5%) were diagnosed with PD below 60 years. In brain, an
important chemical messenger called dopamine is produced by the cells of substantia nigra and
it aids to control the movement of human body. In PD, the loss of dopamine producing neurons
occurs, which results in the uncontrolled movement of the patients. The cardinal symptoms of

PD include resting tremor, rigidity and slowness of movement (bradykinesia). In PD, typically
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the symptoms start from one side of the body and then proceed to the other side. The motor
symptoms are often accompanied by several non-motor symptoms. Some of the major non-motor
symptoms for PD include loss of sense of smell, sleeplessness, speech problems, constipation, trou-
bled swallowing, low blood pressure and drooling when standing [91]. Unfortunately, there is no

confirmatory test like a blood test, EEG or brain scan to make a clear diagnosis of PD.

The diagnosis of PD usually depends on the expertise of neurologist who performs a thorough
neurological examination. Especially, an investigation will be conducted for the presence of two
or more of the cardinal symptoms. Also, the doctor could also check the patient’s response to
PD medications, which serves as a further evidence of PD. The first test approved by Food and
Drug Administration (FDA) in order to diagnose PD is an imaging technique called DaTscan

which serves as the measurement of dopamine activity in brain.

According to a recent report, more than 4 million individuals in Europe’s five most and the
world’s ten most populous countries are currently afflicted with PD [92]. In United States alone
PD is estimated to affect 630,000-1,000,000 people and by 2050 these numbers are projected to
be doubled approximately. Ratio of men and women affected by PD is disproportional (2:1) as
it more predominantly affects men [93] and is typically late-onset (>60 years). An estimated
direct and indirect costs sum up to a total of $15.5 billion per year for PD [84]. The estimated
direct costs are at $13,786 per patient, with an aggregate direct medical cost of $8.1 billion. The
aggregate direct cost includes outpatient and institutional care, retail prescriptions, supplies and
equipment. Additionally, indirect costs are estimated to be $10,816 per patient, or $6.8 billion
in aggregate, including number of working days lost due to illness, reduced employment and
household income, adult day care, higher disability payment, any other formal care, and various
household expenditures. PD is an incurable disease, apart from the financial burden, it mainly
affects the quality of life. However, few medications and techniques such as deep brain simulation
can help in the management of PD. Based on the cause, PD can be broadly classified into two

types namely Idiopathic PD and PD with mendelian inheritance. They are described below.

1.6.2 Idiopathic PD

The most common type of PD is Idiopathic PD (IPD), affecting >2% of those over 75 years.
IPD occurs in individuals having no family history of PD. The etiology of IPD is incompletely
understood. Hence, in IPD various factors could contribute to the disease etiology. Ageing is
one of the major risk factor, similar to other neurodegenerative diseases. Smoking is one of the
factors that is believed to play an important role in IPD, a negative association has been observed
between PD and smoking. It is believed that smoking has a neuroprotective affect, as people
who smoke cigarette are less likely to develop PD [94]. However, the findings linking smoking
and IPD are very controversial as the studies did not account for smokers dying younger, and

therefore being less likely to develop a condition that is more common in old age.
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Several weak associations between PD and head injury [95], use of psychoactive medication,
middle-age obesity, lack of exercise, rural living, well-water ingestion, and pesticide exposure
(paraquat, organophosphates, and rotenone) have also been reported. Environmental toxins
such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine MPTP [96] can produce a similar but not
identical clinical scenario [97]. But, majority of studies lack a large sample size and thus re-
main inconclusive. In order to estimate the genetic contribution to the pathogenesis of PD,
several twin studies have been conducted [98-100]. However, majority of them showed low con-
cordance rates in monozygotic and dizygotic twins. A major criticism of these studies was that
the cross-sectional study designs used did not exclude the possibility of a later disease onset in
unaffected siblings. This obstacle has been overcome by using positron emission tomography
studies (PET), which is sufficiently sensitive to identify pre-symptomatic subjects by detecting
decreased striatal (18F)6- fluorodopa as a metric for decreased striatonigral dopaminergic func-
tion. Based on PET scan data, the concordance rate was significantly higher for monozygotic
twins, than for dizygotic twins [101-103] (55% versus 18%), suggesting a substantial genetic
contribution to the PD pathogenesis.

1.6.3 Mendelian/Familial PD

PD occurs as a sporadic disorder in vast majority of patients, but in 5%-10% of cases, the
disease occurs as a Mendelian disorder. It has been previously thought that there is no genetic
basis for PD. However, the discovery of mutations in SNCA (a-synuclein) [104] has changed the
perception of PD etiology. Since, the discovery of SNCA as a PD associated gene, a substantial
number of genes related to PD were identified as shown in Table 1.2, including mutations in genes
responsible for rare monogenic forms of PD. It could be seen in Figure 1.5 that, PD is caused by
variants in multiple genes and they vary in the conferred risk depending on their allele frequency.
Previous methods that considered PD as a monogenic disease were successful to develop ther-
apies that compensate for the dopaminergic deficit responsible for the motor symptoms of PD.
However, they fall short in terms of developing neuroprotective treatment strategies. Focusing
on patho-mechanisms and understanding the underlying molecular pathology of neurodegenera-
tion is essential, and genetic stratification of patients into subgroups provide an important entry

point for precision medicine.

The monogenic forms of PD have become a valuable resource for PD research, as patient-
based cell models display disease-specific cellular phenotypes that recapitulate the phenotypes
found in post-mortem brain tissue. According to this concept, the validation of clinicogenetic
subtypes of PD may be achieved based on rare but strong molecular signatures and subsequently
applied to the different pathophysiological tiers within each disease subtype. As genes were
identified to cause monogenic forms of PD, they were assigned PARK loci and numbered in

chronological order of their identification. However, the PARK loci do not contain genes which
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only cause monogenic forms of PD, but also loci identified from genome-wide linkage screens,

some of which have not been replicated in subsequent studies. To date, 18 PD-associated loci
(PARK1-18) have been described Table 1.2.

Locus Position Gene Inheritance Function Implications | age at onset
PARK1 & 4 4q21-23 a-synuclein Dominant Unclear Protein aggre- | LOPD/EOPD
(SNCA) (presynap- gation
tic protein)
PARK2 6q25.2-27 Parkin Recessive Ubiquitin lig- | Aberrant EOPD
ase protein &
mitochondrial
homeostasis
PARK3 2p13 Unknown Dominant - - LOPD
PARKS5 4pl4 UCHL1 Dominant Ubiquitin hy- | Aberrant pro- | LOPD
drolase tein homeosta-
sis
PARKG6 1p35-36 PINK1 Recessive Putative ser- | Aberrant mi- | EOPD
ine/threonine tochondrial
kinase homeostasis
PARK7 1p36 DJ-1 Recessive Redox sensor Oxidative EOPD
stress
PARKS 12p11.2-q13.1 LRRK2 Dominant Putative ser- | Aberrant LOPD
ine/threonine phosphoryla-
kinase tion
PARK9 1p36 ATP13A2 Recessive Lysosomal P- | Aberrant pro- | EOPD
type ATPase tein homeosta-
sis
PARKI10 1p32 Unknown Unknown - - LOPD
PARK11 2q37.1 GIGYF2? Dominant - - LOPD
PARKI12 Xq21-g25 Unknown X-linked - - LOPD
PARK13 2pl2 Omi/HtrA2 Dominant Mitochondrial | Aberrant mi- | LOPD
serine pro- | tochondrial
tease homeostasis?
PARK14 22q13.1 PLA2G6 Recessive Phosopholipase| Aberrant lipid | EOPD
homeostasis?
PARK15 22q12-q13 FBXO7 Recessive Component of | Aberrant pro- | EOPD
SCF E3 com- | tein homeosta-
plex sis?
PARKI16 1q32 Unknown Unknown - - LOPD
PARK17 16p12.1-q12.1 VPS35 Risk - Aberrant LOPD
endosomal
recycling?
PARK18 3q27, 1q21, | EIF/G1, Risk - B LOPD
4pl5, 17q21, | GBA, BST1,
12q12 and | MAPT,
14q32 ATXN2 and
ATXN3

Table 1.2: A table describing all the PARK loci that were discovered till date and their implications. This table
is a combination of two tables from the studies [92, 105]. LOPD = Late onset Parkinson’s disease and EOPD =
Late onset Parkinson’s disease
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1.6.4 Genetics
Familial PD genes

Linkage analysis is a powerful approach for the discovery of disease associated genes in fami-
lies and it has led to the discovery of two genes SNCA and LRRK2 which were further strongly
supported by the evidence from GWAS. It has been functionally shown that expression levels of
SNCA are inversely correlated to the aao [106]. For LRRK?2 the mutation p.G2019S was seen
to be major risk factor for PD. The penetrance seems to be ethnicity specific varying from 22%
Ashkenazi Jews (residents in US), 45% for Norwegians and 80% for Arab-Berbers [106]. This
ethnicity related penetrance is very important, especially while conducting genetic counselling.
However, only ~1% of PD seems to be explained by the p.G2019S mutation. Whereas, in the
Asian population, another mutation p.G2385 has more penetrance (11.37%) compared to the pre-
vious one [107]. Several genes were identified recently that are shown to be causing Familial-PD.
The autosomal dominant genes causing PD include SNCA, LRRK?2, EIF4G1, VPS35, DNAJC13,
CHCHD2, TMEM230 and RIC3. Whereas, the monogenic causes for autosomal recessive or X-
linked PD include PARK?2, DJ-1, PINKI1, FBXO7, 22q11.2del, SYNJ1, RAB39B, DNAJCS,
PODXL, VPS13C and PTHRHD1 [108]. However, functional studies are further required in

order to confirm the role of these genes in the familial forms of PD.
GWAS genes

Several GWAS have been conducted to discover the PD associated genes including the recent
large-scale meta-analysis where they used 26,035 cases and 403,190 controls and discovered 17
novel associated loci. In total, there are >50 loci that are found to be associated to PD [109].
The large-scale GWAS have supported the association of LRRK2 and SNCA to PD. Similarly,
several genes such as UCHL1, PARK16, GAK, MAPT, GBA, NAT2, INOS2A, GAK, HLA-DRA
and APOE have also been identified as risk factors for PD [110].

Modifiers

As described previously in section 1.6.4 the mutation p.G2019S accounts for 1% of PD in
Caucasians, whereas it is higher in other populations. However, it has been noted that the carriers
of p.G2019S mutations have varying phenotypes. Some of them have early-onset parkinsonism,
while some remain asymptomatic of PD despite their old age. Hence, it has been claimed that
there must be some modifiers which alter the aao and the development of PD. A recent study
[111] has identified that DNM3 might be a genetic modifier of aao for parkinsonism by LRRK2
p-G20198S.
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CNVs in PD

There have several studies which detected the genomic triplications and duplications in SNCA.
The first study to report the genomic triplicationss in chromosome 4q21 22 of SNCA was per-
formed in a large family with PD following AD inheritance. The triplication was confirmed by
PCR and FISH technology [112]. Since then, several studies have reported the duplications and
triplications in SNCA [113]. Interestingly, all of the CNVs in SNCA suggest a gain of function
[114]. However several forms of PD are early onset, suggesting a LoF mechanism in PD and
one of the major genes that was shown to be associated to PD via LoF is PARK2. There have
been some reports where heterozygous CNVs in PARK2 have been found to be associated to the
increased risk of PD [115, 116]. While, some other studies did not confirm such an association
[117, 118]. Hence, it remains to be seen whether any rare CNVs in PARK2 will be found in
the near future. The other PD associated gene that is found to harbor a heterozygous deletion
is PINK1. In a study [119], it was found that the entire PINKI is deleted and the deletions
span a length of 56kb. Similarly, other studies have also found heterozygous deletions in PINK1
[120, 121]. The deletions in DJI have been found in genetically segregated cohorts of Nether-
lands and Italy [122, 123]. Further, deletion involving D.J1 were also found in a family of Iranian
origin[124]. All the families carrying these deletions are consanguineous. In one family of Iranian
origin, a deletion was reported in ATP13A2, but no other CNVs were reported in the same gene
till date [124]. Other CNVs affecting single gene include TH, VPS35, PGRN and HMOX1 [113].

1.7 Epilepsy

1.7.1 Background

Epilepsy is a chronic neurological condition affecting over 65 million people worldwide. 2.8
million Americans are affected by epilepsy which is approximately 1% of the general popula-
tion [84]. Epilepsy disproportionately affects black men (https://www.cdc.gov/mmwr/pdf/wk/
mm6145.pdf) as well as the elderly [125]. Epilepsy is one of the less studied neurological disease
despite of it high prevalence and economic burden. According to a study, direct medical costs in
both children and adults in the year 2009 epilepsy is estimated to a cause a burden of $9.6 billion.
Another study from 2004 also estimated the prevalence and burden of epilepsy, however they
did not assume indirect costs and considering the static disease prevalence from 2004 to 2014,
adjusting to 2014 [84], the direct medical costs of epilepsy for 2014 are estimated at $13.4 billion.
However, the same study showed that by including the indirect costs for epilepsy patients, the
total cost burden (direct and indirect) is estimated at $36.8 billion.

The primary feature of epilepsy is the spontaneous seizure activity, which occurs due to
the sudden bursts of electrical activity in the brain. Epilepsy is a disease with a combination

of multiple syndromes [126]. More than 50 syndromes have been found to be part of epilepsy
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[127]. Based on their location of origin, epilepsy can be broadly divided into focal epilepsy and
generalized epilepsy. Focal epilepsies originate from a specific area of a brain, whereas the origin
of epileptogenesis is unclear in generalized epilepsies. According to the International League
Against Epilepsy (ILAE) [128], the practical definition of epilepsy is described as below.
Epilepsy is a disease of the brain defined by any of the following conditions

o At least two unprovoked (or reflex) seizures occurring >24h apart

o One unprovoked (or reflex) seizure and a probability of further seizures similar to the general
recurrence risk (at least 60%) after two unprovoked seizures, occurring over the next 10

years

e Diagnosis of an epilepsy syndrome: Epilepsy is considered to be resolved for individuals
who had an age-dependent epilepsy syndrome but are now past the applicable age or those
who have remained seizure-free for the last 10 years, with no seizure medicines for the last

5 years.

Although, epilepsy can occur at any age it is more common amongst children and people
above 65 years of age. Not all epilepsy sub-types are life long, some forms are confined to
childhood. The prevalence of epilepsy in general population is 3.3-7.8/1000 and 3.4-5.8/1000 in
pediatric studies with an age limit ranging from 0 to 18 years [129]. There are several sub-types
of Epilepsy. A recent classification of epilepsy according to the ILAE 2017 (Instruction manual
for the ILAE 2017) [130] can be seen in the Figure 1.6.
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ILAE 2017 Classification of Seizure Types Expanded Version !

[ Focal Onset J [Generalized Onset] [ Unknown Onset ]

[Aware Impaired J / Motor \ Motor

Awareness

tonic-clonic tonic-clonic
clonic epileptic spasms
/Motor Onset \ tonlc| ) Nonmotor
automatisms myosionic i
atonic 2 myoclonic-tonic-clonic behavior arrest
clonic myoclonic-atonic

epileptic spasms 2 atonic

hyperkinetic epileptic spasms [ — ]
myoclonic Nonmotor (absence) Unclassified
tonic typical
Nonmotor Onset atypical .
autonomic myoclonic
behavior arrest \eyelid myoclonia /
cognitive

emotional

\ sensory /

{ focal to bilateral tonic—clonlc]

Figure 1.6: A figure describing the 2017 classification of epilepsy according to ILAE

1.7.2 Genetics

One of the factors that is believed to play an important role in many epilepsy syndromes is
genetics. Several genes were identified by Genome-wide association studies (GWAS) [131, 132],
Trio-based studies [133] and segregation-based studies in the families. They are briefly described

below.
Ion-channel and non ion-channel variants in epilepsy

In the central nervous system and excitable tissues such as skeletal and heart muscle, ion
channels form the basis of excitability regulation. There are various types of ion-channels such as
sodium, potassium, calcium or chloride channels depending on the ions they allow to pass through
them. The ion-channels play a major part in controlling the excitability and any defect in the
ion-channels could lead to hyper or hypo-excitability of the concerned tissue [134]. The change
in excitability might ultimately lead to epileptogenesis. About 25% of the genes that are known
to be mutated in epilepsy are in the ion-channels [127]. The first concept of “channelopathy” in
epilepsy has been led by the discovery of variants in KCNQ2 and SCN1A [135]. Till date, several
variants occurring in the voltage or ligand gated ion-channels were found to be major cause of
epilepsy. Table 1.3 shows the ion-channel genes that are mutated in diverse forms of epilepsies.
The mutations in ion-channels are known to cause rare monogenic idiopathic epilepsies, however

they were also found in some common epilepsies such as juvenile myoclonic epilepsy or childhood
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and juvenile absence epilepsies [136].

Gene Phenotype Protein
Voltage-Gated
SCN1A Dravet syndrome; GEFS+ NaV 1.1
SCN1B GEFS+, temporal lobe epilepsy, an early infantile epileptic encephalopathy NaVbl
SCN2A BFNIE, early-onset epileptic encephalopathies, neurodevelopmental disorders NaV1.2
SCN8A BFIE, epileptic encephalopathy Navl.6
KCNA1 Partial epilepsy and episodic ataxia KV1.1
KCNA2 Epileptic encephalopathy KV1.2
KCNB1 Epileptic encephalopathy KVv2.1
KCNC1 Progressive myoclonus epilepsy KV3.1
KCNMA1 epilepsy and paroxysomal dyskinesia KCal.1
KCNQ2 BFNE, epileptic encephalopathy KV7.2
KCNQ@3 BFNE KV7.3
KCNT1 ADNFLE, EIMFS KNal.1
KCTD7 Progressive myoclonus epilepsy KCTD7
HCN1 GGE HCN1
CACNA1A  Epilepsy, episodic ataxia, epileptic encephalopathy CaV2.1
CACNA1H GGE CaV3.2
Ligand-Gated
GRIN1 Epileptic encephalopathy GluN1
GRIN2A Epileptic encephalopathy GluN2A
GRIN2B Epileptic encephalopathy GluN2B
GRIN2D Epileptic encephalopathy GluN2D
GABRA1 GGE, Epileptic encephalopathy GABRA1
GABRB3 CAE, Epileptic encephalopathy GABRB3
GABRG2 FS/GEFS+, epileptic encephalopathy GABRG2
CHRNA2 ADNFLE CHRNA2
CHRNA ADNFLE CHRNA4
CHRNB2 ADNFLE CHRNB2

Table 1.3: Various ion-channel genes known to be involved in idiopathic epilepsies and epileptic encephalopathies.
The table has been adapted from the study [127]. BFIE, benign familial infantile epilepsy; BFNIE, benign familial
neonatal-infantile epilepsy; EIMFS, epilepsy of infancy with migrating focal seizures; FS, febrile seizures.

Apart from ion-channels, several mutations in the non-ion channel genes have been discovered

in epilepsy and they are shown in the Table 1.4.
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Gene

Gene Name

NHLRC1
SLC6A1
KCTD7
CPA6
SLC25A22
CLNS8
CDKLS5
SNIP1
RELN
PNKP
EPM2A
SRPX2
STXBP1
WWOX
ST3GALS5
SZ2T2
PRICKLE!1
ASAH1
STRADA
IERSIP1
SPTAN1
PCDH19
SCARB2
SLC35A2
ARX
ARHGEF9
CNTNAP2
PRICKLE2
CSTB
PLCBI1
SYN1
SLC13A5
SIK1
DEPDCS5
CHD2
GNAO1
STSGALS3
PRRT?
DNM1
GOSR2
MEF2C
SLC2A1
STX1B
ALDH7A1
HNRNPU
TBC1D2/
LGI1
PNPO
ALG13
EEF1A2

NHL repeat containing E3 ubiquitin protein ligase 1
solute carrier family 6 member 1

potassium channel tetramerization domain containing 7
carboxypeptidase A6

solute carrier family 25 member 22

CLNS, transmembrane ER and ERGIC protein
cyclin dependent kinase like 5

Smad nuclear interacting protein 1

reelin

polynucleotide kinase 3’-phosphatase

EPM2A, laforin glucan phosphatase

sushi repeat containing protein, X-linked 2
syntaxin binding protein 1

WW domain containing oxidoreductase

ST3 beta-galactoside alpha-2,3-sialyltransferase 5
SZT2, KICSTOR complex subunit

prickle planar cell polarity protein 1
N-acylsphingosine amidohydrolase 1
STE20-related kinase adaptor alpha

immediate early response 3 interacting protein 1
spectrin alpha, non-erythrocytic 1

protocadherin 19

scavenger receptor class B member 2

solute carrier family 35 member A2

aristaless related homeobox

Cdc42 guanine nucleotide exchange factor 9
contactin associated protein like 2

prickle planar cell polarity protein 2

cystatin B

phospholipase C beta 1

synapsin I

solute carrier family 13 member 5

salt inducible kinase 1

DEP domain containing 5

chromodomain helicase DNA binding protein 2
G protein subunit alpha ol

ST3 beta-galactoside alpha-2,3-sialyltransferase 3
proline rich transmembrane protein 2

dynamin 1

golgi SNAP receptor complex member 2

myocyte enhancer factor 2C

solute carrier family 2 member 1

syntaxin 1B

aldehyde dehydrogenase 7 family member Al
heterogeneous nuclear ribonucleoprotein U

TBC1 domain family member 24

leucine rich glioma inactivated 1

pyridoxamine 5’-phosphate oxidase

ALG13, UDP-N-acetylglucosaminyltransferase subunit

eukaryotic translation elongation factor 1 alpha 2 height

Table 1.4: A list of non-ion channel genes that were found to carry mutations in epilepsy. This table was modified

from the study [137].
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CN'Vs in epilepsy

Various studies carried out in GGE, EE or focal epilepsies have shown a clear role of CNVs
in epilepsy. The CNVs involved in epilepsies are rare and consist of genes causing the epilepsies.
One such example is deletion Xp22 which disrupts the gene CDKL5 [138]. In the same study
they found a deletion 5q33-q34 which spans the GABRA1 and GABRG2 genes both of which
were shown to be associated to different forms of epilepsy [139, 140]. Similarly, various CNVs
spanning genes such as NRXN1, SCN1A, SCN2A, BMP5, AUTS2, PODXL, CNTNAP2, NIPA2,
CYFIPI, CHNRNA7, NDE1, GRIN2A and PRRT2 have also found to be identified in various
forms of epilepsies [141].

1.7.3 Rolandic Epilepsy
Background

Rolandic epilepsy (RE), is also known as benign epilepsy with centrotemporal spikes (BECT).
It is one of the most common epilepsies occurring during childhood and it accounts for about
10-20% of the childhood epilepsies. The typical aao for RE is 3-13 years, with a peak incidence
between 7-9 years old, and invariably shows remission by 14 years. The core clinical characteristic
includes a focal seizure with sensorimotor symptoms, involving the face and laryngeal muscle, or
secondary generalized tonic—clonic seizures, mainly during sleep. Characteristic centrotemporal
spikes (CTS) and typical seizures are sufficient for diagnosis. The prognosis of RE is relatively
benign, as the name indicates; however, moderate behavior and learning problems may exist
in some patients. Compared to typical RE, atypical RE (ARE) includes more severe symptoms
such as atypical benign partial epilepsy (ABPE), Landau—Kleffner syndrome (LKS), and epileptic
encephalopathy with continuous spike and waves during sleep (CSWS). The symptoms observed
in ARE occur together with speech and language dysfunction. The genetic origin of RE has been
the subject of much speculation but remains largely unknown as most RE patients do not show
a simple Mendelian inheritance pattern. Given their overlapping clinical characteristics, RE and
ARE are presumed to have a shared genetic etiology. Hence, in this thesis they were studied

together.
Genetics

There have been several family studies in the 1990s showing the genetic basis of RE. However,
the twin studies did not provide a strong support to this hypothesis [142, 143]. All the studies
that have been conducted till date on RE have remained inconclusive and the different genes

emerging from different studies are pointing RE to be a complex disease [144].

Familial genes: A previous genome-wide linkage analysis of 38 families has shown that

a chromosomal region 11pl3 showed a significant linkage [145]. A further candidate SNP
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analysis across the linkage region identified three SNPs rs964112, rs11031434 and rs986527 all
present in the intron region of ELP/ gene with significant association. The result was replicated
in a separate set of 120 controls and 40 cases from Canada, additionally a novel SNP rs2104246
also showed significant association. However, no such association for FLP/ gene was found in
a separate study [146] indicating that further larger sample sizes and functional studies are

required in order to corroborate the findings.

Candidate gene studies: A study conducted on six CNVs has shown that a duplica-
tion in the chromosomal locus 16p11.2 increases the risk of RE and ARE which was supported
by the association analysis. However, no such association was seen for temporal lobe epilepsy
and Genetic generalized epilepsy (GGE)indicating an enrichment selectively towards RE and
ARE. Further, candidate gene studies on RE cases with severe symptoms identified that
mutations in GRIN2A and GABAergic receptors could play a potential role [147-149].

1.7.4 Genetic generalized epilepsy or Idiopathic generalized epilepsy (IGE)
Background

GGE is one of the most common types of epilepsy and constitute about one-third of epilepsies
[150]. GGEs are believed to have a strong genetic component underlying the disease development

and progression. According to the ILAE classification, the following are sub-types of GGE.
1. Benign myoclonic epilepsy in infancy (BMEI)
2. Generalized epilepsies with febrile seizures plus (GEFS+)
3. Epilepsy with myoclonic-astatic seizures (EMAS)
4. Childhood absence epilepsy (CAE)
5. IGEs with variable phenotypes (IGEVP)
o Juvenile absence epilepsy(JAE)
o Juvenile myoclonic epilepsy(JME)
o Epilepsy with generalized tonic—clonic seizures only (EGTCSO)
Genetics

GGEs are considered to be of genetic origin and till date several twin studies have been
conducted with high concordance [151]. About 2-8% of GGEs are considered to be monogenic

and majority of the genes that are implicated in GGEs include ion-channel sub-units [152].
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Although few genes apart from ion-channel sub-units are shown to be responsible for develop-
ing GGEs [153] their role remains inconclusive as it is often difficult to define the mechanism

of epileptogenesis and assumed to have a functional interference by the ion-channel proteins [153].

Familial genes: Several genes implicated in GGE have been successfully identified by
studying the families. Such genes include SCN1A, KCNQ2, KCNQ3, FFHC1, GABRA2 and
CHRNA/. Early studies based on twins have been conducted and further strengthened the
argument that GGEs are genetic disorders. Till date about 2-8% of GGEs are considered to be
monogenic [151]. Vast majority of the monogenic GGEs are associated to variants in voltage
gated ion-channel receptors (Na and K channel subunits). The largest linkage study of 379
multiplex families has identified only two loci namely 5q34 and 13q31.3 as linked to GGE,
whereas suggestive evidence was found for additional six loci 1p36.22, 3p14.2, 5q34, 13q12.12,
13¢31.3, and 19q13.42 [154]. However, the linkage peak at 5q34 is interesting as it encodes for
several GABA receptor sub-units(GABRB2, GABRAG6, GABRA1, GABRGZ2).

Association studies: A GWAS study based on 3020 GGE cases and 3975 controls
identified two loci 2p16.1 and 17q21.32 that are significantly associated to the GGE [155].
Other than that, the GWAS studies did not identify many significant genes. A large-scale
meta-analysis comprising of GGEs identified a locus 4p15.1 harboring the gene PCDH?7 [156].
Although there are few common variants that were found to be associated to GGEs, a large
proportion of genetic components is still missing and this could be potentially explained
by the rare variants. But, there has not been much success in identifying the rare variants
associated to GGEs via association studies. Especially, the studies using exome sequencing
have failed to identify any significant rare variants [157]. Recently, a large-scale WES based
association study comprising of 640 cases with familial GGE and 3877 controls did not detect
any gene with genome wide statistical significance. However, an increased burden was ob-

served when rare, deleterious variants in a group of genes with analogous function were collapsed.

CNVs in GGE: A large-scale association study including 1223 cases and 3,669 controls
showed that micro deletions in the 15q13.3 region were present in 12/1223 cases but not present
in any of the controls [158]. In the same line several micro deletions (1q21.1, 15q11.2, 15q13.3,
16p11.2, 16p13.11 and 22ql11.2) were found to be associated to GGE [159, 160]. Another
association study involving 1,408 GGE cases and 2,256 controls have identified large rare
deletions in the gene RBFOX1 [161] that are associated to GGE.
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1.8 Aims of the thesis

Although several rare variants and genes associated to PD and epilepsy have been identified
till date, there is still a large portion of missing heritability. Hence, we hypothesized that both
PD and epilepsy are genetically heterogeneous and in my thesis I aimed to fill in that missing
gap by applying state-of-the art statistical and analytic methods to the WES and WGS data to
both the diseases. My main focus was on rare/ultra-rare variants as they have the highest effect
size compared to the common ones Figure 1.5. As part of it, I developed several pipelines in
order to detect and analyze the variants from WES/WGS data and in the next steps they were
applied to various data-sets belonging to epilepsy and PD.

The specific aims of my thesis were:

1. To discover disease-causing variants in different kinds of epilepsies namely RE/ARE and
GGE.

2. To identify the differential burden of genetic variants in sporadic PD.
3. To discover potential novel disease causing variants in familial-PD.

4. To build disease prediction models based on WES/WGS data.

1.9 Contributions
e Chapter 1

— Description: This chapter provides the background information regarding human

genome and various neurological disorders.
— Contributions: I wrote the text in full.
e Chapter 2

— Description: Role of rare variants in Typical and Atypical rolandic epilepsy using the
WES data were studied in this chapter. This chapter is a full reprint of the article

published in European Journal of Human Genetics.

— Contributions: Data analysis, interpretation of results, writing and revision of

manuscript.
e Chapter 3

— Description: Rare variants in a group of GABA, receptors in GGE were studied
using the WES data in this chapter. This chapter is currently under revision in

Lancet Neurology.
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— Contributions: Data analysis, interpretation of results, writing and revision of

manuscript.
Chapter 4

— Rare copy number variants in RE/ARE and GGE using the WES data were studied
in this chapter. This chapter is currently submitted in PLOS ONE.

— Contributions: Data analysis, interpretation of results, writing and revision of

manuscript.
Chapter 5

— Description: Role of ultra-rare variants in PD using the WES of 367 cases and 159
controls were studied in this chapter. This chapter is currently submitted in Movement

disorders.

— Contributions: Data analysis, interpretation of results, writing and revision of

manuscript.
Chapter 6

— Description: Burden analysis of 5’ splice variants in PD using the WES data is de-
scribed in this chapter. This chapter is a major part of a manuscript currently sub-
mitted in Cell.

— Data analysis, interpretation of results, writing and revision of manuscript.
Chapter 7

— Description: Rare variants identified via WGS in >50 families are described in this

chapter. This chapter is a major part of manuscript in preparation.

— Contributions: Data analysis, interpretation of results, writing and revision of

manuscript.
Chapter 8
— Description: Conclusions and outlook.

— Contributions: I wrote the text in full.
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CHAPTER 2

ROLANDIC EPILEPSY

2.1 Abstract

Rolandic Epilepsy (RE) is the most common focal epilepsy in childhood. To date no
hypothesis-free exome-wide mutational screen has been conducted for RE and Atypical RE
(ARE). Here we report on whole-exome sequencing of 194 unrelated patients with RE/ARE
and 567 ethnically matched population controls. We identified an exome-wide significantly en-
riched burden for deleterious and loss-of-function variants only for the established RE/ARE
gene GRIN2A. The statistical significance of the enrichment disappeared after removing ARE
patients. A nominally significant enrichment for loss-of-function variants was detected for several

disease-related gene-sets.

2.2 Introduction

Rolandic Epilepsy (RE), or epilepsy with Centro-Temporal Spikes (CTS), is one of the most
common epilepsy syndromes of childhood. RE is related to rarer, and less benign epilepsy syn-
dromes, including atypical benign partial epilepsy, Landau-Kleffner syndrome and epileptic en-
cephalopathy with continuous spike-and-waves during sleep, referred to as RE related syndromes,
or Atypical Rolandic Epilepsy (ARE) [162]. In up to 20% sib pairs or families, mutations af-
fecting GRIN2A, a subunit of the excitatory glutamate receptor NMDA, were found implicated
as major risk factor for RE and ARE by us and others [147, 148]. Recently, the association
of the genes RBFOX1, RBFOX3, DEPD(C5, GABRG2 and genomic duplications at 16p11.2 in
1,5-2,0% was identified in patients with RE and ARE [149, 161, 163] through candidate gene

and loci screens. In the current study, an unbiased exome-wide survey was conducted in the
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RE/ARE cohort.

2.3 Patients and Methods

2.3.1 Study participants

204 unrelated European Rolandic cases (182 RE, 22 ARE) and 728 population control subjects
were included [149]. Written informed consent was obtained from participating subjects and, if

appropriate, from both patients and adolescents.
2.3.2 Data generation and processing

Exome sequencing of all individuals was performed with the Illumina HiSeq 2000 using the
EZ Human Exome Library kit (NimbleGen, Madison, WI). Sequencing adapters were trimmed
and samples with <30X mean depth or <70% total exome coverage at 20X mean depth of
coverage were excluded from further analysis. Variant calling was performed in targeted exonic
intervals with 100bp padding using the GATK best practices pipeline [23] against the GRCh37
human reference genome followed by multi-allelic variant decomposition and left normalization.
Samples were excluded from further analysis if they (i) were not ethnically matched, (ii) were
related, (iii) showed discrepancy with reported sex, (iv) had an excess heterozygosity >3SD in
any of the quality metrics (NALT, NMIN, NHET, NVAR, RATE and SINGLETON statistics as
calculated by PLINKseq i-stats parameter [164]. The genotypes of variants with read depth <10
or genotype quality <20 were set to missing. Variants were excluded if they (i) failed variant
quality score recalibration (VQSR) or GATK recommended hard filter, (ii) showed missingness
>3%, (iii) were present in repeat regions or (iv) had an average read depth <10 in either cases
or controls. The ExAC variants were restricted to the exonic intervals used for variant calling in

this study, not present in the repeat regions and passed the VQSR threshold.
2.3.3 Variant annotation and filtering

Variants were annotated using ANNOVAR [165] version 2015 Mar 22 with RefSeq and En-
sembl, Combined Annotation Dependent Depletion (CADD) scores [58], allele frequencies and
dbNSFP (v3.0) annotations. The sample used in this study are of NFE ancestry, hence to inves-
tigate rare variants, we selected variants having a minor allele frequency (MAF) <0.005 in the
European populations of the 1000 genomes, Exome Variant Server (EVS) and the Non-Finnish
European (NFE) data from ExAC. We generated three classes of variants for further analyses:
(1) deleterious variants (CADD15) which were defined as missense variants with a CADD Phred
score >15, (2) loss-of-function (LOF) variants comprising all rare indels, stop gain, stop loss
and splice site variants (2nt plus/minus the exon boundary), (3) CADD15+LOF variants as the

union of the above two datasets, and (4) rare synonymous variants.
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2.3.4 Single variant and gene association analysis

For the statistical analysis, we employed two independent control cohorts (available in-house
and ExAC) to increase reliability and power of the statistical tests. For single variant burden
analysis, we applied the single score method in RVTESTS [76] to cases and in-house controls,
for which individual genotypes were available. For gene burden analysis, a 2x2 contingency
table was constructed by counting the number of alternate allele counts per gene in patients
vs. controls (in-house controls and NFE ExAC controls). We then obtained a one-sided p-value,
odds ratios and the 95% confidence intervals [166] by using Fisher’s exact test. Resulting p-values
were corrected for 18,668 RefSeq protein-coding genes [133] by Bonferroni approach. Finally, to
ensure the exclusion of false positive association results and following the “rare variant of large
effect hypothesis”, we selected those genes that are present in the first quartile of the Residual
Variant Intolerance Score (RVIS) distribution [167].

2.3.5 Selection of gene-sets

We investigated the following four neuron-related gene-sets: (1) genes encoding pro-
teins at synapses downloaded from the SynaptomeDB [168] database (“SYNAPTIC GENES”,
N=1887), (2) genes of postsynaptic signalling complexes including N-methyl-D-aspartate re-
ceptors (NMDARs) and the neuronal activity-regulated cytoskeleton-associated protein (ARC)
[169] (“NMDAR_ARC_COMPLEX”, N=80), (3) genes encoding proteins at the inhibitory
synapses (“INHIBITORY”, N=5,941) and excitatory synapses (“EXCITATORY”, N=5,261)
[170], (4) glutamate receptor subunit encoding genes (“GLUTAMATE RECEPTORS”,
N=18). In addition, we included five gene-sets associated with disease and/or muta-
tional intolerance: (1) genes encoding targets of Fragile-X-Mental-Retardation-1-Protein [171]
(“FMRP_TARGETS_DARNELL”, N=1,772), (2) genes intolerant for mutations from ExAC
(“EXAC_CONSTRAINED__GENES”, N=3,230), (3) genes intolerant for loss-of-function mu-
tations [172] (“constrained”) (“CONSTRAINED_ GENES SAMOCHA”, N=1,004), (4) a cu-
rated list of dominant genes associated with developmental delay obtained from the DECIPHER
database [173] (“DDG2P_MONOALLELIC”, N=299), and (5) genes found related before to
epileptic encephalopathies [174] (EPILEPTIC_ENCEPHALOPATHY, N=73). As control data
sets we used (1) for each dataset the corresponding set of synonymous variants, and (2) the ‘non-
constraint’ gene-set including RefSeq genes that have been found tolerant to loss-of-function
mutations (“GENES_WITHOUT__CONSTRAINT”, N=14,417). GRIN2A, as the most signifi-
cant single gene from the burden analysis, it was excluded from all gene-sets in order to test if

other genes also contribute to the disease association.
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2.3.6 Gene-set association analysis:

The gene-set association analysis for the different types of variants was performed by using
a logistic regression approach using R (version 3.2) and adjusting for the following confounding
variables: the total number of called genotypes per sample, the total number of rare coding
variants per sample, the total number of rare coding singletons (variants observed only once in
the entire dataset) per sample, calculated sex, the first four principal components and the total

number of variants per sample for each variant class.

2.4 Results

2.4.1 Exome sequencing and variant filtering

We performed whole-exome sequencing on 204 patients with RE/ARE and 728 population
controls. After QC, the final dataset consisted of 19 ARE, 175 RE and 567 control samples.
From the total of 761 samples, 226,521 exonic and splice site variants were called. The mean
transition/transversion ratio equalled 3.39 per sample. After the final filtering 45,881 CADD15,
10,326 LOF and 38,802 synonymous variants were analyzed.

2.4.2 Association analysis

To investigate the mutational burden within the RE spectrum, all associations were assessed
for both RE and ARE separately and by combining cases from both phenotypes while assuming
them to be a single disease. In comparison to 567 in-house controls we did not observe statistically
significant burden in any of the variants or genes in cases after multiple-testing correction. In
order to increase the statistical power, we used the Non-Finnish European (NFE) ExAC cohort
as an additional control dataset. Association testing against the much larger NFE-ExAC cohort
(N=33,370) identified an exome-wide significant burden for CADD15, CADD15+LOF and LOF
variants for GRIN2A within the combined typical and atypical (RE4+ARE) cohort. No other
variant-intolerant gene (i.e. being present in the first quartile of RVIS) was significantly enriched
for variants in any of the tested patient groups. Although, variant enrichment for GRIN2A was
not found to be significant after correction for RE and/or ARE separately, the odds ratio for
GRIN2A consistently exceeded unity in all considered datasets (Figure 2.1A).

2.4.3 Exome-wide and gene-set burden analysis

Assuming a shared mutational burden in patients across gene-sets of convergent function
and/or pathways, we performed gene-set burden analyses by using the in-house controls. A
logistic regression approach was used to account for various confounding variables (see Methods).
No significant exome-wide burden was observed across the different variant classes (Figure 2.1B).

Despite the fact that none of the gene-sets showed a significant result after multiple-testing
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correction, we found several gene-sets with an odds ratio >1 for the CADD15, CADD15+LOF
and LOF variant classes, especially for the LOF variants, but not for synonymous variants (Figure

2.2). A similar result was seen when we performed the analysis with ARE and RE independently.
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Figure 2.1: Burden analysis of RE/ARE. Typical Rolandic Epilepsy is represented as RE, Atypical Rolandic
Epilepsy as ARE and RE plus ARE as ROLANDIC. On the x-axis, the odds ratios in cases vs controls are given.
The names of the variant classes are given on the y-axis. Each panel represents a different dataset. The dashed
vertical line represents the expected odds ratio of 1. The horizontal lines indicate 95% confidence intervals. (A)
Assessment of risk for deleterious mutations in GRIN2A against two control groups (ExAC and In-house). The
values on top of each point represent multiple-testing corrected p-values, the ones in red are significant p-values
and the ones in black are the p-values that are not significant after multiple-testing correction. The odds ratios
are restricted to a maximum value of 50. (B) Exome-wide burden analysis by different variant classes. The values
on top of each point represent the p-value. Synonymous variants serve as a control functional group.
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Figure 2.2: Gene-set burden across different variant classes. Each panel represent a different variant class. The
synonymous variants serve as a control variant class. GRIN2A was removed from all gene-sets to identify other
contributing genes. On the x-axis, the odds ratios in cases vs controls are given. On the y-axis the names of
different gene-sets are given. The red vertical line represents the expected odds ratio of 1. The horizontal lines
indicate 95% confidence intervals and are restricted to the maximum of odds ratios over all gene-sets. In that case,
points are represented as the points without error bars to their right. The uncorrected p-values are shown on top
of each point. CADD15=Deleterious predicted missense variants. LOF=Loss-of-function variants.

2.5 Discussion

We performed the first exome-wide association study investigating rare genetic variants of
large effect in 194 patients with childhood focal epilepsies with centro-temporal spikes in compar-

ison with 567 in-house and online available 33,370 population controls from the ExAC database.
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By performing an unbiased gene-burden analysis of patients against the in-house and ExAC
controls (Figure 2.1A), we show that only for GRIN2A rare CADD15, CADD15+LOF and LOF
variants are significantly more frequent in typical and Atypical Rolandic Epilepsy (RE and ARE,
respectively, odds ratio >1). Owing to the small sample size and genetic heterogeneity, no other
gene or gene-set was significantly enriched for variants after correction for multiple-testing (Fig-
ure 2.2). However, we could observe a consistent trend in the odds ratios for the enrichment of
LOF variants in several diseases associated gene-sets comprising genes under negative selection,
glutamate receptors and genes associated with epileptic encephalopathies (Figure 2.2). These
patterns indicate that besides the major disease gene GRIN2A, we identified several novel vari-
ants (that have not been seen in ExAC) in Table 1 from other less frequently mutated genes such
as DEPDC5, GABRG2 etc., indicating that they also contribute to RE and ARE. Availability of
larger cohorts in the future should allow us to identify these other genes associated to RE/ARE.
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CHAPTER 3

GENETIC GENERALIZED EPILEPSY

3.1 Abstract

Generalized epilepsy with genetic etiology (GGE) is the most common type of inherited
epilepsy characterized by absence, myoclonic and generalized tonic-clonic seizures typically oc-
curring with generalized spike-and-wave discharges on electroencephalography. Despite a high
concordance rate of 80% in monozygotic twins, the genetic background is still largely unknown.
Individuals included in the study were clinically evaluated for GGE. Whole-exome sequencing
(WES) was performed for the discovery case cohort, the first replication case cohort and for
two independent control cohorts. A second replication case cohort underwent targeted next-
generation sequencing of the 19 known genes encoding subunits of GABA receptors and was
compared to the respective GABA receptor variants of a third independent control cohort.
Functional investigations were performed using automated two-microelectrode voltage clamping

in Xenopus oocytes.

Statistical comparison of 152 familial index cases with GGE in the discovery case cohort
to 549 ethnically matched controls revealed significant enrichment of rare missense variants in
the ensemble of GABA, receptor encoding genes in cases. The enrichment for these genes
could be replicated in a second WES cohort of 357 sporadic and familial GGE cases and 1485
independent controls. Comparison of these genes in a second independent replication cohort
of 635 familial and sporadic GGE index cases, based on candidate-gene panel sequencing, to a
third independent control cohort confirmed the overall enrichment of rare missense variants in
cases. Functional studies for two selected genes (GABRB2, GABRAS5) showed significant loss-

of-function effects with reduced current amplitudes in five of seven tested variants compared to
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wild-type receptors. Our results suggest that functionally relevant variants in GABA s receptor
subunit encoding genes constitute a significant risk factor for GGE. This conclusion is based
on an enrichment of rare variants in those genes in three independent case-control datasets and
physiological studies revealing a loss of function for tested variants which are supposed to favor

a neuronal dis-inhibition which is a well-known mechanism in epilepsy.

3.2 Introduction

In the recent past, gene discovery in monogenetic diseases, including familial and severe
epilepsy syndromes, has been boosted by next generation sequencing yielding a steadily increas-
ing number of disease-causing genetic defects. Unraveling the genetic origin of complex inherited
disorders has, however, been more difficult. GGE comprises common epilepsies with generalized
absence, myoclonic and tonic-clonic seizure [175]. It has a high heritability, as has been shown
in twin studies [176] and represents a kind of ‘prototype’ of genetic epilepsy with complex inher-

itance.

A few single nucleotide polymorphisms in genome-wide association studies and altered copy
number variations have been the major common risk factors identified so far in GGE. These,
however, only explain a small part of the high heritability. Single gene defects in larger fami-
lies with autosomal dominantly inherited GGE have been identified as disease-causing, e.g. in
GABRA1 or GABRG2 encoding subunits of GABA » receptors [139, 177], or in SLC2A1 encod-
ing the glucose transporter type 1 [178, 179]. Larger candidate gene or whole exome sequencing
(WES) studies have not revealed a significant burden of mutations in single genes or groups of
genes thus far [157, 180]. Only recently, a study running in parallel to the one reported here

demonstrated mutational burdens of ultra-rare variants in gene-sets related to epilepsy [133].

We set out to investigate the burden of genetic mutations in mainly familial GGE by first
testing hypothesis-free sets of genes related to the disease and disease-relevant pathways, vali-
date the findings and follow-up with hypothesis-driven functional studies. We demonstrate the
presence of such a genetic burden in one gene-set encoding the main inhibitory receptors in
the mammalian brain, replicate the finding in two independent GGE cohorts and prove their

functional significance by physiological investigations.

3.3 Patients and Methods

3.3.1 Participants

The discovery GGE exome sequencing case cohort included 152 subjects (after quality control
(QC) of the exome sequencing data) with GGE from multiplex families which were collected by
the Epicure and the EuroEPINOMICS-CoGIE consortia. All subjects were of European descent

45



(Italian n=69, German n=>51, Dutch n=11, Danish n=8, British n=6, Finnish n=4, Swedish
n=2, Greek n=1). The cohort included 88 females (58%). The primary GGE-diagnoses were
childhood absence epilepsy (CAE, n=68), juvenile absence epilepsy (JAE, n=16), juvenile my-
oclonic epilepsy (JME, n=37), GGE with generalized tonic-clonic seizures alone (EGTC, n=24),
early-onset absence epilepsy (EOAE, defined as beginning below 3 years of age, n=4), epilepsy
with myoclonic absences (EMA, n=1) and unclassified GGE (n=2) (see Section 3.6 Table 3.1).

The age of epilepsy onset ranged from 1.5 to 38 years with a median of 10 years and all
subjects had a normal development without obvious developmental delay or intellectual disability,
although most were not formally tested. We included the few cases with EOAE, EMA and
unclassified GGE since these entities in our view are close to classical GGE. For EOAE it has
been recently suggested by a large study that it is likely genetically similar to classical CAE
[181]. EMA may also have genetic overlaps with GGE [182] and we often find in family studies
both well classified and unclassified GGE cases in the same pedigrees. The majority of cases
(n=143, 94%) derived from multiplex families with at least two affected family members, thereof
76 families with three or more affected members. All cases had EEG changes consistent with
GGE (see Table 3.1 Section 3.6).

The replication case cohort 1 consisted of 357 GGE cases (after QC) that were collected in
six European countries (Belgium n=5, Germany n=174, Ireland n=22, Italy n=23, Netherlands
n=61, and UK n=72) by the EpiPGX consortium. The cohort included 225 females (63%) and
132 males (37%). GGE diagnosis included CAE (n=55), JAE (n=28), JME (n=157), EGTC
(n=19), and unclassified GGE (n=98). 92 cases (26%) derived from multiplex families with at
least two affected members. 131 cases were sporadic, for the remaining 134 cases, familial history
was not known. Age of epilepsy onset ranged from 0 to 49 years with a median of 13 years. All
cases had EEG changes consistent with GGE (see Table 3.2 Section 3.6).

Two independent control cohorts for the case discovery and the replication cohort 1 were
obtained from two independently sequenced cohorts from the Rotterdam study [183, 184] which
were matched for ethnicity and sex (Section 3.6). All the control samples were at least 55 years
old or older and were checked for several neurological conditions at baseline. As GGE is a disease
with typical onset from childhood to adolescence, it is unlikely that people from this older control
cohort could still develop GGE.

For the GABA, receptor panel cohort (replication cohort 2), individuals were collected by
referral from neurologists or pediatricians in Quebec, Canada, and in Europe by Epicure or Co-
GIE partners. The replication cohort 2 consisted of 631 subjects (after QC) with GGE that were
collected from Canada (n=290) and five European countries (Germany n=153, Denmark n=>58,
Belgium n=71, Netherlands n=58, and Finland n=1). They included 390 females (62%) and 241
males (38%). Subjects were diagnosed with CAE (n=109), JAE (n=92), JME (n=189), EGTC
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(n=104), or unclassified absence epilepsy (n=137) not otherwise specified according to ILAE
definitions [175] (Section 3.6 Table 3.3). 154 cases were familial with at least 2 affected family
members, for 51 there was a positive family history of epilepsy but only one affected member
was available, and the remaining 426 cases were sporadic. All cases had EEG changes consistent
with GGE. A third independent set of controls was obtained from the UK10K project consortium
[185]. A full list of the investigators who contributed to the generation of the UK10K data is
available from www.UK10K.org. Funding for UK10K was provided by the Wellcome Trust un-
der award WT091310 (EGAS00001000101,129,130,131,242,306). Data transfer agreements were
made between the CRCHUM and the appropriate instances. A total of 639 ethnically matched
individuals were selected from the exome control cohort (324 females and 315 males). The di-
agnosis of GGE in all case cohorts was based on detailed clinical interview, a full neurological
examination and respective EEGs. Written informed consent was obtained from all subjects or
their respective relatives and the study was approved by the local Ethical Committees. One

affected individual of each family was selected for sequencing.
3.3.2 Procedures

For the discovery stage, paired-end whole-exome sequencing (WES) of cases and controls
was performed with the Illumina HiSeq 2000 using the EZ Human Exome Library v2.0 kit
(NimbleGen, Madison, WI). Cases and controls were sequenced at different locations, cases at
the Cologne Center for Genomics, the controls in Rotterdam [183]. Sequencing adapters were
trimmed and samples with <30X mean depth or <70% total exome coverage at 20X mean depth
of coverage were excluded from further analysis. Variant calling was performed by using the
GATK [23] best practices pipeline with the GRCh37 human reference genome (see Section 3.6).

The replication case cohort 1 was paired-end whole-exome sequenced at deCODE genetics
(Iceland) on the Illumina HiSeq 2500 using the Nextera Rapid Capture Expanded Exome kit
(Ilumina). A second set of Rotterdam control samples was sequenced again in Rotterdam [184]
using the EZ Human Exome Library kit (NimbleGen, Madison, WI). For all WES samples, we
applied standard procedures for assessing potential population stratification for the European
population as well as a relatedness check (Figure 3.73.83.6). To exclude low quality variants, we
performed an additional filtering based on quality metrics of individual genotypes, using read
depth and genotype quality as the filtering criteria. We excluded any variant position with
mean depth of <10 in either cases or controls. For all WES samples the same exome regions
file from the EZ Human Exome Library v2.0 kit was used. For the WES analysis, only samples
with more than 30X mean coverage or more than 70% of the exome intervals covered by at
least 20x mean coverage were included for the analysis (Section 3.6). For replication case cohort

2, a total of 19 genes encoding for all known subunits of GABA, receptors were selected for
deep sequencing (GABRA1, GABRA2, GABRA3, GABRA/, GABRA5, GABRAG6, GABRBI,
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GABRB2, GABRB3, GABRD, GABRE, GABRG1, GABRG2, GABRGS3, GABRP, GABRQ,
GABRR1, GABRR2, GABRRS3, altogether referred to as GABRX herein).

Exon targets were generated based on RefSeq, representing 184 exons from 19 genes. Primer
design was made using the Primer3 oligonucleotide design tool and in silico PCR tool for validat-
ing the specificity of each amplicon. Target regions were enriched by PCR using the 48.48 Access
Array Integrated Fluidic Circuit (IFC) (Fluidigm, San Francisco, CA). In the final assay, 185
amplicons targeted the protein-coding sequence of 19 GABRX genes with an overhang at exon
boundaries in order to capture splice site variants. GABRX exon-specific primers with Fluidigm
tags were tested along with materials and reagents as recommended in the Access Array System
User Guide (Fluidigm, South San Francisco, CA). Finally, GABRR3 had to be dropped because
of QC reasons having not enough good quality reads covering this gene. After quality trimming
the reads were mapped against the GRCh37 human reference genome using the GATK [23] suite
and the MUGQIC pipelines (https://bitbucket.org/mugqic/mugqic_pipelines). Data from
the control cohort were processed using the same pipelines. Coverage comparisons were made
to keep bases covered in at least 95% of the subjects as well as the control cohort. RefSeq gene
annotation information was used for the classification into missense and synonymous variants
and to filter for rare (allele frequency smaller than 0.5%) variants using the ExAC database [43]
(for details see Section 3.6).

3.3.3 Population stratification

We applied principal-components analysis (PCA) to assess potential population substructure
separately for each case-control cohort, using the implementation in Eigenstrat [42]. Population
outliers were defined as SD of >3 based on the first 10 PC and excluded from further analysis
(Section 3.6).

3.3.4 Statistical analysis

Due to the limited sample size, single-gene collapsing analysis for the discovery stage was
performed using Combined and Multivariate Collapsing [186] (CMC) method for collapsing and
combining rare variants together with a two-sided Fisher’s exact test, as implemented in the Exact
CMC method in rvtests [76] (Section 3.6). P-values for single-gene collapsing tests were corrected
for multiple testing by use of the Bonferroni method (as implemented in the R function p.adjust)
for 18,668 protein-coding genes. For all three stages, gene-set collapsing tests were performed
using the regression-based two-sided SKAT-O test method [75], as implemented in rvtests [76].
For the two WES cohorts, SKAT-O was used and we included sex and the first 10 PC from
the Eigenstrat analysis as covariates to account for possible gender and population substructure
effects. Gene-set collapsing tests were applied separately to missense and to synonymous variants

of specific sets of candidate genes. Seven different disease- and process-specific gene sets were
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constructed based on their relation to GGE together with a control gene set not related to GGE.

A description of the gene-set construction is given in the Section 3.6 and the gene sets are
given in the Section 3.6 in Table 3.5. In order to control the family-wise error rate, we applied
Holm’s correction for multiple testing 14 hypotheses, namely seven gene sets combined with two
sets of variant type (missense and synonymous), in the discovery cohort, while correction was
done for only two hypotheses in each of the two replication cohorts, since only the GABA 5
receptor gene set was carried forward the replication (Section 3.6). The odds ratio (OR) for a
given gene-set was determined by comparing the presence of qualifying rare (nonsynonymous or

synonymous) variants in all genes within each gene-set between cases and controls.
3.3.5 Functional analysis

Functional experiments were performed using automated two-microelectrode voltage clamp-

ing in Xenopus oocytes. All methods for functional studies have been described in Section 3.6.

3.4 Results

We first performed WES in a cohort of 238 independent, mainly familial cases of classi-
cal forms of GGE, i.e. childhood or juvenile absence epilepsy (CAE/JAE), juvenile myoclonic
epilepsy (JME) and epilepsy with generalized tonic-clonic seizures on awakening (EGTCA), col-
lected by the Epicure and EuroEPINOMICS-CoGIE consortia. As controls, we used ethnically
and sex matched (Section 3.6 Figure 3.6, 3.7) population control individuals from the Rotterdam
Study [183], that underwent WES using the same enrichment and sequencing procedures, albeit
with a somewhat lower coverage than in the GGE cohort. After quality control (QC) and popula-
tion outlier removal, the final dataset consisted of 152 unrelated GGE and 549 unrelated control
samples. To adjust for the different coverage between case and control samples, we considered
only variants with an average read depth of >10 both in case and in control samples (see Section
3.6, Figure 3.7).

From the total of 701 samples, 204,023 exonic and splice site variants were called. The mean
exonic transition/transversion ratio equaled 3.46, indicating good data quality. Rare variants
(MAF<0.005) were classified as missense (Nonsyn) and silent (Syn) variants. 82,579 Nonsyn
and 48,450 Syn variants constituted the analysis data set (see Section 3.6, Table 3.4). First,
we tested hypothesis-free all individual RefSeq genes separately for association but could not
identify any single gene enriched for any variant type (Section 3.6). Therefore, we next applied
an independent hypothesis-driven analysis by testing the enrichment of rare variants in seven

gene sets related to epilepsy and its underlying molecular processes.

These gene sets represented (i) all voltage-gated cation channels, (ii) all excitatory postsy-

naptic receptors, (iii) all GABA receptors as the main inhibitory postsynaptic receptors, (iv)
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more broadly the GABAergic pathway (since such genes have been associated specifically with
generalized epilepsies), and genes associated (v) with generalized epilepsies, (vi) with epileptic
encephalopathies, (vii) with focal epilepsies (Section 3.6 Table 3.5). We tested separately for each
variant type; silent variants were expected to show no difference between cases and controls. We
found a significant enrichment for missense variants in a set of GABA 4 receptor genes (19 genes,
PNonsyn=0.019, OR=2.40, 95% CI=[1.41,4.10]) by use of the SKAT-O test after multiple-testing
correction (Figure 3.1). None of the other gene sets showed a significantly increased burden
of rare variants. Synonymous variants, used as a negative control, did not show a significant

enrichment in any of the gene sets (Section 3.6, Tables 3.6.6, 3.8).

To replicate the finding for the GABA  receptor encoding genes, we first used the replication
case cohort 1 collected by the EpiPGX consortium, consisting of 724 individuals with GGE from
six European countries. They were mainly sporadic (n=268) or of unknown familial history
(n=265) and diagnosed with classical forms of GGE (Section 3.6, Table 3.2). For the analysis of
this cohort, an independent matched subset of control samples from the Rotterdam Study [184]
was used. After applying the same QC steps as applied to the discovery cohort, the final dataset
consisted of 357 unrelated GGE and 1,485 unrelated control samples [184]. We confirmed the
significant enrichment of rare missense variants in GABA  receptor genes in cases compared to
controls after multiple-testing correction for two sets of variants (nonsyn and syn; pnonsyn=0.016,
OR=1.46, 95% CI=[1.05,2.03]) by use of the SKAT-O test (Section 3.6 Table 3.6). Synonymous

variants showed again no significant enrichment.

For a second replication cohort, we designed a targeted enrichment panel comprising all 19
GABA, receptor genes. All genes were sequenced in an independent cohort of 631 cases with
familial or sporadic GGE (Section 3.6, Table 3.3). GABRR3 was excluded for QC reasons.
We obtained control samples from the UK10K project (https://www.uk10k.org/) and selected
639 gender matched individuals after sample QC. Additional variant QC reduced the number
of individuals to 583 cases and 635 controls in the final sample set. We found a significant
enrichment of rare missense variants for the GABA 5 receptor genes in cases compared to controls
(PNonsyn=0.027, OR=1.46, 95% CI=[1.02,2.08]) by use of a SKAT-O test and after correction
for two sets of variants (Nonysn, Syn). No significant enrichment was observed for synonymous
variants. Thus, we can conclude that enrichment of rare missense variants in GABA receptor
genes are reproducibly present in individuals with GGE when compared to controls. All detected
case-only variants are given in the Section 3.6, Tables 3.6.6,3.8. Case-only rare missense variants
were found in all GABA receptor genes except in GABRR3 (Table 3.8).
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Figure 3.1: Rare variant gene-set odds ratios and burden enrichment for rare variants in the whole-exome
sequencing GGE discovery cohort. Cases from the CoGIE discovery cohort, matched with controls from the
Rotterdam study. Gene-set collapsing analysis by use of a SKAT-O test was performed on seven epilepsy-related
gene sets for missense (NONSYN) and synonymous (SYN) variants. The gene sets are described in the Section
3.6. The star denotes the enriched gene-set collapsing p-value after Holm correction.

The combination of two aj-, two (2- and one 72- subunit (genes GABRAI1, GABRB?2,
GABRG2) represents the most common form of a functional GABA, receptor in the brain
[187], and variants in GABRA1 and GABRG2 have been shown to play an important role in
familial GGE, febrile seizures and EE [139, 177, 188-191].

It is important to note that the enrichment of missense variants in in GABA, receptor
genes was not driven by variants in those known epilepsy genes. The signal was no longer
significant when reducing the analysis only to those two genes (Table 3.8). Instead, the qualifying
variants were evenly distributed over all GABA 5 receptor encoding genes. The as subunit (gene
GABRAJ5) is supposed to mediate extrasynaptic tonic inhibition [192], and tonic inhibition has
been described to be altered in genetic mouse models of epilepsy [193, 194]. GABRB2 and
GABRAS5 have not previously been associated with GGE, although GABRB2 mutations were
described recently in patients with intellectual disability and epilepsy [195-197].
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For functional studies, we selected seven missense variants in GABRB2 and GABRAS5 (Sec-
tion 3.6, Table 3.9) for electrophysiological studies in Xenopus oocytes (Section 3.6). Five of
these variants were selected since they co-segregated with the phenotype of available members
in nuclear families. Another variant (p.R3S) was found in three different French-Canadian pedi-
grees, so we hypothesized whether this could be a more common causal variant in a specific
population (Figures 3.2a and 3.3a). The last variant, p.P453L, did not co-segregate, but was
selected as another variant in GABRAS5 which is localized in a different protein region (the C-
terminus) than the other variants. All missense variants were predicted to be deleterious by at
least three out of seven missense prediction tools and were highly conserved (Table 3.9). Three
of these variants were consistently of ultra-low frequency in the European population in different
public databases (dbGAP, 1000G, ExAC; Section 3.6,Table 3.9).

The localization of the variants in the GABA, subunits is shown in Figures 3.2b and 3.3b.
After application of 1 mM GABA, we observed a significant reduction in current amplitudes
of GABA, receptors containing either p.K221R or p.V316I variants in the Seo-subunit, and
p-M1I, p.S238N, or p.E243K in the as-subunit, in comparison to respective compositions of WT
receptors. No significant reductions were observed for p.R3S in the §s- and for p.P453L in the
as-subunit (Figures 3.3d, 3.3e, 3.2d, 3.2¢, ). The GABA sensitivity was studied by applying
different GABA concentrations with no significant changes observed for receptors containing any
of the studied variants (Figures 3.2e and 3.3e). Thus, five out of seven variants suggest a loss of

receptor function predicting postsynaptic or extrasynaptic neuronal disinhibition.

All variants showing significantly reduced current amplitudes co-segregated with the disease
phenotype in family members that were available for testing (Figures 3.2a and 3.3a), corroborat-
ing their contribution to the disease phenotypes. In two families, we observed co-segregating vari-
ants in two different GABA 5 receptor subunits: p.V316I in the £5- and p.M1I in the as-subunit
co-occurred in the same nuclear family, and p.E243K in the as-subunit was accompanied by a
deleterious frameshift mutation in GABRG2 in another family (Figures 3.2a and 3.3a). Variants
with altered receptor function were all located in the N-terminus containing GABA binding sites
or in the pore region. p.M1I suppresses the start codon such that translation starts six amino

acids later, which shortens the signalling peptide consisting of the first 20 amino acids.

While the peptide is removed and not part of the mature GABA receptor in the plasma
membrane, this alteration could still affect the protein biogenesis and lead to reduced expression
of functional receptors. p.R3S, which also affects the signalling peptide, and p.P453L, located
in the functionally less relevant C-terminus, did not lead to a significant change in receptor
function. p.R3S recurred in three French-Canadian families and p.P453L was detected in only
one of several affected members of a larger family indicating that they might represent benign

polymorphisms.
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Figure 3.2: GABRB2 mutations associated with GGE. (a) Pedigree of the families. (b) Schematic representation
of the #2 subunit of the GABAR and predicted positions of the R3S and K221R mutations located in the N-terminal
domain and V3161 located in the transmembrane domain 3. (c) Examples of GABA-induced currents after 1 mM
GABA application for WT, R3S, K221R and V3161 mutations. (d) Current responses normalized to 1 mM GABA
application for WT (n=30), R3S (n=24), K221R (n=21) and V3161 (n = 16); ***p<0.001, Kruskal Wallis test,
with Dunn’s comparison test. (e) Dose-response curve for a; B2 y2s WT (n=30), R3S (n=14), K221R (n=10),
V3161 (n=7) obtained using application of different GABA concentrations and normalization to the maximal
GABA response for each cell.
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Figure 3.3: GABRB2 mutations associated with GGE. (a) Pedigree of the families. (b) Schematic representation
of the as subunit of the GABAAR and predicted positions of the M1I, S238N and E243K mutations located in
the N-terminal domain and P453L located in the C-terminal domain. (c) Examples of GABA-induced currents
after application of 1 mM GABA for WT, M1I, S238N, E243K and P453L mutations. (d) Normalized current
responses to 1 mM GABA application for WT (n=43), M1I (n=10), S238N (n=13), E243K (n=14) and P453L
(n=11); *<p0.05, ***p<0.0001, Kruskal Wallis test, with Dunn’s comparison test. (e) Dose-response curve for
a1 B2 v2s WT (n=37), M1I (n=15), S238N (n=11), E243K (n=8) and P453L (n==8) obtained after application of
different GABA concentrations and normalization to the maximal GABA response for each cell.

3.5 Discussion

Our results show an excess of rare missense variants in GABA receptor subunit encoding
genes in three independent cohorts of altogether >1000 familial and sporadic GGE index cases.
Five selected variants in two genes, GABRB2 and GABRASJ5, previously not associated with
GGE (i) clearly changed receptor function and (ii) co-segregated in nuclear families, suggesting
an important contribution to the disease phenotype and inheritance in those pedigrees. Previous
studies in smaller cohorts failed to show a significant excess of variants in cases versus controls
either in a test for the set of all ion channel encoding genes [180] or in whole exomes [157],

Our findings indicate that the enrichment of rare genetic variants in a set of inhibitory GABA
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receptors does play a significant role in the pathogenesis of GGE. The difference between these
previous studies and ours could be explained by (i) a larger sample size in our study across all

cohorts and (ii) by testing different gene-sets that had not been considered before.

In a parallel study [133], a similar effect could be shown for ultra-rare deleterious variants in
gene-sets comprising known epilepsy genes or genes associated with epileptic encephalopathies.
Due to our smaller sample size and the associated low number of ultra-rare variants, we here
chose a different approach considering all variants with a MAF<0.005, which proved to yield
significant results in other studies [65, 198, 199]. Both studies failed to identify single genes with
a genome-wide significant burden of rare variants in individuals with GGE. It will be interesting
in future studies to combine different cohorts to increase sample size and power for such analyses

to shed further light on the complex genetic architecture of GGE.

One limitation of the current study is that the cohorts, due to funding restrictions of the
individual projects, were sequenced at different locations using different technologies. Combining
and analyzing such data in an unbiased way is still a major challenge in large genetic sequencing
projects. An a priori selection bias for the targeted genes yielding a false significance can also
not be completely ruled out. The careful choice of gene sets was based on purely biological and
published evidence and did not change the selection afterwards. This approach should minimize
any potential selection bias and associated false-positive findings. We addressed these issues by
using a stringent QC and consistent processing of all datasets (Section 3.6), and by using two

different GGE cohorts to replicate our data in independent case and control datasets.

One of the variants detected and functionally examined in our study (p.V316I in GABRB2)
has been described in the meantime as a de novo mutation in a different dataset of cases with se-
vere developmental and epileptic encephalopathies, in which whole genome sequencing of parent-
patient trios was used [195]. This finding clearly corroborates the pathogenicity of this variant.
The association of genetic variants with different phenotypes is well-known as the phenomenon
of pleiotropy, and has also been described in other GABA receptor encoding genes [140, 188§]
including large phenotypic variability within one extended pedigree [140].

We have also recently characterized the variant p.T336M in GABRA3 — which was detected
in our discovery cohort (Table 3.8) — as part of another study in which we identified GABRA3
as a new epilepsy gene associated with highly heterogeneous epileptic phenotypes including
asymptomatic variant carriers [200]. This variant also causes a severe loss-of-function effect but
does not co-segregate in the respective pedigree, so that other factors must contribute to the GGE
at least in two family members. While co-segregation is a strong indicator for the pathogenicity
of genetic variants, we have to be aware that GGE is a common disease with complex inheritance.
Variants in GABA , receptor encoding genes could therefore still contribute to the disease in the

carriers, whereas other family members not carrying the respective variants must have other

55



genetic causes of their epilepsy. Similarly, copy number variations often do not co-segregate
within nuclear families but have been replicated several times as a significant risk factor for
GGE [158, 160, 201, 202].

Given the reproducibility of our results in three independent datasets together with co-
segregation and functional evidence for GABA receptor dysfunction, many but not all of the
detected variants probably contribute to the etiology of GGE in our three cohorts. This disease-
relevant contribution may range from a major gene effect — as observed in ‘monogenic’ Mendelian
epilepsies — to relatively small effect sizes in the variant carriers, depending on the amount of
the electrophysiological dysfunction and probably other unknown factors, such as the genetic
background. Overall, we therefore consider the detected increase in GABA receptor variants

in cases vs. controls as a significant risk factor to develop GGE.

Lastly, our results indicate a genetic overlap among rare and common forms of epilepsy, since
there is increasing evidence that de novo variants in GABA 5 receptor encoding genes cause severe
forms of epileptic encephalopathies [187, 188, 190, 191, 200, 203, 204] and they re-iterate a central
role of GABAergic mechanisms in generalized epilepsies [139, 140, 177, 188, 191-194, 197, 203
206]

3.6 Additional methods and results

3.6.1 Patient cohorts

CoGIE (discovery cohort (European))

Gender 64 males, 88 females

Age of Onset Mean 9.98 years, Median 10 years

Affected family mem- | 1 (9), 2 (67), 3 (43), 4 (23), 5 (5), 6 (3), 7 (1), 8 (1)
bers (n)
Origin (n) Italian (69), German (51), Finnish (4), Dutch (11), British (6), Danish
(8), Swedish (2), Greek (1)

Epilepsy diagnosis (n) | CAE (68), JME (37), EGTC (24), JAE (16), EOAE (4), EMA (1),
unclassified GGE (2)

Table 3.1: Discovery cohort: GGE diagnosis, phenotype data.
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EpiPGX (Replication cohort 1, European)

Gender 132 males, 225 females

Age of Onset Mean 9.98 years, Median 13 years

Affected family members | 92

(n) 0

Origin (n) Belgium (5), Germany (174), Ireland (22), Italy (23), Netherlands
(61), UK (72)

Epilepsy diagnosis (n) CAE (55), EGTC (19), JAE (28), JME (157), unclassified GGE
(98)

Table 3.2: Replication cohort 1: Patients with GGE diagnosis, phenotype data.

GABA panel cohort (Replication cohort 2, European/French-Canadian)

Gender 132 males, 225 females

Age of Onset Mean 9.98 years, Median 13 years

Affected family members | 92

(n) 0

Origin (n) Belgium (5), Germany (174), Ireland (22), Italy (23), Netherlands
(61), UK (72)

Epilepsy diagnosis (n) CAE (55), EGTC (19), JAE (28), JME (157), unclassified GGE
(98)

Table 3.3: Replication cohort 2 for GABAA receptor gene panel sequencing: GGE diagnosis, phenotype data.

Rotterdam Study control samples

The WES control samples used in this study were both part of the Rotterdam study [183,
184] but were sequenced independently. The Rotterdam samples were obtained from Ommoord
district in the city of Rotterdam in The Netherlands. All the control samples were at least
55 years old or older. They were checked for several neurological conditions at baseline. Only
population matched control samples of European origin were selected for the discovery and
replication cohort 1, respectively, using the Eigenstrat [42] selection procedure described above.
The control samples for the discovery cohort included 177 males and 372 females (68%), the
control samples for the EpiPGX replication cohort 1 included 596 males and 889 females (60%).
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3.6.2 Exome sequencing analysis (Discovery cohort)
Data pre-processing

Sequencing adapters were removed from the FastQ files by using cutadapt [207]. GATK
[23] best practices (https://software.broadinstitute.org/gatk/best-practices, version
3.2). were followed for the next steps of data pre-processing and variant calling. Alignment
was performed using bwa-mem [29] with default parameters to the GRCh37 human reference
genome. Conversion of sam to bam files was done by samtools [27]. Sorting of bam files, marking
of duplicate reads that remain after PCR amplification and addition of read group information
was done by using picard with default parameters. Using GATK version 3.2, base quality scores
recalibration, local realignment for small insertions and deletions (InDels) was performed. All
samples with less than 30X mean coverage or less than 70% of the exome intervals covered by at
least 20x mean coverage were excluded from the analysis. A multiple sample calling approach

was employed using GATK.
Sample filtering based on quality metrics

Number of alternate alleles, number of heterozygotes, number of variants called, number of
minor alleles, number of singletons and call rate served as data quality parameters. They were cal-
culated by using PLINK/SEQ (https://atgu.mgh.harvard.edu/plinkseq) i-stats command.
Any sample with >3 standard deviations (SD) from the mean in any of the used metrics was
excluded from the analysis. Next, we selected the variants that are common between hapmap
[37] (version 3.3) and the current dataset. The selected variants were further filtered to be: 1)
Only bi-allelic SN'Vs, 2) with a call rate >98% and 3) not in linkage disequilibrium. The vari-
ants selected above were used to check cryptic relatedness, deviations from reported sex and to

perform correction of population stratification by using Eigenstrat [42].
Relatedness and sex check

In order to check the relatedness between each pair of samples within a cohort, the PLINK
[77] “—genome” command was used to identify the fraction of genome shared identical-by-descent
(IBD). For pairs with PI__HAT score of >0.25 (see Figure 3.6), the sample with lower mean depth

of coverage was removed from further analysis.
Sample contamination

We checked for sample contamination between different samples by using the inbreeding co-
efficient as measure. PLINK [77] “~het” command was used with default parameters to calculate
the inbreeding coefficient. Any sample exceeding >3SD in the output “F” value was excluded
from the analysis. Individuals with high missingness can lead to bias in the results. High het-

erozygosity is an indicator of possible sample contamination. Hence, to mitigate this effect we
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excluded samples with missingness > 10%.
Population stratification

We merged our data with the 1000genomes [34] (1000g) data and assessed individual ancestry
by use of a principal-components analysis, using Eigenstrat [42] with default parameters. Except
for few outliers, cases and controls clustered with the samples of European origin in 1000g data
(Figure 3.7). We then merged our data with only the Central European (CEU) and Toscanian
Italian samples (TSI) from the 1000genomes cohort. Then, by using Eigenstrat with a sigma
value of 3, which excludes all the samples with a SD of >3 based on the first 10 principal

components, we excluded population outliers (Figure 2B, bottom).
Filtering of low quality variants

Initial filtering of variants was performed based on quality metrics over all the samples with
the parameters below, for VQSR: Tranches chosen, VQSRTrancheSNV99.90t0100.00. The QC
parameters for hard filtering over all samples were: a) for SNVs: QD < 2.0, F'S > 60.0, MQ < 40.0,
MQRankSum < -12.5, ReadPosRankSum < -8.0, DP<10.0, GQ_MEAN<20.0, VQSLOD<O0,
<5% missingness, ABHet > 0.75 or < 0.25 and Hardy Weinberg Phred scale P value > 20. b)
for InDels: QD < 2.0, FS > 200.0, ReadPosRankSum < -20.0, DP < 10.0, GQ_MEAN < 20.0,
Hardy Weinberg Phred scale P value>20, VQSLOD>0.

In-order to exclude low quality variants, we performed an additional filtering based on quality
metrics of individual genotypes, using read depth and genotype quality as the filtering criteria.
Therefore, variant genotypes with a read depth of <10 and GQ of <20 were converted to missing
by using beftools [46]. In addition, we calculated the mean read depth of each position by using
veftools [33] 12 in cases and controls separately, and any variant position with mean depth of
<10 in either cases or controls was excluded. Different quality metrics were calculated by the
GATK ‘varianteval’ tool and are shown in Table 3.4.

Variant annotation and filtering

Multi-allelic variants were decomposed using variant-tests and left normalized by bcftools.
Variants were annotated using ANNOVAR [208](version 2015Mar22) using RefSeq and Ensembl
versions 20150322 and the dbNSFP [51] (version 2.6) annotations and pathogenicity scores. As
we were interested in rare variants, we filtered the variants for a minor allele frequency (MAF)
< 0.005 in the European populations of public databases like 1000 genomes, dbSNP, ExAC [43]
(release 0.3, NFE and ALL), and the Exome variant server (EVS). In addition, we excluded all
variants with an AF > 0.005 in the dataset from this study. We created two variant subsets
on which we performed the statistical analysis: 1) nonsynonymous variants (NONSYN) and 2)

synonymous variants (SYN).
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Variant statistics

Quality metric After QC
Number of samples 152 cases
549 controls
Number of variants 472,970
Number of exonic/splicing variants 204,023
Ti/Tv ratio per sample 2.84
Ti/Tv ratio of exonic/splicing variants per sample 3.46
Number of rare (MAF<=0.005) exonic/splicing variants 147,941
Number of rare nonsynonymous variants 82,579
Number of rare synonymous variants 48,450

Table 3.4: Statistics of discovery cohort after quality filtering

Gene collapsing analysis

In the current study, we were interested in rare-variant associations and, due to our limited
sample size, for some genes the variant count per variant class was very low. Kernel-based meth-
ods such as SKAT and SKAT-O [75] tend to be anti-conservative in such cases [209, 210]. Hence,
for the hypothesis-free single-gene collapsing analysis we used the two-sided Exact CMC [186]
test, as implemented in the rvtests [76] package. The CMC19 method collapses and combines
rare variants, followed by a Fisher’s exact test. The method has the drawback that we could
not adjust for covariates as we can do using the SKAT-O test. We used Bonferroni’s correc-
tion for multiple testing, which tends to be conservative for correlated hypotheses, using the R
function p.adjust(method="bonferroni”), R version 3.30, namely for 18,668 protein-coding genes.
Quantile-quantile plots (Q-Q plots) were generated for the p-values obtained from the single-gene
collapsing analysis. Top 5 genes with the lowest p-values were labelled. R version 3.30 was used
to generate the qgplots (Figures 3.4, 3.5). The observed p-value distribution was overwhelmingly
very close to the expected distribution under the null hypothesis of no association, indicating

good control for potentially confounding factors.
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Figure 3.4: Q-Q plot of single-gene collapsing analysis for nonsynonymous variants of the discovery cohort
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Figure 3.5: Q-Q plot of single-gene collapsing analysis for synonymous variants of the discovery cohort.

Gene-set burden analysis

Gene-set collapsing analysis was performed using the SKAT-O [75] test, as implemented in
rvtests [76] while also including the first 10 principal components from the Eigenstrat [42] 3
analysis and sex as covariates. A detailed description of the seven gene lists, including the gene
names and literature sources, are given in Table 3.5. We compiled panels of candidate genes for
generalized (GGE) and focal epilepsies (FE), as well as epileptic encephalopathies (EE) on the
basis of the published literature. For the gene lists of FE and GGE we selected genes that cause
epilepsy as the main symptom without severe intellectual disability or any other predominant
syndromic symptoms. If genes preferentially predispose to either FE or GGE, they were only
assigned to one of the groups. For the list of EE genes, we only included genes that cause
epilepsy as the predominant disease phenotype and excluded those genes that display severe
developmental disorders with facultative associated seizures. The GABAergic pathway gene list
was compiled on the human “GABAergic synapse” pathway defined in Kyoto Encyclopedia of
Genes and Genomes [211] (KEGG) (http://www.genome.jp/dbget-bin/www_bget?pathway+

hsa04727), and also included ion channels specifically expressed in inhibitory neurons.
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Figure 3.6: Percentage of genome shared across each pair of samples. Each dot in the plot represents a pair of
samples. DUP = duplicate or monozygotic twins samples, PO = parent offspring pair, SIBS = siblings pair, UN
= unrelated pair of samples.

63



Ethnicity

CoGIE+1000genomes o ASW
0.06 4 o CASES
m@as o CEU
OO
e o CHB
0.034
o o o CHS
o CONTROLS
o] le) g §
N .001 FIN
Q' 0.00 o o
& o GBR
JPT
~0.031
o LwK
PN MXL
~0.06 &S o PUR
-0.06 -0.04 -0.02 0.00 0.02 51
Vi
o YRI
CoGIE
0.06
0.034
Ethnicity
[aV] -
Q¥ 0.00 . o CASES
o CONTROLS
-0.031
~0.06
-0.06 -0.04 -0.02 0.00 0.02
V1

Figure 3.7: Top: Population stratification of the discovery cohort together with samples from the 1000 genomes
study. Each color represents different ethnicities and each shape represents the super population to which the
samples belong to. The abbreviations of the legend are given below. ASW: Americans of African Ancestry in SW
USA, CEU, CHB: Han Chinese in Beijing, China, CHS: Southern Han Chinese, FIN: Finnish in Finland, GBR:
British in England and Scotland, JPT: Japanese in Tokyo, Japan, LWK: Luhya in Webuye, Kenya, MXL: Mexican
Ancestry from Los Angeles, PUR: Puerto Ricans from Puerto Rico, TSI: Toscani in Italia, YRI: Yoruba in Ibadan,
Nigeria. AFR: African, AMR: Ad Mixed American, EAS: East Asian, EUR: European. Bottom) Samples included
in the analyses after final QC.
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Gene- Genes Source

set

(size)

Focal CHRNA2, CHRNA/, CHRNB2, CPA6, DEPDC5, GRIN2A, KCNA1, KCNQ2, KCNQ3, KCNT1, LGI1, PRRT2, | Literature (see Suppl. Table S5 E)
epilep- RBFOX1, RBFOX3, SCN2A, SCN8A, TBC1D24, NPRL2, NPRL3, GRIN2B

sies (20

genes)

Generalized ALDH7A1,CACNA1A, CACNA1H, CACNB4, CASR, CNTN2, EFHC1, EPM2A, GABRA1, GABRBS, | Literature (see Suppl. Table S5 GGE)
epilep- GABRD, GABRG2, GPHN, KCNA2, KCNC1, KCNMA1, NIPA2, NRXN1, PCDH7, PLCB1, RBFOX1, RORB,

sies (28 | SCN1A, SCN1B, SCN9A, SLC2A1, STX1B, TBC1D2)

genes)

Epileptic | AARS, ALDH7A1, ALG13, ARHGEF9, ARX, BOLA3, CACNA1A, CDKL5, CHD2, COQ4, DNM1, DOCK?, | Literature (see Suppl. Table S5 EE)
en- EEF1A2 ,GABRA1, GABRB3, GABRG2, GNAO1, GRIN1, GRIN2A, GRIN2B, HCN1, KCNA2, KCNBI,

cephalopathi¢sCNC1, KCNQ2, KCNT1, MEF2C, NECAP1, NRXN1, PCDH19, PIGA, PLCB1, PNKP, ROGDI, SCN1A,

(53 SCN1B, SCN2A, SCN8A, SIK1, SIK2, SLC13A5, SLC25A22, SLC2A1, SLC35A2, SLC6A1,SPTAN1,STSGALS,

genes) STX1B, STXBP1, SYNGAP1, SZT2, TWNK, WWOX

GABAA GABRA1, GABRA2, GABRAS, GABRA4, GABRA5, GABRA6, GABRB1, GABRB2, GABRBS3, GABRD, | http://www.genenames.org/cgi-bin/
recep- GABRE, GABRG1, GABRG?2, GABRG3, GABRP, GABRQ, GABRR1, GABRR2, GABRRS genefamilies/set/563

tors (19

genes)

GABAergic ABAT, ADCY1, ADCY2, ADCYS3, ADCY4, ADCY5, ADCY6, ADCY7, ADCYS8, ADCYY9, ANK2, ANKS, | Literature http://www.genome. jp/
pathway ARHGEF9, DISC1, DLC1, DLC2, DNAIl, FGF13, GABARAP, GABARAPL1, GABARAPL2, GABBRI1, | dbget-bin/www_bget?pathway+hsa04727

(113

genes)

GABBR2, GABRA1, GABRA2, GABRAS, GABRAJ, GABRA5, GABRA6, GABRB1, GABRB2, GABRBS,
GABRD, GABRE, GABRG1, GABRG2, GABRGS, GABRP, GABRQ, GABRR1, GABRR2, GABRRS, GAD1,
GAD2, GLS, GLS2, GLUL, GNAI1, GNAI2, GNAI3, GNAO1, GNB1, GNB2, GNB3, GNB,, GNB5, GNG10,
GNG11, GNG12, GNG13, GNG2, GNG3, GNG4, GNG5, GNG7, GNG8, GNGT1, GNGT2, GPHN, HAP1,
KCNB2, KCNC1, KCNC2, KCNC3, KCNJ6, KIF5A, KIF5B, KIF5C, MAGI, MKLN1, MYO5A, NLGN2,
NRXN1, NSF, PFN1, PLCL1, PRKACA, PRKACB, PRKACG, PRKCA, PRKCB, PRKCG, RAFT1, RDX,
SCN1A, SCN1B, SCN2B, SCN3A, SCNSA, SEMA4D, SLC12A2, SLC12A5, SLC32A1, SLC38A1, SLC38A2,
SLC38A3, SLC38A5, SLC6A1,SLC6A11, SLC6A13, SRC, TRAK1, TRAK2
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Voltage-

SCN10A, SCN11A, SCN1A, SCN1B, SCN2A2, SCN2B, SCN3A, SCN3B, SCNJA, SCN4B, SCN5A, SCN7A,

Voltage-gated sodium channels

gated SCN8A, SCN9A, CACNA1A, CACNA1B, CACNA1C, CACNA1D, CACNAI1E, CACNAIF, CACNAIG, | (http://vwww.genenames.org/cgi-bin/
ion chan- | CACNA1H, CACNA1I, CACNA1S, CACNA2D1, CACNA2D2, CACNA2D3, CACNA2D/, CACNB1, CACNB2, | genefamilies/set/184) Voltage-
nels (86 | CACNBS, CACNB4, KCNA1, KCNA10, KCNA2, KCNA3, KCNAJ, KCNA5, KCNA6,KCNA7, KCNAB1, KC- | gated calcium channels (http://www.
genes) NAB2, KCNAB3, KCNB1, KCNB2, KCNC1, KCNC2, KCNC8, KCNC4, KCND1, KCND2, KCND3, KCNE1, | genenames.org/cgi-bin/genefamilies/
KCNE1L, KCNE2, KCNES, KCNE/4, KCNF1, KCNG1, KCNG2, KCNG3, KCNG4, KCNH1, KCNH2, KCNH3, | set/253) Voltage-gated potassium
KCNH/4, KCNH5, KCNH6, KCNH7, KCNH8, KCNQ1, KCNQ2, KCNQ3, KCNQ5, KCNQ/4, KCNRG, KCNS1, | channels (http://www.genenames.
KCNS2, KCNS3, KCNT1, KONV1, KONV2, HCN1, HON2, HCN3, HCN/ org/cgi-bin/genefamilies/set/274)
Hyperpolarization-activated cyclic
nucleotide—gated channels 22
Excitatory| CHRNA1, CHRNA10, CHRNA2, CHRNA3, CHRNA/, CHRNA5, CHRNA6, CHRNA7, CHRNA9, CHRNBI1, | Ionotropic glutamate receptors
receptors CHRNB2, CHRNB3, CHRNB/, CHRND, CHRNE, CHRNG, GRIA1, GRIA2, GRIAS, GRIA4, GRIK1, GRIK2, | (http://www.guidetopharmacology.
(34 GRIK3, GRIK4, GRIK5, GRIN1, GRIN2A, GRIN2B, GRIN2C, GRIN2D, GRIN3A, GRIN3B, GRID1, GRID2 | org/GRAC/FamilyDisplayForward?
genes) familyId=75)  Cholinergic  receptors

(http://www.genenames.org/cgi-bin/
genefamilies/set/173)

Table 3.5: Gene-sets for gene-set burden analysis. All gene sets were tested for the neutral synonymous variants in order to exclude technical bias. P-value
correction was performed by Holm’s procedure, as implemented in the R function p.adjust(method=“holm”), R version 3.30. Gene-set analysis p-values
were adjusted for 14 tests (7 gene-sets and 2 types of variants, non-synonymous and synonymous).
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3.6.3 Exome sequencing analysis (EpiPGX, replication cohort 1)
Alignment and variant calling

Reads were mapped to the human genome version GRCh37 for EpiPGX samples and ver-
sion hgl9 for Rotterdam controls, which were further converted to GRCh37 version. From
the BAM files we generated gVCFs using the bcbio-nextgen (https://github. com/chapmanb/
bcbio-nextgen) pipeline framework (version 0.8.9). The variant calling pipeline used pi-
card (http://broadinstitute.github.io/picard)(version 1.96) to clean BAM files, marked
duplicates with biobambam?2 (https://github.com/gtl/biobambam2) (version 2.0.8), recali-
brated, realigned with GATK and gVCFs were generated by using GATK HaplotypeCaller.
Finally, joint calling was performed using GATK GenotypeGVCFs (version 3.5) with the
bebio-nextgen reference data (dbSNP build 138 [5]) and the options --read filter BadCigar
--read_ filter NotPrimaryAlignment --standard_min_ confidence_ threshold_ for_ calling 30.0 --
downsample_ to_ coverage 2000 --downsampling_ type BY_SAMPLE.

QC (sample and variant)

The QC at sample and variant level were performed similar to the discovery cohort as de-
scribed above. Majority of the samples were of European descent as it could be seen in Figure
3.8 (top) and outliers were excluded the same way as described for the discovery cohort. Only
ethnically matched samples were used in the subsequent burden analysis Figure 3.8 (bottom).
Various QC metrics are shown in Table 3.6. Variant annotation was performed by using AN-
NOVAR [208] and the variants were further divided into various classes (Nonsynonymous and

Synonymous) as described above.
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Figure 3.8: Ethnicity of EpiPGX samples with samples within 1000 genomes study. Each color represents differ-
ent ethnicities and each shape represents the super population to which the samples belong to. The abbreviations
of the legend are given below. ASW: Americans of African Ancestry in SW USA, CEU, CHB: Han Chinese in
Beijing, China, CHS: Southern Han Chinese, FIN: Finnish in Finland, GBR: British in England and Scotland,
JPT: Japanese in Tokyo, Japan, LWK: Luhya in Webuye, Kenya, MXL: Mexican Ancestry from Los Angeles,
PUR: Puerto Ricans from Puerto Rico, TSI: Toscani in Italia, YRI: Yoruba in Ibadan, Nigeria. AFR: African,
AMR: Ad Mixed American, EAS: East Asian, EUR: European. Bottom) Samples included in the analyses after

final QC.
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Quality metric After QC

Number of samples 357 cases
1,485 controls

Number of variants 353,173

Number of exonic/splicing variants 335,630

Ti/Tv ratio per sample 3.28

Ti/Tv ratio of exonic/splicing variants per sample 3.38

Number of rare (MAF<=0.005) exonic/splicing variants 278,184

Number of rare nonsynonymous variants 164,233

Number of rare synonymous variants 92,129

Table 3.6: Statistics of replication cohort 1 after quality filtering.

Gene-set collapsing analysis

Similar to the discovery cohort, association analysis was performed for the GABA 5 receptor
gene set using SKAT-O, as implemented in rvtests [76], using the first ten principal components
from the Eigenstrat [42] analysis as covariates. P-values for missense and synonymous were

corrected using the Holm procedure.
3.6.4 GABA, receptor gene panel (replication cohort 2)
Alignment, enrichment assessment and variant calling

Using Trimmomatic [26] all reads were trimmed and clipped to remove Illumina MiSeq
adapters and bad quality bases. BWA [29] mem was used to align reads to the GRCh37 hu-
man reference genome. All alignments files were stored in the BAM format and the Picard suite
was used to merge all alignment in a single file (http://picard.sourceforge.net). GATK [23] suite

was used to produce metrics file and to perform variant calling using Unified Genotyper.
QC (sample and variant) and annotation

Samples were filtered based on the PLINK/SEQ QC metrics as described above and outlier
samples (>3SD) were excluded in a similar way as described in the discovery cohort. Variants
were filtered by using the same parameters as discovery cohort. Finally, ANNOVAR was used

to annotate the variants and they were divided into various classes as defined above.
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Quality metric After QC

Number of samples 583 cases
635 controls

Number of variants 260

Number of exonic/splicing variants 260

Number of rare (MAF<=0.005) exonic/splicing variants 212
Number of rare nonsynonymous variants 102

Number of rare synonymous variants 95

Table 3.7: Statistics of replication cohort 2 after QC

Gene-set collapsing analysis

Similar to the discovery cohort, association analysis was performed for GABA, receptor

genes using Skat-O test. Multiple-testing correction was performed using the Holm procedure.
3.6.5 Functional analysis
Mutagenesis and RNA preparation

We used the Quick Change kit (Stratagene) to engineer the missense mutations in the
GABRB2 and GABRA5 ¢cDNAs (NM_ 021911 and NM__000810, respectively) inserted in the
pcDNA3 vector (kind gift from Dr. Patrick Cossette and Dr. Steven Petrou, Melbourne).
Primers are available upon request. Mutations were confirmed and additional changes were
excluded by Sanger sequencing. cRNA was prepared using the T7 RNA polymerase kit from

Ambion.
Oocyte preparation and injection

Oocytes were obtained from the Institute of Physiology I, Tiibingen, or purchased from
EcoCyte Bioscience (Castrop-Rauxel).  Experiments were approved by local authorities
(Regierungsprésidium Tiibingen, Germany). The preparation of oocytes for two-microelectrode
voltage-clamp recordings included treatment with collagenase (1mg/ml of type CLS II collage-
nase, Biochrom KG) in OR-2 solution (mM: 82.5 NaCl, 2.5 KCI, 1 MgCly and 5 Hepes, pH 7.6),
followed by thorough washing and storing at 17°C in Barth solution (mM: 88 NaCl, 2.4 NaHCOs,
1 KCl, 0.41 CaClg, 0.82 MgSO,4 and 5 Tris/HCIL, pH 7.4 with NaOH) supplemented with 50ug/ml

24,25 We injected a total amount of 70 nl

gentamicin (Biochrom KG) as described previously
at a concentration of 2 ug/ul of cRNA encoding respective mixtures of WT or mutant subunits
into oocytes using the Robooinject® (Multi Channel Systems). Oocytes were stored for 1-3 days
at 17°C before the experiment. The combination of the different subunits used was a1 82 25 or

as (B2 v9s in 1:1:2 ratios. Current amplitudes of WT and mutant receptors were recorded and
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compared on the same day using the same batch of oocytes so that data of different days could

be pooled when normalized to the WT.
Automated oocyte two-microelectrode voltage clamp

GABA-evoked ionic currents in oocytes were recorded at room temperature (20-22°C) using
a Roboocyte2® system (Multi Channel Systems). Prepulled and prepositioned intracellular glass
microelectrodes had a resistance of 0.3—1 M) when filled with 1 M KCI and 1.5 M KAc. ND96
was used as extracellular bath solution (in mM: 93.5 NaCl, 2 KCl, 1.8 CaCly, 2 MgCly, 5
Hepes, pH 7.5). Currents were sampled at 1 kHz. To activate the receptors, increasing GABA
concentrations (in pM: 1, 3, 10, 40, 100, 300, 1000) diluted in ND96 solution were applied for 15

s each.
Electrophysiological data analysis

Oocytes were held at -70 mV. The amplitude of the GABA-induced currents was analyzed
using Roboocyte2+ (Multi Channel Systems), Clampfit (pClamp 8.2, Axon Instruments), Mi-
crosoft Excel (Microsoft) and GraphPad Prism (GraphPad Software). The current response
of each GABA concentration was normalized to the maximum response evoked by the highest

GABA concentration (1 mM). The following four parameter logistic equation:

s (max—min)
Y (X) = min +1+10((LogEC'507X)*nh

was fit to the normalized GABA responses of each oocyte, with mazx and min being the
maximum and minimum evoked responses, X the corresponding GABA concentration, EC5g the
concentration of the agonist at which half of the maximum response is achieved, and nh the
Hill coefficient reflecting the steepness of the dose-response curve. For each oocyte, ECsy values
were determined and then averaged for each combination of receptor subunits used. Current
amplitudes in response to 1 mM GABA application for mutant channels were normalized to the

mean value of the WT channel response recorded on the same day.
Statistical analysis

For statistical evaluation, GraphPad Prism 6 was used. Normalized current amplitudes were
compared between different groups (WT and different variants) using one-way ANOVA on ranks
(Kruskal Wallis rank sum test) with Dunn’s post-hoc test. All data are as mean + standard error
of the mean (SEM). Statistical differences are indicated in the figure legends using the following
symbols: *p<0.05, **p<0.001, ***p<0.0001.

3.6.6 Annotation of functional tested GABA receptor variants

As described above, the functionally tested GABA, variants were annotated with AN-
NOVAR [47] using the RefSeq gene annotations, allele frequencies from ExAC [43], 1000g
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[34] and ESP, dbSNP (https://www.ncbi.nlm.nih.gov/projects/SNP), and pathogenicity
and conservation scores from dbNSFP [51] (Supplemental Table S7). The following missense
pathogenicity prediction scores and thresholds for pathogenicity were used: SIFT [53] (D
deleterious), PolyPhen2_HDIV [54](D damaging), LRT [55] (D deleterious), MutationTaster
[56] (A disease causing automatic, D disease causing), PROVEAN [57] (D deleterious), CAD
[58] phred score > 10, fathmm [60](D deleterious). For conservation, we used GERP++_R
[61] (>3) and SiPHy [62] (>10) for conservation evaluation. Details on different scores and
their prediction classes, ranges and thresholds can be found on the ANNOVAR webpage:

http://annovar.openbioinformatics.org/en/latest/user-guide/filter.
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Geneset Variant class | Number of variants | Number of cases | Number of controls | Skat-O P-value uncorrected | Skat-O P-value (corrected by Holm) | OR | lowerCI | upperCI
Epileptic encephalopathies | SYN 284 152 549 0.292299 1 1.25 | 0.87 1.80
Excitatory receptors SYN 151 152 549 0.212472 1 1.43 | 0.97 2.11
Focal epilepsies SYN 110 152 549 0.416506 1 1.066 | 0.68 1.66
GABAergic pathway SYN 444 152 549 0.0628653 0.8172489 1.33 | 0.92 1.92
GABA-A receptors SYN 64 152 549 0.574707 1 1.37 | 0.78 2.40
Generalized epilepsies SYN 177 152 549 0.237372 1 0.99 | 0.67 1.47
Voltage-gated ion channels | SYN 471 152 549 0.771146 1 1.19 | 0.81 1.74
Epileptic encephalopathies | NONSYN 259 152 549 0.528544 1 1.42 | 0.98 2.07
Excitatory receptors NONSYN 241 152 549 0.708729 1 1.01 0.69 1.48
Focal epilepsies NONSYN 142 152 549 0.523553 1 1.42 | 0.93 2.17
GABAergic pathway NONSYN 564 152 549 0.442513 1 1.66 | 1.12 2.46
GABA-A receptors NONSYN 63 152 549 0.0013633 0.0190862 240 | 141 4.10
Generalized epilepsies NONSYN 194 152 549 0.166314 1 217 | 1.49 3.17
Voltage-gated ion channels | NONSYN 664 152 549 0.601852 1 1.78 | 1.17 2.70
EpiPGX

Geneset Variant class | Number of variants | Number of cases | Number of controls | Skat-O P-value uncorrected | Skat-O P-value (corrected by Holm) | OR | lowerCI | upperCI
GABA-A receptors SYN 99 357 1485 0.587127 0.58712700 0.82 | 0.54 1.25
GABA-A receptors NONSYN 107 357 1485 0.00805992 0.01611984 1.46 | 1.05 2.03
GABA_ panel

Geneset Variant class | Number of variants | Number of cases | Number of controls | Skat-O P-value uncorrected | Skat-O P-value (corrected by Holm) | OR | lowerCI | upperCI
GABA-A receptors SYN 95 583 635 0.0613778 0.0613778 0.86 | 0.60 1.24
GABA-A receptors NONSYN 103 583 635 0.0133277 0.0266554 1.458 | 1.019 2.08 height




https://dropit.uni.lu/invitations?share=0c2fe26106c4920e2630&d1=0

Table 3.8: For all cohorts, the rare, case-only missense variants are listed together with their RefSeq annota-
tions and ExAC (NFE=Non-Finnish European) allele frequencies. An overview table gives information for which
GABA A gene variants were found in which cohort and if variants from this gene were functional tested.

https://dropit.uni.lu/invitations?share=bc14£52de9820cfd80bf&d1=0

Table 3.9: Annotations for the tested GABA, variants for which sample material was available. Genome
position in hgl9, allele counts (AC) and frequencies (AF) information in ExAC (ALL=all populations, NFE=Non-
Finnish European population), allele frequencies in 1000g and ESPdbSNP identifier, type of variant (snp/insertion)
and exonic type (frameshift insertion/missense), and for missense mutations the prediction scores from SIFT,
Polyphen2, LRT, MutationTaster, Provean, CADD and fathmm as well as the conservation scores from GERP and
SiPhy are given. Deleterious predictions are given as D, conserved sites are shown in bold text. Additionally, the
number of prediction tools with a deleterious prediction per variant is given as well as the number of conservation
scores showing conservation per variant.
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CHAPTER 4

CNVS IN EPILEPSY

4.1 Abstract

Genetic Generalized Epilepsy (GGE) and benign epilepsy with centro-temporal spikes or
Rolandic Epilepsy (RE) are common forms of genetic epilepsies. Rare copy number variants have
been recognized as important risk factors in brain disorders. We performed a systematic survey
of rare deletions affecting protein-coding genes derived from exome data of patients with common
forms of genetic epilepsies. We analysed exomes from 390 European patients (196 GGE and 194
RE) and 572 population controls to identify low-frequency genic deletions. We found that 75 (32
GGE and 43 RE) patients out of 390, i.e. ~19%, carried rare genic deletions. In particular, large
deletions (>400 kb) represent a higher burden in both GGE and RE syndromes as compared to
controls. The detected low-frequency deletions (1) share genes with brain-expressed exons that
are under negative selection, (2) overlap with known autism and epilepsy-associated candidate
genes, (3) are enriched for CNV intolerant genes recorded by the Exome Aggregation Consortium
(ExAC) and (4) coincide with likely disruptive de novo mutations from the NPdenovo database.
Employing several knowledge databases, we discuss the most prominent epilepsy candidate genes

and their protein-protein networks for GGE and RE.

4.2 Introduction

Epilepsies are among the most widespread neurological disorders with a lifetime incidence of
~3% [212]. They represent a heterogeneous group of different disease entities that, with regard
to aetiology, can be roughly divided in epilepsies with an exogenous/symptomatic cause and

those with a genetic cause. Genetic generalized epilepsies (GGE; formerly idiopathic generalized
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epilepsies) are the most common genetic epilepsies accounting for 30% of all epilepsies. They
comprise syndromes such as juvenile myoclonic epilepsy, childhood absence epilepsy and juvenile
absence epilepsy. In general, they tend to take a benign course and show a good response to
pharmacotherapy. Among focal genetic epilepsies, benign epilepsy with centro-temporal spikes
or Rolandic epilepsy (RE) is the most common form. RE has its onset in childhood or early

adolescence and usually tapers off around the age of 15.

High-throughput genomic studies raised the number of epilepsy-associated candidate genes to
hundreds; nowadays, frequently mutated ones are included in diagnostic gene panels (for recent
reviews see [14, 213]. Large consortia initiatives such as Epidk [190] enrolled 1,500 families, in
which two or more affected members displayed epilepsy, as well as 750 individuals, including 264
trios, with epileptic encephalopathies and infantile spasms, Lennox-Gastaut syndrome, polymi-
crogyria or periventricular heterotopias. In addition to the detection of known and unknown risk
factors, the consortium found a significant overlap between the gene network of their epilepsy
candidate genes and the gene networks for autism spectrum disorder (ASD) and intellectual
disability. Intriguingly, epilepsy is the medical condition most highly associated with genetic

autism syndromes [214].

Genomic disorders associated with copy number variations (CNVs) appear to be highly pen-
etrant, occur on different haplotype backgrounds in multiple unrelated individuals and seem to
be under strong negative selection [215-217]. A number of chromosomal locations suspected to

contribute to epilepsy have been identified [218-222].

A genome-wide screen for CNVs using array comparative genomic hybridization (aCGH)
in patients with neurological abnormalities and epilepsy led to the identification of recurrent
microdeletions on 6q22 and 1q22.31 [223]. A deletion on 15q13.3 belongs to the most frequent
recurrent microdeletions in epilepsy patients; it is associated with intellectual disability, autism,
schizophrenia, and epilepsy [224, 225]. The recurrence of some CNVs seems to be triggered by the
genome structure, namely by the chromosomal distribution of interspersed repetitive sequences
(like Alu transposons) or recently duplicated genome segments (large blocks of sequences >10with
>95% sequence identity that constitute five to six percent of the genome) that give rise to

nonallelic homologous recombination [215, 226].

CNV screening in large samples showed that 34% of heterozygous deletions affect genes
associated with recessive diseases [227]. CNVs are thought to account for a major proportion of
human genetic variation and have an important role in genetic susceptibility to common disease,
in particular neuropsychiatric disorders [228]. Genome-wide surveys have demonstrated that
rare CN'Vs altering genes in neuro-developmental pathways are implicated in epilepsy, autism

spectrum disorder and schizophrenia [14, 15].
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Considering all types of CNVs across two analysed cohorts, the total burden was not signif-
icantly different between subjects with epilepsy and subjects without neurological disease [229];
however, when considering only genomic deletions affecting at least one gene, the burden was
significantly higher in patients. Likewise, using Affymetrix SNP 6.0 array data, it has recently
been shown that there is an increased burden of rare large deletions in GGE [221]. The drawback
of the latter approach is that smaller CNVs cannot be detected. Systematic searches of CNVs
in epilepsy cohorts using whole-exome sequencing (WES) data, which provides the advantage to

identify smaller deletions along with the larger ones, are still missing.

In the present study, we provide the CNV results of the largest WES epilepsy cohort re-
ported so far. We aimed at (1) identifying the genome-wide burden of large deletions (>400kb),
(2) studying the enrichment for deletions of brain-expressed exons, in particular those under neg-
ative selection, (3) detecting deletions that overlap with previously defined autism and epilepsy

candidate genes, and (4) browsing knowledge databases to help understand the disease aetiology.

4.3 Patients and Methods

The study protocol was approved by the local institutional review boards of the contributing
clinical centres. Written informed consent was obtained from participating subjects and, if

appropriate, from both patients and adolescents.
4.3.1 Data

GGE cohort: This cohort included 196 subjects with genetic generalized epilepsy. All subjects
were of European descent (Italian 81, German 54, Finnish 22, Dutch 11, British 9, Danish 8,
Turkish 6, Swedish 3, French 1, Greek 1). The cohort included 117 female subjects (60%). The
GGE-diagnoses were childhood absence epilepsy (CAE; n=94), juvenile absence epilepsy (JAE;
21), juvenile myoclonic epilepsy (JME; 47), genetic generalized epilepsy with generalized tonic-
clonic seizures (EGTCS, 27), early-onset absence epilepsy (EOAE, 4), epilepsy with myoclonic
absences (EMA, 1), and unclassified GGE (2). Age of epilepsy onset ranged from 1 year to 38
years with a median of 8 years. The majority of subjects derived from multiplex families with at

least 2 affected family members (n=183), thereof 90 families with 3 or more affected members.

RE cohort: This cohort included 204 unrelated Rolandic patients of European ancestry which

were recruited from centers in Austria (n = 107), Germany (n = 84), and Canada (n = 13).

Control cohort: We used 445 females and 283 males (728 in total) from the Rotterdam Study
as population control subjects [230]. The same cohort was recently used for the screening of 18

GABA -receptor genes in RE and related syndromes [149].

Our primary analysis workflow included three major steps as shown in Figure 4.1. These are
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1) data pre-processing, 2) SNV /INDEL analysis and 3) copy number variant analysis.

SNV/INDEL analysis

ff FASTQ files
Quality control
GATK best practices
Recalibrated
{f BAM files
Depth of coverage
Filter samples with
low coverage
Tf! Final BAM files

Pre-processing

| Variant calling |
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duplications

T
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Figure 4.1: Flowchart of the analysis steps. Parameters used in each step are described in detail in the methods

section.

4.3.2 Data pre-processing

Sequencing adapters were removed from the FASTQ files with cutadapt [25] and sickle [231].

GATK best practices were followed for the next steps of data pre-processing and variant calling

23].
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Alignment to the GRCh37 human reference genome was performed using BWA-MEM
[29] with default parameters. Conversion of SAM to BAM files was done with SAMtools [27].
Sorting of BAM files, marking of duplicate reads due to PCR amplification and addition of



read group information were done using Picard (https://github.com/broadinstitute/picard) tools
with default parameters. Base quality score recalibration and local realignment for INDELSs was

performed using GATK version 3.2.
4.3.3 Coverage

Mean depth of coverage and target coverage of exons were calculated from the BAM files
using the depth of coverage tool from GATK. The same files were also used as input for calling
of CN'Vs.

4.3.4 Variant calling

The GATK haplotype caller (version 3.2) was chosen to perform multiple sample variant
calling and genotyping with default parameters. To include splice site variants in the flanking
regions of the exons, exonic intervals were extended by 100each upstream and downstream. Mul-
tiple sample calling is advantageous in deciding whether a variant can be identified confidently
as it provides the genotype for every sample. It allows filtering variants based on the rate of

missing genotypes across all samples and also according to the individual genotype.
4.3.5 Sample QC

Samples were excluded from the analysis based on the following criteria: 1) Samples with a
mean depth <30x or <70% of exon targets covered at <20x were excluded from further analysis;
2) samples with >3 standard deviations from mean in number of alternate alleles, number of
heterozygotes, transition/transversion ratio, number of singletons and call rate as calculated with
the PLINK/SEQ i-stats tool (https://atgu.mgh.harvard.edu/plinkseq/); 3) call rate <97%;
4) ethnically unmatched samples as identified by multi-dimensional scaling analysis with PLINK
version 1.9 [39]; 5) PI_ HAT score>0.25 as calculated by PLINK version 1.9 to exclude related

individuals.
4.3.6 Variant QC

Initial filtering of variants was performed based on quality metrics over all the samples with
the following parameters for VQSR: Tranches chosen, VQSRTrancheSNV99.90t0100.00. QC over
all samples (INFO column) was done as follows: a) for SN'Vs, variants were filtered for QD < 2.0,
FS > 60.0, MQ< 40.0, MQRankSum <=12.5, ReadPosRankSum <=8.0, DP <10.0, GQ_MEAN
< 20.0, VQSLOD < 0, more than 5% missingness, ABHet > 0.75 or < 0.25 and deviation from
Hardy-Weinberg equilibrium (Phred scale p-value of > 20); b) for INDELSs, the same was done
as for SNVs except for the following parameters for variant filtration: QD <2.0, FS >200.0,
ReadPosRankSum <=20.0, DP <10.0, GQ_MEAN <20.0, missingness <5%, Hardy-Weinberg
Phred scale value of >20, VQSLOD >0.
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To further exclude low quality variants, we also applied filtering based on quality metrics
for each genotype using read depth and quality of individual genotypes. Genotypes with a read
depth of <10 and GQ of <20 were converted to missing by using BCFtools [27]. Multi-allelic

variants were decomposed using variant-tests [232] and left-normalized using BCFtools.
4.3.7 Variant annotation

Variants were annotated with ANNOVAR [47] version 2015, Mar22 using RefSeq and En-
sembl versions 20150322 and the dbNSFP [51] version 2.6 annotations including nine scores for
missense mutations (SIFT, PolyPhen2 HDIV, PolyPhen2 HVAR, LRT, MutationTaster, Muta-
tionAssessor, FATHMM, MetaSVM, MetaLR), the CADD score, and three conservation-based
scores from GERP++, PhyloP and SiPhy. Splicing variants were defined to include 2 bp before
and after the exon boundary position. To obtain rare variants, we filtered the variants for a
minor allele frequency (MAF) of <0.005 in public databases such as 1000 genomes [34], dbSNP
[52], ExAC (release 0.3) and the exome variant server (EVS). We defined deleterious variants
as those variants that fulfil any of the following three criteria: 1) all the variants except the
synonymous variants predicted to be deleterious by at least 5 out of 8 missense prediction scores,
CADD score >4.5, or 2 out of 3 conservation scores (GERP>3, PhyloP>0.95, SiPHy>10) show
high conservation; 2) variants annotated as “splicing”, “stop gain” or “stop loss”; 3) any insertion

or deletion.
4.3.8 CNYV detection

In the remaining high quality samples, CNVs were detected by using XHMM as described in
[69]. In the current study, we focused only on deletions, as the false positive rate for duplications
is too high to allow for meaningful interpretation. CNV calls were annotated using bedtools
version 2.5 [233]. NCBI RefSeq (hgl9, 20150322) was used to identify the genes that lie within

the deletion boundaries.
4.3.9 CNV filtering

The detected deletions were filtered based on the following criteria: 1) Z score <~—3, given
by XHMM; 2) Q_SOME score 60, given by XHMM.

4.3.10 Burden analysis of large and rare deletions

Excess deletion rate of the large deletions (length >400 kb) in subjects with epilepsy compared
to the controls was measured as described in [221] using PLINK version 1.9 [39]. We set the
overlap fraction to 0.7 (70%) and the internal allele frequency cut-off <0.5% and evaluated the

significance empirically by 10,000 case-control label permutations.
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4.3.11 Case-only CNVs

The CNVs that are unique for cases (not present in any of the in-house controls) and occur
at a low frequency, i.e., present in 2 independent cases, while having a frequency of 1% in the
CNVmap, the DGV gold standard dataset [71] and 1000 genomes SV [72] were selected and

subjected to further analysis as described below.
4.3.12 Validation of CNVs

We proceeded by visual inspection of depth variation across exons of the filtered deletions; we
also performed qPCR validations of three small deletions, two of which, NCAPD2 and CAPNI1,
stood the filtering procedure (see Table A.3). For RE patients, genomic DNA samples were anal-
ysed using the Illumina OmniExpress Beadchip (Illumina, San Diego, CA, USA) [221]. Twenty-
three of 60 CN'Vs present in the RE patients were validated by available array data (Table A.5).
Generally, small CNVs cannot be reliably identified with SNP arrays [234]. Indeed, of the 37
CNVs that were not identified in the beadchip data, 23 have a size of <10, whereas only 2 of the
23 validated CN'Vs have a size of less than 10according to the array data.

4.3.13 Compound heterozygous mutations and protein-protein interactions

We checked for concurrence of a deletion in one allele and a deleterious variant in the second
allele. We included the first order interacting partners from the protein-protein interaction
network (PPIN) in this analysis [235] and assessed if any gene or its first order interacting
partner carries a deletion in one allele and a deleterious variant in the other. We excluded all
genes that had no HGNC (HUGO Gene Nomenclature Committee) entry resulting in a network
of 13,364 genes and 140,902 interactions. This network was then further filtered for interactions
likely to occur in brain tissues using a curated data set of brain-expressed genes [236]. The final
brain-specific PPIN consisted of 10,469 genes and 114,533 interactions.

4.3.14 Gene-set enrichment analysis

Genes that were expressed in brain [236]. and located within deletion boundaries were used
as input for an enrichment analysis using the Ingenuity Pathway Analyser (IPA®) [237]. We
performed the enrichment analysis with all deleted genes from the RE and GGE samples together

as well as for each phenotype separately.
4.3.15 Over-representation analysis

To assess whether the deleted set of genes were enriched in known epilepsy-associated genes,
we retrieved genes that were associated with the disease term “epilepsy” from the DisGeNET
database [238]. Then we compared the overlap between the brain-expressed genes that are deleted
in RE (n=85), GGE (n=49) and RE+GGE (n=134) against the brain-expressed epilepsy-related
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genes in DisGeNet (n=674). We used the total number of brain-expressed genes (n=14,177) as the
background. The R GeneOverlap package (https://bioconductor.org/packages/release/
bioc/html/GeneOverlap.html) was used to compute the p-value.

4.3.16 CNYV tolerance score analysis

The CNV tolerance score was used as defined in [239]. The CNV tolerance and deletion
scores for the genes that are deleted in our study were obtained from the ExAC database [43]

and their enrichment in GGE and RE cases was assessed by the Wilcoxon rank sum test.
4.3.17 Overlap with different databases

The overlap between the different data sets was obtained by gene symbol matches between
the detected gene deletions and the gene lists from different databases; more details are given in

the discussion section. A workflow depicting the steps above is shown in Figure 4.1.

4.4 Results

After quality control, exomes of 390 epilepsy cases (196 GGE, 194 RE) and 572 controls were
used for downstream analyses (Figure 4.1). The final RE and GGE datasets comprised 26,476

and 30,207 variants, respectively.
4.4.1 Epilepsy-associated microdeletions

75 out of 390 epilepsy patients (~19%) carried a total of 104 case-only deletions spanning
260 genes (see Table A.3), which covered a wide size range between 915 bp and 3.11 Mbp. 43
out of 194 RE patients carried deletions compared to 32 out of 196 patients with GGE, thus,
we did not observe any significant difference in the total number of deletions between the two
disease entities (p-value = 0.68). In the combined dataset, 35 out of 73 were large multigene
deletions. Among them were several recurrent deletions (see Table A.3), including those located
on 15q13.3 and 16p11.2 that were previously reported to be associated with epilepsy and other

brain disorders.
4.4.2 Comparative analysis of Rolandic and GGE candidate genes

Because our cohort is composed of GGE and RE patients, we sought to compare the functional
differences between the two subtypes of epilepsies by studying the pathways and functions that
are enriched in the respective deleted genes (see Table 4.4). Initially we performed GO term
enrichment without applying any additional filter to the deletion calls. As shown in Table 4.3,
synaptic and receptor functions are more prominent in RE cases. If the deletion calls were filtered
for brain-specific gene expression, we observed that, separately and together, GGE and RE-

deleted genes are enriched for the functional terms “nervous system development and function”,
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“behavior” and “tissue morphology”; this functional convergence might have been expected when

selecting for brain-expressed genes.

When analyzing GGE and RE datasets separately, the top PPIN enriched in GGE is as-
sociated with “carbohydrate metabolism”, “small molecule biochemistry” and “cell signaling”,
whereas the top networks associated with RE are “neurological disease”, “organismal injury and
abnormalities” and “psychological disorders” (see Table 4.4). The enriched network including

GGE and RE-deleted genes (Figure 4.2) is described below.
4.4.3 Deletion burden analysis

We performed 10,000 case-control label permutations to test whether there is an increased
burden of large and rare deletions in cases as compared to the controls (Table 4.1). We noticed
that (1) the deletion rate per individual with at least one deletion in cases compared to the
controls showed statistical significance in both GGE and RE (p-value = 1e-04, p-value = 0.011)
and (2), considering cumulative length of all large and small deletions, no significant difference
between cases and controls was observed in both GGE and RE (p-value = 0.16, p-value = 0.41),

indicating that there is no difference in the length of CNVs in cases and controls.

Dataset | Deletion rate per | Proportion of samples | Total length of | Average length of dele-
person with at least one dele- | deletions tions
tion
IGE+RE | 1,0E-04 1,0E-04 2,7E-01 2,8E-01
IGE 1,0E-04 1,0E-04 1,7E-01 1,8E-01
RE 1,1E-02 3,0E-03 4,1E-01 2,3E-01

Table 4.1: Burden test showing empirical p values of cases/controls permutation statistics. RE = Rolandic
epilepsy (Typical/Atypical), IGE = Idiopathic generalized epilepsy.

4.4.4 Enrichment for known epilepsy and autism-associated genes

To check the overlap between the deletions detected in our study and genes known to be
associated with epilepsy, we searched for overlap with the genes listed (n1=499) in the Epilepsy-
Genes database [240]. This led to the following set of 8 genes: CHRFAM7A, CHRNA7, SCN1A,
CNTNAP2, GABRBS3, GRIN2A, IGSFS, ITPR1. The GRIN2A deletion is from the same pa-
tient published earlier [148] and which we used as one of the positive controls in our primary
CNV detection pipeline [241]. One should notice that genes such as CHRNA7 and GABRB3 are
located within larger deletions containing other genes; so they might be questionable as bonafide

epilepsy-associated genes.

Using the core autism candidate genes (n=455 genes) present in brainspan, [242], we identified
13 deleted genes: APBA2, ATP10A, CDH22, CDHS, GABRAS5, GABRGS3, NDN, NDNL?2,
CNTNAP2, GABRBS3, GRIN2A, SCN1A and SHANKI (Table 4.2). This set is particularly
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enriched in GO terms “neuron parts” and “transporter complexes”. Note that GABRBS3 and
GABRGS3 belong to multigenic large deletions (Table A.3).

PSD genes | BCG genes | Autism brainSpan | EpilepsyDB clinVar
NDUFS3 APBA2 APBA2 CHRFAMT7A SACS
RIMBP2 ATRNL1 ATP10A CHRNAT CNTNAP2

TJP1 CDH22 CDH22 SCN1A GABRB3
CNTNI1 CSMD1 CDHS8 CNTNAP2 GRIN2A

CNTNAP2 ETV1 GABRA5 GABRB3 ITPR1
GABRB3 FAN1 GABRG3 GRIN2A SCN1A
GRIN2A GMFB NDN IGSF8
HSPAI1L IGSF8 NDNIL2 ITPR1

IGSF8 NPR2 CNTNAP2
PTPRZ1 OTUD7A GABRB3
SHANK1 PLXDC2 GRIN2A

SCN1A SCN1A
ZFAND1 SHANK1
ZNF343
ZNF568
CNTNI1
CNTNAP2
GABRBS3
GRIN2A
ITPR1
PTPRZ1
SHANK1

Table 4.2: Overlap with specific sets. In grey are genes common to at least 2 of the compared sets. PSD

(post-synatric density); BCG (Brain Critical Genes).

4.4.5 Deletions of brain-critical exons

Reduced fecundity associated with disorders such as autism, schizophrenia, mental retarda-
tion and epilepsy puts negative selection pressure on risk alleles. A recent report [216] combined
exome and transcriptome data from large human population samples and defined a class of brain-
expressed exons that are under purifying selection, namely those that are highly expressed in
brain tissues and at the same time exhibiting suppressed accumulation of missense mutations
in population controls (low mutation burden). These exons were called “brain-critical exons”
(n=3,955), the associated genes were accordingly called “brain-critical genes” (BCG, n=1,863)
[14].
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Twenty-two deleted genes are in common with the BCG set (see Table 4.2). The SHANK1
deletion is found in a single RE case. It spans 7,339 bp (8 exons out of 9). There is only one
report on the possible implication of the deletion of this gene in childhood epilepsy [243]. A
deletion of ITPR1 is observed in another RE case; this deletion affects also SUMF1, but this
gene was filtered out by the BCG overlap selection. The deletion of CNTN1 in a GGE patient
encompasses in addition MUC19 and LRRK2, the latter is a known Parkinson candidate gene
[244].

4.4.6 Exome Aggregation Consortium deletions

The ExAC data comprise 60,706 unrelated individuals sequenced as part of various disease-
specific and population genetic studies. Deletions annotated in ExAC (release 0.3.1 of 23/08/16)
were identified, similar to the present study, by read depth analysis using XHMM [239]. We
sought to compare those CNV calls with the ones detected in the present work. Out of the 260
deleted genes detected in our study, 164 genes (67%) showed deletions in ExAC too (see Table
A.4). Several genes highlighted in the previous paragraphs were ranked high using the CNV
tolerance score defined by [239]. However, we did not identify a significant difference, neither
in CNV tolerance scores (p-value = 0.53) nor in CNV deletion scores (p-value = 0.22), between
GGE and RE-deleted genes. This may indicate that GGE and RE deletions are equally likely to
fall into the same category of ExAC deletion calls.

4.4.7 Compound heterozygous and first order protein-protein interaction mu-
tations

Compound heterozygous mutations play a role in many disease aetiologies such as autism and
Parkinson’s disease [245-247]. We searched for possibly deleterious non-synonymous changes in
the parental undeleted gene copy, but we did not detect any hemizygous variant that had a critical
intolerance score (see Methods). Subsequently, we hypothesised that simultaneous mutations
in proteins which interact directly (first-order protein interactors) may increase the associated
deleterious effect. Within a curated brain-specific PPIN (see Methods, [235]), we inspected
first order interacting proteins with potentially deleterious mutations or exon losses (see Table
4.4.7) and found a few interesting hits, including SPTANT that interacts directly with SHANK;
SPTANT1 encodes alpha-II spectrin and is known to be associated with epilepsy [248, 249]. A
remarkable and unique case of multiple hits was observed in a patient who accumulated four hits:
the originally detected ITPR1 deletion and three potentially deleterious non-synonymous SNVs
in RYR2, HOMER2 and STARD13. RYRZ2 (ryanodine receptor 2) and ITPR1 (inositol-1,4,5-
trisphosphate receptor 1) have been independently reported to be implicated in brain disorders.
RYR2 de novo mutations have been identified in patients with intellectual disability [250] and
activation of ITPR1 and RYR2 can lead to the release of Ca?* from intracellular stores affecting

propagating Ca’t waves [251]. HOMER2, a brain-expressed gene, has been reported to be
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involved in signalling defects in neuropsychiatric disorders [252]. The STARD13 locus has been
reported to be associated with aneurysm and sporadic brain arteriovenous malformations [253,
254].
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Sample Gene (dele- | Gene in deletion boundaries Case| Chr| Position Ref| Alt| Annotation
terious
SNV /Indel)
SN10600087_4671 E145b_1 LACTB MRPS27 RE | 15 | 63421767 | T | C | exonic
SN7640113_ 5312 _E677d_1 SPEN SF3B3;SNORD111;SNORD111B RE | 1 16254645 | G | A | exonic
SNT7640113_ 5312 E677d_1 NRG1 SF3B3;SNORD111;SNORD111B RE | 8 32406278 | A | G | exonic
SN7640113_5314 S97_1 SPTAN1 SHANK1 RE | 9 131367308 T | G | splicing
SNT7640113_ 5548 ROL_ 0451 1 STARD13 ITPRL;ITPR1-AS1;SUMF1 RE | 13 | 33700223 | C | T | exonic
SN7640113_5548 ROL_0451_1 | RYR2 ITPR1;ITPR1-AS1;SUMF1 RE | 1 237730032 A | G | exonic
SNT7640113 5548 ROL_0451_1 | HOMER2 ITPR1;ITPR1-AS1;SUMF1 RE | 15 | 83561556 | G | C | exonic
SN7640113 5558 ROL_0481 1 | EPS15L1 AGFG2 RE | 19 | 16528403 | C | T | exonic
SN0000000_8623__PND5133937_1| DDX41 U2SURP IGE| 5 1769396501 G | C | splicing




4.4.8 Over-representation of gene-disease associations

DisGeNET is a discovery platform integrating information on gene-disease associations from
public data sources and literature [255]. The current version (DisGeNET v4.0) contains 429,036
associations between 17,381 genes and 15,093 diseases ranked according to supporting evidence.
Over-representation analysis of genes that are deleted in both GGE and RE together (134 genes)
showed significant over-representation (empirical p-value = 0.012) of epilepsy-associated genes
(APBA2, CHRNA7, CNTNAP2, F5, GABRAS5, GABRB3, GRIN2A, KCNQ1, MT1E, PTPRZ1,
SCN1A, SGCG, SSTR4). We observed a similar result for GGE (49 genes; empirical p-value =
0.009; overlapping genes: CNTNAP2, F5, MT1E, PTPRZ1, SCN1A, SGCG, and SSTR4), but
we did not see an over-representation in RE (85 genes; empirical p-value = 0.217; overlapping
epilepsy genes are APBA2, CHRNA7, GABRA5, GABRB3, GRIN2A, and KCNQ1). This may

reflect the heterogeneous risk factors in adulthood epilepsies compared to RE.
4.4.9 Protein-protein interaction network analysis

We searched for network modules carrying a higher deletion burden with Ingenuity Pathway
Analyser (IPA®). Considering GGE and RE together and using brain-expressed genes as an
input for IPA we identified a total of 12 networks. The identified network scores ranged from
two to 49 and the number of focus molecules in each network ranged from one to 24. Of all the
12 identified networks (see Supplementary Material), the network shown in Figure 4.2 is the top-
ranked network with a score of 49 and 24 focus molecules. It is associated to the terms “Nervous
system development and function”, “Neurological disease” and “Behavior”. The network reveals
an interesting module where the genes CAPN1, GRIN2A, ITPR1, SCNA1 and CHRNA7 are
central. Interestingly, CAPNI is well ranked (no deletion or duplication) in the ExAC CNV
records (Table A.4) and it is not covered by BCG, epilepsy and autism data sets used in this
study.
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Physiological System Development and Function

Name p-value

IGE+RE

Nervous System Development and Function 2.74E-02 - 3.36E-06
Tissue Morphology 2.62E-02 - 4.20E-06

Behavior Auditory and Vestibular System Development 2.37E-02 - 3.63E-05

and Function

Organ Morphology 2.43E-02 - 5.29E-04
RE

Nervous System Development and Function 4.90E-02 - 3.89E-05
Tissue Morphology 4.90E-02 - 1.34E-04
Behavior 4.90E-02 - 2.56E-04

Auditory and Vestibular System Development and Func- 4.53E-02 - 2.59E-04
tion
Organ Morphology and Vestibular System Development 4.90E-02 - 2.59E-04

and Function

IGE

Nervous System Development and Function 4.91E-02 - 2.28E-04
Tissue Morphology 4.07E-02 - 2.28E-04
Behavior 4.47E-02 - 4.62E-04
Hematological System Development and Function 3.81E-02 - 6.79E-04
Immune Cell Trafficking 3.81E-02 - 6.79E-04

Table 4.3: Physiological System Development and Function
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Top Networks

IGE4+RE Associated Network Functions

1 Nervous System Development and Function, Neurological Disease, Behavior

2 Connective Tissue Disorders, Developmental Disorder, Skeletal and Muscular
Disorders

3 Cell-To-Cell Signaling and Interaction, Molecular Transport, Small Molecule
Biochemistry

4 Cancer, Organismal Injury and Abnormalities, Reproductive System Disease

5 Carbohydrate Metabolism, Lipid Metabolism, Small Molecule Biochemistry

RE

1 Neurological Disease, Organismal Injury and Abnormalities, Psychological
Disorders

2 Cell Morphology, Nervous System Development and Function, Tissue Mor-
phology

3 Cellular Development, Cellular Growth and Proliferation, Hematological Sys-
tem Development and Function

4 Embryonic Development, Organismal Development, Tissue Morphology

5 Cellular Compromise, Cell Cycle, Amino Acid Metabolism

IGE
Carbohydrate Metabolism, Small Molecule Biochemistry, Cell Signaling
Cancer, Organismal Injury and Abnormalities, Endocrine System Disorders
Cancer, Dermatological Diseases and Conditions, Organismal Injury and Ab-
normalities

4 Lymphoid Tissue Structure and Development, Tissue Morphology, Behavior

Table 4.4: Top enriched networks from the IPA analysis.
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Figure 4.2: Network analysis of brain-expressed genes. The genes were filtered by the CNVs identified in both
GGE and RE together. The top network from the pathway analysis generated by Ingenuity Pathway Analyser
(IPA®) is shown.

4.4.10 Enrichment for likely disruptive de-novo mutations

Many studies on neuropsychiatric disorders such as autism spectrum disorder, epileptic en-
cephalopathy, intellectual disability and schizophrenia have utilized massive trio-based whole-
exome sequencing (WES) and whole-genome sequencing (WGS). Epilepsy candidate genes with
de novo mutations (DNMs) were searched in the NeuroPsychiatric De Novo Database, NPden-
ovo [256]. DNMs were found in GABRB3, SHANK1, ITPR1, GRIN2A, SCN1A, PCDHB/ and
IQGAP2.

4.5 Discussion

We analysed a WES dataset of 390 epilepsy patients (196 GEE, 194RE) for microdeletions.
The deletion rate per individual with at least one deletion in cases compared to 572 controls
showed statistical significance in both GGE and RE. Enrichment for known epilepsy and autism
genes led to gene sets with synaptic and receptor functions which were mainly represented in
Rolandic cases (Table 4.3). The top PPIN enriched in GGE was associated with “carbohy-

drate metabolism”, “small molecule biochemistry” and “cell signaling”, whereas the top net-
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works associated with RE are “neurological disease”, “organismal injury and abnormalities” and
“psychological disorders”, this is reminiscent of our previous attempt to classify metabolic and

developmental epilepsies [14].

Among single-gene deletions, CDH22, CDH12 and CDHS8 are of particular interest; CDH12
is a cadherin expressed specifically in the brain and its temporal pattern of expression seems to
be consistent with a role during a critical period of neuronal development [257]. Moreover, a
group of cadherins, CDH7, CDH12, CDH18 and PCDH12, are reported to be associated with
bipolar disease and schizophrenia [258]. The smallest deletion (1,166 bp) that we could detect
in this study concerns NCAPD2; this gene is annotated in the autismkb database [259]. It is
an important component of the chromatin-condensing complex, which is highly conserved across
metazoan. This gene was previously found to be associated with Parkinson’s disease [234] and
its paralog NCAPDS3 is associated with developmental delay [260].

Deletions of brain-critical exons pointed to the ITPR1 deletion, which has been reported to be
associated with spinocerebellar ataxia type 16 [261, 262]. CNTN1 is another deletion of interest,
the gene is highly expressed in fetal brain, it encodes a neural membrane protein which functions
as a cell adhesion molecule and may be involved in forming axonal connections/growth and in
neuronal migration in the developing nervous system [263, 264]. Moreover, its paralogs CNTN2
and CNTN/ are associated with epilepsy [265] and autism [266], respectively. Interestingly, in
the ExAC data, the brain-expressed genes ITPRI and CNTNI show the third and fourth highest

intolerance score ranks, respectively (Table A.4).

Protein-Protein interaction network analysis revealed the CAPN1 deletion as an interesting
candidate gene; this is a double gene loss (4,270 bp) spanning CAPNI (exon 17 to 22 out of 22
exons) and SLC22A1 (exon 1 out of 10 exons). SLC22A1, a transporter of organic ions across
cell membranes, is lowly expressed in the brain, whereas CAPN1 is highly expressed in the
brain. Calpainl (CAPNI) belongs to the calcium-dependent proteases, which play critical roles
in both physiological and pathological conditions in the central nervous system. They are also
recognized for their synaptic and extra-synaptic neurotoxicity and neuro-protection [267]. Several
ion channels, including GRIN2A, [268] are calpain substrates. Further, a missense mutation in
CAPN1 is associated with spino-cerebellar ataxia in the Parson Russell terrier dog breed [269]

and has recently been reported in humans with cerebellar ataxia and limb spasticity [270].

Additional candidate genes can be identified on the periphery of the IPA network (see Fig 2):
1) CNTN1 (commented on above), 2) SACS, for which a large deletion (> 1Mb) was found, and 3)
the single gene deletion of KCNQ1 (~ 57 kb). For SACS, a SNV is reported to be associated with
spastic ataxia [271] and epilepsy [272]. KCNQ@1 and its paralog KCNQ@3 are subunits forming an
expressed neuronal voltage-gated potassium channel. Further, hypomorphic mutations in either
KCN@2, an established epilepsy-associated gene [273], or KCNQ@3 are reported to be highly
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penetrant [274]. KCNQ@1 is co-expressed in heart and brain; it is found in forebrain neuronal
networks and brainstem nuclei, regions in which a defect in the ability of neurons to repolarize
after an action potential can produce seizures and dysregulate autonomic control of the mouse

heart [275], yet one should be cautious as no validation is available for human.

Enrichment for likely disruptive de novo mutations in several genes suggests that deletions
of these genes could cause a similar phenotype as in the NPdenovo and consequently will be
penetrant in the heterozygotic state. This is indeed the case for ITPR1, for which recessive and
dominant de novo mutations causing Gillespie syndrome [276], a rare variant form of aniridia
characterized by non-progressive cerebellar ataxia, intellectual disability and iris hypoplasia, have
been described. Two of the genes, which we have identified as ITPRI interactors, RYR2 and
SPTANI, are also DNM genes in DPdenovo.

In summary, by filtering and comparison to genes that are (1) evolutionary constrained in
the brain, (2) implicated in autism and epilepsy, (3) spanned by ExAC deletions, or (4) af-
fected by neuropsychiatric associated de novo mutations, we observed a significant enrichment of
deletions in genes potentially involved in neuropsychiatric diseases, namely GRIN2A, GABRBS3,
SHANKI1, ITPR1, CNTN1, SCN1A, PCDHB/, IQGAP2, SACS, KCNQ1 and CAPN]1. Interac-
tion network analysis identified a hub connecting many of the epilepsy candidate genes identified
in this and previous studies. The extended search for likely deleterious mutations in the first
order protein-protein interactions and NPdenovo database pointed to the potential importance
of ITPR1 deletion alone or in combination with RYR2 and SPTAN1 deleterious mutations.

We are aware that the set of epilepsy exomes that we screened for CN'Vs in the present study,
although the largest analyzed so far, is still small given the genetic complexity of the disease
and its population frequency. However, this study appears to provide a contrasting view to the
genetic bases of childhood and juvenile epilepsies, as the top protein—protein interactions showing
that GGE deleted proteins are preferentially associated with metabolic pathways, whereas in RE
cases the association is biased towards neurological processes. Scrutinizing of additional patients’
exomes/genomes and transcriptomes should provide an efficient way to understand the disease
aetiology and the biological processes underlying it. The results presented here may contribute
to the understanding of epilepsy genetics and provide a resource for future validations to improve

diagnostics.
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CHAPTER b

EXCESS OF SINGLETON LOSS-OF-FUNCTION VARIANTS IN
PARKINSON’S DISEASE

5.1 Abstract

Parkinson’s disease (PD) is a complex disease. Besides variants in high-risk genes, multiple
other genes associated to sporadic PD were discovered via genome-wide association studies. Yet,
there are a large number of genetic factors that remain unexplored. In order to unravel the
genetic factors that play a role in PD, we studied the whole-exome sequencing data available
as a part of Parkinson Progression Markers Initiative (PPMI). After quality filtering, the final
dataset comprised of 352 PD cases and 149 ethnically matched controls. We performed burden
tests at exome-wide level for different variant classes. We observed a significant exome-wide bur-
den of singleton loss-of-function variants in cases compared to the controls (corrected Pgi,=0.01,
OR=1.09, CI=1.03-1.16 and corrected Pemp=0.002) but not in the singleton synonymous vari-
ants (corrected Pgm= 1, OR=0.99, CI=0.97-1.02 and corrected Pemp = 0.55). Furthermore,
no burden of singleton loss-of-function (LoF) was identified in a group of genes identified via
genome-wide associated genes, pointing into the direction of polygenic burden. Additionally,
no significant exome-wide burden of rare variants was detected either. Our study supports the
complex disease notion of PD by highlighting its convoluted architecture. Finally, we built a
prediction model with an AUC=0-709 £+ -0047 (95% CI) based on logistic regression with a
combination of singleton LoF variants, common poly risk variants, and family history of PD as
the features. Our results outperform the state-of-the-art classification model for the PPMI data
set [277], which reached an AUC=0.639 based on common variants. By just adding two more

features we reached an AUC=0-709 and we show that the addition of a novel singleton LoF score
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per individual substantially improves the AUC. The main finding of this study is to discover the
complex genetics of PD at an exome-wide level and to show that prediction models based on
rare/ultra-rare variants plus common variants perform better. Such prediction models could aid

the clinicians in decision making during the diagnosis of PD.

5.2 Introduction

Parkinson’s disease is a neurodegenerative disorder and is linked to several genetic and envi-
ronmental factors. Several genes were identified by sequencing studies that were conducted under
familial design [278]. Large scale meta-analyses have identified several genes that are associated
to PD [109] in the case-control setting [279, 280]. As the common variants alone lack to explain
the entire heritability of PD, there might be other causes such as DNA methylation levels [281],
rare [19], ultra-rare or singleton variants (seen in only one sample in the cohort), variants which

could fill in the missing gap [282].

In order to identify the disease associated variants/genes, an array of burden tests [199,
283] have been developed to aggregate the signal from rare or common variants acting in a
similar direction or with different directions. Even after aggregating the variants at the level of
genes, there is still a limited power to attain genome-wide statistical significance and we often
require larger sample sizes to uncover novel disease associations. To increase the statistical power,
variants can be aggregated at a higher level instead of gene sets and pathways, or across the whole
genome. For instance, it has been previously shown that, in schizophrenia there is an excess of
genome-wide ultra-rare variants [78] in cases versus controls and also in a group of genes [284].
Whereas, in sudden unexpected death in epilepsy [285] there is a genome-wide excess of rare
disruptive variants. In this study, we investigated the whole exome sequencing (WES) data from
PPMI consortium [286] and performed an exome-wide burden analysis by aggregating the rare

and singleton variants in the entire exome.

Previous studies have also conducted the analyses based on the genetic data from PPMI to
build predictive models in order to differentiate PD cases from the healthy controls [287-289] and
to sub-type the PD cases [290]. Similarly, the PPMI exome sequencing data has been employed
as a replication dataset to show a significant burden in a group of 54 lysosomal genes in PD
[291] and to test the burden of rare loss-of-function (LoF) variants in 27 candidate genes [19].
Further, it was utilized to describe LoF variants in TRAP1 [292]. But, an unbiased exome-
wide study to test the burden in PD cases versus healthy controls is still missing. A previous
study also aimed to identify the rare variants in PD by conducting the burden analyses [293]
and showed the partial role of rare variants in PD. In our study, we performed burden analyses
at exome-wide level and showed an increased burden of singleton LoF variants in cases versus

controls. Our findings implicate non-synonymous as well as stop-altering and splice site variants

95



at a genome-wide level and highlight the polygenic nature of PD.

On the basis of polygenic risk score (PRS), singleton count, and the family history of PD,
we trained a logistic regression and a random forest to classify PD and healthy controls with a
relatively high AUC of 0-709. This approach highlights that, rare/ultra-rare variants along with
the common variants confer a risk for PD and they should also be included in generating the PRS
for PD. The significance of singleton count alongside standard polygenic risk could translate to

improved prediction models for PD.

5.3 Patients and methods

The Parkinson’s Progression Markers Initiative (PPMI) study is an effort to identify the
biomarkers of PD progression [286]. Detailed information about this initiative and the data
can be found on their website (http://www.ppmi-info.org). Exome sequencing was performed
on whole-blood extracted DNA samples collected according to the PPMI Research Biomarkers
Laboratory Manual using Illumina Nextera Rapid Capture Expanded Exome Kit. Nextera Ex-
panded Exome targets 201,121 Exons, UTRs and miRNA and covers 95.3% of Refseq exome.
>340,000 probes are constructed against the human NCBI37/hgl9 reference genome. Targeted
genomic footprint is 62Mb. Library preparation for next-generation sequencing using Nextera
Rapid Capture Expanded Exome Kit was performed per manufacturer’s protocol (Illumina, Inc.
San Diego). Exome- enriched libraries (multiplexed sets of 12 samples) were sequenced on the
Ilumina HiSeq 2500 sequencing platform using 2 x 100 bp paired-end read cycles. Briefly, the
variants were called following GATK [23] best practices. The initial PPMI exome dataset com-
prised of 404 PD and 183 healthy controls, which were filtered by several criteria as described

below.
5.3.1 Low quality samples filter

Number of alternate alleles, number of heterozygotes, Ti/Tv ratio, number of singletons
and call rate served as data quality parameters. They were calculated by PLINK/SEQ (https:
//atgu.mgh.harvard.edu/plinkseq) i-stats command. Any sample with >3 standard deviation
(SD) from the mean in any of the above mentioned metrics was excluded from the analysis. Next,
we selected the variants that were common between HapMap(version 3.3) [37] and the current
dataset. The selected variants were further filtered to be: 1) Only bi-allelic SN'Vs, 2) with a call
rate >98% and 3) not in linkage disequilibrium. The variants filtered above were included to
check cryptic relatedness, deviations from reported sex and to perform population stratification

analysis via eigenstrat [42].
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5.3.2 Relatedness filter

Cryptic relatedness check was performed via both PLINK [39] and KING [40] algorithms
based on the same set of SNVs as described above. We checked up to second degree relatedness
(Pi_Hat score >0.25) and randomly chose one sample of the identified relative pairs to be

included in the final analyses.
5.3.3 Ethnicity filter

We merged our data with the 1000 genomes (1000g) data and performed population strat-
ification employing eigenstrat with default parameters to confirm the ethnicity of our samples.
Except for few outliers, both cases and controls were clustered with the samples of European
origin in the 1000g data Figure 5.2. In order to determine the ethnicity outliers from the eigen-
strat analysis, a sigma value of 3 was applied as a cut-off (which excludes all the samples with
a SD of >3 based on the first 10 principal components). Additionally, we excluded the samples

>3SD based on the first and second principal components from the eigenstrat analysis.
5.3.4 Variant QC

The downloaded PPMI vcf file had already been filtered for high quality variants according to
the variant quality score recalibration approach as part of GATK best practices by the authors
of original study. In order to be more stringent, we applied additional filters as described below:
1) For SNVs: Variants were filtered for QD < 2.0, FS > 60.0, MQ < 40.0, MQRankSum <
-12.5, ReadPosRankSum < -8.0, DP<10.0, GQ_MEAN<20.0, VQSLOD<0, ABHet >0.75 or
<0.25 and Hardy Weinberg Phred scale P-value of >20. 2) For indels: Parameters for variant
filtration were QD < 2.0, FS > 200.0, ReadPosRankSum < -20.0, DP<10.0, GQ_MEAN<20.0.
Additionally, filtering based on individual genotype quality and read depth is performed by
converting the variant genotypes with a read depth of <10 and GQ of <20 to missing by the
beftools [27]. Finally, only variants with a call rate of >0.9 were kept for further analyses.

5.3.5 Variant annotation

Multi-allelic variants were decomposed based on variant-tests [45] and left normalized by
beftools [27]. Variants were annotated by ANNOVAR [47] version 2016 Junel7 using RefSeq and
Ensembl gene annotations, the dbNSFP v3.0 [51] prediction and conservation scores as well as
genome-wide CADD [58] scores. Exonic and splice site variants (EXONSPLICING) were selected
according to RefSeq and Ensembl annotations. Rare variants were defined as variants with minor
allele frequency(MAF) < 0.005 in European population of public databases such as 1000 genomes
[34], ExAC (release 0.3) [43], and the Exome variant server (http://evs.gs.washington.edu/
EVS). Singleton variants were defined as the variants present in only one sample in the entire

dataset (AC=1). We divided the rare and singleton exonic and splicing variants into different
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variant classes such as: a) nonsynonymous+LoF variants (NONSYN+LoF), b) loss-of-function
(LoF) variants defined as stop gain, stop loss, splice site variants and all insertions/deletions
(LoF), ¢) NONSYN variants with a CADD phred score >10 (CADD10), d) NONSYN variants
with a CADD phred score >20 (CADD20) and e) synonymous variants (SYN) as a control
variant set, as they are assumed to be functionally neutral. All the analyses described below

were performed separately for each variant class for both rare and singleton variants.
5.3.6 Excess of singleton variants

We checked whether rare and singleton variants (variants present in only one sample, AC=1)
were overrepresented in cases compared to the controls. In order to do that, first we generated
an individual burden score for each sample by counting number of variants in each variant class.
Then we compared the individual burden score of cases and controls by two different approaches:
First, for each variant class, we constructed a generalized linear model by correcting for total
number of singleton variants called in that sample, gender and first 10 principal components
from the eigenstrat analysis as covariates and a P-value(Pgiy) was generated. Second, coverage
or sample size bias could lead to an increased number of singletons, in order to account for this
bias, we performed 10,000 sample label permutations and for each permutation we computed the
one-sided Wilcoxon rank sum test [294, 295] to calculate a P-value, by comparing the individual
burden score per sample between cases and controls. Then, the permutation P-values were
compared with the original P-value to generate an empirical P-value (Pemp). We chose the
Wilcoxon rank sum test because it accounts for differences in sample sizes and the presence
of any outlier samples [296]. R version 3.4.2 was employed to calculate all the P-values. We
corrected for 10 comparisons for multiple variant classes (5 variant classes in rare and singleton
groups) according to the “bonferroni” method implemented in function “p.adjust” in R version
3.4.1.

5.3.7 Geneset burden analysis

In order to identify whether there was a polygenic burden or only a few genes contribute to
the observed burden, we restricted our burden analysis as described above to a group of 74 PD

associated genes that were identified previously in a large-scale meta-analysis [109].
5.3.8 PRS generation

After the QC, the final dataset comprised of 352 cases and 149 controls, the summary of
the samples along with the clinical scores are given in Table 5.1. In order to generate PRS per
sample, summary statistics of 43 SNPs that were found to be genome wide significant from the
meta analysis [109] were selected are given in Table A.2. PRSice [297] with default parameters
was used to calculate PRS per each sample. In addition, we also included the LRRK2 p.G2019S
into the PRS calculation (PRS_LRRK2). However, we did not include it in the final analysis as
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it showed inferior predictive ability (Table 5.1) compared to PRS without accounting for LRRK2
p-G2019S variant. A clear difference in the distribution of PRS in cases and controls can be seen

in Figure 5.1.

60
40
case
control
20
0
-0.03 -0.02 -0.01 0.00
PRS

Figure 5.1: Distribution of PRS. There is a clear shift in PRS in the cases compared to the controls.
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ANOVA /Chi-sq

Feature Cases (n=352) Controls (n=149) F-statistics
P-value
Clinical features
QUIP Score 0.285 (0.621) 0.262 (0.728) 7.157 E-1 0.13
ESS score 5.949 (3.500) 5.581 (3.470) 2.837 E-1 1.15
Benton Summary Score 12.835 (2.127) 13.148 (1.919) 1.234 E-1 2.38
Total Semantic Fluency Score 48.855 (11.544)  51.987 (11.009) 5.182 E-3 7.88
T Anxiety 32.137 (9.284)  28.456 (6.773) 1.571 E-5 19.02
Family history of PD (%) 87 (24.71) 7 (4.69) 1.553 E-7 27.52
MoCA Total Score 27.182 (2.260) 28.242 (1.127) 8.673 E-8 29.52
SCOPA-AUT Total Autonomic 12.273 (8.757)  7.824 (6.840) 6.014 E-8 30.27
REM Sleep Behavior Score 4.233 (2.690) 2.812 (2.236) 2.551 E-8 32.04
S Anxiety 32.906 (10.087) 27.349 (7.516) 3.069 E-9 36.45
Symbol Digit Modalities Total Correct 41.392 (9.655) 47.456 (10.814) 1.302 E-9 38.24
UPDRS Score Part I 5.500 (4.021) 2.716 (2.518) 3.986 E-14 60.65
UPDRS Score Part II 5.923 (4.171) 0.392 (0.984) 0.000 E4+0 253.26
UPSIT Raw Score 22.429 (8.251) 34.443 (4.394) 0.000 E-0 280.91
UPDRS Total Score 32.125 (12.808)  4.304 (4.114) 0.000 E+0 666.62
UPDRS Score Part 111 20.719 (8.751) 1.196 (2.195) 0.000 E40 714.66
Non-clinical features
Male (%) 235 (66.76) 97 (65.10) 7.193 E-1 0.13
age at onset/age of last examination 61.841 (9.584) 60.934 (10.463) 3.472 E-1 0.89
PRS_LRRK2 0.093 (0.008) 0.091 (0.007) 1.168 E-2 6.41
Singleton Count 12.165 (4.326) 10.631 (3.739) 1.861 E-4 14.18
PRS -0.012 (0.008)  -0.015 (0.007) 2.268 E-5 18.3
Family history of PD (%) 87 (24.71) 7 (4.69) 1.553 E-7 27.52

Table 5.1: Summary statistics and predictive ability of various clinical scores available from the PPMI consortium
and the features generated in this study. For independence/significance testing we applied ANOVA for continuous
data and Chi-square for binary data. The values in brackets indicate SD values unless stated otherwise.

5.3.9 Construction of risk models

Several PD risk models were built previously [277] by utlilizing a PRS which is generated
based on common variants. However, in our study we observed a significant difference in the
count of singleton LoF variants between cases and controls (Figure 5.3). Hence, as an additional
variable the count of singleton LoF variant per individual was applied as an additional variable
and built an improved prediction model. Two state of the art approaches namely logistic re-
gression and random forest were chosen to construct and test the prediction models. All the
analyses were performed using Ada, a novel data exploration and analytic platform developed

at Luxembourg Centre for Systems Biomedicine (publication in progress).

Ada is a performant and highly configurable system for secured integration, visualization, and

analysis of heterogeneous clinical and omics data sets. Ada allows users to conveniently explore
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and filter data and produce dynamic and personalized “views” containing charts and widgets for
various statistics. Ada currently harbors around 1300 data sets from diverse studies including
LuxPark, DeNoPa, PPMI, TREND, GBA, ADNI, and mPower.

For more advanced statistical analysis and machine learning, Ada employs Spark ML li-
brary (https://spark.apache.org), which is a performant and scalable distributed computing
library. This covers a wide variety of classification, regression, clusterization, feature selec-
tion, normalization, and time-series processing routines. Ada is available for registered users at

https://ada.parkinson.lu.
5.3.10 Input Features and Classification Models

A final list of input features was generated by evaluating various clinical and non-clinical
features for their predictive ability by employing one way ANOVA for continuous features and
Chi-square test for categorical variables. A one way ANOVA compares the means from two
independent (unrelated) groups by using the F-distribution. The principle behind ANOVA is
that, according to null hypothesis, the means of different groups being compared are equal.
Hence, a significant P-value (0.05 in our case) shows that the means of two groups are unequal.
The F-statistics and P-values obtained from ANNOVA /Chi-sq test are shown in the Table 5.1.

After the selection of input features, we built four models as described below:
o A model based on PRS only (modelpgg)
« A model based on singleton LoF score only (modelgingieton)
« A model based on singleton LoF score and PRS (modelgingleton PRS)

e Finally, an integrated model comprising of singleton LoF score, PRS and PD family history

(mo delintegrated ) .

The parameters of our classification models were set to defaults provided by Spark ML library:

« Binomial logistic regression - L2 regularization, fitting the intercept, max. 100 iterations,
and tolerance of 10E-6.

e Random forest with depth 2 - max. 32 bins, 20 trees, without subsampling of training
data.

As we discuss in Section 5.4.4 the reason for a rather shallow architecture of the random forest
is a small amount of input features, which leads to overfitting. Before training we normalized the
features to z-scores and obtained two sets: with and without 50% subsampling of cases. Each
iteration we split the sets randomly with 0.9 training-test ratio and fed the training part to our

classifiers. We repeated this process 1000 times and reported the mean test AUC as a target
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evaluation metric.

5.4 Results

5.4.1 Population stratification and relatedness check

As it can be seen from Figure 5.2, except for a few outliers both the cases and controls were
clustered together with the European samples of the 1000 genomes data. This observation is in
line with the previous observations from another study based on PPMI data which was performed
on genotype array data [287]. After the filtering based on ethnicity, cryptic relatedness and
quality parameters the final dataset comprised of 367 PD and 159 control samples. The quality
metrics are shown in Table 5.2, the Ti/Tv ratios of exonic/splicing variants is >3 indicating the

good quality.
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PPMI + 1000 genomes
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Figure 5.2: A) A figure representing the ethnicity of samples in the current study. The sample were represented
along with samples within 1000 genomes study. Each colour represents different ethnicities and each shape rep-
resents the super population to which the samples belong to. The abbreviations of the legend are given below.
ASW: Americans of African Ancestry in SW USA, CEU, CHB: Han Chinese in Beijing, China, CHS: Southern
Han Chinese, FIN:Finnish in Finland, GBR: British in England and Scotland, JPT: Japanese in Tokyo, Japan,
LWK: Luhya in Webuye, Kenya, MXL: Mexican Ancestry from Los Angeles, PUR: Puerto Ricans from Puerto
Rico, TSI: Toscani in Italia, YRI: Yoruba in Ibadan, Nigeria. AFR: African, AMR: Ad Mixed American, EAS:
East Asian, EUR: European. B) Samples included in the analyses after final QC.

103



Number of cases 367
Number of controls 159
Number of variants 4,87,024
Number of exonic/splicing variants 2,32,762
Ti/Tv ratio of exonic/splicing variants 3.07

Table 5.2: Metrics of PPMI dataset after QC.

5.4.2 Excess of rare singleton LoF variants

Exome-wide burden was not seen when we performed the burden analysis of rare variants,
however as shown in Figure 5.3, when we restricted our analysis only to singleton variants it could
be seen that there is an excess of singleton LoF (corrected Pemp=0.002, corrected Pglm:0.0l)
variants in cases compared to controls [298]. Whereas, no significant difference was seen between
cases and controls in neither the SYN variants (corrected Pemp =0.55, corrected Pgim=1) nor in

the other variant classes.
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Figure 5.3: Plot representing the excess of singleton variants in cases versus the controls. Each dot represents the
odds ratio generated by the glm. The values on top of each point represents corrected P-value from glm, empirical
P-value from wilcoxon rank sum test respectively, they are separated by “/”. If both the corrected P-values were
below 0.05 they are highlighted in red with an “*” on top.
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5.4.3 Evidence of polygenic burden in PD

When we restricted our analysis to a group of genes that were significantly associated to PD,
we did not detect an increased burden of singleton LoF variants (Pemp= 0.5, Pgim=0.49). This
shows the polygenic nature of PD where there is a distribution of burden across the genome

rather than being confined to a group of already known PD associated genes.
5.4.4 Prediction Performance

We trained our prediction models on non-clinical features only. It is due to the fact that,
undoubtedly, the clinical scores are designed to distinguish the PD cases from healthy controls,
the very classification problem we aim to predict. Therefore, they make the prediction rather

trivial.

For instance, the clinical scores of University of Pennsylvania Smell Identification Test (UP-
SIT) and Unified Parkinson’s disease rating scale (UPDRS), which describe certain aspects of
PD phenotypes, separate the cases and controls into two distinct groups as can be seen in Figure
5.4. In our experiments the prediction models based on these two features could easily reach an
AUC>0.95 (results not reported here). Additionally, by performing ANOVA /chi-square test we
demonstrated that a majority of the clinical features have a very low P-value and thus posses a

high predictive power (Table 5.1).

UPDRS Total Score vs. UPSIT Raw Score
45

40

35 * > o
®w o » o
W % o
<500 &
®w oo
30 S o
-
 a -
@ *> -
S 2R
S 25 >
.
Z Case
= . ¢ Control
& 20
o
=3
.
-
15 -
10
5
0
-20 0 20 40 60 80

UPDRS Total Score

Figure 5.4: UPDRS score versus the UPSIT score of the samples in PPMI dataset. The cases and controls are
separated into two distinct groups.
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In our final construction we shortlisted our features to three: PRS, singleton count and
family history of PD as they are shown to have the most significant predictive power out of all
non-clinical features we considered (Table 5.1). Moreover, since we aimed for a minimal set of
predictive features we did not feed gender and age of onset to our models, which were commonly

employed in previous studies [277, 287].

Our main result is that by combining PRS, singleton LoF count and PD family history we
reached an AUC of 0-709 + -0047 (95% CI). Performance of the partial models with the PRS
only, the singleton LoF count only, as well as the PRS and singleton LoF count combined were
substantially lower: 0-621 + -0054 (95% CI), 0-604 + -0051 (95% CI), and 0-654 + -0053 (95%
CI) respectively. The reported AUC is a mean over 1000 repetitions on test sets randomly drawn

with 0.9 training-test split for the binomial logistic regression.

Our predictor that is built on the combination of common and singleton count with an AUC
of 0-653 £ -0-005 (95% CI) outperforms the state-of-the-art classification model for PPMI dataset
built on the basis of PRS [277] with an AUC=0.639, which also employed a logistic regression.
By feeding solely the PRS to our logistic regression we are reaching an AUC=0-621 + -0054,
which is comparable to the previous study [277]. The difference in performance could be due
to different utilization of SNPs, samples, and methods to generate the PRS. Finally, by adding
the family history of PD an AUC climbs to 0-709 4+ -0047. That is more than 10% performance

improvement compared to the state-of-the-art by applying only 3 non-clinical variables.

The study [277] also presented an UPSIT-score-only model with a very high performance
(AUC = 0-901 £ -027 (95% CI)). By adding the demographic features and PRS they attained an
AUC = 0-923 + -23 (95% CI). Even though, it is a significant increase as shown in the study based
on DeLong’s test for correlated ROC curves (|z| = 3.027, p-value = 0.002), in relative terms the
PRS could increase the AUC only marginally and thus, the prediction is almost fully dominated
by the UPSIT score. We wanted to avoid that and perform a more challenging prediction without

including any clinical scores as discussed on the top of this section.

Besides the logistic regression we trained also another machine learning classifier, a random
forest. As presented in Figure 5.5, the logistic regression performs better than the random forest.
This is due to the fact that our classifiers were fed with a very few variables (1-3), which makes
the task too simple for the random forest. As opposed to the logistic regression, which has almost
identical performance on the training and test sets, the random forest overfits the training data
(AUC=0.739). This would even worsen for random forests with larger depths (hence the shallow
setting). In future work, instead of being minimalistic we will utilize dozens or hundreds of

partial or intermediate genetic variables, which are expected to favor the random forest.
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Figure 5.5: The AUC values of various models at 95%CI. Two predictors namely logistic regression and ran-
dom forest were applied. PRS = PRS only model, Singleton = A model based on singleton LoF score only,
PRS+Singleton = A model based on singleton LoF score and PRS and Integrated = Model comprising of single-
ton LoF score, PRS and PD family history.

5.5 Discussion and Conclusion

Even 200 years after the first description of PD by James Parkinson, its diagnosis is still
a challenge and no curative treatment available. By studying the WES data of 367 PD cases
and 159 controls we have shown a polygenic burden increases risk for PD. This burden mainly

consists of multiple singleton LoF variants distributed across the exome.

Identification of individual genes that show a genome-wide significance is often difficult pri-
marily due to the small sample sizes and multiple testing correction. However, our results
indicate the additive contribution of singleton LoF variants of an individual to the aetiology of
PD. This finding cannot be attributed to a bias as we have corrected for various confounding
variants by applying the generalized linear models and additionally by performing sample label
permutations. Moreover, to further strengthen our findings, we see a significant burden of sin-

gleton LoF variants but not in functionally neutral singleton synonymous variants in PD. Based
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on the evidence from the current study, we speculate that the genetic risk of PD is not confined
to a group of genes but instead, is distributed across the exome. Hence, in summary our results

support the polygenic inheritance and complex genetic architecture of PD.

In the second logical part of our paper, we trained two classifiers, binomial logistic regression
and random forest, on three features: singleton LoF variants, common variants, and family
history of PD. Our logistic regression model with an AUC of 0-709 + -0047 (95% CI) outperforms
the state-of-the-art classification model for PPMI data set for non-clinical features. Also, we
have shown that the predictive models built on the features based on rare and common variants
perform better compared to the models built on common variants alone. In PD research, a
general consensus is that, in very broad terms, PD is triggered by a combination of genetic and
environmental factors. Nevertheless, because acquiring clinical scores is expensive and laborious,
by limiting ourselves to genetics we make potential diagnostic applications of our models more

practical and scalable, acknowledging the evident deficiency of the information provided.

Despite the fact that there is a exome-wide significance of singleton LoF variants, our study
should be considered preliminary and needs replication in larger PD cohorts. Identification of
variants associated to PD along with the integration of PD specific pathway information that is
represented in resources such as PD map [283, 299] could lead to a genetic diagnosis of PD and

there is an imperative need to decipher such variants to understand the PD aetiology.

The major limitation of the current study is the small sample size. When studying rare
and singleton variants, larger samples sizes are needed to adequately pinpoint certain genes or
variants that are associated with the disorder. Another limitation of our study and of WES
studies in general is that we could only perform burden analyses of coding variants. However,
there might be additional factors such as variants in the non-coding regions which could also
contribute to the progression of PD. Clearly, this could be only tested when WGS data is made
available. We expect that with an increasing number of samples more accurate predictive models
can be constructed and contribution of rare variants in generating these models will improve
significantly. In the future more refined strategies to include rare variants in the construction of
PRS is warranted. It is our hope that we can extend this work and refine our strategy in order
to build an accurate diagnostic model that can be employed in the clinical setting. The PRS

could be also applied to stratify the patients for a personalized medical treatment.
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CHAPTER 0

BURDEN ANALYSIS OF U1l SPLICE VARIANTS

6.1 Abstract

Parkinson’s disease (PD) is a heterogeneous neurodegenerative disorder with monogenic forms
representing prototypes of the underlying molecular pathology and reproducing to variable de-
grees the sporadic forms of the disease. There have been several reports of variants causing an
abnormal splicing in PD especially the Ul splice variants. However, a large-scale study mea-
suring the effect of Ul splice variants in PD is still missing. In our study, we performed an
exome-wide burden analysis of less common Ul splice variants predicted to be deleterious in the
PPMI cohort comprising of 372 cases and 161 controls. Our analysis of exomes revealed that
U1 splice-site mutations were enriched in sporadic PD patients compared to the healthy controls
and majority of the signal is coming from the genes that are expressed in brain. The observed

finding was replicated in a larger independent cohort.

6.2 Introduction

Parkinson’s disease (PD) is increasingly recognized as a heterogeneous disorder, as reflected
by its substantial phenotypic, neuropathological, and genotypic variability [300]. Therefore,
previous models that considered PD as a single disease entity, although successful for devel-
oping symptomatic therapies that compensate for the dopaminergic deficit responsible for the
motor symptoms of PD, fall short in terms of developing neuroprotective treatment strategies
[301]. Focusing on pathomechanisms and understanding the underlying molecular pathology
of neurodegeneration is essential, and genetic stratification of patients into subgroups provides

an important entry point for precision medicine [302]. During the last 20 years, a substantial
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number of genes related to PD were identified, including mutations in genes responsible for rare
monogenic forms of PD. These monogenic forms of PD have become a valuable resource for PD
research, as patient-based cell models display disease-specific cellular phenotypes that recapit-
ulate the phenotypes found in post-mortem brain tissue [303]. According to this concept, the
validation of clinicogenetic subtypes of PD may be achieved based on rare but strong molecular
signatures and subsequently applied to the different pathophysiological tiers within each disease
subtype [304].

Mutations disrupting splicing in monogenic PD have recently come into focus, and variants
predicted in silico to cause aberrant splicing have been described for PINK1, GBA, PARK7, and
PARK?2 [121, 305-307]. We show for the first time for the common sporadic form of PD that yet
unrecognized mutations in Ul splicing sites are overrepresented in exomes from patients com-
pared to controls. Our findings are in line with large-scale characterization of disease-associated
mutations that found splicing mutations largely underestimated and open the door for the mech-

anisms involving splicing aberrations in PD [308].

6.3 Patients and Methods

6.3.1 Discovery cohort (PPMI)

The Parkinson’s Progression Markers Initiative (PPMI) study is an effort to identify the
biomarkers of PD progression [286]. We used the whole exome sequencing (WES) data available
as part of this project. Detailed information about this initiative and the data can be found on
the project website (http://www.ppmi-info.org/). Briefly, the variants were called following
GATK [23] best practices by the authors of the original study. The data was obtained in the
form of a Variant Call Format file (VCF).

6.3.2 Sample QC

Samples with >3 standard deviation (SD) from the QC metrics (number of alternate alleles,
number of heterozygotes, Ti/Tv ratio, number of singletons and call rate) that were calculated by
using PLINK/SEQ i-stats (https://atgu.mgh.harvard.edu/plinkseq/) were excluded from
the analysis. For population stratification we selected the variants that were common between
our dataset and hapmap version 3.30 [37], present in autosomal chromosomes, not in linkage
equilibrium, call rate > 80%, allele frequency >5% and Hardy-Weinberg equilibrium P-value <
0.001 and used PLINK [39] multi-dimensional scaling (MDS) as described in the study [284] to
identify outliers. Each sample that was >3 SD of the first and the second principal components
was considered as ethnicity outlier and excluded from further analyses. By using the same set
of variants as described above, relatedness check was performed up to second degree applying
PLINK [39] and KING [40] algorithms. From the identified related sample pairs one sample was
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chosen randomly to be included in the final analyses.
6.3.3 Variant QC

Multi-allellic variants were decomposed by using variant-tests [45] and left normalized by
beftools [27]. The authors of the PPMI study used the variant quality score recalibration (VQSR)
method as recommended by GATK best practices [23] to filter out low quality variants. Addi-
tionally, we used GATK hard filtering to select only high quality SNVs. Variant genotypes with
a read depth (DP) <10 and genotype quality (GQ) < 20 [133] were converted to missing by

using beftools [27] and only variants with a call rate of >0.9 were kept for further analyses.
6.3.4 Variant annotation and filtering

As the current study is focused on Ul splice site variants we restricted our further analyses
to the 5’ consensus splice site positions, i.e., +3 to -6 from the exon/intron boundary. The exon-
intron intervals were obtained from the UCSC table browser based on hgl9 reference genome.
Variants were annotated by using ANNOVAR [47] version 2016December05 using RefSeq gene
annotations and the dbNSFP v3.0 [51] prediction scores. Only rare variant [309], as defined by
variants with a minor allele frequency of < 5% in the European population of 1000 genomes
[309], ExAC (NFE (non-finnish Europeans), release 0.3) [43], and the Exome variant server
(http://evs.gs.washington.edu/EVS) were selected. In order to prioritize the 5’ splice variants
based on their deleteriousness, we used three different scores. The first score is generated by using
the MaxEntScan method [310] which is based on the maximum entropy principle. The other two
scores were ensemble scores (dbscSNV_ADA and dbscSNV_RF) generated from multiple splice
site prediction tools [311] which are available as part of dbNSFP database [51].

6.3.5 Generation of MaxEntScan score

To prioritize variants using MaxFEntScan method, for each SNV that lies in the consensus
splice site region a wild type 9 mer (WT) was extracted from the reference genome (hgl9).
Then, the variant was introduced within the WT sequence by using the python module pyfaidx
[312], hence creating a mutated consensus splice site (MUT) sequence for each variant. In the
next steps, the scores were calculated for both WT and MUT sequences by using the scripts
provided in the MaxEntScan website (http://genes.mit.edu/burgelab/maxent/Xmaxentscan__

scoreseq.html). The relative percentage change (mazentscan__change) was calculated by using:

wild__score—mut_score ) *
wild__score 100

mazxentscan__change = (
6.3.6 Benchmarking of MaxEntScan score

We were interested in the highly deleterious splice variants and, in line with our hypothesis,

one recent study has shown that, 21 variants out 30 variants tested within BRCA1 genes were
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predicted by MaxEntScan method and were later confirmed by the functional validation. Out
of the 21 variants that were predicted to be deleterious 18 of them had a wild _score>5 and a
mazentscan__change>70. In order to benchmark our methods and determine reliable cut-offs,
we used two datasets: 1) The professional version of Human Gene Mutation Database (HGMD)
[44] version February 2017, and 2) gnomAD [43], which comprises of variant data from 123,136
exome sequences and 15,496 whole-genome sequences from individuals which were sequenced as

part of various disease-specific and population genetic studies.

We only selected the variants annotated as high confidence and pathogenic (“DM” flag) in
HGMD (HGMDpatho) variants. VCF files were generated for HGMD and gnomAD datasets
for only those variants that were present within the Ul consensus splice regions annotated in
a similar way as we did for the discovery cohort. Density plots based on various scores were

generated for HGMDpatho variants and gnomAD splice variants (see Figure 6.1).
6.3.7 Splice site burden tests

The wild_score generated from the wild type 9mer by MaxEntScan is used to identify a
true splice site. The higher the wild_score the higher the probability of being a true splice site
[311]. We separated the variants into different classes: 1) All the deleterious splicing variants
(DEL.splicing), 2) DEL.splicing variants in coding regions (DEL.exonic.splicing), 3) DEL.splicing
variants within intronic regions (DEL.intronic.splicing), 4) DEL.exonic.splicing variants present
in the genes that are expressed in brain (DEL.exonic.brain.splicing) [236], 5) DEL.exonic.splicing
variants present in the genes that are not expressed in brain (DEL.exonic.nonbrain.splicing), and
6) rare synonymous variants as a negative class. We used a previously published list of brain
expressed genes [236] to test if there is an increased burden in brain expressed genes (n= 14,177)
compared to the non-brain expressed genes (n=6,428). Our hypothesis was that cases carry a
higher number of DEL.splicing variants compared to the controls. For each variant class a VCF
file was generated and the variant counts per sample was calculated by using beftools [27] stats

command.

We performed burden testing by constructing the generalized linear regression models using
R version 3.4.1 while correcting for various confounding factors for each sample such as: 1) Sex 2)
total number of variants remaining after final QC, 3) TiTv ratio of novel variants relative to the
dbSNP version 138 [52], 4) TiTv ratio of variants present in dbSNP version 138, 5) heterozygous
variants to homozygous variants ratio, 6) first ten principal components derived from the multi-

dimensional scaling.
6.3.8 Replication cohort (PDGSC)

We used the WES data available as part of the ongoing Parkinson’s Disease Genome Se-
quencing Consortium (PDGSC) project. The PDGSC dataset is an effort to integrate PD WES
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data generated from multiple studies across different sequencing centres. The variant calling was
performed by the consortium using GATK best practices version 3.4. Similar to the discovery
cohort, we obtained the data in the form of VCF file. Since the PPMI samples are also part
of the PDGSC cohort, all samples overlapping between PPMI and PDGSC were excluded in
beforehand from the PDGSC dataset. PPMI samples within PDGSC were identified based on

their sample ids as well as using relatedness test (see above).
6.3.9 Sample QC

Sample QC was performed by the PDGSC consortium. Briefly, samples were excluded based
on the following parameters: 1) <15x mean coverage 2) discordance between genetic and reported
sex, 3) <85% call rate, 4) outliers for various parameters such as variant counts (all, non-reference
genotypes, hets, singletons, mean minor allele rates), TiTv ratio, mean quality scores for non-
reference variants and mean depth for non-reference variants, 5) heterozygosity outliers (-0.1<
F<0.1) , 6) ancestry outliers >6 SD from means of CEU and TSI for PC1 and PC2 , 7) extract
probands randomly from pairs related at >12.5% and 8) exclude samples<18 years of age or

with missing age data.
6.3.10 Variant QC

Similar to the discovery cohort a VQSR filtering method was employed by the authors of
original study. In addition, we used the same filtering procedure as described above for the
discovery cohort with one difference in the threshold for call rate. As the data was generated at
multiple centres by employing different sequencing protocols we might lose true positive variants
if we would filter too stringently leading to loss of statistical power ultimately. Hence, we used
a less stringent, although a standard threshold [64] of call rate >0.8 for a variant to be included

in the analysis.
6.3.11 Variant detection and annotation

Variants were annotated and splice variants were scored using the same procedure as for the

discovery cohort.
6.3.12 Burden testing

We employed the same procedure for burden testing by adjusting for all the covariates that
were described above for discovery cohort. In order to further adjust for study wide differences, we
used the total number of sites that were fully called within each sample as an additional covariate
along with the other covariates. This approach allowed us to account for any exome-wide biases
arising due to different sequencing protocols that were employed at different sequencing centres

and other confounding factors arising from technical differences. The same can also be noted from
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the fact that there is no statistically significant difference between the number of synonymous

variants (neutral variants) between cases and controls (Fig 6).
6.3.13 Multiple testing adjustment

The P-values from burden analysis of both discovery and replication cohorts were corrected
for multiple testing by the function “p.adjust” (R version 3.4.1) using the false discovery rate

(FDR) method for discovery and replication cohort separately.

6.4 Results

6.4.1 Benchmarking

In the current study, we were interested in variants having a high likelihood causing splice
changes. Hence, in Figure 6.1 (A) and (B) based on HGMDpatho variants, it could be seen
that there is a clear separation in the distribution of majority of variants at a wild_score of 5
(red-dashed line) and at a mazentscan_ change of 70% (blue-dashed line). Whereas, a reversed
distribution could be seen for the gnomAD variants Figure 6.1 (C) and (D). HGMDpatho variants
(Figure 6.1 (A) and (B) showed dbscnu_RF and dbscnv_ADA scores of >0.9 GnomAD variants
in Figure 6.1 (C) and (D) showed scores on the opposite part of the distribution. Based on the
above inferences and the results based on previous study [313], we choose the following cut-offs
for further processing: Deleterious splice site variants (DEL.splicing) were defined as SNVs with
the following criteria: wild_score>5 and maxentscan__change>70 and dbscSNV_ADA score>0.9
and dbscSNV_RF score>0.9. If the ensemble scores were not available for any particular variant

only MaxEntScan method (wild score>5 and mazentscan_change>70) was used.
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Figure 6.1: Determination of cut-offs for wild_score and maxentscan_ change. Dashed lines in each plot indi-
cate the cut-offs that were used to define a variant as deleterious (DEL.splicing). (a) Distribution of wild_score
and mutated_score of HGMDpatho variants, (b) distribution of maxentscan_change of HGMDpatho variants,
(c) distribution of wild__score, and mutated_score of gnomAD variants, (d) distribution of maxentscan_ change
of gnomAD variants, (e) distribution of dbscnv_ RF score of HGMDpatho variants, and (f) distribution of db-
scnv__ADA score of HGMDpatho variants. mutated_score = maxentscan score of mutated 9mers and wild__score

= maxentscan score of all wild type 9mers
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6.4.2 Burden analysis
6.4.3 Discovery cohort (PPMI)

After filtering based on ethnicity, cryptic relatedness, quality parameters and without miss-
ing information for sex, the final dataset comprised of 372 PD and 161 control samples. A total
of 128 DEL.splicing variants (Supplemental Table 2) were included in the final analysis. We
observed a genome-wide burden in cases compared to the controls Figure 6.2 (P-value=0.012,
OR=1.39, CI=1.08 - 1.82, P-value FDR corrected=0.074). The signal is coming mainly from
the DEL.exonic.splicing variants (P-value=0.028, OR =1.37, CI=1.04-1.84, P-value FDR cor-
rected=0.08) rather than from the DEL.intronic.splicing variants (P-value=0.25, OR=1.50,
CI=0.76- 3.21, P-value FDR corrected=0.25). For the DEL.exonic.splicing variants, the major-
ity of the burden is caused by the DEL.exonic.brain.splicing variants (P-value=0.06, OR=1.47,
CI=0.99-2.24, P-value FDR corrected=0.12), compared to the DEL.exonic.nonbrain.splicing vari-
ants (P-value=0.24, OR=1.24, CI=0.86-1.85, P-value FDR corrected=0.25).

6.4.4 Replication cohort (PDGSC)

The final dataset comprised of 2,710 cases and 5,713 controls. A total of 2,328 DEL.splicing
variants were included in the final analysis. Similar to the discovery cohort we observed
an overall burden of DEL.splicing variants in cases compared to the controls (P-value=0.007,
OR=1.04, CI=1.01-1.08, P-value FDR corrected=0.014) here even after multiple testing cor-
rection. The majority of burden after FDR correction is due to the DEL.exonic.splicing
variants (P-value=0.003, OR=1.11, CI=1.03-1.19, P-value FDR corrected=0.011) rather than
the DEL.intronic.splicing variants (P-value=0.09, OR=1.03, CI=0.99-1.08, P-value FDR cor-
rected=0.138). In the DEL.exonic.splicing variants, the burden after FDR correction is com-
ing from the DEL.exonic.brain.splicing variants (P-value=>5.774e-05, OR=1.20, CI=1.10-1.32,
P-value FDR corrected=0.0003) compared to the DEL.exonic.nonbrain.splicing variants (P-
value=0.69, OR=0.97, CI1=0.86-1.09, P-value FDR corrected=0.69).
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Figure 6.2: A forest plot representing the burden analysis across different variant classes. Each dot represents
the odds ratio, the value on top of each dot represents the corresponding uncorrected P-value. Values in red
indicate FDR corrected P-values<0.05. (left) Results of the PPMI discovery cohort analysis, the upper limit
of confidence interval in the plot is restricted to the maximum of odds ratios, (right) results for the PDGSC
replication cohort. SYN = rare and low frequency synonymous variants, DEL.splicing = deleterious splicing
variants, DEL.intronic.splicing = deleterious variants in intronic regions, DEL.exonic.splicing = deleterious variants
in coding regions, DEL.exonic.brain.splicing = DEL.exonic.splicing variants present in genes expressed in the brain,
DEL.exonic.nonbrain.splicing = DEL.exonic.splicing variants present in genes that are not expressed in the brain.

6.5 Discussion

Herein, we describe a novel mechanistic concept for the pathogenesis of PD related to Ul
splice-site mutations. Our findings indicate that the pathogenic relevance of exonic splicing
mutations was underestimated in PD. These results are in line with a recent study showing that
approximately 10% of pathogenic missense variants predicted to alter protein coding essentially
disrupt splicing [308]. Although defective pre-mRNA processing is known to represent a common
cause of human diseases, with approximately 15% of all mutations causing aberrant splicing [314],
for PD pathogenesis, the dysregulation of splicing as an alternative mechanism contributing to
the neurodegenerative process was not systematically addressed [315]. Our analysis of exonic
mutations affecting Ul-mediated splicing using a large dataset for sporadic PD, including WES
results from the PPMI study and from the PDGSC cohort consistently revealed a higher burden

of rare and low frequency exonic variants affecting Ul snRNA binding sites among sporadic PD
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patients [286]. Together, these data indicate an enrichment of disease-associated variants in the
exon-intron boundary of brain expressed genes in PD and underscore the therapeutic potential

of compounds acting on pathological splicing also in sporadic PD cases.

Our study illustrates the promise for treatment approaches in precision medicine in PD
that focus on genetic and molecular stratification. To account for the increasingly recognized
heterogeneity in PD and other neurodegenerative disorders, new strategies need to be developed
for the stratification of patients along shared pathogenic mechanisms. By employing a text
mining approach one can identify the candidate drugs based on the abnormal splicing which may
translate into basket studies referring to patients sharing the same underlying mechanism, as
already shown for precision medicine approaches in cancer, and will allow for clinical trials in

patients across groups that share certain molecular signatures [316].
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CHAPTER [

FAMILIAL-PD

7.1 Abstract

Until today, several variants associated to PD were discovered via large-scale GWAS. Fa-
milial studies conducted via NGS approaches provide an advantage to identify the true cause
of the disease and hence are more powerful. However, a comprehensive study of rare variants
to understand the etiology of PD by large-scale genome sequencing was still missing. Hence,
we conducted a Whole genome sequencing (WGS) based study of familial-PD by analyzing two
independent familial-PD cohorts and a replication case control cohort. By employing WGS and
prioritizing variants based on various functional annotations, we identified several likely candi-
date variants that are rare, predicted to be deleterious and co-segregating with PD. Some, of
them were found in the genes already associated to PD, but majority of them are novel with
regards to their association to PD. Hence, the list of variants generated in this study could serve

as reference to perform functional validations in the future.

7.2 Introduction

Parkinson’s disease (PD) is one of the common neurological disorders in the elderly patients.
In majority of the individuals it is late onset (>58), however there are also some early onset forms
of PD. Till date >70 loci have been shown to be associated to PD [109] via large-scale meta-
analysis and family based studies but the genetic architecture of PD still remains complicated.
Genome-wide association studies (GWAS) have been successful in deciphering novel regions
which increase the genetic risk of PD. The main drawback of GWAS is that, identification of

causal variants is highly unlikely and often, it is necessary to have large cohorts of individuals
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to increase the statistical power to discover rare variants associated to the disease. In contrast,
whole genome sequencing (WGS) or whole exome sequencing (WES) provides an opportunity to
locate rare variants in genes with medium to large effects, especially by sequencing the individuals
in a family and thereby reducing the number of samples that need to be sequenced. Upto 20% of
PD cases are believed to have a familial origin and the genes identified via classic linkage analysis
in families include PINK1, PARK2, PARK7, LRRK2, and SNCA [104, 122, 123, 244, 317, 318].
WGS/WES studies have been highly successful in identifying several novel variants in PD. One
such example is VPS35 [319] in which two novel variants p.Asp620Asn and p.Pro316Ser were
found via WES. A recent study [320] has identified likely deleterious variants in two genes
TNK2 and TNR that are segregating with PD and present in multiple families. Similarly, a
WES based study has identified rare variants in PLXNA/ [321] in PD although their role in PD
remain inconclusive. Hence, family studies are of paramount importance in identifying the causal
variants of PD. Further, studying the families could provide a chance to unravel the complexity
of the disease by showing how multiple variants may act together to influence the disease risk.
For example, in a recent study [111], the rs2421947 variant in DNMS3 was found to reduce the
age at onset (aao) of PD by ~12.5 years in the carriers of LRRK2 p.G2019S variant.

In the current study, we analyzed the WGS data available from two familial-PD studies
without any known genetic cause in the families. The first is a two-stage study in which the
discovery cohort comprised of 16 families consisting a minimum of two affected siblings with PD
and the replication study was conducted with the WES data from 369 PD cases and 159 ethnically
matched controls provided by the PPMI consortium [286]. In our second familial-PD study, WGS
of 90 samples from 36 families with both autosomal dominant and recessive inheritance patterns
was performed. We prioritized the variants by a combination of mode of inheritance analysis,
burden analysis, machine learning and pathway enrichment based approaches and identified

potential candidate genes.

7.3 Identification of novel genes involved in nervous system de-

velopment by whole genome sequencing in PD
7.3.1 Patients and methods

Data generation

Discovery cohort: The discovery cohort comprised of 44 samples of which 16 samples were
female and 28 were male. The mean aao was 57.67 years and all the families were of German
origin. WGS of affected samples was performed by the Complete Genomics, Inc (CGI). Whereas,
the control samples were sequenced by the illumina Hiseq. The complete genomics data was

processed as described in the study [322]. In brief, WGS was performed by Complete Genomics
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using a proprietary paired-end, nanoarray-based sequencing-by-ligation technology [323, 324].
The pedigrees of families selected for the WGS are given in the Figure 7.0

Replication cohort: The replication cohort comprised of WES data of 369 cases and
159 controls generated as part of PPMI [286] consortium. WES was performed on whole-blood
extracted DNA samples that were collected according to the PPMI Research Biomarkers
Laboratory Manual. Illumina Nextera Rapid Capture Expanded Exome Kit which targets
201,121 Exons, UTRs and miRNA and covers 95.3% of Refseq exome was used to perform the
WES. >340,000 probes were constructed against the human NCBI37/hgl9 reference genome
with a targeted genomic footprint of 62Mb. Exome- enriched libraries (multiplexed sets of 12
samples) were sequenced on the Illumina HiSeq 2500 sequencing platform using 2 x 100 bp

paired-end read cycles.
Variant detection and quality control (QC)

Discovery cohort: After QC, DNA samples were sent to Complete Genomics for sequencing.
Next steps of QC, mapping and variant calling for the sequencing data were performed by
Complete Genomics as part of their sequencing service using the Standard Sequencing Service
pipeline version 2.0 (http://www.completegenomics.com/documents/Standard_Sequencing_
Service_Getting_Started_Guide_2.4-2.5.pdf). Sequencing reads were mapped against
NCBI Build 37. For the samples sequenced by illumina, genomic variant call format (gVCF,
https://support.illumina.com/help/BaseSpace_App_WGS_BWA_help/Content/Vault/
Informatics/Sequencing_Analysis/BS/swSEQ_mBS_gVCF.html) files for each sample were
provided by the vendor. In addition to the family controls, we selected an additional 17 controls
from the study [325]. These controls are super centenarians and these are the individuals who
survived beyond 110 years without any known neurological disease. As these samples were
healthy with an age beyond 100 years, we assumed that if a variant is present in these samples
it is not likely to be disease causing. Hence, we excluded all the variants that were concordant
between our study and super centenarians. Furthermore, we excluded the variants present in
the low confidence regions of the human genome such as repeat regions etc., according to the
study [65].

Replication cohort: Variant calling was performed by the PPMI consortium and pro-
vided a variant call format file (VCF) [33]. In brief, the multi-sample VCF was generated by
following the GATK best practices [23] which applies the standard bwa-picard-GATK haplotype
caller pipeline. In order to select only the high quality, unrelated and the samples whose
calculated gender was matched to the reported sex we employed the QC procedure as employed
in [65]. Population stratification analysis to select only the European samples was performed via

eigenstrat [42]. In order to determine the ethnicity outliers from the eigenstrat analysis, a sigma
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value of 3 was applied as a cut-off (which excludes all the samples with a SD of >3 based on the
first 10 principal components). Additionally, we excluded the samples >3SD based on the first
and second principal components from the eigenstrat analysis. The downloaded PPMI vcf file
had already been filtered for high quality variants by the authors of original study according to
the variant quality score recalibration (VQSR) approach as part of GATK best practices. In
order to be more stringent, we applied additional filters as described in the study [65]. Finally,

only variants with a call rate of > 0.9 were kept for further analyses.
Mode of inheritance (MOI) analysis and detection of shared genomic regions

As an intitial step in the discovery cohort, we first combined all the variants from all affected
samples into the union of variants for each set using the CGAtools listvariant command and
CG var-files as input. CGAtools (CG Analysis Tools) version 1.5 was used as provided by CG
and available under (http://cgatools.sourceforge.net). We used the CGAtools testvariant
command to test each genome for the presence of each variant. Only variants that were called in
all genomes within one family were selected for further analysis. We first removed variants that

were not called in at least one genome as high-quality calls (VQHIGH) by CG.

The WGS data of parents was not available in any pedigree, hence we defined the segregating
variants as those that were present in all the PD samples per family and not present in any of
the control samples in the cohort. Due to the fact that, the control samples in our study were
sequenced using a different technology (Illumina), for every variant found to be present in all the
cases per family, we checked for its presence in the control samples and excluded it if present in
any of the sample. Additionally, any variant present in the super centenarians was also excluded
from further analysis. In our study, variants that were shared between two individuals within
the same pedigree should be located within a region that shares one or two identical haplotypes
between the two genomes and is inherited from the same ancestor, a concept, which is also
called identity by descent (IBD). ISCA version 0.1.9 [323, 326, 327] was employed to search for
identical haplotype blocks between all pairs of genomes within each of two sets. Afterwards we
built the intersection of all regions between all of pairs of genomes to determine the regions that
were shared by all genomes from one set. For each set, we filtered out all variants following
autosomal dominant inheritance outside the shared regions and excluded the variants outside

the IBD intervals thereby reducing our variants of interest.
Annotation

The remaining high quality segregating variants in the discovery and all the high quality
variants of the replication cohort were functionally annotated by ANNOVAR [47] version 2016
Junel7 with RefSeq and Ensembl gene annotations. The dbNSFP v3.0 [51] prediction and

conservation scores as well as genome-wide CADD [58] scores were also applied. Exonic and
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splice site variants were selected according to RefSeq and Ensembl annotations. Rare variants
were defined as variants with minor allele frequency (MAF) < 0.01 and < 0.05 for autosomal
dominant and autosomal recessive hypothesis respectively. In order to determine the MAF,
European population of public databases such as 1000 genomes [34], ExAC (release 0.3) [43],
and the Exome variant server (http://evs.gs.washington.edu/EVS) were used. From the rare
exonic and splicing variants variants, we selected the variants for downstream analysis based on
the following criteria: 1) Loss of function (LoF) variants were defined as stop gain, stop loss,
splice site variants and all insertions/deletions or 2) Nonsynonymous variants with a CADD

phred score >15 according to the study [65].
Phenolyzer

The variants prioritized using above approaches were collapsed into genes and for each family
the list of candidate genes was generated. The generated list of genes per family was given as an
input to Phenolyzer [328] for ranking them based on their relevance to PD. Phenolyzer works in
three steps, first it converts the phenotype of interest which is “parkinson disease” in our case
into a group of professional disease names based on the Human Phenotype Ontology (HPO), a
resource developed to define a standard ontology for human phenotypes [329]. Second, the entire
list of genes having an association to all the diseases will be generated; Third, it finds more genes
by generating a database of gene-gene relation and as a last step it provides a score for each gene
by integrating all the information together. The score provided by Phenolyzer can be used to
rank the given list of genes. From the phenolyzer output, we selected the top 5 genes per family

for downstream analysis.
Statistical analysis of replication data-set

In the PPMI data-set, in order to identify the genes carrying higher number of deleterious
variants in cases versus the controls we collapsed all the selected variants as described in the
Section 7.3.1 into genes. Then, for each gene we calculated the odds ratios (OR) based on the
samples carrying atleast one variant in that gene. The analysis was performed using R version
3.4. An OR >1 for a gene means more number of cases carry a variant in that gene compared

to the controls. Hence, we only selected those genes with an OR > 1 for further analysis.
Ingenuity Pathway Analyser

An intersection of genes prioritized in the discovery cohort using Phenolyzer and the genes
with an OR > 1 in the replication data-set were selected for the Ingenuity Pathway and network
analysis (IPA®) [237]. IPA is a commercial tool comprising of manually curated interactions and
hence is more reliable. The IPA relies on their proprietary database called Ingenuity Knowledge
Base which is an exhaustively curated resource composing of high quality knowledge on functional

annotations and biological interactions.
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7.3.2 Results

Data generation

Discovery cohort: The pedigrees of the families sequenced in this study are shown in Figure
7.0. We identified a total of 19,165,307 variants that were present in all the affected samples
per family. When we excluded all the variants present in the super centenarians, we reduced
the list to 6,003,751 variants. Finally, by excluding the variants present in any of the control
samples and not present in the regions of low confidence in the human genome we were left with
a total of 6,21,221 variants.

Replication cohort: The final data-set after sample QC comprised of 369 PD cases
and 159 controls. They are both ethnically and sex matched. After the variant QC, 73,904

variants have remained in the analysis, of which 68,036 were SNVs and 5,868 were indels.

Segregating variants

After the functional annotation, we conducted the analysis per family. In total, 9 families
followed autosomal dominant (AD), one family followed autosomal recessive and 6 families fol-
lowed either AR/AD hypothesis. After the QC and functional annotation an average of 57 SN'Vs
per family and 9 indels per family were collapsed to the genes and included in the phenolyzer
analysis. The number of SNVs and indels that were functionally prioritized and co-segregating
with PD were different between each family as shown in the Table 7.1. Based on the output
from Phenolyzer, top 5 genes per family were selected for the subsequent analysis in the replica-
tion data-set. Some of the families did not have five segregating genes. In total, 76 genes were
assessed for their ORs in the PPMI data-set. Out of the 76 genes, 71 genes carried at least one
variant fulfilling our criteria (rare, nonsynoymous variants with a CADD phred > 15 or LoF) in
the replication PPMI data-set. In the PPMI data-set 33 unique genes had an OR > 1 as shown

in the Table 7.2 and were selected for Ingenuity pathway analysis.
Enrichment analysis

33 genes were selected after restricting the analysis to rare deleterious variants and priori-
tization using Phenolyzer. Enrichment analysis of the 33 genes using IPA revealed interesting
pathways and functions such as “Carbohydrate metabolism”, “Nervous System Development and

Y

Function” and “Tissue morphology”. Further, we identified that the top enriched network has
a function related to the nervous system development as shown in Figure 7.1 and in total 14 of

the 33 genes as seen in the Table 7.3 were present in the network from the input genes.
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Variants in novel genes

By employing a two-stage approach, we identified several novel candidate gene/variants which
are co-segregating with PD, highly conserved, predicted to be damaging and occurring at very
low allele frequencies. Due to the different effect sizes of the variants, we might not be able to
replicate the association of all segregating genes from our discovery cohort. The main reason
is that our discovery cohort comprised of families with PD, whereas in the replication cohort,
majority of the patients do not have a family history of PD. Hence, in addition to including
genes with an OR > 1 and prioritized based on IPA, we also included the variants present in
the genes that were selected to be involved in various neurological disorders based on literature
search. The main rationale behind this approach is to not miss any potential PD associated

variant. The entire list of variants selected by both the approaches is given in the Table 7.3.

It could be seen that NOS1 and IRS1 were present in the both the categories of prioritized
genes Thale 7.3. Further, some of the families have more than one proposed candidate genes
showing the complexity of PD and highlighting the difficulty in identifying the causal variants
in small families. Few genes were prioritized in more than one family. However, no variant was

identified in more than one family indicating the heterogeneity of PD.

Majority of the prioritized genes were found to be mutated in a single family, suggesting a low
incidence of novel mutations in PD Table 7.3. USP25 is one of the genes carrying variants in two
families, it is present in our PD candidate gene list but not prioritized by IPA. It carries a p.P784L
mutation in Family FN9984 and p.V846I mutation in Family pd_ MO009__MO023. USP25 has been
previously identified to be in a suggestive locus in a GWAS comprising of 3,426 cases and 29,624
controls [330]. However, it failed to reach a genome wide significance in the replication study.
Similarly, another gene IT'SN2 carries two variants p.1995T and p.A1515V in two different families
FN17908 and MO13 respectively. ITSN2 has been shown to be associated to Schizophrenia
according to Disgenet database [238]. However, in the family FN17908 there is another variant
p-T3351 prioritized by IPA and the gene harboring that variant is SLC2A41. GRIN2A has been
associated to various forms of epilepsy[65, 147, 148] and in the current study we found a variant
p-N1076K in GRIN2A of family FN10364. The same variant has been found in another familial-
PD study [320], however the variant could not make it to their final list of candidate variants.
Even in our study GRIN2A did not have an OR > 1 in the PPMI data-set, but it could also
be due to the fact that the penetrance of this variant is low and sample size of our replication

dataset is small. Hence, larger sample sizes are needed to replicate such associations.
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Figure 7.0: Pedigrees analyzed in the study.
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Variant prioritization

Family name MOI AD SNVs AR _SNVs AD_ indels AR_ indels

DEO02 AD 40 2 8 0
DEO3 AD 38 1 6 0
DEO7 AD 123 3 23 0
DE10 AD 137 4 14 0
DE33 AD 4 0 0 0
DE43 AR 40 1 11 1
FN10364 AD 59 2 14 0
FN13966 AD 96 1 14 0
FN17908 AR/AD 50 1 6
FN9984 AD 105 5) 0
MO009__MO023 AR/AD 43 1 0
MO013 AR/AD 60 1 10 0
MO014__MO15 AR/AD 17 0 7 0
MO040 AD 53 1 7 0
F16 AR/AD 29 3 5) 0
T10381 AR/AD 1 0 0 0

Table 7.1: Possible MOI per family and the number of different kinds of prioritized variants segregating per
family. AD = Autosomal dominant, AR = Autosomal recessive, AD/AR = Both types of inheritance is possible,
AD_SNVs = SNVs following AD inheritance, AR_ SNVs = SNVs following AR inheritance, AD_ indels = Indels
following AD inheritance and AR,_ indels = Indels following AR inheritance

Gene LowerCI UpperCl OR
AKT?2 0.103 45.45 2.17
AP1G1 0.052 32.04 1.29
APC 0.521 2.74 1.19
DDITS 0.210 73.38 3.92
EEF1D 0.380 2.67 1.00
FGF6 0.542 159.97 9.31
GORASP1 | 0.832 7.24 2.45
GPI 0.264 87.57 4.81
HSPA9 0.103 45.45 2.17
IRS1 0.853 4.60 1.98
ITPRS3 0.578 2.76 1.26
LTA4H 0.419 9.18 1.96
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MAPKAPI | 0.434 28.23 3.50
MYC 0.251 18.72 2.17
N6AMT1 0.052 32.04 1.29
NFRKB 0.451 4.38 1.40
NOS1 0.493 2.62 1.139
NOTCH1 0.573 3.27 1.37
NUP205 0.823 9.67 2.82
PSMB11 0.963 8.22 2.81
PTRH? 0.052 32.04 1.29
SEC16A 0.985 3.17 1.77
SLC2A1 0.133 12.54 1.29
SNX1 0.133 12.54 1.29
SP1 0.156 59.32 3.04
SPTAN1 0.411 2.83 1.08
SPTBN1 0.619 5.65 1.87
SPTBN2 0.545 3.14 1.31
SPTBNS5 1.004 2.81 1.68
SRMS 0.744 14.57 3.29
TSC? 0.526 2.55 1.15
UBA7 0.613 4.55 1.67
USP42 0.496 31.44 3.95

Table 7.2: Genes harboring variants that were predicted to be deleterious and co-segregating with the PD. Only
genes carrying higher number of variants in cases versus controls (OR > 1) are shown here. OR = odds ratio,
LowerCI = Lower confidence interval and UpperCI = Upper confidence interval.
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Family_ name Chrom Position aa.change Function Gene Category
DE02 2 54858253  p.E1010D exonic SPTBN1 IPA
DEO3 1 111861782 p.D158fs exonic CHIA PD genes
DEO03 17 76823418  p.H200N exonic USP36 PD genes
DEO7 4 188924601 p.P214A exonic ZFP42 PD genes
DEO7 11 66488550 . intronic,splicing SPTBNZ2 IPA
DEO07 17 17700037  p.1259_1260del exonic RAI1 PD genes
DE10 112179359 p.A2672T exonic APC IPA
DE10 18776904  p.T893P exonic ADAMTSL1 PD genes
DE10 15 49031277  p.J1375fs exonic CEP152 PD genes
DE10 15 62238002  p.A1644V exonic VPS13C PD genes
DE10 19 40742161 . intronic,splicing AKT2 IPA
DEA43 228884530 p.S347F exonic SPHKAP PD genes
DEA43 139838989 p.A294D exonic COL22A1 PD genes
DE43 15 48726830  p.E2193K exonic FBN1 PD genes
DE43 15 89872343 . splicing,intronic POLG PD genes
FN10364 9 131380339 p.A1826V exonic SPTANI1 IPA
FN10364 12 4543445 p-R188Q exonic FGF6 IPA
FN10364 16 9858173 p-N1076K exonic GRIN2A PD genes
FN13966 11710985 . splicing,UTR5 CTSB PD genes
FN13966 121971061 p.R361G exonic BRINP1 PD genes
FN13966 12 57910666  p.E169K exonic DDIT3 IPA
FN13966 12 53777215  p.447_448del exonic SP1 IPA
FN13966 21 43274890  p.T1451 exonic PRDM15 PD genes
FN17908 1 43394673  p.T3351 exonic SLC2A1 IPA
FN17908 2 24475269  p.J995T exonic ITSN2 PD genes
FN9984 6 75855921  p.G322V exonic COL12A1 PD genes
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FN9984 7 146818170 p.G285A exonic CNTNAP2  PD genes
FN9984 9 128321981 p.S68N exonic MAPKAP1 TPA

FN9984 9 35236570  p.R86H exonic UNC13B PD genes
FN9984 16 56692993  p.S35P exonic MTIF PD genes
FN9984 20 57019129 . splicing,intronic ~ VAPB PD genes
FN9984 21 17222109  p.P784L exonic USP25 PD genes
MO009__MO023 2 227663330 p.A42G exonic IRS1 IPA, PD genes
MO009_MO023 8 119391814 p.Q150X exonic SAMD12 PD genes
MO009 MO023 21 17238604 p- V8461 exonic USP25 PD genes
MO013 2 24431159  p.A1515V exonic ITSN2 PD genes
MO013 139405111 p.R912W exonic NOTCH1 IPA

MO13 14 23511778  p.R115Q exonic PSMB11 IPA
M014_MO15 17 17718592  p.R812Q) exonic SREBF1 PD genes
MO040 12 117710246 p.G259S exonic NOS1 IPA, PD genes
F16 17 67282371  p.Y708C exonic ABCAS5 PD genes

Table 7.3: A list of genes and variants prioritized either by using the IPA or present in the candidate PD genes list. aa.change = predicted amino change
based on RefSeq by ANNOVAR, Function = function of the variant predicted by ANNOVAR based on RefSeq, Gene = HGNC symbol of the gene harboring
the variant, Category = method by which the variant was prioritized.



Figure 7.1: Top scoring network from IPA network analysis. It is enriched with functions related to nervous
system development and function.

7.3.3 Discussion

In this study, we adopted a two-step strategy in order to identify and replicate the genes that

might harbor rare deleterious variants contributing to PD. All the 14 variants identified in this
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study via prioritization by IPA were from a different gene and present in only one family. This
distribution of variants in different genes further supports the complexity of PD where there is a
presence of variants with very small effect size and emphasizes the fact that we need much larger

sample sizes in order to detect meaningful association of variants to diseases.

However, we mitigated this lack of larger sample size by using a two-stage approach and could
show that the genes prioritized in this study were both segregating with the disease and have an
increased burden in cases compared to controls in an independent case-control study. Together,
all the 14 genes SPTBN1, SPTBN2, APC, AKT2, SPTAN1, FGF6, DDIT3, SP1 ,SLC2A1
JMAPKAPI1, IRS1, NOTCHI1, PSMB11 and NOS1 are involved in the “nervous system develop-
ment and function” indicating that the results are not obtained by chance. Additionally, it could
also be seen that one of the top enriched pathway is “carbohydrate metabolism”. Dysregulation
of glucose metabolism was found to be an early sign of sporadic PD [331]. A previous study [332]
has shown that there is an association between alpha-synuclein and IRS1 expression suggesting a
novel mechanism for alpha-synuclein associated pathogenesis. Variants in NOS1 has been linked
to PD [333, 334] and suggested that mutations in NOS? could be a potential risk factor for PD
and other pyschiatric disorders [335].

Mutations in SLC2A1 have been previously associated to Glucose Transporter Type 1 Defi-
ciency Syndrome and epilepsy [336] and the symptoms of GLUT1 deficiency syndrome are similar
to PD including parkinsonism [337]. Hence it is possible that SLC2A1 is the candidate gene in
the family FN17908 rather than ITSN2. But, we need to perform functional validation in order
to solidify these results. SPTAN1 has been known to be involved in the disease pathology of early
infantile epileptic encephalopathy [249, 338, 339] and could be a potential link between PD and
epilepsy. In a recent study, it has been shown that PD gene ATP13A2 [340] regulates SYT'11 via
ubiquitination of TSC2 thereby causing an impairment of autophagy-lysosomal pathway, hence
the variants in TSC2 could be of functional importance. In total, we identified likely disease
causing variants in ~87% (14/16) of the families. Our intention in this study was to provide
the list of potential candidate genes which could help accelerate the future research aiming for
genetic diagnosis of PD. Overall, we show that a two stage approach can be employed in order
to identify the plausible candidates especially in case of variants occurring at very low allele
frequencies. However, this study should be considered preliminary and further replication in

families affected with PD is warranted.
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7.4 Integrated analysis of WGS data reveals potential candidate

genes

7.4.1 Patients and methods

Data generation and processing

A total of 180 samples, were sequenced via WGS at macrogen (www.macrogen.com/eng).
Briefly, samples were prepared according to the Illumina TruSeq Nano DNA library preparation
guide and libraries were sequenced using [llumina HiSeqX sequencer (www.illumina.com). How-
ever, only the results from 36 families comprising of 90 samples were presented in this work due
to the collaborative agreement. The results from the families excluded here were already pub-
lished elsewhere [341, 342]. 50 females and 40 male samples were included in the final analysis.
The mean aao was 62.22 years. Our study comprised of ethnically different families (Italy (4),
Dutch (13), Portugal (1), Spain (6), Tunisia (3) and Turkey (9)). Out of the 36 families, 23 were

tested for AD inheritance and 13 families were tested for AR inheritance mainly.

A multi-sample variant calling approach was employed on all the samples together. The
standard BWA-mem-picard-GATK pipeline was applied according to GATK best practices [23]
for variant calling. The procedure we employed in this study is similar to the study [65]. Further,
we performed variant level QC by using GATK’s VQSR and hard filtering to select the high
quality variants as described previously in the study [65]. We annotated the variants following
the same procedures as described in the Section 7.3.1. Briefly, ANNOVAR [47] was used to
annotate the variants with their respective allele frequencies, predicted functions and deleterious
score. Furthermore, to identify functionally important non-coding variants, additional databases
were also used for annotation such as 1. CAGE clusters identified in the frontal lobe of 119
control individuals as described in the study [343]. This data is generated by performing an
eQTL analysis based on cap analysis gene expression sequencing (CAGEseq) data which was
created from human postmortem frontal lobe tissue and it is combined with genotypes obtained
through genotyping arrays, exome sequencing, and CAGEseq. 2. CAGE clusters identified in
7 brain regions (Frontal, Temporal, Caudate, putamen, Cerebellum, Occipital) in FTD cases
and controls (60 individuals in total) and 3. Bidirectionally expressed enhancers (eRNA) in
the previous data-set. Additionally, the GnomAD data-set for allele frequency filtering (http:
//gnomad.broadinstitute.org/) was also taken into account. GnomAD is an extension of
ExAC database [43] which includes the data from 123,136 exomes and 15,496 genomes.

Functional prioritization

We defined a variant as rare if it has a MAF of < 1% in the GnomAD [43]. Once the rare

variants were selected, different strategies for coding and non-coding variants were applied in
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order to prioritize them. They are described below.

e Coding variants: Only nonsynonymous variants with a CADD phred score > 20 were

selected.

¢ Non-coding variants: In order to select the potentially deleterious variants, the criteria

mentioned below were chosen and the qualifying variant has to satisfy at least one of them.

Subsequently, only the qualifying variants with a CADD phred score > 20 were selected

similar to coding variants. We chose a CADD threshold of 20 because the variants above

that threshold were supposed to be the top 1% most deleterious variants [58].

If it was already identified in the human gene mutation database (HGMD) [44] or
ClinVar [344]

Annotated as an UTR5 or UTR3 variant based on RefSeq
If it was present in the upstream or downstream of a gene based on RefSeq

If it was present in the transcription factor binding sites according to ENCODE and
ANNOVAR annotations

If it was present in the DN Ase hyper sensitivity regions according to ENCODE anno-

tations
If the variant was identified in any known GWAS previously
If the variant was a known miRNA target

If the variant is present in the regions sequenced by CAGE technology using the brain
tissues from the study [343]

In addition to the variants prioritized by above mentioned criteria, we also generated a list

of coding and non-coding variants annotated as disease causing with high confidence in HGMD

and given in Table A.8.

CNYV calling

CNV calling was performed by using RCP [345]. It works by using the depth of coverage

information that is available in the BAM file [27] that is generated after the mapping of raw reads

to the genome. For each sample of interest, RCP detects the CNVs by comparing the depth of

coverage in the sample of interest to joint profiles that were pre-computed from a broad set of

> 6000 high quality genomes sequenced at a depth of > 40X. In order to account for various

confounding factors such as %GC, multi-genome profiles were constructed which represent the

observed or inferred diploid depth of coverage for every position in the genome and they are
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called Reference Coverage Profiles (RCPs). By normalizing the scaled coverage of sample of
interest to the RCP and employing a Hidden Markov model (HMM) segmentation approach, the
CNVs were detected for each sample.

QC and filtering of CNVs

From the UCSC browser, we obtained a list of CNVs that were found previously and present
in the questionable regions of the genome. They are described below and any CNV overlapping
with the regions below was excluded using bedtools [233]. CNVs that are small or found on sex
chromosomes (X and Y) are often unreliable and the false positive rate is high. Hence, we only
selected CN'Vs with a minimum length of > 10kb and present only on autosomes for subsequent
analyses. Although, we might loose potential candidates by this stringent approach, we wanted
to focus only on the highly reliable candidates for prioritization. Further, we only selected the
complete deletions (copy number=0) and duplications with a minimum copy number of 4 for the

downstream analysis.

o Centromeres (extracted from Chromosome band file): start co-ord - 500 kb ; end co-ord
+500 kb

e Telomeres
¢ Immunoglobulins

e Mappability: DAC blacklist , Duke excluded and wgEncode CrgMappability Align100mer
(datavalue <= 0.25)

o GC percent (>=90 and <=10) : positions are merged by 10 bp with bedtools
e Common CNVs from DGV
e Repeat masker
e Gap locations
o Hiseq depth of 0.1%
Prioritization of genes

We employed various steps in order to identify the potential candidate genes as shown in the
Figure 7.2 and obtained the list of genes harboring rare and variants co-segregating with disease.
In the next step, we used Phenolyzer [328] as described in the Section 7.3.1 with the search term

“parkinson” in order to narrow down the candidate genes.
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Figure 7.2: Different steps employed for the variant prioritization in the Courage-PD data-set.
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7.4.2 Results
Variant calling and QC

A total of 23,646,530 variants were called across all the samples and the Ti/Tv ratio equaled
to 1.95 before performing QC. After the QC, 21,609,473 remained in the final data-set and the
Ti/Tv ratio has increased to 2.08. On an average, each sample had 3,662,556 SNPs and 1,243,632
indels after QC.

Selection of candidate genes

As shown in the Figure 7.2, we prioritized the genes based on multiple evidences and selected
the top 15 ranked genes carrying coding, non-coding and CNVs. Some families did not have
segregating genes in all the coding, non-coding and CNVs categories. Of the 36 families that we
analyzed, there were 164 genes following autosomal dominant inheritance and 26 genes following
autosomal recessive inheritance and carrying coding deleterious variants. In the similar lines, for
genes carrying non-coding deleterious variants there are 149 genes following autosomal dominant
and 15 genes following autosomal recessive inheritance respectively. From the CNV analysis,
only 12 genes were found to carry a deletion and only one gene was found to carry a duplication.
An entire list of all the prioritized genes is given in the Table A.6. A few interesting findings

were mentioned below.
Heterozygous variants in LRRK2, TRAP1 and GRINZ2A

The most studied variant in LRRK2 gene is p.G2019S with regard to PD. However, we
identified two additional variants in LRRK2 in two families. The first variant p.R1514Q was
found in a pedigree from Turkey which comprises of an affected and an unaffected sibling as
shown in the PD296 of Figure 7.3. This variant was already studied in two previous studies in
PD [320, 346]. In the study [346] it was found in 6/98 PD patients and in the study [320] it
was segregating with the disease, however it did not withstand their prioritization step. In our
study, the variant was present in only one individual effected with PD whereas it was absent in
the unaffected sibling. The affected sibling had an early age-of-onset of 36 years. The second
variant in LRRK2 which fulfilled our criteria is a nonsynonymous variant p.M96T found in a
pedigree of Spanish ethnicity. It has not been linked to PD in any previous study. It is present
in heterozygous state in both the affected siblings and they had an aao of 65 and 53 years. The
pedigree is shown in the HCB4 of Figure 7.3. The same GRIN2A variant as identified in the
Section 7.3.2 p.N1076K was also identified in another family in this part of the study making
it a total of three families in which the variant was detected. Recently, in a separate study we
found a LoF variant in TRAP1 [292] in a PD case. In this study, we identified a heterozygous
nonsynonymous variant p.R469H which is present in two affected individuals and not present in
the unaffected individual as shown in the HCB5 of Figure 7.3.
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Figure 7.3: Pedigrees carrying variants in LRRK2: HCB4 carries LRRK2 p.M96T variant, PD296 carries LRRK2 p.R1514Q variant, HCB5 carries
TRAP1 p.R469H variant, GRIP315 carries MECP2 p. T311M variant, PD313 carries SBF1 p.R1053W, GRIP__164 carries 13:47812108 A>G variants and
FAM_ 175 carries p.G199S and p.S438G variants in ATP13A2 and FBXO7 respectively. The arrows indicate the samples that underwent WGS.




Homozygous variants in MECP2 and SBF1

We identified a recessive p. T311M nonsynonymous variant in MFECP2. 1t is present in one
affected male individual and not in the unaffected individual. The same mutation was identified
in Rett syndrome in previous studies [347, 348] and the pedigree is shown in GRIP315 of Figure
7.3. We identified a nonsynonymous homozygous variant p.R1053W in SBF1, it is present as a
homozygous variant in the affected sample and as a heterozygous variant in the unaffected. The

pedigree is shown in the PD313 of Figure 7.3.
Compound heterozygous variants in PARK2

By using our integrated approach, we identified a compound heterozygous variant in PARK2
in a family comprising of an affected and unaffected sibling. One of the variant is an intronic
variant (6:162855008-T>C) predicted to be affecting the Transcription factor binding site and
the other one is p.R256C which is a nonsynonymous variant and has been previously studied
[349].

Heterozygous variants in FBX0O7 and ATP13A2 in the same family

We discovered two heterozygous variants p.G199S and p.S438G in two recessive genes names
FBXO7 and ATP13A2 respectively in an Italian family FAM_ 175 of Figure 7.3. Previously,
it was also seen in an Italian family, that the affected samples carry homozygous variant in
ATP13A2 and also a heterozygous variant in FBXO7 [350].

Variants in FRBB4 and KIF2A

In addition to the coding variants identified in this study, we also identified several non-coding
variants according to our criteria as defined in the Section 7.4.1. The genes harboring deleterious
non-coding variants are associated to various neurological disorders. One such example is FRBB/,
which was found to be involved in Schizophrenia [351]. In the same family another variant is
found in the KIF2A. In a previous study, it has been shown that KIF2A which is an anterograde
motor protein [352] could serve as a biomarker for PD. Further, KIF2A was also found to carry

a mutation in another family in our study.
Promoter variant in ATG7

In a previous study in PD, a promotor variant of ATG7 was found (3:11313449 G>A) and in
our study also we identified the same variant based on the HGMD annotation. However, it has
a CADD phred score 1.74 and moreover it is present in the same family in which the LRRK2
p-M96T. All the variants annotated as disease causing with high confidence are given in the
Table A.8.
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Variants in HTR2A

A variant (13:47812108 A>G) affecting the transcription factor binding site of HTR2A is
discovered in our study. Previously, a genetic variant in HTR2A is associated to the repeti-
tive behavior and impulse control [353] in PD. The pedigree carrying this variant is given in
GRIP__164 of Figure 7.3.

7.4.3 Discussion

Familial studies have been successful in the past to identify several genes related to PD [108],
still there is a paucity in the discovery of novel genes underlying familial-PD. In this study,
our objective was to identify meaningful genes by employing WGS in several small families and
a multiple evidence based approach. In our quest to identify potential candidate genes, we
discovered various interesting variants/genes (Table A.6). The most promising candidates are
discussed in this section. A variant p.R1514Q in LRRK2 is found in our study and it has been
previously found in more than one study [320, 346] but has not been followed up, it is especially
interesting because the variant is found in a pedigree of Turkish origin but a previous study
mainly composing of North European samples [346] found that this variant has higher frequency
in cases. This indicates that p.R1514Q might not be just restricted to North European population
and additional studies including samples from other countries are warranted. Another variant
in LRRK2 p.M96T with no previous association to PD was found in our study, but in the
same family another variant in the promotor region of ATG7 was also discovered. The variant
11313449G>A in ATG7 has been previously shown to be implicated in PD [354] by significantly
decreasing transcriptional activities of the gene promotor of ATG7. The proposed mechanisms
of actions were probably by either completely abolishing, modifying and creating binding sites
for putative transcription factors. Hence, it is probable that 11313449G>A variant is the causal
gene in the family HCB4 rather than p.M96T, but further functional studies are needed to be
done to validate this finding.

PARK2 is known to have an autosomal recessive inheritance requiring both the alleles to
carry a variant to induce an early-onset PD. In our study, we detected an exonic variant and a
deleterious intronic variant in the same individual constituting a compound heterozygous variant.
The exonic heterozygous variant p.R256C was also identified in a previous study comprising of
early onset sporadic PD cases of French origin [355], but the pedigree in which the variant was
identified is of Dutch origin. One, shortcoming of the previous study was that they excluded the
intronic variants from the analysis and maybe it is worth to also look into the intronic PARK2
variants. Interestingly the variant p.R256C is present within RING finger 1 of Parkin protein
and could cause a gain-of-function [356]. Another study showed that this variant is a risk factor
for nigrostriatal dysfunction [357]. In view of this findings it would be interesting to see whether

p.R256C acts alone or if it acts in conjunction with the intronic variant discovered in this study.
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TRAPI1 is shown to be involved in mitochondrial dysfunction and in our previous study we found
an individual affected with PD carrying a LoF variant in TRAP1 [292]. We identified a recessive
variant in MECP2 and the variant has been previously identified in the context of Rett syndrome
[347, 348].

A combination of ATP13A2 and FBXO7 heterozygous variants was found in an Italian family.
Interestingly, in an earlier study also the same combination of genes were found to be mutated
in an Italian pedigree [350]. Although, in that study the variant in ATP13A2 was homozygous,
it has been shown recently that heterozygous variants in ATP13A2 could also implicate PD by
causing the cellular dysfunction [358]. In this context, it could be possible that this combination
is specific to Italian population and maybe the variants in ATP13A2 and FBXO7 together
increase the risk of PD, but it is speculative and remains to be checked. MECP2 acts on neuronal
development and function and it has been proposed to be a drug target for PD [359] based on
the functional studies. Previous studies conducted on mice have shown that MECPH2 knock-
out has resulted in PD like symptoms such as loss of motor deficits indicating the disruption of
nigrostriatal pathway [360]. Hence, it is a very prominent candidate and needs to be investigated

in the future.

SBF1 mutations have been previously associated to Charcot-Marie-Tooth disease [361, 362]
and axonal neuropathy [363] and the patient carrying the homozygous SBF1 variant has a very
early aao of 27 years and hence it is possible that it is associated to the early onset PD. In
summary, this study shows the power of integrating multiple evidences to discover putative
novel candidate genes. All the variants identified in this study need to be further followed up

either in a familial setting or in a large case-control cohort.
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CHAPTER 8

CONCLUSIONS AND OUTLOOK

8.1 Conclusions

NGS has provided us with a unique opportunity to identify genetic variants underlying a
disease. Currently, generating the massive amounts of data is not the issue, however the process-
ing and interpretation of data is the bottleneck. Especially, the interpretation of variants found
via familial studies is often quite challenging because we often end up with several variants that
co-segregate with the disease. This problem is similar to finding a needle in a haystack and it gets
even severe if the families that are being analyzed are small, which was also the case in our study.
Hence, to overcome this problem we integrated several sources of knowledge in this thesis to find
meaningful associations. Our main goal was to focus on variants occurring at low frequency with
larger effect size and identify those causing a significant burden in the case-control studies and in
familial-PD we aimed to find the putative candidate variants/genes causing the disease. In order
to achieve these goals, we developed the variant analysis pipelines and processed several data-sets
generated via WES and WGS belonging to two of the most common diseases PD and epilepsy.
Although PD and epilepsy are two distinct brain diseases, their underlying genetic architecture
is complex and polygenic. By employing state of the art statistical and analytic methods, we
shed further light on the genetics of both PD and epilepsy and found several imperative and

interesting findings in this thesis.

In RE/ARE, several twin studies have been performed and majority of them remained dis-
cordant [142, 143]. Similarly, various candidate gene studies have been performed [148, 149, 163],
where the emphasis was only on one or few genes. However, an unbiased genome wide study

focusing on the burden of rare variants in RE/ARE was absent. In this work (Chapter 2), we
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carried out a first ever exome-wide association study in RE/ARE. In this study, we investigated
the genetic variants occurring at very low frequency (0.5%) and causing large effect in RE/ARE
cases compared with the in-house and the ExAC database. We performed the gene-level burden
analysis and showed that GRIN2A is the only gene reaching a genome-wide significance. Al-
though there might be other genes also contributing to the disease, we could not detect such
genes mainly due to the sample size. Hence, in order to compensate the smaller sample size of
our cohort, we extended the burden analysis to geneset level and showed that there is a consis-
tent increase in the odds ratios for the LoF variants in several disease associated gene-sets. The
genesets are comprised of genes under negative selection, glutamate receptors and genes associ-
ated with epileptic encephalopathies. GRIN2A was excluded from the selected genesets to show
that besides GRIN2A, there are other genes also which are contributing to the disease etiology.
Additionally, we identified several interesting novel LoF variants (Not present in ExAC) and
provided in the Table A.1, which could be used as a future references for other research groups

to perform functional validations.

GGE has always been believed to have a strong underlying genetic cause and many variants
in ion-channel genes have been identified via various familial studies. Nonetheless, no study
has shown an excess of variants in ion-channel genes via whole-exome sequencing, keeping the
genetic cause of GGE under the wraps. In this study (Chapter 3), we performed the burden
analysis in a cohort comprising of familial and sporadic GGE cases (>1000 cases combined)
and showed, for the first time there is a significant burden of rare nonsynonymous variants in a
group of 19 GABA receptor genes. In total, similar findings were observed in 3 independent
cohorts (1 discovery and 2 replication cohorts). Furthermore, functional studies of selected
segregating variants in GABA, receptors showed that they induced a change in the receptor
function, providing a compelling evidence that GABA s receptors and GABAergic mechanism
play a role in the GGE supporting the previous studies [139, 177, 188, 191, 192, 204—-206].

To our knowledge, we performed the largest WES based CNV study in RE/ARE and GGE
in Chapter 4. A significant burden of rare and large deletions were observed in cases compared
to the controls was observed. This finding was similar to a study performed using array data
[221] comprising a larger number of samples. We performed the functional enrichment analysis
of the deletions belonging to RE/ARE and GGE separately and showed that there is a difference
between both the diseases at the biological pathway level. This finding was in line with a previous
effort to classify metabolic and developmental epilepsies [14]. In an effort to identify interesting
deletions which could be either be followed up by functional validation or as a list for other
researchers, we found several candidate single-gene deletions which are described in detail in
the section 4.5. We also integrated the SNV /Indels identified in chapters 2 and 3 along with
the deletions identified in Chapter 4 and found several interesting candidates which are also

described in detail.
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By using the WES data in Chapter 5 we have shown a genome-wide burden of multiple
singleton LoF variants. Similar to the studies in epilepsy as described above, it is difficult to
identify single genes with a genome-wide significance mainly due to the multiple testing correction.
Hence, alternate approaches are a need of the hour to compensate for the loss of power in studies
with small sample sizes. In the current study, we employed an alternative approach and our
results show that there is an increase of singleton LoF variants within the PD samples compared
to the controls. Based on the evidence provided by our study, it could be contemplated that
in PD, the burden is distributed across the entire exome rather than being confined to a group
of PD associated genes (Section 5.4.3). In summary, our findings support the complex genetic
architecture of PD and show that there is still a lot of missing heritability in PD which needs
to be unearthed. Along with the major limitation of our study which is the small sample size,
there might be additional factors such as variants in the non-coding regions which could also
contribute to the progression of PD. The second limitation would be the non-availability of a
replication cohort, therefore despite the fact that there is a exome-wide significance of singleton
LoF variants, our study should be considered preliminary and needs replication in larger PD

cohorts.

The work from Chapter 6 indicated an enrichment of disease-associated variants in the exon-
intron boundary of brain expressed genes in PD and underscore the therapeutic potential of
compounds acting on pathological splicing also in sporadic PD cases. Our study illustrates
the promise for treatment approaches in precision medicine in PD that focus on genetic and
molecular stratification. To account for the increasingly recognized heterogeneity in PD and
other neurodegenerative disorders, new strategies need to be developed for the stratification of
patients along shared pathogenic mechanisms. Our study highlights the importance of variants

regulating splicing mechanism in PD, especially the Ul splice variants.

In the first part of Chapter 7, we used a two-stage approach of a discovery and replication
cohort where we identified 14 genes involved in the nervous system pathway. The variants
harbored by those genes are predicted to be rare and well conserved. However, neither the
variants nor the genes were present in more than 1 family in the discovery cohort warranting
further evidence of their involvement in PD, although it is partially supported by their odds ratio
of >1 in an independent case-control study. In the second part, we identified various interesting
variants harboring heterozygous, compound heterozygous and homozygous variants in genes that
were either associated to PD or related diseases. We identified several interesting coding, non-
coding and CNVs from the WGS of familial-PD. The list of variants could be further prioritized

and functional validation can be performed on the most promising candidates.

Taken together, the studies presented in this thesis involve a broad range of methods and

topics that are expected to become increasingly important in the genetic study of PD and epilepsy,
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as well as other common diseases, in the years to come. In my opinion the key message of this

work is that the genetics of PD and epilepsy is more bewildering than we expected.

8.2 Outlook

8.2.1 Larger cohort sizes for increased statistical power

It could be seen clearly from the results in Chapter 2, that there are increased odds ratios of
LoF variants in several disease related genesets in RE/ARE. In the future, more patients should
be recruited and more comprehensive burden analyses at single variant, gene and geneset levels
needs to be performed to get significant results. For the GGE, a meta-analysis of various cohorts
described in the study or a combined analysis where a multiple-sample calling on all the samples
together could be performed in order to have an increased power. This approach will increase the
sample size significantly, thereby providing more evidence and not just at the geneset level, but
also at a single gene level. Additionally, a new statistical approach could be developed in-order
to combine the SNV /Indel and CNV data to untangle the genetic complexity of RE/ARE and
GGE. In the near future the findings from Chapter 7 should be replicated in larger datasets such
as the latest dataset from Courage-PD comprising of >5000 PD cases that are currently being
genotyped on the Neurochip platform [364].

8.2.2 Polygenic risk score (PRS)

Although, the clinicians are very well trained and follow stringent classification criteria, it
could be still possible that patient might be wrongly classified into a different disease. One
possible reason of the complexity of genetics in PD and epilepsy is the phenotypisation of patients.
Hence, instead of looking at one type of disease maybe we are actually looking at a combination
of different diseases. More precise phenotypes together with higher samples sizes would allow to
untangle the genetic architecture of complex diseases. To help classify the patients into more
precise phenotypes, one could take advantage of the avalanche of clinical data that is available
along with the genetic information in the form of PRS. Robust machine learning and clustering
algorithms could be built in order to tackle this problem. At the current stage, PRS is not
utilizing the complete genetic information because it is generated based on the common variants
only. A more robust method to generate PRS based on rare and common variants needs to be
developed. The benefits of generating an accurate PRS are plenty, as it can be generated for any
trait of interest. One possible application of PRS would be to build better prediction models
in order to detect the predisposition for a trait/disease earlier, as one could be better prepared
for the engagement in early stage or treatment prevention strategies. The models built on the
basis of PRS could aid the clinicians in decision support and counseling the patients. Another
example would be to predict the age at onset of a disease or other continuous variables such as

any clinical scores. To achieve this one could use genetic data, already existing clinical data or
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a combination of both, thereby reducing the medical treatment costs as well as the burden for

patients due to the diagnostics.
8.2.3 Regulatory, splice variants and genome-wide deleterious score

In Chapter 6 we only looked at variants disrupting the U1 splice sites. However, there is a
possibility that a variant could generate a new U1 splice site. Hence, in the future, variants that
generate putative splice sites should also be predicted. Similarly, the pipelines developed in this
work (Chapter 6) can also be extended to predict deleterious 3’ splice site variants. Splicing is
not a PD specific mechanism and it has been shown to be disrupted in various diseases [365].
Hence, the same methodology developed in Chapter 6 can also be applied to other disorders. The
current state of variant prioritization methods are focused mostly on identifying disease causing
variants in coding regions. However, from the recent studies it is clear that, we have begun
only scratching the surface of the problem and there is an enormous dearth of knowledge with
regard to the non-coding variants and their potential role in the diseases. One such example
of functionally important non-coding variants are regulatory variants. They drive the gene
expression by acting on enhancers, gene promoters, or binding sites for RNA or proteins. Due
to their importance in the functioning of cells in the body, variants disrupting or creating new
regulatory regions should be investigated in more depth. One resource that could be of great
help to achieve this goal is the ENCODE project [366]. It is a valuable resource comprising
of information about several important regulatory regions such as transcription factor binding
sites, DN Ase hyper sensitivity sites, histone modification regions etc. Currently, we have several
WGS/WES datasets belonging to various disorders and the pipelines that will be developed in
the future to predict disease causing non-coding variants could be applied to all the in-house

datasets.

The predicted disease causing ability of a variant can be converted into a single metric
called as deleterious score. Few examples of such scores that are widely used include SIFT [53],
PolyPhen2_HDIV [54], LRT [55], MutationTaster [56], PROVEAN [57], CADD [58], fathmm
[60], GERP++_R [61], DANN [59] and SiPHy [62]. Some of them such as CADD, DANN,
GERP++_R and SiPHy are available for all the variants in the human genome including the
non-coding variants. Nonetheless, they are not yet reliable for non-coding variants mainly due
to the fact that there is no gold standard dataset available to evaluate their performance, unlike
the coding variants. Albeit discovering meaningful associations and variants in this thesis, it is
quite possible that this work missed several variants due to the lack of appropriate standards to
evaluate them, especially the variants occurring in the non-coding regions of the human genome
which is often referred to as the “dark genome”. This is an area where there is an enormous
potential to be improved and one can take the advantage of large collection of data that is publicly

available and use sophisticated machine learning algorithms to predict the potential deleterious
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non-coding variants and generate a genome-wide score. Experimental biologists should also come
up with new methods to functionally validate the non-coding variants, such that they are able
to generate and provide more experimental data which can then be used in formulating a robust

genome-wide deleterious score.

A statistical framework needs to be established in order to integrate the information from
coding, non-coding variants and CNVs. A network guided approached could be used to identify
important biological pathways. One way to perform network analysis is to use the p-values
generated from the association analysis as weights for the genes and project the genes onto a
protein-protein interaction network (PPIN) and find the enriched modules. Such modules could
show us which pathways are over represented in a particular disease or across different diseases.
In order to be more specific to neurodegenerative disease, we can use a PPIN generated from
brain as a whole or specific sub-tissues like substantia nigra or cell types like dopaminergic
neurons or astrocytes. Such integration of transcriptomic and genomic data from the human
brain tissue that is available publicly from repositories such as The Genotype-Tissue Expression
project (GTEx) [367] or from single-cell transcriptomic data available for various cell types of

brain [368] would help us to delineate the complexity of PD and epilepsy.
Personalized medicine in practice

We are living in exciting times, technologies such as NGS and artificial intelligence (AI)
driven by machine learning have absolutely changed the way we look at the data. They enabled
researchers to make sense of big data by revealing interesting patterns in the human genome. In
my opinion, by combining NGS, AT and CRISPR/cas technologies, one can achieve wonders in
the field of personalized medicine. For instance, we perform the WGS of a patient, utilize either
or a combination of: risk scores, regression models, machine learning algorithms to identify the
genetic cause and correct the genetic mutation by applying CRISPR/Cas technology, thereby
restoring the original function of a gene. Although, we are still at the beginning of this phase,
with the dropping NGS costs and the amount of research that is being performed in these areas,

it is quite possible that we will witness the era of personalized medicine in the near future.

To achieve the goal of precision medicine in epilepsy and PD, we need to address the following
points: Much larger cohorts are need to be built such as Epi25 for epilepsy (http://epi-25.
org/ which aims to conduct WES of 25,000 patients) and they have to be cautiously defined
both phenotypically and genomically; functional characterization of the mutations identified via
various studies have to be conducted and results should be carefully interpreted by the domain
experts; standard guidelines should be established to define the pathogenicity of variants. These
goals can only be achieved through the collaboration and integration of research groups and by

bringing the researchers with genetic, clinical and biological expertise under one umbrella.
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APPENDIX A

SUPPLEMENTARY MATERIAL

This chapter contains all manuscripts authored as a first author or co-author along with the
supplementary material for each chapter. Journal formatted articles are provided for published
manuscripts. Submitted manuscripts or manuscripts that are ready for submission are provided

as the submitted versions.
A.1 Rolandic Epilepsy

https://dropit.uni.lu/invitations?share=44877c4da9f8c3cc51b8&d1=0

Table A.1: CADDI15+LOF variants in the epilepsy associated genes that were identified in the present study.
The variants are represented according to the GRCh37 human reference genome.
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https://dropit.uni.lu/invitations?share=44877c4da9f8c3cc51b8&dl=0

A.2 Excess of singleton loss-of-function variants in Parkinson’s

Disease
CHR BP Al A2 OR P
1 155135036 G A 0.58 2.59e-35
3 52816840 G A 0.68 2.25e-7
17 43994648 T C 0.78 1.26e-68
2 169110394 C T 0.83 5.68e-26
3 182762437 A G 0.85 2.11e-30
6 32666660 T C 0.85 1.26e-13
1 205723572 C T 0.89 1.12e-2
2 135539967 T C 0.89 8.24e-24
12 123303586 G A 0.90 2.05e-20
4 15737101 C A 0.90 1.22e-19
14 55348869 T C 0.91 4.30e-16
15 61994134 G A 0.91 3.94e-14
7 23293746 G A 0.91 3.51e-18
8 16697091 A G 0.91 2.38e-11
9 17579690 T G 0.91 1.99e-12
1 226916078 C T 0.92 2.40e-10
4 77198986 T C 0.92 1.43e-14
10 15569598 C A 0.93 2.37e-8
11 83544472 A G 0.93 3.72e-9
48748989 G T 0.93 6.80e-8
2 166133632 T C 0.94 9.73e-7
8 22525980 T C 1.06 9.06e-7
16 19279464 T G 1.07 1.46e-9
20 3168166 A G 1.07 1.99e-6
2 102413116 C T 1.07 3.83e-8
14 88472612 T C 1.08 1.20e-9
16 31121793 A G 1.08 5.44e-12
16 52599188 T C 1.08 8.29¢-8
19 2363319 T C 1.08 6.64e-7
11 133765367 T C 1.09 1.11e-13
14 67984370 T A 1.09 9.61e-11
18 40673380 G A 1.10 5.56e-16
8 11707174 A G 1.10 9.54e-11
3 18277488 G T 1.11 3.02e-9
1 232664611 T C 1.12 8.41e-13
6 27681215 A G 1.12 3.44e-13
4 114360372 C T 1.14 2.11e-9
12 40614434 T C 1.15 1.21e—19
60273923 C A 1.15 1.69e-11
3 87520857 C G 1.21 1.22e-4
4 951947 C T 1.23 1.47e-50
4 90626111 G A 1.33 5.21e-123
10 121536327 A G 1.65 2.23e-19

Table A.2: Summary statistics of SN'Vs used to generate PRS. The statistics were obtained from the study [109].
The variants are represented according to the GRCh37 human reference genome. CHR = chromosome, BP =
Position of SNP on the genome, Al = reference allele, A2 = alternate allele, OR = odds ratio and P = p-value.
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A.3 CNYVs in epilepsy

https://dropit.uni.lu/invitations?share=79ef062953955ad9255f&d1=0

Table A.3: Deletions detected in our study. RE = Rolandic epilepsy (typical and atypical), IGE = Idiopathic
generalized epilepsy and Z_ score = score generated by XHMM.
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https://dropit.uni.lu/invitations?share=79ef062953955ad9255f&dl=0

80¢

Gene Brairchr start end gene__ensembl cds_len gene_ length dup del.score dup.score cnv.score

USP24 + 1 55532032 55680786 ENSG00000162402.8 7740 148754 0 2 2,042565836 1,53282633 1,884072981
TJP1 + 15 29991571 30261068 ENSGO00000104067.12 5441 269497 0 12 1,752442713 -0,803995937 -0,081921889
CNTN1  + 12 41086244 41466220 ENSGO00000018236.10 3278 379976 0 1 1,728174309 1,425101777 1,802168696
ITPR1 + 3 4535032 4889524 ENSG00000150995.13 8519 354492 0 6 1,725139512 0,253387244 0,753565178
PCDHB6 + 5 140529683 140532868 ENSG00000113211.3 2391 3185 5 2 1,667827598 2,38494211 1,914791919
PCDHB3 + 5 140480234 140483406 ENSG00000113205.2 2397 3172 1 5 1,657469966 0,899130927 0,99912774
SF3B3 + 16 70557691 70608820 ENSG00000189091.8 3804 51129 0 2 1,529650601 0,972523491 1,375089727
TIMELESS+ 12 56810903 56843187 ENSGO00000111602.7 3665 32284 0 4 1,522050316 0,446777062 0,919722383
SHANK1 + 19 51165084 51222707 ENSGO00000161681.11 6323 57623 0 3 1,140663112 0,46950049 0,789092733
ZNF417  + 19 58411664 58427978  ENSG00000173480.6 1746 16314 0 6 1,088952526 -0,308218506 0,076195049
ATG16L2 + 11 72525353 72554719  ENSG00000168010.6 2355 29366 0 4 1,005027614 0,048613563 0,425402526
GABRB3 + 15 26788693 27184686 ENSG00000166206.9 1772 395993 0 9 0,988016767 -0,97958815 -0,465274823
EPG5 + 18 43427574 43547240 ENSGO00000152223.8 8017 119666 1 1 0,987628271 1,386597994 1,417300608
GABRG3 + 15 27216429 27778373  ENSGO00000182256.8 1428 561944 0 6 0,852648846 -0,593942874 -0,170777176
CAPN1 + 11 64948037 64979477  ENSGO00000014216.11 2230 31440 0 0 0,821376542 1,16710151 1,305530475
ZNF343 + 20 2462463 2505348  ENSG00000088876.7 1824 42885 0 10 0,81624114 -1,361324352 -0,795199446
GABRA5 + 15 27111510 27194354 ENSGO00000186297.7 1416 82844 0 6 0,802404149 -0,548812563 -0,157511534
LRRC4C + 11 40135753 41481323 ENSG00000148948.3 1929 1345570 0 0 0,710652242 0,483380747 0,758829916
NDUFS3 + 11 47586888 47606114  ENSG00000213619.5 1663 19226 1 0 0,695145694 1,400181735 1,327943672
EXD3 + 9 140201348 140317714  ENSGO00000187609.11 2707 116366 0 13 0,684156271 -1,725317858 -1,203058829
AGFG2  + 7 100136834 100165842  ENSG00000106351.8 1291 29008 2 3 0,6545631 0,895985923 0,849625612
ST6GALNAC3 1 76540404 77100286  ENSG00000184005.9 987 559882 0 1 0,635401501 0,481903843 0,71332483
CGRRF1 + 14 54976530 55005567 ENSGO00000100532.7 1039 29037 0 2 0,565795517 0,150343318 0,414022933
CNTNAP2 + 7 145813453 148118090 ENSG00000174469.13 4037 2304637 5 6 0,563947177 0,204322538 0,472669463
APOC2 + 19 45449243 45452822  ENSG00000234906.4 336 3579 0 2 0,552719577 0,182312534 0,423901026
ATG14 + 14 55833110 55878576  ENSG00000126775.8 1539 45466 0 4 0,551818028 -0,357672317 -0,034249132
SAMD4A + 14 55033815 55260033 ENSGO00000020577.9 2366 226218 1 0 0,549832768 1,285731173 1,193637347
SVEP1 + 9 113127531 113342160 ENSG00000165124.13 11061 214629 2 6 0,548008965 0,157194253 0,329345173
ZNF317  + 19 9251056 9274100 ENSG00000130803.10 1758 23044 0 1 0,546852862 0,473517186 0,670057364
APBA2 + 15 29129629 29410518  ENSGO00000034053.10 2647 280889 1 10 0,542886965 -1,055651771 -0,625635589
GMFB + 14 54941202 54955914  ENSGO00000197045.8 508 14712 0 0 0,526211632 0,841351244 0,980023489
GCH1 + 14 55308726 55369570 ENSGO00000131979.14 892 60844 0 1 0,509578001 0,480372822 0,661531792
NDNL2 + 15 29560353 29562033 ENSG00000185115.4 921 1680 0 0 0,501962417 0,785228916 0,870913319
ATP10A + 15 25922420 26110317 ENSGO00000206190.7 4795 187897 1 5 0,501326386 -0,175277912 0,074763692
CNIH1 + 14 54893654 54908149 ENSG00000100528.7 381 14495 0 0 0,494550985 0,806566767 0,947001865
ERMAP + 1 43282795 43310660 ENSG00000164010.9 1551 27865 1 8 0,480748455 -0,823379015 -0,425215558
KBTBD4 + 11 47599277 47599823  ENSG00000231880.1 677 546 0 0 0,477900568 0,734800622 0,865962201
SNX16 + 8 82711816 82755101 ENSG00000104497.9 1077 43285 1 2 0,456422625 0,505492858 0,576511245
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118965254

4903049
34638130
29827285
10424465

139632619

113431051
62850430

3468738
31293264
44126548
53083410

150521715

133071627
70518965
15469590
12090105
57387702
66563765

3536960
51512837
196065244
319942
10421860
35743271

249214145
75919259
60568778
60544205

118971517

4904113
34651032
29841948
10453274

139642905

113563859
62915598

3539543
31453476
44152139
53097247

150558592

ENSG00000253117.4
ENSG00000173610.7
ENSG00000181464.2
ENSG00000267179.1
ENSG00000150275.13
ENSG00000228144.2
ENSG00000262621.2
ENSG00000269741.1
ENSG00000273331.1
ENSG00000167930.11
ENSG00000109061.9
ENSG00000100890.11
ENSG00000185220.7
ENSG00000164220.6
ENSG00000172689.1
ENSG00000166961.10
ENSG00000164334.11
ENSG00000176900.2
ENSG00000213930.7
ENSG00000185928.7
ENSG00000125414.14
ENSG00000204003.4
ENSG00000030304.8
ENSG00000176809.6
ENSG00000262304.1
ENSG00000134160.9
ENSG00000137225.8
ENSG00000189182.5
ENSG00000002726.15

1424
1620

735
3340
7759
1009
1755
1530
1067
2047
6048
1858
1791
1137

758

627
1064
1071
1279

914
6112
1113
2867
4656
4111
5046
2274
1510
2336

35160
64830
793
54215
1825171
46068
121861
13563
22291
35397
26236
152219
13750
7952
15957
19779
6263
1064
12902
14663
28809
10286
132808
65168
70805
160212
25591
13837
36877
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8
10
9
11
11
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29
67
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88
165
251

14
32
106
3

1

-1,22297483
-1,452397597
-1,583552773
-1,672130671
-1,70907171
-1,713035924
-1,7214776
-1,737563801
-1,74542378
-2,119119744
-2,145800473
-2,363937756
-2,372034031
-2,394665006
-2,623544152
-2,623544152
-2,623544152
-2,623544152
-2,623544152
-2,623544152
-2,623544152
-2,623544152
-2,623544152
-2,623544152
-2,623544152
-2,623544152
-2,623544152
-2,623544152
-2,623544152

-0,318979538
-1,157114238
-1,987581379
-1,613127348

0,649013663
-0,935854517
-0,241712945

0,543418516
-1,052405841
-2,137781451
-2,531252393
-2,388528159
-2,531252393

0,582109157

0,341150501

0,386350104

0,470445528
-0,312879774
-0,256425303
-2,218653397
-1,479661087
-1,050552283
-0,962658632
-2,531252393
-1,803423642
-1,725519217
-2,531252393

0,387708152

0,502388617

Table A.4: Deletions common to ExAC CNVs. Data is sorted from low to high deletion score (del.score) and duplication (dup) frequencies.

expression in the brain. Deletion score increases with increasing intolerance.

bl

-0,70733283
-1,290499802
-1,933008812
-1,620374567
-0,270961846

-1,24193792
-0,899431715
-0,486487867
-1,353431098
-2,083388631
-2,471627899
-2,349853415
-2,471627899
-0,860471779
-1,151351654
-1,100406599
-1,080167359
-1,741515134
-1,622835199
-2,356307677
-1,744933332
-2,471627899
-2,194517064
-2,471627899
-2,471627899
-2,471627899
-2,471627899
-2,471627899
-2,471627899

+” indicates
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Chr | Start End Sample Length | Genes Regions
to filter
20 54823759 54824900 SN7640114_5535_ROL_0391_1 1141 MC3R No
1 53320120 53329849 SN7640113_5560_ROL_ 0501_ 1 9729 ZYGI11A Yes
6 33693196 33703280 SN7640116_ 5738 ROL_ 0691 _1 10084 IP6K3 No
5 96506883 96518935 SN7640099_3853_D202_1 12052 RIOK?2 Yes
5 71519462 71533975 SN10600087_4671__E145b_1 14513 MRPS27 No
19 45447959 45465365 SN10410083_4605_EPW_10381_1 17406 APOC2, APOC4, APOC4-APOC2, CLPTM1 No
1 43296070 43317484 SN7640116_5714_ROL_0591_1 21414 ERMAP, ZNF691 No
14 77302503 77327178 SN7640113_5314_S97_1 24675 LRRCT4A No
4 169362457 | 169393930 | SN7640116_5718_ ROL_0631_1 31473 DDX60L No
1 115137047 | 115168530 | SN7640114_5320_E130f 1 31483 DENND2C No
10 49383834 49420140 SN10410083_4604_EPW_10371_1 36306 FRMPD2 No
2 44502637 44539912 SN7640110_4834 EPW_ 10651_ 1 37275 SLC3A1 No
17 73623470 73661285 SN10410083_ 4602 EPW_10311_1 37815 RECQL5, SMIM5, SMIM6 Yes
5 140482462 | 140531165 | SN7640097_3840_E650_ 1 48703 PCDHB3, PCDHB4, PCDHB5, PCDHB6 Yes
18 30873076 30928981 SN7640110_4822_ EPW__10561_1 55905 CCDC178 Yes
5 75858199 75914495 SN7640110_4823_ _EPW_10571_1 56296 F2RL2, IQGAP2 No
3 4403776 4562816 SN7640113_5548 ROL_ 0451_1 159040 | ITPR1, ITPR1-AS1, SUMF1 No
16 9856958 10032248 SN7640112_5141__EPW_ 11111_1 175290 | GRIN2A No
8 82571539 82752251 SN10410083_4581_ EPW_ 10181 1 180712 | CHMP4C, IMPA1, SLC10A5, SNX16, ZFAND1 No
17 | 10403892 | 10632442 | SN7640097 3843 E91 1 228550 | ADPRM, MAGOH2P, MYH1, MYH2, MYH3, MYHAS, | No
SCO1, TMEM220
14 54863694 55907289 SN7640113_5558 ROL_ 0481_1 1043595| ATG14, CDKN3, CGRRF1, CNIH1, DLGAP5, FBX034, | No
GCH1, GMFB, LGALS3, MAPKI1IP1L, MIR4308,
SAMD4A, SOCS4, TBPL2, WDHD1
15 29346087 32460550 SN7640113_5549 ROL_ 0461 _1 3114463| APBAZ2, ARHGAP11B, CHRFAMT7A, CHRNAY7, | No
DKFZP4341.187, FAM189A1, FAN1, GOLGASH,
GOLGAS8J, GOLGA8R, GOLGAST, HERC2P10, KLF13,
LOC100288637, LOC283710, MIR211, MTMR10, NDNL2,
OTUDTA, TJP1, TRPM1, ULK4P1, ULK4P2, ULK4P3
15 23811123 28525396 SN7640112_5240_EPW_11321_1 4714273 ATP10A, GABRA5, GABRB3, GABRG3, GABRG3- | No
AS1, HERC2, IPW, LINC00929, LOC100128714,
MAGEL2, MIR4715, MKRN3, NDN, NPAP1, OCAZ2,
PWAR1, PWAR4, PWAR5, PWARSN, PWRN1, PWRN2,
PWRN3, PWRN4, SNORD107, SNORD108, SNORD109A,
SNORD109B, SNORD115-1, SNORD115-10, SNORD115-
11, SNORD115-12, SNORD115-13

Table A.5: Deletions detected via WES data and validated by array data.




A.4 Familial-PD

https://dropit.uni.lu/invitations?share=6dc8ba728b76345dd71c&d1=0

Table A.6: Top 15 genes containing coding, non-coding and CNVs per family. When a variant is not present
in a gene it is represented as "NA”. coding_dom_ gene = coding variants following autosomal dominant in-
heritance, coding dom_ score = phenolyzer score of coding variants following autosomal dominant inheritance,
coding _dom__cand__gene = Whether coding variants following autosomal dominant inheritance are present in the
candidate gene list or not, coding_dom_ gene = coding variants following autosomal recessive inheritance, cod-
ing_ rec_ gene coding_rec_score = phenolyzer score of coding variants following autosomal recessive inheritance,
coding_rec_ cand_ gene = Whether coding variants following autosomal recessive inheritance is present in the can-
didate gene list or not, noncoding_dom_ score = noncoding variants following autosomal dominant inheritance,
noncoding dom_ score = phenolyzer score of noncoding variants following autosomal dominant inheritance, non-
coding dom_ cand__gene = Whether noncoding variants following autosomal dominant inheritance are present in
the candidate gene list or not, noncoding_rec_ gene = noncoding variants following autosomal recessive inheri-
tance, noncoding_rec_ score = phenolyzer score of noncoding variants following autosomal recessive inheritance,
noncoding_rec__cand__gene = Whether noncoding variants following autosomal recessive inheritance are present
in the candidate gene list or not, cnv__ del_gene = Genes spanning a deletion, cnv__ del_score = Phenolyzer
score of genes spanning a deletion, cnv__ del_cand_gene = Whether genes spanning a deletion are present in the
candidate gene list or not, cnv__ dup_ gene = Genes spanning a duplication, cnv__ dup_ score = Phenolyzer score
of genes spanning a duplication, cnv__ dup_ cand_ gene = Whether genes spanning a duplication are present in
the candidate gene list or not

Family MOI

102 AD
104 AD
14 AD
164 AD
251 AD
252 AD
253 AD
259 AD
292 AD
3065 AD
3070 AD
315 AD
326 AD
332 AD
338 AD
3401 AD
HCB1 AD
HCB2 AD
HCB4 AD
PD290 AD
PD291 AD
PD317 AD

PD320 AD
307234 AR
3086 AR
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https://dropit.uni.lu/invitations?share=6dc8ba728b76345dd71c&dl=0

3886 AR
Fam_ 034 AR
Fam_ 158 AR
Fam_175 AR
Fam 176 AR

HCB5 AR
PD172 AR
PD257 AR

PD296 AR
PD300 AR
PD313 AR

Table A.7: Name of the family and the mode of inheritance that was tested.
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Family MOI| Chr Pos Ref Alt Function Gene AA.change HGMD disease

3065 AD 7 107350620 G C ex SLC26A4 p.E737D Hearing loss

3065 AD 17 78079509 T G int GAA Glycogen storage disease 2

3065 AD X 47315839 T G spl ZNF41 . Mental retardation

3070 AD 10 55955444 T G ex_spl PCDH15 p.D398A Usher syndrome 1

3070 AR 1 98502934 G T ncRNA_int MIR137HG Schizophrenia%2C increased risk

3070 AR 6 6320808 T G int F13A1 . Factor XIII deficiency

3086 AD 7 117307052 G A ex CFTR p.D1445N Cystic fibrosis

3086 AD 8 100832259 A G ex VPS13B p.N2993S Cohen syndrome

3086 AD 9 111911955 A AT ex FRRS1L p.I1146fs Encephalopathy%2C epileptic-
dyskinetic

3086 AD 21 44480591 G A ex CBS p.R264C Homocystinuria

3401 AD 1 76211574 C A ex ACADM p.T39N Medium chain acyl CoA dehydrogenase
deficiency

3401 AD 1 94466625 G A ex ABCA4 p.R2107C Stargardt disease

3401 AD 3 37089131 A C ex MLH1 p.K377T Colorectal cancer%2C non-polyposis

3401 AD 5 74981103 C T ex POC5 p.A421T Scoliosis

3401 AD 8 55542540 G A ex RP1 p.C2033Y Retinitis pigmentosa

3401 AD 9 136494594 G T intgen FAM163B_DBH | . Altered enzyme activity

3401 AD 12 114837349 C A ex TBX5 p.D61Y Holt-Oram syndrome

3401 AD 16 56906568 C T ex_spl SLC12A3 p.A322V Gitelman syndrome

3401 AD 16 89986130 T C ex MCI1R p.1155T Red hair%2C increased risk

3401 AD 20 33763985 C T ex PROCR p.R113C Venous thromboembolism

3401 AD X 153171698 GCGCCGCAGGGGA G ex AVPR2 p.247__250del Diabetes insipidus%2C nephrogenic

3886 AD 5 135391462 A G ex TGFBI p.M502V Corneal dystrophy

3886 AR 7 94227276 T G ex SGCE p.S432R Myoclonus dystonia syndrome

GRIP_102 AD 1 22202483 G A ex HSPG2 p.P1020L Schwartz-Jampel syndrome type 1

GRIP_102 AD 1 150530505 T TG ex ADAMTSL4 p.F754fs Ectopia lentis%2C isolated form

GRIP_102 AD 1 196620941 C T up CFH Haemolytic uraemic syndrome%2C
atypical

GRIP_102 AD 2 157369961 C ex GPD2 p.P205L Intellectual disability

GRIP_102 AD 6 26091179 C ex HFE p.H63D Haemochromatosis%2C association
with

GRIP__102 AD 15 28230247 C T ex OCA2 p. V4191 Albinism%2C oculocutaneous II

GRIP__102 AD 17 7576841 A G int TP53 Breast and:or ovarian cancer

GRIP_102 AR 14 95581899 G A int DICER1 Breast cancer

GRIP_102 AR 17 78079509 T G int GAA . Glycogen storage disease 2

GRIP__104 AD 3 15686693 G C ex BTD p.D444H Biotinidase deficiency%2C partial

GRIP__104 AD 3 48627789 C A ex_spl COL7A1 p.G636V Epidermolysis bullosa%2C recessive
dystrophic

GRIP_104 AD 5 177638965 T A ex PHYKPL p.E396V Phosphohydroxylysinuria

GRIP_104 AD 8 61693942 G GAAAGCA ex CHD7 p.K683delinsKKA Kallmann syndrome

GRIP__104 AD 9 99064254 G A ex HSD17B3 p.R45W Hypospadias

GRIP_104 AD 11 108124486 T G int ATM . Breast cancer

GRIP__104 AD 13 52542680 A G ex ATPT7B p.V536A Wilson disease

GRIP_104 AD 14 94847262 T A ex SERPINA1 p.E288V Antitrypsin alpha 1 deficiency%2C par-
tial

GRIP_104 AD 16 88904097 A C ex GALNS p.F167V Mucopolysaccharidosis IVa

GRIP__104 AR 1 98502934 G T ncRNA__int MIR137HG . Schizophrenia%2C increased risk

GRIP_104 AR 7 94227276 T G ex SGCE p.S432R Myoclonus dystonia syndrome

GRIP_104 AR 16 56917953 T C int SLC12A3 Gitelman syndrome%2C without hypo-
magnesaemia

GRIP_104 AR 17 78079509 T G int GAA Glycogen storage disease 2




81¢

GRIP_ 14

GRIP__14
GRIP__14
GRIP_ 14
GRIP__14
GRIP__14
GRIP__164

GRIP_164

GRIP__164

GRIP_251
GRIP_251
GRIP_251

GRIP_251
GRIP_251

GRIP_ 251

GRIP_ 251
GRIP_ 252
GRIP_ 252
GRIP_ 252

GRIP_ 252
GRIP_ 252
GRIP_ 252
GRIP_ 252
GRIP_ 252
GRIP_ 252
GRIP_ 252
GRIP_ 252
GRIP_ 252
GRIP_ 252
GRIP_ 252

GRIP_252
GRIP__252
GRIP_252

GRIP_253
GRIP__253

GRIP_253
GRIP_253
GRIP__253
GRIP_253
GRIP_253

GRIP__253

AD

AD
AD
AD
AD
AR
AD

AD

AD

AD
AD
AD

AD
AD

AD

AR
AD
AD
AD

AD
AD
AD
AD
AD
AD
AD
AD
AD
AD
AD

AR
AR
AR

AD
AD

AD
AD
AD
AD
AD

AD

11
11
12
16
16
17

19

10
13

16

10
10
14

16

53662764

46747447
57365748
6234884
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7128292

2435150

16091760
137089865
26091179

43598056
39453010
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78079509
3329229

16091760
71896835

39226442
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117199644
12694274
55955444
64577603
51382091
89868870
89873415
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55542540
106431420
27389395
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64676751
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UTR5
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CPT2

F2
SERPING1
VWF
ERCC4
RP1
SLC12A3

ACADVL

LMNB2

FBLIM1
HNRNPAO
HFE

RET
FREM2

SLC12A3

GAA
PRDM16
FBLIM1
DYSF

XIRP1
SGCE
CFTR
TYRP1
PCDHI15
MEN1
PYGL
POLG
POLG
PAX1
MYH9

MIR137HG
DUOXA2
SLC12A3

INHA
HFE

RP1
ZFPM2
ANKRD26
PCDHI15
SYNE2

DNASE1

p.P50H

p.E200K
p.A2V

p.R7T99W
p.C2033Y
p.R593Q

p.R235Q

p.H63D

p.V202M
p. V29681

p.R823P
p.D1862N

p.E182K
p.S432R
p.507_508del
p.R93H
p.D39SA

p.V422M
p.P587L
p.T2511

p.S1114P

p.A257T
p.H63D

p.C2033Y
p.E30G

p.D398A
p.T6211M

p.V111M

Carnitine palmitoyltransferase 2 defi-
ciency

Dysprothrombinaemia

Angioneurotic oedema

Von Willebrand disease 1

Xeroderma pigmentosum (F)

Retinitis pigmentosa

Gitelman syndrome%2C without hypo-
magnesaemia

Very long chain acyl-CoA dehydroge-
nase deficiency

Lipodystrophy%2C partial%2C ac-
quired%2C susceptibility to

Chronic multifocal osteomyelitis
Cancer%2C increased risk
Haemochromatosis%2C association
with

Hirschsprung disease

Congenital high airways obstruction
syndrome

Gitelman syndrome%2C without hypo-
magnesaemia

Glycogen storage disease 2

Sudden unexpected death in infancy
Chronic multifocal osteomyelitis
Muscular dystrophy%2C limb girdle :
Miyoshi myopathy

Primary microcephaly

Myoclonus dystonia syndrome

Cystic fibrosis

Albinism%2C oculocutaneous 3

Usher syndrome 1
Hyperparathyroidism

Glycogen storage disease 6

Progressive external ophthalmoplegia
Progressive external ophthalmoplegia
Klippel-Feil syndrome

Alport syndrome with macrothrombo-
cytopaenia

Schizophrenia%?2C increased risk
Hypothyroidism

Gitelman syndrome%2C without hypo-
magnesaemia

Premature ovarian failure
Haemochromatosis%2C association
with

Retinitis pigmentosa

Tetralogy of Fallot
Thrombocytopaenia 2

Usher syndrome 1

Muscular dystrophy%2C Emery-
Dreifuss

Autoimmune thyroid disease
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BCO1

ACADVL

PRKCSH
PNPLA2
DUOXA2
GAA
MIR137HG
HFE

SGCE
PRRT2
F13A1
CTNS
RD3

NEB
ANOS5
CTC1
GAA
MAP3K6
MIR137HG
PPOX
NDUFS2
SRD5A2
SPAST
MFSD8

T

SGCE
CFTR

RP1

CHD7
TYRP1
FAM163B_DBH
PHYH

PCDH15
SLC12A3

FOXC2
SPG7
MYOM1
SIGLEC1
F13A1
PNPLA2
DUOXA2
CTNS
GAA
MECP2
NPHP4
SCNMI1__TNFAIH
SCNM1

p.T170M

p.R139H
p.L481P

p.H63D

p.S432R
p.A214fs

p.T260I
p.K87E

p.D5516H
p.ST95L
p.K242fs

p.P938L

p.P20T
UNKNOWN
p.S44L

p.E336Q
p.-A280V
p.S432R
p.507__508del
p.C2033Y
p.K683delinsKKA
p.T352fs

p.R157Q
p.D398A
p.Q444R
p.A286fs
p.E247K
p.E88X

p.L481P

p.T2601

p.T323M
p.A598V

8p2RIAC

Hypercarotenemia and hypovita-
minosis A

Very long chain acyl-CoA dehydroge-
nase deficiency

Polycystic liver disease

Myopathy%2C late-onset
Hypothyroidism

Glycogen storage disease 2
Schizophrenia%2C increased risk
Haemochromatosis%2C association
with

Myoclonus dystonia syndrome
Paroxysmal kinesigenic dyskinesia
Factor XIII deficiency

Cystinosis%2C nephropathic

Retinitis pigmentosa%2C autosomal re-
cessive

Nemaline myopathy

Muscular dystrophy%2C limb girdle 2L
Coats plus

Glycogen storage disease 2

Gastric cancer%2C predisposition to
Schizophrenia%2C increased risk
Porphyria%2C variegate

Mitochondrial complex I deficiency
Hypospadias%2C mild

Spastic paraplegia

Macular dystrophy%2C nonsyndromic
Vertebral malformation

Myoclonus dystonia syndrome

Cystic fibrosis

Retinitis pigmentosa

Kallmann syndrome

Albinism%2C oculocutaneous 3
Altered enzyme activity
Phytanoyl-CoA
ciency%2C partial

hydroxylase defi-

Usher syndrome 1

Gitelman syndrome%2C without hypo-
magnesaemia

Lymphoedema%2C primary
Spastic paraplegia
Cardiomyopathy%2C dilated
SIGLECI1 deficiency

Factor XIII deficiency
Myopathy%2C late-onset
Hypothyroidism

Cystinosis%2C nephropathic
Glycogen storage disease 2

Rett syndrome

Cardiovascular malformations
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Cryopyrin-associated  periodic  syn-
drome%2C atypical

Breast and:or ovarian cancer
Biotinidase deficiency%2C partial
Parkinsonism%2C juvenile%2C autoso-
mal recessive

Congenital absence of vas deferens
Cystic fibrosis

Cystic fibrosis

Galactosaemia

Altered enzyme activity
Thrombocytopaenia 2

Usher syndrome 1

Osteopetrosis%2C autosomal recessive
Antitrypsin alpha 1 deficiency%2C par-
tial

Multiple sessile serrated adenoma
Congenital disorder of glycosylation la
Obesity%2C severe%2C early-onset
Gitelman syndrome%2C without hypo-
magnesaemia

Lymphoedema%2C primary

Spastic paraplegia

Breast and:or ovarian cancer
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N-acetylgalactosaminidase alpha defi-
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Amegakaryocytic thrombocytopae-
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Cardiac dysrhythmia
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Gitelman syndrome%2C without hypo-
magnesaemia

Upper motor neuron syndrome

PNPO deficiency

Haemolytic uraemic syndrome%2C
atypical

Myoclonus dystonia syndrome
Schizophrenia%2C increased risk
Breast cancer

Female infertility

Factor XIII deficiency

Hypothyroidism

Gitelman syndrome%2C without hypo-
magnesaemia

Cystinosis%2C nephropathic

Glycogen storage disease 2
Arthritis%2C juvenile

Myopathy%2C late-onset
Hypercholesterolaemia

Glaucoma%?2C primary congenital
Hirschsprung disease

Ovotesticular disorder of sex develop-
ment

Megaloblastic anaemia
Thrombocytopaenia 2

Hirschsprung disease

Breast cancer

Schizophrenia%?2C increased risk
Factor XIII deficiency

Myopathy%2C late-onset
Cystinosis%2C nephropathic

Glycogen storage disease 2
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Sinus bradycardia & myocardial non-
compaction

Mitochondrial complex I deficiency
Myopathy%2C late-onset
Albinism%2C oculocutaneous II
Pseudoxanthoma elasticum%2C auto-
somal recessive
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Schizophrenia%2C increased risk
Cardiac disease
Hypobetalipoproteinaemia

Muscular dystrophy%2C limb girdle :
Miyoshi myopathy
Colour-blindness%2C total

Long QT syndrome

Myoclonus dystonia syndrome
Congenital absence of vas deferens
Retinitis pigmentosa%2C autosomal
dominant

Thyroid carcinoma%2C non-medullary
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p.L310F
p.Q301H
p.R5TW
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p.N1342S
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Hearing loss

Cardiomyopathy%2C hypertrophic
Myopathy : muscular dystrophy
Phenylketonuria

Intellectual disability%2C cerebellar
taxia

Diabetes mellitus%2C type 2

Glycogen storage disease 2

Hearing loss

Factor XIII deficiency

Retinitis pigmentosa

Hypothyroidism

Gitelman syndrome%2C without hypo-
magnesaemia

Cystinosis%2C nephropathic

Autism

Retinitis pigmentosa

Leber congenital amaurosis

Von Willebrand disease 1

Breast and:or ovarian cancer

Adrenal hypoplasia

Sideroblastic anaemia

Myoclonus dystonia syndrome
Myopathy%2C late-onset
Cystinosis%2C nephropathic

Isolated Complex I deficiency
Amyotrophic lateral sclerosis

Protein C deficiency

Retinitis pigmentosa

Altered enzyme activity
Hypercalcaemia%2C idiopathic infan-
tile

APECED

Myoclonus dystonia syndrome
Gitelman syndrome%2C without hypo-
magnesaemia

Elevated HDL-cholesterol
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Apolipoprotein C3 deficiency with ap-
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Very long chain acyl-CoA dehydroge-
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Myopathy%2C late-onset
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Altered enzyme activity
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ital

Hypothyroidism
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Hearing loss

Hearing loss

Schizophrenia%2C increased risk
Factor XIII deficiency

Myoclonus dystonia syndrome
Cystinosis%2C nephropathic
Diabetes%2C type 1%2C increased risk
Febrile seizures

Hypogonadotropic hypogonadism
Nephronophthisis 2

Altered enzyme activity
Myopathy%2C late-onset
Progressive external ophthalmoplegia
Myoclonus dystonia syndrome
Glaucoma 1%2C open angle
Smith-Lemli-Opitz syndrome
Wilson disease

CADASIL

Epileptic encephalopathy
Schizophrenia%2C increased risk
Hypothyroidism

Cystinosis%2C nephropathic
Mitochondrial complex I deficiency
Colorectal cancer%2C non-polyposis
Muscular dystrophy%2C merosin defi-
cient

Usher syndrome 1

Juvenile idiopathic arthritis
Glycogen storage disease 2
Peeling skin syndrome%2C type A
Peroxisome biogenesis disorder
Schizophrenia%2C increased risk
Factor XIII deficiency
Hypothyroidism

Cystinosis%2C nephropathic
Optic atrophy 1

Aortic valve disease

Usher syndrome 1

Klippel-Feil syndrome
Schizophrenia%?2C increased risk
Factor XIII deficiency

Myoclonus dystonia syndrome
Hypothyroidism

Cystinosis%2C nephropathic
Glycogen storage disease 2
Parkinson disease

Retinitis pigmentosa

Usher syndrome 1

Hearing loss

Myopathy%2C late-onset

McArdle disease

Breast cancer

Gitelman syndrome
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Leber congenital amaurosis IV
Schizophrenia%2C increased risk
Myoclonus dystonia syndrome
Hypothyroidism

Cystinosis%2C nephropathic

Spastic paraplegia

Congenital anomalies of the kidney and
urinary tract:CAKUT in VACTERL
Glycogen storage disease 2

Variants annotated as disease causing with high confidence by HGMD. Fam = Family name, Chr = Chromsome, Pos = Position according

hg19 genome, Ref = Reference allele, Alt = Alternate allele, ex = Exonic, spl = splicing, int = Intronic, intgen = Intergenic, up = Upstream of a gene.
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Abstract

Rolandic epilepsy (RE) is the most common focal epilepsy in childhood. To date no hypothesis-free exome-wide mutational
screen has been conducted for RE and atypical RE (ARE). Here we report on whole-exome sequencing of 194 unrelated
patients with RE/ARE and 567 ethnically matched population controls. We identified an exome-wide significantly enriched
burden for deleterious and loss-of-function variants only for the established RE/ARE gene GRIN2A. The statistical
significance of the enrichment disappeared after removing ARE patients. For several disease-related gene-sets, an odds

ratio >1 was detected for loss-of-function variants.

Introduction

Rolandic epilepsy (RE), or epilepsy with centro-temporal
spikes (CTS), is one of the most common epilepsy
syndromes of childhood. RE is related to rarer and less
benign epilepsy syndromes, including atypical benign par-
tial epilepsy, Landau—Kleffner syndrome and epileptic
encephalopathy with continuous spike-and-waves during
sleep, referred to as RE-related syndromes or atypical
rolandic epilepsy (ARE) [1]. In up to 20% sib pairs or
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families, mutations affecting GRIN2A, a subunit of the
excitatory  glutamate receptor  N-methyl-D-aspartate
(NMDA), were found implicated as major risk factor for RE
and ARE by us and others [2, 3]. Recently, the association
of the genes RBFOXI, RBFOX3, DEPDC5, GABRG2 and
genomic duplications at 16p11.2 in 1.5-2.0% was identified
in patients with RE and ARE [4-6] through candidate gene
and loci screens. In the current study, an unbiased exome-
wide survey was conducted in the RE/ARE cohort.

Patients and methods
Study participants

Two hundred and four unrelated European Rolandic cases
(182 RE, 22 ARE) and 728 population control subjects were
included [6]. Children with (typical) RE suffer from peri-
sylvian oromotor seizures frequently starting during sleep.
In adolescence, the epilepsy resolves spontaneously, fre-
quently without any intellectual sequels. ARE share the
essential electroencephalography feature with RE but show
a different seizure symptomatology by their own or in
addition to rolandic seizures. Seizures, like in RE, resolve
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spontaneously, but cognitive outcome is guarded in ARE.
In detail, these epilepsies are: atypical benign partial epi-
lepsy of childhood, with atonic seizures and atypical
absences in addition to rolandic seizures; Landau—Kleffner
syndrome, with loss of speech and cognitive decline; and
epilepsia-aphasia syndrome with seizures and language
dysfunction [1, 6]. Written informed consent was obtained
from participating subjects and, if appropriate, from both
patients and adolescents.

Data generation and processing

Exome sequencing of all individuals was performed with the
INlumina HiSeq 2000 using the EZ Human Exome Library
Kit (NimbleGen, Madison, WI). Sequencing adapters were
trimmed and samples with <30x mean depth or <70% total
exome coverage at 20x mean depth of coverage were
excluded from further analysis. Variant calling was per-
formed in targeted exonic intervals with 100bp padding
using the GATK best practices pipeline [7] against the
GRCh37 human reference genome followed by multi-allelic
variant decomposition and left normalization. Samples were
excluded from further analysis if they (i) were not ethnically
matched, (ii) were related, (iii) showed discrepancy with
reported sex, (iv) had an excess heterozygosity >3 SD in any
of the quality metrics (NALT, NMIN, NHET, NVAR, RATE
and SINGLETON statistics as calculated by PLINKSseq i-
stats parameter [8]. The genotypes of variants with read depth
<10 or genotype quality <20 were set to missing. Variants
were excluded if they (i) failed variant quality score recali-
bration (VQSR) or GATK recommended hard filter, (ii)
showed missingness >3%, (iii) were present in repeat regions
or (iv) had an average read depth <10 in either cases or
controls. The EXAC variants were restricted to the exonic
intervals used for variant calling in this study, not present in
the repeat regions and passed the VQSR threshold.

Variant annotation and filtering

Variants were annotated using ANNOVAR [9] version 2015
Mar 22 with RefSeq and Ensembl, Combined Annotation
Dependent Depletion (CADD) scores [10], allele fre-
quencies and dbNSFP (v3.0) annotations. The samples used
in this study are of Non-Finnish European (NFE) ancestry,
hence to investigate rare variants, we selected variants
having a minor allele frequency <0.005 in the European
populations of the 1000 genomes, Exome Variant Server and
the NFE data from ExAC. We generated three classes of
variants for further analyses: (1) deleterious variants
(CADD15), which were defined as missense variants with a
CADD Phred score >15 as it is the median value across all
missense and canonical splice site variants [10], (2) loss-of-
function (LOF) variants comprising all rare indels, stop gain,
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stop loss and splice site variants (2 nt plus/minus the exon
boundary), (3) CADD15+4LOF variants as the union of the
above two datasets, and (4) rare synonymous variants.

Single variant and gene association analysis

For the statistical analysis, we employed two independent
control cohorts (available in-house and ExAC) to increase
reliability and power of the statistical tests. For single variant
burden analysis, we applied the single score method in
RVTESTS [11] to cases and in-house controls, for which
individual genotypes were available. For gene burden analy-
sis, a 2 X 2 contingency table was constructed by counting the
number of alternate allele counts per gene in patients vs.
controls (in-house controls and NFE ExAC controls). We then
obtained a one-sided p-value, odds ratios and the 95% con-
fidence intervals [12] by using Fisher’s exact test. Resulting p-
values were corrected for 18,668 RefSeq protein-coding genes
[13] by Bonferroni approach. Finally, to ensure the exclusion
of false positive association results and following the 'rare
variant of large effect hypothesis', we selected those genes that
are present in the first quartile of the Residual Variant Intol-
erance Score (RVIS) distribution [14].

Selection of gene-sets

We investigated the following four neuron-related gene-sets:
(1) genes encoding proteins at synapses downloaded from the
SynaptomeDB [15] database (“SYNAPTIC_GENES”, N=
1887), (2) genes of postsynaptic signalling complexes
including NMDA receptors (NMDARs) and the neuronal
activity-regulated cytoskeleton-associated protein (ARC) [16]
(“NMDAR_ARC_COMPLEX”, N = 80), (3) genes encoding
proteins at the inhibitory synapses (‘INHIBITORY”, N=
5941) and excitatory synapses (“EXCITATORY”, N = 5261)
[17], and (4) glutamate receptor subunit encoding genes
(“GLUTAMATE_RECEPTORS”, N=18). In addition, we
included five gene-sets associated with disease and/or muta-
tional intolerance: (1) genes encoding targets of Fragile-X-
Mental-Retardation-1-Protein  [18] (“FMRP_TARGETS._-
DARNELL", N = 1772), (2) genes intolerant for variants from
ExAC (“EXAC_CONSTRAINED_GENES”, N =3230), (3)
genes intolerant for loss-of-function variants [19] (‘con-
strained’) (“CONSTRAINED_GENES_SAMOCHA”, N=
1004), (4) a curated list of dominant genes associated with
developmental delay obtained from the DECIPHER database
[20] (“DDG2P_MONOALLELIC", N=299), and (5) genes
found related before to epileptic encephalopathies [21] (“EPI-
LEPTIC_ENCEPHALOPATHY”, N=73). As control data
sets, we used (1) for each dataset the corresponding set of
synonymous variants, and (2) the ‘non-constraint’ gene-set
including RefSeq genes that have been found tolerant to LOF
variants ~ (“GENES_WITHOUT_CONSTRAINT”, N=
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14,417). GRIN2A, as the most significant single gene from the
burden analysis, was excluded from all gene-sets in order to
test if other genes also contribute to the disease association.

Data availability

All the CADD15+4LOF variants from our study within the
“EPILEPTIC_ENCEPHALOPATHY” gene-set were depos-
ited in the Leiden Open Variation Database (LOVD) (https://
databases.lovd.nl/shared/genes). The accession numbers of the
deposited variants in LOVD are 188117-188549. Also, the
variants present in the cases within the “EPILEPTIC_ENCE-
PHALOPATHY” gene-set are available in the ClinVar
database (https://www.ncbi.nlm.nih.gov/clinvar/) with the
accession numbers SCV000588243-SCV000588353. The
variants that were described in our previous studies are indi-
cated in Supplementry Table 1.

Gene-set association analysis

The gene-set association analysis for the different types of
variants was performed by using a logistic regression
approach using R (version 3.2) and adjusting for the fol-
lowing confounding variables: the total number of called
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Fig. 1 Burden analysis. Typical Rolandic epilepsy is represented as
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ROLANDIC. On the x axis, the odds ratios in cases vs controls are
given. The names of the variant classes are given on the y axis. Each
panel represents a different dataset. The dashed vertical line represents
the expected odds ratio of 1. The horizontal lines indicate 95% con-
fidence intervals. a Assessment of risk for deleterious variants in
GRIN2A against two control groups (EXAC and In-house). The values

genotypes per sample, the total number of rare coding var-
iants per sample, the total number of rare coding singletons
(variants observed only once in the entire dataset) per sample,
calculated sex, the first four principal components, and the
total number of variants per sample for each variant class.

Results
Exome sequencing and variant filtering

We performed whole-exome sequencing on 204 patients
with RE/ARE and 728 population controls. After quality
control, the final dataset consisted of 19 ARE, 175 RE and
567 control samples. From the total of 761 samples,
226,521 exonic and splice site variants were called. The
mean transition/transversion ratio equalled 3.39 per sample.
After the final filtering 45,881 CADD15, 10,326 LOF and
38,802 synonymous variants were analysed.

Association analysis

To investigate the mutational burden within the RE spec-
trum, all associations were assessed for both RE and ARE
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separately and by combining cases from both phenotypes
while assuming them to be a single disease. In comparison
to 567 in-house controls, we did not observe statistically
significant burden in any of the variants or genes in cases
after multiple-testing correction. In order to increase the

statistical power, we used the non-Finnish European (NFE)
ExXAC cohort as an additional control dataset. Association
testing against the much larger NFE-ExAC cohort (N =
33,370) identified an exome-wide significant burden for
CADD15, CADDI15+LOF and LOF variants for GRIN2A
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right. The uncorrected p-values are shown on top of each point.
CADD15 = deleterious predicted missense variants. LOF = Loss-of-
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within the combined typical and atypical (RE+ARE)
cohort. No other variant-intolerant gene (i.e., being present
in the first quartile of RVIS) was significantly enriched for
variants in any of the tested patient groups. Although var-
iant enrichment for GRIN2A was not found to be significant
after correction for RE and/or ARE separately, the odds
ratio for GRIN2A consistently exceeded unity in all the
considered datasets (Fig. 1a).

Exome-wide and gene-set burden analysis

Assuming a shared mutational burden in patients across
gene-sets of convergent function and/or pathways, we per-
formed gene-set burden analyses by using the in-house
controls. A logistic regression approach was used to account
for various confounding variables (see Methods section). No
significant exome-wide burden was observed across the
different variant classes (Fig. 1b). Despite the fact that none
of the gene-sets showed a significant result after multiple-
testing correction, we found several gene-sets with an
odds ratio >1 for the CADD15, CADD15+LOF and LOF
variant classes, especially for the LOF variants, but not for
synonymous variants (Fig. 2). A similar result was seen
when we performed the analysis with ARE and RE
independently.

Discussion

We performed the first exome-wide association study
investigating rare genetic variants of large effect in 194
patients with childhood focal epilepsies with CTS in com-
parison with 567 in-house and online available 33,370
population controls from the EXAC database. By perform-
ing an unbiased gene-burden analysis of patients against the
in-house and ExAC controls (Fig. 1a), we show that, only
for GRIN2A rare CADD15, CADDI15+LOF and LOF var-
iants are significantly more frequent in RE and ARE,
respectively (odds ratio >1). Owing to the small sample size
and genetic heterogeneity, no other gene or gene-set was
significantly enriched for variants after correction for
multiple-testing (Fig. 2). Since we observe a consistent
trend in the odds ratios for the enrichment of LOF variants
in several disease-associated gene-sets, we are optimistic
that the availability of larger cohorts in the future can allow
to identify other genes associated with RE/ARE.
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function in Parkinson’s disease

Julia C. Fitzger‘ald,I Alexander Zimprich,2 Daniel A. Carvajal Berrio,® Kevin M. Schindler,'**
Brigitte Maur'er,I Claudia Schulte,I Christine Bus,I Anne-Kathrin Hauser,I Manuela Kijbler',I
Rahel Lewin,I Dheeraj Reddy Bobbili,5 Lisa M. Schwarz,"6 Evangelia Vartholomaiou,7
Kathrin Br‘ockmann,I Richard Wijst,"8 Johannes Madlung,9 Alfred Nordheim,Io Olaf Riess,II
L. Miguel Mar'tins,I2 Enrico Glaab,5 Patrick May,5 Katja Schenke-LayIand,r"”’I4

Didier Picard,” Manu Sharma,'> Thomas Gasser' and Rejko Kriiger'*>'®

The mitochondrial proteins TRAP1 and HTRA2 have previously been shown to be phosphorylated in the presence of the
Parkinson’s disease kinase PINK1 but the downstream signalling is unknown. HTRA2 and PINK1 loss of function causes
parkinsonism in humans and animals. Here, we identified TRAP1 as an interactor of HTRA2 using an unbiased mass spectrometry
approach. In our human cell models, TRAP1 overexpression is protective, rescuing HTRA2 and PINK1-associated mitochondrial
dysfunction and suggesting that TRAP1 acts downstream of HTRA2 and PINK1. HTRA2 regulates TRAP1 protein levels, but
TRAP1 is not a direct target of HTRA2 protease activity. Following genetic screening of Parkinson’s disease patients and healthy
controls, we also report the first TRAP1 mutation leading to complete loss of functional protein in a patient with late onset
Parkinson’s disease. Analysis of fibroblasts derived from the patient reveal that oxygen consumption, ATP output and reactive
oxygen species are increased compared to healthy individuals. This is coupled with an increased pool of free NADH, increased
mitochondrial biogenesis, triggering of the mitochondrial unfolded protein response, loss of mitochondrial membrane potential and
sensitivity to mitochondrial removal and apoptosis. These data highlight the role of TRAP1 in the regulation of energy metabolism
and mitochondrial quality control. Interestingly, the diabetes drug metformin reverses mutation-associated alterations on energy
metabolism, mitochondrial biogenesis and restores mitochondrial membrane potential. In summary, our data show that TRAP1
acts downstream of PINK1 and HTRA2 for mitochondrial fine tuning, whereas TRAP1 loss of function leads to reduced control of
energy metabolism, ultimately impacting mitochondrial membrane potential. These findings offer new insight into mitochondrial
pathologies in Parkinson’s disease and provide new prospects for targeted therapies.
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Introduction

Parkinson’s disease is an aetiologically heterogeneous syn-
drome caused by a combination of genetic and environ-
mental risk factors. At least 85% of cases are sporadic,
and at present, there are only symptomatic treatments
available, but the advancement of genetic testing and iden-
tification of patient endophenotypes has given hope for the
emerging field of individualized medicine. Mitochondrial
dysfunction, ensuing cellular energy failure and oxidative
stress may be one important disease pathway in a subgroup
of Parkinson’s disease patients (Kruger et al., 2017). The
aim is that these patients can be therapeutically targeted or
serve as an entry point for precision medicine.

TRAP1 (tumour necrosis factor type 1 receptor associated
protein, also known as HSP 75) is a chaperone that resides
in the mitochondrial matrix (Altieri et al., 2012). It has a
regulatory role in stress sensing in mitochondria allowing
cellular adaption to the environment. TRAP1 is recognized
as a potential effector protein in Parkinson’s disease signal-
ling, since it was found to be phosphorylated by the
Parkinson’s disease kinase PINK1 (Pridgeon et al., 2007).
Loss-of-function mutations in PINKI and PARK2
(encoding parkin) cause familial Parkinson’s disease
(Kitada et al., 1998; Valente et al., 2004) and impair the
elimination of damaged mitochondria (Geisler et al., 2010;
Narendra et al., 2010). However, beyond mitophagy, there
is relatively little known about the mitochondrial quality
control pathways in Parkinson’s disease.

Chaperones and proteases maintain mitochondrial pro-
teostasis. Tight control of protein quality and turnover
inside mitochondria is essential for the function of electron
transport complexes, which provide energy through oxida-
tive phosphorylation. PINK1 has previously been shown to
be required for the phosphorylation of the mitochondrial
protease and Parkinson’s disease-associated protein
HTRA2 (Plun-Favreau et al., 2007). Here we highlight a
signalling pathway involving PINK1, HTRA2 and TRAP1,
where TRAP1 is the effector modulating mitochondrial
chaperone activities and metabolic homeostasis.

The hypothesis that TRAP1 is an important downstream
effector in mitochondrial signalling is underscored by re-
ports that TRAP1 rescues mitochondrial dysfunction in
neuronal models where PINK1 is silenced (Costa et al.,
2013; Zhang et al., 2013). TRAP1 also protects cells
from oxidative toxicity caused by respiratory complex I
inhibition via an a-synuclein variant known to induce a
genetic form of Parkinson’s disease (Butler et al., 2012).
TRAP1 protects mitochondria via its chaperone function
(Altieri et al., 2012; Rasola et al., 2014) and by reducing
reactive oxygen species (Masuda et al., 2004; Hua et al.,
2007; Im et al., 2007).

TRAP1 also acts as a metabolic switch controlling the
tumour cell’s preference for aerobic glycolysis (Yoshida
et al., 2013). ERK1/2 orchestrates the phosphorylation of
TRAP1 controlling the metabolic switch (Masgras et al.,
2017), which is reportedly via TRAP1 inhibition of succin-
ate dehydrogenase (Sciacovelli et al., 2013; Masgras et al.,
2017), although this remains controversial (Rasola et al.,
2014). TRAP1 deficiency promotes mitochondrial respir-
ation, accumulation of tricarboxylic acid cycle intermedi-
ates, ATP and reactive oxygen species (Yoshida et al.,
2013). TRAP1 deletion in mice does not affect viability
and delays the appearance of tumours in a breast cancer
model (Vartholomaiou et al., 2017).

Therefore, the identification of TRAP1 as a novel
HTRA2 interactor prompted us to further explore the
PINK1-HTRA2-TRAP1 pathway related to neurodegenera-
tion in Parkinson’s disease. Here we show that TRAP1
takes an important role as downstream effector in this
pathway and therefore provides an interface between
Parkinson’s disease and energy metabolism.

Materials and methods

Cell culture

Fibroblast culture from skin biopsies has been previously
described by our laboratory (Burbulla and Kruger, 2012). All
biopsies and DNA samples were obtained with patient’s
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consent and approval of the local ethics committee and accord-
ing to the Declaration of Helsinki. HeLa, SH-SY5Y, HEK293
cell culture has been described previously (Burbulla er al.,
2014). TRAP1 knockout mouse adult fibroblasts and
HTRA2 knockout mouse embryonic fibroblasts have been
described by Kieper et al. (2010) and Yoshida et al., (2013),
respectively. Human induced pluripotent stem cells from a
PINK1 knockout line generated in our laboratory and its iso-
genic control were used to generate small molecule neuronal
precursor cells (smNPCs) according to Reinhardt et al. (2013).
smNPCs were cultivated in 1:1 Dulbecco’s modified Eagle

medium  (DMEM)/Ham’s  F12  (Biochrom, Harvard
Bioscience) and Neurobasal® (Gibco, Thermo Fisher)

medium supplemented with 1% Pen/Strep, 1% GlutaMAX™
(Gibco, Thermo Fisher), B-27 Supplement (Gibco, Thermo
Fisher), N2 (Gibco, Thermo Fisher), 200 uM ascorbic acid
(Sigma-Aldrich), 3uM CHIR 99021 (Axon Medchem) and
0.5uM purmorphamine (Calbiochem, Merck Millipore) on
Matrigel® (Corning) coated cell culture dishes.

DNA constructs and RNAs

Human TRAP1 cDNA was cloned into the pIRES vector
(Clontech, Takara). GST-coupled wild-type HTRA2, A141S
HTRA2, and G399S HTRA2 have been previously described
(Martins, 2002). Cloning of wild-type HTRA2 and S306A
HTRA2 ¢DNA into the pcDNA3.1 vector was previously
described (Strauss et al., 2005). Short interfering (si)RNAs tar-
geting HTRA2 were purchased from Sigma Aldrich (Fitzgerald
et al., 2012) and targeting TRAP1 and non-targeting controls
from Dharmacon (siGENOME SMARTpool #D001206-13-05
POOL#1, non-targeting siGENOME SMARTpool).

Mass spectrometry

We used recombinant, mature GST-HTRA2 (wild-type
HTRA2, HTRA2-A141S, and HTRA2-G399S) as baits and
lysates from SH-SYSY cells. The supernatant contained the
fusion proteins that were then bound to glutathione agarose
(Molecular Probes, Thermo Scientific) and eluted with imid-
azole. Analyses were performed on 1D gel pieces of the elu-
ates. The measurements of the peptides derived from tryptic in-
gel digest were performed using a nano-HPLC-ESI-MS/MS
system [Ultimate (LC Packings/Dionex, Germany)/QStar
Pulsar i (Applied Biosystems/Sciex)], described by Sauer et al.
(2006). Mass spectrometry data were processed against the
National Center for Biotechnology Information (NCBI) protein
sequence database with the search engine MASCOT (Matrix
Science, UK) (Perkins et al., 1999).

Co-immunoprecipitation

HeLa and HEK293 cell lysates were prepared using a lysis
buffer [1 % (v/v) Triton™ X-100, 1 x protease inhibitor cock-
tail (Roche Complete, Roche), 1x phosphatase inhibitor
(Roche PhosStop, Roche)] and the nuclear material removed
following homogenization. Where wild-type HTRA2 was over-
expressed, HTRA2 was transiently transfected (48h) using
Effectine transfection reagent (Qiagen, according to the manu-
facturer’s instructions). Mitochondrial enrichment was previ-
ously described (Fitzgerald et al., 2012). Brain tissue from
TRAP1 knockout mice previously described (Vartholomaiou
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et al., 2017) was prepared by separating the cortices from
the basal ganglia (mid-brain) and cerebellum/brainstem (hind-
brain) on ice. Brain tissue lysates were prepared according to
Casadei et al. (2016). Immunoprecipitation was carried out
using HTRA2 (R and D Biosciences) or TRAP1 (BD biosci-
ences) antibodies or bovine IgG coupled to protein A
Sepharose beads (Sigma Aldrich P9424), according to
Fitzgerald ez al. (2012).

SDS-PAGE and western blotting

Cell lysates were prepared as described for co-immunoprecipi-
tation and proteins electrophoresed on acrylamide gels and
transferred to membranes, as previously described (Fitzgerald
et al., 2012). Brain tissue lysates from non-transgenic and
HTRA2 overexpressing mice previously characterized and
described (Casadei et al., 2016) were prepared from whole
brain and the total extracts (nuclear material removed) were
prepared according to Casadei and colleagues (2016). Total
protein stain (copper pthalocyanine-3, 4°, 4> 4’-tetra-sulphonic
acid tetra sodium salt in 12mM HCI) and destain (12mM
NaCl). Antibodies against TRAP1 (BD Biosciences), B-actin
(Sigma Aldrich), GAPDH (Invitrogen, Thermo Scientific)
Tom20 (Santa Cruz Biotechnology), Hsp60 (Bio-Rad), «-
tubulin  (Sigma  Aldrich), rodent OXPHOS (#MS604
Mitosciences, AbCam), Hsp70 (Santa Cruz Biotechnology),
Hsp90 (BD Biosciences), Human Total OXPHOS (all nuclear
encoded subunits from Mitosciences, Abcam), ERK1/2 and P-
ERK1/2 (Cell Signaling Technolgy) and mitobiogenesis anti-
body (containing SDH, GAPDH and COX, Abcam) were
used. Secondary antibodies were purchased from GE
Healthcare. Densitometry from western blot was carried out
using the Image] 1.410 software (Wayne Rasband; National
Institutes of Health, USA).

Live cell imaging

Mitochondrial morphology, mass and colocalization studies
were visualized using 100nM MitoTracker® Green FM
(Thermo Scientific), lysosomes by 100nM Lyostracker® Red
DND-99 (Thermo Scientific) as previously described
(Burbulla et al., 2014). Analyses were performed as previously
described (Burbulla et al., 2014). The series of images were
saved uncompressed and analysed with AxioVision software
(Zeiss) and Image] 1.410 software.

Fluorescence-activated cell sorting

Cells were trypsinized and centrifuged at 300g for 5 min and
the cells incubated in dye, buffer only or dye plus a control.
For early apoptosis, Annexin V-Pacific Blue™ in Annexin V
binding buffer (both from BioLegend) or Annexin V-Pacific
Blue™ plus staurosporine was used. For mitochondrial mem-
brane potential, 200nM tetramethylrhodamine, ethyl ester,
perchlorate (TMRE, from Thermo Scientific) in Hanks buffer
or TMRE plus carbonyl cyanide-p-trifluoromethoxyphenylhy-
drazone (CCCP) 10 uM was used. For mitochondrial reactive
oxygen species, 2 tM MitoSox™ (Thermo Scientific) in Hanks
buffer or MitoSox™ plus 10 uM rotenone was used. Cells
were sorted using a MACSQuant® automated flow cytometer
(Mitenyi Biotechnology) according to their mean average fluor-
escence signal. All mean average fluorescence values were
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divided by the background fluorescence in the same channel in
the same unstained cells to account for autofluorescence.

Live cell kinetic measurement of
mitochondrial membrane potential

Cells were seeded in 1bidi® dishes and the media exchanged for
Hank’s balanced salt solution (HBSS) containing 200 nM
TMRE stain (Thermo Scientific) for 15min at 37°C with
CO,. The TMRE was removed and replaced with 360 pl
Hanks buffer. The cells were imaged using a Zeiss inverted
confocal microscope at excitation HeNel, 543 nm and emis-
sion LP 560 nm and brightfield for 20 x 4s cycles. Followed
by the addition of 360 ul (0.25 mg/ml oligomycin), measured
for 20 x 4s cycles, 180ul (10 uM rotenone), measured for
20 x 4s cycles and 100ul (10uM FCCP) and measured for
20-40 x 4s cycles. Using Image], each transfected cell (de-
tected using ZsGreen-TRAP1) in each frame was analysed
for TMRE fluorescence intensity, mean fluorescence and total
area. The corrected total cell fluorescence (CTCF) over time
was calculated using the formula: CTCF = fluorescence inten-
sity — (cell area x mean background fluorescence).

Genetic screening by high resolution
melting analysis

Both polymerase chain reaction (PCR) and high resolution
melting analysis were performed in the presence of a saturating
DNA binding dye. Mutations were detectable because hetero-
zygote DNA forms heteroduplices that begin to separate in
single strands at a lower temperature and with a different
curve shape than homozygote DNA, as described previously
(Wust et al., 2016).

Whole exome sequencing and con-
sanguinity analysis

Whole exome data were generated from 200 Parkinson’s dis-
ease patients from Vienna (7 = 100) and Tiibingen (n = 100).
Genomic DNA (3 pg) was fragmented into ~250 bp fragments,
end-repaired, adaptor-ligated and sample index barcodes were
included. Pooled libraries were enriched with SureSelect
Human All Exon 50 Mb kit (AgilentTechnologies) to capture
50Mb of exonic and flanking intronic regions. Sequencing of
post-enrichment libraries was carried out on the Illumina
HiSeq 2000 sequencing instrument (Illumina) as 2 x 100 bp
paired-end runs. On average, this yielded ~10 Gb of mapped
sequences and a >100x average coverage for 90% of the
targeted sequence per individual. Raw image files were pro-
cessed by the Illumina pipeline. Reads were aligned to the
human reference genome hgl9 with the Burrows-Wheeler
Aligner. SAM tools were used to identify single nucleotide
variants and small insertions and deletions. Patients were
screened for consanguinity using an implemented algorithm
of an analysing tool of the Helmholtz Zentrum, Miinchen.
Patients with homozygous regions encompassing a total of
more than 20 Mb were considered as likely consanguineous.
Particularly, stretches of >2 Mb were surveyed for rare homo-
zygous variants (missense, nonsense, frameshift and splice-site).
Variants were further filtered for a minor allele frequency

BRAIN 2017: 140; 24442459 | 2447

smaller than 1% in the in-house dataset of ~10000 control
exomes from patients with other unrelated diseases and
exomes and in public available databases (ExAC database
and 1000 Genomes).

Computational analysis of TRAPI
genetic variants

Computational analysis of TRAP1 variants can be found in
the Supplementary material.

Quantitative RT-PCR

Quantitative PCR reactions were performed using FastStart
SYBR® green Master mix (Roche) to amplify 1pl of the 1:10
diluted ¢cDNA using 5pm of each primer h_TRAP1 5> UTR
Forward: TTCCCATCGTGTACGGTCCCGC, h_TRAP1
Exon2 Reverse: GGCCCAACTGGGCTGTGGTCC, h_TRAP1
Spanning Exon2-3 Reverse: TGTTTGGAAGTGGAACCCT
GC. Housekeeping gene GAPDH primers: Forward: CCA
TCACCATCTTCCAGGAGCGA, Reverse: GGATGACCTT
GCCCACAGCCTTG. Standard curves of each amplified gene
were created to calculate the PCR efficiency and relative ex-
pression using the efficiency corrected delta—delta Ct method.
RNA was prepared from human fibroblasts using Qiashredder®
and RNAEasy® preparation kits (Qiagen). RNA (1 pg) was re-
verse transcribed to cDNA using QuantiTECT® (Qiagen).

Oxygen consumption and
extracellular acidification rate

Oxygen consumption rates (OCR) were measured in whole
cells using a Seahorse™ XF96 Extracellular Flux Analyzer
(Agilent) according to Rogers et al. (2011). The concentrations
of mitochondrial toxins used were optimized by titration in
human fibroblasts according to the manufacturer’s recommen-
dations. The final concentration of all toxins used was 1uM
and the volume of the toxin injected in each port was sequen-
tially increased by several microlitres to maintain the correct
final concentration. Human fibroblasts were plated in
Seahorse™ XF96 well plates 24h prior to measuring at a
density of ~15000 cells per well. The OCR for each well
was corrected for cell number. Stained nuclei were counted
using high content image capture and analysis using the BD
Pathway 855 (BD Biosciences). Extracellular acidification rates
(ECAR) from the same experiments provide an indication of
glycolytic activity and were normalized to OCR/cell to account
for the cell numbers in each well in each experiment.

Complex | activity

Following isolation of crude mitochondria from approximately
five million cells, described previously by Burte et al. (2011),
complex I activity was measured according to Hargreaves and
colleagues (2007). The activity of complex I was normalized to
citrate synthase activity, also according to Hargreaves et al.
(2007) and data expressed as a ratio of complex I/citrate
synthase.
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ATP

The concentration of ATP per microgram of total protein was
measured using the ATPLite™ Kit from Perkin Elmer. ATP
standards are used to determine the concentration of ATP in a
cell lysate replicated a minimum of three times in each experi-
ment. Concentration (uM) of ATP is expressed per microgram
of total protein in each well as measured by protein assay (Bio-
Rad).

Fluorescence lifetime imaging
microscopy

A detailed description of the fluorescence lifetime imaging mi-
croscopy (FLIM) method can be found in the Supplementary
material and is described in Lakner et al. (2017).

Measurement of NAD */NADH levels

NAD™ and total NAD* and NADH levels were measured
using a fluorometric assay kit (Abcam). The levels of NAD*
and NADH were quantified using standards and normalized to
total protein in each sample according to protein assay (Bio-

Rad).

Statistics

Analyses of statistical significance were performed using
GraphPad Prism 6.0 and the relevant statistical test. The stat-
istical test used and the P-values are shown in the figure le-
gends. All cell culture experiments [including all imaging and
fluorescence-activated cell sorting (FACS) experiments] were
performed a minimum of three times, using a different cell
passage and on different days. In the genetic studies, the initial
screening by high temperature melt analysis was performed on
280 German Parkinson’s disease patients and a group of 192
healthy individuals. The exome sequencing was performed on
the DNA from 200 Parkinson’s disease patients collected in
Tiibingen, Germany and Vienna, Austria.

Results

TRAPI interacts with HTRA?2

We have previously reported loss-of-function mutations in
HTRA2 in Parkinson’s disease patients and therefore per-
formed unbiased mass spectrometry on GST-HTRA2
baited SH-SYSY lysates to identify novel interaction pro-
teins (Fig. 1A). We identified TRAP1 as an interactor of
HTRA2 with the relevant controls.

To confirm the physical interaction, HTRA2 immunopre-
cipitations were performed in Hela cells overexpressing
HTRA2 or not. Immunoblotting revealed the presence of
TRAP1 in the HTRA2 immunoprecipitation (endogenous
and overexpressed HTRA2) but not in the IgG control
(Fig. 1B), enriched in the mitochondrial fraction.
Knockdown of TRAP1 using siRNA reduced the amount
of TRAP1 interacting with HTRA2, confirming the specificity
of the immunoprecipitation (Fig. 1C). The interaction
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between HTRA2 and TRAP1 occurs in mouse brain
(cortex, midbrain and hindbrain) as demonstrated by the
immunoprecipitation of TRAP1 with HTRA2 in extracts
from wild-type mice and not TRAP1 knockout mice
(Fig. 1D).

To investigate the relevance of the HTRA2-TRAP1 inter-
action we monitored the amount of TRAP1 immunopreci-
pitated with HTRA2 under several stress conditions. We
found that acute treatment with the mitochondrial toxins
rotenone and antimycin A abolished the interaction in
human HEK293 cells and this was due to reduced
TRAP1 and not a global reduction of total protein
(Fig. 1E). We then assessed the influence of several other
stressors, this time the concentrations of the toxins were
titrated for HeLa cells and for the cells to survive a chronic
treatment over a 24h period. We found that dopamine
treatment had no effect on the interaction of HTRA2 and
TRAP1, whereas, the TRAP1 inhibitor 17-AAG, hydrogen
peroxide, the ionophore valinomycin and mitochondrial re-
spiratory inhibitors oligomycin, antimycin A, and rotenone
all largely reduced or abolished the interaction (Fig. 1F).
These data from two different human cell lines suggest that
the interaction of HTRA2 and TRAP1 serves the mitochon-
dria under normal physiological conditions, under starva-
tion and dopamine toxicity, but not respiratory inhibition.

TRAPI rescues HTRA2 and PINKI loss-of-function
phenotypes but is not a proteolytic substrate of
HTRA2

We hypothesized that HTRA2 interacted with TRAP1 to
degrade it since HTRA2 is a key mitochondrial protease
and the levels of TRAP1 appear to be a key factor in mito-
chondrial control (Kang et al., 2007; Zhang et al., 2015;
Amoroso et al., 2016; Lv et al., 2016). Using PhosTag™
SDS-PAGE, we found a significant increase in the levels of
phosphorylated and non-phosphorylated TRAP1 when we
immunoprecipitated endogenous TRAP1 in the absence of
HTRA2 (Fig. 2A). We also found that stimulation of
PINK1 kinase with the ionophore valinomycin (at concen-
trations known to induce accumulation of PINK1)
(Rakovic et al., 2013), increased the amount of phosphory-
lated TRAP1 in wild-type HTRA2 mouse adult fibroblasts
(Fig. 2A). Phosphorylated TRAP1 levels were increased to
the same extent in HTRA2 knockout mouse adult fibro-
blasts, whether treated with valinomycin or not (Fig. 2A).
However, there was no significant effect of PINK1 knock-
out on TRAP1 phosphorylation status in neuronal progeni-
tor cells (Fig. 2A).

Overexpression of wild-type HTRA2 in human cells from
four independent experiments (Fig. 2B) or in mice (Fig. 2C)
results in reduced TRAP1 protein levels. However, over-
expression of a protease dead form of HTRA2 (S306A),
which is catalytically inactive but still targeted to the mito-
chondria (Martins et al., 2002) in human cells has the same
effect on TRAP1 levels as the wild-type, indicating that the
protease activity of HTRA2 is not important for the inter-
action between TRAP1 and HTRA2 (Fig. 2D).
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Figure | TRAPI interacts with HTRA2. (A) A Coomassie-stained gel of GST-HTRA2 eluates from SH-SY5Y cells for unbiased mass
spectrometry. (B) Immunoblot (IB) of TRAPI and HTRA2 in cytosolic (Cyto) mitochondrial (Mito) fractions from Hela cells overexpressing wild-
type (WT) HTRA2 or an empty vector control. Input lysates (input), HTRA2 immunoprecipitates (IP HtrA2) and control immunoprecipitates
using bovine IgG (IP IgG). (C) Immunoblot of TRAPI and HTRAZ2 in lysates in Hela cells transfected with TRAP| siRNA or a non-targeting siRNA
control. Input lysates (input), HTRA2 immunoprecipitates (IP HtrA2) and control immunoprecipitates using bovine IgG (IP IgG). (D) Immunoblot
of TRAPI and HTRA2 in wild-type and TRAP| knockout mouse brain lysates from cortex (CTx), basal ganglia/midbrain (Mid) and hindbrain (Hin).
Input lysates (input), HTRA2 immunoprecipitates (IP HtrA2) and control immunoprecipitates using bovine IgG (IP IgG). (E) Immunoblot of TRAPI
and HTRAZ2 in total cell lysates from untreated HEK293 cells (UT) or HEK293 cells treated with serum-free medium (starve), | M rotenone
(Rot) and 25 nM antimycin A (Ant A) for 24 h. Input lysates (input), HTRA2 immunoprecipitates (IP HtrA2) and control immunoprecipitates using
bovine IgG (IP IgG). (F) Immunoblot of TRAPI in Hela cell extracts either untreated (UT) or treated with 200 uM dopamine (DA), serum-free
media (starve), 2 tM Hsp90/TRAPI inhibitor (17-AAG), | pM oligomycin and 0.4 uM antimycin A (OA), 40 UM hydrogen peroxide (H,O,), 5 uM
rotenone (Rot) or 100nM valinomycin (Val) for 24 h. Input lysates (input) and HTRA2 immunoprecipitates (IP HtrA2) are shown.

The HTRA2-TRAP1 interaction is not a protease-substrate
interaction, yet TRAP1 is likely downstream of HTRA2 since
the overexpression of TRAP1 rescues the HTRA2 knock-
down-induced loss of mitochondrial membrane potential
(Fig. 2E), reduced basal oxygen consumption (Fig. 2F),
increased mitochondrial reactive oxygen species (Fig. 2G)
and sensitivity towards serum starvation-induced apoptosis
(Fig. 2H). TRAP1 overexpression also rescues the reduced
mitochondrial membrane potential observed in PINK1-

deficient neuroprogenitor cells measured over a time course
inclusive of mitochondrial toxin controls (Fig. 2I).

TRAPI loss-of-function in Parkinson’s
disease

Mutations in PINK1 cause early onset Parkinson’s disease
(Valente et al., 2004) and HTRA2 risk variants have been
reported in German (Strauss et al., 2005) and Belgian
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Figure 2 TRAPI rescues HTRA2 and PINKI loss of function phenotypes but is not a proteolytic substrate of HTRA2.

(A) Immunoprecipitation (IP) of TRAPI from wild-type (WT) and knockout (KO) HTRA2 mouse embryonic fibroblasts and PINK| knockout and
isogenic control (Ctrl) neuroprogenitor cells treated with or without | 1M valinomycin (Val) for 24 h to activate PINKI. Input lysates (input) and
TRAPI immunoprecipitates were run on SDS-PAGE (A—~C) and PhosTag™" SDS-PAGE gels (IP: TRAPI PhosTag) to visualize all phosphorylated
TRAPI enriched by the TRAPI pulldown. (B) Immunoblot (IB) of TRAPI, HTRA2 and mitochondrial marker citrate synthase (CS) in SH-SY5Y
extracts from four experiments where wild-type HTRA2 or an empty vector (EV) control is overexpressed. (C) Immunoblot of TRAPI and
HTRA2 in brain extracts from non-transgenic (NTG), overexpressing wild-type HTRA2 and overexpressing G399S mutant HTRA2 (Mut HtrA2)
mice. (D) Quantification of TRAPI protein levels (normalized to GAPDH loading control) at 24 h and 48 h after transfection with wild-type

(continued)
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(Bogaerts et al., 2008) Parkinson’s disease cohorts.
Therefore, we used the exome sequencing data from the
Parkinson’s Progression Markers Initiative (PPMI), to deter-
mine all non-synonymous TRAP1 single nucleotide variants
with a minor allele frequency <1% in the European non-
Finnish population (ExAC) (Lek et al., 2016) and an odds
ratio >1 in Parkinson’s disease patients compared to con-
trols. Variants (Supplementary Fig. 1C) were further filtered
by selecting those ‘damaging’, ‘probably damaging’ or ‘likely
damaging’ and where crystal structures are available. All
three resulting variants are located within known functional
domains: S221P falls within a histidine kinase-like ATPase
domain (HATPase_c, InterPro: IPR003594), and H311Q
and R469C are positioned within an HSP90 domain
(Pfam database: PF00183). However, none of these variants
overlapped with known ubiquitination, acetylation or phos-
phorylation sites (Supplementary Fig. 1A). The residues for
variants S221P and R469C are largely buried (5% and 13%
solvent accessibility), whereas variant H311Q affects a resi-
due that is partially accessible (25%) and could alter pro-
tein-protein residue size and charge
alterations. In a multiple sequence alignment, high sequence
conservation was observed for residues H311 and R469, but
not for S211 (Supplementary Fig. 1B). Correspondingly, a
destabilizing effect was predicted by the majority of algo-
rithms for H331Q and R469C, while the S221P variant
was estimated to be neutral. Notably, R469C was also pre-
dicted to decrease the chaperone binding function of TRAP1
(LIMBO software).

We used high resolution melting to screen for sequence
variations in the TRAP1 gene in the genomic DNA from
German Parkinson’s disease patients and a group of
healthy individuals. We detected several genetic variants,
further identified as single nucleotide polymorphisms
(listed in Supplementary Fig. 1C). Burden analysis of
TRAP1 was performed using the PPMI dataset (summar-
ized in Supplementary Fig. 1D). Truncating variants pre-
dicted to cause loss-of-function of TRAPI are very rare
and were only observed in Parkinson’s disease patients
and not in controls. Interestingly, rare missense TRAP1
mutations were found to have significantly different
burden (P-values < 0.05) between patients and controls

interactions via

Figure 2 Continued
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(Supplementary Fig. 1D). In parallel, we analysed 200
exomes of Parkinson’s disease patients from Austria and
Germany for consanguinity. In addition to TRAP1 variants
(listed in Supplementary Fig. 1C), we found a moderate,
but significant consanguinity of ~20Mb in a German
Parkinson’s disease patient. One homozygous stretch
encompasses S Mb at Chr.16, including the TRAP1 gene.
Here we found a homozygous ¢.C158 >T (R47X) mutation
(Fig. 3A). This mutation is not present in 10000 control
exomes of the Helmholtz database; however, it occurs 12
times heterozygously in the ExAC database (60000 con-
trols). The R47X TRAP1 Parkinson’s disease patient has
no rare in any of the other established
Parkinson’s disease genes (see Supplementary material for
the full list of genes).

The homozygous p.Arg47Ter single nucleotide exchange
(R47X) in exon 2 of TRAPI leads to a premature stop
codon and truncation at the transit sequence of TRAPI
in a late-onset Parkinson’s disease patient (Fig. 3A). A
TRAP1 antibody that binds at a region of TRAP1 encom-
passing amino acids 253-464 (shown in Fig. 3B) was, as
expected, unable to detect TRAP1 protein in fibroblasts
biopsied from the R47X patient (Fig. 3C). Using PCR pri-
mers upstream and downstream of the mutation to amplify
patient cDNA, we found that TRAP1 RNA is present, sug-
gesting no nonsense-mediated RNA decay (Fig. 3D). The
R47X TRAP1 patient was diagnosed with Parkinson’s dis-
ease at age 70 years. There is no family history of
Parkinson’s disease but the mother of the index patient
had dementia. The R47X patient has also been diagnosed
with dilated cardiomyopathy, chronic pancreatitis, poly-
neuropathy and chronic kidney insufficiency (Table 1).

variant

TRAPI R47X Parkinson’s disease patient mitochon-
dria meet ATP demand but have reduced membrane
potential

To understand the relevance of the R47X TRAP1 muta-
tion, we assessed several readouts of mitochondrial form
and function in patient-derived fibroblasts. There were no
obvious differences in mitochondrial morphology between
controls and the index patient under basal or serum star-
vation conditions (binary z-stack images shown in Fig. 4A).

HTRA2 or HTRA2 protease dead mutant (S306A). (E) Mitochondrial membrane potential (AWm) in Hela cells transfected with HTRA2 siRNA
(HtrA2) or a non-targeting control (Ctrl) and overexpressing an empty vector or wild-type TRAPI DNA construct. (F) Basal oxygen con-
sumption in Hela cells transfected with HTRA2 siRNA (HtrA2) or a non-targeting control (Ctrl) and overexpressing an empty vector or wild-
type TRAPI DNA construct. (G) Mitochondrial reactive oxygen species (ROS) using MitoSox"" in Hela cells transfected with HTRA2 siRNA
(HtrA2) or a non-targeting control (Ctrl) and overexpressing an empty vector or wild-type TRAPI DNA construct. (H) Early apoptosis measured
by annexin V in Hela cells either untreated (UT) or treated with | LM staurosporine (STS), serum-free media (starve) for 24 h and overexpressing
an empty vector or wild-type TRAPI DNA (+) construct. (I) Reduced AWm in PINKI knockout neuroprogenitor cells is rescued by over-
expression of wild-type TRAPI. TRAPI (or empty vector control) transfected neuroprogenitor cells were identified using a ZsGreen tag.
Confocal images were taken every 4 s following incubation with TMRE, followed by washing (basal), oligomycin (oligo), rotenone (rot) and FCCP
(fcep). All statistical tests were the Student’s t-test assuming different standard deviation, except 2H, where two-way ANNOVA was used to
compare groups and condition. Error bars show standard deviation and *P < 0.05; **P < 0.01. TMRE = tetramethylrhodamine, ethyl ester,

perchlorate.
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Computational analysis of z-stack images revealed no dif-
ference in average mitochondrial size (Fig. 4B) or mito-
chondrial branching (Fig. 4C). However, after serum
starvation there was a significant fragmentation of

¢.C158_T (R47X)

Exon 1

WT GGKPILCPRRTTAQLGPRR|NPA W

mutantGGKPlLCPRRTTAQLGPR.L

premature stop

B Ic.c1ssj(R47><)| | immunogen (253-464)
I

transit sequence

C-term domain

middle domain

N-term domain

o

CTRL1
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total protein
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Figure 3 TRAPI loss-of-function in Parkinson’s disease.
(A) A diagram showing the position of the c.CI58_T (R47X) mu-
tation within the amino acid sequence of TRAPI. (B) Diagram
showing the position of the c.C158_T (R47X) mutation in the
protein structure of TRAPI. The binding site of the TRAPI antibody
(amino acid sequence 253—464) is also shown. (C) Copper stain
showing total protein loading of an immunoblot (IB) (top) probed
for TRAPI (middle) and the loading control o-tubulin (bottom).
(D) Real-time PCR amplified TRAP/ transcripts normalized to
housekeeping gene GAPDH in healthy controls and in the TRAPI
R47X patient using primers amplifying a region starting at the 5’
UTR and spanning until exon 2 of TRAPI upstream of the R47X
mutation and exon 3 downstream of the R47X mutation.

PD = Parkinson’s disease; WT = wild-type.

Table | R47X patient information

J. C. Fitzgerald et al.

mitochondria in the R47X fibroblasts compared to controls
(Fig. 4D).

We measured the co-localization of mitochondria and
lysosomes in patient and control fibroblasts and the results
show similar co-localization of mitochondria with lyso-
somes under normal physiological conditions. Following
mild induction of autophagy by serum withdrawal, we
found that mitochondria to lysosome translocation was
more pronounced in TRAPT R47X cells (Fig. 4E), suggest-
ing increased mitochondrial turnover.

Respiratory analysis of patient cells and controls, re-
corded oxygen consumption during a mitochondrial stress
test, where minimal, maximal and inhibited respiration is
induced by oligomycin, the uncoupler FCCP and antimycin
A, respectively (Fig. 4F). Basal respiration was significantly
increased in R47X fibroblasts (Fig. 4F). The extracellular
acidification rate (an indicator of glycolysis) normalized to
the rate of oxygen consumption per cell in R47X fibro-
blasts was generally higher than that of healthy controls
(Fig. 4G). However, the calculated glycolytic shift after
the addition of oligomycin is similar between patient and
controls (Fig. 4G). Complex I enriched in mitochondrial
extracts of R47X cells was significantly more active in oxi-
dizing NADH given as a substrate along with decylubiqui-
none in vitro than healthy (Fig. 4H).
Furthermore, significantly more ATP was produced in
R47X fibroblasts compared to controls (Fig. 41), indicating
that the complexes of the respiratory chain are not
damaged and suggesting that mitochondria in R47X pa-
tient cells have increased respiratory activity.

TRAP1 deficiency is reported to promote increases in
mitochondrial respiration, ATP levels and reactive oxygen
species in mice (Yoshida et al., 2013). Therefore, we iden-
tified the index patient in a previous study measuring mito-
chondrial reactive oxygen species in sporadic Parkinson’s
disease patient fibroblasts. The index patient has above
average levels of mitochondrial reactive oxygen species,
but are only mildly elevated in comparison to several
other sporadic Parkinson’s disease patients, genetic
Parkinson’s disease (PINK1, parkin and D]J-1 patients)

individuals

Patient Information Details

Comments

Age of onset 2004 (71 years of age)

Diagnosis 2004
Family history
Other

No Parkinson’s disease in family
Dilatative cardiomyopathy
Benign prostata hyperplasia
Pancreatitis

Polyneuropathy

Kidney insufficiency

Sleep apnoea

Cataracts

Presented with pain in right shoulder and aching affecter (smaller)
with slowing down in general; later mild tremor when tired
Idiopathic Parkinson’s disease

Mother with dementia
No medication

Chronic

Chronic
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Figure 4 TRAPI R47X Parkinson’s disease patient mitochondria meet ATP demand but have reduced membrane potential.
(A) Representative binary images of mitochondria and the calculated (B) mitochondrial area, (C) form factor (mitochondrial branching) and
(D) aspect ratio (mitochondrial length) in fibroblasts from healthy individuals (CTRL) and a Parkinson’s disease patient carrying the R47X
mutation (PD R47X) untreated or serum starved (Starve) for 24 h. (E) Mitochondrial-lysosomal co-localization expressed as Pearson’s coefficient
in fibroblasts from healthy individuals (CTRL) and a Parkinson’s disease patient carrying the R47X mutation (PD R47X) untreated or deprived of
serum (Starve) for 24 h. (F, left) Mean average OCR of two healthy control fibroblasts and Parkinson’s disease patient carrying the R47X mutation
over a time course. Measurement of basal OCR is followed by the addition of oligomycin (oligo) | uM final concentration, FCCP | pM final
concentration and antimycin A (Ant A, | uM final concentration) and rotenone (AA) | ptM final concentration. (Right) Statistical analysis showing
increased mean average basal OCR in Parkinson’s disease patient carrying the R47X mutation compared to the mean average OCR of two healthy
control fibroblasts. (G, left) Extracellular acidification rate (ECAR) normalized to OCR/cell to account for cell numbers of two healthy control
fibroblasts and Parkinson’s disease patient carrying the R47X mutation over a time course. (Right) Statistical analysis showing no changes in ECAR/
OCR under basal conditions, minimal OXPHOS (oligo) and the per cent shift from basal condition to minimal OXPHOS (glycolytic shift) in
Parkinson’s disease patient carrying the R47X mutation compared to the mean average OCR of two healthy control fibroblasts. (H) Complex |
enzyme activity (normalized to citrate synthase enzyme activity) in isolated mitochondria is increased in Parkinson’s disease patient carrying the
R47X TRAP| mutation compared to two healthy control fibroblasts lines. (I) ATP levels (normalized to total protein) are increased in Parkinson’s
disease patient carrying the R47X mutation compared to two healthy control fibroblasts lines. (J) Mitochondrial reactive oxygen species (ROS)
levels in a Parkinson’s disease patient carrying the R47X TRAP| mutation (highlighted in red), compared to the mean average mitochondrial ROS
measured in healthy controls (healthy), sporadic Parkinson’s disease patients (PD), Leigh syndrome patients (Leigh) and familial Parkinson’s disease
patients (genetic Parkinson’s disease, including PINK|I, Parkin and DJ-1) in fibroblasts. (K) Mitochondrial membrane potential (AWm) is signifi-
cantly reduced in Parkinson’s disease patient carrying the R47X mutation compared to two healthy control fibroblast lines. All statistical tests
were the Student’s t-test assuming different standard deviation. Error bars show standard deviation and *P < 0.05; **P < 0.01 and **P < 0.001.
TMRE = tetramethylrhodamine, ethyl ester, perchlorate.
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and Leigh syndrome patient fibroblast lines (Fig. 4]).
Finally, mitochondrial membrane potential was signifi-
cantly reduced in TRAP1 R47X fibroblasts compared to
controls (Fig. 4K).

Metformin rescues the R47X
phenotype via a mechanism involving
mitochondrial biogenesis

In ovarian cancer, TRAP1 silencing causes resistance to
chemotherapy drugs because oxidative phosphorylation is
increased. Interestingly, the resistance to chemotherapy
could be reversed by mild inhibition of mitochondrial res-
piration by the diabetes drug metformin or oligomycin
(Matassa et al., 2016). Therefore, we treated TRAP1
R47X patient fibroblasts with 10 mM metformin, sublethal
concentrations of oligomycin and the antioxidant N-acetyl
cysteine (NAC) to see whether we could rescue the patient
phenotype. Metformin and oligomycin treatment restored
the mitochondrial membrane potential observed in the pa-
tient, whereas the antioxidant NAC could not (Fig. SA).
We subjected human cancer cells to a range of toxins and
stressors and measured their effect on mitochondrial mem-
brane potential. Dopamine, hydrogen peroxide and the
ionophore valinomycin greatly reduced mitochondrial
membrane potential and this could not be rescued by met-
formin. Dopamine toxicity was protected by addition of the
antioxidant NAC and metformin treatment alone does not
reduce mitochondrial membrane potential (Fig. 5B).
Finally, reduced mitochondrial membrane potential induced
by the Hsp90 family/TRAP1 inhibitor 17-AAG could be
reversed by metformin (Fig. 5B), suggesting there is a spe-
cific effect of metformin in paradigms related to TRAP1.
To investigate further the mechanism by which metfor-
min is protective in our model, we measured the fluores-
cence lifetime of NADH in living cells from the TRAP1
R47X patient and healthy individuals with and without
treatment with metformin. Bound NADH indicates usage
in mitochondrial respiration, whereas free NADH is asso-
ciated with glycolysis (Bird et al., 2005; Blacker et al.,
2014). We found significantly reduced bound NADH and
increased free NADH following metformin treatment in all
cell types (Fig. 5C). This finding supports the observation
that metformin suppresses gluconeogenesis (Kim et al.,
2008), inhibits complex I (Owen et al., 2000) and shifts
the balance between coupling and uncoupling reactions via
the TCA cycle (Andrzejewski er al., 2014). We found a
similar bound/unbound NADH ratio in the untreated
R47X patient fibroblasts as in the metformin treated con-
trols and the addition of metformin in the patient did not
reverse the bound/unbound NADH ratio (Fig. 5C). These
data, although highly significant, represent overall a very
small shift in the total levels of bound versus unbound
NADH levels (Fig. 5C). The data suggest that the protective
mechanism of metformin in the R47X patient is not via the
metabolic switch between oxidative phosphorylation

J. C. Fitzgerald et al.

(OXPHOS) and glycolysis. These data could mean that
either glycolysis is favoured in the R47X patient or mito-
chondrial turnover and/or the NAD*/NADH pool are
altered.

NAD ™" and combined NAD* and NADH levels are sig-
nificantly increased in TRAP1 R47X patient cells compared
to controls (Fig. 5D). Metformin treatment in healthy indi-
viduals and in TRAP1 R47X patient cells lowers both
NAD™ and total NAD* and NADH levels in one control
and the patient, but not significantly (Fig. 5D).

We observe a significantly reduced ratio of succinate de-
hydrogenase (SDH) to cytochrome ¢ oxidase (COX
mtDNA-encoded subunit) in both R47X patient fibroblasts
and TRAP1 knockout mouse adult fibroblasts compared to
controls (Fig. SE), which indicates an imbalance between
nuclear and mitochondrially encoded mitochondrial pro-
teins (termed mitonuclear imbalance), likely induced by
the increased NAD ™ and NADH pool and in agreement
with the effect of NAD™ boosters on the age-associated
metabolic decline and promotion of longevity in worms
(Mouchiroud et al., 2013).

Metformin is able to reverse the mitonuclear imbalance
in the TRAP1 R47X patient fibroblasts (Fig. SE), indicating
that the mitonuclear imbalance is the converging step in the
survival pathway that can be targeted pharmacologically.
Mitonuclear protein imbalance controls longevity in mam-
mals via induction of the mitochondrial unfolded protein
response (mtUPR) (Houtkooper et al., 2013; Mouchiroud
et al., 2013). Therefore, we monitored the levels of Hsp60,
Hsp70 and mitochondrial Hsp90, three markers of the
mtUPR. We found that on average both Hsp60 and
mtHsp70 levels were higher in R47X TRAP1 patient fibro-
blasts compared to two healthy controls in three independ-
ent experiments (Fig. 5F). Hsp90 levels were also elevated
but the difference was not significant (Supplementary Fig.
2C). These data suggest that in TRAP1 loss-of-function
models, the mtUPR is upregulated. This is associated with
increased turnover of mitochondria and the significant ele-
vation of subunits of mitochondrial respiratory complexes
I, II, I and IV, which is also rescued by metformin
(Supplementary Fig. 2B). Phosphorylated ERK1/2 orches-
trates metabolic switching via TRAP1 (Masgras et al.,
2017). Here we found that the levels of phosphorylated
ERK1/2 are increased in the index patient fibroblasts and
can be reversed by metformin (Supplementary Fig. 2D).

Discussion

TRAP1 and HTRA2 are targets of the Parkinson’s disease
kinase PINK1 (Plun-Favreau et al., 2007; Pridgeon et al.,
2007). However, how these three proteins act together in
Parkinson’s disease signalling still remains to be elucidated.
One of the barriers to dissecting a pathway involving
HTRA2 and TRAP1 was the lack of mechanistic evidence
for the downstream mitochondrial function observed.
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Figure 5 Metformin rescues the R47X phenotype via a mechanism involving mitochondrial biogenesis. (A) Mitochondrial
membrane potential (AWm) is reduced in Parkinson’s disease patient carrying the R47X mutation (PD R47X) compared to the mean average of
two healthy control (CTRL) fibroblast lines. All fibroblasts were treated with DMSO vehicle (Veh), 0.5 mM antioxidant N-acetyl cysteine (NAC),
10 mM Metformin hydrochloride (MET) or 250 nM oligomycin (oligo) for 24 h, of which metformin and oligomycin reverted the phenotype. (B)
Mitochondrial membrane potential (AWm) is reduced in Hela cells treated (Tx) with 500 UM dopamine (DA), 400 uM hydrogen peroxide (H,O5),
2 M 17-AAG, and 100 nM valinomycin (Val) but not the DMSO vehicle control (Veh) for 24 h. Antioxidant N-acetyl cysteine (NAC, 0.5 mM)
rescues the dopamine toxicity to some extent, whereas |0 mM metformin hydrochloride (MET) rescued the inhibition of TRAPI by 17-AAG. (C,
top) The percentage of bound NADH in two healthy control fibroblast lines (CTRL) and in the Parkinson’s disease patient carrying the R47X
mutation (PD R47X), with or without treatment with 10 mM metformin for 24 h. (Bottom) The overall percentage of bound (green) and free (blue)
NADH in two healthy control fibroblast lines (CTRL) and in the Parkinson’s disease patient carrying the R47X mutation (PD R47X), with or
without treatment with |0 mM metformin for 24 h. (D) Levels of NAD ™ (left) and total NAD */NADH (right) measured in two healthy fibroblast
lines and the Parkinsons’ disease patient carrying the R47X mutation with or without treatment with 10 mM metformin for 24 h. (E) Succinate
dehydrogenase (nuclear encoded) to mt COX (mitochondrial encoded) protein ratio in TRAPI knockout mouse embryonic fibroblasts (left),
R47X Parkinson’s disease patient (middle) and R47X patient cells treated with metformin (right). (F) Immunoblots (IB) of Hsp60 and mtHsp70 in
three independent extractions from two healthy fibroblast lines (CTRL) and the R47X Parkinson’s disease patient (left), quantified for statistical
analyses (right). The Student’s t-test was used assuming different standard deviation to compare patient and control group. Two-way ANOVA was
used to compare cell types and treatments. Error bars show standard deviation and *P < 0.05; **P < 0.0l and **P < 0.001.

Here we have shown that HTRA2 and TRAP1 physically HTRA2 and TRAP1 perform in a common intra-mitochon-

drial chaperoning or quality control system. In this study,

interact and regulate each other. The biochemistry of the
interaction is non-canonical and does not involve the pro-
tease activity of HTRA2, leaving us to speculate that

overexpression of the catalytically inactive HTRA2 S306A
reduces TRAP1 protein levels to the same extent as wild-
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type HTRA2. As in mnd2 mice carrying the S276C
HTRA2 mutation, HTRA2 is catalytically inactive and as
the mice phenocopy the mitochondrial dysfunction and
neurodegeneration seen in HTRA2 knockout mice
(Martins et al., 2004), S306A is also unlikely to rescue
HTRA2 loss of mitochondrial function. However,
HTRA2 possesses chaperone activity in its basal state
(Li et al., 2002). Protease dead HTRA2 could still bind
TRAP1 via its PDZ domain. The PDZ domain of
HTRA2 has a “YIGV’ recognition pattern but also detects
long hydrophobic stretches (Zhang et al., 2007), preferen-
tially C-terminal peptides (Clausen et al, 2002).
Interestingly, analysis of TRAP1 hydrophobicity shows a
hydrophobic stretch at the C-terminal (Supplementary Fig.
2A) and therefore an alternative mode of interaction by
association should not be ruled out. Other mitochondrial
proteases could also be influencing TRAP1 and loss of
HTRAZ2 could trigger other proteases in order to maintain
proteostasis, which displays some redundancy.

One concept that links HTRA2 and TRAP1 in the con-
text of neurodegeneration is the mtUPR. The mtUPR is a
highly conserved cellular response activated when the accu-
mulation of unfolded or misfolded proteins goes beyond
the chaperone capacity of the mitochondria (Pellegrino
et al., 2013). The mtUPR activates transcription of nu-
clear-encoded mitochondrial chaperone genes to promote
protein homeostasis within mitochondria. HTRA2 levels
are increased during mtUPR (Spiess et al., 1999) and loss
of HTRA2 contributes to transcriptional stress response
(Moisoi et al., 2009). Overexpression of TRAP1 activates
mtUPR and extends lifespan in Drosophila (Baqri et al.,
2014) and TRAP1 inhibition promotes the mtUPR response
in Caenorhabditis elegans (Munch and Harper, 2016).

TRAP1 gain-of-function rescues PINK1 (Zhang et al.,
2013) and PINK1/parkin loss-of-function in Drosophila
(Costa et al., 2013) and here we can show that TRAP1 res-
cues HTRA2 and PINK1 loss-of-function in human cells. In
addition to its role as a chaperone, TRAP1 is also involved in
metabolic switching (Yoshida et al., 2013; Sciacovelli et al.,
2013; Rasola ef al., 2014; Masgras et al., 2017) and there-
fore through the identification of a sporadic Parkinson’s dis-
ease patient homozygous for a premature stop mutation in
TRAP1 and data from the patient fibroblasts, we have un-
covered a mechanism involving mitochondrial metabolism.

TRAPI1 mutations could be important for our understand-
ing of the underlying biological mechanisms that lead to
Parkinson’s disease and although the role and influence of
rare variants in complex diseases is a debated subject, data
generated so far indicate that common and rare variants are
not mutually exclusive. We used the PPMI repository (with
380 Parkinson’s disease cases and 162 controls) to perform
a comprehensive burden analysis. Truncating variants pre-
dicted to cause loss-of-function of TRAP1 are very rare and
were only observed in Parkinson’s disease patients and not
in controls. For rare missense TRAP1 mutations, we found a
significantly different burden (P-values < 0.05) between pa-
tients and controls. We also investigated whether there are
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healthy individuals who have both alleles of the TRAP1
gene inactivated. Using our in-house Helmholtz database
and several available large datasets, we found no such
TRAPI mutation, showing that biallelic loss-of-function mu-
tations are not well tolerated in healthy individuals. Overall,
the result of the burden analysis points to an association of
TRAPI1 rare, missense variants in controls that may be pro-
tective for Parkinson’s disease. To further validate the find-
ings on low frequency variants in Parkinson’s disease, we
would need independent, larger sample sets.

In 2014, Luykx et al. (2014) hinted that TRAP1 variants
are associated with neurotransmitter metabolism and
Parkinson’s disease. The authors performed a genome-
wide association study (GWAS) analysis and found a sig-
nificant association of the ratio of HVA/5-HIAA, indicating
enhanced monoamine turnover in variants of six genes,
among them were PINK1 and TRAPI1, further supporting
the genetic contribution of TRAP1 to Parkinson’s disease.

In the case reported here, a homozygous stop mutation in
TRAP1 in a Parkinson’s disease patient leads to complete
loss of the TRAP1 protein. TRAP1 mutations have previ-
ously been associated with chronic pain, fatigue and gastro-
intestinal dysmotility (Boles et al., 2015), a recognized
common dysfunction in Parkinson’s disease (Pfeiffer,
2003). One highly conserved variant in this study
(p.lle253Val) was also identified in both German and
Austrian Parkinson’s disease patients. Furthermore, reces-
sive mutations in TRAP1 were identified in two families
with congenital abnormalities of the kidney and urinary
tract (CAKUT) and VACTERL association (congenital
abnormalities in multiple organs) (Saisawat et al., 2014).
Interestingly, the late-onset Parkinson’s disease patient with
a homozygous stop mutation (R47X) in TRAP1 described
here was also diagnosed with chronic pancreatitis and,
chronic kidney insufficiency but not diabetes. The R47X
patient also shows other symptoms related to mitochon-
driopathies such as cardiomyopathy, polyneuropathy,
sleep apnoea and cataracts. Studies in mice have shown
that TRAP1 overexpression protects against cardiac hyper-
trophy (Zhang et al., 2011) and underscores the link be-
tween TRAP1 defects and mitochondriopathy.

In line with previous work performed in TRAP1 knock-
out mice (Yoshida et al., 2013), TRAP1-deficient patient
fibroblasts show increased respiration, complex I activity
and ATP output. We also found more unbound NADH,
which indicates favouring of glycolysis. However, these
changes, although highly significant, are overall very
small, which might reflect the low metabolic demand in
fibroblasts compared to neurons. Unbound NADH could
also come from the NAD +/NADH pool, which is increased
in mitochondrial biogenesis. NAD* metabolism engages
key effectors of longevity, and interestingly modulating
NAD™ levels has become a focus for intervention in age-
related diseases (Karpac and Jasper, 2013). NAD ™" signals
mitochondrial biogenesis via the sirtuin pathway, this im-
pacts mitonuclear protein balance and initiates the mtUPR,
promoting longevity (Mouchiroud et al., 2013).
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Altered stoichiometry between nuclear and mtDNA
encoded proteins (mitonuclear protein balance) is a con-
served longevity mechanism across many  species.
Mitonuclear protein imbalance is coupled with the activation
of the mtUPR, activation of mitochondrial chaperones and
longevity (Houtkooper et al., 2013). Mitochondrial biogen-
esis, normal ageing, mitochondrial transcription and transla-
tion all influence the balance of nuclear and mtDNA
encoded mitochondrial proteins (Houtkooper et al., 2013).

The diabetes mellitus type 2 drug metformin was inves-
tigated in this study because of its ability to reverse
TRAP1-dependent chemotherapy resistance in ovarian
cancer (Matassa et al., 2016). The ability of metformin
(and not an antioxidant) to rescue the reduced mitochon-
drial membrane potential phenotype is of particular interest
as metformin has previously been shown to be protective in
Parkinson’s disease models (Patil et al., 2014; Perez-
Revuelta et al.,, 2014) and there are significantly fewer
cases of Parkinson’s disease in diabetes mellitus type 2 pa-
tients taking metformin (Wahlqvist et al., 2012). We pro-
pose that loss of TRAP1 hinders the fine tuning of energy
metabolism, proteostasis and the mtUPR response. It is this
fine tuning that over time, when not available, pushes the
cell in favour of meeting immediate energy needs, rather
than energy restriction. Further work to generate induced
pluripotent stem cells from the TRAP1 R47X patient fibro-
blasts and gene correct the mutation would confirm cause
of disease. In conclusion, loss-of-function mutations in
TRAP1 are rare, yet analyses of the biological pathway
involving TRAP1, show that TRAP1 is important for mito-
chondrial signalling in Parkinson’s disease. These data also
underscore the role of rare variants in the pathogenesis of
Parkinson’s disease and suggest that treatments other than
antioxidants should also be considered for individualized
therapies in aetiologically heterogeneous syndromes such
as Parkinsonism.
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Abstract

Objective
The aim of this study was to identify variants associated with familial late-onset Alzheimer
disease (AD) using whole-genome sequencing.

Methods

Several families with an autosomal dominant inheritance pattern of AD were analyzed by
whole-genome sequencing. Variants were prioritized for rare, likely pathogenic variants in
genes already known to be associated with AD and confirmed by Sanger sequencing using
standard protocols.

Results

We identified 2 rare ABCA7 variants (rs143718918 and rs538591288) with varying penetrance
in 2 independent German AD families, respectively. The single nucleotide variant (SNV)
rs143718918 causes a missense mutation, and the deletion rs538591288 causes a frameshift
mutation of ABCA7. Both variants have previously been reported in larger cohorts but with
incomplete segregation information. ABCA?7 is one of more than 20 AD risk loci that have so far
been identified by genome-wide association studies, and both common and rare variants of
ABCA?7 have previously been described in different populations with higher frequencies in AD
cases than in controls and varying penetrance. Furthermore, ABCA?7 is known to be involved in
several AD-relevant pathways.

Conclusions

We conclude that both SNVs might contribute to the development of AD in the examined
family members. Together with previous findings, our data confirm ABCA7 as one of the most
relevant AD risk genes.
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Glossary

AD = Alzheimer disease; GWAS = genome-wide association study; MAF = minor allele frequency; WGS = whole-genome
sequencing; SNV = single nucleotide variant; LD = linkage disequilibrium.

Several genome-wide association studies (GWASs) have iden-
tified ABCA7 (ATP-binding cassette transporter A7) as a risk
factor for sporadic late-onset Alzheimer disease (AD).' > ABCA7
encodes a protein with major function in lipid transport.* The
protein is involved in AD pathology, as it was demonstrated to
play a role in formation, clearance, and aggregation of amyloid
beta, the etiologic agent in AD.>® Recently, multiple rare loss-of-
function variants in ABCA7 associated with AD risk and possible
causal variants in familial cases and pedigrees have been identi-
fied through sequencing efforts.” ™" Alterations in ABCA7 have
not only been observed in European but also in African Amer-
ican'” and Asian'*'* populations either by GWASs or targeting
sequencing with varying minor allele frequencies (MAFs). In
addition, a protective ABCA7 variant has also been described,
emphasizing the role of this gene in AD."> We now present the
data of 2 rare variants of ABCA7 in 2 German families.

Methods

Standard protocol approvals, registrations,
and patient consents

All individuals provided written informed consent before their
participation in this study for the clinical evaluation and
genetic analysis of leukocyte DNA. Clinical phenotyping,
whole-genome sequencing (WGS), and genetic analysis were

approved by the Central Ethics Committee of the Bavarian
Medical Association and the Ethics Review Panel of the
University of Luxembourg.

Patient information

Two families with an autosomal dominant inheritance pattern
of AD were analyzed, and a pedigree chart is shown in figure 1.
The 3 patients with AD sequenced in family 1 had reported
ages at onset of <56, 70-75, and 71-77 years. The APOE status
for all 3 patients was €3/4. Family members 021, 022, and 122
died at the age of 47, 56, and 75 years, respectively. The patient
with AD in family 2 had an age at onset of 66 years; the APOE
status was €4/4. Family members 101 and 102 died at the age of
74 and 73, respectively. For 001, 002, and 122, the age at death
is unknown. Blood samples were taken from 7 (family 1) and
8 (family 2) family members, respectively, and DNA was
extracted from leukocytes using standard procedures.

WGS and analysis

WGS was performed by Complete Genomics Inc. (CG,
Mountain View, CA) using their proprietary paired-end,
nanoarray-based sequencing-by-ligation technology.16 Se-
quencing, quality control, mapping, and variant calling for the
sequencing data were performed by CG as part of their se-
quencing service using the Standard Sequencing Service
pipeline version 2.0. Sequencing reads were mapped against

Figure 1 Pedigree charts
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The age at examination of each individual sequenced in this study is given beneath the identifier number. Individuals diagnosed with AD are indicated as
affected (dark gray), individuals with AD-like symptoms reported by their family members are indicated in light gray. (A) Pedigree of family 1. The genotypes
are wild type (G/G) or the alteration (G/A) that causes the ABCA7 missense mutation. (B) Pedigree of family 2. The genotypes are wild type (T/T) or the alteration

(T/del) that causes the ABCA7 frameshift mutation.
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NCBI Build 37. For further analysis, only single nucleotide
variants (SNVs) and small insertions, deletions, and block
substitutions up to a size of about S0 nt (indels) were used.

Variant prioritization

Variants were annotated by ANNOVAR'” (version 2015
March 12) using the NCBI RefSeq release 60 and the
Ensembl release 74 genome. As input for our family WGS
analysis pipeline,'® we first combined all variants from all
genomes of every sequenced family member into the union of
variants using CG analysis software (CGATOOLS, version
1.5) listvariant tool and the CG “var” files of all individuals per
family as input. We used CGATOOLS testvariant to test each
sample for the presence of each allele at every variant position
from the union set of variants. We removed variants that were
not called as high-quality calls (VQHIGH) in at least 1 in-
dividual. For both families, we used ISCA version 0.1.9" to
search for shared haplotype blocks between pairs of samples
and determined the number of shared alleles per block. For
family 1, we filtered for haplotype blocks that shared 1 allele
between the cases that was not shared with the unaffected
individual 101 (figure 1A). For family 2, we excluded blocks
where any pair of unaffected siblings shared 2 alleles (figure
1B). For each family, we applied an autosomal dominant in-
heritance model and filtered for exonic variants excluding
synonymous variants and for variants in essential splice sites
(£2 nucleotides from the exon boundary).

Variants within regions that are known to show very high
mutation rates, like in mucins and olfactory receptors, were
excluded (commonly mutated region).20 We filtered for rare
variants having an MAF of less than 5% in the European
American population of the 1000 Genomes Project, the Eu-
ropean NHLBI ESP exomes, and the Non-Finnish European
population from the ExAC project as well as in the control
data set CG69 provided by CG. We annotated the remaining
variants for pathogenicity by considering either loss-of-
function variants (indels, stop-gain, stop-loss, and splice-site
variants) or missense mutations predicted to be deleterious by
SIFT, PolyPhen-2 HDIV, LRT, and MutationTaster or
mutated at highly conserved positions (GERP_RS>3). All
annotations were derived from dbNSFP3.0a.>! We further used
a list of AD candidate genes that was collected from various
GWAS in the dbGAP, the Alzgene database,”* and the Geno-
tator tool” to prioritize variants.

Population stratification

We performed population stratification by using
EIGENSTRAT?* with default parameters. First, we merged
our data with the 1000 Genomes data. We chose only the
autosomal SN'Vs concordant with hapmap>® that were bial-
lelic and not in linkage disequilibrium (LD) with each other
by using PLINK (version 1.9)*° with the parameters—indep
50 5 2, MAF of at least 0.1, and minimum call rate of 0.99 to
perform the population stratification. To identify the ethnicity
of samples in the current study, the first and the second
principal components were visualized.

Neurology.org/NG

Genetic and linkage analysis

For linkage analysis, high-quality SNV positions (complete call
rate over all individuals from VQHIGH status in CG var files)
were extracted from the WGS data. Variants with high LD were
removed using PLINK 1.9%; further thinning of variants was
performed using mapthin.>” A set of 2,000 variants per chro-
mosome along with the identified variants segregating with the
disease through the pedigree were used to check for genotype
errors and mendelian inconsistencies using MERLIN®® and
were subsequently removed if they were identified as errors.
The remaining variants were used for linkage analysis and their
genomic positions were linearly interpolated based on the
hapmap genetic map (2011-01_phasell B37). MERLIN was
used to perform both haplotyping and multipoint parametric
linkage analysis with a rare autosomal dominant disease model
with a disease frequency of 0.0001 and penetrance of 0.0001,
1.0, and 1.0. Haplotyping results were visualized using Hap-
loPainter.”” Using the R package “paramlink,”*® we calculated
the power of each pedigree given as the maximal LOD scores
for each family under an autosomal dominant inheritance
model and 10,000 simulated markers. Relationship detection
between all individuals was performed using software GRAB.*

Validation by sanger sequencing

The presence of both variants identified by WGS were vali-
dated and replicated by Sanger sequencing in each family
member of both pedigrees using standard protocols with the
following oligonucleotide sets: ABCA7_delT 1055908 FWD:
3'-TTGTCCACCCTTGACTCTGTGC-S’; ABCA7_delT
1055908 REV: 3'-CTTGAGACTGTCCTGAGCATCC-5';
ABCA7 rs143718918 FWD: 3'-ACAGGTCCATCTT-
GAGTGGC-5'; ABCA7 rs143718918 REV: 3'-GAGAC-
CAGCCCCACATCC-S'.

Results

We used WGS to identify the genetic cause of AD in 10 families
with an autosomal dominant pattern of inheritance. Among
these families, variants in ABCA7 were identified in 2 families
(family 1 and family 2). In family 1, we sequenced the genomes
of 7 family members; 3 of them were diagnosed with AD
(figure 1A). In the second family (family 2), we sequenced
genomes of 4 family members, 1 affected index patient with AD
(age at diagnosis 66 years) and 3 unaffected siblings (figure
1B). Relationship estimation®® confirmed all relationships in
both families, given the original pedigree information. All
families were self-reported of German ethnicity. European
ancestry could be confirmed using EIGENSTRAT>* analysis
(figure e-1, linkslww.com/NXG/A38).

WGS fully called on average 97% of genome and 98% of
exonic regions. Seventy-seven percent of the genome and 86%
of the exome were covered with at least 30X. We detected on
average over all samples from both families 3,415,106 SNVs
and 577,534 indels and substitutions per genome (table e-1,
links.lww.com/NXG/A39).
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In total, 7,516,717 and 6,139,540 variants (SNVs and indels)
different from the reference genome were identified in at least
1 family member for family 1 and 2, respectively. Disease-
associated variants were searched using an autosomal domi-
nant inheritance model. In family 2, only variants present in
the affected and not present in the unaffected individuals
were considered. After strict quality, mode of inheritance,
shared haplotype and MAF < 0.0S filtering, 51,269 and
56,962 variants remained (table e-2, links.lww.com/NXG/
A39). After annotation using RefSeq, we screened for exonic
splice-site affecting variants. After excluding variants within
commonly mutated and brain-expressed genes, we priori-
tized the remaining variants according to their predicted
pathogenicity and conservation. In total, only 11 (family 1,
tables e-3 and e-5) and 8 (family 2, tables e-4 and e-6) var-
iants were found in AD-related genes (table e-7) and were
therefore considered to be relevant to AD. Strict variant fil-
tering revealed for each family rare ABCA7 variants,
15143718918 (family 1) and rs$38591288 (family 2) as best

candidate variants.

European (Non-Finnish) population allele frequencies for
1s143718918 and for rs538591288 add up to 0.0021 and
0.0016, respectively. Both variants are very rare (MAF < 0.01)
in the European population according to the ExAC*' and 1000
Genomes (tables e-3 and e-4, links.Iww.com/NXG/A39).

In addition, the performed linkage (figure 2, A and B) and
haplotype block analysis (figure 3, A and B) show cose-

gregation and association of both variants with AD in both

German families. We confirmed the presence of both variants
in the initially screened and the additional family members by
Sanger Sequencing (figure 1).

The SNV rs143718918 identified in family 1 causes a mis-
sense mutation of ABCA7 (c.2693G>A) that affects the
ABC1 domain of the protein (p.R880Q). This variant was
previously identified in patients with AD and controls of
alarger Belgian cohort in a French as well as in an European
cohort with early-onset patients and in patients with AD
of a Caucasian cohort.”**** We identified the SNV in all
sequenced family members except for 1 healthy member
(figure 1A). Three family members (201, 211, and 212)
also carrying the risk variant were not affected and/or
did not report cognitive deficits at the time of the last
consultation, but were considerably younger than the af-
fected family members and therefore possibly pre-
symptomatic at the time of examination. As such, genetic
counseling and clinical follow-up examinations will be
conducted.

The second variant (rs538591288) identified in family
2 causes a frameshift deletion in exon 31 of ABCA7
(c.4208delT; p.L1403fs). This variant was also previously
identified in patients with AD and controls of a larger
Belgian cohort as well as in a French and in a European
Cohort with early-onset AD patients.”>>*> Of interest, in
one of these studies, additional Italian relatives with EOAD
carrying the deletion were reported.>> Furthermore, 2
groups have recently shown that p.L1403fs variant carriers

Figure 2 Linkage analysis of chromosome 19
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(A) The maximum LOD score (1.8) over the whole chromosome is seen in the region containing ABCA7. (B) Linkage analysis of the ABCA7 region on
chromosome 19. The maximal LOD score (1.8) could be found on chromosome 19 in the region from 257,507 to 3,909,104 suggesting linkage, the region in
red spans the gene ABCA7. Of the combined LOD score of 1.8 in the region spanning ABCA7, family 1 and family 2 contributed LOD scores of 1.2 and 0.6,

respectively.
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Figure 3 Segregating haplotype blocks
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The affected, unaffected, and disease status of unknown individuals are filled in black, white, and gray, respectively. An asterisk indicates the individuals who
were not sequenced and their haplotypes were inferred. (A) The disease haplotype is indicated in purple. (B) The disease haplotype is indicated in light green.
In both families, cosegregation of the disease haplotype including the corresponding ABCA7 variant can be seen in all affected individuals.

had decreased ABCA7 protein levels but unchanged mRNA
levels.**>*

We have identified the SNV (rs$38591288) in 3 family
members, including 2 children of the index patient (301 and
303, figure 1B), which were not diagnosed with AD but due to
young age possibly presymptomatic at the time of examina-
tion. Of interest, both so far unaffected carriers reported al-
ready having occasional memory problems.

Discussion

We conducted a whole-genome sequencing (WGS) study to
search for SNV cosegregating with Alzheimer disease (AD)
cases in German families. Of interest, we identified 2 rare
variants of ABCA7 possibly contributing to AD pathogen-
esis in 2 families, respectively. ABCA7 is one of more than 20
AD risk loci that have so far been identified by GWASs and
sequencing studies. ABCA7 is also involved in AD-relevant
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pathways (lipid metabolism, microglial phagocytosis, and
altered amyloid-beta processing) and abundantly expressed
in the brain.

We identified the rs143718918 to cosegregate with AD in family
1. The SNV causes a missense mutation of ABCA7 in exon 19
(c2693G>A) that affects the ABC1 domain of the protein
(pR880Q) and is probably damaging. This variant has pre-
viously been identified by GWASs in Caucasians with late-onset
AD.® Furthermore, several studies reported the presence of this
variant in AD and in control subjects of (1) a Belgian cohort,” (2)
a French EOAD cohort,® and (3) an EOAD cohort including
samples of diverse origin.>> Overall, the variant was present with
higher frequency in AD cases compared with controls.

The rs538591288 cosegregated with AD in family 2 and causes
a frameshift mutation in exon 31 of ABCA7 (c.4208delT;
p-L1403fs). Initially, this SNV has been reported in an Icelandic

cohort” and was later also identified with higher frequency in
Neurology: Genetics
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cases than controls of German, Swedish, Italian,>* French,*?
and Belgian” cohorts. Mutation carriers express lower levels of
full-length ABCA?7 protein with unchanged mRNA expression
levels.*>** However, it has been reported that by in-frame exon
skipping of the premature termination codon bearing exon 31,
the transcript escapes nonsense-mediated mRNA decay.”
Exon skipping leads to the production of a shorter version of
ABCA?7 protein, which might partly compensate for the re-
duced full-length protein levels and might cause incomplete
penetrance of rs538591288.

It has to be mentioned that we cannot exclude that other varia-
tions might cause additive effects on the development of AD in
both families. Because of the previously shown involvement of
ABCA7 in AD, the presented variants represent the most
promising candidates. Together, our results support the notion
that rare variants of ABCA7 exert considerable risk to the de-
velopment of AD.
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ABSTRACT: Biological network models offer a framework for understanding disease by describing the relationships between the mechanisms involved
in the regulation of biological processes. Crowdsourcing can efficiently gather feedback from a wide audience with varying expertise. In the Network
Verification Challenge, scientists verified and enhanced a set of 46 biological networks relevant to lung and chronic obstructive pulmonary disease. The
networks were built using Biological Expression Language and contain detailed information for each node and edge, including supporting evidence from
the literature. Network scoring of public transcriptomics data inferred perturbation of a subset of mechanisms and networks that matched the measured
outcomes. These results, based on a computable network approach, can be used to identify novel mechanisms activated in disease, quantitatively compare
different treatments and time points, and allow for assessment of data with low signal. These networks are periodically verified by the crowd to maintain an
up-to-date suite of networks for toxicology and drug discovery applications.
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Introduction

Chronic obstructive pulmonary disease (COPD) is a progressive
chronic inflammatory lung disease characterized by persistent
limited airflow caused by various environmental exposures
such as cigarette smoke (CS), occupational hazards, and air
pollution.! Mechanisms underlying the disease include a com-
plex interplay of inflammation, proliferation, oxidative stress,
tissue repair, and other processes driven by various immune,
epithelial, and airway cell types.»3 Understanding the
molecular mechanisms associated with COPD is important for
preventing disease onset, slowing down disease progression,

and managing treatment. Biological network models offer
a framework for understanding disease by describing the
relationships between the molecular mechanisms involved
in the regulation of a particular biological process. Kyoto
Encyclopedia of Genes and Genomes (KEGG) and Reactome
are open access pathway databases widely used by the scien-
tific community.*” They describe signaling in various areas
of biology and can be used to interpret large-scale molecular
data through integration and overlay on pathways to assess
pathway overrepresentation. In contrast to these general
pathway databases, we have developed a set of networks within
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defined boundaries relevant to COPD that are available to the
public on the Bionet website at https://bionet.sbvimprover.
com, where they can not only be viewed and downloaded but
can also be actively commented on and edited.®” These net-
works can also be used to interpret large-scale molecular data
to a fine-grained degree, due to their construction in Biologi-
cal Expression Language (BEL), a human-readable comput-
able language with the ability to capture precise biological
information and associated context (www.openbel.org). The
networks were based on a set of previously published lung-rel-
evant healthy biological networks, which along with the most
current network versions are available for download at http://
www.causalbionet.com/.10-14

To ensure a comprehensive and up-to-date set of bio-
logical network models that cover a wide range of biological
signaling, crowdsourcing can be used to gather input from
the scientific community. Crowdsourcing is a powerful tool
to efficiently gather feedback from a wide audience that cov-
ers expertise in many biological areas. Crowdsourcing efforts
in biology are useful in the collection of creative solutions to
challenging problems in various fields of biology such as sig-
naling networks, protein folding, RNA design, and sequence
alignment.’>% Crowdsourcing has also been harnessed to
accomplish a large amount of manual work in annotation
projects including disease-related genes, interactome path-
ways, and PubMed abstracts.!”! We have previously reported
the creation of a set of biological networks describing COPD
processes that were improved by the scientific community
during the first Network Verification Challenge (NVC).%? In
this study, we show that the networks were further improved
during a second NVC (NVC2), in which the crowd added
mechanistic details in the form of new nodes and edges.

We illustrate possible network applications for the
crowd-improved set of networks using network scoring by
TopoNPA, a method to infer mechanism and network per-
turbation based on transcriptomics data and known activators
and inhibitors of gene expression reported in the literature.??
Quantitative scoring of networks is enabled by BEL, an open
platform technology, where cause and effect relationships
from the literature are described and annotated using a pre-
cise language and collected in a knowledgebase. This knowl-
edgebase is used to predict upstream regulators of measured
transcriptomics data.?> This backward reasoning approach
differs from other gene set enrichment approaches using gene
sets defined as KEGG pathways or Gene Ontology (GO)
classes for example,?* which make the assumption that RNA
expression is equivalent to protein activity. Another limitation
of methods such as gene set enrichment analysis (GSEA)%
is that they do not take direction into account for each gene
within the gene set. TopoNPA scoring of networks allows for
quantitative scoring of inferred mechanisms and networks
based on signed fold changes in the dataset. Using TopoNPA
on a set of networks enables quantitative comparison between
different compounds, disease subtypes, or other perturbations

of interest.?> We describe here one application for how the
improved set of 46 computable BEL-encoded NVC network
models can be used by the scientific community for toxicology
and drug discovery applications.

Materials and Methods

Biological expression language. BEL is a triple-based
language, where statements consist of two biological entities
connected by a relationship (for causal statements: cause, rela-
tionship, and effect). The BEL framework, including a data-
base of BEL statements and other tools to be used with BEL,
is an open-platform technology available for download at
http://www.openbel.org/. BEL captures specific entities from
chemicals to proteins to biological processes and relationship
links that are directional, providing information on activation
or inhibition. Statements within BEL are derived from the
published literature and are compiled together to express the
existing causal knowledge in a graph-based, computable format.
These entities connected by relationships are represented
as nodes and edges within a BEL graph network and are
linked to metadata such as literature support, which contains
PubMed ID, tissue, disease, cell type, and species. A BEL
node consists of a function, namespace, and entity. The func-
tion gives information about the type of entity (eg, abundance
and activity), and the namespace is a standardized ontology
that defines the entity that each node represents (eg, MeSH,
ChEBI, GO, and HGNC). See Supplementary File 1 for a
list of BEL functions and namespaces. Just as the networks
are continuously improved by the crowd, the BEL language
evolves based on suggestions made by the OpenBEL commu-
nity. Namespaces in the NVC networks version 2.0 reported
here were updated from v1.0 BEL Namespaces to the most
recent version (v20150611), which includes additional and
refined namespaces.

Network Building

Networks were constructed in a three-phase process, as
described previously.® Briefly, networks were built using
data and literature during Phase 1, enhanced with lung- and
COPD-relevant mechanisms (represented by nodes in the
networks) by the crowd during Phase 2 on the Bionet web-
site (https://bionet.sbvimprover.com/), and discussed during a
jamboree meeting during Phase 3 in which the best perform-
ers were invited based on their point totals from the online
phase. Networks with high crowd activity or interest were
selected for discussion during the jamboree. Phases 2 and 3
were repeated in NVC2. Fifteen networks were discussed
during the NVC1 jamboree (apoptosis, cell cycle, dendritic
cell signaling, growth factor, hypoxic stress, macrophage
signaling, neutrophil signaling, NFE2L2 signaling, nuclear
receptors, oxidative stress, response to DNA damage, mecha-
nisms of cellular senescence, Thl signaling, Th2 signaling
[Th1-Th2 signaling were merged as a result of the jamboree],
and xenobiotic metabolism response) and nine networks were
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discussed during the NVC2 jamboree (calcium, epigenetics,
macrophage signaling, necroptosis, neutrophil signaling,
oxidative stress, senescence, Th1-Th2 signaling, and xenobi-
otic metabolism response). After the NVC2, it was decided
to merge the four senescence-related models (mechanisms
of cellular senescence, regulation of CDKN2A expression,
regulation by tumor suppressors, and transcriptional regula-
tion of the SASP) into one model called senescence. In both
NVC1 and NVC2, changes were implemented by the orga-
nizers and new versions were uploaded to the Bionet website.
The latest versions edited after the NVC2 jamboree are the
version 2.0 networks.

Network Statistics

Network statistics and metrics were calculated on the net-
works presented to the crowd at the start of the NVC (v1.1)
and on the most recent networks containing the outcomes of
NVC1 and NVC2 (v2.0). Basic network metrics such as num-
ber of nodes, edges, activation edges, inhibition edges, and
the proportion of inhibition edges were calculated. In addition
to these basic network characteristics, the following metrics
were computed:

e Mean degree: the average of node degrees. This metric
informs the overall topology of the network. A low aver-
age degree (<2) is typically observed in linear networks.

e Max degree: the maximum degree in the network, repre-
senting the size of the largest hub.

e  Mean node betweenness (MNB) or betweenness cen-
trality: the number of shortest paths between pairs of
other nodes that go through that node. Nodes with high
betweenness centrality are considered as high traffick-
ing nodes. This metric characterizes the centrality of the
nodes and hence the topology of the networks (for exam-
ple, bottlenecks for the paths in the network). A complete
graph has a vanishing (=0) MNB.

o Largest clique size: the number of nodes in the largest
complete undirected subgraph in a network. This num-
ber is expected to be low because complete subgraphs
that are not triangles are not expected to be biologically
meaningful.

e  Mean path length (MPL): the average of the shortest
path length between all pairs of nodes. This metric gives
an indication of the density of the network. A low MPL
characterizes networks for which the shortest path of
causal statements, from one node to another, are made of
few edges; for example, in a complete graph, this equals 1.
It does not necessarily imply that the mean degree is
high. A typical cascading signaling pathway with little
feedback would be expected to have a high MPL.

e  Frustration: the minimum number of edges that should
be removed to make the network balanced. Balance in a
signed graph is characterized by the property that every
path between two nodes has the same sign (the sign of

a path is the product of its edge signs). Equivalently,
a graph is balanced if and only if every cycle is positive.
A negative feedback loop contributes to the network
frustration. For example, tightly regulated processes such
as cell cycle or apoptosis are expected to have a high frus-
tration metric.

e  # connected components: number of connected compo-
nents, that is, the number of disjoint (ie, not sharing any
edge) subnetworks within the network.

For all of these network metrics, the differences
between the pre-NVC networks (v1.1) and post-NVC2
networks (v2.0) were calculated to understand crowd con-
tribution effects on the networks. For the Th1-Th2 signal-
ing and senescence networks, both of which were integrated
from separate networks following jamboree discussions,
the individual pre-NVC networks (v1.1) were combined for
comparison with the already combined post-NVC2 net-
works (v2.0).

Datasets Analysis
The three datasets that were analyzed are shown in Table 1.

Network perturbation amplitude. The Network Pertur-
bation Amplitude (NPA) methodology aims at contextualiz-
ing high-dimensional transcriptomics data by combining gene
expression (log,) fold-changes into fewer differential node
values (one value for each node of the network), represent-
ing a biological entity (mechanism, chemical, biological pro-
cess).222027 A node can be inferred as increased or decreased
based on gene expression data, because there are signed rela-
tionships (increase or decrease) between the node and down-
stream mRNA abundance entities.??” The differential node
values are determined by a fitting procedure that infers values
that best satisfy the directionality of the causal relationships
(positive or negative signs) contained in the network model,
while being constrained by the experimental data (the gene
log,-fold-changes, which are described as downstream effects
of the network itself).

The differential values of the network are then used to cal-
culate a score for the network as a whole, called the TopoNPA
score.?? For these network scores, a confidence interval
accounting for the experimental variation and the associ-
ated P-value are computed. In addition, companion statistics
are derived to inform the specificity of the TopoNPA score
with respect to the biology described in the network model.
These are depicted as *O and K* if their P-values are below
the significance level (0.05). A network is considered to be sig-
nificantly impacted if all three values (the P-value for experi-
mental variation, *O, and K* statistics) are below 0.05.22

Leading nodes are the main contributors to the network
score, making up 80% of the TopoNPA score. These nodes
can be useful for interpreting the data to predict mecha-
nisms that might be driving the biological process that the
network represents.??
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Table 1. Dataset overview.

DATA ID? TISSUE TREATMENT ENDPOINT
GSE28464 Human fibroblasts Oncogenic Ras (H-RasV12) expression 4 days Model of senescence; autophagic markers
E-MTAB-3150 Mouse lung Reference cigarette (3R4F) smoke, prototype Lung function; Immune cell numbers and
modified risk tobacco product (PMRTP), inflammatory markers in bronchoalveolar
switch, cessation for 7 months lavage fluid (BALF); lung macrophage counts;
pulmonary morphometry
GSE52509 Mouse lung Reference cigarette (3R4F) smoke for 4, B and T-cell counts and histology in lung; immune
6 months markers in bronchoalveolar lavage (BAL) and lung

Notes: ®The GSE datasets are from the NCBI GEO database and the E-MTAB dataset is from the EMBL-EBI ArrayExpress database.

To increase the specificity and relevance of node scores
and network scores, we consider only the nodes in the net-
work that are bounded by experimental evidence in the fol-
lowing sense: for any given node, at least one ancestor node (ie,
a node from which a directed path to the node under consid-
eration exists) and at least one child node (ie, a node to which
a directed path from the node under consideration exists) in
the directed graph must have downstream RNA abundance
nodes: their values can be directly inferred based on experi-
mental mRNA data. After removing the nodes that do not
satisfy the above criteria, the largest connected component is
kept (if the resulting network is not connected). Finally, the
“causeNoChange” edges are disregarded for scoring. Selec-
tions of these simplified networks that have been scored using
these criteria are shown in the results.

Results

Network resource comparison. We previously described
novel aspects of the NVC networks compared with other net-
work resources.®’ Herein, we select a particular network, cal-
cium signaling, to further illustrate the differences between
the NVC networks constructed using BEL (https://bionet.
sbvimprover.com) and the pathways available in the KEGG
(http://www.genome.jp/kegg/pathway.html) and Reactome
Pathway Databases (http://www.reactome.org) (Fig. 1).

Networkboundaries. The NVC Calcium Network (v2.0)
is an example of a network with similar content and size as
the KEGG Calcium Signaling pathway map (map04020) and
Reactome Calmodulin pathway (R-HSA-111997.1). All three
networks describe the increase of calcium as a result of inositol
1,4,5-triphosphate activation (Fig. 1, box 1 highlighted in
yellow) and the role of calcium in activating calmodulin kinase
(CAMK) (Fig. 1, box 2 highlighted in yellow). However, the
BEL network was constructed specifically to describe calcium
signaling that leads to cell proliferation in the lung, while the
KEGG and Reactome pathways describe calcium signaling in
a more general manner that is tissue agnostic and can lead to
proliferation as well as, for example, contraction, metabolism,
apoptosis, and exocytosis in the KEGG pathway.

Network resource comparison. The NVC Calcium Net-
work (v2.0) contains 47 nodes (35 unique concepts when genes,
proteins, and activity nodes are flattened together) and 52 edges,
the KEGG pathway map contains 48 nodes/unique concepts

and 60 edges, and the Reactome pathway contains 46 nodes
(34 unique concepts) and 49 edges (Table 2). The NVC2 net-
work is supported by 38 unique literature references for specific
edges, while there are 20 references for the KEGG pathway
and 28 references for the Reactome pathways. There is no over-
lap in references between the three resources and the average
date of publication for the NVC2 references is 2006, whereas
the KEGG and Reactome average dates are 2002 and 2000,
respectively. The NVC2 and Reactome references support a
particular edge, whereas the KEGG references are not specific
to a particular edge. The NVC2 network contains multiple node
functions such as abundance, activities, and phosphorylations
that have been specifically tested in the literature, while the
KEGG pathway depicts a single layer of gene symbol nodes
that could represent RNAs, proteins, modified proteins, or pro-
tein activities. Reactome contains nodes that reflect activities
and phosphorylations that can be repeated throughout the dia-
gram to indicate location.

The cellularlocalization graphicsin KEGG and Reactome
give a second layer of information, with inositol 1,4,5-triphos-
phate (IP3 in KEGG, 1(1,4,5)P3) in Reactome activating
inositol 1,4,5-trisphosphate receptor (IP3R) depicted on the
endoplasmic reticulum (ER) membrane, increasing calcium
in the cytoplasm (Fig. 1, box 1 highlighted in yellow). From
the KEGG and Reactome diagrams, IP3R/IP3 receptor can
be inferred to be a calcium channel transporting calcium
across the ER, although it is not explicitly stated. In BEL,
this relationship is described explicitly in the NVC network
as three different family members defined by the HUGO
Gene Nomenclature Committee (HGNC) database (http://
www.genenames.org/) with transporter activities (tport):
tport(p(HGNC:ITPR1)), tport(p(HGNC:ITPR2)), and
tport(p(HGNC:ITPR3)) that activate the bp(GOBP:“store-
operated calcium entry”) node defined by the GO biologi-
cal process database.?® The nodes in the NVC network have
more granularity than the Reactome and KEGG networks,
specifying the type of activity and particular residues that
are phosphorylated.

Along with the IP3 receptor, another process that is
described by all three network resources is CAMK activa-
tion by calcium (Fig. 1, box 2 highlighted in yellow), although
the NVC2 network describes CAMK2 while KEGG and
Reactome pathways describe CAMK4 (only obvious for the
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Figure 1. Comparison of the NVC (A), KEGG (B), and Reactome (C) calcium/calmodulin signaling pathways. Shared portions highlighted in yellow with

corresponding numbers.

KEGG pathway after clicking on the node within the online
pathway). The final group of overlapping nodes between NVC
and KEGG networks include stromal interaction molecular 1
(STIM1) and calcium release-activated calcium channel

protein 1 (ORAI1), describing store-operated calcium entry
(Fig. 1, box 3 highlighted in yellow), a concept that the Reac-
tome network does not cover due to its focus on calmodulin
signaling. Despite the differences in biological content, these
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Table 2. Network resource comparison.

ATTRIBUTE NVC KEGG REACTOME
# Nodes 47 48 46

# Unique concepts 35 48 34

# Edges 52 60 49

# References 38 20 28
Average date of references 2006 2002 2000

networks illustrate the similarities in causal, computational
formats and differences in detail and visualization features
in the NVC, KEGG, and Reactome networks. The edges
in the NVC, KEGG, and Reactome networks are similar in
that they can represent causal increase or decrease relation-
ships and can be downloaded for computational use. However,
the NVC networks contain more layers of information, with
direct causal, indirect causal, correlative, and other noncausal
relationships (eg, member, biomarker, and component).

Network crowd verification. Participant feedback. Scien-
tists had many options for engagement during the NVC,
including commenting on networks, voting for or against
the validity of evidence for specific edges, adding evidence
to existing edges, or adding new edges (in order of easiest to
most challenging according to a participant survey). The most
impactful, but most challenging (and highest point value),
action was to add new edges that represented missing biology
in the networks. This action required participants to perform
a sophisticated set of tasks beyond identifying relevant papers,
namely, identify the correct network to include the paper and
translate the biology to correct BEL statements in a format
that contained direct, mechanistic biology relevant to the
boundaries of the particular network. Most participants had
expertise in identifying relevant papers that included biology
that was missing in the network and overall, participants were
able to easily learn BEL and construct correct statements that
depicted the biology from the papers they identified. The most
challenging task was assembling these statements into direct,
mechanistic edges to integrate into the boundaries of a par-
ticular network. Participant feedback indicated that improved
ways were desired to view networks, particularly to highlight
areas of the networks that needed more development. Feed-
back also indicated that clearer network boundaries were
necessary, highlighting the challenges that working with
networks entails. With regard to participant engagement,
feedback showed that participants were motivated by learning
about biology in the networks, the BEL language, and about
biological networks in general.

Network changes. The latest version of the NVC net-
works edited by the crowd during the NVC2 is available
as version 2.0 at www.bionet.sbvimprover.com. These net-
works were changed in various ways throughout the two
NVC challenges, as summarized in Figure 2. Networks
before the NVC (vl1.1) were compared with networks

changed at the end of NVC2 (v2.0). Network statistics for
each network version are available in Supplementary File 2.
The largest amount of new biology in terms of new nodes
that was added during NVC2 by the crowd and resulting
from the jamboree was to the epigenetics, xenobiotic metab-
olism response, and calcium networks (Fig. 2). COPD- and
lung-relevant contexts were added to the epigenetics and
xenobiotic metabolism response networks, and cancer-
and liver-related contexts, respectively, were removed. In
the calcium network, growth factors and smoke-relevant
mechanisms that lead to calcium signaling were added, as
well as mechanisms of store-operated calcium entry.

Overall during the NVC1 and NVC2, the size of the
networks (number of nodes and edges) grew, as seen in the
four left columns of the heat map (Fig. 2). While the total
number of edges increased, the proportion of negative edges
also increased slightly, with a few exceptions such as Wnt and
epigenetics signaling. This increase may reflect the addition of
regulatory mechanisms to the networks.

Mean node betweenness (MNB) did not change substan-
tially, with noticeable exceptions for the cell cycle, autophagy,
and Th1-Th2 signaling networks. For both cell cycle and
autophagy, the number of nodes and edges stayed relatively
constant. A difference in MNB may be indicative of a reor-
ganization of the network topology. These networks were all
discussed during the jamborees where network topologies
could more easily be changed than on a per user basis dur-
ing the open phase. For Th1-Th2 signaling, MNB went up
tenfold from 15 to 152. This may be because these networks
were originally two separate networks with linear (tree-like)
structures that were then integrated after the jamboree.

The sizes of the largest cliques did not change, which
suggests that the crowd did not add feedback loops. A clique
of size 3 is a triangle that may be a simple positive or negative
feedback of the form A—»B—C—A (A—»B—C-|A, respec-
tively). Most of the networks exhibit this property, while only
eight networks have a clique of size 4 or more, the maximum
being 5 (neutrophil signaling, after verification). A clique
between four nodes implies that the set of nodes all regu-
late each other; for example, in the epithelial mucus hyper-
secretion network, the nodes A = cat(p(HGNC:ADAM17)),
B = kin(p(HGNC:EGFR)), C = p(HGNC:MUC5AC), and
D =bp(GOBP:mucus secretion)) are all related to each other
as A—B,C,D; B—C,D; C—D.

The mean degree stayed stable while some maximum
node degrees increased (ie, some nodes are stronger Aubs). As a
case in point, for the megakaryocyte differentiation network,
the maximum degree went from 12 to 34. The MPL stayed
stable for all networks, meaning that, on average, the shortest
path between two nodes did not change (eg, no long hanging
linear paths).

The frustration, representing the complexity of autoregu-
lation of a network, increased in half of the networks. After
verification, only eight networks have a decreased frustration.
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Figure 2. Changes in network statistics as a result of NVC activity. Differences between the latest version of the networks and the original networks have

been posted to the Bionet website.

Notes: *Discussed in one jamboree. **Discussed in two jamborees. Networks are organized in the following biological categories: cell fate, cell
proliferation, cell stress, inflammation, and tissue repair and angiogenesis. The details of the analysis and the description of the different statistics are

described in the “Materials and methods” section.

The number of connected components increased in the
following networks (usually from one to two components):
mTor, Mapk, Hox, growth factor, cell interaction, osmotic
stress, NFE2L2 signaling, epithelial innate immune acti-
vation, wound healing, fibrosis, and ECM degradation.

However, the ratio of the size of the second largest component
to the size of the largest is less than 5% (except for cell inter-
action 12%, cytotoxic T-cell signaling 15%, and Hox 66%),
meaning that, except for the Hox network, the largest com-
ponents comprise almost all the nodes. The extra components
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added during network verification may be a starting point for
further extending the biggest component. However, in the
case of the Hox network, two components describing sepa-
rated processes are described in the context of this network.
Besides the metrics discussed above, a scale-free property
(ie, the degree distribution follows an exponential distribu-
tion) was tested. None of the networks (v1.1. and v2.0) exhibit
a significant scale-free property (Supplementary File 2).

Network applications. Because the networks were con-
structed in BEL, they can be shared within the scientific
community and used to understand data through overlay on
to specific pathways of interest or implementing a more global
process overview using computational inference approaches.
We illustrate a few cases of how the networks could be used in
toxicity assessment and drug discovery for network computa-
tion using the TopoNPA approach. This approach employs the
two-layer network model to infer the activation or inhibition of
model backbone nodes based on gene expression data.?? Using
these inferences and the network model topology, TopoNPA
computes the perturbation of the network as a whole. The
approach differs from traditional pathway analyses, because
it is quantitative and it uses backward reasoning instead
of assuming that changes in gene expression directly imply
changes in protein activity. The comparison of TopoNPA with
other methods was described in detail by Martin et al.??

In vitro treatment effects on transcriptomics data are reflected
in TopoNPA network scores. The NVC2 networks were scored on
the in vitro dataset GSE28464 from the NCBI GEO database
to illustrate that expected pathway activation can be inferred
from transcriptomics data using network scoring.? In this
dataset, HRASV12 was expressed in fibroblasts, as a model for
oncogene-induced senescence and cell cycle arrest. Consistent
with the expectations, the senescence and cell cycle networks
scored significantly in the HRASV12 dataset (Fig. 3). Within
the senescence network, leading nodes that contribute to 80%
of the senescence network score were predicted to be increased,
including bp(GOBP:oncogene-induced cell senescence), repre-
sentingoncogene-inducedcellsenescence,andp(HGNC:HRAS
sub(G, 12, V)), representing HRASV12 mutation, ranking
first and eighth in their contribution to the significant senes-
cence network score (Fig. 3A, boxed in yellow). Many nodes
representing RAS, RAF, and MAPK mechanisms also scored
highly and/or were high contributors to the network score as
leading nodes. The relationship from angiotensin II activating
CDKNI1A protein is an example of an edge added to the senes-
cence network during the NVC process.

The cell cycle network also had a significant network
score with cell cyclins and E2Fs inferred as decreased lead-
ing nodes (Fig. 3B, highlighted in yellow), while inhibitors
of cyclins and E2Fs (CDKN1A and RB1) were inferred as
increased leading nodes (Fig. 3B, highlighted in blue). NVC
contributions include RRM1, MAD2L1, SIRT1, and TP53
acetylation, which adds more detail to the role of THAP1
and TP53 in regulating cell cycle. The nodes predicted in

the senescence and cell cycle networks are consistent with an
expected decrease in cell cycle due to HRASV12 signaling.

Quantification/comparison of toxicity in two related data-
sets using the network suite. Networks were used to evaluate
and compare two recently published mouse lung datasets
(E-MTAB-3150 and GSE52509), in order to quantify the
effects of different exposures on biological processes at dif-
ferent time points.*” In the first study (E-MTAB-3150), mice
were exposed to CS or aerosol from a prototype modified risk
tobacco product (pMRTP). After two months, mice were
switched from CS exposure to pMRTP or fresh air (cessa-
tion) for an additional five months and compared with mice
subjected to CS for the whole duration (seven months). In the
study reported in the GSE52509 dataset, mice were exposed
to smoke for four or six months.*

Macrophage signaling is of particular interest in the first
study (E-MTAB-3150). The NPA score for the macrophage
signaling network significantly increased with smoke expo-
sure for all time points and decreased with switch and cessa-
tion (Fig. 4A). 'This trend matched the measured end points
of macrophage count in bronchoalveolar lavage fluid (BALF)
and pigmented macrophages in lung tissue (Fig. 4B).3° Lead-
ing nodes within the macrophage signaling network that con-
tributed most to the score are depicted by relative contribution
to network scores in Figure 5. The Il1r] protein and activity
were top contributors to the network score for the first four
months of smoke exposure, after which Irak4 and Myd88
activity were top scoring contributors. These nodes also con-
tributed most to the five-month pMRTDP, switch to pMRTP,
and cessation scores. Irak4 and Myd88 act in the TLR path-
way that leads to macrophage activation induced by smoke for
six months (Fig. 6, boxed in yellow). A number of new nodes
were added during the NVC2 process, including detail around
the TLR pathway and effects of macrophage activation. Two
of these new nodes, prostaglandin E2 and nitric oxide, were
leading nodes that contributed highly to the macrophage sig-
naling network score.

NPA scores can be calculated for the whole suite of net-
works and also allow to compare different datasets, as the rela-
tive signal compared with a controlis used. Figure 7 shows that,
as expected, most of the networks were predicted to be sig-
nificantly impacted with CS exposure in the E-MTAB-3150
dataset, with an increasing impact over time. In contrast,
most of the networks were predicted to be not impacted sig-
nificantly with pMRTP exposure. Upon cessation or switch to
pMRTP from smoke exposure, the network scores decreased.
Interestingly, this approach also proves powerful when applied
to a dataset with fainter signal, as judged by the number of
differentially expressed genes. Indeed, the number of differ-
entially expressed genes in GSE25209 is low (hundreds) com-
pared with those in the E-MTAB-3150 dataset (thousands)
for smoke-exposed mice (Supplementary File 3). Despite the
low signal, TopoNPA still detected a signal and predicted
activation of key networks known to be involved in smoking,
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Figure 3. Senescence (A) and cell cycle (B) networks scored with GSE28464 HRASV12 data from the NCBI GEO database. A selection from the
TopoNPA-scored version is shown. Arrow edge indicates a positive relationship while ball and stick edge indicates a negative relationship (includes

causal and correlative statements). Nodes are colored by their NPA score; yellow/orange indicates inferred increase and blue indicates inferred decrease
in activity or abundance. Darker colors denote higher magnitude scores. Leading nodes contribute to 80% of the network score and are denoted by their
shapes outlined in gray. Nodes added within this section of the network during the NVC are labeled in red. (A) Senescence network. Nodes boxed in yellow
reflect experimental HRASV12 mutation, resulting in oncogene-induced senescence. (B) Cell cycle network. Predicted upregulated nodes (yellow) contain
cell cycle inhibitors RB1, E2F4, and CDKN1A predicted increased. Predicted decreased nodes (blue) contain cell cyclins and E2Fs predicted decreased.

including the inflammatory, cell stress, cell proliferation,
and tissue repair networks (Fig. 7). The networks that score
significantly in GSE52509 were similar to those in the
C57BL6-pMRTP-SW dataset, sharing 24 significant and 11
nonsignificant networks out of the 46 total networks. Note
that scores cannot be compared across datasets.

One of the networks that scored significantly for the
impact of six-month smoke was the Th17 signaling net-
work. The network shows mechanisms that can contribute to
Th17 signaling and were predicted to be increased or decreased.
1117 differential gene expression was not statistically signifi-
cant based on the microarray data; however, evidence of 1117a
and II17f activation from the overall transcriptomics signal

was inferred and contributed to the significant Th17 signaling
network score (Fig. 8, boxed in yellow). These network infer-
ences match measurements from the study, reporting a higher
number of Th17 cells and IL17-positive cells in the six-month
smoke-exposed lung tissue.’! Additionally, the study reported
enrichment of innate and adaptive immune cell communica-
tion pathways by Ingenuity Pathway Analysis of transcrip-
tomics data, which matches the significant network scores in
T-cell and other immune networks (Fig. 7).

Discussion
Network resources have different strengths. Many dif-
ferent network resources are available online, with different
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Figure 4. Macrophage signaling network scores in the E-MTAB-3150 dataset and pigmented macrophage counts in the same study. (A) Macrophage
signaling network score increased with time with smoke exposure and decreased with switch or cessation. pMRTP did not have significant macrophage
signaling network scores at any time point. Green, blue, and red asterisks indicate significant O, K, and experimental P-values, respectively. (B) Pigmented
macrophage in the alveolar lumen increased with smoke exposure over time and decreased with switch or cessation. pMRTP did not induce an increase in

pigmented macrophages.

Notes: *P < 0.05 compared with sham. #P < 0.05 compared with smoke exposure.

language formats, visualization, and download application
capabilities.3>33 Out of these, we chose to compare two of the
most widely used network resources, KEGG and Reactome,
to the NVC networks focusing on the calcium signaling net-
work as a point of comparison. BEL networks enhanced in
the NVC cover 46 different COPD-relevant processes. The
KEGG pathway database is a well-known resource in the sci-
entific community that can be used to interpret data.»* Cre-
ated by a select team of biologists, KEGG contains hundreds
of pathways covering a wide variety of processes including
metabolism, cellular processes, diseases, and more. Reactome
is an open-source, open-access collection of manually curated
and peer-reviewed pathways and suite of data analysis tools

to support pathway-based analysis.®” Similarly, the NVC
networks are manually curated by a team of scientists and
organized into discrete subject areas. However, unlike the
KEGG and Reactome pathways, these network graphs are
open to the crowd for editing and each of the edges that make
up the network is supported by literature source(s) along with
a quotation from the paper that supports the edge and experi-
mental context. The ability for the crowd to edit the networks
facilitates a peer-review process, which ensures comprehensive
and current networks.

The NVC networks have different edge and node types
that describe the relationships between nodes in great detail
to reflect exactly what was proven in the experiment the
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Figure 5. Leading node contribution for macrophage signaling network in the E-MTAB-3150 dataset. Word size indicates relative contribution to

network score.
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impacted if, in addition to the significance of the score with respect to the experimental variation, the two companion statistics (O and K) derived to inform
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Note: *O and K statistic P-values below 0.05 and NPA significantly nonzero.

annotated reference describes. Nodes defined by a namespace
serve to standardize the language and multiple functions such
as abundance, activity, modifications (ie, phosphorylation),
biological process, and pathology to describe the biology in a
fine-grained manner. Edges are defined by causal, correlative,
and other numerous noncausal relationships and each causal/
correlative edge is based on a literature reference containing

tissue, species, disease, and experimental metadata. Like the
NVC networks, KEGG and Reactome describe biological
processes in a causal manner, though they have less granu-
lar information about the nodes and edges and, for the case
of KEGG, no specific literature reference was found for each
relationship. Reactome has references by edge in the net-
work downloads but not in an easily viewable format on the
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Figure 8. Th17 signaling network scored with GSE52509 mouse lung exposed to 6 month smoke. The whole TopoNPA-scored version is shown. Arrow
edge indicates a positive relationship, while ball and stick edge indicates a negative relationship (includes causal and correlative statements). Nodes are
colored by NPA score; yellow indicates inferred increase and blue indicates inferred decrease. Darker colors denote higher magnitude scores. Leading
nodes contribute to 80% of the network score and are denoted by their shapes outlined in gray. Nodes added within this section of the network during the
NVC process are labeled in red. Nodes boxed in yellow reflect prediction of 1117 cytokines.

graph itself. References for the NVC calcium network were,
on average, more recent than the KEGG and Reactome net-
works, implying that the NVC network contains more up-to-
date information, most likely because of the crowdsourcing
effort. Among the 86 references used to support the calcium
pathways across all three resources, all references were unique.
This illustrates the range of literature and boundaries that were
used to build the calcium pathways across the three network
formats. The visualization of the KEGG and Reactome path-
ways allows the viewer to easily traverse the networks within
a graphical representation that includes cellular localization
of the nodes. KEGG and Reactome pathway diagrams have
detailed cellular localization information that the BEL net-
works do not show graphically. However, this information can
be described in the edge annotation or the node label.

Many analysis tools are available to use with the KEGG
and Reactome pathways to interpret data. NVC networks also
support analytics for mapping nodes in a dataset as well as
taking into account the relationships between the nodes with
the exact edge data. NVC networks can be downloaded in
JSON graph format (JGF) and viewed and applied to data
using Cytoscape or other JGF-compatible network visualiza-
tion software. Edge information can be used to filter and com-
pute on the networks.

Other network resources that are geared toward a
community-driven approach include WikiPathways** and
the Cell Collective.® These resources do not have a calcium
pathway appropriate for comparison, but like KEGG and

Reactome, they are limited by less granular information about
the nodes and edges compared with NVC networks and, like
KEGG, no specific literature reference is given for each rela-
tionship. However, they do benefit from the contribution of
information from the scientific crowd, where WikiPathway
users can edit and contribute to existing pathways and Cell
Collective users can contribute information to the Knowledge
Base, collaboratively build models and simulate and analyze
them in real time. Like KEGG and Reactome, WikiPathways
provides a graphical representation, containing cellular locali-
zation information.

Each of these network resources offers advantages for
viewing and interpreting biology. The NVC networks cover
lung- and COPD-relevant processes in a very detailed and
granular manner and are open to public feedback, and the data
can be computed at the node and edge level. The KEGG and
Reactome pathways cover a wide range of biology with many
widely used node-centric analysis tools, the Cell Collective
allows for quantitative computation of networks, and KEGG,
Reactome, and WikiPathways provide a simplified represen-
tation for easy visualization.

NVC crowd excels at identifying and encoding lite-
rature. A review of the crowd changes and participant sur-
vey feedback after two iterations of the NVC allowed for an
understanding of aspects that worked well and aspects that
can be improved for subsequent challenges. One important
finding was that the crowd was able to identify relevant lit-
erature that contained COPD mechanisms missing from the
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networks. Keeping networks up-to-date with the constant
stream of published literature is difficult for the small team
of scientists who created the networks. Crowdsourcing this
effort through the Bionet website allows for a diverse group
of international scientists to share in this effort to collect rel-
evant literature and note missing areas in a network using each
individual’s expertise and biological perspective. This process
allows the community as a whole to benefit from up-to-
date networks.

The main incentive for participants, according to a survey,
was the learning process, and although educating the commu-
nity about BEL and network biology is an excellent outcome
of the NVC, there were many challenges associated with this
large, crowdsourced effort to edit the networks. These chal-
lenges included clearly defining and communicating rules and
boundaries up front in a way that everyone can consistently
follow, the follow-up effort required to edit the changes made
to the networks to ensure consistency and adherence to the
network framework rules, and the creation of accurate BEL
statements capturing the biology stated in a publication.

An idea for future challenges is to separate knowledge
creation from network construction. Adding new and relevant
edges to a network was a heavily incentivized portion of the
challenge and is an important mechanism for filling knowl-
edge gaps in the network and maintaining the networks with
newer information from the literature. While the crowd par-
ticipants performed well at identifying relevant literature and
representing key ideas in BEL, it was challenging for partici-
pants to select and add mechanistic, nonredundant paths that
were well integrated with the rest of the network, especially
for the larger networks. As seen from the network statistics,
the crowd contributed to the number of nodes and edges but
not necessarily to changing the topology of the network. Sep-
arating the curation and network building portions of the task
could provide several advantages. For example, BEL evidences
could be voted on by the crowd for accuracy and relevance and
refined prior to incorporation into a network. It is difficult to
edit evidences and statements once they are connected into a
network, as all neighboring edges and all individual evidences
supporting the same edge are affected. Moreover, evidences
could be more readily shared across networks where applica-
ble, and evidences that are highly relevant, but not the most
streamlined, direct connection within a given network, could
be omitted from the network but retained for other applica-
tions. Making the challenge tasks more manageable and nar-
rowly defined in this manner could potentially attract more
participants as well as increase the quality and value of the
resulting networks and associated knowledge. Every year, as
more biological experts participate in the challenge and more
literature is published, the networks can be kept up-to-date
with the current understanding of the biology contained in
these networks.

Networks can be used in toxicity and drug discovery
applications. In addition to application as a tool to understand

signaling pathways regulating a disease process, biological
networks can be used to predict active mechanisms driving
measured biological changes based on a knowledgebase of
known regulators of these measured changes. In this study,
we use network scoring to infer upstream mechanisms known
to regulate measured gene changes applied to three datasets.
Networks that contain these mechanisms can then be scored
to infer perturbation of biological processes represented by the
networks in a quantitative manner. In the GSE28464 study,
mutated HRASV12 was expressed in fibroblasts and acti-
vation of senescence and cell cycle was inferred by network
scoring of the transcriptomics data. These results were consis-
tent with experimental expectations of HRASV12, inducing
senescence and cell cycle arrest.3¢ This example illustrates the
ability of the network scoring approach to infer known active
mechanisms using transcriptomics data. Novel mechanisms
predicted to be active from transcriptomics data as a result of a
treatment could also be identified in biological networks using
this approach.

A major advantage of this network-based transcrip-
tomics data scoring approach is the ability to quantitatively
compare treatments and time points within a dataset within
discrete biological processes. In the E-MTAB-3150 dataset,
the effects of smoke, pMRTP, switch to pMRTP, and cessa-
tion were quantified on the biological process and mechanistic
level through network and mechanism scores. Network scor-
ing indicated that smoke impacted lung biology captured by
networks more than pMRTP, switch to pMRTP, or cessation
and with a greater magnitude over time. pMRTP appeared
to impact lung biology less than smoke, based on the lower
pMRTP vs sham network scores and fewer networks scor-
ing significantly. Switching from smoke to pMRTP or ces-
sation showed a decrease in network perturbation compared
with sham group over time. Additionally, scoring mechanisms
within the network gives insights on which mechanisms are
predicted to induce gene expression changes observed in the
dataset. I11 receptor signaling was predicted to impact mac-
rophage activation the most in early time points with smoke
treatment, followed by an increased impact of Irak4 and
Myd88 activity on macrophage activation in later time points
(Fig. 5). I11r1/MyD88 signaling has been shown to contrib-
ute to elastase-induced lung inflammation and emphysema,*’
and although there are no publications implicating Irak4 in
emphysema or COPD, a recent conference poster reported
MyD88/Irak4 promotion of lung fibrosis in a mouse model
of COPD.* This network approach can potentially high-
light novel mechanisms such as Irak4 that drive disease and
increase our understanding of COPD progression. Findings
such as these could lead to a list of potential biomarkers or
novel targets that could then be confirmed in multiple datasets
in the primary disease tissue and narrowed down by aspects
of ease of targetability and low oft-target effects to identify
ideal targets. Additionally, the quantitative aspect to network
scoring can be used in toxicity testing to rank the impact of
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different treatments and study dosing and time effects for a
particular perturbation.

Another advantage of the network approach is the
ability to glean information from a dataset with a low tran-
scriptomics signal. Similar to the E-MTAB-3150 dataset,
GSE52509 contained data from smoke-exposed mouse lungs
for four and six months; however, this dataset had a much
lower transcriptomics signal. This difference in signal could
be attributed to a larger variation in the data, or potentially
the lower dosage and duration per day of smoke exposure
in GSE52509 compared with the E-MTAB-3150 dataset.
In the E-MTAB-3150 study, mice were exposed to smoke
2.4 times longer per day at 1.5 times higher concentration.
Similar types of networks and leading nodes were inferred
in both studies to be activated in processes relevant to CS
exposure, and they matched experimental end points of pig-
mented macrophage and Th17 counts in E-MTAB-3150 and
GSE52509 studies, respectively.

Although the networks focus on lung- and COPD-
relevant context and were scored on lung datasets, these net-
works can apply to other disesases and tissues. The networks
include edges that are based on literature from lung-relevant
cell types such as fibroblasts, smooth muscle, and immune
cells; these cell types are not specific to lung but can apply to
many other tissues and disease contexts. The networks to be
scored should be evaluated based on the context of the data-
set. For the GSE28464 dataset, only the senescence and cell
cycle networks were scored, while the immune networks were
not scored since the experiment was performed in fibroblasts
and not immune cells. Since many of the pathways that the
networks describe such as canonical MAPK and NFKB sig-
naling are conserved across tissues, these networks provide an
important resource that can be built on to include context-
specific mechanisms according to scientists’ needs.

Conclusion

The computable biological language BEL allows for encod-
ing of scientific literature with high granularity and is well
suited for sharing mechanistic biology in a network context.
The NVC takes advantage of the well-defined nature and ease
of use of BEL to allow the scientific community to verify,
enhance, and use these networks. These networks can then
be used for toxicological and drug discovery applications. We
illustrated one way to use these networks through quantitative
network scoring based on transcriptomics data. Mechanisms
were inferred from the data and could be quantitatively com-
pared within a dataset, leading to insights in disease-driving
mechanisms and toxicity assessment.
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