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Chapter 1

Introduction

This thesis is about recent developments around the Malliavin-Stein approach, in particular, I present an
unified and elementary approach for obtaining fourth moment bounds on chaoses. I split this thesis into
two parts: Part I is written as a small survey to present a tranche of the theory and Part II collects all
my papers written during my Ph.D in chronological order.

P1. Normal approximation and almost sure central limit theorem for non-symmetric Rademacher
functionals, Stoch. Process. Appl. 127 (5), 2017, 1622–1636.

P2. Convergence of random oscillatory integrals in the presence of long-range dependence and
application to homogenization, joint work with Atef Lechiheb, Ivan Nourdin and Ezedine
Haouala. To appear in Probab. Math. Stat..

P3. Exchangeable pairs on Wiener chaos, joint work with Ivan Nourdin. submitted.

P4. Fourth moment theorems on the Poisson space in any dimension, joint work with Christian
Döbler and Anna Vidotto. to appear in Electron. J. Probab.

P5. A Peccati-Tudor type theorem for Rademacher chaoses. submitted.

When citing my own papers, I will use the labelings [P1]-[P5].

The preparation of Part I is mainly based on my most recent papers: [P3],[P4],[P5]. My first published
work [P1] that is closely related to [P5] will only be tangentially mentioned, while my second paper
[P2] with A. Lechiheb, I. Nourdin and E. Haouala is isolated from these four articles, so will not be
included in this part, and interested readers can refer to Part II of this thesis.

Abstract

The so-called Malliavin-Stein approach is a tailor-made combination of Paul Malliavin’s stochas-
tic calculus of variation and Charles Stein’s method of probabilistic approximation. One of the
original purposes for the tailors1 was to obtain the rate of convergence for the so-called fourth
moment theorem2 of D. Nualart and G. Peccati [76]. In the sequel, we use the abbreviation
FMT(s) for “fourth moment theorem(s)”.

In the first two sections within this introductory chapter, we will begin with a historical
overview from Nualart and Peccati’s FMT to the birth of the Malliavin-Stein approach. This
Malliavin-Stein approach was originally extensively studied in the Gaussian setting and later
found its discrete version, mainly on the Poisson space and Rademacher setting. We will come

1Tailors = Ivan Nourdin and Giovanni Peccati
2This FMT shall not be confused with Tao-Vu’s fourth moment theorem for Wigner ensembles.

1



2 G. ZHENG

to this in Section 1.3. The last section is devoted to a brief summary of our new contributions,
namely, an unified approach to prove the FMTs on both Gaussian space and Poisson space, as
well as its extension to the Rademacher setting. More precisely, we’ll prove the FMT on the
Poisson space in full generality, thus improving results in [32]; and moreover, we’ll provide a
significant multivariate extension. This corresponds to [P4]. For the Rademacher setting, we
will use our elementary approach to establish a multivariate fourth-moment type result and in
particular give a simple proof of the univariate result proved recently in [30]. This corresponds
to [P5].

The rest of this thesis consists of two more chapters: we will collect relevant basics of Stein’s
method in Chapter 2 and we will present our new contributions in Chapter 3. Although we are
not trying to write a very self-contained survey about the Malliavin-Stein approach3, we provide
enough heuristic ideas as well as pointers to literature to guide readers through this presumably
short journey. We hope that we will fulfill this simple goal in the end.

1.1 Around the FMT on Gaussian Wiener chaos
Let us start with an example from Peccati and Yor’s work [85] : let W be a standard real Brownian
motion, then according to Jeulin’s lemma4,

ˆ 1

0
t−2W2

t dt = +∞ almost surely.

The authors of [85] studied the fluctuation of Fε =
´ 1
ε

W2
t t−2 dt, after normalization, as ε goes to

zero. And they obtained that

F̃ε :=
Fε − E[Fε]
√

VarFε

law
−−−→
ε→0
N(0, 1) .(1.1.1)

The proof is roughly sketched as follows:

• It is easy to compute that σε :=
√

VarFε =
√

4 log(1/ε) + 4ε − 4.

• Using Itô’s formula and stochastic Fubini’s theorem (see e.g. [107]), one can rewrite F̃ε as
follows:

F̃ε =
2
σε

ˆ 1

ε

(ˆ 1

0
t−2I(s≤t)WsdWs

)
dt =

2
σε

ˆ 1

0

(ˆ 1

ε

t−2I(s≤t) dt
)

WsdWs

=
2
σε

ˆ 1

0

(
1

ε ∨ s
− 1

)
Ws dWs =

ˆ 1

0
ϕεs dWs ,

3Interested readers can refer to the tailors’ blue monograph [67] as well as the constantly updated website [61].
4Here is a simple version from the exercise book [18] by Chaumont and Yor: let {Rt, t ∈ (0, 1]} be a jointly

measurable process with values in R+ such that 0 < E[R1] < +∞ and Rt
(d)
= R1 for any t ∈ (0, 1], and let µ be a

σ-finite measure on (0, 1]. Then the following equivalence holds true:
´

(0,1] Rt µ(dt) < +∞ almost surely if and only
if
´

(0,1] µ(dt) < +∞.
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with ϕεs := 2σ−1
ε

[
(ε ∨ s)−1 − 1

]
Ws, s ∈ [0, 1]. It is also clear that Mε

t :=
´ t

0 ϕ
ε
s dWs, t ∈ R+,

is a square-integrable continuous martingale such that its quadratic variation (at infinity)
〈Mε〉∞ = +∞ almost surely5.

• According to the theorem of Dambis and Dubins-Schwarz (see e.g. [104, Chapter V]),
there exists a standard real Brownian motion βε such that Mε

t = βε
〈Mε〉t

, t ∈ R+. As βε1 is a
standard Gaussian random variable, in order to show the asymptotic normality of F̃ε = Mε

1,
it is enough to prove 〈Mε〉1 is close to 1 in L2(P), in view of the Burkholder-Davis-Gundy
inequality (see e.g. [104, Chapter IV]).

• It is easy to obtain ‖〈Mε〉1 − 1‖L2(P) = O(1/σε), as ε ↓ 0. This finishes our sketchy proof.

For more details, one can refer to the original paper [85] as well as the recent survey [79].

Later, Nualart and Peccati studied another Gaussian functional

FH,ε :=
ˆ 1

ε

(WH
t )2

t1+2H dt , (0 < ε < 1)(1.1.2)

where WH is a fractional Brownian motion with Hurst parameter H ∈ (0, 1). The Fε above
corresponds to the case where H = 1/2, that is, when WH is a standard Brownian motion.
According to Jeulin’s lemma, FH,0 = +∞ a.s., so it is natural to see whether the Gaussian
fluctuation of the renormalized FH,ε occurs for general H. Starting from this motivating example,
Nualart and Peccati published a very surprising result [76] in 2005, which is known as the “fourth
moment theorem” nowadays.

Theorem 1.1.1 (D. Nualart and G. Peccati, 2005). Fix an integer p ≥ 2. Let

Fn ≡ IW
p ( fn) := p!

ˆ 1

0

ˆ t1

0
· · ·

ˆ tp−1

0
fn(t1, . . . , tp) dWtp · · · dWt1(1.1.3)

be a sequence of pth-order multiple Wiener-Itô integrals. Assume that the kernel fn ∈ L2([0, 1]p, dx
)

is symmetric almost everywhere such that p!‖ fn‖
2
L2([0,1]p) → 1, as n→ +∞. Then the following

statements are equivalent:

(i) Fn converges in law to a standard Gaussian, as n→ +∞.

(ii) E
[
F4

n
]

converges to 3, as n→ +∞.

(iii) For each r ∈ {1, . . . , p − 1}, ‖ fn ⊗r fn‖L2([0,1]2p−2r) converges to 0, as n → +∞, where the
r-contraction ⊗r is defined as follows:(

f ⊗r g
)
(x1, . . . , xp+q−2r)

=

ˆ
[0,1]r

f (x1, . . . , xp−r, s1, . . . , sr)g(xp−r+1, . . . , xp+q−2r, s1, . . . , sr)ds1 . . . dsr ,(1.1.4)

for f ∈ L2([0, 1]p, dx), g ∈ L2([0, 1]q, dx) and6 0 ≤ r ≤ p ∧ q, see also (1.2.3).

5One can first compute directly that σ2
ε〈M

ε〉∞ = 4
´ ∞

0
[
(ε ∨ s)−1 − 1

]2W2
s ds ≥

´ ∞
2 W2

s s−2 ds, while applying
Jeulin’s lemma to the inverse-time Brownian motion, we get

´ ∞
1 W2

s s−2 ds = +∞ a.s., so we can conclude that
〈Mε〉∞ = +∞ almost surely.

6Note f ⊗0 g = f ⊗ g is the usual tensor product of two functions.
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The name “fourth moment theorem” comes from the equivalence between (i) and (ii). The
implication “(ii)⇒ (i)” is particularly surprising, as it simplifies to a great extent the usual way
of proving the central limit theorem through the so-called method of moments and cumulants7.
The original proof of FMT follows essentially the same arguments as for (1.1.1), that is, one sees
Fn as the value of some continuous martingale M(n) at t = 1 and applies the random-time change:

M(n)
t := p!

ˆ t

0

(ˆ t1

0
· · ·

ˆ tp−1

0
fn(t1, . . . , tp) dWtp · · · dWt2

)
dWt1 = β(n)

〈M(n)〉t
,

where β(n) is some standard Brownian motion and 〈M(n)〉• denotes the quadratic variation process
associated to M(n). At a handwaving level, if 〈M(n)〉1 is close to 1 in L2(P), then by Burkholder-
Davis-Gundy inequality, Fn = M(n)

1 is close to β(n)
1 , which is standard Gaussian. Computing

E
[
〈M(n)〉21

]
involves an extensive use of the product formula (1.2.9) for multiple Wiener-Itô

integrals and this is where the contractions in (iii) come into the play, while after a lengthy com-
putation of the fourth moment E

[
F4

n
]

using the product formula (1.2.9), one gets the equivalence
between (ii) and (iii). Making these arguments rigorous is essentially what was done in the
original article.

By the isometry between any two real separable Hilbert spaces, the above FMT holds inside
a general Gaussian Wiener chaos associated to an isonormal process, see [76]. Back to the
Gaussian functional (1.1.2), one can treat FH,ε − E[FH,ε] as an element in the second Gaussian
Wiener chaos; and according to the FMT, checking the Gaussian fluctuation reduces to computing
the related contraction-norms, see [76, Section 3.1]. This application is just a tip of the iceberg.
This univariate FMT together with its multivariate extension has produced a very efficient strategy
for proving Gaussian limits on the Wiener space.

Let us first recall the multivariate FMT [84], established by Peccati and Tudor.

Theorem 1.1.2 (G. Peccati and C. A. Tudor, 2005). Fix integers d ≥ 2 and 1 ≤ q1 ≤ . . . ≤ qd. Let
C =

(
Ci, j, 1 ≤ i, j ≤ d

)
be a d× d symmetric nonnegative definite matrix and fn,i ∈ L2([0, 1]qi , dx)

be symmetric for any n ≥ 1 and every i ∈ [d] := {1, . . . , d}. Assume that the d-dimensional
random vectors

F(n) =
(
F(n)

1 , . . . , F(n)
d

)T :=
(
IW
q1

( fn,1), . . . , IW
qd

( fn,d)
)T

satisfy
lim

n→+∞
E
[
F(n)

i F(n)
j
]

= Ci, j for every i, j ∈ [d].

Then, as n→ +∞, the following assertions are equivalent:

(1) The vector F(n) converges in law to a d-dimensional Gaussian vector N(0,C);

(2) for every i ∈ [d], F(n)
i converges in law to a Gaussian random variable N

(
0,Ci,i

)
;

(3) for every i ∈ [d], E
[
(F(n)

i )4]→ 3C2
i,i;

(4) for every i ∈ [d] and each 1 ≤ r ≤ qi − 1, ‖ fn,i ⊗r fn,i‖L2([0,1]2qi−2r) → 0.
7See e.g. Section 30 in Billingsley’s book [13].
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In fact, soon after the appearance of [76], Peccati and Tudor attempted to obtain the FMT for a
sequence of random variables belonging to finitely many chaoses. Surprisingly, they obtained the
above more interesting result: for random vectors with components in the fixed Gaussian Wiener
chaos, the joint convergence to Gaussian (1) is equivalent to the component-wise convergence
(2), and the latter is reduced to verifying (3) or (4) in view of Nualart and Peccati’s univariate
FMT. This observation provides practitioners with an alternative to the semimartingale approach
(see e.g. [42]) to prove the central limit theorems on the Wiener space; roughly speaking,
one can first decompose the random variable into Gaussian Wiener chaoses and then prove
central convergence on each chaos. See, for example, [2, 3, 25] for applications to zeros of
random polynomials; [54, 55, 56, 81, 97] for applications to statistical physics. Again, we invite
interested readers to visit the website [61] for many more works around the FMTs.

Besides Peccati-Tudor’s theorem, there have been several important inputs around the FMTs,
notably

(i) Nualart and Ortiz-Latorre [75] gave another proof of FMT based on Malliavin calculus, which
paved the road for Stein to meet Malliavin [66], see Section 1.2;

(ii) Ledoux took another insightful point-of-view for the FMT in [51] and he treated the Gaussian
Wiener chaos as an eigenspace of a symmetric self-adjoint Markov diffusion operator, and then
he employed Gamma calculus to derive the FMT in this setting. Such a direction has been
further enriched in the papers [4, 5, 17]. Originally Ledoux’s spectral viewpoint was taken in the
diffusive setting and unexpectedly, after slight adjustment to the discrete case, it turns out to be a
crucial ingredient for the obtention of the FMTs on the Poisson space and in the Rademacher
setting, see Section 1.4.

1.2 How Stein meets Malliavin?
This section tells the story of how Malliavin calculus was first combined with Stein’s method. As
mentioned before, we will first sketch Nualart and Ortiz-Latorre’s methodological breakthrough,
namely, linking the Malliavin operators to the study of limit theorems on the Wiener space. To
illustrate better the ideas and also for the sake of later reference, let us now introduce some basics
of Malliavin calculus and define the central object in this thesis, Wiener chaos. Readers, who
have already been familiar with Malliavin calculus, could jump to Section 1.2.1.

The concept of chaos that we consider dates back to Norbert Wiener’s 1938 paper [108], in
which Wiener first introduced the notion of multiple Wiener integral calling it polynomial chaos.
In 1947, Cameron and Martin [16] obtained the orthogonal development of nonlinear Brownian
functionals in terms of Hermite polynomials8, which motivated Itô’s 1951 work [40].

In 1951, Itô modified the definition of multiple Wiener integral and made it more convenient
for analysis in the point that the multiple Wiener integrals of different orders are orthogonal to
each other, while Wiener’s polynomial chaos does not possess such a property. Later in 1956, Itô

8Hermite polynomials are orthogonal polynomials with respect to the Gaussian measure and it is one of the
central ingredients in the Gaussian analysis. The first few Hermite polynomials are given by H0(x) = 1, H1(x) = x,
H2(x) = x2−1, and recursively, Hp+1(x) := xHp(x)− pHp−1(x). Alternatively, one can define them via the Rodrigues’
formula Hp(x) = (−1)p exp(x2/2) dp

dxp exp(−x2/2), p ∈ N. See e.g. Section 1.4 in [67].
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generalized ideas from his previous paper and defined the multiple Wiener integral based on an
independently scattered random measure. Note that the class of independently scattered random
measures includes Gaussian and Poisson random measures. In the following section, we will
define the Gaussian and Poisson Wiener chaoses in an unified manner.

From now on, we fix a σ-finite measure space
(
Z,Z , µ

)
such that {x} ∈ Z with µ({x}) = 0

for any x ∈ Z, that is, µ is nonatomic. And we define Zµ := {B ∈ Z : µ(B) < ∞}. All random
objects in this thesis are defined on a common probability space

(
Ω,F ,P

)
.

Definition 1.2.1. (i) W =
{
W(A), A ∈ Zµ

}
is said to be a Gaussian random measure9 on

(
Z,Z , µ

)
if W(A) ∼ N

(
0, µ(A)

)
for each A ∈ Zµ and for each finite sequence A1, . . . , Am ∈ Zµ of pairwise

disjoint sets, the random variables W(A1), . . . ,W(Am) are independent.
(ii) η =

{
η(B), B ∈ Z

}
is said to be a Poisson random measure on

(
Z,Z , µ

)
if η(B) ∼

Poi
(
µ(B)

)
for each10 B ∈ Z and for each finite sequence B1, . . . , Bm ∈ Z of pairwise disjoint

sets, the random variables η(B1), . . . , η(Bm) are independent.
(iii) For B ∈ Zµ, we also define η̂(B) := η(B) − µ(B) and denote by η̂ =

{̂
η(B) : B ∈ Zµ

}
the

compensated Poisson random measure associated with η.

The measure µ, appearing in Definition 1.2.1, is called the intensity measure. The introduction
of Gaussian and Poisson random measures can be treated as the randomization of the underlying
intensity measure space

(
Z,Z , µ

)
, and they constitute the basic building blocks of modern

probability theory.

Remark 1.2.1. In fact, one can define the Poisson random measure on a more general measure
space. More precisely, if ν is a so-called s-finite measure11 on

(
Z,Z

)
, then there exists a

probability space supporting random elements a1, a2 . . . inZ and κ in N0 ∪ {+∞} such that

η :=
κ∑

n=1

δan(1.2.1)

is a Poisson random measure with intensity ν, see e.g. [49, Corollary 3.7].
Back to our particular setting, there exists a partition {B j, j ∈ N} of Z such that µ j := µ|B j ,

the restriction of µ on B j, is a nonzero and finite measure for each j ∈ N. Then on each B j, one
can construct, by extending the probability space if necessary, an i.i.d. sequence {X1, j, X2, j, . . .}
of random variables with values in B j and X1, j ∼ µ(B j)−1µ j, while one can obtain similarly
an independent Poisson random variable κ j with parameter µ(B j), so that η j :=

∑κ j

n=1 δXn, j is a
Poisson random measure on B j with intensity µ j. Therefore, an independent superposition of
η j, j ∈ N gives us the desired Poisson random measure η on the whole space, which has the
representation as in (1.2.1). Note these discussions also justify the existence of Poisson random
measures.

In what follows, we will define12 Gaussian and Poisson Wiener chaos in the spirit of Itô’s
work. First let us introduce some notation.

9The existence of W is guaranteed by Kolmogorov’s theorem.
10We follow the convention that Poi(+∞) = +∞, which makes sense in view of the Laplace transform.
11i.e. ν is a countable sum of finite measures. In particular, if ν is σ-finite, then it is automatically s-finite.
12In fact, one could define Poisson Wiener chaos on the s-finite intensity measure space, see [49, Chapter 12].

We decide to consider only the σ-finite nonatomic case, mainly for the unification as well as the statement of our
forthcoming transfer principle (Proposition 1.4.1), while losing such a slight generality makes no big difference.
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Notation A. For q ∈ N0 := {0, 1, 2, . . . }, L2(µq) is an abbreviation for L2(Zq,Z q, µq) with the
convention L2(µ0) = R. For p ∈ N := {1, 2, . . . }, we denote by Ep the collection of simple
functions of the form

f (z1, . . . , zp) =

m∑
i1,...,ip=1

βi1,...,ipIAi1×···×Aip

(
z1, . . . , zp

)
(1.2.2)

where m ∈ N, A1, . . . , Am ∈ Zµ are pairwise disjoint, and the coefficients βi1,...,ip vanish whenever
any two of the indices i1, . . . , ip are equal. It is well known that Ep is dense in L2(µp), see [74,
page 10] for a proof. We denote by Sp the permutation group over [p] := {1, . . . , p}, and given
f ∈ L2(µp), we write f̃ for the canonical symmetrization of f , that is,

f̃ (z1, . . . , zp) =
1
p!

∑
σ∈Sp

f
(
zσ(1), . . . , zσ(p)

)
.

We write L2
s(µ

p) for the set of functions f ∈ L2(µp) satisfying f = f̃ , µ-almost everywhere.
By the Cauchy-Schwarz inequality, it holds that ‖ f̃ ‖L2(µp) ≤ ‖ f ‖L2(µp) for any f ∈ L2(µp). To
ease the notation, we just write ‖ · ‖ for the Euclidean norm or Hilbert-space norm. Lastly,
we define the contractions similarly as in (1.1.4): given f ∈ L2(µp) and g ∈ L2(µq) (p, q ∈ N),
f ⊗r g ∈ L2(µp+q−2r) is defined by(

f ⊗r g
)
(z1, . . . , zp+q−2r)

=

ˆ
Zr

f (z1, . . . , zp−r, s1, . . . , sr)g(zp−r+1, . . . , zp+q−2r, s1, . . . , sr)µ(ds1) . . . µ(dsr) ,(1.2.3)

for 0 ≤ r ≤ p ∧ q, with the convention f ⊗0 g = f ⊗ g. We write f ⊗̃rg for the canonical
symmetrization of f ⊗r g.

Now let X ∈
{
W, η̂

}
, p ∈ N and f ∈ Ep have the form (1.2.2), we define

IXp ( f ) =

m∑
i1,...,ip=1

βi1,...,ip

p∏
j=1

X(Ai j) ,(1.2.4)

with the convention that IX0 (c) = c if c ∈ L2(µ0).
Note by definition, IXp ( f ) = IXp

(
f̃
)

and the definition of IXp ( f ) does not depend on the particular
representation of f . And, it is easy to verify that for any f ∈ Ep and g ∈ Eq, (p, q ∈ N0)

E
[
IXp ( f )IXq (g)

]
= I{p=q}p!

〈
f̃ , g̃

〉
,(1.2.5)

which, in particular, implies the isometry relation when p = q. Such a relation enables the
extension of IXp to the whole domain L2(µp) via standard continuity argument, thanks also to the
fact that Ep is dense in L2(µp). As a consequence, the orthogonality relation (1.2.5) holds true
for general f ∈ L2(µp) and g ∈ L2(µq).
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The above discussions give arise to the following definition.

Definition 1.2.2. (i) For f ∈ L2(µp), p ∈ N, we define IW
p ( f ) to be the pth order multiple Wiener-

Itô integral of f with respect to W. We write CW
p =

{
IW

p ( f ) : f ∈ L2(µp)
}
, and call it the pth

Gaussian Wiener chaos. As a convention, CW
0 = R.

(ii) For f ∈ L2(µp), p ∈ N, (with slight abuse of notation) we define Iηp( f ) ≡ I η̂p( f ) to be the
pth order multiple Wiener-Itô integral of f with respect to η̂. We write Cηp =

{
Iηp( f ) : f ∈ L2(µp)

}
,

and call it the pth Poisson Wiener chaos. As a convention, Cη0 = R.

One reason for the importance of Wiener chaos is the chaotic representation property enjoyed
by W and η:

L2(Ω, σ{W},P) =
⊕
p≥0

CW
p and L2(Ω, σ{η},P) =

⊕
q≥0

Cηq ,(1.2.6)

where ⊕ indicates an orthogonal sum in the Hilbert space L2(Ω,P). One can also read (1.2.6) as
follows: every F ∈ L2(Ω, σ{X},P), with X ∈ {W, η}, admits a unique chaotic decomposition

F = E[F] +
∑
p≥1

IXp ( fp) in L2(P), with fp ∈ L2
s(µ

p) for each p ∈ N.(1.2.7)

For the proofs, one can refer to [74, Theorem 1.1.2] and [49, Theorem 18.10].

From the above chaos decomposition, we can see clearly the correspondence between the
L2(P)-space and the symmetric Boson-Fock space

R ⊕
⊕
p≥1

L2
s(µ

p)

with the identification

L2
s(µ

p) ' pth symmetric tensor product of L2(µ) .

Then, following Nualart and Vives’ approach [77], we can define Malliavin operators D, δ, L on
Gaussian and Poisson spaces simultaneously. One can also refer to D. Nualart’s monograph [74]
and G. Last’s survey [47] for more details.

Malliavin operators. In this paragraph, X stands for W or η. Denote by D the set of F ∈
L2(Ω, σ{X},P) as in (1.2.7) verifying

∑
p≥1 pp!‖ fp‖

2 < +∞, and for such a F ∈ D, we define the
Malliavin derivative DF of F as a random element in L2(µ) by

DzF =
∑
p≥1

pIXp−1
(
fp(z, ·)

)
, z ∈ Z .

Then it is easy to check by (1.2.5) that E
[
‖DF‖2

]
=

∑
p≥1 pp!‖ fp‖

2 is finite, so we call D the
domain for the Malliavin derivative D.
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Now we define the Skorohod integral δ via the following duality relation, also known as the
integration by parts formula:

E
[
〈DF, u〉

]
= E

[
Fδ(u)

]
, for any F ∈ D and u ∈ dom(δ),(1.2.8)

where dom(δ) is the set of L2(µ)-valued random variables u satisfying that E[‖u‖2] < +∞ and
such that there exists a finite constant cu only depending on u such that |E[〈DF, u〉]| ≤ cu

√
E[F2]

for every F ∈ D. In particular, one can check that given

u = (uz, z ∈ Z) : uz =
∑
p≥1

IXp−1( fp(z, ·)) with fp ∈ L2(µp), fp(z, ·) ∈ L2
s(µ

p−1), ∀p ∈ N, ∀z ∈ Z,

then u ∈ dom(δ) if and only if
∑

p≥1 p!‖ f̃p‖
2 < +∞, and in this case, δ(u) =

∑
p≥1 IXp ( f̃p).

The operator L, known as the infinitesimal generator of the Ornstein-Uhlenbeck semigroup, is
defined on the chaos expansion (1.2.6) as

L =
∑
p≥0

−pJp ,where Jp denotes the projection operator onto CXp.

Its domain dom(L) consists of random variables F ∈ L2(Ω, σ{X},P) satisfying
∑

p≥1 p2E
[
Jp(F)2] <

+∞. One can check that F ∈ dom(L) if and only if F ∈ D and DF ∈ dom(δ), and in this case L =

−δD. We also define the pseudo-inverse L−1 of the operator L as follows: for F ∈ L2(Ω, σ{X},P)
with zero mean, L−1F :=

∑
p≥1 −p−1Jp(F). Note that LL−1(F − E[F]) = F − E[F] for any

F ∈ L2(Ω, σ{X},P), which explains the name of L−1.

Although the Gaussian space and the Poisson space share the same chaotic structure, their
natures are essentially different by virtue of their underlying randomness. Notably,

(1) on the Gaussian space, the Malliavin derivative verifies the following chain rule: for φ : R→
R differentiable and Lipschitz, F ∈ D, we have φ(F) ∈ D and

Dφ(F) = φ′(F)DF ;

(2) finitely many Gaussian Wiener chaoses are stable under multiplication: if f ∈ L2
s(µ

p),
g ∈ L2

s(µ
q) (p, q ∈ N), then13

IW
p ( f )IW

q (g) =

p∧q∑
r=0

r!
(
p
r

)(
q
r

)
IW

p+q−2r
(
f ⊗r g

)
.(1.2.9)

As a consequence, any random variable in a Gaussian Wiener chaos admit finite moments of all
order, and all Lr(P)-norms, r > 1 are equivalent14. Note these are also immediate consequences
of Nelson’s hypercontractivity property for Ornstein-Uhlenbeck semigroups in the Gaussian
setting, see e.g. [74, Section 1.4.3]. Due to the inherent discreteness, the above neat chain rule
and product formula do not hold on the Poisson space, which partially contributes to the difficulty
of obtaining FMTs therein.

With the above preliminary knowledge, we are in a position to discuss about Nualart and
Ortiz-Latorre’s work [75].

13For a nice heuristic proof using the concept of diagonal measure, see Theorem 9 in [62]. See also footnote 24
for an analogous proof in the Rademacher setting.

14These two facts can be proved by induction and iteratively using (1.2.9)
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1.2.1 A methodological breakthrough by Nualart and Ortiz-Latorre
In 2008, Nualart and Ortiz-Latorre provided in [75] another equivalent condition for the FMT.
More importantly, this paper contains a methodological breakthrough: the authors used Malliavin
calculus tools, in particular the integration by parts formula on the Wiener space.

Theorem 1.2.1 (D. Nualart and S. Ortiz-Latorre, 2008). Let Fn be given as in (1.1.3) and have
unit variance, then Fn converges in law to N(0, 1) if and only if

(iv) ‖DFn‖
2 converges in L2(P) to p, as n→ +∞.

Note ‖DFn‖
2 is somehow a reminiscence of the quadratic variation 〈M(n)〉1 from the random-time

change, see page 4. Here we will just sketch the argument for the “if-part”:

By assumption, Fn = p−1δDFn is bounded in L2(P), hence admitting a subsequence
Fnk that converges in law to some random variable Z. It follows that E

[
eitFnk Fnk

]
=

p−1E
[
eitFnkδDFnk

]
= p−1E

[
〈DeitFnk ,DFnk〉

]
= p−1E

[
iteitFnk 〈DFnk ,DFnk〉

]
. If (iv) holds,

then we have E
[
eitZZ

]
= E

[
iteitZ]. Denote by φZ the characteristic function of Z, then

the previous equality suggests that φ′Z(t) = −tφZ(t), subject to the boundary condition
φZ(0) = 1. Solving this ODE gives us Z ∼ N(0, 1). This argument can be applied to any
subsequence of (Fn), hence the original sequence indeed converges in law to N(0, 1).

For the “only-if” part, one can first rewrite E
[(
‖DFn‖

2 − p
)2]

= E
[
‖DFn‖

4] − p2, which can be
further expressed in terms of contractions, using the product formula (1.2.9). By condition (iii)
in Nualart-Peccati’s FMT, these contractions vanish asymptotically so that one can obtain the
desired L2(P)-convergence.

Remark 1.2.2. In 2009, Nourdin and Peccati [65] used exclusively results from Malliavin
calculus to derive non-central extensions of the FMT. One of their main results states that for any
sequence { fk, k ≥ 1} ⊂ L2

s(µ
p) (p ≥ 2 even) verifying limk→+∞ p!‖ fk‖

2 = 2ν > 0, the following
statements are equivalent, as k → +∞:

(a) IW
p ( fk) converges in law to F(ν), centered Gamma distribution15 with parameter ν;

(b) E
[
IW

p ( fk)4] − 12E
[
IW

p ( fk)3] −→ 12ν2 − 48ν;

(c) ‖DIW
p ( fk)‖2 − 2pIW

p ( fk) converges in L2(P) to 2pv.

This work exhibits again the power of Malliavin calculus.

A digression. The readers may have wondered “why the fourth moment is so special for the
asymptotic normality inside a fixed Gaussian Wiener chaos”. One immediate answer could be
Theorem 1.2.1 and the following consequence of the product formula (1.2.9): for F ∈ CW

q ,

Var
(
q−1‖DF‖2

)
≤

q − 1
3q

(
E[F4] − 3E[F2]2) ≤ (q − 1)Var

(
q−1‖DF‖2

)
,(1.2.10)

see equation (5.2.7) in [67].

15i.e. F(v) = 2γν/2 − ν, where γν/2 has a Gamma law with parameter ν/2.
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One can also answer this question using the classic method of moments and cumulants,
as Nourdin explained in the short note [63]: for a normalized sequence {Fn, n ≥ 1} ⊂ CW

p
such that E[F4

n]→ 3, one can prove, with some soft combinatorial arguments and the product
formula, that every moment of Fn converges to the corresponding Gaussian moment. Here,
let us provide a slightly different argument: as every monomial is a finite linear combination
of Hermite polynomials16, it suffices instead to show that E

[
Hk(Fn)

]
→ E

[
Hk(Z)

]
= 0 for17

every k ∈ N, Z ∼ N(0, 1). Note the expression E
[
Hk(X)

]
bears the particular name “kth normal

moment of X” and is closely related to the χ2-distance of Pearson, see [14, Proposition 8.2].
The first few normal moments of Fn are E[H1(Fn)] = E[Fn] = 0, E[H2(Fn)] = E[F2

n] − 1 = 0,
E[H4(Fn)] = E[F4

n − 6F2
n + 3] = E[F4

n] − 3; for a generic k ∈ N, we write E[Hk+1(Fn)] =

E[FnHk(Fn)] − E[kHk−1(Fn)] using the recursive relation of Hermite polynomials, and then we
apply the integration by parts formula and chain rule as follows:

E
[
FnHk(Fn)

]
= p−1E

[
δDFnHk(Fn)

]
= p−1E

[
〈DFn,DHk(Fn)〉

]
= E

[
p−1‖DFn‖

2kHk−1(Fn)
]
,

thus,∣∣∣E[Hk+1(Fn)]
∣∣∣ =

∣∣∣E[(p−1‖DFn‖
2 − 1)kHk−1(Fn)]

∣∣∣ ≤ k
√

Var
(
p−1‖DFn‖

2)√E[Hk−1(Fn)2] ;

see also (1.2.11) for similar computations. The above inequality, together with (1.2.10), implies
that the fourth moment controls other moments asymptotically.

Lastly, let us mention Rosiński’s intuitive explanation [95] based on the independence on
Wiener space. Let us first recall the seminal result of Üstünel and Zakai [106] that provides the
necessary and sufficient condition for independence of two multiple Wiener-Itô integrals with
respect to the same Gaussian random measure.

Theorem 1.2.2 (A.S. Üstünel and M. Zakai, 1989). Fix p, q ∈ N and f ∈ L2
s(µ

p), g ∈ L2
s(µ

q), we
set F = IW

p ( f ), G = IW
q (g). Then F,G are independent if and only if f ⊗1 g = 0.

Later, Rosiński and Samorodnitsky [96] made another interesting observation.

Proposition 1.2.1 (J. Rosiński and G. Samorodnitsky, 1999). Fix p, q ∈ N, then Cov(F2,G2) ≥ 0
for any F ∈ CW

p , G ∈ CW
q , with equality only when F and G are independent.

Here comes Rosiński’s nice heuristic arguments: suppose that F ∈ CW
p satisfies E[F2] = 1

and18 E[F4] = 3, let G be an independent copy of F, then Cov
(
(F + G)2, (F −G)2) = 2E[F4] −

6E[F2]2 = 0, so it follows from Proposition 1.2.1 that F + G is independent of F −G. Thus, by
Bernstein’s theorem, F ∼ N(0, 1). In the statement of the FMT, E[F4

n] = 3 only asymptotically,
it is natural to expect Fn → N(0, 1). Such heuristics have led to several papers on asymptotic
independence on the Wiener space [72, 64], with applications to time series analysis [6].

16By definition (see footnote 8), Hermite polynomial is a finite linear combination of monomials, then inductively,
one can easily verify that every monomial can be expressed as a finite linear combination of Hermite polynomials.

17Like to crack a walnut with a sledgehammer: Z is equal in law to W(h) for some unit vector h ∈ L2(µ), and
Cameron-Martin’s result [16] suggests that Hk(W(h)) = IW

k (h⊗k), which is an element of kth Gaussian Wiener chaos,
and this explains E[Hk(Z)] = 0 for every k ∈ N.

18In fact, if p ≥ 2, E[F4] > 3, see e.g. [76, Corollary 2] or our Chapter 3. So we view E[F4] = 3 as an asymptotic
relation.
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The above digression around the importance of the fourth moment may also trigger one’s desire
of quantifying the CLT on Wiener chaos in terms of the fourth moment. It is known, for
example from [67, Proposition C.3.2], that a sequence of random variables Xn converges in law
to the standard Gaussian N if and only if dKol(Xn,N)→ 0, where dKol denotes the Kolmogorov
distance19 appearing in the celebrated Berry-Esséen bound. So is it true that

(#) dKol
(
F,N(0,Var(F)

)
≤ Constant ×

√
E[F4] − 3E[F2]2 for any F ∈ CW

p ?

The answer is indeed positive and will be the highlight of the story told in the next section. It
is also worth pointing out the paper [5] by Azmoodeh, Malicet, Mijoule and Poly, who provided
a generalization of FMT by establishing the equivalence between asymptotic normality and
convergence of even moments on the Gaussian Wiener chaos; see also (1.4.1).

1.2.2 Nourdin-Peccati analysis

Motivated by the question (#) on the previous section, Nourdin and Peccati took their investigation
in search of a quantitative FMT. Their investigation closed with the somehow unexpected birth
of a new research line, the so-called Malliavin-Stein approach20. This approach is a tailor-made
combination of Paul Malliavin’s differential calculus and Charles Stein’s method of distributional
approximation.

Malliavin’s original purpose of initiating his differential calculus was to provide a probabilistic
proof for Hörmander’s famous “sum of squares” theorem [53]. Since then, Malliavin’s theory
has been further developed by Malliavin himself, Stroock, Bismut, Watanabe and others. The
integration by parts formula lies at the center of this theory. We refer the interested readers to
Nualart’s monograph [74] for the theory as well as many nice applications. On the other side,
Stein’s method began with Charles Stein’s approach in the sixties to prove Wald-Wolfowitz
and Hoeffding’s combinatorial central limit theorems; see [24, Section 2.1] for more historical
account. Stein’s method of normal approximation first appeared in the groundbreaking 1972
paper [103], one of whose fundamental ingredients is the so-called Stein’s lemma (see Lemma
2.1.1), which is nothing else but a particular case of the integration by parts formula (1.2.8).
Since 1972, Stein’s method has been ramified and developed by Stein himself and many other
mathematicians, for example, A. Barbour, L.H.Y. Chen, P. Diaconis, F. Götze as well as their
collaborators and students. We refer the interested readers to Stein’s monograph [101] and the
more recent book [19] by Chen, Goldstein and Shao, as well as two volumes of Barbour and
Chen [11, 12] and Ross’ survey [105].

Noticing the existence of integration by parts formulae on both sides of Malliavin calculus
and Stein’s method, one may conjecture some link between these two fields. I. Nourdin and
G. Peccati’s investigation shed some new light onto these two fields, by “steining”21 Nualart-
Peccati’s FMT.

19dKol(X,N) := sup{|P(X ≤ t) − P(N ≤ t)| : t ∈ R}, see also Section 2.1.1.
20As a side note, it is in Airault, Malliavin and Viens’ paper [1] that the term “Nourdin-Peccati analysis” was first

coined. This explains our title of this subsection.
21This is a nice “abuse” of language, following Goldstein, Nourdin and Peccati’s paper [37].
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Let us briefly illustrate how Stein’s method fits into Malliavin calculus and produces the bound
in (#):

(i) Stein’s heuristic suggests that a real random variable W is close in law to a standard
Gaussian N if and only if E[ f ′(W)] ≈ E[W f (W)] for sufficiently nice functions f . Then
Stein built his equation f ′(x)− x f (x) = h(x)−E[h(N)] and solved f := fh for the unknown
h. For example, writing fz = fh when h(x) = I{x≤z}, one can obtain, after careful analysis,
some uniform control of Stein’s solution fz, namely, 0 < fz(x) ≤

√
π/2 and | f ′z (x)| ≤ 2, for

every x ∈ R, see e.g. Lemma 2.3 in [19].

(ii) If one replaces the dummy variable x by W and takes expectations at both sides of Stein’s
equation, it follows from point (i) that dKol(W,N) ≤ sup

{
|E[ f ′(W) −W f (W)]| : ‖ f ‖∞ ≤√

π/2 , ‖ f ′‖∞ ≤ 2
}
.

(iii) Now let us consider a normalized random variable F ∈ CW
q (q ∈ N), then by the integration

by parts formula (1.2.8) and chain rule, one gets for f Lipschitz and differentiable,

E[ f (F)F] = q−1E
[
f (F)δDF

]
= q−1E

[
〈D f (F),DF〉

]
= q−1E

[
‖DF‖2 f ′(F)

]
.(1.2.11)

It follows from point (ii) that dKol(F,N) ≤ 2E
[
|q−1‖DF‖2 − 1|

]
≤ 2

√
Var

(
q−1‖DF‖2), so

the bound in (#) is implied by (1.2.10). Moreover, one can also get the fourth moment
bound in other distance, like the total-variation, Wasserstein and Fortet-Mourier distances.
These bounds are commonly called the Nourdin-Peccati bounds nowadays. Following
the same computation as in (1.2.11), we can obtain for any normalized F ∈ D that
dKol(F,N) ≤ 2

√
Var

(
〈DF,−DL−1F〉

)
.

The above illustration basically tells one of the core ideas in the Malliavin-Stein approach, for
more general results and a systematic look, one can refer to Nourdin-Peccati’s original article
[66] and their monograph [67]. This active line of research has been growing quite fast and led
to many interesting results, here we just name two aspects that are related to this thesis:

(α) Nourdin, Peccati and Reinert [71] established the universality of Gaussian Wiener chaos
using additionally the Lindeberg invariance principle from [59]. This motivated several
works on the universality of multilinear homogeneous sums involving general independent
random variables, see e.g. [7, 86, 68];

(β) Since the two papers [70, 82], the Malliavin-Stein approach has been successfully extended
to the discrete settings, that is, Stein’s method is coupled with suitable versions of discrete
Malliavin calculus in order to yield quantitative limit theorems for Poisson functionals and
Rademacher functionals over a Poisson random measure and a sequence of independent
Bernoulli random variables, respectively. This discrete Malliavin-Stein approach has
yielded nice applications to random graphs [44, 45, 46], and stochastic geometry [99, 91,
48], to name a few.
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1.3 Discrete Malliavin-Stein approach
Let us begin this section by first addressing more on the above point (α) on the previous page.
First, let us explain the term “multilinear homogeneous sums” (homogeneous sums in the sequel),
after introducing some notation.

1.3.1 Homogeneous sums and Rademacher chaos
Notation B. We write H = `2(N), equipped with usual `2-norm ‖ · ‖ and for p ∈ N, H⊗p means
the p-th tensor product of H and H�p its symmetric subspace. We define22 H

�p
0 :=

{
f ∈ H�p :

f |4c
p = 0

}
with 4p =

{
(i1, . . . , ip) ∈ Np : ik , i j for different k, j

}
.

Let us introduce an important notion concerning the homogeneous sums: for a given kernel
f ∈ H�d

0 , we define the maximal influenceM( f ) of f as follows:

M( f ) := sup
k∈N

∑
i1,...,id−1∈N

f (i1, . . . , id−1, k)2 for d ≥ 2 and M( f ) := sup
k∈N

f (k)2 for d = 1.(1.3.1)

This notion is adapted from the boolean analysis (see e.g. [78]), in which the class of low-
influence functions is often what is interesting or necessary in practice. It is also closely related
to the aforementioned Lindeberg invariance principle.

Lastly, we introduce the star-type contractions, similar to the contractions in (1.2.3): for
p, q ∈ N, 0 ≤ r ≤ ` ≤ p ∧ q, the (r, `)-star contractions f ?r

` g of (a) f ∈ L2(µp), g ∈ L2(µq); (b)
f ∈ H⊗p, g ∈ H⊗q are defined by

(a) ( f ?r
` g)(z1, . . . , zp−`, x1, . . . , x`−r, zp−`+1, . . . , zp+q−2`)

:=
ˆ
Zr

f (z1, . . . , zp−`, x1, . . . , x`−r, s1, . . . , sr)

× g(zp−`+1, . . . , zp+q−2`, x1, . . . , x`−r, s1, . . . , sr)µ(ds1) . . . µ(dsr) ,

with f ?`
` g = f ⊗` g and ( f ?0

` g)(z1, . . . , zp−`, x1, . . . , x`, zp−`+1, . . . , zp+q−2`) =

f (z1, . . . , zp−`, x1, . . . , x`) × g(zp−`+1, . . . , zp+q−2`, x1, . . . , x`) ;

(b) ( f ?r
` g)(z1, . . . , zp−`, x1, . . . , x`−r, zp−`+1, . . . , zp+q−2`)

:=
∑

s1,...sr∈N

f (z1, . . . , zp−`, x1, . . . , x`−r, s1, . . . , sr)g(zp−`+1, . . . , zp+q−2`, x1, . . . , x`−r, s1, . . . , sr)

with f ?`
` g = f ⊗` g ∈ H⊗p+q−2r and f ?0

` g defined as in (a).

In both settings, f ?r
` g is not square-integrable for general r < ` and the symmetry of f and g

is not preserved under star-contraction operations. These star-contractions appear naturally in
the product formulae on Poisson space ([47, Proposition 5]) and in the Rademacher setting ([43,
Proposition 2.2]).

22As a convention, H�0
0 = H⊗0 = R and H�1

0 = H.
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Now we give the definition of homogeneous sums and introduce another important chaotic
structure.

Definition 1.3.1. Given f ∈ H�d
0 with d ∈ N and Ξ = (ξk, k ∈ N) a generic sequence of

independent centered random variables, we define the homogeneous sum with order d, based on
the kernel f , by setting

Qd( f ; Ξ) =
∑

i1,...,id∈N

f (i1, . . . , id)ξi1 · · · ξid .(1.3.2)

In particular, IXp ( f ) in (1.2.4) is a pth order homogeneous sum based on the kernel (βi1,...,ip) and
the random variables X(A1), . . . ,X(Am).

If we pick Ξ to be a sequence of Rademacher random variables, we will get some object
similar to the Wiener chaos, which will be called Rademacher chaos. In the sequel, we fix
X = (Xk, k ∈ N) a sequence of independent Rademacher random variables such that

P
(
Xk = 1

)
= pk = 1 − qk = 1 − P

(
Xk = −1

)
∈ (0, 1)

for each k ∈ N. We call it the symmetric case, whenever pk = 1/2 for each k ∈ N; otherwise, we
call it the general case. We write Y =

(
Yk, k ∈ N

)
for the normalized version of X, that is,

Yk =
Xk − pk + qk

2
√

pkqk
,(1.3.3)

for k ∈ N.

Definition 1.3.2. Following the previous notation and for f ∈ H�d
0 , we call Qd( f ; Y) the dth

discrete multiple integral of f . We write CY
d =

{
Qd( f ; Y) : f ∈ H�d

0
}

and call it the Rademacher
chaos of order d, and as a convention, we put CY

0 = R. We always reserve the notation Qd( f ) for
Qd( f ; Y). It is not difficult to check that for f ∈ H�p

0 and g ∈ H�q
0 , it holds that

E
[
Qp( f )Qq(g)

]
= I{p=q}p!〈 f , g〉H⊗p .

This is known as the orthogonality property of the discrete multiple integrals and moreover,
the Rademacher chaoses generate the space L2(Ω, σ{X},P), that is, every F ∈ L2(Ω, σ{X},P)
admits a unique chaotic decomposition23

F = E[F] +
∑
p≥1

Qp(hp) with hp ∈ H
�p
0 for each p ∈ N,(1.3.4)

where the above series converge in L2(P). Mimicking the constructions in Section 1.2, we can
define, based on the above chaos expansion, (discrete) Malliavin operators: D, δ, L, L−1.

23Compared to the proofs of (1.2.6), the proof of (1.3.4) is much easier and will be sketched as follows:
fixing F ∈ L2(Ω, σ{X},P), by the martingale convergence theorem, it suffices to prove that for each k ∈ N,
Fk := E[F|σ{Y1, . . . ,Yk}] belongs to the linear span S of all Rademacher chaoses. In fact, L2(Ω, σ{Y1, . . . ,Yk},P) is
isometric to R2k

and {Yi1 · · · Yi` : (i1, . . . , i`) ∈ 4`, 0 ≤ ` ≤ k} is its orthonormal basis, implying that Fk ∈ S. Thus,
F ∈ S̄, the L2(P)-closure of S and this concludes the proof.
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Malliavin operators. D is the collection of random variables F ∈ L2(Ω, σ{X},P) as in (1.3.4)
satisfying

∑
p≥1 pp!‖hp‖

2 < +∞, and for such a F ∈ D, we define the (discrete) Malliavin
derivative DF = (DkF, k ∈ N) ∈ H by

DkF =
∑
p≥1

pQp−1
(
hp(k, ·)

)
.

Intuitively, DkF annihilates the influence of Yk within the expression of F, see also the following
pathwise representation.

we choose Ω = {+1,−1}N and define P =
⊗

k∈N

(
pkδ+1 + qkδ−1

)
. Then the coordi-

nate projections ω = {ω1, · · ·} ∈ Ω 7−→ ωk =: Xk(ω) form a sequence of indepen-
dent Rademacher random variables under P. We can define for F ∈ L2(Ω, σ{X},P),
F⊕k := F(ω1, · · ·, ωk−1, 1, ωk+1, · · ·), that is, by fixing the kth coordinate in the configura-
tion ω to be 1. Similarly, we define F	k := F(ω1, · · ·, ωk−1,−1, ωk+1, · · ·). It holds that
DkF =

√
pkqk

(
F⊕k − F	k), see e.g. [88, Proposition 7.3]. The following results are clear:

• |F⊕k − F| = I(Xk=−1)
|DkF|
√

pkqk
≤
|DkF|
√

pkqk
and |F	k − F| = I(Xk=1)

|DkF|
√

pkqk
≤
|DkF|
√

pkqk
.

• F ∈ D if and only if
∑

k∈N pkqkE
[
|F⊕k − F	k|2

]
< +∞. In particular, if f : R → R is

Lipschitz continuous, then f (F) ∈ D.

We can define similarly the divergence operator δ by the duality relation E
[
〈DF, u〉

]
= E[Fδ(u)]

for every F ∈ D and we define the Ornstein-Uhlenbeck generator L =
∑

p≥1 −pJp, with Jp

being the projection operator onto CY
p . The associated semigroup can be formally defined by

Pt = exp(tL), t ∈ R+; and the pseudo-inverse of L is given by L−1 =
∑

p≥1 −p−1Jp. For a
comprehensive treatment, one can refer to N. Privault’s survey [88].

In 2010, Nourdin, Peccati and Reinert [70] combined Stein’s method with the above discrete
Malliavin calculus for the explicit bounds in the normal approximation of Rademacher func-
tionals. Although the paper [70] only concerns the symmetric case (that is, when X = Y), the
method and ideas therein are general enough to allow for extension to the general case.

A new product formula (for the symmetric case) is derived24 in [70] that resembles (1.2.9): if
f ∈ H�p

0 , g ∈ H�q
0 (p, q ∈ N), then

Qp( f )Qq(g) =

p∧q∑
r=0

r!
(
p
r

)(
q
r

)
Qp+q−2r

(
f ?r

r gI4p+q−2r

)
.(1.3.5)

24Observe that in the symmetric case, Y2
k = 1, so (i1, . . . , ip) ∈ 4p, ( j1, . . . , jq) ∈ 4q share exactly r indices if and

only if Yi1 · · · Yip Y j1 · · · Y jq ∈ C
Y
p+q−2r. This observation and the symmetry of the kernels give us the combinatorial

coefficients r!
(

p
r

)(
q
r

)
, the rest of the proof follows from the definition of star-contractions. Note that in the general

case, one has Y2
k = 1 +

qk−pk√
pkqk

Yk, then by modifying the proof for the symmetric case, one can still get some product
formula for the general case, see [43, Proposition 2.2]: the constant 1 from Y2

k contributes to the same expression as
the RHS of (2.2.4) while the other part gives arise to some complicated terms, for which one needs to impose more
integrability conditions on the kernels.
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It follows from this product formula that in the symmetric case, any random variable in a
Rademacher chaos admits finite moments of any order. However, this is not true in the general
case, as one can see from the product formula from [43].

Now fix two centered Rademacher functionals F,G ∈ D and f ∈ C1(R) with ‖ f ′‖∞ < +∞, it
follows that f (F), L−1F ∈ D and by using duality relation, we have

E
[
G f (F)

]
= E

[
〈−DL−1G,D f (F)〉

]
;

see e.g. [P1, Lemma 2.1]. Note that the term D f (F) is not equal to f ′(F)DF in general, unlike
the chain rule on a Gaussian space. The authors of [70] obtained an approximate chain rule as
follows: (in the symmetric case) let f be of class C3 such that f (F) ∈ D and ‖ f ′′′‖∞ < +∞, then

Dk f (F) = f ′(F)DkF −
1
2

[
f ′′(F⊕k) + f ′′(F	k)

]
(DkF)2Yk + R̃k(1.3.6)

with |R̃k| ≤
10
3 ‖ f

′′′‖∞|DkF|3. The requirement of high-order derivatives of the test function f
forced the authors of [70] to use some smooth distance for the normal approximation.

As the first paper included in this thesis, [P1] provided the following neater chain rule that
requires less regularity of the test function f .

Lemma 1.3.1 (G. Zheng, 2017). If F ∈ D and f : R −→ R is Lipschitz and diffentiable such
that f ′ is Lipschitz continuous, then Dk f (F) = f ′(F)DkF + Rk, where the remainder term Rk is
bounded by ‖ f ′′‖∞

2
√

pkqk
|DkF|2 in the general setting25.

This easy observation enabled us to obtain the same normal approximation in Wasserstein
distance, which is one of the main achievements in the paper [P1].

Instead of using the chain rule, the authors of [44] carefully used a representation of the
discrete Malliavin derivative Dφ(F) and the fundamental theorem of calculus; this turns out to
be flexible enough for them to deduce the Berry-Esséen bound in the symmetric case. Later they
obtained the Berry-Esséen bound in the general case and provided applications to graph-counting
statistics. See [P1, Remarks 3.1, 3.2] for connections between their work and our Wasserstein
bound.

Recall that the Rademacher chaos belongs to the category of homogeneous sums, so it may
be natural to study the normal approximation of homogeneous sums along the lines of the
discrete Malliavin-Stein approach. Unfortunately, one can not find a suitable version of Malliavin
calculus to be coupled with Stein’s method. On the bright side, motivated by conjectures in
theoretical computer science and social choice theory, Mossel, O’Donnell and Oleszkiewicz
[59] established a generalized Lindeberg invariance principle for homogeneous sums. Roughly
speaking, they were able to control distributional distance between homogeneous sums over
different sequences of independent random variables in terms of maximal influence, see e.g.
Theorem 2.1 therein.

25It is clear that f (F) ∈ D, because f is Lipschitz. By Taylor formula in mean-value form, we write f (y) − f (x) =

f ′(x)(y − x) + R( f ), where the remainder term R( f ) is bounded by ‖ f ′′‖∞ · |y − x|2/2. It remains to use the pathwise
representation of D. See [P1, Lemma 2.2] for the detailed proof.
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Let us consider another example, in which the notion of maximal influence is crucial. Fix
d ≥ 2 and a divergent sequence (Nn, n ≥ 1) of natural numbers. Consider the kernels fn :
{1, . . . ,Nn}

d → R symmetric and vanishing on diagonals and d!‖ fn‖
2
H⊗d = 1, then according to

(1.3.2),
Qd( fn; Ξ) =

∑
i1,...,id≤Nn

fn(i1, . . . , id)ξi1 · · · ξid .

The following central limit theorem26 due to de Jong [26] gave sufficient conditions for asymptotic
normality of Qd( fn; Ξ).

Theorem 1.3.1 (P. de Jong, 1990). Under the above setting, let Ξ = (ξi, i ≥ 1) be a sequence
of independent centered random variables with unit variance and finite fourth moments. If
E
[
Qd( fn; Ξ)4]→ 3 and the maximal influenceM( fn)→ 0 as n→ +∞, then Qd( fn; Ξ) converges

in law to a standard Gaussian.

Let us restrict ourselves to the Gaussian setting for a while: when G is a sequence of i.i.d.
standard Gaussians, Qd( fn; G) belongs to the dth Gaussian Wiener chaos, and the fourth moment
theorem [76] implies that if Qd( fn; G) converges in law to a standard Gaussian (or equivalently
E
[
Qd( fn; G)4]→ 3), then ‖ fn⊗d−1 fn‖H⊗2 → 0. WhileM( fn) ≤ ‖ fn⊗d−1 fn‖H⊗2 due to [70, Lemma

2.4], so thatM( fn)→ 0. This observation, together with the invariance principle from [59], hints
the universality of the Gaussian Wiener chaos; see particularly the following interesting result
that is (slightly) adapted from Theorem 7.5 in [71].

Theorem 1.3.2 (I. Nourdin, G. Peccati and G. Reinert, 2010). Fix integers d ≥ 2 and qd ≥ . . . ≥
q1 ≥ 2. For each j ∈ [d], let (N j,n, n ≥ 1) be a sequence of natural numbers diverging to infinity,
and let f j,n : [N j,n]q j → R be symmetric and vanishing on diagonals (i.e. f j,n ∈ H

�q j

0 with support
contained in [N j,n]q j) such that

lim
n→+∞

I(qk=ql)qk!
∑

i1,...,iqk≤Nk,n

fk,n(i1, . . . , iqk) fl,n(i1, . . . , iqk) = Σk,l ,

where Σ = (Σi, j, 1 ≤ i, j ≤ d) is a symmetric nonnegative definite d by d matrix. Then the
following statements are equivalent:

(A1) Given a sequence G of i.i.d. standard Gaussians,
(
Qq1( f1,n; G), . . . ,Qqd ( fd,n; G)

)T converges
in distribution to N(0,Σ), as n→ +∞.

(A2) For every sequence Ξ =
(
ξi, i ∈ N

)
of independent centered random variables with

unit variance and supi∈N E
[
|ξi|

3] < +∞, the sequence of d-dimensional random vectors(
Qq1( f1,n; Ξ), . . . ,Qqd ( fd,n; Ξ)

)T converges in distribution to N(0,Σ), as n→ +∞.

A similar universality result for Poisson Wiener chaos was first established in [86] and refined
recently in our work [P4]. It is worth noting that by assuming

sup
n, j
E
[
Qq j( f j,n; G)2] < +∞ ,(1.3.7)

Bai and Taqqu [7] were able to improve the above universality result by allowing an infinite
number of terms in the homogeneous sums. We will follow this to formulate our universality
results in Chapter 3.

26See also Döbler and Peccati’s recent work [31] for the quantitative version.



Part I: Fourth moment phenomena via exchangeable pairs 19

1.3.2 Stein’s method and normal approximation of Poisson functionals
Due to our lack of creativity and nevertheless as it conveys the right idea, we simply duplicate
the title of [82] here. As already mentioned, Peccati, Solé, Taqqu and Utzet launched the
discrete Malliavin-Stein approach on the Poisson space and they used additionally a pathwise
representation of the derivative operator D that involves the standard difference operators.

A pathwise representation of D. Let us first represent the state space Sσ of our Poisson random
measure η:

Sσ :=

w =

n∑
j=0

δz j : n ∈ N ∪ {+∞} , z j ∈ Z

 ,

where δz denotes the Dirac measure at z ∈ Z. We equip Sσ with Sσ, the smallest σ-algebra
that renders w ∈ Sσ 7−→ w(B) measurable for all B ∈ Z . So we can see η as a random element
in the measurable space

(
Sσ,Sσ

)
and Pη := P ◦ η−1 denotes its distributional measure, that is,

Pη(A) = P
(
η−1(A)

)
, A ∈ Sσ. Under Pη, the canonical mapping associated to η, {w(B) := η(B)(w),

B ∈ Z } is distributed as a Poisson point process with intensity measure µ. In this framework,
one has

Pη
(
w ∈ Sσ : w(B) < +∞ , ∀B ∈ Zµ

)
= Pη

(
w ∈ Sσ : w({z}) < +∞ , ∀z ∈ Z

)
= 1 ,

see [47, 49] for more details. Now we define the so-called add-one cost operators (D+
z , z ∈ Z):

given any σ{η}-measurable real-valued random variable F, we can write F = f(η) for some
Sσ-measurable function f : Sσ → R and this representative f is determined Pη-almost surely.
Then we define D+

z F = f(η + δz) − f(η), z ∈ Z. According to [47, Theorem 3], for F ∈ D,
D+

z F = DzF, P-almost surely and µ-almost everywhere. This in particular implies that

F = f(η) ∈ D ⇔ E
[
‖DF‖2

]
=

ˆ
Z

E
[
|f(η + δz) − f(η)|2

]
µ(dz) < +∞ ,

from which we can deduce further that g(F) ∈ D whenever F ∈ D and g : R→ R is Lipschitz
continuous.

Moreover, given a normalized F ∈ D and ϕ ∈ C2(R) with ‖ϕ‖∞ + ‖ϕ′‖∞ + ‖ϕ′′‖∞ < +∞, we
can use the above pathwise representation and similar reasoning as in footnote 25 to obtain the
following approximate chain rule: Dzϕ(F) = D+

z ϕ(F) = ϕ′(F)DzF + Rz(F), where Rz(F) is a
random variable such that |Rz(F)| ≤ 1

2‖ϕ
′′‖∞(DzF)2. With Stein’s ideas in mind (see Section

1.2.2), we use the integration by parts formula on the Poisson space and obtain that

E
[
Fϕ(F)

]
= E

[
− δDL−1Fϕ(F)

]
= E

[
〈−DL−1F,Dϕ(F)〉

]
= E

[
〈−DL−1F,DF〉ϕ′(F)〉

]
+ E

[
〈−DL−1F,R·(F)〉

]
,

thus, ∣∣∣∣E[Fϕ(F) − ϕ′(F)
]∣∣∣∣

≤ ‖ϕ′‖∞E
[
|1 − 〈−DL−1F,DF〉|

]
+

1
2
‖ϕ′′‖∞

ˆ
Z

E
[
|DzL−1F|(DzF)2

]
µ(dz) .(1.3.8)
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This bound is one of the main results in [82], and from this bound, the authors of [82] obtained
sufficient conditions for the asymptotic normality inside a fixed Poisson Wiener chaos after a
lengthy computation involving the product formula. This paper and several other follow-up
articles have opened up a new chapter of stochastic analysis for Poisson point process in the
sense that in the past few years, we have witnessed lively applications of Malliavin calculus
to problems from stochastic geometry. Besides the aforementioned references, we refer the
interested readers to the book [80] for recent developments.

Unfortunately, since the work of Nualart and Peccati, the natural question

“whether or not the FMT exists on the Poisson space”

had been elusive for years except for some partial results. In 2008, Peccati and Taqqu [83]
presented a FMT on the second Poisson Wiener chaos under some assumptions; in 2016,
Bourguin and Peccati provided in [80, Chapter 6] a FMT on the third Poisson Wiener chaos
under similar assumptions. And in the paper [86], Peccati and Zheng27 established the FMTs for
the discrete Poisson Wiener chaos, under some mild condition. For the later reference, we state
it in the following.

Theorem 1.3.3 (G. Peccati and C. Zheng, 2016). Let P := (Pi, i ≥ 1) be a sequence of indepen-
dent Poisson random variables with parameter λi ∈ (0,+∞) such that28 α := inf{λi : i ≥ 1} > 0
and denote by P̂ the normalized version of P, i.e. P̂i = (Pi − λi)/

√
λi for each i ∈ N. Now fix

integers d ≥ 1 and qd ≥ . . . ≥ q1 ≥ 1, and let Σ, {N j,n, f j,n: j ∈ [d], n ∈ N} be given as in Theorem
1.3.2. Then the following statements are equivalent as n→ +∞:

(i)
(
Qq1( f1,n; P̂), . . . ,Qqd ( fd,n; P̂)

)T converges in law to N(0,Σ).

(ii) For each j ∈ [d], Qq j( f j,n; P̂) converges in law to N(0,Σ j, j).

(iii) For each j ∈ [d], E
[
Qq j( f j,n; P̂)4] converges to 3Σ2

j, j.

Remark 1.3.1. In fact, the condition “α > 0” is not necessary for the implication (iii)⇒(i).
As mentioned in footnote 28, (suppose q j ≥ 2) the statement (iii) will force ‖ f j,n ?

p
p f j,n‖ → 0

for every p ∈ {1, . . . , q j − 1}, then the desired implication follows immediately Peccati-Tudor
theorem and Theorem 1.3.2. This line of reasoning gives rise to the universality result for discrete
Poisson chaos in [86].

27According to Wikipedia, in 2006, the family name “Zheng” ranked 21st in China’s list of top 100 most common
surnames. Zheng belongs to the second major group of ten surnames that makes up more than 10% of the Chinese
population.

28The condition “α > 0” is very crucial for the proof in [86]: (1) it guarantees the uniform integrability of the
sequence

{
Qq j ( f j,n; P̂)4, n ∈ N

}
for each j ∈ [d], so that the implication (ii)⇒ (iii) holds true. (2) One can compute

the fourth moment of Qq j ( f j,n; P̂) by exploiting the orthogonality property, and (suppose q j ≥ 2) the statement (iii)
will force ‖ f j,n ?

p
p f j,n‖ → 0 for every p ∈ [q j − 1], while the condition “α > 0” allows one to bound ‖ f j,n ?

l
q j

f j,n‖
2 by

αl−q j‖ f j,n ?
l
l f j,n‖

2 for every l ∈ [q j − 1] and bound ‖ f j,n ?
l
r f j,n‖

2 by αl−r‖ f j,n ?
l
l f j,n‖

2 for every l ∈ [r] and r ∈ [q j − 1].
Then Peccati and Zheng applied [82, Theorem 5.1] to obtain the asymptotical normality of Qq j ( f j,n; P̂); see also
Remark 1.3.1.
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Theorem 1.3.4 (G. Peccati and C. Zheng, 2014). Let the assumptions of Theorem 1.3.3 prevail
and we assume in addition that d ≥ 2, q1 ≥ 2. Then the following assertions are equivalent as
n→ +∞:

(A1)
(
Qq1( f1,n; P̂), . . . ,Qqd ( fd,n; P̂)

)T converges in law to N(0,Σ), as n→ +∞.

(A2) For every sequence Ξ =
(
ξi, i ∈ N

)
of independent centered random variables with

unit variance and supi∈N E
[
|ξi|

3] < +∞, the sequence of d-dimensional random vectors(
Qq1( f1,n; Ξ), . . . ,Qqd ( fd,n; Ξ)

)T converges in distribution to N(0,Σ).

In 2017, Döbler and Peccati [32] adopted Ledoux’s spectral point-of-view [51] and used a
pathwise representation of the carré-du-champ operator to successfully prove a FMT on a general
Poisson Wiener chaos, under the so-called Assumption (A). Their results are of quantitative
nature and Stein’s method played a fundamental role there.

Theorem 1.3.5 (Döbler and Peccati, 2017). Fix an integer q ≥ 1 and let F ∈ Cηq be such that
F ∈ L4(P), E[F2] = 1 and satisfy the following assumption

(A)
ˆ
Z

E
[
|D+

z F| + |FD+
z F| + (D+

z F)4 + |F3D+
z F|

]
µ(dz) < +∞, where D+

z is the add-one cost

operator.

Then, we have the following fourth moment bound in Wasserstein distance

dW
(
F,Z

)
:= sup
‖h′‖∞≤1

∣∣∣E[h(F) − h(Z)]
∣∣∣ ≤ (

2 +
√

2/π
) √
E[F4] − 3 ,

where Z ∼ N(0, 1).

Remark 1.3.2. The main reason for the appearance of (A) was that certain intrinsic tools,
notably the Mecke formula29 (see e.g. [49, Chapter 4]), require these integrability conditions.
Nevertheless, it is remarkable for Döbler and Peccati to establish the exact FMT on the Poisson
space.

In the paper [P4] jointly written with Döbler and Vidotto, we were able to remove the As-
sumption (A) in the above theorem, using a very different and elementary approach. Following
[32], Döbler and Krokowski [30] established the following fourth-moment-influence bound.

Theorem 1.3.6 (Döbler and Krokowski, 2017). Fix p ∈ N and f ∈ H�p
0 satisfying p!‖ f ‖2

H⊗p = 1.
Let Z be a standard Gaussian and F = Qp( f ; Y) ∈ L4(P), then,

dW
(
F,Z

)
≤ C1

√∣∣∣E[F4] − 3
∣∣∣ + C2

√
M( f ) ,

where C1,C2 are two numerical constants and recall thatM( f ) denotes the maximal influence of
f . This result echoes de Jong’s Theorem 1.3.1.

29It is named after Joseph Mecke. One shall not confuse this name with Meckes’ theorem, which we name after
Elizabeth Meckes.
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Remark 1.3.3. Döbler and Krokowski’s result is optimal in the sense that there are examples,
in which the fourth moment condition alone would not guarantee the asymptotic normality, see
Example 1.5 and Theorem 1.6 in [30].

In the paper [P5], we followed our own approach to re-derive the above bound and more
importantly, we provided a multivariate extension. To put in a short way, our approach is
inspired by our paper [P3] with I. Nourdin, in which we constructed exchangeable pair couplings
motivated by Mehler formula and used Meckes’ theorems to recover Nourdin-Peccati bound in
any dimension. This idea is simple while flexible enough to allow us to obtain FMTs on the
Poisson space and the fourth-moment-influence theorems in the Rademacher setting.

The core of this thesis is to provide unified proofs for these results and to shed some light, as
we wish, on how far we can go.

1.4 What is new?
Let us begin with point (ii) from the last paragraph in Section 1.1. In 2012, M. Ledoux analyzed
Nualart and Peccati’s FMT from the abstract point-of-view of a Markov diffusion generator.
And the carré du champ is at the center of his strategy. Let us now quickly sketch Ledoux’s
framework: let L be a Markov diffusion generator on some state space (E,E) with invariant and
reversible probability measure γ and symmetric bilinear carré du champ operator

Γ( f , g) =
1
2
[
L( f g) − f Lg − gL f

]
acting on functions f , g in a suitable domainA. To ease the notation, we write Γ( f ) = Γ( f , f ).
By symmetry and invariance of γ, the following integration by parts formula holdsˆ

E
− f Lg dγ =

ˆ
E
−gL f dγ =

ˆ
E

Γ( f , g) dγ .

And the diffusion property of L asserts that Lφ( f ) = φ′( f )L f + φ′′( f )Γ( f ), for φ smooth
and f ∈ A. For example, when L is the Ornstein-Uhlenbeck generator on the Wiener space,
Γ( f , g) = 〈D f ,Dg〉 with D being the Malliavin derivative. So (1.2.10) can be rephrased as

Var
(
q−1Γ(F)

)
≤

q − 1
3q

(
E[F4] − 3E[F2]2) ≤ (q − 1)Var

(
q−1Γ(F)

)
.

Putting Γ1 = Γ, one can define the iterated gradients by setting Γm( f , g) = 1
2

[
LΓm−1( f , g) −

Γm−1( f ,Lg) − Γm−1(g,L f )
]
, m ≥ 2. In [51], Ledoux gave the definition of “general chaos

eigenfunction” using these iterated gradients, and he was able to provide FMT for the chaos
eigenfunctions. The slight drawback of Ledoux’s definition is that it only includes the Wiener
structure, that is, when γ is the standard Gaussian measure. Soon after Ledoux’s insightful idea,
Azmoodeh, Campese and Poly [4] generalized the notion of chaos eigenfunctions: assume in
addition that the generator −L has pure spectrum {0 = λ0 < λ1 < λ2 < . . .}, they called X a pth
order chaos eigenfunction if LX = −λpX and

X2 ∈
⊕
α≤λ2p

Ker
(
L + αId

)
.
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This new definition includes two more fundamental structures: Laguerre structures and Jacobi
structures, see [8]. And Azmoodeh, Campese and Poly were able to simplify a lot the previous
proofs. This set of techniques were later taken in [5] to establish a generalization of Nualart-
Peccati’s criterion: given an integer p ≥ 2, Fn ∈ C

W
p with Var(Fn) = 1, Fn converges in law to a

standard Gaussian Z if and only if as n→ +∞,

E[F2k
n ] converges to E[Z2k] = (2k − 1)!! for some integer k ≥ 2.(1.4.1)

It is also worth mentioning that Ledoux’s spectral viewpoint promoted some recent advance
around the real Gaussian product conjecture, see [52].

Back to our chaoses (Gaussian, Poisson Wiener chaoses and Rademacher chaos), a nice
Ornstein-Uhlenbeck structure exists. We can define the carré du champ Γ as above:

Γ(F,G) :=
1
2
(
L(FG) − FLG −GLF

)
,

whenever the above expressions are well defined. In the work [32], Döbler and Peccati took
a pathwise representation of the carré du champ and combined it with the usual arguments in
the Malliavin-Stein approach. As already mentioned, they applied Mecke formula in a delicate
way so as to obtain an exact FMT on the Poisson space, see Theorem 1.3.5. Soon later, Döbler
and Krokowski adapted the ideas from [32] and provided the so-called fourth-moment-influence
theorem.

One obvious difficulty in view of applying the Malliavin-Stein techniques is that in the discrete
settings (i.e. Poisson space, Rademacher setting), the Ornstein-Uhlenbeck operator L does not
possess the diffusion property. Let us assume that we have instead an approximate-diffusion
property as follows:

Lφ(F) = φ′(F)LF + φ′′(F)Γ(F) + R(F) for nice φ and F,

where R(F) is a remainder. Note that for a normalized F ∈ CXp, with X ∈ {W, η,Y}, one
has LF = −pF and E[Lφ(F)] = 0 for nice φ. If we have nice control over E[R(F)], say
|E[R(F)]| ≤ c

√
E[F4] − 3, then taking expectations at both sides gives us∣∣∣∣ − pE

[
Fφ′(F)

]
+ pE[φ′′(F)] + E

[
φ′′(F)(Γ(F) − p)

]∣∣∣∣ ≤ c
√
E[F4] − 3 .

In view of Stein’s ideas, if Var
(
Γ(F)) can be further bounded by a multiple of

√
E[F4] − 3, then

the above inequality will give us the desired fourth moment bound.

To put in a simple way, the rest of this thesis is mainly devoted to demonstrating the use of
Stein’s method of exchangeable pairs for controlling the expectation E[R(F)]. As mentioned
before, we will prove the following FMT on the Poisson space under the weakest possible
assumption of finite fourth moment.

Theorem 1.4.1 (C. Döbler, A. Vidotto and G. Zheng, 2017). Fix an integer q ≥ 1 and let F ∈ Cηq
be such that F ∈ L4(P) and E[F2] = 1. Then,

dW
(
F,Z

)
≤

(
2 +

√
2/π

) √
E[F4] − 3 ,

where Z ∼ N(0, 1). See also [P4].
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Corollary 1.4.1 (C. Döbler, A. Vidotto and G. Zheng, 2017). Let qn ∈ N and Fn ∈ C
Xn
qn , with

Xn ∈ {W, η} for each n ∈ N. If E[F2
n]→ 1 and E[F4

n]→ 3, as n→ +∞, then Fn converges in law
to a standard Gaussian distribution.

We will provide the multivariate extension of the above results in Chapter 3. Along similar
lines, we will prove the following Peccati-Tudor type theorem in the Rademacher setting.

Theorem 1.4.2 (G. Zheng, 2017). Fix integers d ≥ 2 and 1 ≤ q1 ≤ . . . ≤ qd, and consider the
sequence of random vectors

F(n) = (F(n)
1 , . . . , F(n)

d )T :=
(
Qq1( f1,n), . . . ,Qqd ( fd,n)

)T

with kernels f j,n in H�q j

0 for each n ∈ N, j ∈ [d]. Assume that the covariance matrix Σn of F(n)

converges in Hilbert-Schmidt norm to a nonnegative definite symmetric matrix Σ =
(
Σi, j, i, j ∈

[d]
)
, as n→ +∞. Suppose that the following condition holds:

lim
n→+∞

d∑
j=1

M( f j,n) = 0 .

If for each j ∈ [d], E
[
(F(n)

j )4] converges to 3Σ2
j, j, as n→ +∞, then F(n) converges in distribution

to Z ∼ N(0,Σ), as n→ +∞.

Remark 1.4.1. Although we just presented the above qualitative result in [P5], its proof therein
is of quantitative nature. We will provide a quantitative version of Theorem 3.2.2 in Chapter 3.

As a byproduct of our proofs, we establish an interesting transfer principle (see [P4]), which
is closely related to the universality phenomena of homogeneous sums.

Proposition 1.4.1 (C. Döbler, A. Vidotto and G. Zheng, 2017). Given p ∈ N, fn ∈ L2
s(µ

p) for
each n ∈ N such that

lim
n→+∞

p! ‖ fn‖
2 = 1 ,

then the following implications holds (with Z ∼ N(0, 1))

lim
n→+∞

E
[
Iηp( fn)4] = 3 =⇒ lim

n→+∞
E
[
IW

p ( fn)4] = 3 =⇒ lim
n→+∞

dTV
(
IW

p ( fn),Z
)

= 0 ,

where dTV denotes the total-variation distance that is much stronger than the Kolmogorov
distance; see Chapter 2 for more details.

Remark 1.4.2. One can see the above result as a transfer principle from Poisson to Gaussian,
and it is worth pointing out that the transfer principle “from-Gaussian-to-Poisson” does not
hold true, due to a counterexample given in [15]; see Proposition 5.4 therein. For the proof of
Proposition 1.4.1, see Remark 3.1.6-(4).
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We close this introductory chapter with the following universality result that is a blend of
results from [7, 71, 86] and [P4, P5].

Theorem 1.4.3. Fix integers d ≥ 2 and qd ≥ . . . ≥ q1 ≥ 2. For each j ∈ [d] and n ∈ N, let the
kernels f j,n ∈ H

�q j

0 satisfy supn, j ‖ f j,n‖
2 < +∞ and for k, l ∈ [d]

lim
n→+∞

I(qk=ql)qk!
∑

i1,...,iqk∈N

fk,n(i1, . . . , iqk) fl,n(i1, . . . , iqk) = Σk,l ,

where Σ = (Σi, j, i, j ∈ [d]) is a symmetric nonnegative definite d by d matrix. Then the following
statements are equivalent, as n→ +∞:

(C1) Given a sequence G of i.i.d. standard Gaussians,(
Qq1( f1,n; G), . . . ,Qqd ( fd,n; G)

)T

converges in law to N(0,Σ).

(C2) Given a sequence V of i.i.d. random variables with V1 + 1 ∼ Poi(1),(
Qq1( f1,n; V), . . . ,Qqd ( fd,n; V)

)T

converges in law to N(0,Σ).

(C3) In the symmetric Rademacher setting,(
Qq1( f1,n; Y), . . . ,Qqd ( fd,n; Y)

)T

converges in law to N(0,Σ) andM( f1,n) + . . . +M( fd,n)→ 0.

(C4) For every sequence Ξ =
(
ξi, i ∈ N

)
of independent centered random variables with unit

variance and supi∈N E
[
|ξi|

3] < +∞,(
Qq1( f1,n; Ξ), . . . ,Qqd ( fd,n; Ξ)

)T

converges in law to N(0,Σ).
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Chapter 2

Preliminaries: Exchangeable pairs • · · · •f Carré du champ

This chapter consists of two sections. Section 2.1 is devoted to basics of Stein’s method and in
particular, we provide in Section 2.1.2 generalized Meckes’ theorems, given an infinitesimal version of
exchangeable pairs. In Section 2.2, we construct exchangeable pairs on Gaussian, Poisson spaces and in
Rademacher setting; finally we link them to the Ornstein-Uhlenbeck operator and carré du champ. Our
construction is naturally motivated by the classic Mehler formulae.

Abstract

2.1 Stein’s method of normal approximation

Let us start with the classic central limit theorem: suppose
{
X j, j ≥ 1

}
is a sequence of i.i.d

random variables with zero mean and unit variance, then

X1 + . . . + Xn
√

n
converges in law to N(0, 1), as n→ +∞.

A standard proof consists of using the Fourier transform so as to establish the convergence
of characteristic functions. However, this analytic proof strongly relies on the independence
and leaves us no clue about how fast this distributional convergence happens. Moreover, this
Fourier-based approach, in general, can not be applied to situations where some dependence
arises. The Stein’s method is a very powerful toolbox of techniques that can be used not only
to prove limit theorems, but also to provide rates of convergence in some chosen metrics, for
instance the Berry-Esséen bound in the Kolmogorov distance, see e.g. [67, Theorem 3.7.1].

The Stein’s method is named after Charles Stein, one of the leading statisticians in the last
century. In 1972, Charles Stein published his method concerning normal approximation in [103],
and after its first appearance, this method has been modified and further developed by Stein
himself as well as many other mathematicians. We refer interested readers to the treatise [19].

27
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2.1.1 Basics on Stein’s method
We will begin with probability distributions on R and later the generalization to multivariate
setting will be presented. Here is an easy observation: if Z ∼ N(0, 1), f ∈ C∞b (R), then

E
[
Z f (Z)

]
=

ˆ ∞
−∞

x f (x)
e−x2/2

√
2π

dx = −

ˆ ∞
−∞

f (x)
d
(
e−x2/2)
√

2π
=

ˆ ∞
−∞

f ′(x)
1
√

2π
e−x2/2 dx = E

[
f ′(Z)

]
.

This is essentially a Gaussian integration-by-parts formula, see (1.2.8). The converse statement is
also true: if Z is integrable and E

[
f ′(Z)

]
= E

[
Z f (Z)

]
for all f ∈ C∞b (R), then Z must be distributed

as the standard Gaussian. Indeed, considering f (x) = sin(λx) and f (x) = cos(λx), λ ∈ R, we have
E
[
Z sin(λZ)

]
= λE

[
cos(λZ)

]
and E

[
Z cos(λZ)

]
= −λE

[
sin(λZ)

]
, from which we deduce that

E
[
ZeiλZ] = iλE

[
eiλZ] for any λ ∈ R. Recognize that ϕZ(λ) = E

[
eiλZ] is the characteristic function

of Z and iE
[
ZeiλZ] = ϕ′Z(λ), which gives us an ordinary differential equation ϕ′Z(λ) + λϕZ(λ) = 0

subject to ϕZ(0) = 1. This ODE has a unique solution ϕZ(λ) = exp(−λ2/2), which is the
characteristic function of N(0, 1).

The following result, known as Stein’s lemma, summarizes the above discussion.

Lemma 2.1.1. Let Z be an integrable random variable, then Z ∼ N(0, 1) if and only if E
[
f ′(Z)

]
=

E
[
Z f (Z)

]
for any continuously differentiable function f : R→ R such that f ′(Z),Z f (Z) ∈ L1(P),

and f , f ′ have at most polynomial growth at infinity1.

Heuristically speaking, the above characterization hints that a real random variable Z is close
to a standard Gaussian, whenever E

[
f ′(Z) − Z f (Z)

]
is close to zero for every f ∈H , with H

being some rich enough class of functions.

Then how to quantify the distance between two probability distributions?

Let H be a separating class2 of real bounded measurable functions and we define, for two
probability measures µ, ν, that dH (µ, ν) := suph∈H

∣∣∣ ´
R

h dν −
´
R

h dµ
∣∣∣ . It is trivial that dH is

a metric on the set of probability distributions on R and we also write dH (X,Y) = dH (µ, ν)
if X ∼ µ,Y ∼ ν. For example, H1 :=

{
IA : A ∈ B(R)

}
, H2 :=

{
I(−∞,x] : x ∈ R

}
and

H3 :=
{
f : ‖ f ‖∞ + ‖ f ′‖∞ ≤ 1

}
are three separating classes; dH1 , dH2 , dH3 are known as the total-

variation distance dTV, the Kolmogorov distance dKol and the Fortet-Mourier distance dFM respectively.
It is known from [35, Section 11.3] that dFM induces the same topology as the weak convergence
of probability measures. It is clear that if µn, µ are probability measures on R, then the following
implications hold in view of the Portemanteau’s theorem:

lim
n→+∞

dTV(µn, µ) = 0 =⇒ lim
n→+∞

dKol(µn, µ) = 0 =⇒ lim
n→+∞

dFM(µn, µ) = 0 .

Another important distance that we will use is the Wasserstein distance dW, defined by dW(µ, ν) :=
sup

{ ´
R

h dν −
´
R

h dµ : ‖h′‖∞ ≤ 1
}

for two probability measures µ and ν on R. Note dFM is
sometimes called the “bounded Wasserstein distance”.

1We say F has at most polynomial growth at infinity, if there are some universal constants C > 0 and d ∈ N∗

such that |F(x)| ≤ C + C|x|d for each x ∈ R. The proof of Lemma 2.1.1 is omitted here, for it is exactly the same as
in previous discussion.

2that is, for any two different probability measures µ, ν on R, there exists f ∈H such that
´
R f dν ,

´
R f dµ.
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Ingeniously, Charles Stein introduced the following equation:

f ′(x) − x f (x) = h(x) − E
[
h(N)

]
,(2.1.1)

where N ∼ N(0, 1) and h : R → R is a measurable function satisfying h(N) ∈ L1(P). The
equation (2.1.1) is known as the Stein’s equation with unknown h. We call f a solution to (2.1.1),
if it is absolutely continuous and one version of f ′ satisfies (2.1.1) everywhere.

Let us now stop to digest the ingenuity of (2.1.1): suppose that we can solve (2.1.1) and get
nice properties of f in terms of those of h, then we replace the dummy variable x in (2.1.1) by
the random variable Z, so that after taking expectation on both sides, we get

E
[
f ′(Z) − Z f (Z)

]
= E

[
h(Z) − h(N)

]
.(2.1.2)

That is to say, in order to get uniform control of the right-hand side, one can instead try to uni-
formly control the left-hand side, which fits the heuristic after Stein’s lemma. In essence, Stein’s
method replaces the complex-valued characteristic function by the above real characterizing
equation, and many coupling methods have been developed so far to deal with the left-hand side
of (2.1.2), see aforementioned references.

The following lemma gives an explicit form for solutions to Stein’s equation (2.1.1).

Lemma 2.1.2. Let N, h be given as before, the solutions f to (2.1.1) are given by

f (x) = cex2/2 + ex2/2
ˆ x

−∞

[
h(y) − E

(
h(N)

)]
e−y2/2 dy , x ∈ R ,

where c ∈ R. In particular, the function

fh(x) := ex2/2
ˆ x

−∞

[
h(y) − E

(
h(N)

)]
e−y2/2 dy , x ∈ R(2.1.3)

is the unique solution to (2.1.1) verifying lim|x|→+∞ exp(−x2/2) f (x) = 0. We call fh the Stein’s
solution to (2.1.1).

Proof. Noticing that ex2/2 d
dx

(
f (x)e−x2/2) = f ′(x) − x f (x) = h(x) − E

[
h(N)

]
, we have3

f (x)e−x2/2 − f (0) =

ˆ x

0

[
h(y) − E

[
h(N)

]]
e−y2/2 dy .

By the dominated convergence theorem andˆ
R

(
h(y) − E

[
h(N)

])
e−y2/2 dy = 0 ,(2.1.4)

we have c := limx→−∞ e−x2/2 f (x) = − limx→+∞ e−x2/2 f (x). Thus, for any x ∈ R,

f (x)e−x2/2 − c =

ˆ x

−∞

[
h(y) − E

[
h(N)

]]
e−y2/2 dy ,

which gives us the desired form for the solutions to (2.1.1). And the rest is trivial. �

3We follow the convention
´ x

0 = −
´ 0

x if x < 0
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Now starting with the expression in (2.1.3), we study the properties of the Stein’s solution fh

when h is 1-Lipschitz function or h is merely bounded measurable:

(i) Suppose that h : R→ [0, 1] is measurable, then it follows from Stein’s equation that

| f ′h(x)| ≤ |h(x) − E[h(N)]| + |x fh(x)| ≤ 1 + |x fh(x)|

and from (2.1.4) that
´ x
−∞

(
h(y) − E[h(N)]

)
e−y2/2dy = −

´ ∞
x

(
h(y) − E[h(N)]

)
e−y2/2dy. Thus,

| fh(x)| ≤ ex2/2
´ ∞
|x| e−y2/2 dy ≤

√
π/2 , and |x fh(x)| ≤ |x| · ex2/2 ·

´ ∞
|x| e−y2/2 dy ≤ 1. So we can

conclude that fh is 2-Lipschitz and uniformly bounded by
√
π/2.

(ii) Suppose that h : R → R is K-Lipschitz for some K ∈ (0,+∞), then ‖ fh‖∞ ≤ 2K,
‖ f ′h‖∞ ≤

√
2/πK and ‖ f ′′h ‖∞ ≤ 2K. The proof for these bounds involves a careful analysis,

here we just give a very sketchy one and refer interested readers to [19, Lemma 2.4]: first
denote the standard Gaussian density, distributional functions by φ,Φ respectively, one
starts with h(x) − E[h(N)] =

´
R
[h(x) − h(u)]φ(u) du, then it follows from an application of

Fubini’s theorem that h(x) − E
[
h(N)

]
=
´ x
−∞

h′(t)Φ(t) dt −
´ ∞

x h′(t)[1 −Φ(t)] dt , together
with which (2.1.3) implies

fh(w) = ew2/2
ˆ w

−∞

(ˆ x

−∞

h′(t)Φ(t) dt −
ˆ ∞

x
h′(t)[1 − Φ(t)] dt

)
e−x2/2 dx

= −
√

2πew2/2(1 − Φ(w)
) ˆ w

−∞

h′(t)Φ(t) dt −
√

2πew2/2Φ(w)
ˆ ∞

w
h′(t)[1 − Φ(t)] dt

and

f ′h(w) = w fh(w) + h(w) − E[h(N)] =
{
1 −
√

2πwew2/2[1 − Φ(w)]
}ˆ w

−∞

h′(t)Φ(t) dt

−
{
1 +
√

2πwew2/2Φ(w)
}ˆ ∞

w
h′(t)[1 − Φ(t)] dt .

So the first two bounds follow from some standard Gaussian computations. Similar
computations can be done for ‖ f ′′h ‖∞ once we derive f ′′h (w) = (1 + w2) fh(w) + w(h(w) −
E[h(N)]) + h′(w) using (2.1.1).

(iii) Combining the above two points, we can also assert that if h ∈ C∞b (R) satisfies 0 ≤ h ≤ 1,
then ‖ fh‖∞ ≤

√
π/2, ‖ f ′h‖∞ ≤ 2 and ‖ f ′′h ‖∞ ≤ 2‖h′‖∞ < +∞.

Now we give Stein’s bounds based on the above discussions.

Proposition 2.1.1. Let F be a real integrable random variable and N ∼ N(0, 1), then

(1) dTV(F,N) ≤ sup
∣∣∣E[ϕ′(F) − Fϕ(F)]

∣∣∣, where the supremum runs over all ϕ ∈ C2(R) with
‖ϕ‖∞ ≤

√
π/2, ‖ϕ′‖∞ ≤ 2 and ‖ϕ′′‖∞ < +∞.

(2) dW(F,N) ≤ sup
∣∣∣E[ϕ′(F) − Fϕ(F)]

∣∣∣, where the supremum runs over all ϕ ∈ C2(R) with
‖ϕ‖∞ ≤ 2, ‖ϕ′‖∞ ≤

√
2/π and ‖ϕ′′‖∞ ≤ 2.
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Proof. It follows first from Lusin’s theorem4 that

sup
h measurable

0≤h≤1

∣∣∣E(h(N) − h(F)
)∣∣∣ = sup

h∈C(R)
0≤h≤1

∣∣∣E(h(N) − h(F)
)∣∣∣.

And for h : R → [0, 1] continuous, by standard mollification procedure, one can construct
hε ∈ C∞b (R) such that 0 ≤ hε ≤ 1 and hε → h pointwise, as ε ↓ 0. So

dTV(F,N) = sup
h∈C∞b (R)
0≤h≤1

∣∣∣E(h(N) − h(F)
)∣∣∣ ≤ sup

‖ϕ‖∞≤
√
π/2

‖ϕ′‖∞≤2
‖ϕ′′‖∞<+∞

∣∣∣E[ϕ′(F) − Fϕ(F)]
∣∣∣

where the last inequality follows from point (iii) on last page and (2.1.2), this proves (1) while
(2) follows from point (ii) on last page and (2.1.2). �

Let us now look at an easy example.

Example 2.1.1. Let Y = (Yi, i ∈ N) be i.i.d symmetric Bernoulli random variables, then
Fn := n−1/2(Y1 + . . . + Yn) converges in law to the standard Gaussian, according to the classic
central limit theorem. Now fix ϕ ∈ C2(R) with ‖ϕ‖∞ ≤ 2, ‖ϕ′‖∞ ≤

√
2/π and ‖ϕ′′‖∞ ≤ 2, then

we have

E
[
Fnϕ(Fn)

]
=
√

nE
[
Y1ϕ(Fn)

]
using symmetry

=

√
n

2
E
[
ϕ
(1 + Y2 + . . . + Yn

√
n

)
− ϕ

(−1 + Y2 + . . . + Yn
√

n
)]

using independence

=

√
n

2
E
[
ϕ
(1 + Y2 + . . . + Yn

√
n

)
− ϕ(Fn) + ϕ(Fn) − ϕ

(−1 + Y2 + . . . + Yn
√

n
)]

= E
[
ϕ′(Fn)

]
+

√
n

2
Rn with |Rn| ≤ 2‖ϕ′′‖∞n−1

where the last line follows from the usual Taylor expansion. Thus, it follows from Proposition
2.1.1 that5 dW(Fn,N(0, 1)) ≤ 2n−1/2.

In the above toy-example, independence and symmetry within the structure contribute to
the easy proof. Nevertheless, the strategy of combining an application of Taylor expansion
with Stein’s equation is usually effective in practice, see e.g. our Proposition 2.1.2. Stein’s
ideas have contributed to many excellent results and solutions to numerous problems, such as
local dependence, minimal spanning trees, concentration inequalities and many others, see e.g.
Barbour and Chen’s Volume [12] and Chatterjee’s ICM survey [20].

Since Stein’s introduction of his method, there have been many successful uses of the mul-
tivariate version, see e.g. [9, 10, 38] that initiated Barbour’s generator approach. Roughly

4Let µ = (P ◦ F−1 + P ◦ N−1)/2, then for h measurable with values in [0, 1], by appropriate application of Lusin’s
Theorem (e.g. see the Red Rudin) one can find a sequence of continuous functions hn such that 0 ≤ hn ≤ 1 and
hn → h µ-a.s., thus hn → h P ◦ F−1-a.s. and P ◦ N−1−a.s..

5By explicit calculation, E[F4
n] − 3 = −2n−1, so we obtain the fourth moment bound dW(Fn,N(0, 1)) ≤√

2(3 − E[F4
n]).
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speaking, the generator approach uses the properties of Markov processes to deduce and solve
Stein’s equation associated to the invariant measure of those Markov processes. Note that the
standard Gaussian distribution on Rk (k ∈ N) is the invariant distribution of the k-dimensional
Ornstein-Uhlenbeck process.

Let’s first introduce some further notation, before we present the multivariate Stein’s method.

Notation C. For x = (x1, . . . , xd)T , y = (y1, . . . , yd)T ∈ Rd, we denote by ‖x‖ and 〈x, y〉 the
Euclidean norm of x and the scalar product of x, y respectively; and for a matrix A ∈ Rd×d, we
denote by ‖A‖op the operator norm induced by the Euclidean norm, i.e., ‖A‖op := sup{‖Ax‖ :
‖x‖ = 1}. More generally, for a k-multilinear form ψ : (Rd)k → R, k ∈ N, we define the operator
norm

‖ψ‖op := sup
{
|ψ(u1, . . . , uk)| : u j ∈ R

d, ‖u j‖ = 1, j = 1, . . . , k
}
.

Recall that for a function h : Rd → R, its (minimal) Lipschitz constant M1(h) is given by

M1(h) := sup
x,y

|h(x) − h(y)|
‖x − y‖

∈ [0,∞] .

If h is differentiable, then M1(h) = supx∈Rd ‖Dh(x)‖op. For random vectors X,Y in Rd, we define
their Wasserstein distance by

dW(X,Y) := sup
{
E[h(X) − h(Y)] : M1(h) ≤ 1

}
.

For k ∈ N and a (k − 1)-times differentiable function h : Rd → R, we set

Mk(h) := sup
x,y

‖Dk−1h(x) − Dk−1h(y)‖op

‖x − y‖
,

viewing the (k − 1)-th derivative Dk−1h of h at any point x as a (k − 1)-multilinear form. Then, if
h is k-times differentiable, we have Mk(h) = sup{‖Dkh(x)‖op : x ∈ Rd}.

Recall that, for two matrices A, B ∈ Rd×d, their Hilbert-Schmidt inner product is defined by

〈A, B〉HS := Tr
(
ABT ) = Tr

(
BAT ) = Tr

(
BT A

)
=

d∑
i, j=1

Ai, jBi, j .

Thus, 〈·, ·〉HS is just the standard inner product on Rd×d � Rd2
. The corresponding Hilbert-Schmidt

norm will be denoted by ‖ · ‖HS. With this notion at hand, following [23] and [58], for k = 2,
we define M̃2(h) := sup{‖Hess h(x)‖HS : x ∈ Rd}, where Hess h is the Hessian matrix associated
with h. Note for a symmetric matrix A ∈ Rd×d with eigenvalues λ1(A) ≤ . . . ≤ λd(A), one has
‖A‖2HS = λ1(A)2+. . .+λd(A)2 ≤ d‖A‖2op. From this, it follows immediately that M̃2(h) ≤

√
d M2(h).

For later use, we define here another two distributional metrics: for random vectors X,Y in Rd,

d2(X,Y) := sup
{
E[h(X) − h(Y)] : M1(h) ≤ 1,M2(h) ≤ 1

}
and

d3(X,Y) := sup
{
E[h(X) − h(Y)] : M1(h) ≤ 1,M2(h) ≤ 1,M3(h) ≤ 1

}
.
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With the above notation, let us first present the multivariate Stein’s lemma.

Lemma 2.1.3. Fix an integer d ≥ 2. Let C be a non-negative definite d × d matrix. Given a
random vector N = (N1, . . . ,Nd)T , then N ∼ N(0,C) if and only if

E
[
〈N,∇ f (N)〉Rd

]
= E

[
〈C,Hess f (N)〉HS

]
(2.1.5)

for every C2 function f : Rd → R with bounded first and second derivatives.

Proof. If N ∼ N(0,C), then the equation (2.1.5) is a simple consequence of the integration by
parts formula. Now assume (2.1.5) and fix an arbitrary vector Λ = (λ1, . . . , λd)T ∈ Rd, we define
the function f (x) = sin(〈Λ, x〉), which is of class C2 with bounded derivatives. Then (2.1.5)
implies that

E
[
〈Λ,N〉 cos

(
〈Λ,N〉

)]
= −〈C,ΛΛT 〉HSE

[
sin

(
〈Λ,N〉

)]
and similarly we get also

E
[
〈Λ,N〉 sin

(
〈Λ,N〉

)]
= 〈C,ΛΛT 〉HSE

[
cos

(
〈Λ,N〉

)]
.

With the same arguments as in Section 2.1.1, we can build an ODE for G(b) = E
[
eib〈Λ,N〉], that is,

G′(b) = −b〈C,ΛΛT 〉HSG(b) subject to G(0) = 1.

Solving this ODE gives us G(b) = exp
(
− 〈C,ΛΛT 〉HSb2/2

)
. It follows that 〈Λ,N〉 is a centered

Gaussian random variable with variance 〈C,ΛΛT 〉HS, thus N is a centered Gaussian vector with
covariance matrix C. �

Starting from the multivariate Stein’s lemma, one can build the multivariate Stein’s equation

〈x,∇ f (x)〉Rd − 〈Hess f (x),C〉HS = h(x) − E[h(Z)] , Z ∼ N(0,C) .(2.1.6)

If h ∈ C2(Rd) verifies6 M1(h) + M2(h) < +∞, then the function

fh(x) :=
ˆ 1

0

1
2t
E
[
h(
√

tx +
√

1 − tZ) − h(Z)
]
dt(2.1.7)

belongs to C2(Rd) and solves the Stein’s equation (2.1.6); and here we collect several useful facts
on Stein’s solution:

? for r = 1, 2, 3,

Mr( fh) ≤ r−1Mr(h) and M̃2( fh) ≤
1
2

M̃2(h) .

In particular, if C is positive definite, then

M̃2( fh) ≤
√

2/π ‖C−1/2‖opM1(h) and M3( fh) ≤

√
2π
4
‖C−1/2‖opM2(h) .

For the detailed proofs, one can refer to Section 3.1 of Döbler’s dissertation [28].
6To guarantee that fh(x) is well defined, it is enough to assume h is Lipschitz continuous, see [28, Lemma 3.1.1].

If in addition C is positive definite, with h Lipschitz, it holds true that fh given in (2.1.7) belongs to C2(Rd) and
satisfies M̃2( fh) ≤

√
dM1(h)‖C−1‖op‖C‖

1/2
op , see [67, Proposition 4.3.2].
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2.1.2 Stein’s method of exchangeable pairs
The exchangeable pairs approach within Stein’s method was first used in the paper [27] which,
however, attributed the method to Charles Stein. Later, this technique was presented in a
systematic way in Stein’s monograph [101]. We recall that a pair (X, X′) of random elements
on a common probability space is said to be exchangeable, if (X, X′) has the same distribution
as (X′, X). In the book [101, Lecture III], it is highlighted that a given real random variable
W is close in distribution to a standard normal variable N, whenever one can construct an
exchangeable pair (W,W ′) such that W ′ is close to W in some sense and such that the linear
regression property

(2.1.8) E
[
W ′ −W

∣∣∣ W]
= −λW

is satisfied for some small λ > 0 and Var
( 1

2λE[(W ′ −W)2|W]
)

is small. Note the relation (2.1.8)
forces W to be centered.

Theorem 2.1.1 (C. Stein, 1986). Let (W,W ′) be an exchangeable pair of random variables
defined on a common probability space

(
Ω,F ,P

)
such that Var(W) = 1, (2.1.8) holds for some

λ > 0 and W ∈ L3(P), then we have

dW
(
W,N) ≤

√
2/π

√
Var

(
1

2λ
E
[
(W −W ′)2|W

])
+

1
2λ
E
[
|W −W ′|3

]
,

where N ∼ N(0, 1).

Proof. Let f : R → R belong to C2(R) with ‖ f ‖∞ ≤ 2, ‖ f ′‖∞ ≤
√

2/π and ‖ f ′′‖∞ ≤ 2, then
it is clear that f (W ′)W and f (W)W are integrable. It follows from the exchangeability that
E
[
(W −W ′) f (W)

]
= E

[
(W ′−W) f (W ′)

]
, from which we get E

[
(W −W ′)[ f (W) + f (W ′)]

]
= 0. So

0 = E
[
(W −W ′)[− f (W) + f (W ′)]

]
+ 2E

[
(W −W ′) f (W)

]
= E

[
(W −W ′)[− f (W) + f (W ′)]

]
+ 2E

[
f (W)E(W −W ′|W)

]
= E

[
(W −W ′)[− f (W) + f (W ′)]

]
+ 2λE

[
f (W)W

]
by (2.1.8)

that is, E
[
(W ′ − W)[ f (W ′) − f (W)]

]
= 2λE

[
f (W)W

]
; and particularly, E[(W ′ − W)2] = 2λ.

Therefore,

2λE
[
f (W)W − f ′(W)

]
= E

(
(W ′ −W)[ f (W ′) − f (W)] − 2λ f ′(W)

)
= E

(
f ′(W)

[
(W ′ −W)2 − 2λ

])
+ E

[
(W ′ −W)3

ˆ 1

0
(1 − t) f ′′(W + t(W ′ −W)) dt

]
= E

[
f ′(W)

(
E
[
(W ′ −W)2|W

]
− 2λ

)]
+ E

[
(W ′ −W)3

ˆ 1

0
(1 − t) f ′′(W + t(W ′ −W)) dt

]
,

which together with Proposition 2.1.1 gives us the desired bound. �

In recent years, the method of exchangeable pairs has been generalized for other distributions
and multi-dimensional settings in many papers like [93, 94, 100, 90, 23, 21, 22, 29, 36], to name
a few.
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Moreover, the articles [57, 23, 58, 33] develop versions of the exchangeable pairs method
suitable for situations, in which one can construct a continuous family of exchangeable pairs.
By their continuity assumptions, these papers succeed in reducing the order of smoothness
of test functions and hence in obtaining bounds in more sophisticated probabilistic distances.
For instance, the bounds from [57] are expressed in terms of the total-variation distance. It is
this framework of exchangeable pairs that is most closely related to the variant of the method
developed in the present thesis. In contrast to the quoted papers, however, our abstract results on
exchangeable pairs do not make such strong continuity assumptions and hence, allow us to deal
with the inherent discreteness of the Poisson space and Rademacher functionals, which does not
even allow for convergence in the total-variation distance in general.

The following two propositions are generalizations of Meckes’ theorems [57, 58].

Proposition 2.1.2 (C. Döbler, A. Vidotto and G. Zheng, 2017). Let F and a family of real
random variables (Ft)t≥0 be defined on a common probability space (Ω,F ,P) such that Ft

law
= F

for every t ≥ 0. Assume that F ∈ L4(Ω,G ,P) for some σ-algebra G ⊂ F and that in L1(P),

(a) lim
t↓0

1
t
E
[
Ft − F|G

]
= −λ F for some λ > 0,

(b) lim
t↓0

1
t
E
[
(Ft − F)2|G

]
= (2λ + S )Var(F) for some centered7 random variable S ;

(c) and lim
t↓0

1
t
E
[
(Ft − F)4] = ρ(F)Var(F)2 for some ρ(F) ≥ 0.

Then, with N ∼ N
(
0,Var(F)

)
, we have

dW(F,N) ≤
√

Var(F)

λ
√

2π
E
[
|S |

]
+

√
2Var(F)

3
√
λ

√
ρ(F) .

If ρ(F) = 0, we have dTV(F,N) ≤ λ−1E
[
|S |

]
.

Proof. Assume first that Var(F) = 1 and fix an arbitrary g ∈ C2(R) with ‖g‖∞ ≤ c1, ‖g′‖∞ ≤ c2

and ‖g′′‖∞ ≤ c3 for some c1, c2, c3 ∈ (0,+∞). Let G : R → R be a differentiable function
such that G′ = g. Then due to Ft

law
= F and F ∈ L4(P), one has 0 = E

[
G(Ft) − G(F)

]
=

E
[
g(F)(Ft − F) + 1

2g′(F)(Ft − F)2] + E[Rg] with |Rg| ≤
1
6‖g

′′‖∞ |Ft − F|3. It follows that

0 = E

[
g(F) ×

1
t
E
[
Ft − F|G

]]
+

1
2
E

[
g′(F) ×

1
t
E
[
(Ft − F)2|G

]]
+

1
t
E[Rg].

By assumption (c) and as t ↓ 0,∣∣∣∣∣E[Rg]
t

∣∣∣∣∣ ≤ ‖g′′‖∞E[|Ft − F|3]
6t

≤
‖g′′‖∞

6

√
1
t
E
[
(Ft − F)2]√1

t
E
[
(Ft − F)4]→ ‖g′′‖∞√

2λρ(F)
6

.

7E[S ] = 0 is not restrictive at all. In fact, in our future applications, the convergence in (a) often takes place
in L2(P), so the exchangeability together with condition (a) would imply t−1E[(Ft − F)2] = −2t−1 E[(Ft − F)F] =

−2E[Ft−1E(Ft − F|F)]→ 2λVar(F), as t ↓ 0.
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Therefore as t ↓ 0, assumptions (a) and (b) imply that8

0 = λE
[
g′(F) − Fg(F)

]
+

1
2
E
[
g′(F)S

]
+ lim

t↓0

1
t
E[Rg] ,(2.1.9)

with
∣∣∣ limt↓0

1
tE[Rg]

∣∣∣ ≤ √2λ
√
ρ(F) ‖g′′‖∞/6. Plugging this into the Stein’s equation, we deduce

from Proposition 2.1.1 that

dW(F,N) ≤ sup
‖g′‖∞≤

√
2/π

‖g′′‖∞≤2

∣∣∣∣E[g′(F) − Fg(F)]
∣∣∣∣

≤ sup
‖g′‖∞≤

√
2/π

‖g′′‖∞≤2

(
‖g′‖∞

2λ
E
[
|S |

]
+

∣∣∣∣∣1λ lim
t↓0

1
t
E[Rg]

∣∣∣∣∣)

≤
1

λ
√

2π
E
[
|S |

]
+

√
2

3
√
λ

√
ρ(F) .

Let us now consider the case where ρ(F) = 0, then the limit in (2.1.9) is zero and

E
[
− g′(F) + Fg(F)

]
=

1
2λ
E
[
g′(F)S

]
,

because ‖g′′‖∞ < +∞. Thus, it follows from Proposition 2.1.1 that dTV(F,N) ≤ λ−1E
[
|S |

]
.

The general case follows from the facts that dW(F,N) = σ dW(F/σ,N/σ) and dTV(F,N) =

dTV(F/σ,N/σ) for σ > 0. �

Remark 2.1.1. The case where ρ(F) = 0 in the above proposition is studied in E. Meckes’
dissertation [57], in which Meckes further developed an earlier idea in Stein’s technical report
[102]. She called it an infinitesimal version of exchangeable pairs. Her use of a family of
exchangeable pairs enables her to obtain nice bound in total-variation distance, which is beyond
the reach of the usual exchangeable pair method, see e.g. Proposition 2.1.1. Note that in Meckes’
formulation, she required the exchangeability of (F, Ft), which is not our case. Our consideration
is motivated by Röllin’s short note [94].

As one will see shortly, the constant ρ(F) in Proposition 2.1.2 is often nonzero in our applica-
tions on Poisson Wiener chaos and Rademacher chaos; and in these situations, we will look at
the infinitesimal version of exchangeable pairs as an efficient way of approximation.

The following result is a multidimensional generalization of Proposition 2.1.2, proved in [P4].

Proposition 2.1.3 (C. Döbler, A. Vidotto and G. Zheng, 2017). For each t > 0, let (F, Ft) be an
exchangeable pair of centered d-dimensional random vectors defined on a common probability
space. Let G be a σ-algebra that contains σ{F}. Assume that Λ ∈ Rd×d is an invertible
deterministic matrix and Σ is a symmetric, non-negative definite deterministic matrix such that

8The equation (2.1.9) shall be understood as follows: the limit limt↓0 t−1E[Rg] exists and is equal to −λE
[
g′(F)−

Fg(F)
]
− 1

2 E
[
g′(F)S

]
, bounded by

√
2λ

√
ρ(F) ‖g′′‖∞/6.
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(a) lim
t↓0

1
t
E
[
Ft − F|G

]
= −ΛF in L1(Ω);

(b) lim
t↓0

1
t
E
[
(Ft − F)(Ft − F)T |G

]
= 2ΛΣ + S in L1(Ω; ‖ · ‖HS) for some random matrix S with

centered entries;

(c) for each i ∈ {1, . . . , d}, there exists some real number ρi(F) such that

lim
t↓0

1
t
E
[
(Fi,t − Fi)4] = ρi(F)

where Fi,t (resp. Fi) stands for the ith coordinate of Ft (resp. F).

Then, we have, with Z ∼ N(0,Σ),

d3(F,Z) ≤
‖Λ−1‖op

√
d

4
E
[
‖S ‖HS

]
+

√
d‖Λ−1‖op

18

√√
d∑

i=1

2Λi,iΣi,i

√√
d∑

i=1

ρi(F) .

If in addition, Σ is positive definite, then

d2(F,Z) ≤
‖Λ−1‖op‖Σ

−1/2‖op
√

2π
E
[
‖S ‖HS

]
+

√
2π‖Λ−1‖op‖Σ

−1/2‖op

24

√√
d∑

i=1

2Λi,iΣi,i

√√
d∑

i=1

ρi(F) .

Remark 2.1.2. The particular case where ρi(F) = 0 for each i ∈ [d] corresponds to Theorem 3
in Meckes’ paper [58]. In this case, we have

d2(F,Z) ≤
‖Λ−1‖op

√
d

4
E
[
‖S ‖HS

]
,

and if additionally Σ is positive definite, we have

dW(F,Z) ≤
‖Λ−1‖op‖Σ

−1/2‖op
√

2π
E
[
‖S ‖HS

]
,

see also Proposition 9.1 in [P3].

Proof of Proposition 2.1.3. By the same argument as in the proof of Theorem 3 in [58], we can
assume g ∈ C∞(Rd) with M1(g) + M2(g) + M3(g) < +∞ and define

f (x) =

ˆ 1

0

1
2t

(
E
[
g(
√

t x +
√

1 − t N)
]
− E[g(N)]

)
dt ,

which is a solution to the following Stein’s equation

(2.1.10) 〈x,∇ f (x)〉 − 〈Hess f (x),Σ〉HS = g(x) − E[g(N)] .
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It is known from Section 2.1.1 that for r = 1, 2, 3,

Mr( f ) ≤
Mr(g)

r

and M̃2( f ) ≤ 1
2 M̃2(g). In particular, if Σ is positive definite, then M̃2( f ) ≤

√
2/π ‖Σ−1/2‖op M1(g)

and M3( f ) ≤
√

2 π ‖Σ−1/2‖op M2(g)/4.

Again, it follows from the same arguments as in [58] that

0 =
1
t
E

[
1
2

〈
Hess f (X),Λ−1(Ft − F)(Ft − F)T

〉
HS

]
+

1
t
E
[ 〈

Λ−1(Ft − F),∇ f (F)
〉]

+
1
2t
E[R],(2.1.11)

where R is the error in the Taylor approximation satisfying

|R| ≤
1
3
‖Λ−1‖op‖Ft − F‖3β ≤

√
d

3
‖Λ−1‖opβ

√√
d∑

i=1

(Fi,t − Fi)2

√√
d∑

i=1

(Fi,t − Fi)4 ,

where β := min
{
M3(g)/3,

√
2π‖Σ−1/2‖op M2(g)/4

}
, and the last inequality follows from the

elementary inequality ‖x − y‖2 ≤
√

d
(∑d

i=1(xi − yi)4)1/2 for x, y ∈ Rd.

Notice meanwhile that the assumptions (a) and (b) imply that the limit t−1E[R], as t ↓ 0, is
well defined and

− lim
t↓0

1
2t
E[R] = E

[〈
Hess f (F),Σ

〉
HS −

〈
F,∇ f (F)

〉]
+

1
2
E
[〈

Hess f (F),Λ−1S
〉

HS

]
= E

[
g(N) − g(F)

]
+

1
2
E
[〈

Hess f (F),Λ−1S
〉

HS

]
,

where the last equality comes from the definition of Stein’s equation. Moreover, by assumption
(c) and the above inequality, we have

∣∣∣∣∣limt→0

1
t
E[R]

∣∣∣∣∣ ≤
√

d
3
‖Λ−1‖op β

√√
lim
t↓0

1
t
E

d∑
i=1

(Fi,t − Fi)2

√√
lim
t↓0

1
t
E

d∑
i=1

(Fi,t − Fi)4(2.1.12)

=

√
d

3
‖Λ−1‖op β

√√
d∑

i=1

2Λi,iΣi,i

√√
d∑

i=1

ρi(F),

where the last equality follows from assumptions (b) and (c). To conclude our proof, it suffices
to notice that∣∣∣∣E[〈Hess f (F),Λ−1S

〉
HS

]∣∣∣∣ ≤ min

1
2

M̃2(g),

√
2
π
‖Σ−1/2‖op M1(g)

 ‖Λ−1‖op E
[
‖S ‖HS

]
.

�
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2.2 Exchangeable pairs on chaoses
One goal of this section is to explain the following result: for each t ∈ R+, X ∈ {W, η,X

}
,

one can construct another random object Xt such that
(
X,Xt) is exchangeable and for any

F = f(X) ∈ L2(Ω, σ{X},P), one has

PtF = E
[
f
(
X

t)|σ{X}] ,(2.2.1)

which is known as the Mehler’s formula for the Ornstein-Uhlenbeck semigroup (Pt, t ∈ R+).
And the other goal is to connect these exchangeable pairs to the carré du champ, see Proposition
2.2.1.

Construction of W t: this is indeed trivial, we put W t = e−tW +
√

1 − e−2tW ′, with W ′ an
independent copy of W. One can easily verify that W t is a Gaussian random measure with the
same intensity measure µ, and for the exchangeability of (W t,W), it suffices to consider their
finite-dimensional distributions, that is, let A1, . . . , Am ∈ Zµ, then the following two Gaussian
vectors (

W t(A1), . . . ,W t(Am)
)

and
(
W(A1), . . . ,W(Am)

)
are clearly exchangeable in view of their (joint) covariance matrix. Now let us verify (2.2.1):
note first that by density argument, it is enough to assume F = IW

p ( f ) for some f ∈ L2
s(µ

p) of the
form (1.2.2), that is,

IW
p ( f ) =

m∑
i1,...,ip=1

βi1,...,ip

p∏
j=1

W(Ai j) ,

where m ∈ N, A1, . . . , Am ∈ Zµ are pairwise disjoint, and the coefficients βi1,...,ip are symmetric
and vanish whenever any two of the indices i1, . . . , ip are equal. We define

Ft := IW t

p ( f ) =

m∑
i1,...,ip=1

βi1,...,ip

p∏
j=1

W t(Ai j)

and by standard computation, E
[
Ft|σ{W}

]
= e−ptF. This finishes our verification of (2.2.1) in

the case where X = W.
The above discussion gives us a natural exchangeable pair coupling on Gaussian Wiener

chaos, that is, given f ∈ L2
s(µ

p), IW
p ( f ) and IW t

p ( f ) are exchangeable.

Construction of Xt: let X′ be an independent copy of X and Θ = (θk, k ∈ N) be a sequence of
i.i.d. standard exponential random variables such that X, X′ and Θ are independent. For each
t ∈ [0,+∞), we define

Xt
k := XkI(θk≥t) + X′kI(θk<t) .

It has been pointed out in [45] that Xt has the same distribution as X, see also Remark 3.4
in [70] for the symmetric case. Assuming the exchangeability for now and writing F = f(X)
for some representative f : {±1}N → Rd, we can set Ft = f(Xt). It is easy to see that the
exchangeability can be passed to (F, Ft) now. If F =

(
Qp1( f1; Y), . . . ,Qpd ( fd; Y)

)
, then we can

write Ft =
(
Qp1( f1; Yt), . . . ,Qpd ( fd; Yt)

)
with Yt the normalised version of Xt in the sense of

(1.3.3).
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Now let us verify the exchangeability. Note first that Xt is a sequence of independent
Rademacher random variables for each t ∈ [0,+∞). For each k ∈ N, it is easy to check that

P
(
Xt

k = −1, Xk = 1
)

= P
(
Xt

k = 1, Xk = −1
)

= (1 − e−t)pkqk .

This gives us the exchangeability of (Xk, Xt
k) for each k ∈ N. Let a = (ai, i ∈ N),b = (bi, i ∈ N) ∈

{±1}N, then using the independence within those two sequences X,Xt, we obtain

P
(
X = a,Xt = b

)
=

∏
k∈N

P
(
Xk = ak, Xt

k = bk
)

=
∏
k∈N

P
(
Xk = bk, Xt

k = ak
)

by exchangeability of Xk, Xt
k

= P
(
X = b,Xt = a

)
.

This proves the exchangeability of X,Xt. The rest follows from a standard approximation
argument: it is clear that after truncation, (with [N] := {1, . . . ,N})(

Qp1( f1I[N]p1 ; Y), . . . ,Qpd ( fdI[N]pd ; Y)
)

and
(
Qp1( f1I[N]p1 ; Yt), . . . ,Qpd ( fdI[N]pd ; Yt)

)
form an exchangeable pair; letting N → +∞ and keeping in mind that the exchangeability is
preserved in limit, we get the desired result. The verification of Mehler formula (2.2.1) can also
be done by truncation argument, see for instance, [45, Proposition 3.1]

Construction of ηt: it is much more delicate. Recall from Remark 1.2.1 that our Poisson random
measure can be represented as follows:

η =

κ∑
n=1

δXn ,(2.2.2)

where Xn, n ≥ 1 are random variables with values in Z and κ is a N0 ∪ {+∞}-valued random
variable. Now let Q be a standard exponential measure on R+ and let (Yn)n∈N be a sequence
of i.i.d. random variables with distribution Q, independent of (κ, Xn). Then the marked point
process ξ, given by

ξ :=
κ∑

n=1

δ(Xn,Yn) ,

is a Poisson point process with intensity measure µ ⊗ Q. For each t ∈ R+, we define

ηe−t(A) := ξ
(
A × [t,+∞)

)
, A ∈ Z ,

which is called the e−t-thinning of η: it is obtained by removing the atoms (Xn) in η independently
of each other with probability 1 − e−t. Moreover, ηe−t and η − ηe−t are two independent9 Poisson
point processes with intensity measure e−tµ, (1− e−t)µ respectively. One can refer to [49, Chapter
5] for more details.

For any fixed t ≥ 0, let η′1−e−t be a Poisson point process onZ with control (1− e−t)µ such that
it is independent of (η, ηe−t). And we put ηt = ηe−t + η′1−e−t .

9The independence stems from the fact that they charge disjoint sets.
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It is easy to verify that
(
η, ηt) is an exchangeable pair of Poisson point processes.

Indeed, it suffices to notice that η = ηe−t + η − ηe−t and that η − ηe−t , η′1−e−t have the same
law, and are both independent of ηe−t . Now let f : Sσ → R be Sσ-measurable, then for any
Borel subsets A1, A2 of R,

P
(
f(η) ∈ A1 , f(ηt) ∈ A2

)
= P

(
f(ηe−t + η − ηe−t) ∈ A1 , f(ηe−t + η′1−e−t) ∈ A2

)
= P

(
f(ηe−t + η′1−e−t) ∈ A1 , f(ηe−t + η − ηe−t) ∈ A2

)
= P

(
f(ηt) ∈ A1 , f(η) ∈ A2

)
.

This implies the exchangeability of (η, ηt).

Now let us verify the Mehler formula (2.2.1): in fact, we can go through the same density
arguments as in the Gaussian setting, and we only need to establish the following claim: for
A ∈ Zµ,

E
[
η̂t(A)|σ{η}

]
= e−t η̂(A) ,(2.2.3)

where η̂t := ηt − µ denotes the compensate Poisson random measure. It simply follows from the
construction of ηt that

E
[
η̂t(A)|σ{η}

]
= E

[
η̂e−t(A) + η̂′1−e−t(A)|σ{η}

]
= E

[
η̂e−t(A)|σ{η}

]
by independence

= E
[
ηe−t(A)|σ{η}

]
− e−tµ(A) = E

[
ξ
(
A × [t,+∞)

)
|σ{η}

]
− e−tµ(A)

= E

 κ∑
n=1

δ(Xn,Yn)
(
A × [t,+∞)

)
|σ{η}

 − e−tµ(A)

= E

 κ∑
n=1

δXn(A)I{Yn≥t}|σ{η}

 − e−tµ(A)

= e−t E

 κ∑
n=1

δXn(A)|σ{η}

 − e−tµ(A) by independence

= e−t η̂(A) ,

which gives us (2.2.3).

The above discussion also gives us a natural exchangeable pair coupling on Poisson Wiener
chaos, that is, given f ∈ L2

s(µ
p), Iηp( f ) and Iη

t

p ( f ) are exchangeable.

It is clear to us/readers now: we have constructed exchangeable pairs on three chaoses, and
we shall apply our plug-in results (i.e. Propositions 2.1.2, 2.1.3 ).

Let us hold on for a while and recall that the random variable F in Proposition 2.1.2 is required
to be in L4(P). If F is in a Gaussian Wiener chaos, then automatically, F has finite moment of
any order, which, however, is not the case on the Poisson space and in the general Rademacher
setting. And moreover, the set of finitely many Poisson Wiener chaoses (or Rademacher chaoses)
is not stable under multiplication. As a consequence, L(FG) may be ill-defined for general
F,G ∈ Cηp ∪ C

η
q (p, q ∈ N). Same remark applies in the general Rademacher setting.
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The following lemma points out the situations, in which one can have the product of two
chaoses in finitely many chaoses.

Lemma 2.2.1. (i) Given p, q ∈ N and f ∈ L2
s(µ

p), g ∈ L2
s(µ

q), if F = Iηp( f ), G = Iηq(g) belong to
L4(P), then FG ∈ L2(P) has the finite chaos expansion:

FG = E[FG] +

p+q−1∑
k=1

Jk(FG) + Iηp+q
(
f ⊗̃g

)
.

(ii) Given p, q ∈ N and f ∈ H�p
0 , g ∈ H�q

0 , if F = Qp( f ), G = Qq(g) belong to L4(P), then
FG ∈ L2(P) has the finite chaos expansion:

FG = E[FG] +

p+q−1∑
k=1

Jk(FG) + Qp+q
(
f ⊗̃gI4p+q

)
.(2.2.4)

In particular, if Q1(h) belongs to L4(P) for some h ∈ H, then

Q1(h)2 = ‖h‖2H + Q1(w) + Q2
(
h⊗̃hI42

)
with w(k) =

h(k)2(qk − pk)
√

pkqk
, k ∈ N.

Proof. (i) See [32, Lemma 2.4] for a proof. (ii) See [30, Lemma 2.3] or [P5, Lemma 2.1] for a
proof. Here we only provide an alternative proof for (ii): one can first truncate the kernels, that
is, put fn = f I[n]p , gn = gI[n]q and Fn = Qp( fn), Gn = Qq(gn), then it is easy to see

FnGn = E[FnGn] +

p+q−1∑
k=1

Jk(FnGn) + Qp+q
(
fn⊗̃gnI4p+q

)
,(2.2.5)

while it follows from martingale convergence theorem that E
[
F|σ{X1, . . . , Xn}

]
= Fn converges

in L4(P) to F and in the same way, Gn converges in L4(P) to G, thus FnGn converges in L2(P)
to FG, as n → +∞. Note also that Jk is bounded linear operator on L2(Ω, σ{X},P). Thus, the
equality (2.2.4) follows from (2.2.5) by passing n to infinity. �

Remark 2.2.1. Given X ∈ {W, η,Y} and p, q ∈ N, if F ∈ CXp, G ∈ CXq have finite fourth moments,
then by product formula (1.2.9) (in the Gaussian setting) and Lemma 2.2.1, we conclude that
Γ(F,G) is well defined and belongs to L2(P). Moreover, it has the following nice chaos expansion:

Γ(F,G) =
p + q

2
E[FG] +

p+q−1∑
k=1

p + q − k
2

Jk(FG) ,(2.2.6)

and as a consequence of the orthogonality properties, one deduces that

Var
(
Γ(F,G)

)
≤

(p + q − 1)2

4

p+q−1∑
k=1

Var
(
Jk(FG)

)
≤ max{p2, q2}

p+q−1∑
k=1

Var
(
Jk(FG)

)
.(2.2.7)
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We will close this chapter with the following crucial result, which links the exchangeable
pairs to carré du champ via regression.

Proposition 2.2.1. Fix p, q ∈ N and let (F, Ft) and (G,Gt) be two exchangeable pairs of random
variables in any of the following three cases:

• F = IW
p ( f ), Ft = IW t

p ( f ) and G = IW
q (g), Gt = IW t

q (g) for some f ∈ L2
s(µ

p), g ∈ L2
s(µ

q);

• F = Iηp( f ), Ft = Iη
t

p ( f ) and G = Iηq(g), Gt = Iη
t

q (g) for some f ∈ L2
s(µ

p), g ∈ L2
s(µ

q);

• F = Qp( f ; Y), Ft = Qp( f ; Yt) and G = Qq(g; Y), Gt = Qq(g; Yt) for some f ∈ H�p
0 ,

g ∈ H�q
0 .

If F,G ∈ L4(P), then, with X ∈ {W, η,Y} corresponding to any of the above cases,

(a) lim
t↓0

1
t
E
[
Ft − F|σ{X}

]
= LF = −pF in L4(P).

(b) lim
t↓0

1
t
E
[
(Ft − F)(Gt −G)|σ{X}

]
= 2Γ(F,G), with the convergence in L2(P).

(c) lim
t↓0

1
t
E
[
(Ft − F)4] = −4pE[F4] + 12E

[
F2Γ(F)

]
≥ 0.

Proof. By the Mehler formula (2.2.1), we have

1
t
E
[
Ft − F|σ{X}

]
=

Pt(F) − F
t

=
e−pt − 1

t
F ,

converges in L4(P) to −pF = LF, as t ↓ 0. By Lemma 2.2.1, FG has a finite chaos expansion of
the form:

• when X = W, FG = E[FG] +
∑p+q

k=1 IW
k ( fk) for some fk ∈ L2

s(µ
k), k = 1, . . . , p + q;

• when X = η, FG = E[FG] +
∑p+q

k=1 Iηk (gk) for some gk ∈ L2
s(µ

k), k = 1, . . . , p + q;

• when X = Y, FG = E[FG] +
∑p+q

k=1 Qk
(
hk; Y

)
for some hk ∈ H

�k
0 , k = 1, . . . , p + q.

Therefore, accordingly, FtGt can be expressed as follows:

• when X = W, FtGt = E[FG] +
∑p+q

k=1 IW t

k ( fk);

• when X = η, FtGt = E[FG] +
∑p+q

k=1 Iη
t

k (gk);

• when X = Y, FtGt = E[FG] +
∑p+q

k=1 Qk
(
hk; Yt).
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It follows immediately that

1
t
E
[
FtGt − FG|σ{X}

]
=



p+q∑
k=1

1
t
E
[
IW t

k ( fk) − IW
k ( fk)|σ{W}

]
when X = W ;

p+q∑
k=1

1
t
E
[
Iη

t

k (gk) − Iηk (gk)|σ{η}
]

when X = η ;

p+q∑
k=1

1
t
E
[
Qk

(
hk; Yt) − Qk

(
hk; Y

)
|σ{Y}

]
when X = Y .

Thus, in L2(P) and as t ↓ 0,

1
t
E
[
FtGt − FG|σ{X}

]
−→

p+q∑
k=1

−k Jk(FG) = L(FG)

Hence, we infer that in L2(P) and as t ↓ 0,

1
t
E
[
(Ft − F)(Gt −G)|σ{X}

]
=

1
t
E
[
FtGt − FG|σ{X}

]
− F
E[Gt −G|σ{X}]

t
−G
E[Ft − F|σ{X}]

t
→ L(FG) − FLG −GLF = 2 Γ(F,G) .

Since the pair (F, Ft) is exchangeable, we can write

E
[
(Ft − F)4] =E

[
F4

t + F4 − 4F3
t F − 4F3Ft + 6F2

t F2]
= 2E[F4] − 8E

[
F3Ft

]
+ 6E

[
F2F2

t
] (

by exchangeability of (F, Ft)
)

= 4E
[
F3(Ft − F)

]
+ 6E

[
F2(Ft − F)2] (after rearrangement)

= 4E
[
F3E[Ft − F|σ{X}]

]
+ 6E

[
F2E[(Ft − F)2|σ{X}]

]
.

so (c) follows immediately from (a),(b) and the fact that F ∈ L4(P). �

Remark 2.2.2. (1) In fact, the statement (a) implies (b) and (c). In the paper [P3] written
with Ivan Nourdin, we made a novel observation that in the Gaussian setting, once we have
an infinitesimal version of exchangeable pairs of multiple Wiener-Itô integrals verifying the
asymptotic linear regression (a), the quadratic regression (b) and the fourth order regression (c)
follow immediately. In the same paper, we presented another construction of exchangeable pairs
via the Gibbs sampling procedure; see [P3, Section 4] for more details.

(2) As we can see from the above proof, this implication also holds true on the Poisson space and
in the Rademacher setting. However, there is one noticeable difference, that is, in the Gaussian
setting, due to the diffusion property, −4pE[F4] + 12E

[
F2Γ(F, F)

]
= 0; while this quantity is

believed to be strictly positive in the discrete settings, otherwise, F could be a random variable
with density, in view of Proposition 2.1.2, see also Remark 3.1.1.



Chapter 3

Fourth moment phenomena via
exchangeable pairs

This chapter presents detailed proofs of results stated in Section 1.4. More precisely, in Section 3.1 we
present unified proofs for FMTs on the Gaussian and Poisson spaces. The second section is devoted
to the extension of our strategy to the Rademacher setting, while the last section covers a collection of
universality results about homogeneous sums.

Abstract

3.1 FMTs on Gaussian and Poisson space

3.1.1 Main results
Let us first consider the univariate case and state one of the main results in this chapter.

Theorem 3.1.1. (i) Fix p ∈ N and F ∈ Cηp such that F ∈ L4(P) and σ :=
√

Var(F) > 0. Then

dW
(
F,N(0, σ2)

)
≤

 2p − 1

pσ
√

2π
+

2
3σ

√
4p − 3

p

 √
E
[
F4] − 3σ4 .

(ii) Fix an integer p ≥ 2 and F ∈ CW
p such that σ :=

√
Var(F) > 0, then

dTV
(
F,N(0, σ2)

)
≤

2p − 1
σ2 p

√
E
[
F4] − 3σ4

and

dW
(
F,N(0, σ2)

)
≤

2p − 1

pσ
√

2π

√
E
[
F4] − 3σ4 .

The coefficient in the above total-variation bound can be improved to
2
σ2

√
p − 1
3p

, see Theorem

5.2.6 in [67].

45
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Proof of Theorem 3.1.1. First we can write F = IXp ( f ) for some f ∈ L2
s(µ

p), where X = W or
X = η depending on whether F ∈ CW

p or F ∈ Cηp. Now we define Ft = IX
t

p ( f ) and we deduce from
Proposition 2.2.1 that as t ↓ 0,

•
1
t
E
[
Ft − F|σ{X}

]
→ −pF in L4(P), •

1
t
E
[
(Ft − F)2|σ{X}

]
→ 2Γ(F) in L2(P),

•
1
t
E
[
(Ft − F)4]→ 4p

(3
p
E
[
F2Γ(F)

]
− E[F4]

)
.

It follows from Proposition 2.1.2, with S =
2
σ2 Γ(F)−2p and ρ(F) =

4p
σ4

(3
p
E
[
F2Γ(F)

]
−E[F4]

)
that

dW
(
F,N(0, σ2)

)
≤

2

σp
√

2π
E
[
|Γ(F) − pσ2|

]
+

2
√

2
3σ

√
3
p
E
[
F2Γ(F)

]
− E[F4] .

Since E[Γ(F)
]

= pσ2, by Cauchy-Schwarz we have E
[
|Γ(F) − pσ2|

]
≤

√
Var

(
Γ(F)

)
. Therefore,

we get

dW
(
F,N(0, σ2)

)
≤

√
2/π
σ

√
Var

(
p−1Γ(F)

)
+

2
√

2
3σ

√
3
p
E
[
F2Γ(F)

]
− E[F4] .

If in addition, F ∈ CW
p , we have

3
p
E
[
F2Γ(F)

]
− E[F4] = 0 and the above bound reduces to

dW
(
F,N(0, σ2)

)
≤

√
2/π
σ

√
Var

(
p−1Γ(F)

)
,

and we can also deduce from Proposition 2.1.2 that

dTV
(
F,N(0, σ2)

)
≤

2
pσ2E

[
|Γ(F) − pσ2|

]
≤

2
σ2

√
Var

(
p−1Γ(F)

)
.

It remains to estimate the two quantities: Var
(
p−1Γ(F)

)
and

3
p
E
[
F2Γ(F)

]
− E[F4]. Then our

theorem follows from the following Lemma 3.1.1. �

The following result was contained in Lemmas 3.1 and 3.2 of [32] for the Poisson space. Its
proof verbatim works on the Gaussian space.

Lemma 3.1.1. Given F ∈ L4(P) ∩ CXp with p ∈ N and X ∈ {W, η}, we have

(3.1.1) Var
(
Γ(F)

)
≤

(2p − 1)2

4
(
E[F4] − 3E[F2]2) ,

and

(3.1.2) 0 ≤
3
p
E
[
F2Γ(F)

]
− E

[
F4] ≤ 4p − 3

2p
(
E
[
F4] − 3E

[
F2]2)

.
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Remark 3.1.1. (i) The first inequality in (3.1.2) was proved in [32] under the assumption (A).
Indeed, the authors of [32] were able to use Mecke’s equation to prove that under the assumption
(A),

3
p
E
[
F2Γ(F)

]
− E

[
F4] =

1
2p

ˆ
Z

E
[
|D+

z F|4
]
µ(dz) ≥ 0 .

However, this inequality is trivial to us, in view of the following limit

lim
t↓0

1
t
E
[
(Ft − F)4] = 4p

(3
p
E
[
F2Γ(F)

]
− E[F4]

)
.

(ii) Due to the discrete structure of the Poisson space, the quantity

3
p
E
[
F2Γ(F)

]
− E

[
F4]

is believed to be strictly positive for nonzero random variable F ∈ Cηp. Unfortunately, we do not
have a rigorous proof. Here is some heuristic argument: if we have the equality in (3.1.2), by our
proof of Theorem 3.1.1, we would obtain

dTV
(
F,N(0,Var(F))

)
≤

2
Var(F)

√
E[F4] − 3E[F2]2 ,

which is unlikely true. For instance, we can consider the normalized partial sums of i.i.d
standard Poisson random variables: their fourth cumulants will vanish asymptotically, while
their total-variation distance to the standard Gaussian is always one.

Remark 3.1.2. (i) To appreciate more the simplicity of our strategy, we sketch Döbler and
Peccati’s proof in [32] here: they started with the pathwise representation of Malliavin
derivative D and carré du champ Γ, and along the lines1 of discrete Malliavin-Stein
approach, they were able to obtain (see Proposition 4.1 in [32])

dW
(
F,N(0, 1)

)
≤

√
Var

(
q−1Γ(F)

)
+

1
√

q

(ˆ
Z

E
[
|D+

z F|4
]
µ(dz)

)1/2

where F ∈ Cηq has unit variance and satisfies some integrability conditions; as we already
mentioned in point (i) of Remark 3.1.1, under their assumption (A), the second term in the
bound can be re-expressed as a multiple of 3p−1E

[
F2Γ(F)

]
−E

[
F4]. The rest of their proof

consists of a straightforward application of Lemma 3.1.1. It is still surprising to ourselves
that our use of exchangeable pairs miraculously helps us to avoid the assumption (A).

(ii) Note that Döbler and Peccati [32] also provided a Berry-Esséen bound with same order as
the Wasserstein bound, under a local version of their assumption (A). We are not sure if
our strategy can prove it under the weakest possible assumption of finite fourth moment.

The following lemma provides us with some generalization of Lemma 3.1.1 that will be useful
for our multivariate results. The points (ii) and (iii) are motivated by Proposition 3.6 in [17].

1One may want to compare the bound with that in (1.3.8).
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Lemma 3.1.2. Fix X ∈ {W, η} and integers p, q ≥ 1. Let F ∈ CXp and G ∈ CXq have finite fourth
moments.

(i) The following inequality generalizes (3.1.1):

(3.1.3) Var
(
Γ(F,G)

)
≤

(p + q − 1)2

4

(
E
[
F2G2] − 2E[FG]2 − Var(F)Var(G)

)
.

(ii) If p < q, then

0 ≤ Cov(F2,G2) = E
[
F2G2] − Var(F)Var(G) ≤

√
E[F4]

√
E[G4] − 3E[G2]2 .(3.1.4)

(iii) If p = q, then

0 ≤ Cov(F2,G2) − 2E[FG]2 ≤ 2
√(
E[F4] − 3E[F2]2)(E[G4] − 3E[G2]2) .(3.1.5)

The proof of this lemma is postponed to Section 3.1.2.

Now let us state the multivariate fourth-moment bound.

Theorem 3.1.2 (C. Döbler, A. Vidotto and G. Zheng, 2017). Fix integers d ≥ 2 and 1 ≤ q1 ≤

. . . ≤ qd. Consider F = (F1, . . . , Fd)T with F j ∈ C
η
q j ∩ L4(P) for each j ∈ [d] and assume Σ is the

covariance matrix of F. Then, with N ∼ N(0,Σ), we have

d3(F,N) ≤
 (2qd − 1)

√
2d

4q1
+

2qd
√

dTr(Σ)
9q1

 d∑
i=1

√
E[F4

i ] − 3E[F2
i ]2

+
(2qd − 1)

√
2d

4q1

 d−1∑
i=1

E[F4
i ]1/4

 d∑
j=2

(
E[F4

j ] − 3E[F2
j ]

2)1/4
.(3.1.6)

If in addition, Σ is positive definite, then we have

d2(F,N) ≤

 (2qd − 1)‖Σ−1/2‖op

q1
√
π

+
qd
√

2π‖Σ−1/2‖op
√

Tr(Σ)
6q1

 d∑
i=1

√
E[F4

i ] − 3E[F2
i ]2

+
(2qd − 1)‖Σ−1/2‖op

q1
√
π

 d−1∑
i=1

E[F4
i ]1/4

 d∑
j=2

(
E[F4

j ] − 3E[F2
j ]

2)1/4
.(3.1.7)

Proof. Assume that F =
(
F1, . . . , Fd

)T
=

(
Iηq1( f1), . . . , Iηqd ( fd)

)T with f j ∈ L2
s(µ

q j) for each j ∈ [d].
For each t ∈ R+, we define Ft =

(
F1,t, . . . , Fd,t

)T
=

(
Iη

t

q1( f1), . . . , Iη
t

qd ( fd)
)T . Then, it is clear that

(Ft, F) is an exchangeable pair and by Proposition 2.2.1, we deduce

E

[
1
t
(Fi,t − Fi)(F j,t − F j) − 2Γ(Fi, F j)

∣∣∣ σ{η} ] in L2(P)
−−−−−→
as ε ↓ 0

0 .



Part I: Fourth moment phenomena via exchangeable pairs 49

Therefore, as t ↓ 0 and in L1(P), we have∥∥∥∥∥1
t
E
[
(Ft − F)(Ft − F)T |σ{η}

]
−

(
2Γ(Fi, F j)

)
1≤i, j≤d

∥∥∥∥∥2

HS

=

d∑
i, j=1

(
E

[
1
t
(Fi,t − Fi)(F j,t − F j) − 2Γ(Fi, F j)

∣∣∣ σ{η} ] )2

→ 0 .

It is easy to see that for each j ∈ [d],

lim
t↓0

1
t
E
[
F j,t − F j|σ{η}

]
= −q jF j in L4(P),

from which we deduce that as t ↓ 0 and in L2(P), we have∥∥∥∥∥ 1
t
E
[
Ft − F|σ{η}

]
− ΛF

∥∥∥∥∥2

Rd
=

d∑
j=1

(
E

[
F j,t − F j

t
+ q jF j

∣∣∣σ{η}])2

→ 0 ,

with Λ = diag(q1, . . . , qd) in such a way that ‖Λ−1‖op = 1/q1.

It is also clear that, for each i ∈ [d],

ρi(F) := lim
t↓0

1
t
E
[
(Fi,t − Fi)4] = −4qi E[F4

i ] + 12E
[
F2

i Γ(Fi, Fi)
]

≤ 2(4qi − 3)
(
E[F4

i ] − 3E[F2
i ]2

)
by (3.1.2).

Now define S i, j := 2Γ(Fi, F j)−2qi Σi, j for i, j ∈ [d], and observe in particular that S i, j is centered.
Thus, √√

d∑
i=1

2Λi,iΣi,i

√√
d∑

i=1

ρi(F) ≤

√√
d∑

i=1

2qiΣi,i

√√
d∑

i=1

2(4qi − 3)
(
E[F4

i ] − 3E[F2
i ]2

)
≤

√
4qd(4qd − 3)Tr(Σ)

√√
d∑

i=1

(
E[F4

i ] − 3E[F2
i ]2

)
≤ 4qd

√
Tr(Σ)

d∑
i=1

√
E[F4

i ] − 3E[F2
i ]2 ,(3.1.8)

where the last inequality follows from the elementary fact that
√

a1 + . . . + ad ≤
√

a1 + . . .+
√

ad

for any nonnegative reals a1, . . . , ad.

Now we consider E
[
‖S ‖HS

]
:

E
[
‖S ‖HS

]
≤

 d∑
i, j=1

E[S 2
i, j]


1/2

= 2

 d∑
i, j=1

Var
(
Γ(Fi, F j)

)
1/2

.(3.1.9)
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It follows from (3.1.3) that

d∑
i, j=1

Var
(
Γ(Fi, F j)

)
≤

d∑
i, j=1

(qi + q j − 1)2

4

(
E[F2

i F2
j ] − 2E[FiF j]2 − Var(Fi)Var(F j)

)
≤

(2qd − 1)2

4

d∑
i, j=1

(
E[F2

i F2
j ] − 2E[FiF j]2 − Var(Fi)Var(F j)

)
=

(2qd − 1)2

4
E
[
‖F‖4 − ‖N‖4

]
,(3.1.10)

where the last equality is a consequence of the fact that (see e.g. (4.2) in [72])

E
[
‖N‖4

]
=

d∑
i, j=1

(
Σi,iΣ j, j + 2Σ2

i, j
)
.

It follows from Proposition 2.1.3 that

d3(F,N) ≤
(2qd − 1)

√
d

4q1

√
E
[
‖F‖4 − ‖N‖4

]
+

2qd
√

dTr(Σ)
9q1

d∑
i=1

√
E[F4

i ] − 3E[F2
i ]2(3.1.11)

and if in addition Σ is positive definite, we have

d2(F,N) ≤
(2qd − 1)‖Σ−1/2‖op

q1
√

2π

√
E
[
‖F‖4 − ‖N‖4

]
+

qd‖Σ
−1/2‖op

√
2πTr(Σ)

6q1

d∑
i=1

√
E[F4

i ] − 3E[F2
i ]2 .(3.1.12)

Hence we can conclude our proof by evoking the following Lemma 3.1.3. �

Remark 3.1.3. It follows from Remark 2.1.2 that given q1 ≤ . . . ≤ qd, if F = (F1, . . . , Fd)T

satisfies that F j ∈ C
W
q j

for each j ∈ [d] and that Σ is the covariance matrix of F, then with
N ∼ N(0,Σ), we have

d2(F,N) ≤
‖Λ−1‖op

√
d

4
E
[
‖S ‖HS

]
≤

(2qd − 1)
√

d
4q1

√
E
[
‖F‖4 − ‖N‖4

]
;

if in addition Σ is positive definite, we have

dW(F,N) ≤
‖Λ−1‖op‖Σ

−1/2‖op
√

2π
E
[
‖S ‖HS

]
≤

(2qd − 1)‖Σ−1/2‖op

q1
√

2π

√
E
[
‖F‖4 − ‖N‖4

]
.

See also Theorem 4.3 in [72].

One can see from (3.1.10) that E
[
‖F‖4 − ‖N‖4

]
≥ 0, and the following result provides the

upper bound for E
[
‖F‖4 − ‖N‖4

]
.
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Lemma 3.1.3. Let F,N be given as in Theorem 3.1.2, then

E
[
‖F‖4 − ‖N‖4

]
≤ 2

 d∑
i=1

√
E[F4

i ] − 3E[F2
i ]2

2

+ 2

 d−1∑
i=1

√
E[F4

i ]

 d∑
j=2

√
E[F4

j ] − 3E[F2
j ]2 .

In particular, if q1 = . . . = qd, one has,

E
[
‖F‖4 − ‖N‖4

]
≤ 2

 d∑
i=1

√
E[F4

i ] − 3E[F2
i ]2

2

.

Proof. Let us first consider the particular case where q1 = . . . = qd. One obtains from Lemma
3.1.2 that

E
[
‖F‖4 − ‖N‖4

]
=

d∑
i, j=1

(
E[F2

i F2
j ] − 2E[FiF j]2 − Var(Fi)Var(F j)

)
≤ 2

d∑
i, j=1

√(
E[F4

i ] − 3E[F2
i ]2)(E[F4

j ] − 3E[F2
j ]2) = 2

 d∑
i=1

√
E[F4

i ] − 3E[F2
i ]2

2

.

In the general case where q1 ≤ . . . ≤ qd, Lemma 3.1.2 implies

E
[
‖F‖4 − ‖N‖4

]
=

d∑
i, j=1

I(qi=q j)

(
Cov(F2

i , F
2
j ) − 2E[FiF j]2

)
+ 2

∑
1≤i< j≤d

I(qi<q j)Cov(F2
i , F

2
j )(3.1.13)

≤ 2

 d∑
i=1

√
E[F4

i ] − 3E[F2
i ]2

2

+ 2
∑

1≤i< j≤d

√
E[F4

i ]
√(
E[F4

j ] − 3E[F2
j ]2) .

One can rewrite
∑

1≤i< j≤d

as
d∑

j=2

j−1∑
i=1

and then the desired result follows. �

Remark 3.1.4. (i) With the notation and assumptions given as in Theorem 3.1.2, if in addition
q1 = qd, that is, all the component of the random vector F belong to the same Poisson Wiener
chaos, then we can obtain better bounds, namely:

d3(F,N) ≤
2qd − 1)

√
2d

4q1
+

2qd
√

dTr(Σ)
9q1

 d∑
i=1

√
E[F4

i ] − 3E[F2
i ]2 .

If in addition Σ is positive definite, we have

d2(F,N) ≤
 (2qd − 1)‖Σ−1/2‖op

q1
√
π

+
qd‖Σ

−1/2‖op
√

2πTr(Σ)
6q1

 d∑
i=1

√
E[F4

i ] − 3E[F2
i ]2 .
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(ii) Following the assumptions in Remark 3.1.3 and assuming in addition that q1 = qd, we get

d2(F,N) ≤
(2qd − 1)

√
2d

4q1

d∑
i=1

√
E[F4

i ] − 3E[F2
i ]2 ;

if in addition Σ is positive definite, we have

dW(F,N) ≤
(2qd − 1)‖Σ−1/2‖op

q1
√
π

d∑
i=1

√
E[F4

i ] − 3E[F2
i ]2 ;

for the general case where q1 ≤ q2 ≤ . . . ≤ qd, one can also obtain fourth moment bounds in d2

distance and Wasserstein distance. We refer interested readers to the paper [60] by Noreddine
and Nourdin and in particular, one may want to compare this remark and Remark 3.1.3 with
Theorem 1.5 therein.

We conclude this section with the Peccati-Tudor theorem on the Poisson space, which is an
easy corollary of our Theorem 3.1.2.

Corollary 3.1.1 (C. Döbler, A. Vidotto and G. Zheng, 2017). Fix d ∈ N and q1, . . . , qd ∈ N
and suppose that, for each n ∈ N, F(n) := (F(n)

1 , . . . , F(n)
d )T is a random vector such that each

F(n)
k belongs to the qk-th Poisson Wiener chaos. Moreover, assume that Σ is a fixed nonnegative

definite matrix and that N = (N1, . . . ,Nd)T is a centered Gaussian vector with covariance matrix
Σ. Assume that the following two conditions hold true:

(i) The covariance matrix of F(n) converges to Σ as n→ ∞.

(ii) For each 1 ≤ k ≤ d it holds that limn→∞ E
[
(F(n)

k )4] = 3Σ2
k,k.

Then, as n→ ∞, the random vector F(n) converges in distribution to N.

Remark 3.1.5. The condition (ii) in Corollary 3.1.1 can be replaced by the following equivalent
condition:

lim
n→+∞

E
[
‖F(n)‖4

]
= E

[
‖N‖4

]
.

The equivalence is not trivial: assume (ii), then the above limit follows from Lemma 3.1.3; for
the converse direction, we assume (i) and limn→+∞ E

[
‖F(n)‖4

]
= E

[
‖N‖4

]
, then by (3.1.10), we

have Var
(
Γ(F(n)

i )
)
→ 0 for each i ∈ [d]. As we will see in Remark 3.1.6-(2),

E[F4] − 3E[F2]2 ≤
6
p

Var
(
Γ(F)

)
for any F ∈ Cηp, then (ii) follows immediately.
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3.1.2 Proof of Lemma 3.1.2 and Remarks
In this section, we first provide the proof of Lemma 3.1.2. The following result from [72, Lemma
2.2] will be helfpul.

Lemma 3.1.4 (I. Nourdin and J. Rosiński, 2014). Given p, q ∈ N, f ∈ L2
s(µ

p) and g ∈ L2
s(µ

q),
we have

(p + q)! ‖ f ⊗̃g‖2 = p!q!
p∧q∑
r=0

(
p
r

)(
q
r

)
‖ f ⊗r g‖2 ≥ p!q! ‖ f ‖2‖g‖2 + I{p=q}p!q! 〈 f , g〉2 ,

and in the case of p = q, one has

(2p)!
〈

f ⊗̃ f , g⊗̃g
〉

= 2p!2 〈 f , g〉2 +

p−1∑
r=1

p!2
(
p
r

)2〈
f ⊗r g, g ⊗r f

〉
.

Here we follow the convention that
0∑

r=1

= 0.

Proof of Lemma 3.1.2. Without loss of generality, we assume F = Iηp( f ) and G = Iηq(g) for some
f ∈ L2

s(µ
p) and g ∈ L2

s(µ
q). The proof on the Gaussian space works verbatim as follows.

First it follows from Lemma 2.2.1-(i) and Remark 2.2.1 that Jp+q(FG) = Iηp+q( f ⊗̃g) and

2 Γ(F,G) = (p + q)E
[
FG

]
+

p+q−1∑
k=1

(p + q − k) Jk(FG) .(3.1.14)

It follows from Remark 2.2.1 that Var
(
Γ(F,G)

)
≤

(p+q−1)2

4

∑p+q−1
k=1 Var

(
Jk(FG)

)
. Similarly, as

FG ∈ L2(P), we have FG = E[FG] +
∑p+q

k=1 Jk(FG) so that

E[F2G2] = E[FG]2 +

p+q−1∑
k=1

Var
(
Jk(FG)

)
+ Var

(
Jp+q(FG)

)
= E[FG]2 +

p+q−1∑
k=1

Var
(
Jk(FG)

)
+ (p + q)!‖ f ⊗̃g‖2 .(3.1.15)

It follows from Lemma 3.1.4 that (p + q)!‖ f ⊗̃g‖2 ≥ Var(F)Var(G) + E[FG]2. Hence

Var
(
Γ(F,G)

)
≤

(p + q − 1)2

4

p+q−1∑
k=1

Var
(
Jk(FG)

)
=

(p + q − 1)2

4

(
E[F2G2] − E[FG]2 − (p + q)!‖ f ⊗̃g‖2

)
≤

(p + q − 1)2

4

(
E[F2G2] − 2E[FG]2 − Var(F)Var(G)

)
.(3.1.16)
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In particular, Lemma 3.1.4, applied to p = q and f = g, gives us

(2p)!‖ f ⊗̃ f ‖2 = 2p!2‖ f ‖4 + p!2
p−1∑
r=1

(
p
r

)2

‖ f ⊗r f ‖2 ,

therefore implying

Var
(
Γ(F)

)
≤

(2p − 1)2

4

(
E[F4] − E[F2]2 − (2p)!‖ f ⊗̃ f ‖2

)
=

(2p − 1)2

4

E[F4] − 3E[F2]2 − p!2
p−1∑
r=1

(
p
r

)2

‖ f ⊗r f ‖2
 .

This proves (3.1.1) and

p!2
p−1∑
r=1

(
p
r

)2

‖ f ⊗r f ‖2 ≤ E[F4] − 3E[F2]2 .(3.1.17)

It is also clear from (3.1.16) that

2p−1∑
k=1

Var
(
Jk(F2)

)
≤ E[F4] − 3E[F2]2 .(3.1.18)

By now, we have proved (i) of Lemma 3.1.2. Now let us prove (ii) and (iii).

To see Cov(F2,G2) ≥ 0, it is enough to rewrite Cov(F2,G2) using (3.1.15) and Lemma 3.1.4:

Cov(F2,G2) = 2E[FG]2 +

p+q−1∑
k=1

Var
(
Jk(FG)

)
+ p!q!

p∧q∑
r=1

(
p
r

)(
q
r

)
‖ f ⊗r g‖2 .(3.1.19)

Now we turn to the upper bounds for Cov(F2,G2). First by Lemma 2.2.1-(i), we have
J2p(F2) = Iη2p( f ⊗̃ f ) and J2q(G2) = Iη2q(g⊗̃g). Moreover, one has

E[F2G2] = E

F2
2q∑

k=0

Jk(G2)

 = E
[
F2J0(G2)

]
+ E

[
F2J2q(G2)

]
+ E

F2
2q−1∑
k=1

Jk(G2)


= Var(F)Var(G) + E

[
F2 J2q(G2)

]
+ E

F2
2q−1∑
k=1

Jk(G2)

 .
If p < q, then E

[
F2 J2q(G2)

]
= 0, so that

Cov(F2,G2) = E

F2
2q−1∑
k=1

Jk(G2)

 ≤ √
E[F4]

√√√2q−1∑
k=1

Var
(
Jk(G2)

)
,

where the above inequality follows from Cauchy-Schwarz inequality and isometry property. The
desired result (3.1.4) follows from (3.1.18).
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Now we consider the case where p = q,

E

F2
2p−1∑
k=1

Jk(G2)

 =

2p−1∑
k=1

E
[
Jk(F2)Jk(G2)

]
≤

√√√2p−1∑
k=1

Var
(
Jk(F2)

) √√√2p−1∑
k=1

Var
(
Jk(G2)

)
(by Cauchy-Schwarz)

≤

√(
E[F4] − 3E[F2]2)(E[G4] − 3E[G2]2) due to (3.1.18).

By orthogonality property, we have

E
[
J2p(F2)J2p(G2)

]
= (2p)!

〈
f ⊗̃ f , g⊗̃g

〉
= 2p!2〈 f , g〉2 +

p−1∑
r=1

p!2
(
p
r

)2〈
f ⊗r g, g ⊗r f

〉
,

where the last equality follows from Lemma 3.1.4. As a consequence, one has

E
[
F2J2p(G2)

]
− 2E[FG]2 =

p−1∑
r=1

p!2
(
p
r

)2〈
f ⊗r g, g ⊗r f

〉
≤

p−1∑
r=1

p!2
(
p
r

)2∥∥∥ f ⊗r g
∥∥∥2

by Cauchy-Schwarz. Note that, by definition of contractions and Fubini theorem, we have
‖ f ⊗r g‖2 = 〈 f ⊗p−r f , g ⊗p−r g〉 for each r = 1, . . . , p − 1. Thus,

p−1∑
r=1

p!2
(
p
r

)2∥∥∥ f ⊗r g
∥∥∥2

=

p−1∑
r=1

p!2
(
p
r

)2〈
f ⊗p−r f , g ⊗p−r g

〉
=

p−1∑
r=1

p!2
(
p
r

)2〈
f ⊗r f , g ⊗r g

〉
≤

p−1∑
r=1

p!2
(
p
r

)2

‖ f ⊗r f ‖ × ‖g ⊗r g‖2 (by Cauchy-Schwarz)

≤

√√√ p−1∑
r=1

p!2

(
p
r

)2

‖ f ⊗r f ‖2

√√√ p−1∑
r=1

p!2

(
p
r

)2

‖g ⊗r g‖2 (by Cauchy-Schwarz)

≤
√
E[F4] − 3E[F2]2

√
E[G4] − 3E[G2]2 due to (3.1.17).

Hence, we obtain

Cov(F2,G2) − 2E[FG]2 = E
[
F2 J2p(G2)

]
− 2E[FG]2 + E

F2
2p−1∑
k=1

Jk(G2)


≤ 2

√
E[F4] − 3E[F2]2

√
E[G4] − 3E[G2]2 .

The proof of Lemma 3.1.2 is completed now. �

For the sake of completeness, let us provide a quick proof of Lemma 3.1.1.
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Proof of Lemma 3.1.1 . Note the inequality (3.1.1) in Lemma 3.1.1 is recovered by taking F = G
in (3.1.3) and the second inequality in (3.1.2) can be proved in similar lines: we write F2 =

E[F2] +
∑2p

k=1 Jk(F2) and by (3.1.14)

Γ(F) = pE[F2] +
1
2

2p−1∑
k=1

(2p − k)Jk(F2) .(3.1.20)

So by orthogonality and (3.1.18), we have

−E[F4] +
3
p
E
[
F2 Γ(F)

]
= −E[F4] + 3E[F2]2 +

3
2p

2p−1∑
k=1

(2p − k) Var
(
Jk(F2)

)
≤ −E[F4] + 3E[F2]2 +

3(2p − 1)
2p

(
E[F4] − 3E[F2]2) =

4p − 3
2p

κ4(F) ,

where κ4(F) := E[F4] − 3E[F2]2. This gives us the second inequality in (3.1.2). �

There are several interesting relations in the above proof. We will summarize them in the
following remark.

Remark 3.1.6. (1) Let F ∈ Cηp have nonzero variance, then it holds true that E[F4] > 3E[F2]2.
Indeed, we can always assume F ∈ L4(P). If p = 1, F = Iη1( f ) for some f ∈ L2(µ), then by
product formula (see e.g. Proposition 6.1 in [47]), one has E

[
Iη1( f )4] = 3 ‖ f ‖42 +

´
Z

f (z)4 dµ >
3E[F2]2. For p ≥ 2, F = Iηp( f ) for some f ∈ L2

s(µ
p), then according to (3.1.17), E[F4] = 3E[F2]2

would imply ‖ f ⊗1 f ‖2 = 0, which would further imply by standard arguments that f = 0
µ-almost everywhere, which is a contradiction to the fact that F is nonzero. If F ∈ CW

p with
p ≥ 2 and Var(F) > 0, the same argument will give us E[F4] > 3E[F2]2. Note that random
variables in the first Gaussian Wiener chaos are centered Gaussian distributed.

(2) Let F ∈ CXp ∩ L4(P), one has p
(
E[F4] − 3E[F2]2) ≤ 6Var

(
Γ(F, F)

)
, which shall be compared

with (3.1.1). In fact, it follows first from (3.1.2) that E[F4]−3E[F2]2 ≤ 3E
[
F2(p−1Γ(F)−E[F2]

)]
,

and by (3.1.20) and orthogonality property, we have

E
[
F2(Γ(F) − pE[F2]

)]
=

2p−1∑
k=1

2p − k
2

Var
(
Jk(F2)

)
≤

2p−1∑
k=1

(2p − k)2

2
Var

(
Jk(F2)

)
= 2Var

(
Γ(F)

)
,

hence p
(
E[F4] − 3E[F2]2) ≤ 6Var

(
Γ(F)

)
. This inequality also explains the equivalence in

Remark 3.1.5. Moreover, this echoes Nualart and Ortiz-Latorre’s work2 [75]: if Fn ∈ C
η
p has unit

variance for each n, then the following implication holds:

Γ(Fn)
n→+∞
−−−−−→ p in L2(P) =⇒ Fn

law
−−−−−→
n→+∞

N(0, 1) .

(3) Let F,N be given as in Theorem 3.1.2, then from (3.1.10) it follows that E
[
‖F‖4

]
≥ E

[
‖N‖4

]
.

Moreover, if one of the components F j in F has nonzero variance, it follows from the above two
points and again (3.1.10) that E

[
‖F‖4

]
> E

[
‖N‖4

]
.

2Recall that on the Gaussian space, Γ(Fn) = ‖DFn‖
2 if Fn ∈ C

W
p .
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(4) Let the assumptions in Proposition 1.4.1 prevail. It follows from (3.1.17) that

p!2
p−1∑
r=1

(
p
r

)2

‖ fn ⊗r fn‖
2 ≤ E[Iηp( fn)4] − 3E[Iηp( fn)2]2 .

If E[Iηp( fn)4] → 3 as n → +∞, then ‖ fn ⊗r fn‖ → 0 for each r ∈ {1, . . . , p − 1}. Therefore
by Nualart and Peccati’s FMT, E[IW

p ( fn)4] → 3 and moreover by Nourdin-Peccati bound,
dTV

(
IW

p ( fn),N
)
→ 0, as n → +∞. This completes the proof of our transfer principle, i.e.

Proposition 1.4.1.

(5) Fix F = IW
p ( f ) and G = IW

q (g) for some f ∈ L2
s(µ

p) and g ∈ L2
s(µ

q), with p, q ∈ N. The
equality (3.1.19) still holds true with the same proof. So it holds true that Cov(F2,G2) ≥ 0 with
equality only when ‖ f ⊗1 g‖ = 0. So one can easily see that Rosiński and Samorodnitsky’s
observation (Proposition 1.2.1) follows from Üstünel and Zakai’s result (Theorem 1.2.2).

(6) Fix F = Iηp( f ) ∈ L4(P) and G = Iηq(g) ∈ L4(P) for some f ∈ L2
s(µ

p) and g ∈ L2
s(µ

q), with
p, q ∈ N. The equality (3.1.19) gives us the following equivalence:

Cov(F2,G2) = 0 ⇔ ‖ f ⊗1 g‖ = 0 and FG = Iηp+q( f ⊗̃g).

This equivalence seems new to us. However, we have no idea to go further and get the equivalent
statement for F ⊥ G in terms of contractions. It is believed that F ⊥ G if and only if f ?0

1 g = 0,
while the proof has been elusive for a very long time. See [89] and references therein for more
information in this direction.

3.2 Extension to the Rademacher setting
In this section, we adapt our strategy to the Rademacher setting. We will present the main
results in Section 3.2.1 and defer the proofs of auxiliary lemmas in Section 3.2.2. The essential
difference from the proofs in previous section is that in Rademacher setting, we need to be very
careful about the off-diagonal part of the kernels, as shown in the following lemmas.

Lemma 3.2.1. Given F = Qp( f ) with f ∈ H�p
0 and G = Qq(g) with g ∈ H�q

0 , we assume that
F,G ∈ L4(P). Then we have the following estimates:

p+q−1∑
k=1

Var
(
Jk(FG)

)
≤ E

[
F2G2] − 2E[FG]2 − Var(F)Var(G) + (p + q)!

∥∥∥ f ⊗̃gI4c
p+q

∥∥∥2
,(3.2.1)

and in particular,

max
{ 2p−1∑

k=1

Var
(
Jk(F2)

)
, p!2

p−1∑
r=1

(
p
r

)2

‖ f ⊗r f ‖2
}
≤ E

[
F4] − 3E[F2]2 + (2p)!‖ f ⊗̃ f I4c

2p
‖2 ,(3.2.2)

with ∥∥∥ f ⊗̃gI4c
p+q

∥∥∥2
≤

p∧q∑
r=1

r!
(
p
r

)(
q
r

)
min

{
‖ f ‖2M(g), ‖g‖2M( f )

}
.(3.2.3)

As a convention, we put
∑0

r=1 = 0. The proof of this lemma will be presented in the end of this
section.
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Lemma 3.2.2. Given F = Qp( f ) ∈ L4(P) and G = Qq(g) ∈ L4(P) for some f ∈ H�p
0 and g ∈ H�q

0 .

If p = q, then

∣∣∣Cov(F2,G2) − 2E[FG]2
∣∣∣ ≤ 2

√(
κ4(F) + γqM( f )E[F2]

)(
κ4(G) + γqM(g)E[G2]

)(3.2.4)

+ min
{
‖ f ‖2

√
(2q)!γqE[G2]M(g), ‖g‖2

√
(2q)!γqE[F2]M( f )

}
.(3.2.5)

If p < q, then ∣∣∣Cov(F2,G2) − 2E[FG]2
∣∣∣ ≤ √

E[F4]
√
κ4(G) + γqE[G2]M(g) ,(3.2.6)

where γq :=
(2q)!

q!

q∑
r=1

r!
(
q
r

)2

.

3.2.1 Fourth moment-influence theorems

Let us first prove Döbler and Krokowski’s univariate fourth moment-influence theorem as an
illustration of our elementary strategy. The multivariate case is much more complicated and for
the convenience of readers, we recall the univariate result in the following.

Theorem 3.2.1 (C. Döbler and K. Krokowski, 2017). Fix p ∈ N and f ∈ H�p
0 satisfying

p!‖ f ‖2 = 1. Let Z be a standard Gaussian and F = Qp( f ; Y) ∈ L4(P), then,

dW
(
F,Z

)
≤ C1

√∣∣∣E[F4] − 3
∣∣∣ + C2

√
M( f ) ,

where C1 =
√

2/π +
4
3

and C2 =
(√

2/π +
2
√

6
3

)√ (2p)!
p!

p∑
r=1

r!
(
p
r

)2

.

Proof. Now given F = Qp
(
f ; Y

)
∈ L4(P) (with E

[
F2] = 1), we can get by using (2.2.7) and

(3.2.2) that

Var
(
p−1Γ(F)

)
≤

2p−1∑
k=1

Var
(
Jk(F2)

)
≤ E[F4] − 3E[F2]2 + (2p)!

∥∥∥ f ⊗̃ f I4c
2p

∥∥∥2

≤ E[F4] − 3E[F2]2 + γpE[F2]M( f ) ,(3.2.7)

with γp :=
(2p)!

p!

p∑
r=1

r!
(
p
r

)2

.

Using the chaos expansion of F2 and Γ(F) as well as the orthogonality property, we have
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0 ≤ 3E
[
F2Γ(F)

]
− pE[F4] = 3E

[
F2(Γ(F) − p

)]
− p

(
E[F4] − 3

)
= 3E


 2p∑

k=0

Jk(F2)


2p−1∑

k=1

2p − k
2

Jk(F2)


 − p

(
E[F4] − 3

)
≤ 3p

2p−1∑
k=1

Var
(
Jk(F2)

)
− p

(
E[F4] − 3

)
.

It follows from (3.2.7) that

0 ≤ 3E
[
F2Γ(F)

]
− pE[F4] ≤ 2p

(
E[F4] − 3

)
+ 3pγpM( f ) .(3.2.8)

Now define Ft = Qp
(
f ; Yt) for each t ∈ [0,+∞), then by Proposition 2.2.1, (Ft, F) is an

exchangeable pair satisfying the conditions in Proposition 2.1.2 with G = σ{X}, λ = p, S =

2Γ(F) − 2p and ρ(F) = −4pE[F4] + 12E
[
F2Γ(F, F)

]
. Therefore,

dW(F,N) ≤
1

p
√

2π
E
[
|2Γ(F) − 2p|

]
+

√
2p

3p

√
−4pE[F4] + 12E

[
F2Γ(F)

]
≤

2
√

2π

√
Var

(
p−1Γ(F)

)
+

√
2p

3p

√
−4pE[F4] + 12E

[
F2Γ(F)

]
,

then the desired bound follows from (3.2.7) and (3.2.8). �

Remark 3.2.1. Here is an interesting observation about our proof: given f ∈ H�p
0 satisfying

p!‖ f ‖2
H⊗p = 1, if the fourth moment of F = Qp( f ) is less than or equal to 3, then the above proof

will imply that dW(F,N) ≤ C2
√
M( f ).

The following is an easy corollary of the above fourth-moment-influence bound.

Corollary 3.2.1. Fix p ∈ N. Let { fn, n ∈ N} ⊂ H
�p
0 satisfy p!‖ fn‖

2 = 1 for every n ∈ N. Set
Fn = Qp( fn).

(i) Assume that E[F4
n]→ 3 andM( fn)→ 0, as n→ +∞. Then Fn converges in law to a standard

Gaussian, as n→ +∞.

(ii) Assume3 that E[F4
n] ≤ 3 for each n ∈ N andM( fk)→ 0, as k → +∞. Then Fn converges in

law to a standard Gaussian, as n→ +∞.

Note that in the statement (ii), we do not require the convergence of fourth moments.

3This assumption is reasonable, see e.g. footnote 5 in Chapter 2.
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Remark 3.2.2. (1) For F in the first Rademacher chaos, one can directly prove Theorem 3.2.1
without using the exchangeable pairs. Indeed, if F = Q1(h) ∈ L4(P) for some h ∈ H with ‖h‖H = 1
and Z ∼ N(0, 1), then by [P1, Theorem 3.1],

dW(F,Z) ≤

√√
∞∑

k=1

1
pkqk

h(k)4 .

By Lemma 2.2.1, F2 = 1 + Q1(w) + Q2
(
h ⊗ hI42

)
with w(k) =

h(k)2(qk−pk)
√

pkqk
, k ∈ N. This implies

E
[
F4] = 1 +

∞∑
k=1

h(k)4 (qk − pk)2

pkqk
+ 2‖h ⊗ h‖2

H⊗2 − 2‖h ⊗ hI4c
2
‖2
H⊗2

= 3 +

∞∑
k=1

h(k)4 (qk − pk)2

pkqk
− 2

∞∑
k=1

h(k)4 = 3 +

∞∑
k=1

h(k)4 q2
k + p2

k

pkqk
− 4

∞∑
k=1

h(k)4 .

Noticing p2
k + q2

k ≥ 1/2 for each k ∈ N, we have

1
2

∞∑
k=1

1
pkqk

h(k)4 ≤ 4
∞∑

k=1

h(k)4 + E
[
F4] − 3 ≤ 4M(h) + E

[
F4] − 3 .

Hence, dW(F,Z) ≤
√

2
√∣∣∣E[F4] − 3

∣∣∣ + 2
√

2
√
M(h). Moreover, using the so-called second-order

Poincaré inequality in [45, Theorem 4.1], we can have the Berry-Esséen bound

dKol
(
F,Z

)
≤ 2

√√
∞∑

k=1

1
pkqk

h(k)4 ≤ 3
√∣∣∣E[F4] − 3

∣∣∣ + 6
√
M(h) .

(2) Continuing the discussion in previous point and assuming pk = p = 1 − q = 1 − qk for each k,
we have

E
[
F4] − 3 =

p2 + q4 − 4pq
pq

∞∑
k=1

h(k)4 .(3.2.9)

If p ∈ (0, 1) \ { 12 ±
1

2
√

3
}, then we have the exact fourth moment bounds:

dW(F,Z) ≤

√√
1
pq

∞∑
k=1

h(k)4 ≤

(
E[F4] − 3

p2 + q2 − 4pq

)1/2

and dKol(F,Z) ≤ 2
(
E[F4] − 3

p2 + q2 − 4pq

)1/2

,

see also Corollary 1.4 in [30].

Now we present the main result in this section, namely a Peccati-Tudor type result in the
Rademacher setting.
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Theorem 3.2.2. Fix integers d ≥ 2 and 1 ≤ q1 ≤ . . . ≤ qd. Assume that F = (F1, . . . , Fd) verifies
that F j = Qq j( f j) ∈ L4(P) with f j ∈ H

�q j

0 for each j ∈ [d]. Let Σ be the covariance matrix of F
and Z ∼ N(0,Σ). Then we have,

d3(F,Z) ≤ C1

d∑
i=1

√
|κ4(Fi)| + C2

d∑
j=1

√
M( f j) + C3

d∑
i=2

|κ4(Fi)|1/4 + C4

d∑
j=2

M( f j)1/4 ;

in particular, when q1 = qd, we have d3(F,Z) ≤ C1

d∑
i=1

√
|κ4(Fi)| + C2

d∑
j=1

√
M( f j) .

The constants C1,C2 and C3 are given as follows:

C1 :=
2qd
√

d
q1

( √2
4

+

√
Tr(Σ)
9

)
, C2 :=

qd

q1

(√
dγqd (2qd)!Tr(Σ) +

√
6dγqd Tr(Σ)

9

)

C3 :=
qd
√

2d
2q1

d−1∑
i=1

E[F4
i ]1/4 and C4 :=

qd
√

2d
2q1

(
γqd Tr(Σ)

)1/4
d−1∑
i=1

E[F4
i ]1/4 ,

with γp defined as in (3.2.7) for each p ∈ N.

The following result follows immediately from the above bound.

Corollary 3.2.2. Fix integers d ≥ 2 and 1 ≤ q1 ≤ . . . ≤ qd, and consider the sequence of random
vectors

F(n) = (F(n)
1 , . . . , F(n)

d )T :=
(
Qq1( f1,n), . . . ,Qqd ( fd,n)

)T

with kernels f j,n in H�q j

0 for each n ∈ N, j ∈ [d]. Assume that the covariance matrix Σn of F(n)

converges in Hilbert-Schmidt norm to a nonnegative definite symmetric matrix Σ, as n→ +∞.
Suppose that the following condition holds:

lim
n→+∞

[
M( f1,n) + . . . +M( fd,n)

]
= 0 .

If for each j ∈ [d], E
[
(F(n)

j )4] converges to 3Σ2
j, j, as n → +∞, then F(n) converges in law to

Z ∼ N(0,Σ), as n→ +∞.

Proof of Theorem 3.2.2. For each t ∈ R+, we define Ft = (F1,t, . . . , Fd,t) with F j,t = Qq j( f j; Yt)
for each j ∈ [d]. Then (Ft, F) is an exchangeable pair and it follows from Proposition 2.1.3 and
Proposition 2.2.1 that4

d3(F,Z) ≤

√
d

4q1
E
[
‖S ‖HS

]
+

√
2dqdTr(Σ)

18q1

√√
d∑

i=1

ρi(F) ,(3.2.10)

where the random matrix S is defined by S i, j = 2Γ(Fi, F j) − 2q jΣi, j and ρi(F) = −4qiE
[
F4

i
]

+

12E
[
F2

i Γ(Fi)
]

for each i, j ∈ [d].

4The argument is identical to that in previous section, so we omit it here.
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Let us first deal with the easy part in the bound (3.2.10): by (3.2.8), we have

ρi(F) ≤ 4
(
2qiκ4(Fi) + 3qiγqiM( fi)

)
,

where κ4(Fi) = E[F4
i ] − 3E[F2

i ]2 is the fourth cumulant of Fi and the number γqi is defined as in
(3.2.7) for each i ∈ [d]. Therefore,√√

d∑
i=1

ρi(F) ≤ 2
√∑

i∈[d]

2qiκ4(Fi) + 3qiγqiM( fi)(3.2.11)

≤ 2
√

2qd

∑
i∈[d]

√
|κ4(Fi)|

 + 2
√

3qdγqd

∑
i∈[d]

√
M( fi).(3.2.12)

Now let us consider the more complicated part, that is, to estimate E
[
‖S ‖HS

]
.

It follows from Lemma 3.2.1 and (2.2.7) that

E
[
‖S ‖HS

]
= 2

 d∑
i, j=1

Var
(
Γ(Fi, F j)

)
1/2

≤ 2qd

 d∑
i, j=1

qi+q j−1∑
k=1

Var
(
Jk(FiF j)

)
1/2

≤ 2qd

 d∑
i, j=1

{
E[F2

i F2
j ] − 2E[FiF j]2 − Var(Fi)Var(F j) + (qi + q j)!‖ fi⊗̃ f jI4c

qi+q j
‖2

}
1/2

= 2qd

 d∑
i, j=1

∣∣∣Cov(F2
i , F

2
j ) − 2E[FiF j]2

∣∣∣
1/2

+ 2qd

 d∑
i, j=1

(qi + q j)!‖ fi⊗̃ f jI4c
qi+q j
‖2


1/2

.

By using (3.2.3), we have

‖ fi⊗̃ f jI4c
qi+q j
‖2 ≤ γqd min

{
‖ fi‖

2M( f j), ‖ f j‖
2M( fi)

}
and thus,

2qd

 d∑
i, j=1

(qi + q j)!‖ fi⊗̃ f jI4c
qi+q j
‖2


1/2

≤ 2qd

√
γqd (2qd)!

 d∑
i, j=1

min
{
‖ fi‖

2M( f j), ‖ f j‖
2M( fi)

}
1/2

≤ 2qd

√
γqd (2qd)!

 d∑
i=1

‖ fi‖
2

d∑
j=1

M( f j)


1/2

≤ 2qd

√
γqd (2qd)!Tr(Σ)

d∑
j=1

√
M( f j) .
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It remains to apply Lemma 3.2.2:

d∑
i, j=1

∣∣∣Cov(F2
i , F

2
j ) − 2E[FiF j]2

∣∣∣
≤

∑
i, j∈[d]

I{qi=q j}2
√(
κ4(Fi) + γqiM( fi)E[F2

i ]
)(
κ4(F j) + γq jM( f j)E[F2

j ]
)

(3.2.13)

+ 2
∑

1≤i< j≤d

I{qi<q j}

√
E[F4

i ]
√
κ4(F j) + γq jM( f j)E[F2

j ](3.2.14)

≤ 2

∑
j∈[d]

√
κ4(F j) + γq jM( f j)E[F2

j ]


2

+ 2

 d−1∑
i=1

√
E[F4

i ]

 d∑
j=2

√
κ4(F j) + γq jM( f j)E[F2

j ] .

Therefore, we have

E
[
‖S ‖HS

]
≤ 2
√

2qd

∑
j∈[d]

√
κ4(F j) + γq jM( f j)Σ j, j

+ 2
√

2qd

 d−1∑
i=1

‖Fi‖L4(P)

 d∑
j=2

[
κ4(F j) + γq jM( f j)Σ j, j

]1/4

+ 2qd

√
γqd (2qd)!Tr(Σ)

d∑
j=1

√
M( f j)

≤ 2
√

2qd

∑
j∈[d]

√
|κ4(F j)| + 4qd

√
γqd (2qd)!Tr(Σ)

∑
j∈[d]

√
M( f j)

+ 2
√

2qd

 d−1∑
i=1

‖Fi‖L4(P)


 d∑

j=2

|κ4(F j)|1/4 +
(
γqd Tr(Σ)

)1/4
d∑

j=2

M( f j)1/4

 .

In particular, when q1 = qd, the term in (3.2.14) vanishes, so that we can obtain a slightly neater
estimate:

E
[
‖S ‖HS

]
≤ 2
√

2qd

∑
j∈[d]

√
|κ4(F j)| + 4qd

√
γqd (2qd)!Tr(Σ)

∑
j∈[d]

√
M( f j).

Hence our proof is completed by putting all the estimates together into (3.2.10). �

Remark 3.2.3. (i) Let the assumptions of Theorem 3.2.2 prevail and we assume in addition that
Σ is positive definite, then it follows from Proposition 2.1.3 that

d2(F,Z) ≤
‖Σ−1/2‖op

q1
√

2π
E
[
‖S ‖HS

]
+

√
π‖Σ−1/2‖op

12q1

√
qdTr(Σ)

√√
d∑

i=1

ρi(F) .
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Therefore, using the estimates from the above proof, we can obtain

d2(F,Z) ≤ C′1
d∑

i=1

√
|κ4(Fi)| + C′2

d∑
j=1

√
M( f j) + C′3

d∑
i=2

|κ4(Fi)|1/4 + C′4
d∑

j=2

M( f j)1/4 ;

in particular, when q1 = qd, we have

d2(F,Z) ≤ C′1
d∑

i=1

√
|κ4(Fi)| + C′2

d∑
j=1

√
M( f j)

where

C′1 :=
qd‖Σ

−1/2‖op

q1

(
2 +

√
Tr(Σ)

)
, C′2 :=

3qd‖Σ
−1/2‖op

q1

√
γqd (2qd)!Tr(Σ)

C′3 :=
qd‖Σ

−1/2‖op

q1

d−1∑
i=1

E[F4
i ]1/4 and C′4 :=

qd‖Σ
−1/2‖op

q1

(
γqd Tr(Σ)

)1/4
d−1∑
i=1

E[F4
i ]1/4 .

(ii) One can see from (3.2.11), (3.2.14) and (3.2.13) that if the fourth cumulant of each component
F j is non-positive, then maximal influences alone could control the distance to normality. So
one can formulate a multivariate version of point (ii) in Corollary 3.2.1.

3.2.2 Proofs of Lemma 3.2.1 and Lemma 3.2.2
Proof of Lemma 3.2.1. It follows from Lemma 2.2.1-(ii) that

FG = E[FG] +

p+q−1∑
k=1

Jk(FG) + Qp+q

(
f ⊗̃gI4p+q

)
,

therefore, by orthogonality property, one has

E
[
F2G2] = E[FG]2 +

p+q−1∑
k=1

Var
(
Jk(FG)

)
+ (p + q)!

∥∥∥ f ⊗̃gI4p+q

∥∥∥2

= E[FG]2 +

p+q−1∑
k=1

Var
(
Jk(FG)

)
+ (p + q)!

∥∥∥ f ⊗̃g
∥∥∥2
− (p + q)!

∥∥∥ f ⊗̃gI4c
p+q

∥∥∥2
,

thus, the inequality (3.2.1) follows from (3.1.4). It also follows from (3.1.4) that

p+q−1∑
k=1

Var
(
Jk(F2)

)
= E

[
F4] − 3E[F2]2 − p!2

p−1∑
r=1

(
p
r

)2∥∥∥ f ⊗r f
∥∥∥2

+ (2p)!
∥∥∥ f ⊗̃ f I4c

2p

∥∥∥2
,(3.2.15)

which implies (3.2.2).
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It remains to prove (3.2.3) and we’ll use the same arguments as in the proof of [30, Lemma
3.3]:

‖ f ⊗̃gI4c
p+q
‖2 ≤ ‖ f ⊗ gI4c

p+q
‖2 =

∑
(i1,...,ip, j1,..., jq)∈4c

p+q

f (i1, . . . , ip)2g( j1, . . . , jq)2

=

p∧q∑
r=1

r!
(
p
r

)(
q
r

) ∑
(i1,...,ip)∈4p
( j1,..., jq)∈4q

card({i1,...,ip}∩{ j1,..., jq})=r

f (i1, . . . , ip)2g( j1, . . . , jq)2 ,(3.2.16)

where card(A) means the cardinality of the set A, and the combinatorial constant r!
(

p
r

)(
q
r

)
is

the number of ways one can build r pairs of identical indices out of (i1, . . . , ip) ∈ 4p and
( j1, . . . , jq) ∈ 4q. Therefore, it is enough to notice that for each r ∈ {1, . . . , p ∧ q}, the inner sum
in (3.2.16) is bounded by∑

(i1,...,ip−r ,k1,...,kr)∈4p
( j1,..., jq−r ,k1,...,kr)∈4q

f (i1, . . . , ip−r, k1, . . . , kr)2g( j1, . . . , jq−r, k1, . . . , kr)2

≤
∑

(i1,...,ip−1,k)∈4p
( j1,..., jq−1,k)∈4q

f (i1, . . . , ip−1, k)2g( j1, . . . , jq−1, k)2 ≤ min
{
‖ f ‖2M(g), ‖g‖2M( f )

}
.

The proof of Lemma 3.2.1 is complete. �

Proof of Lemma 3.2.2. Assume p ≤ q and we begin with the following chaos expansion:

E
[
F2G2] = E

F2

E[G2] +

2q−1∑
k=1

Jk(G2) + J2q(G2)




= Var(F)Var(G) + E

F2
2q−1∑
k=1

Jk(G2)

 + I(p=q)E
[
J2q(F2)J2q(G2)

]
.

If p < q, then E[FG] = 0 and

∣∣∣∣Cov
(
F2,G2)∣∣∣∣ ≤ √

E
[
F4]√√√2q−1∑

k=1

Var
(
Jk(G2)

)
≤

√
E
[
F4]√κ4(G) + γqE[G2]M(g) ,

where the second inequality follows from (3.2.7) and the constant γq is given therein.
If p = q, then

E
[
J2q(F2)J2q(G2)

]
= (2q)!〈 f ⊗̃ f , g⊗̃gI42q〉 = (2q)!〈 f ⊗̃ f , g⊗̃g〉 − (2q)!〈 f ⊗̃ f , g⊗̃gI4c

2q
〉

= 2q!2〈 f , g〉2 +

q−1∑
r=1

q!2
(
q
r

)2

〈 f ⊗r g, g ⊗r f 〉 − (2q)!〈 f ⊗̃ f , g⊗̃gI4c
2q
〉 ,

where the last equality follows from Lemma 3.1.4.
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Consequently, Cov
(
F2,G2) − 2E[FG]2 is equal to

E

F2
2q−1∑
k=1

Jk(G2)

 +

q−1∑
r=1

q!2
(
q
r

)2〈
f ⊗r g, g ⊗r f

〉
− (2q)!

〈
f ⊗̃ f , g⊗̃gI4c

2q

〉
.(3.2.17)

The first term in (3.2.17) can be rewritten as E

2q−1∑
k=1

Jk(F2)Jk(G2)

, which can be bounded by

√√√2q−1∑
k=1

Var
(
Jk(F2)

)√√√2q−1∑
k=1

Var
(
Jk(F2)

)
≤

√
κ4(F) + γqE[F2]M( f )

√
κ4(G) + +γqE[G2]M(g) ;

and the second term in (3.2.17) can be bounded by

q−1∑
r=1

q!2
(
q
r

)2

‖ f ⊗r g‖2 ≤

√√√ q−1∑
r=1

q!2

(
q
r

)2

‖ f ⊗r f ‖2

√√√ q−1∑
r=1

q!2

(
q
r

)2

‖g ⊗r g‖2(3.2.18)

≤

√
κ4(F) + γqM( f )E[F2]

√
κ4(G) + γqM(g)E[G2] ,(3.2.19)

where (3.2.18) follows from the same argument as in Section 3.1.2 and (3.2.19) can be de-
duced from Lemma 3.2.1 and (3.2.7); finally, the third term in (3.2.17) can be bounded by
‖ f ‖2(2q)!‖g⊗̃gI4c

2q
‖ ≤ ‖ f ‖2

√
(2q)!γqE[G2]M(g); and by symmetry, we also have

(2q)!
∣∣∣〈 f ⊗̃ f , g⊗̃gI4c

2q
〉
∣∣∣ = (2q)!

∣∣∣〈g⊗̃g, f ⊗̃ f I4c
2p
〉
∣∣∣ ≤ ‖g‖2 √

(2p)!γpE[F2]M( f ) .

Now we can conclude our proof by combining the above estimates. �

3.3 Universality results on homogeneous sums
For the convenience of readers, we restate Theorem 1.4.3 here.

Theorem 1.4.3 Fix integers d ≥ 2 and qd ≥ . . . ≥ q1 ≥ 2. For each j ∈ [d] and n ∈ N, let the
kernels f j,n ∈ H

�q j

0 satisfy supn, j ‖ f j,n‖
2 < +∞ and for k, l ∈ [d]

lim
n→+∞

I(qk=ql)qk!
∑

i1,...,iqk∈N

fk,n(i1, . . . , iqk) fl,n(i1, . . . , iqk) = Σk,l ,

where Σ is a symmetric nonnegative definite d by d matrix. Then the following statements are
equivalent, as n→ +∞:

(C1) Given a sequence G of i.i.d. standard Gaussians,(
Qq1( f1,n; G), . . . ,Qqd ( fd,n; G)

)T

converges in law to N(0,Σ).
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(C2) Given a sequence V of i.i.d. random variables with V1 + 1 ∼ Poi(1),(
Qq1( f1,n; V), . . . ,Qqd ( fd,n; V)

)T

converges in law to N(0,Σ).

(C3) In the symmetric Rademacher setting,(
Qq1( f1,n; Y), . . . ,Qqd ( fd,n; Y)

)T

converges in law to N(0,Σ) andM( f1,n) + . . . +M( fd,n)→ 0.

(C4) For every sequence Ξ =
(
ξi, i ∈ N

)
of independent centered random variables with unit

variance and supi∈N E
[
|ξi|

3] < +∞,(
Qq1( f1,n; Ξ), . . . ,Qqd ( fd,n; Ξ)

)T

converges in law to N(0,Σ).

Remark 3.3.1. The homogeneous sums over independent Gaussian and Poisson random vari-
ables are members of Gaussian Wiener chaos and Poisson Wiener chaos respectively. One can
realize them on a common probability space as follows. Taking Z = R and µ the standard
Lebesgue measure on R, we set gi = I[i,i+1) for each i ∈ N. Given f ∈ H�d

0 , the homogeneous sum
Qd( f ; G) is equal to IW

d

(
f̂
)

in law, where

f̂ :=
∑

i1,...,id∈N

f (i1, . . . , id)gi1 ⊗ · · · ⊗ gid ,(3.3.1)

and W is a Gaussian random measure on R with intensity measure µ. Similarly, we can write
Qd( f ; V) = Iηd

(
f̂
)

in law, where η is a Poisson random measure on R with intensity measure µ.
From now on, we will identity f with f̂ in case of no confusion.

Proof of Theorem 1.4.3. The implication (C1) ⇒ (C4) has been proved in [7] and let us now
recall the truncation argument therein. For each j ∈ [d] and n ∈ N, we can truncate the kernel
f j,n as follows:

f tn
j,n = f j,nI[Nn]q j

where Nn ∈ N diverges to infinity such that ‖ f tn
j,n − f j,n‖ ≤ 1/n. In this way, we have

E
([

Qq j( f j,n; G) − Qq j( f tn
j,n; G)

]2
)

= E
([

Qq j( f j,n; Θ) − Qq j( f tn
j,n; Θ)

]2
)
≤

q j!
n2 .(3.3.2)

Assume (C1), then Qq j( f tn
j,n; G) converges in law to N(0,Σ j, j) for each j ∈ [d]. Then it follows

from Theorem 1.3.2 that
(
Qq1( f tn

1,n; Ξ), . . . ,Qqd ( f tn
d,n; Ξ)

)T converges in law to N(0,Σ), thus by
(3.3.2), (

Qq1( f1,n; Ξ), . . . ,Qqd ( fd,n; Ξ)
)T

converges in law to N(0,Σ).
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Now let us prove the implication (C2)⇒ (C4). Assume (C2), then
(
Qq1( f tn

1,n; V), . . . ,Qqd ( f tn
d,n; V)

)T

converges in law toN(0,Σ). It follows from Theorem 1.3.4 that E[Qq j( f tn
j,n; V)4]→ 3Σ2

j, j for each
j ∈ [d]. Moreover, it follows from the relation (3.1.17) that

‖ f̂ tn
j,n ⊗k f̂ tn

j,n‖ → 0

for each k = 1, . . . , q j − 1 and every j ∈ [d]. Thus, by the Peccati-Tudor theorem, we have

(Qq1( f tn
1,n; G), . . . ,Qqd ( f tn

d,n; G))T

converges in law to N(0,Σ), so does (Qq1( f1,n; Ξ), . . . ,Qqd ( fd,n; Ξ))T .

Now let us prove the implication (C3)⇒ (C4). Assume (C3): as a consequence of the product
formula (2.2.4),

{
Qq j( f j,n; Y)4, n ∈ N

}
is uniformly integrable for each j ∈ [d], so that

E
[
Qq j( f j,n; Y)4]→ 3Σ2

j, j ,

thus, the relations (3.2.2) and (3.2.3) in Lemma 3.2.1 imply ‖ f j,n ⊗k f j,n‖ → 0 for each k =

1, . . . , q j − 1 and every j ∈ [d]. Hence (C1) holds true and so does (C4).

To conclude our proof, it suffices to show the implication (C1)⇒ (C3). Suppose (C1) holds
true, then (

Qq1( f1,n; Y), . . . ,Qqd ( fd,n; Y)
)T

converges in distribution to N(0,Σ) by the equivalence (C1)⇔ (C4). By the FMT on a Gaussian
space, (C1) implies that ‖ f j,n ⊗q j−1 f j,n‖ → 0, as n → +∞. Recall from [70, Lemma 2.4] that
M( f ) ≤ ‖ f ⊗d−1 f ‖ for each f ∈ H�d

0 , thereforeM( f j,n) → 0 for each j ∈ [d]. This proves the
implication (C1)⇒ (C3). �
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In this work, we study the normal approximation and almost sure central limit theorems for
some functionals of an independent sequence of Rademacher random variables. In particular,
we provide a new chain rule that improves the one derived by Nourdin, Peccati and Rein-
ert(2010) and then we deduce the bound on Wasserstein distance for normal approximation
using the (discrete) Malliavin-Stein approach. Besides, we are able to give the almost sure
central limit theorem for a sequence of random variables inside a fixed Rademacher chaos
using the Ibragimov-Lifshits criterion.

Abstract

1 Introduction
This work is devoted to the study of discrete Malliavin-Stein approach for two kinds of
Rademacher functionals:

(S) Yk, k ∈ N is a sequence of independent identically distributed (i.i.d) Rademacher random
variables, i.e. P(Y1 = −1) = P(Y1 = 1) = 1/2. F = f (Y1,Y2, · · ·), for some nice function f ,
is called a (symmetric) Rademacher functional over (Yk).

(NS) Xk, k ∈ N is a sequence of independent non-symmetric, non-homogeneous Rademacher
random variables, that is, P(Xk = 1) = pk, P(Xk = −1) = qk for each k ∈ N. Here
1 − qk = pk ∈ (0, 1) for each k ∈ N. Of course this sequence reduces to the i.i.d. one
when pk = qk = 1/2 for each k. G = f (X1, X2, · · ·), for some nice function f , is called a
(non-symmetric) Rademacher functional over (Xk). Usually, we consider the corresponding
normalised sequence (Yk, k ∈ N) of Xk, that is, Yk := (Xk − pk + qk) · (2

√
pkqk)−1.

From now on, we write (S) for the symmetric setting, and (NS) for the non-symmetric, non-
homogeneous setting.

Now let us explain several terms in the title. Malliavin-Stein method stands for the combination
of two powerful tools in probability theory: Paul Malliavin’s differential calculus and Charles

2010 Mathematics Subject Classification. Primary: 60F05, 60B12; Secondary: 47N30.
Key words and phrases. Rademacher functional ; Normal approximation ; Wasserstein distance ; Almost sure

central limit theorem ; Malliavin-Stein approach
∗Email: guangqu.zheng@uni.lu
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Stein’s method of normal approximation. This intersection originates from the seminal paper
[12] by Nourdin and Peccati, who were able to associate a quantitative bound to the remarkable
fourth moment theorem established by Nualart and Peccati [15] among many other things. For a
comprehensive overview, one can refer to the website [11] and the recent monograph [13].

This method has found its extension to discrete settings: for the Poisson setting, see e.g.
[16, 20]; for the Rademacher setting, the paper [14] by Nourdin, Peccati and Reinert was the
first one to carry out the analysis of normal approximation for Rademacher functionals (possibly
depending on infinitely many Rademacher variables) in the setting (S), and they were able to get
a sufficient condition in terms of contractions for a central limit theorem (CLT) inside a fixed
Rademacher chaos Cm (with m ≥ 2), see Proposition 2.2 for the precise statement.

In the Rademacher setting, unlike the Gaussian case, one does not have the chain rule like
D f (F) = f ′(F)DF for f ∈ C1

b(R) and Malliavin differentiable random variable F (see [13,
Proposition 2.3.7]), while an approximate chain rule (see (1.13)) is derived in [14] and it requires
quite much regularity of the function f . As a consequence, the authors of [14] had to use smooth
test functions when they applied the Stein’s estimation: roughly speaking, for nice centred
Rademacher functional F in the setting (S), for h ∈ C2

b(R), Z ∼ N (0, 1), one has (see [14,
Theorem 3.1])∣∣∣E[h(F) − h(Z)

]∣∣∣
≤ min

(
4‖h‖∞, ‖h′′‖∞

)
· E

[∣∣∣1 − 〈DF,−DL−1F〉H
∣∣∣] +

20
3
‖h′′‖∞E

[〈
|DL−1F|, |DF|3

〉
H

]
,(1.1)

where the precise meaning of the above notation will be explained in the Section 2.
Krokowski, Reichenbachs and Thäle, carefully using a representation of the discrete Malliavin

derivative D f (F) and the fundamental theorem of calculus instead of the approximate chain rule
(1.13), were able to deduce the Berry-Esséen bound in [8, Theorem 3.1] and its non-symmetric
analogue in [9, Proposition 4.1]: roughly speaking, for nice centred Rademacher functional F in
the setting (NS),

dK
(
F,Z

)
:= sup

x∈R

∣∣∣∣P(F ≤ x) − P(Z ≤ x)
∣∣∣∣(1.2)

≤ E
[∣∣∣1 − 〈DF,−DL−1F〉H

∣∣∣] +

√
2π
8
E
[〈 1
√

pq
|DL−1F|, |DF|2

〉
H

]
(1.3)

+
1
2
E
[〈
|F · DL−1F|,

1
√

pq
|DF|2

〉
H

]
+ sup

x∈R
E
[〈
|DL−1F|,

1
√

pq
(DF) · I(F>x)

〉
H

]
.(1.4)

The quantity dK(F,Z) defined in (1.2) is called the Kolmogorov distance between F and Z.
For the setting (NS), the corresponding analysis including normal approximation and Poisson

approximation has been taken up in [5, 7, 9, 18].
In this paper, we give a neat chain rule (see 1.2), from which we are able to derive a bound on

the Wasserstein distance
dW(F,Z) := sup

‖ f ′‖∞≤1

∣∣∣∣E[ f (F) − f (Z)
]∣∣∣∣

in both settings (NS) and (S), see 2.1 and related remarks.
Another contribution of this work is the almost sure central limit theorem (ASCLT in the

sequel) for Rademacher functionals. We first give the following
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Definition 1.1. Given a sequence
(
Gn, n ∈ N

)
of real random variables convergent in law to

Z ∼ N (0, 1), we say the ASCLT holds for (Gn), if almost surely, for any bounded continuous
f : R→ R, we have

1
log n

n∑
k=1

1
k

f (Gk) −→ E
[
f (Z)

]
,(1.5)

as n → +∞. In the definition, log n can be replaced by γn :=
∑n

k=1 k−1, (γn − 1 ≤ log n ≤ γn).
Note the condition (1.5) is equivalent to that the random probability measure γ−1

n
∑n

k=1 k−1 · δGk

weakly converges to the standard Gaussian measure almost surely, as n→ +∞.

The following criterion, due to Ibragimov and Lifshits, gives a sufficient condition for the
ASCLT.

Ibragimov-Lifshits criterion

sup
|t|≤r

∑
n≥2

E
(
| 4n(t)|2

)
nγn

< +∞ , for every r > 0,(1.6)

where

(1.7) 4n(t) =
1
γn

n∑
k=1

1
k

[
eitGk − e−t2/2

]
.

If Gk
law
−−→ Z ∼ N (0, 1) and (1.6) is satisfied, then the ASCLT holds for (Gk). See [6, Theorem

1.1].
The ASCLT was first stated by Paul Lévy without proof in the 1937 book “Théorie de

l’addition des variables aléatoires ” and rediscovered by Brosamler [2], Schatte [19] indepen-
dently in 1988. The present form appearing in the above definition was stated by Lacey and
Philipp [10] in 1990. And in 1999, Ibragimov and Lifshits [6] gave the above sufficient condition.

Using this criterion, the authors of [1] established the ASCLT for functionals over general
Gaussian fields. The Malliavin-Stein approach plays a crucial role in their work. Later, C. Zheng
proved the ASCLT on the Poisson space in his Ph.D thesis [20, Chapter 5]. And in this work, we
prove the ASCLT in the Rademacher setting, see Section 3.2.

The rest of this paper is organised as follows: Section 2 is devoted to some preliminary
knowledge on Rademacher functionals, and we provide a simple but useful approximate chain
rule there. In Section 3.1, we establish the Wasserstein distance bound for normal approximation
in both setting (S) and (NS); in Section 3.2, the ASCLT for Rademacher chaos is established.

We fix several notation first: N = {1, 2, · · ·}, Y = (Yk, k ∈ N) stands for the Rademacher
sequence in the setting (S), and it also means the normalised sequence in the setting (NS). Denote
by G the σ-algebra generated by Y, for notational convenience, we write L2(Ω) for L2(Ω,G ,P)
in the sequel. We write H = `2(N) for the Hilbert space of square-summable sequences indexed
by N. H⊗n means the nth tensor product space and H�n its symmetric subspace. We denote
H�n

0 =
{
f ∈ H�n : f |4c

n = 0
}

with 4n =
{
(i1, · · ·, in) ∈ Nn : ik , i j for different k, j

}
. Clearly,

H�0
0 = H0 = R. For u, v,w ∈ H, we write 〈u, vw〉 =

∑
k∈N ukvkwk.
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1.1 Discrete Malliavin calculus
The basic reference for this section is the survey [17] by Privault.

Definition 1.2. The (discrete) nth order multiple stochastic integral Jn( f ) of f ∈ H⊗n, n ≥ 1, is
given by

(1.8) Jn( f ) =
∑

(i1,···,in)∈4n

f (i1, · · ·, in)Yi1Yi2 · · · Yin .

We define J0(c) = c for any c ∈ R. It is clear that Jn( f ) = Jn
(
f̃ I4n

)
, where f̃ is the standard

symmetrisation of f .

For g ∈ H�n
0 , it is easy to check that ‖Jn(g)‖2L2(Ω) = n!‖g‖2

H⊗n and Cn :=
{
Jn(g) : g ∈ H�n

0
}

is

isometric to
(
H�n

0 ,
√

n!‖ · ‖H⊗n
)
. Cn is called the Rademacher chaos of order n, and one can see

easily that Cn is a closed linear subspace of L2(Ω) and Cn, Cm are mutually orthogonal for distinct
m, n:

E
[
Jn( f ) · Jm(g)

]
= n! ·

〈
f , g

〉
H⊗n · I(m=n), ∀ f ∈ H�n

0 , g ∈ H�m
0 .(1.9)

More notation C0 := R. We denote by S the linear subspace of L2(Ω) spanned by multiple
integrals and it is a well-known result (e.g. see [17, Proposition 6.7]) that S is dense in L2(Ω). In
particular, F ∈ L2(Ω) can be expressed as follows:

F = E[F] +
∑
n≥1

Jn( fn) , where fn ∈ H
�n
0 for each n ∈ N.(1.10)

We denote by L2(Ω×N) the space of square-integrable random sequences a = (ak, k ∈ N), where
ak is a real random variable for each k ∈ N and ‖a‖2L2(Ω×N) := E

[
‖a‖2
H

]
=

∑
k≥1 E

[
a2

k

]
< +∞.

Definition 1.3. D is the set of random variables F ∈ L2(Ω) as in (1.10) satisfying
∑∞
`=1 ``!‖ f`‖

2
H⊗`

<
+∞. For F ∈ D as in (1.10), DkF =

∑
n≥1 nJn−1( fn(·, k)) for each k ∈ N. DF = (DkF, k ∈ N) is

called the discrete Malliavin derivative of F.

Remark 1.1. Using (1.10) and (1.9), we can obtain the Poincaré inequality for F ∈ D, Var(F) ≤
E
[
‖DF‖2

H

]
.

Definition 1.4. We define the divergence operator δ as the adjoint operator of D. We say
u ∈ domδ ⊂ L2(Ω × N) if there exists some constant C such that |E[〈u,DF〉H]| ≤ C‖F‖L2(Ω) for
any F ∈ D. Then it follows from the Riesz’s representation theorem that there exists a unique
element in L2(Ω × N), which we denote by δ(u), such that the duality relation (1.11) holds for
any F ∈ D:

E
[
〈u,DF〉H

]
= E

[
Fδ(u)

]
.(1.11)

Definition 1.5. We define the Ornstein-Uhlenbeck operator L by L = −δD. Its domain is given
by domL = {F ∈ L2(Ω) admits the chaotic decomposition as in (1.10) such that

∑∞
n=1 n2n! ·‖ fn‖

2
H⊗n

is finite}. For centred F ∈ L2(Ω) as in (1.10), we define L−1F = −
∑∞

n=1 n−1Jn( fn). It is clear that
for such a F, one has LL−1F = F. We call L−1 the pseudo-inverse of L.
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Here is another look at the derivative operator D.

Remark 1.2. We choose Ω = {+1,−1}N and define P =
⊗

k∈N

(
pkδ+1 + qkδ−1

)
. Then the

coordinate projections ω = {ω1, · · ·} ∈ Ω 7−→ ωk =: Xk(ω) is an independent sequence of
non-symmetric, non-homogeneous Rademacher random variables under P. We can define for
F ∈ L2(Ω), F⊕k := F(ω1, · · ·, ωk−1, 1, ωk+1, · · ·), that is, by fixing the kth coordinate in the
configuration ω to be 1. Similarly, we define F	k := F(ω1, · · ·, ωk−1,−1, ωk+1, · · ·). It holds that
DkF =

√
pkqk

(
F⊕k − F	k), see e.g. [17, Proposition 7.3]. The following results are also clear :

•
∣∣∣F⊕k −F

∣∣∣ = I(Xk=−1) · |DkF|/
√

pkqk ≤ |DkF|/
√

pkqk and
∣∣∣F	k −F

∣∣∣ = I(Xk=1) · |DkF|/
√

pkqk ≤

|DkF|/
√

pkqk.

• F ∈ D if and only if
∑

k∈N pkqkE
[
|F⊕k − F	k|2

]
< +∞. In particular, if f : R → R is

Lipschitz continuous, then f (F) ∈ D.

The following integration-by-part formula is important for our work.

Lemma 1.1. ([14, Lemma 2.12]) For every centred F,G ∈ D and f ∈ C1(R) with ‖ f ′‖∞ < +∞,
one has f (F), L−1F ∈ D and E

[
G f (F)

]
= E

[
〈−DL−1G,D f (F)〉H

]
.

In particular, for f (x) = x, E
[
F2] = E

[
〈−DL−1F,DF〉H

]
. The random variable 〈−DL−1F,DF〉H

is crucial in the Malliavin-Stein approach, see e.g. [12] and [16].
The term D f (F) is not equal to f ′(F)DF in general, unlike the chain rule on Gaussian Wiener

space, see e.g. [13, Proposition 2.3.7]. The following is our new approximate chain rule.

Lemma 1.2. (Chain rule) If F ∈ D and f : R −→ R is Lipschitz and of class C1 such that f ′ is
Lipschitz continuous, then

Dk f (F) = f ′(F)DkF + Rk,(1.12)

where the remainder term Rk is bounded by
‖ f ′′‖∞

2
√

pkqk
· |DkF|2 in the setting (NS).

Proof. Note first f (F) ∈ D, since f is Lipschitz. Moreover, since f is of class C1 with Lipschitz
derivative, it follows immediately that f (y) − f (x) = f ′(x)(y − x) + R( f ), where the remainder
term R( f ) is bounded by ‖ f ′′‖∞ · |y − x|2/2. Therefore, in the setting (NS)

Dk f (F) =
√

pkqk ·
[
f (F⊕k) − f (F	k)

]
=
√

pkqk ·
{
f (F⊕k) − f (F) −

[
f (F	k) − f (F)

]}
=
√

pkqk ·
{

f ′(F)(F⊕k − F) + R1,k − f ′(F)(F	k − F) + R2,k

}
with |R1,k| ≤

‖ f ′′‖∞ · |DkF|2

2pkqk
· I(Xk=−1) and |R2,k| ≤

‖ f ′′‖∞ · |DkF|2

2pkqk
· I(Xk=1).

Whence, Dk f (F) =
√

pkqk · f ′(F)
(
F⊕k − F	k) + Rk = f ′(F)DkF + Rk and the remainder term

Rk =
√

pkqk
(
R1,k + R2,k

)
is bounded by

‖ f ′′‖∞ · |DkF|2

2
√

pkqk
. �

It is clear that in the setting (S), the remainder Rk in (1.12) is bounded by ‖ f ′′‖∞ · |DkF|2.
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Remark 1.3. In the setting (S), our approximate chain rule is different from that developed in
[14], in which f is assumed to be of class C3 such that f (F) ∈ D and ‖ f ′′′‖∞ < +∞. Moreover,
their chain rule is given as follows:

Dk f (F) = f ′(F)DkF −
1
2

[
f ′′(F⊕k) + f ′′(F	k)

]
· (DkF)2 · Yk + R̃k(1.13)

with
∣∣∣R̃k

∣∣∣ ≤ 10
3 ‖ f

′′′‖∞

∣∣∣DkF
∣∣∣3. Apparently, ours is neater and requires less regularity of f . This

is important when we try to get some nice distance bound in Section 3.1. Following [14], the
authors of [18] gave an approximate chain rule in the setting (NS): if f is of class C3 such that
f (F) ∈ D and ‖ f ′′′‖∞ < +∞, then

Dk f (F) = f ′(F)DkF −
|DkF|2

4
√

pkqk

[
f ′′(F⊕k) + f ′′(F	k)

]
· (DkF)2 · Xk + RF

k(1.14)

with the remainder term RF
k bounded by

5
3!
‖ f ′′′‖∞

|DkF|3

pkqk
. See also Remark 2.1.

1.2 Star-contractions
Fix m, n ∈ N, and r = 0, · · ·, n ∧ m. For f ∈ H⊗n and g ∈ H⊗m, f ?r

r g is an element in H⊗n+m−2r

defined by

f ?r
r g(i1, · · ·, in−r, j1, · · ·, jm−r) =

∑
a1,···,ar∈N

f
(
i1, · · ·, in−r, a1, · · ·, ar

)
g
(
j1, · · ·, jm−r, a1, · · ·, ar

)
.

Lemma 1.3. Fix ` ∈ N and 0 ≤ r ≤ `. If f , g ∈ H�`, then

2
∥∥∥ f ?r

r g
∥∥∥2

H⊗2`−2r ≤
∥∥∥ f ?`−r

`−r f
∥∥∥2

H⊗2r +
∥∥∥g ?`−r

`−r g
∥∥∥2

H⊗2r .

In particular,
∥∥∥ f ?r

r g
∥∥∥
H⊗2`−2r ≤

∥∥∥ f ?`−r
`−r f

∥∥∥
H⊗2r +

∥∥∥g ?`−r
`−r g

∥∥∥
H⊗2r .

Proof. It follows easily from the definition that

2
∥∥∥ f ?r

r g
∥∥∥2

H⊗2`−2r = 2
〈

f ?`−r
`−r f , g ?`−r

`−r g
〉
H⊗2r

≤
∥∥∥ f ?`−r

`−r f
∥∥∥2

H⊗2r +
∥∥∥g ?`−r

`−r g
∥∥∥2

H⊗2r .

�

1.3 Stein’s method of normal approximation
A basic reference for Stein’s method is the monograph [4]. Let us start with a fundamental fact
that a real integrable random variable Z is a standard Gaussian random variable if and only if
E
[
f ′(Z)

]
= E

[
Z · f (Z)

]
for every bounded differentiable function f : R −→ R.

Now suppose that Z ∼ N (0, 1), for h : R −→ R measurable such that E
∣∣∣h(Z)

∣∣∣ < +∞, the
differential equation f ′(x)− x f (x) = h(x)−E[h(Z)] with unknown f is called the Stein’s equation
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associated with h. We call f its solution, if f is absolutely continuous and one version of f ′

satisfies the Stein’s equation everywhere. More precisely, we take f ′(x) = x f (x) + h(x)−E
[
h(Z)

]
for every x ∈ R.

It is well known (see e.g. [4, Chapter 2], [13, Chapter 3]) that given such a function h, there
exists a unique solution fh to the Stein’s equation such that lim|x|→+∞ fh(x)e−x2/2 = 0. Given a
suitable separating class F of nice functions, we define

dF
(
X,Z

)
:= sup

f∈F

∣∣∣E[ f (X)
]
− E

[
f (Z)

]∣∣∣ .
When F is set of 1-Lipschitz functions, dF is the Wasserstein distance; when F is set of
1-Lipschitz functions that are also uniformly bounded by 1, dF is called the Fortet-Mourier
distance; when F is the collection of indicator functions I(−∞,z], z ∈ R, dF corresponds to
the Kolmogorov distance appearing in the Berry-Esséen bound. We denote by dW , dFM, dK

respectively these distances. It is trivial that dFM ≤ dW , and it is not difficult to show that
dK(X,Y) ≤

√
2C · dW(X,Y) if X has density function uniformly bounded by C.

Now we replace the dummy variable x in the Stein’s equation by a generic random variable X,
then taking expectation on both sides of the equation gives E[X fh(X) − f ′h(X)] = E[h(X) − h(Z)].

Here we collect several bounds for the Stein’s solution fh:

• For h : R −→ R 1-Lipschitz, fh is of class C1 and f ′h is bounded Lipschitz with ‖ f ′h‖∞ ≤√
2/π, ‖ f ′′h ‖∞ ≤ 2, see e.g. [3, Lemma 4.2]. We denote by FW the family of differentiable

functions φ satisfying ‖φ′‖∞ ≤
√

2/π, ‖φ′′‖∞ ≤ 2, therefore for any square-integrable
random variable F,

dFM(F,Z) ≤ dW(F,Z) ≤ sup
φ∈FW

∣∣∣∣E[Fφ(F) − φ′(F)
]∣∣∣∣ .(1.15)

• If h = I(−∞,z] for some z ∈ R, then 0 < fh ≤
√

2π
4 and ‖ f ′h‖∞ ≤ 1, see [4, Lemma 2.3]. We

write FK :=
{
φ : ‖φ′‖∞ ≤ 1, ‖φ‖∞ ≤

√
2π
4

}
, therefore for any integrable random variable F,

dK(F,Z) ≤ sup
φ∈FK

∣∣∣∣E[Fφ(F) − φ′(F)
]∣∣∣∣ .(1.16)

As the density of Z is uniformly bounded by 1/
√

2π, we have the easy bound dK(F,N) ≤
√

dW(F,N).

2 Main results

2.1 Normal approximation in Wasserstein distance

In this subsection, we derive the Wasserstein distance bound for normal approximation of
Rademacher functionals. Our new chain rule plays a crucial role.
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Theorem 2.1. Given Z ∼ N (0, 1) and F ∈ D centred, one has in the setting (NS) that

dW(F,Z) ≤

√
2
π
· E

[∣∣∣1 − 〈
DF,−DL−1F

〉
H

∣∣∣] + E

[ 〈 1
√

pq
|DL−1F|, |DF|2

〉
H

]
.(2.1)

In particular, if F ∈ Cm for some m ∈ N, then

E
[∣∣∣1 − 〈

DF,−DL−1F
〉
H

∣∣∣] ≤ ∣∣∣1 − E[F2]
∣∣∣ +

1
m

√
Var

(
‖DF‖2

H

)
(2.2)

and

E

[ 〈 1
√

pq
|DL−1F|, |DF|2

〉
H

]
≤

√
E[F2]/m ·

√∑
k∈N

1
pkqk
E
[
|DkF|4

]
.(2.3)

Proof. Given φ ∈ FW , it follows from 1.1 and 1.2 that

E
[
Fφ(F)

]
= E

[
〈Dφ(F),−DL−1F〉H

]
= E

[
φ′(F)〈DF,−DL−1F〉H + 〈R,−DL−1F〉H

]
,

where R = (Rk, k ∈ N) is the remainder satisfying |Rk| ≤ |DkF|2/
√

pkqk. Thus,

E
[
Fφ(F)

]
− E[φ′(F)] = E

[
φ′(F)

(
〈DF,−DL−1F〉H − 1

)]
+ E

[
〈R,−DL−1F〉H

]
implying that∣∣∣∣E[Fφ(F) − φ′(F)

]∣∣∣∣ ≤ √
2
π
· E

[∣∣∣1 − 〈
DF,−DL−1F

〉
H

∣∣∣] + E

[ 〈 1
√

pq
|DL−1F|, |DF|2

〉
H

]
.

Hence (2.1) follows from (1.15).
If F = Jm( f ) with m ∈ N, f ∈ H�m

0 , then DkF = mJm−1
[
f (·, k)

]
, DkL−1F = −Jm−1

[
f (·, k)

]
.

Recall E[F2] = E[〈DF,−DL−1F〉H], thus (2.2) follows easily from triangle inequality and
Cauchy-Schwarz inequality:

E
[∣∣∣1 − 〈

DF,−DL−1F
〉
H

∣∣∣] ≤ ∣∣∣1 − E[F2]
∣∣∣ + E

[∣∣∣E[F2] − 〈DF,−DL−1F〉H
∣∣∣]

≤
∣∣∣1 − E[F2]

∣∣∣ +

√
Var

(
〈DF,−DL−1F〉H

)
=

∣∣∣1 − E[F2]
∣∣∣ +

1
m

√
Var

(
‖DF‖2

H

)
.

The inequality (2.3) is also an easy consequence of Cauchy-Schwarz inequality:

E

[ 〈 1
√

pq
|DL−1F|, |DF|2

〉
H

]
=

1
m

∑
k∈N

E

[
|DkF| ·

1
√

pkqk
|DkF|2

]

≤
1
m

√∑
k∈N

E
[
|DkF|2

]
·

√∑
k∈N

1
pkqk
E
[
|DkF|4

]
=

√
E[F2]

m
·

√∑
k∈N

1
pkqk
E
[
|DkF|4

]
.

�



Paper 1 85

Remark 2.1. (1) In the setting (S), the results in 2.1 can be easily deduced by taking pk = qk =

1/2 for each k ∈ N. As we have mentioned earlier, our approximate chain rule is neater than
(1.13) given in [14, Proposition 2.14], since it requires less regularity (this is the key point for us
to get the estimate in Wasserstein distance). Although the authors of [14] were able to derive the
Wasserstein distance via some smoothing argument, they imposed some further assumption and
their rate of convergence is suboptimal compared to ours.

(2) In the setting (NS), Privault and Torrisi used their approximate chain rule (1.14) and the
smoothing argument to obtain the Fortet-Mourier distance, see [18, Section 3.3]. It is suboptimal
compared to our estimate in Wasserstein distance, in view of the trivial relation dFM ≤ dW .

(3) Recall that the test function φ ∈ FK (see (1.16)) may not have Lipschitz derivative, so
our approximate chain rule as well as those in [14, 18] does not work to achieve the bound
in Kolmogorov distance. Instead of using the chain rule, the authors of [8] carefully used
a representation of the discrete Malliavin derivative Dφ(F) and the fundamental theorem of
calculus, this turns out to be flexible enough for them to deduce the Berry-Esséen bound in the
setting (S). Later they obtained the Berry-Esséen bound in the setting (NS) with applications to
random graphs. One can easily see that two terms in (1.3) are almost the same as our bound in
Wasserstein distance while there are two extra terms (1.4) in their Kolmogorov distance bound.

Due to a comparison between (1.2) and (2.1), we are able to replace the Kolmogorov distance
in many statements in [8, 9] by the Wasserstein distacne (with fewer terms and slightly different
multiplicative constants). For example, we will obtain the so-called second-order Poincaré
inequality in Wasserstein distance in the following

Remark 2.2. (Second-order Poincaré inequality) One can apply the Poincaré’s inequality to
〈−DL−1F,DF〉H:

Var
(
〈−DL−1F,DF〉H

)
≤ E

[∥∥∥D〈−DL−1F,DF〉H
∥∥∥2

H

]
,(2.4)

provided 〈−DL−1F,DF〉H ∈ D.
In [9], Krokowski et al. gave the bound on Kolmogorov distance, see (1.2); they also

established the so-called second-order Poincaré inequality as follows. For Z ∼ N (0, 1) and
F ∈ D centred with unit variance, and r, s, t ∈ (1,∞) such that r−1 + s−1 + t−1 = 1, it holds that

dK
(
F,Z

)
≤ A1 + A2 +

√
2π
8
· A3 + A4 + A5 + A6 + A7 ,(2.5)

where

A1 : =

 15
4

∞∑
j,k,`=1

√
E
[
(D jF)2(DkF)2]√E[(D`D jF)2(D`DkF)2] 

1/2

;

A2 : =

 3
4

∞∑
j,k,`=1

1
p`q`
E
[

(D`D jF)2(D`DkF)2
] 

1/2

;

A3 : =

∞∑
k=1

1
√

pkqk
E
[
|DkF|3

]
; A4 :=

1
2

∥∥∥F
∥∥∥

Lr(Ω)

∞∑
k=1

1
√

pkqk

∥∥∥(DkF)2
∥∥∥

Ls(Ω)

∥∥∥DkF
∥∥∥

Lt(Ω)
;



86 G. Zheng

A5 : =

 ∑
k∈N

1
pkqk
E
[
(DkF)4

] 1/2

; A6 =

 3
∞∑

k,`=1

1
pkqk p`q`

E
[(

D`DkF
)4

] 
1/2

;

A7 : =

 6
∞∑

k,`=1

1
pkqk

√
E
[
(DkF)4]√E[(D`DkF)4] 

1/2

.

Part of the proof for (2.5) requires fine analysis of the discrete gradients in (2.4). For more
details, see [9, Theorem 4.1]. Following exactly the same lines, one can obtain the following
second-order Poincaré inequality in Wasserstein distance by simply comparing (1.2) and (2.1),
as well as going through the proof of [9, Theorem 4.1]: dW(F,Z) ≤

√
2/π · (A1 + A2) + A3. Note

the constants r, s, t are not involved in A1, A2, A3.

In the end of this subsection, we recall from [14] sufficient conditions for CLT (in the setting
(S)) inside a fixed Rademacher chaos C` (` ≥ 2). The analogous result in the setting (NS) was
proved in [18, Section 5.3].

Proposition 2.1. ([14, Theorem 4.1]) In the setting (S), fix ` ≥ 2. If Fn := J`( fn) for some
fn ∈ H

�`
0 , then

Var
(
‖DFn‖

2
H

)
≤ C

`−1∑
m=1

∥∥∥ fn ?
m
m fn

∥∥∥2

H⊗2`−2m ,(2.6)

and ∑
k∈N

E
[∣∣∣DkFn

∣∣∣4] ≤ C
`−1∑
m=1

∥∥∥ fn ?
m
m fn

∥∥∥2

H⊗2`−2m ,(2.7)

where the constant C only depends on `.

As a consequence, the following result is straightforward.

Proposition 2.2. ([14, Proposition 4.3]) If ‖ fn‖
2
H⊗`
· `! −→ 1 and∥∥∥ fn ?

m
m fn

∥∥∥
H⊗(2`−2m) −→ 0 , ∀m = 1, 2, · · ·, ` − 1 ,(2.8)

as n→ +∞, then Fn converges in law to a standard Gaussian random variable.

2.2 Almost sure central limit theorem for Rademacher chaos
The following lemma is crucial for us to apply the Ibragimov-Lifshits criterion. The Gaussian
analogue was proved in [1, Lemma 2.2] and the Poisson case was given in [20, Proposition
5.2.5].

Lemma 2.1. In the setting (NS), if F ∈ D is centred such that 〈−DL−1F,DF〉H ∈ L2(Ω) and∑
k∈N

1
pkqk
E
[
|DkF|4

]
< +∞ ,
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then ∣∣∣E[eitF] − e−t2/2
∣∣∣ ≤ |t|2 · ∣∣∣1 − E[F2]

∣∣∣ + t2 ·

√
Var

(
〈−DL−1F,DF〉H

)
+ |t|3 ·

∑
k∈N

1
√

pkqk
E
[
|DkL−1F| · (DkF)2

]
.(2.9)

In particular, if F = J`( f ) for some ` ∈ N and f ∈ H�`0 , then

∣∣∣E[eitF] − e−t2/2
∣∣∣ ≤ |t|2 · ∣∣∣1 − `!‖ f ‖2

H⊗`

∣∣∣ +
|t|2

`

√
Var

(
‖DF‖2

H

)
+ |t|3 ·

√∑
k∈N

1
pkqk
E
[
|DkF|4

] √
E[F2]/` .(2.10)

Proof. Set φ(t) = et2/2 · E
[
eitF], t ∈ R. Then∣∣∣E[eitF] − e−t2/2

∣∣∣ = |φ(t) − φ(0)| · e−t2/2 ≤ e−t2/2 · |t| · sup
|s|≤|t|

∣∣∣φ′(s)
∣∣∣ .(2.11)

Clearly,

φ′(t) = tet2/2E[eitF] + iet2/2E[F · eitF] = tet2/2E[eitF] + iet2/2E[〈−DL−1F,DeitF〉H] ,

and it follows from 1.2 that for each k ∈ N,

DkeitF = iteitF DkF + Rk

with |Rk| ≤ |t|2 · |DkF|2/
√

pkqk. Therefore,

φ′(t) = tet2/2E
[
eitF] − tet2/2E

[
eitF · 〈−DL−1F,DF〉H

]
+ iet2/2E

[
〈−DL−1F,R〉H

]
.

Then by triangle inequality, one has∣∣∣φ′(t)∣∣∣ ≤ |t|et2/2 · E
[
|1 − 〈−DL−1F,DF〉H|

]
+ et2/2

∣∣∣E[〈−DL−1F,R〉H
]∣∣∣.

It follows from (2.11) that∣∣∣E[eitF] − e−t2/2
∣∣∣ ≤ t2E

[
|1 − 〈−DL−1F,DF〉H|

]
+ |t|3 ·

∑
k∈N

1
√

pkqk
E
[
|DkL−1F| · (DkF)2

]
,

then the desired inequality (2.9) follows from the estimate E
[
|1−〈−DL−1F,DF〉H|

]
≤

∣∣∣1−E[F2]
∣∣∣+√

Var
(
〈−DL−1F,DF〉H

)
, see 2.1. The rest is straightforward. �

The following theorem provides sufficient conditions for the ASCLT on a fixed Rademacher
chaos in the setting (S). The analogous results in the Gaussian and Poisson settings can be found
in [1, 20] respectively.
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Theorem 2.2. In the setting (S), fix ` ≥ 2 and Fn = J`( fn) with fn ∈ H
�`
0 for each n ∈ N. Assume

that ‖ fn‖
2
H⊗`
· `! = 1, and the following two conditions as well as (2.8) are satisfied:

C-1
∑
n≥2

1
nγ3

n

n∑
k, j=1

∣∣∣〈 fk, f j〉H⊗`
∣∣∣

k j
< +∞ ;

C-2
∑
n≥2

1
nγ2

n

n∑
k=1

1
k
·
∥∥∥ fk ?

m
m fk

∥∥∥
H⊗2`−2m < +∞ , ∀m = 1, . . . , ` − 1 .

Then the ASCLT holds for (Fn)n∈N.

Proof. Note first Fn converges in law to a standard Gaussian random variable, by Proposition
2.2. Observe that∣∣∣4n(t)

∣∣∣2 =
1
γ2

n

n∑
k, j=1

1
k j

(
eit(Fk−F j) − e−t2

)
−

e−t2/2

γn

n∑
k=1

1
k

(
eitFk − e−t2/2

)
(2.12)

−
e−t2/2

γn

n∑
j=1

1
j

(
e−itF j − e−t2/2

)
.

Now we fix r > 0, t ∈ [−r, r]. For brevity, we omit the subscripts. One can deduce from 2.1 and
(2.6), (2.7) that

∣∣∣E[eitFk
]
− e−t2/2

∣∣∣ ≤ C ·

√√
`−1∑
m=1

∥∥∥ fk ?m
m fk

∥∥∥2
,

here and in the following the constant C may vary from line to line but only depend on r, `.
Since

√
a1 + . . . + al ≤

√
a1 + . . . +

√
al for any a1, . . . , al ≥ 0,

∣∣∣E[eitFk
]
− e−t2/2

∣∣∣ ≤ C ·
`−1∑
m=1

∥∥∥ fk ?
m
m fk

∥∥∥.
Similarly, we apply the same argument with s =

√
2t and g = ( fk − f j)/

√
2, and we get

∣∣∣∣E[eit(Fk−F j)
]
− e−t2

∣∣∣∣ =
∣∣∣∣E[eis·J`(g)] − e−s2/2

∣∣∣∣ ≤ C
`−1∑
m=1

∥∥∥g ?m
m g

∥∥∥ + C ·
∣∣∣〈 fk, f j〉

∣∣∣.(2.13)

Clearly, g ?m
m g = 1

2

(
fk ?

m
m fk + f j ?

m
m f j − fk ?

m
m f j − f j ?

m
m fk

)
, then

2
∥∥∥g ?m

m g
∥∥∥ ≤ ∥∥∥ fk ?

m
m fk

∥∥∥ +
∥∥∥ f j ?

m
m f j

∥∥∥ + 2
∥∥∥ fk ?

m
m f j

∥∥∥ .
1.3 implies

∥∥∥ fk ?
m
m f j

∥∥∥ ≤ ∥∥∥ fk ?
`−m
`−m fk

∥∥∥ +
∥∥∥ f j ?

`−m
`−m f j

∥∥∥. Therefore,

∣∣∣∣E[eit(Fk−F j)
]
− e−t2

∣∣∣∣ ≤ C
∣∣∣〈 fk, f j〉

∣∣∣ + C
`−1∑
m=1

(∥∥∥ fk ?
m
m fk

∥∥∥ +
∥∥∥ f j ?

m
m f j

∥∥∥) .(2.14)
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Hence,

E
(
| 4n(t)|2

)(2.15)

≤
C
γ2

n

n∑
k, j=1

∣∣∣〈 fk, f j〉
∣∣∣

k j
+

C
γ2

n

n∑
k, j=1

1
k j

`−1∑
m=1

(∥∥∥ fk ?
m
m fk

∥∥∥ +
∥∥∥ f j ?

m
m f j

∥∥∥) +
C
γn

n∑
k=1

1
k
·

`−1∑
m=1

∥∥∥ fk ?
m
m fk

∥∥∥
=

C
γ2

n

n∑
k, j=1

∣∣∣〈 fk, f j〉
∣∣∣

k j
+

2C
γn

n∑
k=1

1
k
·

`−1∑
m=1

∥∥∥ fk ?
m
m fk

∥∥∥ .
Now we can see that the conditions C-1, C-2 imply the Ibragimov-Lifshits condition (1.6), so the
ASCLT holds for (Fn, n ∈ N). �

In the setting (S), the normalised partial sum S n = (Y1 + · · · + Yn)/
√

n converges in law to a
standard Gaussian random variable. Moreover, the ASCLT holds for (S n), this is a particular
case of [10, Theorem 2]. The following result is a slight generalisation of this classic example.

Corollary 2.1. In the setting (NS), let Fn = J1( fn) be such that ‖ fn‖H = 1 for all n ∈ N. Assume
that the following conditions hold:

(i)
∑
n≥2

1
nγ3

n

n∑
k, j=1

∣∣∣〈 fk, f j〉H

∣∣∣
k j

< +∞

(ii)
∑
n≥2

1
nγ2

n

n∑
k=1

1
k
·

∞∑
m=1

1
√

pmqm
| fk(m)|3 < +∞

(iii)
∞∑

m=1

1
√

pmqm
| fk(m)|3

k→+∞
−−−−→ 0 .

Then Fn
law
−−→ N (0, 1) and the ASCLT holds for (Fn, n ∈ N).

Proof. Note −DL−1Fn = fn and DF = fn. Then the quantity 〈−DL−1Fn,DFn〉H is deterministic
and |DmL−1Fn| · (DmFn)2 = | fn(m)|3 for each m ∈ N. Therefore, it follows from 2.1 that∣∣∣E[eitFn

]
− e−t2/2

∣∣∣ ≤ |t|3 ∞∑
m=1

1
√

pmqm
| fn(m)|3 .

By (iii), the CLT holds for (Fn). Similarly as in the proof of 2.2, we have∣∣∣∣E[eit(Fk−F j)
]
− e−t2

∣∣∣∣ ≤ 2t2
∣∣∣〈 fk, f j〉H

∣∣∣ + 2
√

2|t|3
∞∑

m=1

1
√

pmqm
| fk(m) − f j(m)|3

≤ 2t2
∣∣∣〈 fk, f j〉H

∣∣∣ + 8
√

2|t|3
∞∑

m=1

1
√

pmqm

(
| fk(m)|3 + | f j(m)|3

)
,

where the last inequality follows from the elementary inequality (a + b)3 ≤ 4a3 + 4b3 for any
a, b ≥ 0. The rest of the proof goes along the same lines as in 2.2. �
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To conclude this section, we give the following example as an application of 2.2.

Example 2.1. In the setting (S), we consider the symmetric kernels fn ∈ H
�2
0 for n ≥ 1:

fn(i, j) =


1

2
√

n
if i, j ∈ {1, 2, · · ·, 2n} and |i − j| = n ;

0 otherwise.

Setting Fn = J2( fn), we claim that the ASCLT holds for (Fn, n ≥ 1).

Proof. It is easy to get 2‖ fn‖
2
H⊗2 = 1 and

fn ?
1
1 fn(i, j) =


1

4n
if i = j ∈ {1, 2, · · ·, 2n};

0 otherwise.

So ‖ fn ?
1
1 fn‖H⊗2 =

1

2
√

2n
converges to zero as n→ +∞, thus the CLT follows from Proposition

2.2. If k < `, then

〈 fk, f`〉H⊗2 =

2k∑
i, j=1

fk(i, j) f`(i, j) =

2k∑
i, j=1

fk(i, j)I(|i− j|=k) f`(i, j)I(|i− j|=`) = 0 ,

thus ∑
n≥2

1
nγ3

n

n∑
k,`=1

∣∣∣〈 fk, f`〉H⊗2

∣∣∣
k`

=
∑
n≥2

1
nγ3

n

n∑
k=1

∣∣∣〈 fk, fk〉H⊗2

∣∣∣
k2 =

∑
n≥2

1
nγ3

n

n∑
k=1

1
2k2 < +∞ .

That is, the condition (C-1) in 2.2 is satisfied. It remains to check the condition (C-2):∑
n≥2

1
nγ2

n

n∑
k=1

1
k
·
∥∥∥ fk ?

1
1 fk

∥∥∥
H⊗2 =

∑
n≥2

1
nγ2

n

n∑
k=1

1
k
·

1

2
√

2k
< +∞ .

Hence it follows from 2.2 that the ASCLT holds for (Fn, n ≥ 1). �
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Paper 2: Convergence of random oscillatory integrals in the
presence of long-range dependence and application to

homogenization

A. Lechiheb, I. Nourdin, G. Zheng and E. Haouala

To appear in Probab. Math. Stat.

This paper deals with the asymptotic behavior of random oscillatory integrals in the presence
of long-range dependence. As a byproduct, we solve the corrector problem in random
homogenization of one-dimensional elliptic equations with highly oscillatory random coef-
ficients displaying long-range dependence, by proving convergence to stochastic integrals
with respect to Hermite processes.

Abstract

1 Main results of the paper

1.1 Convergence of random oscillatory integrals
In the present paper one of our goals is to study, once properly normalized, the distributional
convergence of some random oscillatory integrals of the form

ˆ 1

0
Φ
[
g(x/ε)

]
h(x) dx ,(1.1)

where

• h ∈ C
(
[0, 1]

)
is deterministic,

•
{
g(x)}x∈R+

is a certain centred stationary Gaussian process exhibiting long-range correlation,

• Φ ∈ L2(R, ν) has Hermite rank m ≥ 1 (with ν the standard Gaussian measure).

As we will see later, the main motivation of this study comes from the random corrector
problem studied in [4].

Let us first introduce the Gaussian process
{
g(x)

}
x∈R+

we will deal with throughout all this
paper. It is constructed as follows:

1. Let m ∈ N∗ be fixed, let H0 ∈ (1 − 1
2m , 1), and set H = 1 + m(H0 − 1) ∈ (1/2, 1);

2010 Mathematics Subject Classification. Primary: 60F05, 80M40 ; Secondary: 60H05,60H20,60G10,60G18.
Key words and phrases. Elliptic equation; Hermite process; oscillatory integral; corrector; homogenization.
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2. Fix a slowly varying function L : (0,+∞)→ (0,+∞) at +∞, that is, consider a measurable
and locally bounded function L such that L(λx)/L(x) → 1 as x → +∞, for every λ > 0.
Assume furthermore that L is bounded away from 0 and +∞ on every compact subset of
(0,+∞). (See [3] for more details on slowly varying functions.)

3. Let e : R→ R be a square-integrable function such that

(3a)
´
R

e(u)2 du = 1,

(3b) |e(u)| ≤ CuH0−
3
2 L(u) for almost all u > 0, for some absolute constant C,

(3c) e(u) ∼ C0uH0−
3
2 L(u), where C0 =

( ´ ∞
0 (u + u2)H0−

3
2 du

)−1/2,

(3d) their exists 0 < γ < min
{
H0 − (1 − 1

2m ), 1 − H0
}

such that

ˆ 0

−∞

|e(u)e(xy + u)| du = o(x2H0−2L(x)2)y2H0−2−2γ

as x→ ∞, uniformly in y ∈ (0, t] for each given t > 0.

4. Finally, let W be a two-sided Brownian motion.

Bearing all these ingredients in mind, we can now set, for x ∈ R+,

(1.2) g(x) :=
ˆ ∞
−∞

e(x − ξ)dWξ .

Remark 1.1. (i) Assumptions 3a and 4 ensure that
{
g(x)

}
x∈R+

is a normalised centred Gaus-
sian process.

(ii) Assumption 3b controls |e(u)| for small u, while Assumption 3d ensures that the “forward”
contribution of e(u) is ultimately negligible due to the following computation:

E
[
g(s)g(s + x)

]
=

ˆ ∞
−∞

e(s − ξ)e(s + x − ξ) dξ =

ˆ ∞
−∞

e(u)e(u + x) du

=

ˆ 0

−∞

e(u)e(u + x) du +

ˆ ∞
0

e(u)e(u + x) du

= o
(
x2H0−2L(x)2) + x

ˆ ∞
0

e(xu)e(xu + x) du .

(iii) Assumption 3c ensures that the process
{
g(x)

}
x∈R+

exhibits the following asymptotic
behaviour:

(1.3) Rg(x) := E
[
g(s)g(s + x)

]
∼ x2H0−2L(x)2 as x→ +∞,

see [12, Equation (2.3)].

In section 3.1, we will show that the random integral given by (1.1) exhibits the following
asymptotic behavior as ε→ 0.
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Theorem 1.1. Let g be the centred stationary Gaussian process defined by (1.2), and assume that
Φ ∈ L2(R, ν) has Hermite rank m ≥ 1. Then, for any h ∈ C

(
[0, 1]

)
, the following convergence in

law takes place

(1.4) Mε
h :=

1
εd(1/ε)

ˆ 1

0
Φ[g(x/ε)]h(x) dx

ε↓0
−−→ M0

h :=
Vm

m!

ˆ 1

0
h(x) dZ(x) ,

where Z is the mth-Hermite process defined by (2.4) and d(·) is defined by

(1.5) d(x) =

√
m!

H(2H − 1)
xHL(x)m.

As we already anticipated, the fine analysis of the asymptotic behavior of (1.4) is motivated
by the random corrector problem studied in [4], that we describe now.

1.2 A motivating example
Theorem 1.1 appears to be especially useful and relevant in the study of the following homoge-
nization problem. Consider the following one-dimensional elliptic equation displaying random
coefficients: −

d
dx

(
a(x/ε, ω)

d
dx

uε(x, ω)
)

= f (x) , x ∈ (0, 1) , ε > 0

uε(0, ω) = 0 , uε(1, ω) = b ∈ R.
(1.6)

In (1.6), the random potential {a(x)}x∈R+
is assumed to be a uniformly bounded, positive1 sta-

tionary stochastic process, whereas the data f is continuous. This model has received a lot of
interests in the literature (see for instance [5, page 13-14]).

Taking strong advantage of the fact that the ambient dimension is one, it is immediate to check
that the solution to (1.6) is given explicitly by

(1.7) uε(x, ω) = cε(ω)
ˆ x

0

1
a(y/ε, ω)

dy −
ˆ x

0

F(y)
a(y/ε, ω)

dy,

where F(x) :=
´ x

0 f (y) dy is the antiderivative of f vanishing at zero, and where

cε(ω) :=
(

b +

ˆ 1

0

F(y)
a(y/ε, ω)

dy
) (ˆ 1

0

1
a(y/ε, ω)

dy
)−1

.

Under suitable ergodic and stationary assumptions on a, the ergodic theorem applied to (1.7)
implies that uε converges pointwise to ū as ε→ 0, where

ū(x) =
c∗x
a∗
−

ˆ x

0

F(y)
a∗

dy,

1That is, there exists r ∈ (0, 1) such that r ≤ a(x) ≤ r−1 for every (x, ω) ∈ R+ ×Ω.
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with c∗ := ba∗ +
´ 1

0 F(y) dy and

a∗ :=
1

E
[
1/a(0)

] .
The above parameter a∗ is usually refered to as the effective diffusion coefficient in the literature,
see e.g. [10]. It is also immediately checked that ū is the unique solution to the following
deterministic equation: −

d
dx

(
a∗

d
dx

ū(x)
)

= f (x) , x ∈ (0, 1)

ū(0) = 0 , ū(1) = b.
(1.8)

Interested readers can refer to [2] for a recent review on models involving more general elliptic
equations.

In this work, we address the random corrector problem for (1.6) in presence of long-range
media, that is, we analyze the behaviour of the random fluctuations between uε and ū when the
random potential a is obtained by means of a long-range process (see below for the details).
Taking advantage of the explicit expressions for both (1.6) and (1.8), it is easy but crucial to
observe that the random corrector uε(x) − ū(x) can be fully expressed by means of random
oscillatory integrals of the form

(1.9)
ˆ 1

0

[
1

a(y/ε)
−

1
a∗

]
h(y) dy

for some function h. Thus, the random corrector problem for (1.6) reduces in a careful analysis
of the asymptotic behaviour of random quantities of the form (1.9) as ε → 0. To this aim, we
need to give a precise description about the form of the process a.

Let ν denote the standard Gaussian measure on R. Every Φ ∈ L2(R, ν) admits the following
series expansion

Φ =

∞∑
q=0

Vq

q!
Hq, with Vq :=

ˆ
R

Φ(x)Hq(x)ν(dx),(1.10)

and where Hq(x) = (−1)q exp(x2/2) dq

dxq exp(−x2/2) denotes the qth Hermite polynomial. Recall
that the integer mΦ := inf{q ≥ 0 : Vq , 0} is called the Hermite rank of Φ (with the convention
inf ∅ = +∞). For any integer m ≥ 1, we define Gm to the collection of all square-integrable
functions (with respect to the standard Gaussian measure on R) that have Hermite rank m.

Using Theorem 1.1 as main ingredient, we will prove the following result about the asymptotic
behaviour of the random corrector associated with (1.6).

Theorem 1.2. Fix an integer m ≥ 1 as well as two real numbers H0 ∈ (1 − 1
2m , 1) and b ∈ R, and

let {a(x)}x∈R+
be a uniformly bounded, positive and stationary stochastic process. Assume in

addition that q = {q(x)}x∈R+
given by

(1.11) q(x) =
1

a(x)
−

1
a∗
, where a∗ := 1/E

[
1/a(0)

]
,
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has the form

(1.12) q(x) = Φ
(
g(x)

)
,

where Φ ∈ L2(R, ν) belongs to Gm and {g(x)}x∈R+
is the Gaussian process given by (1.2). Finally,

let f : [0, 1] → R be continuous, and let us consider the solutions uε and ū of (1.6) and (1.8)
respectively. Then, for each ε > 0, the random corrector uε − ū is a continuous process on [0, 1].
Moreover, we have the following convergence in law on C([0, 1]) endowed with the supremum
norm as ε→ 0: {

uε(x) − ū(x)
εd(1/ε)

}
x∈[0,1]

=⇒

{
Vm

m!

ˆ
R

F(x, y) dZ(y)
}

x∈[0,1]
,

where d is given by (1.5),

F(x) =

ˆ x

0
f (y)dy, c∗ = a∗b +

ˆ 1

0
F(y) dy,

F(x, y) =
[
c∗ − F(y)

]
I[0,x](y) + x

(
F(y) −

ˆ 1

0
F(z)dz − a∗b

)
I[0,1](y),

and Z is the Hermite process of order m and self-similar index

H := 1 + m(H0 − 1) ∈ (1/2, 1).

(The definition of Z is given in Theorem 2.1.)

Note that it is not difficult to construct a process a satisfying all the assumptions of Theorem
1.2. Indeed, bearing in mind the notation of Theorem 1.2, we can write

(1.13) a(x) =

(
q(x) +

1
a∗

)−1

=

(
Φ(g(x)) +

1
a∗

)−1

.

Firstly, we note that since g given by (1.2) is stationary, clearly the same holds for a, whatever
the expression of Φ. Secondly, given any fixed a∗ > 0, we can construct a bounded measurable
function Φ ∈ G2 with ‖Φ‖∞ ≤ 1/(2a∗):

let h1, h2 be two bounded measurable functions, then it is clear that they belong to L2(R, ν)
and they admit the series expansion

h1 −

ˆ
R

h1 dν =

∞∑
k=1

akHk and h2 −

ˆ
R

h2 dν =

∞∑
k=1

bkHk ,

where the coefficients ak, bk are defined in the obvious manner. Therefore, the function

Ψ := b1

(
h1 −

ˆ
R

h1 dν
)
− a1

(
h2 −

ˆ
R

h2 dν
)

is bounded and belongs to G2.
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Then we pick Φ =
Ψ

2a∗‖Ψ‖∞
∈ G2. Therefore a(x) defined by (1.13) satisfies

0 <
2a∗

3
≤ a(x) ≤ 2a∗ .(1.14)

Inductively, one can construct a bounded measurable Φ with Hermite rank m ≥ 3 (by starting
with two bounded functions in Gm−1) such that the process

{
a(x), x ∈ R

}
given in (1.13) satisfies

(1.14).
Yet another possibility of constructing such a process

{
a(x), x ∈ R

}
is stated (more explicitly)

as follows: fix 0 < t1 < . . . < tm, and consider the unique (m + 1)-uple (b0, . . . , bm) satisfying

(1.15)


∑m

l=0 bl e−ktl = 0 for all k ∈ {0, . . . ,m − 1},∑m
l=0 bl e−mtl = 1 .

(Existence and uniqueness of a solution to (1.15) is a consequence of a Vandermonde determi-
nant.) Now, consider any measurable function ψ satisfying

(1.16) 0 ≤ ψ ≤
1

2a∗
∑m

l=0 |bl|
.

Since ψ belongs obviously to L2(R, ν), it may be expanded in Hermite polynomials as ψ =∑∞
k=0 akHk. We assume moreover that am , 0. (Existence of ψ satisfying both (1.16) and am , 0

is clear by a contradiction argument.) Now, let

Φ =

m∑
l=0

blPtlψ,

where Ptψ(x) =
´
R
ψ(e−tx +

√
1 − e−2ty)ν(dy) is the classical Ornstein-Uhlenbeck semigroup.

Due to (1.15), it is readily checked that the expansion of Φ is

Φ = amHm +

∞∑
k=m+1

 m∑
l=0

ble−ktl

 akHk,

so that Φ ∈ Gm. Moreover,

‖Φ‖∞ ≤

m∑
l=0

|bl|‖Ptlψ‖∞ ≤ ‖ψ‖∞

m∑
l=0

|bl| ≤
1

2a∗

and a given by (1.13) is positive and bounded. So, existence of a process a satisfying all the
assumptions of Theorem 1.2 is shown.

Theorem 1.2 should be seen as an extension and unified approach of the main results of [4],
and it contains these latter as particular cases. More precisely, the case where the Hermite rank of
Φ is m = 1 corresponds to [1, Theorem 2.5] and involves the fractional Brownian motion in the
limit, whereas the case where the Hermite rank of Φ is m = 2 corresponds to [4, Theorem 2.2]
and involves the Rosenblatt process in the limit. Also, in their last section (entitled Conclusions
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and further discussion), the authors of [4] pointed out that “it is natural to ask what would
happen if the Hermite rank of Φ was greater than 2”. Our Theorem 1.2 answers this question, by
showing (as was guessed by the authors of [4]) that, in the case m ≥ 3, the limit takes the form of
an integral with respect to the Hermite process of order m. Finally, we would like to emphasize
that our Theorem 1.2, even in the cases m = 1 and m = 2, is a strict extension of the results of
[4], as we allow the possibility to deal with a slowly varying function L. That being said, our
proof of Theorem 1.2 is exclusively based on the ideas and results contained in the seminal paper
[12] and follows the strategy developed in [4]. In higher dimension, it is usually very hard to
study the corrector theory due to the lack of explicit form of the solution. In a recent work [8, 9],
the authors considered the discretised version of the corrector problem in higher dimension and
they were able to study the scaling limit to some Gaussian fields. For more details, we refer the
interested readers to these two papers and the references therein.

1.3 Plan of the paper
The rest of the paper is organized as follows. In Section 2, we give some preliminary results,
divided into several subsections. Section 3 contains the proof of Theorems 1.2 and 1.1.

2 Preliminary results
Throughout all this section, we let all the notation and assumptions of Sections 1.1 and 1.2
prevail.

2.1 Asymptotic behaviour of the covariance function of q

For x ∈ R, set Rq(x) = E
[
q(0)q(x)

]
. Also, recall that m is the Hermite rank of Φ. Then,

proceeding in similar lines as that of [4, Lemma 2.1], one can show that

(2.1)
∣∣∣Rq(x)

∣∣∣ =
(
o(1) + V2

m/m!
)
L(|x|)2m|x|−2(1−H) ,

as |x| → +∞. Here o(1) means that the term converges to zero when x→ ∞.
The asymptotic relation (2.1) implies the existence of some absolute constant C satisfying∣∣∣Rq(x)

∣∣∣ ≤ C L(|x|)2m|x|−2(1−H)(2.2)

for any x , 0.

2.2 Taqqu’s theorem and convergence to Hermite process Z

Recall d(x) from (1.5). Its main property is that the variance of
1

d(x)

ˆ x

0
Hm(g(y)) dy is asymp-

totically equal to 1 as x→ +∞.
The following result, due to Taqqu in 1979, is the key ingredient in our proofs.
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Theorem 2.1. ([12, Lemma 5.3]) Assume Φ ∈ Gm and let g be given by (1.2). Then, as
T → +∞, the process

(2.3) YT (x) =
1

d(T )

ˆ T x

0
Φ
[
g(y)

]
dy, x ∈ R+,

converges to
Vm

m!
Z(x) in the sense of finite-dimensional distributions, where the mth-order Hermite

process Z with self-similar index H = m(H0 − 1) + 1 is defined by:

Z(x)(2.4)

= K(m,H0)


ˆ ∞
−∞

dBξ1

ˆ ξ1

−∞

dBξ2 . . .

ˆ ξm−1

−∞

dBξm

ˆ x

0

m∏
i=1

(s − ξi)H0−
3
2 1(ξi<s) ds

 ,

where

K(m,H0) :=

√√√√√ m!H(2H − 1)(ˆ ∞
0

(u + u2)H0−
3
2 du

)m

is the normalising constant such that E
[
Z(1)2] = 1. (See [12, Equation (1.6)])

Note that Z(x) lives in the Wiener chaos of order m, which is non-Gaussian unless m = 1 or
x = 0.

2.3 Wiener integral with respect to Z

Let Z be given as above and let E be the set of elementary (deterministic) functions, that is,
the set of functions h of the form

h(x) =
∑̀
k=1

akI(tk ,tk+1](x)

with ` ∈ N∗, ak ∈ R, tk < tk+1. For such h, we define the Wiener integral with respect to Z in the
usual way, as a linear functional over E:

ˆ
R

h(x) dZ(x) =
∑̀
k=1

ak

[
Z(tk+1) − Z(tk)

]
.

One can verify easily that this definition is independent of choices of representation for ele-
mentary functions. Now we introduce the space of (deterministic) integrands for this Wiener
integral:

(2.5) ΛH =

{
f : R −→ R

∣∣∣∣ ˆ
R

ˆ
R

f (u) f (v)|u − v|2H−2 du dv < +∞

}
,

equipped with the norm

(2.6) ‖ f ‖2
ΛH = H(2H − 1)

ˆ
R

ˆ
R

f (u) f (v)|u − v|2H−2 du dv .



Paper 2 101

When h ∈ E, it is straightforward to check the following isometry property:

E

(ˆ
R

h(x)dZ(x)
)2 = ‖h‖2

ΛH .

As a consequence, one can define the Wiener integral
´
R

f (x)dZ(x) for any f ∈ ΛH, by a usual
approximation procedure.

It is by now well known (thanks to [11]) that
(
ΛH, ‖ · ‖ΛH

)
is a Hilbert space that contains

distributions in the sense of Schwartz. To overcome this problem, we shall restrict ourselves to
the proper subspace

|ΛH | =

{
f : R→ R

∣∣∣∣ ˆ
R

ˆ
R

| f (u) f (v)||u − v|2H−2 du dv < +∞

}
equipped with the norm

‖ f ‖2
|ΛH |

= H(2H − 1)
ˆ
R

ˆ
R

| f (u) f (v)||u − v|2H−2 du dv .

We then have (see [11, Proposition 4.2])

(2.7) L1(R) ∩ L2(R) ⊂ L1/H(
R
)
⊂ |ΛH | ⊂ ΛH.

Moreover,
(
|ΛH |, ‖ · ‖|ΛH |

)
is a Banach space, in which the set E is dense. So for h ∈ |ΛH |, we can

define

(2.8)
ˆ
R

h(x) dZ(x) = lim
n→+∞

ˆ
R

hn(x) dZ(x) ,

where (hn) is any sequence of E converging to h in
(
|ΛH |, ‖ · ‖|ΛH |

)
; the convergence in (2.8) takes

place in L2(Ω
)
.

For a detailed account of this integration theory, one can refer to [7, 11].

2.4 Some facts about slowly varying functions
Let L : (0,+∞) → (0,+∞) be a slowly varying function at +∞ and α > 0. It is well known

(see [3, Proposition 1.3.6(v)]) that

xαL(x)→ +∞ and x−αL(x)→ 0 ,

as x→ +∞. In particular, one can deduce that

lim
ε↓0

ε1−HL(1/ε)m = 0 .(2.9)

The following result is known as Potter’s Theorem (see [3, Theorem 1.5.6(ii)]).

Theorem 2.2. Let L : (0,+∞) → (0,+∞) be a slowly varying function at +∞ such that it is
bounded away from 0 and +∞ on every compact subset of (0,+∞). Then for any δ > 0, there
exists some constant C = C(δ) such that

L(y)
L(x)

≤ C max
{

(x/y)δ , (y/x)δ
}

for any x, y ∈ (0,+∞).
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3 Proofs of main results

3.1 Proof of Theorem 1.1
First recall that a typical function h in E has the form

h(x) =

n∑
`=1

a`I(t`,t`+1](x), t` < t`+1, a` ∈ R, ` = 1, ..., n .

For such a simple function h, we deduce from Taqqu’s Theorem 2.1 that

Mε
h =

1
εd(1/ε)

ˆ
R

q(x/ε)
n∑
`=1

a`I(t`,t`+1](x) dx

=

n∑
`=1

a`
1

d(1/ε)

( ˆ t`+1/ε

0
Φ(g(x)) dx −

ˆ t`/ε

0
Φ(g(x)) dx

)
ε→0
−−−→

Vm

m!

n∑
`=1

a`
[
Z(t`+1) − Z(t`)

]
=

Vm

m!

ˆ
R

h(x) dZ(x) .

This proves (1.4) for simple functions h ∈ E.
Let us now consider h ∈ C

(
[0, 1]

)
. It is easy to see that there exists a sequence (hn) ⊂ E such

that
lim

n→+∞

∥∥∥hn − h
∥∥∥
∞

= 0 .

Let us fix a number ζ ∈ (0, 1) and show the convergence in L2(Ω) of Mε
hn

, uniformly in ε ∈ (0, ζ).
First, one can write

sup
ε∈(0,ζ)

E
[
|Mε

hn
− Mε

h |
2
]

= sup
ε∈(0,ζ)

1
ε2d(1/ε)2 E

 ∣∣∣∣∣∣
ˆ 1

0
q(x/ε)

[
hn(x) − h(x)

]
dx

∣∣∣∣∣∣
2 

≤
∥∥∥hn − h

∥∥∥2

∞
× sup

ε∈(0,ζ)

1
ε2d(1/ε)2

ˆ
R2\D

∣∣∣∣Rq

(y − x
ε

) ∣∣∣∣ dx dy ,

where D =
{
(x, y) ∈ [0, 1]2 : x = y

}
is a negligible subset of R2. By (2.2),

∣∣∣Rq
(y − x
ε

)∣∣∣ ≤ Cst L
(∣∣∣∣∣y − x

ε

∣∣∣∣∣)2m ∣∣∣∣∣y − x
ε

∣∣∣∣∣−2(1−H)

, ∀(x, y) ∈ R2 \ D .

Secondly, with β > 0 small enough such that 2mβ + 2(1 − H) ∈ (0, 1), we have

sup
ε∈(0,ζ)

1
X(ε)2

ˆ
[0,1]2\D

∣∣∣∣Rq

(y − x
ε

) ∣∣∣∣ dx dy

≤ Cst sup
ε∈(0,ζ)

ˆ
[0,1]2\D

{
L
(
|(x − y)/ε|

)
L(1/ε)

}2m

|x − y|−2(1−H) dx dy
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≤ Cst
ˆ

[0,1]2\D
|x − y|−2mβ−2(1−H) dx dy(3.1)

< +∞ ,

where (3.1) follows from Theorem 2.2. It is now clear that, indeed,

(3.2) lim
n→+∞

sup
ε∈(0,ζ)

E
[
|Mε

hn
− Mε

h |
2] = 0 .

To conclude, let d(·, ·) denote any distance metrizing the convergence in distribution between
real-valued random variables (for instance, the Fortet-Mourier distance). For h ∈ C([0, 1]) and
(hn) ⊂ E converging to h, one can write, for any ε > 0 and n ∈ N:

d(Mε
h,M

0
h) ≤ d(Mε

h,M
ε
hn

) + d(Mε
hn
,M0

hn
) + d(M0

hn
,M0

h).

Fix η > 0. By (3.2), one can choose n big enough so that, for any ε ∈ (0, ζ), both d(Mε
h,M

ε
hn

) and
d(M0

hn
,M0

h) are less than η/3. It remains to choose ε > 0 small enough so that d(Mε
hn
,M0

hn
) is

less that η/3 (by (1.4) for the simple function hn ∈ E), to conclude that (1.4) holds true for any
continuous function h.

Remark 3.1. Clearly, the above result still holds true for any function h that is continuous except
at finitely many points. Note also that the function Φ ∈ Gm is not necessarily bounded in Theorem
1.1.

3.2 Proof of Theorem 1.2

The proof is divided into five steps. We write X(ε) = εd(1/ε) =
√

m!
H(2H−1)ε

1−HL(1/ε)m.

(a) Preparation. Following [4], more precisely identities (5.1) and (5.19) therein, we first
rewrite the rescaled corrector as follows:

uε(x) − ū(x)
X(ε)

= Uε(x) +
1
X(ε)

rε(x) +
1
X(ε)

ρε
x
a∗

,(3.3)

where the underlined term will be denoted by Rε(x), and

Uε(x) =
1
X(ε)

ˆ
R

F(x, y)q(y/ε) dy ,

rε(x) = (cε − c∗)
ˆ x

0
q(y/ε) dy ,

and

ρε :=
a∗´ 1

0 a(y/ε)−1 dy

[ (
a∗b +

ˆ 1

0
F(y)dy

) (ˆ 1

0
q(y/ε) dy

)2

−

ˆ 1

0
F(y)q(y/ε) dy ×

ˆ 1

0
q(y/ε) dy

]
.
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Now, let us first show the weak convergence ofUε toU in C([0, 1]) and then prove that Rε is
a remainder. In order to prove the first claim, we start by establishing the f.d.d. convergence and
then we prove the tightness.

(b) Convergence of finite dimensional distributions of Uε. For x1, . . . , xn ∈ R and
λ1, . . . , λn ∈ R (n ≥ 1), we have

n∑
k=1

λkU
ε(xk) =

1
X(ε)

ˆ
R

n∑
k=1

λk F(xk, y)q(y/ε) dy.

Note that the function
∑n

k=1 λk F(xk, ·) have at most finitely many discontinuities. Thus, Theorem
1.1 and Remark 3.1 imply that

∑n
k=1 λkU

ε(xk) converges in distribution to
∑n

k=1 λkU(xk), yielding
the desired convergence of finite dimensional distributions.

(c) Tightness ofUε. We check Kolmogorov’s criterion ([6, Corollary 16.9]). First observe
thatUε(0) = 0. Now, fix 0 ≤ u < v ≤ 1, and set F1(y) = c∗−F(y) and F2(y) = F(y)−

´ 1
0 F(t) dt−

a∗b, so that F(x, y) = F1(y)I[0,x](y) + xF2(y)I[0,1](y). Then

E
(
|Uε(u) −Uε(v)|2

)
= E

[ 1
X(ε)2

∣∣∣∣∣ˆ 1

0
I(u,v](y)q(y/ε)F1(y) dy + (v − u)

ˆ 1

0
q(y/ε)F2(y) dy

∣∣∣∣∣2 ]
≤

2
X(ε)2E

[∣∣∣∣∣ˆ 1

0
I(u,v](y)q(y/ε)F1(y) dy

∣∣∣∣∣2 +

∣∣∣∣∣(v − u)
ˆ 1

0
q(y/ε)F2(y) dy

∣∣∣∣∣2]
≤

2
X(ε)2

ˆ v

u

ˆ v

u
F1(x)F1(y)Rq

(y − x
ε

)
dx dy(3.4)

+
2(v − u)2

X(ε)2

ˆ 1

0

ˆ 1

0
F2(x)F2(y)Rq

(y − x
ε

)
dx dy .(3.5)

Note that F2 is bounded on [0, 1]. Therefore, as far as (3.5) is concerned, one can write, using
Potter’s Theorem as in the proof of Theorem 1.1,

sup
ε∈(0,ζ)

∣∣∣∣∣∣ (v − u)2

X(ε)2

ˆ 1

0

ˆ 1

0
F2(x)F2(y)Rq

(y − x
ε

)
dx dy

∣∣∣∣∣∣ ≤ Cst(v − u)2 .

Now, let us consider the term in (3.4). Similarly,

sup
ε∈(0,ζ)

1
X(ε)2

∣∣∣∣∣ˆ v

u

ˆ v

u
F1(x)F1(y)Rq

(y − x
ε

)
dx dy

∣∣∣∣∣
≤ Cst sup

ε∈(0,ζ)

1
X(ε)2

ˆ v

u

ˆ v

u

∣∣∣Rq(
y − x
ε

)
∣∣∣ dx dy (since F1 is bounded)

≤ Cst sup
ε∈(0,ζ)

1
L(1/ε)2m

ˆ v

u

ˆ v

u
L
(
|y − x|/ε

)2m dx dy
|y − x|2(1−H)

≤ Cst
ˆ v

u

ˆ v

u
|y − x|−2(1−H)−2mβ dy dx (similarly as in (3.1))
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= Cst(v − u)2−2mβ−2(1−H) .(3.6)

Since 2 − 2m(1 − H0) − 2mβ > 1, this proves the tightness of (Uε)ε by means of the usual
Kolmogorov’s criterion.

(d) Control on the remainder term Rε in (3.3). We shall prove that the process Rε

converges in probability to zero in C([0, 1]). First we claim that if G ∈ C([0, 1]), then there exists
some constant C = C(G) such that

sup
x∈[0,1]

E

(ˆ x

0
q(y/ε)G(y) dy

)2 ≤ C X(ε)2 .(3.7)

Indeed, the same argument we used for bounding (3.5) works here as well:

sup
x∈[0,1]

E

(ˆ x

0
q(y/ε)G(y) dy

)2
≤ ‖G‖2∞

ˆ
[0,1]2

∣∣∣Rq(|y − z|/ε)
∣∣∣ dy dz

≤ ‖G‖2∞X(ε)2
(

sup
ε∈(0,ζ)

1
X(ε)2

ˆ
[0,1]2

∣∣∣Rq(|y − z|/ε)
∣∣∣ dy dz

)
≤ CstX(ε)2 ,

where the last inequality follows from (3.1).
Now, let us consider Rε:
(i) Due to the explicit expression of ρε, it follows from (3.7), the fact that a is bounded from

below and Cauchy-Schwarz inequalities that

E
[
|ρε|

]
≤ Cst

{ ∥∥∥∥ˆ 1

0
q(y/ε) dy

∥∥∥∥2

L2(Ω)
+

∥∥∥∥ˆ 1

0
F(y)q(y/ε) dy

∥∥∥∥
L2(Ω)

∥∥∥∥ˆ 1

0
q(y/ε) dy

∥∥∥∥
L2(Ω)

}
≤ CstX(ε)2 .

(ii) Observe that

cε − c∗ = a∗
ˆ 1

0

(
F(y) −

ˆ 1

0
F(t) dt − ba∗

)
q(y/ε) dy + ρε

=:
ˆ 1

0
F̂(y)q(y/ε) dy + ρε.

Then

sup
x∈[0,1]

E
[
|rε(x)|

]
= sup

x∈[0,1]
E

[∣∣∣(cε − c∗)
ˆ x

0
q(y/ε) dy

∣∣∣]
≤ sup

x∈[0,1]
E

[ ∣∣∣∣ˆ 1

0
F̂(y)q(y/ε) dy

ˆ x

0
q(y/ε) dy

∣∣∣∣ ] + CstE
[
|ρε|

]
≤ CstX(ε)2 .
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Therefore, as ε→ 0 we have

sup
x∈[0,1]

E
[∣∣∣Rε(x)

∣∣∣] ≤ CstX(ε) −→ 0 . (by (2.9))

In particular,
{
Rε(x), x ∈ [0, 1]

}
converges to zero in the sense of finite-dimensional distributions.

Now, let us check the tightness of
(
Rε

)
ε. Note that Rε(0) = 0 and that, for 0 ≤ u < v ≤ 1,∥∥∥Rε(u) − Rε(v)

∥∥∥2

L2(Ω)

≤
2
X(ε)2

{ ∥∥∥rε(u) − rε(v)
∥∥∥2

L2(Ω)
+

2(u − v)2

|a∗|2
E
[
|ρε|2

] }
≤

2
X(ε)2

∥∥∥rε(u) − rε(v)
∥∥∥2

L2(Ω)

+ Cst
(u − v)2

X(ε)2 E
[
|ρε|

]
(since ρε is uniformly bounded)

≤
2
X(ε)2

∥∥∥rε(u) − rε(v)
∥∥∥2

L2(Ω)
+ Cst(u − v)2 (by point (i) above)

≤ Cst
1
X(ε)2

ˆ
[u,v]2

∣∣∣R(
(y − z)/ε

)∣∣∣ dy dz

+ Cst(u − v)2 (since cε − c∗ is uniformly bounded)

≤ Cst(v − u)2−2(1−H)−2mβ + Cst(v − u)2 ,

where the last inequality follows from the same arguments as in (3.6). Therefore, Rε converges
in distribution to 0, as ε ↓ 0, so it converges in probability to 0.

(e) Conclusion. Combining the results of (a) to (d), the proof of Theorem 1.2 is concluded
by evoking Slutsky lemma.
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Paper 3: Exchangeable pairs on Wiener chaos

Ivan Nourdin and Guangqu Zheng

Submitted

In [14], Nourdin and Peccati combined the Malliavin calculus and Stein’s method of normal
approximation to associate a rate of convergence to the celebrated fourth moment theorem
[19] of Nualart and Peccati. Their analysis, known as the Malliavin-Stein method nowadays,
has found many applications towards stochastic geometry, statistical physics and zeros of
random polynomials, to name a few. In this article, we further explore the relation between
these two fields of mathematics. In particular, we construct exchangeable pairs of Brownian
motions and we discover a natural link between Malliavin operators and these exchangeable
pairs. By combining our findings with E. Meckes’ infinitesimal version of exchangeable
pairs, we can give another proof of the quantitative fourth moment theorem. Finally, we
extend our result to the multidimensional case.

Abstract

Dedicated to the memory of Charles Stein, in remembrance of his beautiful mind and of his inspiring,
creative, very original and deep mathematical ideas, which will, for sure, survive him for a long time.

1 Introduction
At the beginning of the 1970s, Charles Stein, one of the most famous statisticians of the time,
introduced in [24] a new revolutionary method for establishing probabilistic approximations
(now known as Stein’s method), which is based on the breakthrough application of characterizing
differential operators. The impact of Stein’s method and its ramifications during the last 40 years
is immense (see for instance the monograph [3]), and touches fields as diverse as combinatorics,
statistics, concentration and functional inequalities, as well as mathematical physics and random
matrix theory.

Introduced by Paul Malliavin [7], Malliavin calculus can be roughly described as an infinite-
dimensional differential calculus whose operators act on sets of random objects associated with
Gaussian or more general noises. In 2009, Nourdin and Peccati [14] combined the Malliavin
calculus and Stein’s method for the first time, thus virtually creating a new domain of research,
which is now commonly known as the Malliavin-Stein method. The success of their method relies
crucially on the existence of integration-by-parts formulae on both sides: on one side, the Stein’s
lemma is built on the Gaussian integration-by-parts formula and it is one of the cornerstones of
the Stein’s method; on the other side, the integration-by-parts formula on Gaussian space is one
of the main tools in Malliavin calculus. Interested readers can refer to the constantly updated
website [13] and the monograph [15] for a detailed overview of this active field of research.

Key words and phrases. Stein’s method; Exchangeable pairs; Brownian motion; Malliavin calculus.
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A prominent example of applying Malliavin-Stein method is the obtention (see also (1.1)
below) of a Berry-Esseen’s type rate of convergence associated to the celebrated fourth moment
theorem [19] of Nualart and Peccati, according to which a standardized sequence of multiple
Wiener-Itô integrals converges in law to a standard Gaussian random variable if and only if its
fourth moment converges to 3.

Theorem 1.1. (i) (Nualart, Peccati [19]) Let (Fn) be a sequence of multiple Wiener-Itô
integrals of order p, for some fixed p ≥ 1. Assume that E[F2

n]→ σ2 > 0 as n→ ∞. Then,
as n→ ∞, we have the following equivalence:

Fn
law
→ N(0, σ2) ⇐⇒ E[F4

n]→ 3σ4.

(ii) (Nourdin, Peccati [14, 15]) Let F be any multiple Wiener-Itô integral of order p ≥ 1, such
that E[F2] = σ2 > 0. Then, with N ∼ N(0, σ2) and dTV standing for the total variation
distance,

dTV(F,N) ≤
2
σ2

√
p − 1
3p

√
E[F4] − 3σ4.

Of course, (ii) was obtained several years after (i), and (ii) implies ‘⇐’ in (i). Nualart
and Peccati’s fourth moment theorem has been the starting point of a number of applications
and generalizations by dozens of authors. These collective efforts have allowed one to break
several long-standing deadlocks in several domains, ranging from stochastic geometry (see e.g.
[6, 21, 23]) to statistical physics (see e.g. [8, 9, 10]), and zeros of random polynomials (see e.g.
[1, 2, 4]), to name a few. At the time of writing, more than two hundred papers have been written,
which use in one way or the other the Malliavin-Stein method (see again the webpage [13]).

Malliavin-Stein method has become a popular tool, especially within the Malliavin calculus
community. Nevertheless, and despite its success, it is less used by researchers who are not
specialists of the Malliavin calculus. A possible explanation is that it requires a certain investment
before one is in a position to be able to use it, and doing this investment may refrain people who
are not originally trained in the Gaussian analysis. This paper takes its root from this observation.

During our attempt to make the proof of Theorem 1.1(ii) more accessible to readers having no
background on Malliavin calculus , we discover the following interesting fact for exchangeable
pairs of multiple Wiener-Itô integrals. When p ≥ 1 is an integer and f belongs to L2([0, 1]p), we
write IB

p ( f ) to indicate the multiple Wiener-Itô integral of f with respect to Brownian motion B,
see Section 2 for the precise meaning.

Proposition 1.1. Let (B, Bt)t≥0 be a family of exchangeable pairs of Brownian motions (that is,
B is a Brownian motion on [0, 1] and, for each t, one has (B, Bt) law

= (Bt, B)). Assume moreover
that

(a) for any integer p ≥ 1 and any f ∈ L2([0, 1]p),

lim
t↓0

1
t

E
[
IBt

p ( f ) − IB
p ( f )

∣∣∣σ{B}] = −p IB
p ( f ) in L2(Ω).
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Then, for any integer p ≥ 1 and any f ∈ L2([0, 1]p),

(b) lim
t↓0

1
t

E
[(

IBt

p ( f ) − IB
p ( f )

)2
|σ{B}

]
= 2p2

ˆ 1

0
IB

p−1( f (x, ·))2dx in L2(Ω);

(c) lim
t↓0

1
t

E
[(

IBt

p ( f ) − IB
p ( f )

)4
]

= 0.

Why is this proposition interesting? Because, as it turns out, it combines perfectly well with
the following result, which represents the main ingredient from Stein’s method we will rely on
and which corresponds to a slight modification of a theorem originally due to Elizabeth Meckes
(see [11, Theorem 2.1]).

Theorem 1.2 (Meckes [11]). Let F and a family of random variables (Ft)t≥0 be defined on
a common probability space (Ω,F , P) such that Ft

law
= F for every t ≥ 0. Assume that F ∈

L3(Ω,G , P) for some σ-algebra G ⊂ F and that in L1(Ω),

(a) lim
t↓0

1
t

E[Ft − F|G ] = −λ F for some λ > 0,

(b) lim
t↓0

1
t

E[(Ft − F)2|G ] = (2λ + S )Var(F) for some random variable S ,

(c) lim
t↓0

1
t

(Ft − F)3 = 0.

Then, with N ∼ N(0,Var(F)),

dTV(F,N) ≤
E|S |
λ

.

To see how to combine Proposition 1.1 with Theorem 1.2 (see also point(ii) in Remark 5.1),
consider indeed a multiple Wiener-Itô integral of the form F = IB

p ( f ), with σ2 = E[F2] > 0.
Assume moreover that we have at our disposal a family {(B, Bt)}t≥0 of exchangeable pairs of
Brownian motions, satisfying the assumption (a) in Proposition 1.1. Then, putting Proposition
1.1 and Theorem 1.2 together immediately yields that

dTV(F,N)≤
2
σ2 E

[∣∣∣∣∣∣p
ˆ 1

0
IB

p−1( f (x, ·))2dx − σ2

∣∣∣∣∣∣
]
.(1.1)

Finally, to obtain the inequality stated Theorem 1.1(ii) from (1.1), it remains to ‘play’ cleverly
with the (elementary) product formula (2.2), see Proposition 7.1 for the details.

To conclude our elementary proof of Theorem 1.1(ii), we are thus left to construct the family
{(B, Bt)}t>0. Actually, we will offer two constructions with different motivations: the first one is
inspired by Mehler’s formula from Gaussian analysis, whereas the second one is more in the
spirit of the so-called Gibbs sampling procedure within Stein’s method (see e.g. [5, A.2]).

For the first construction, we consider two independent Brownian motions on [0, 1] defined
on the same probability space (Ω,F , P), namely B and B̂. We interpolate between them by
considering, for any t ≥ 0,

Bt = e−tB +
√

1 − e−2tB̂.
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It is then easy and straightforward to check that, for any t ≥ 0, this new Brownian motion Bt,
together with B, forms an exchangeable pair (see Lemma 3.1). Moreover, we will compute below
(see (3.1)) that E

[
IBt

p ( f )
∣∣∣σ{B}] = e−pt IB

p ( f ) for any p ≥ 1 and any f ∈ L2([0, 1]p), from which (a)
in Proposition 1.1 immediately follows.

For the second construction, we consider two independent Gaussian white noise W and W ′

on [0, 1] with Lebesgue intensity measure. For each n ∈ N, we introduce a uniform partition
{∆1, . . . ,∆n} and a uniformly distributed index In ∼ U{1,...,n}, independent of W and W ′. For every
Borel set A ⊂ [0, 1], we define Wn(A) = W ′(A ∩ ∆In) + W(A \ ∆In). This will give us a new
Gaussian white noise Wn, which will form an exchangeable pair with W. This construction is a
particular Gibbs sampling procedure. The analogue of (a) in Proposition 1.1 is satisfied, namely,
if f ∈ L2([0, 1]p), F = IW

p ( f ) is the pth multiple integral with respect to W and F(n) = IWn

p ( f ), we
have

nE
[
F(n) − F

∣∣∣σ{W}]→ −pF in L2(Ω) as n→ ∞.

To apply Theorem 1.2 in this setting, we only need to replace 1
t by n and replace Ft by F(n). To

get the exchangeable pairs (B, Bn) of Brownian motions in this setting, it suffices to consider
B(t) = W([0, t]) and Bn(t) = Wn([0, t]), t ∈ [0, 1]. See Section 4 for more precise statements.

Finally, we discuss the extension of our exchangeable pair approach on Wiener chaos to
the multidimensional case. Here again, it works perfectly well, and it allows us to recover the
(known) rate of convergence associated with the remarkable Peccati-Tudor theorem [20]. This
latter represents a multidimentional counterpart of the fourth moment theorem Theorem 1.1(i),
exhibiting conditions involving only the second and fourth moments that ensure a central limit
theorem for random vectors with chaotic components.

Theorem 1.3 (Peccati, Tudor [20]). Fix d ≥ 2 and p1, . . . , pd ≥ 1. For each k ∈ {1, . . . , d}, let
(Fk

n)n≥1 be a sequence of multiple Wiener-Itô integrals of order pk. Assume that E[Fk
nF l

n]→ σkl

as n→ ∞ for each pair (k, l) ∈ {1, . . . , d}2, with Σ = (σkl)1≤k,l≤d non-negative definite. Then, as
n→ ∞,

Fn = (F1
n , . . . , F

d
n)

law
→ N ∼ N(0,Σ) ⇐⇒ E[(Fk

n)4]→ 3σ2
kk for all k ∈ {1, . . . , d}.(1.2)

In [17], it is shown that the right-hand side of (1.2) is also equivalent to

E[‖Fn‖
4]→ E[‖N‖4] as n→ ∞,(1.3)

where ‖ · ‖ stands for the usual Euclidean `2-norm of Rd. Combining the main findings of [16]
and [17] yields the following quantitative version associated to Theorem 1.3, which we are able
to recover by means of our elementary exchangeable approach.

Theorem 1.4 (Nourdin, Peccati, Réveillac, Rosiński [16, 17]). Let F = (F1, . . . , Fd) be a vector
composed of multiple Wiener-Itô integrals Fk, 1 ≤ k ≤ d. Assume that the covariance matrix Σ

of F is invertible. Then, with N ∼ N(0,Σ),

dW(F,N) ≤ ‖Σ‖
1
2
op‖Σ

−1‖op

√
E[‖F‖4] − E[‖N‖4],(1.4)

where dW denotes the Wasserstein distance and ‖ · ‖op the operator norm of a matrix.
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The currently available proof of (1.4) relies on two main ingredients: (i) simple manipulations
involving the product formula (2.2) and implying that

d∑
i, j=1

Var
(
p j

ˆ 1

0
Ipi−1( fi(x, ·))Ip j−1( f j(x, ·))dx

)
≤ E[‖F‖4] − E[‖N‖4],

(see [17, Theorem 4.3] for the details) and (ii) the following inequality shown in [16, Corollary
3.6] by means of the Malliavin operators D, δ and L:

dW(F,N) ≤ ‖Σ‖
1
2
op‖Σ

−1‖op

√√√ d∑
i, j=1

Var
(
p j

ˆ 1

0
Ipi−1( fi(x, ·))Ip j−1( f j(x, ·))dx

)
.(1.5)

Here, in the spirit of what we have done in dimension one, we also apply our elementary
exchangeable pairs approach to prove (1.5), with slightly different constants.

The rest of the paper is organized as follows. Section 2 contains preliminary knowledge
on multiple Wiener-Itô integrals. In Section 3 (resp. 4), we present our first (resp. second)
construction of exchangeable pairs of Brownian motions, and we give the main associated
properties. Section 5 is devoted to the proof of Proposition 1.1, whereas in Section 6 we offer a
simple proof of Meckes’ Theorem 1.2. Our new, elementary proof of Theorem 1.1(ii) is given
in Section 7. In Section 8, we further investigate the connections between our exchangeable
pairs and the Malliavin operators. Finally, we discuss the extension of our approach to the
multidimensional case in Section 9.

Acknowledgement. We would like to warmly thank Christian Döbler and Giovanni Peccati,
for very stimulating discussions on exchangeable pairs since the early stage of this work.

2 Multiple Wiener-Itô integrals: definition and elementary
properties

In this subsection, we recall the definition of multiple Wiener-Itô integrals, and then we give a
few soft properties that will be needed for our new proof of Theorem 1.1(ii). We refer to the
classical monograph [18] for the details and missing proofs.

Let f : [0, 1]p → R be a square-integrable function, with p ≥ 1 a given integer. The pth
multiple Wiener-Itô integral of f with respect to the Brownian motion B =

(
B(x)

)
x∈[0,1] is formally

written as
ˆ

[0,1]p
f (x1, . . . , xp)dB(x1) . . . dB(xp).(2.1)

To give a precise meaning to (2.1), Itô’s crucial idea from the fifties was to first define (2.1) for
elementary functions that vanish on diagonals, and then to approximate any f in L2([0, 1]p) by
such elementary functions.
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Consider the diagonal set of [0, 1]p, that is, D = {(t1, . . . , tp) ∈ [0, 1]p : ∃i , j, ti = t j}. Let Ep

be the vector space formed by the set of elementary functions on [0, 1]p that vanish over D, that
is, the set of those functions f of the form

f (x1, . . . , xp) =

k∑
i1,...,ip=1

βi1...ipI[τi1−1,τi1 )×...×[τip−1,τip )(x1, . . . , xp),

where k ≥ 1 and 0 = τ0 < τ1 < . . . < τk, and the coefficients βi1...ip are zero if any two of the
indices i1, . . . , ip are equal. For f ∈ Ep, we define (without ambiguity with respect to the choice
of the representation of f )

IB
p ( f ) =

k∑
i1,...,ip=1

βi1...ip(B(τi1) − B(τi1−1)) . . . (B(τip) − B(τip−1)).

We also define the symmetrization f̃ of f by

f̃ (x1, . . . , xp) =
1
p!

∑
σ∈Sp

f (xσ(1), . . . , xσ(p)),

whereSp stands for the set of all permutations of {1, . . . , p}. The following elementary properties
are immediate and easy to prove.

1. If f ∈ Ep, then IB
p ( f ) = IB

p ( f̃ ).

2. If f ∈ Ep and g ∈ Eq, then E[IB
p ( f )] = 0 and E[IB

p ( f )IB
q (g)] =

{
0 if p , q
p!〈 f̃ , g̃〉L2([0,1]p) if p = q

.

3. The space Ep is dense in L2([0, 1]p). In other words, to each f ∈ L2([0, 1]p) one can
associate a sequence ( fn)n≥1 ⊂ Ep such that ‖ f − fn‖L2([0,1]p) → 0 as n→ ∞.

4. Since E[(IB
p ( fn)− IB

p ( fm))2] = p!‖ f̃n− f̃m‖
2
L2([0,1]p) ≤ p!‖ fn− fm‖

2
L2([0,1]p) → 0 as n,m→ ∞ for

f and ( fn)n≥1 as in the previous point 3, we deduce that the sequence (Ip( fn))n≥1 is Cauchy
in L2(Ω) and, as such, it admits a limit denoted by IB

p ( f ). It is easy to check that IB
p ( f ) only

depends on f , not on the particular choice of the approximating sequence ( fn)n≥1, and that
points 1 to 3 continue to hold for general f ∈ L2([0, 1]p) and g ∈ L2([0, 1]q).

We will also crucially rely on the following product formula, whose proof is elementary and can
be made by induction. See, e.g., [18, Proposition 1.1.3].

5. For any p, q ≥ 1, and if f ∈ L2([0, 1]p) and g ∈ L2([0, 1]q) are symmetric, then

IB
p ( f )IB

q (g) =

p∧q∑
r=0

r!
(
p
r

)(
q
r

)
IB

p+q−2r( f ⊗r g),(2.2)

where f⊗rg stands for the rth-contraction of f and g, defined as an element of L2([0, 1]p+q−2r)
by

( f ⊗r g)(x1, . . . , xp+q−2r)

=

ˆ
[0,1]r

f (x1, . . . , xp−r, u1, . . . , ur)g(xp−r+1, . . . , xp+q−2r, u1, . . . , ur)du1 . . . dur.
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Product formula (2.2) has a nice consequence, the inequality (2.3) below. It is a very particular
case of a more general phenomenon satisfied by multiple Wiener-Itô integrals, the hypercontrac-
tivity property.

6. For any p ≥ 1, there exists a constant c4,p > 0 such that, for any (symmetric) f ∈
L2([0, 1]p),

E
[
IB

p ( f )4] ≤ c4,p E
[
IB

p ( f )2]2
.(2.3)

Indeed, thanks to (2.2) one can write IB
p ( f )2 =

p∑
r=0

r!
(
p
r

)2

IB
2p−2r( f ⊗r f ) so that

E[IB
p ( f )4] =

p∑
r=0

r!2
(
p
r

)4

(2p − 2r)!‖ f ⊗̃r f ‖2L2([0,1]2p−2r).

The conclusion (2.3) follows by observing that

p!2‖ f ⊗̃r f ‖2L2([0,1]2p−2r) ≤ p!2‖ f ⊗r f ‖2L2([0,1]2p−2r) ≤ p!2‖ f ‖4L2([0,1]p) = E[IB
p ( f )2]2.

Furthermore, for each n ≥ 2, using (2.2) and induction, one can show that, with c2n,p a
constant depending only on p but not on f ,

E
[
IB

p ( f )2n]
≤ c2n,p E

[
IB

p ( f )2]2n−1
.

So for any r > 2, there exists an absolute constant cr,p depending only on p, r (but not on
f ) such that

E
[
|IB

p ( f )|r
]
≤ cr,p E

[
IB

p ( f )2]r/2
.(2.4)

3 Exchangeable pair of Brownian motions: a first construc-
tion

As anticipated in the introduction, for this construction we consider two independent Brownian
motions on [0, 1] defined on the same probability space (Ω,F , P), namely B and B̂, and we
interpolate between them by considering, for any t ≥ 0, Bt = e−tB +

√
1 − e−2tB̂.

Lemma 3.1. For each t ≥ 0, the pair (B, Bt) is exchangeable, that is, (B, Bt) law
= (Bt, B). In

particular, Bt is a Brownian motion.

Proof. Clearly, the bi-dimensional process (B, Bt) is Gaussian and centered. Moreover, for any
x, y ∈ [0, 1],

E[Bt(x)Bt(y)] = e−2tE[B(x)B(y)] + (1 − e−2t)E[B̂(x)B̂(y)] = E[B(x)B(y)]
E[B(x)Bt(y)] = e−tE[B(x)B(y)] = E[Bt(x)B(y)].

The desired conclusion follows. �

We can now state that, as written in the introduction, our exchangeable pair indeed satisfies
the crucial property (a) of Proposition 1.1.
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Theorem 3.1. Let p ≥ 1 be an integer, and consider a kernel f ∈ L2([0, 1]p). Set F = IB
p ( f ) and

Ft = IBt

p ( f ), t ≥ 0. Then,

E
[
Ft

∣∣∣σ{B}] = e−pt F.(3.1)

In particular, convergence (a) in Proposition 1.1 takes place:

lim
t↓0

1
t

E
[
IBt

p ( f ) − IB
p ( f )

∣∣∣σ{B}] = −p IB
p ( f ) in L2(Ω).(3.2)

Proof. Consider first the case where f ∈ Ep, that is, f has the form

f (x1, . . . , xp) =

k∑
i1,...,ip=1

βi1...ipI[τi1−1,τi1 )×...×[τip−1,τip )(x1, . . . , xp),

with k ≥ 1 and 0 = τ0 < τ1 < . . . < τk, and the coefficients βi1...ip are zero if any two of the
indices i1, . . . , ip are equal. We then have

Ft =

k∑
i1,...,ip=1

βi1...ip(B
t(τi1) − Bt(τi1−1)) . . . (Bt(τip) − Bt(τip−1))

=

k∑
i1,...,ip=1

βi1...ip

[
e−t(B(τi1) − B(τi1−1)) +

√
1 − e−2t(B̂(τi1) − B̂(τi1−1))

]
× . . . ×

[
e−t(B(τi1) − B(τi1−1)) +

√
1 − e−2t(B̂(τip) − B̂(τip−1))

]
.

Expanding and integrating with respect to B̂ yields (3.1) for elementary f . Thanks to point 4 in
Section 2, we can extend it to any f ∈ L2([0, 1]p). We then deduce that

1
t

E
[
Ft − F

∣∣∣σ{B}] =
e−pt − 1

t
F,

from which (3.2) now follows immediately. �

4 Exchangeable pair of Brownian motions: a second con-
struction

In this section, we present yet another construction of exchangeable pairs via Gaussian white
noise. We believe it is of independent interest, as such a construction can be similarly carried out
for other additive noises. This part may be skipped in a first reading, as it is not used in other
sections. And we assume that the readers are familiar with the multiple Wiener-Itô integrals with
respect to the Gaussian white noise, and refer to [18, Page 8-13] for all missing details.

Let W be a Gaussian white noise on [0, 1] with Lebesgue intensity measure ν, that is, W
is a centred Gaussian process indexed by Borel subsets of [0, 1] such that for any Borel sets
A, B ⊂ [0, 1], W(A) ∼ N

(
0, ν(A)

)
and E

[
W(A)W(B)

]
= ν(A ∩ B). We denote by G := σ{W}
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the σ-algebra generated by
{
W(A): A Borel subset of [0, 1]

}
. Now let W ′ be an independent

copy of W (denote by G ′ = σ{W ′} the σ-algebra generated by W ′) and In be a uniform ran-
dom variable over {1, . . . , n} for each n ∈ N such that In, W,W ′ are independent. For each fixed
n ∈ N, we consider the partition [0, 1] =

⋃n
j=1 ∆ j with ∆1 = [0, 1

n ], ∆2 = (1
n ,

2
n ], . . . , ∆n = (1− 1

n , 1].

Definition 4.0. Set Wn(A) := W ′
(
A ∩ ∆In

)
+ W

(
A \ ∆In

)
for any Borel set A ⊂ [0, 1].

Remark 4.1. One can first treat W as the superposition of
{
W |∆ j , j = 1, . . . , n

}
, where W |∆ j

denotes the Gaussian white noise on ∆ j. Then according to In = j, we (only) replace W |∆ j

by an independent copy W ′|∆ j so that we get Wn. This is nothing else but a particular Gibbs
sampling procedure (see [5, A.2]), hence heuristically speaking, the new process Wn shall form
an exchangeable pair with W.

Lemma 4.1. W and Wn form an exchangeable pair with W, that is, (W,Wn) law
= (Wn,W). In

particular, Wn is a Gaussian white noise on [0, 1] with Lebesgue intensity measure.

Proof. Let us first consider m mutually disjoint Borel sets A1, . . . , Am ⊂ [0, 1]. Given D1,D2

Borel subsets of Rm, we have

P
((

W(A1), . . . ,W(Am)
)
∈ D1 ,

(
Wn(A1), . . . ,Wn(Am)

)
∈ D2

)
=

n∑
v=1

P
((

W(A1), . . . ,W(Am)
)
∈ D1 ,

(
Wn(A1), . . . ,Wn(Am)

)
∈ D2 , In = v

)
=

1
n

n∑
v=1

P
(
g(Xv,Yv) ∈ D1, g(X′v,Yv) ∈ D2

)
,

where for each v ∈ {1, . . . , n},

• Xv :=
(
W(A1 ∩ ∆v), . . . ,W(Am ∩ ∆v)

)
, X′v :=

(
W ′(A1 ∩ ∆v), . . . ,W ′(Am ∩ ∆v)

)
,

• Yv :=
(
W(A1 \ ∆v), . . . ,W(Am \ ∆v)

)
, and g is a function from R2m to Rm given by

(x1, . . . , xm, y1, . . . , ym) 7→ g
(
x1, . . . , xm, y1, . . . , ym

)
=

(
x1 + y1, . . . , xm + ym

)
It is clear that for each v ∈ {1, . . . , n}, Xv, X′v and Yv are independent, therefore g(Xv,Yv) and
g(X′v,Yv) form an exchangeable pair. It follows from the above equalities that

P
((

W(A1), . . . ,W(Am)
)
∈ D1 ,

(
Wn(A1), . . . ,Wn(Am)

)
∈ D2

)
=

1
n

n∑
v=1

P
(
g(X′v,Yv) ∈ D1, g(Xv,Yv) ∈ D2

)
= P

((
Wn(A1), . . . ,Wn(Am)

)
∈ D1 ,

(
W(A1), . . . ,W(Am)

)
∈ D2

)
.

This proves the exchangeability of
(
W(A1), . . . ,W(Am)

)
and

(
Wn(A1), . . . ,Wn(Am)

)
.

Now let B1, . . . , Bm be Borel subsets of [0, 1], then one can find mutually disjoint Borel sets
A1, . . . , Ap (for some p ∈ N) such that each B j is a union of some of Ai’s. Therefore we can
find some measurable φ : Rp → Rm such that

(
W(B1), . . . ,W(Bm)

)
= φ

(
W(A1), . . . ,W(Ap)

)
.

Accordingly,
(
Wn(B1), . . . ,Wn(Bm)

)
= φ

(
Wn(A1), . . . ,Wn(Ap)

)
, hence

(
W(B1), . . . ,W(Bm)

)
and(

Wn(B1), . . . ,Wn(Bm)
)

are exchangeable. Now our proof is complete. �
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Remark 4.2. For each t ∈ [0, 1], we set B(t) := W([0, t]) and Bn(t) := Wn([0, t]). Modulo
continuous modifications, one can see from Lemma 4.1 that B, Bn are two Brownian motions that
form an exchangeable pair. An important difference between this construction and the previous
one is that (B, Bt) is bi-dimensional Gaussian process whereas B, Bn are not jointly Gaussian.

Before we state the analogous result to Theorem 3.1, we briefly recall the construction of
multiple Wiener-Itô integrals in white noise setting.

1. For each p ∈ N, we denote by Ep the set of simple functions of the form

f
(
t1, . . . , tp

)
=

m∑
i1,...,ip=1

βi1...ipIAi1×...×Aip

(
t1, . . . , tp

)
,(4.1)

where m ∈ N, A1, . . . , Am are pair-wise disjoint Borel subsets of [0, 1], and the coefficients
βi1...ip are zero if any two of the indices i1, . . . ip are equal. It is known that Ep is dense in
L2([0, 1]p).

2. For f given as in (4.1), the pth multiple integral with respect to W is defined as

IW
p ( f ) :=

m∑
i1,...,ip=1

βi1...ipW(Ai1) . . .W(Aip) ,

and one can extend IW
p to L2([0, 1]p) via usual approximation argument. Note IW

p ( f ) is
nothing else but IB

p ( f ) with the Brownian motion B constructed in Remark 4.2.

Theorem 4.1. If F = IW
p ( f ) for some symmetric f ∈ L2([0, 1]p) and we set F(n) := IWn

p ( f ), then
in L2(Ω,G , P) and as n→ +∞, n E

[
F(n) − F

∣∣∣G ]
→ −pF.

Proof. First we consider the case where f ∈ Ep, we assume moreover that F =
∏p

j=1 W(A j)
with A1, . . . , Ap mutually disjoint Borel subsets of [0, 1], and accordingly we define F(n) =∏p

j=1 Wn(A j). Then, (we write [p] = {1, . . . , p}, Av = A∩∆v for any A ⊂ [0, 1] and v ∈ {1, . . . , n})

n E
[
F(n)

∣∣∣G ]
= n E

 n∑
v=1

1{In=v}

p∏
j=1

[
W ′(Av

j) + W(A j \ ∆v)
] ∣∣∣G 

=

n∑
v=1

E

 p∏
j=1

[
W ′(Av

j) + W(A j \ ∆v)
] ∣∣∣G  =

n∑
v=1

p∏
j=1

W
(
A j \ ∆v

)
=

n∑
v=1

{  p∏
j=1

W(A j)

 − p∑
k=1

W(Av
k)

 ∏
j∈[p]\{k}

W(A j)


+

p∑
`=2

(−1)`
∑

k1,...,k`∈[p]
all distinct

 ∏
j∈[p]\{k1,...,k`}

W(A j)

 W
(
Av

k1

)
· · ·W

(
Av

k`

) }
= n F − p F + Rn(F) ,
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where Rn(F) =

p∑
`=2

(−1)`
∑

k1,...,k`∈[p]
all distinct

 ∏
j∈[p]\{k1,...,k`}

W(A j)

 n∑
v=1

W
(
Av

k1

)
· · ·W

(
Av

k`

)
.

Then Rn(F) converges in L2(Ω,G , P) to 0, due to the fact that
∑n

v=1
∏q

i=1 W(Av
ki

) converges in
L2(Ω) to 0, as n→ +∞, if q ≥ 2 and all ki’s are distinct numbers. This proves our theorem when
f ∈ Ep.

By the above computation, we can see that if F = IW
p ( f ) with f given in (4.1), then

Rn(F) =

m∑
i1,...,ip=1

βi1i2...ip

p∑
`=2

(−1)`
p∑

k1,...,k`=1
all distinct

 ∏
j∈[p]\{k1,...,k`}

W(Ai j)

 n∑
v=1

W
(
Av

ik1

)
· · ·W

(
Av

ik`

)
.

Therefore, using Wiener-Itô isometry, we can first write
∥∥∥Rn(F)

∥∥∥2

L2(Ω)
as

p!
m∑

i1,...,ip=1

(
βi1i2...ip

)2
n∑

v=1

∥∥∥∥∥∥ p∑
`=2

(−1)`
∑

k1,...,k`∈[p]
all distinct

 ∏
j∈[p]\{k1,...,k`}

W(Ai j)

 W
(
Av

ik1

)
· · ·W

(
Av

ik`

)∥∥∥∥∥∥2

L2(Ω)

,

and then using the elementary inequality (a1 + . . . + am)β ≤ mβ−1 ∑m
i=1 |ai|

β for ai ∈ R, β > 1,
m ∈ N, we have ∥∥∥∥∥∥ p∑

`=2

(−1)`
∑

k1,...,k`∈[p]
all distinct

 ∏
j∈[p]\{k1,...,k`}

W(Ai j)

 W
(
Av

ik1

)
· · ·W

(
Av

ik`

)∥∥∥∥∥∥2

L2(Ω)

≤Θ1

p∑
`=2

∑
k1,...,k`∈[p]
all distinct

∥∥∥∥∥∥
 ∏

j∈[p]\{k1,...,k`}

W(Ai j)

 W
(
Av

ik1

)
· · ·W

(
Av

ik`

)∥∥∥∥∥∥2

L2(Ω)

= Θ1

p∑
`=2

∑
k1,...,k`∈[p]
all distinct

 ∏
j∈[p]\{k1,...,k`}

ν(Ai j)

 ν(Av
ik1

)
· · · ν

(
Av

ik`

)

≤Θ2

∑
k1,k2∈[p]

k1,k2

 ∏
j∈[p]\{k1,k2}

ν(Ai j)

 ν(Av
ik1

)
ν
(
Av

ik2

)
where Θ1,Θ2 (and Θ3 in the following) are some absolute constants that do not depend on n or F.
Note now for k1 , k2,

∑n
v=1 ν

(
Av

ik1

)
· ν

(
Av

ik2

)
≤ ν

(
Aik1

)∑n
v=1 ν

(
Av

ik2

)
= ν

(
Aik1

)
· ν

(
Aik2

)
, thus,

∥∥∥Rn(F)
∥∥∥2

L2(Ω)
≤ p!

m∑
i1,...,ip=1

(
βi1i2...ip

)2
Θ2

∑
k1,k2∈[p]

k1,k2

 ∏
j∈[p]\{k1,k2}

ν(Ai j)

 ν(Aik1

)
ν
(
Aik2

)

≤ p!
m∑

i1,...,ip=1

(
βi1i2...ip

)2
Θ3

∏
j∈[p]

ν(Ai j) = Θ3 · ‖F
∥∥∥2

L2(Ω)
.
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Since
{
IW

p ( f ) : f ∈ Ep
}

is dense in the pth Wiener chaos Hp, Rn : Hp → L2(Ω) is a bounded
linear operator with operator norm ‖Rn‖op ≤

√
Θ3 for each n ∈ N. Note the linearity follows

from its definition Rn(F) := n E
[
F(n) − F

∣∣∣G ]
+ pF, F ∈Hp.

Now we define

Cp :=
{

F ∈Hp : R∞(F) := lim
n→+∞

Rn(F) is well defined in L2(Ω)
}
.

It is easy to see that Cp is a dense linear subspace of Hp and for each f ∈ Ep, IW
p ( f ) ∈ Cp and

R∞(IW
p ( f )) = 0. As

sup
n∈N
‖Rn‖op ≤

√
Θ3 < +∞ ,

R∞ has a unique extension to Hp and by density of
{
IW

p ( f ) : f ∈ Ep
}

in Hp, R∞(F) = 0 for
each F ∈Hp. In other words, for any F ∈Hp, n E

[
F(n) − F

∣∣∣G ]
converges in L2(Ω) to −pF, as

n→ +∞. �

5 Proof of Proposition 1.1
We now give the proof of Proposition 1.1, which has been stated in the introduction. We restate
it for the convenience of the reader.

Proposition 1.1 Let (B, Bt)t≥0 be a family of exchangeable pairs of Brownian motions (that is, B
is a Brownian motion on [0, 1] and, for each t, one has (B, Bt) law

= (Bt, B)). Assume moreover that

(a) for any integer p ≥ 1 and any f ∈ L2([0, 1]p),

lim
t↓0

1
t

E
[
IBt

p ( f ) − IB
p ( f )

∣∣∣σ{B}] = −p IB
p ( f ) in L2(Ω).

Then, for any integer p ≥ 1 and any f ∈ L2([0, 1]p),

(b) lim
t↓0

1
t

E
[(

IBt

p ( f ) − IB
p ( f )

)2
|σ{B}

]
= 2p2

ˆ 1

0
IB

p−1( f (x, ·))2dx in L2(Ω);

(c) lim
t↓0

1
t

E
[(

IBt

p ( f ) − IB
p ( f )

)4
]

= 0.

Proof. We first concentrate on the proof of (b). Fix p ≥ 1 and f ∈ L2([0, 1]p), and set F = IB
p ( f )

and Ft = IBt

p ( f ). First, we observe that

1
t

E
[
(Ft − F)2

∣∣∣σ{B}] =
1
t

E
[
F2

t − F2
∣∣∣σ{B}] − 2

t
F E

[
Ft − F

∣∣∣σ{B}].
Also, as an immediate consequence of the product formula (2.2) and the definition of f ⊗r f , we
have

p2
ˆ 1

0
IB

p−1( f (x, ·))2dx =

p∑
r=1

rr!
(
p
r

)2

IB
2p−2r( f ⊗r f ).
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Given (a) and the previous two identities, in order to prove (b) we are thus left to check that

lim
t↓0

1
t

E
[
F2

t − F2
∣∣∣σ{B}] = −2p F2 + 2

p∑
r=1

rr!
(
p
r

)2

IB
2p−2r( f ⊗r f ) in L2(Ω).(5.1)

The product formula (2.2) used for multiple integrals with respect to Bt (resp. B) yields

F2
t =

p∑
r=0

r!
(
p
r

)2

IBt

2p−2r( f ⊗r f )
(
resp. F2 =

p∑
r=0

r!
(
p
r

)2

IB
2p−2r( f ⊗r f )

)
.

Hence it follows from (a) that

1
t

E
[
F2

t − F2
∣∣∣σ{B}] =

p−1∑
r=0

r!
(
p
r

)2 1
t

E[IBt

2p−2r( f ⊗r f ) − IB
2p−2r( f ⊗r f )|σ{B}]

−→

p−1∑
r=0

r!
(
p
r

)2

(2r − 2p)IB
2p−2r( f ⊗r f )

= −2p(F2 − E[F2]) + 2
p−1∑
r=1

rr!
(
p
r

)2

IB
2p−2r( f ⊗r f ),

which is exactly (5.1). The proof of (b) is complete.
Let us now turn to the proof of (c). Fix p ≥ 1 and f ∈ L2([0, 1]p), and set F = IB

p ( f ) and
Ft = IBt

p ( f ), t ≥ 0. We claim that the pair (F, Ft) is exchangeable for each t. Indeed, thanks to
point 4 in Section 2, we first observe that it is enough to check this claim when f belongs to Ep,
that is, when f has the form

f (x1, . . . , xp) =

k∑
i1,...,ip=1

βi1...ipI[τi1−1,τi1 )×...×[τip−1,τip )(x1, . . . , xp),

with k ≥ 1 and 0 = τ0 < τ1 < . . . < τk, and the coefficients βi1...ip are zero if any two of the
indices i1, . . . , ip are equal. But, for such an f , one has

F = IB
p ( f ) =

k∑
i1,...,ip=1

βi1...ip(B(τi1) − B(τi1−1)) . . . (B(τip) − B(τip−1))

Ft = IBt

p ( f ) =

k∑
i1,...,ip=1

βi1...ip(B
t(τi1) − Bt(τi1−1)) . . . (Bt(τip) − Bt(τip−1)),

and the exchangeability of (F, Ft) follows immediately from those of (B, Bt). Since the pair
(F, Ft) is exchangeable, we can write

E
[
(Ft − F)4] = E

[
F4

t + F4 − 4F3
t F − 4F3Ft + 6F2

t F2]
= 2E[F4] − 8E

[
F3Ft

]
+ 6E

[
F2F2

t
]

by exchangeability;
= 4E

[
F3(Ft − F)

]
+ 6E

[
F2(Ft − F)2] after rearrangement;
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= 4E
[
F3E[(Ft − F)|σ{B}]

]
+ 6E

[
F2E[(Ft − F)2|σ{B}]

]
.

Dividing by t and taking the limit t ↓ 0 into the previous identity, we deduce, thanks to (a) and
(b) as well, that

lim
t↓0

1
t

E
[(

Ft − F
)4
]

= −4pE[F4] + 12p2 E
[
F2
ˆ 1

0
IB

p−1( f (x, ·))2dx
]
.(5.2)

In particular, it appears that the limit of 1
t E

[
(Ft − F)4] is always the same, irrespective of the

choice of our exchangeable pair of Brownian motions (B, Bt) satisfying (a). To compute it, we
can then choose the pair (B, Bt) we want, for instance, the pair constructed in Section 3. This is
why, starting from now and for the rest of the proof, (B, Bt) refers to the pair defined in Section
3 (which satisfies (a), that is, (3.2)). What we gain by considering this particular pair is that it
satisfies a hypercontractivity-type inequality. More precisely, there exists cp > 0 (only depending
on p) such that, for all t ≥ 0,

E[(Ft − F)4] ≤ cp E[(Ft − F)2]2.(5.3)

Indeed, going back to the definition of multiple Wiener-Itô integrals as given in Section 2 (first
for elementary functions and then by approximation for the general case), we see that Ft − F
is a multiple Wiener-Itô integral of order p with respect to the two-sided Brownian motion
B = (B(s))s∈[−1,1], defined as

B(s) = B(s)I[0,1](s) + B̂(−s)I[−1,0](s).

But product formula (2.2) is also true for a two-sided Brownian motion, so the claim (5.3) follows
from (2.3) applied to B. On the other hand, it follows from (b) that 1

t E
[
(Ft − F)2] converges to a

finite number, as t ↓ 0. Hence, combining this fact with (5.3) yields

1
t

E
[(

Ft − F
)4
]
≤ cp t

(
1
t

E
[(

Ft − F
)2
])2

→ 0 ,

as t ↓ 0. �

Remark 5.1. (i) A byproduct of (5.2) in the previous proof is that

1
3
(
E[F4] − 3σ4) = E

[
F2

(
p
ˆ 1

0
IB

p−1( f (x, ·))2dx − σ2
)]
.(5.4)

Note (5.4) was originally obtained by chain rule, see [15, equation (5.2.9)].

(ii) As a consequence of (c) in Proposition 1.1 , we have limt↓0
1
t E

[
|IBt

p ( f ) − IB
p ( f )|3

]
= 0.

Indeed,

1
t

E
[
|IBt

p ( f ) − IB
p ( f )|3

]
≤

(
1
t

E
[(

IBt

p ( f ) − IB
p ( f )

)2
]) 1

2
(
1
t

E
[(

IBt

p ( f ) − IB
p ( f )

)4
]) 1

2

→ 0 , as t ↓ 0.
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(iii) For any r > 2, in view of (2.4) and (5.3), there exists an absolute constant cr,p depending
only on p, r (but not on f ) such that

E
[
|IB

p ( f ) − IBt

p ( f )|r
]
≤ cr,p E

[(
IB

p ( f ) − IBt

p ( f )
)2]r/2

.

Moreover, if F ∈ L2(Ω, σ{B}, P) admits a finite chaos expansion, say, (for some p ∈ N)
F = E[F] +

∑p
q=1 IB

q ( fq), and we set Ft = E[F] +
∑p

q=1 IBt

q ( fq), then there exists some
absolute constant Cr,p that only depends on p and r such that

E
[
|F − Ft|

r] ≤ Cr,p E
[(

F − Ft
)2]r/2

.

6 Proof of E. Meckes’ Theorem 1.2
In this section, for sake of completeness and because our version slightly differs from the original
one given in [11, Theorem 2.1], we provide a proof of Theorem 1.2, which we restate here for
convenience.

Theorem 1.2 Let F and a family of random variables (Ft)t≥0 be defined on a common probability
space (Ω,F , P) such that Ft

law
= F for every t ≥ 0. Assume that F ∈ L3(Ω,G , P) for some

σ-algebra G ⊂ F and that in L1(Ω),

(a) lim
t↓0

1
t

E[Ft − F|G ] = −λ F for some λ > 0,

(b) lim
t↓0

1
t

E[(Ft − F)2|G ] = (2λ + S )Var(F) for some random variable S ,

(c) lim
t↓0

1
t

(Ft − F)3 = 0.

Then, with N ∼ N(0,Var(F)),

dTV(F,N) ≤
E|S |
λ

.

Proof. Without loss of generality, we may and will assume that Var(F) = 1. It is known that

dTV(F,N) =
1
2

sup E
[
ϕ(F) − ϕ(N)

]
,(6.1)

where the supremum runs over all smooth functions ϕ : R→ R with compact support and such
that ‖ϕ‖∞ ≤ 1. For such a ϕ, recall (see, e.g. [3, Lemma 2.4]) that

g(x) = ex2/2
ˆ x

−∞

(
ϕ(y) − E[ϕ(N)]

)
e−y2/2 dy , x ∈ R,

satisfies

g′(x) − xg(x) = ϕ(x) − E[ϕ(N)](6.2)
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as well as ‖g‖∞ ≤
√

2π, ‖g′‖∞ ≤ 4 and ‖g′′‖∞ ≤ 2‖ϕ′‖∞ < +∞. In what follows, we fix such a
pair (ϕ, g) of functions. Let G be a differentiable function such that G′ = g, then due to Ft

law
= F,

it follows from the Taylor formula in mean-value form that

0 = E
[
G(Ft) −G(F)

]
= E

[
g(F)(Ft − F)

]
+

1
2

E
[
g′(F)(Ft − F)2] + E[R] ,

with remainder R bounded by 1
6‖g

′′‖∞ |Ft − F|3.
By assumption (c) and as t ↓ 0,∣∣∣∣∣1t E[R]

∣∣∣∣∣ ≤ 1
6
‖g′′‖∞

1
t

E
[
|Ft − F|3

]
→ 0.

Therefore as t ↓ 0, assumptions (a) and (b) imply that

λ E
[
g′(F) − Fg(F)

]
+

1
2

E
[
g′(F)S

]
= 0.

Plugging this into Stein’s equation (6.2) and then using (6.1), we deduce the desired conclusion,
namely,

dTV(F,N) ≤
1
2
‖g′‖∞

2λ
E|S | ≤

E|S |
λ

.

�

Remark 6.1. Unlike the original Meckes’ theorem, we do not assume the exchangeability
condition (Ft, F) law

= (F, Ft) in our Theorem 1.2. Our consideration is motivated by [22].

7 Quantitative fourth moment theorem revisited via exchange-
able pairs

We give an elementary proof to the quantitative fourth moment theorem, that is, we explain how
to prove the inequality of Theorem 1.1(ii) by means of our exchangeable pairs approach. For
sake of convenience, let us restate this inequality: for any multiple Wiener-Itô integral F of order
p ≥ 1 such that E[F2] = σ2 > 0, we have, with N ∼ N(0, σ2),

dTV(F,N) ≤
2
σ2

√
p − 1
3p

√
E[F4] − 3σ4.(7.1)

To prove (7.1), we consider, for instance, the exchangeable pairs of Brownian motions
{(B, Bt)}t>0 constructed in Section 3. We deduce, by combining Proposition 1.1 with Theorem
1.2 and Remark 5.1-(ii), that

dTV(F,N)≤
2
σ2 E

[∣∣∣∣∣∣p
ˆ 1

0
IB

p−1( f (x, ·))2dx − σ2

∣∣∣∣∣∣
]
.(7.2)

To deduce (7.1) from (7.2), we are thus left to prove the following result.
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Proposition 7.1. Let p ≥ 1 and consider a symmetric function f ∈ L2([0, 1]p). Set F = IB
p ( f )

and σ2 = E[F2]. Then

E

(p
ˆ 1

0
IB

p−1( f (x, ·))2dx − σ2
)2 ≤ p − 1

3p
(
E[F4] − 3σ4).

Proof. Using the product formula (2.2), we can write

F2 =

p∑
r=0

r!
(
p
r

)2

IB
2p−2r( f ⊗r f ) = σ2 +

p−1∑
r=0

r!
(
p
r

)2

IB
2p−2r( f ⊗r f ),

as well as

p
ˆ 1

0
IB

p−1( f (x, ·))2dx = p
p−1∑
r=0

r!
(
p − 1

r

)2

IB
2p−2r−2

(ˆ 1

0
f (x, ·) ⊗r f (x, ·)dx

)

= p
p∑

r=1

(r − 1)!
(
p − 1
r − 1

)2

IB
2p−2r ( f ⊗r f ) = σ2 +

p−1∑
r=1

r
p

r!
(
p
r

)2

IB
2p−2r ( f ⊗r f ) .

Hence, by the isometry property (point 2 in Section 2),

E

(p
ˆ 1

0
IB

p−1( f (x, ·))2dx − σ2
)2 =

p−1∑
r=1

r2

p2 r!2
(
p
r

)4

(2p − 2r)!‖ f ⊗̃r f ‖2L2([0,1]2p−2r).

On the other hand, one has from (5.4) and the isometry property again that

1
3
(
E[F4] − 3σ4) = E

[
F2

(
p
ˆ 1

0
IB

p−1( f (x, ·))2dx − σ2
)]

=
1
3
(
E[F4] − 3σ4) =

p−1∑
r=1

r
p

r!2
(
p
r

)4

(2p − 2r)!‖ f ⊗̃r f ‖2L2([0,1]2p−2r).

The desired conclusion follows. �

8 Connections with Malliavin operators
Our main goal in this paper is to provide an elementary proof of Theorem 1.1(ii). Nevertheless,
in this section we further investigate the connections we have found between our exchangeable
pair approach and the operators of Malliavin calculus. This part may be skipped in a first reading,
as it is not used in other sections. It is directed to readers who are already familiar with Malliavin
calculus. We use classical notation and so do not introduce them in order to save place. We refer
to [18] for any missing detail.

In this section, to stay on the safe side we only consider random variables F belonging to

A :=
⋃
p∈N

⊕
r≤p

Hr ,(8.1)
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where Hr is the rth chaos associated to the Brownian motion B. In other words, we only consider
random variables that are σ{B}-measurable and that admit a finite chaotic expansion. Note that
A is an algebra (in view of product formula) that is dense in L2(Ω, σ{B}, P)

.
As is well-known, any σ{B}-measurable random variable F can be written F = ψF(B) for

some measurable mapping ψF : RR+ → R determined P ◦ B−1 almost surely. For such an F, we
can then define Ft = ψF(Bt), with Bt defined in Section 3. Another equivalent description of Ft is
to define it as Ft = E[F] +

∑p
r=1 IBt

r ( fr), if the family ( fr)1≤r≤p is such that F = E[F] +
∑p

r=1 IB
r ( fr).

Our main findings are summarized in the statement below.

Proposition 8.1. Consider F,G ∈ A, and define Ft,Gt for each t ∈ R+ as is done above. Then,
in L2(Ω),

(a) lim
t↓0

1
t

E
[
Ft − F

∣∣∣σ{B}] = LF,

(b) lim
t↓0

1
t

E
[(

Ft − F
)
(Gt −G)|σ{B}

]
= L(FG) − FLG −GLF = 2 〈DF,DG〉.

Proof. The proof of (a) is an immediate consequence of (3.2), the linearity of conditional
expectation, and the fact that LIB

r ( fr) = −r IB
r ( fr) by definition of L. Let us now turn to the proof

of (b). Using elementary algebra and then (a), we deduce that, as t ↓ 0 and in L2(Ω),

1
t

E
[
(Ft − F)(Gt −G)

∣∣∣σ{B}]
=

1
t

E
[
FtGt − FG

∣∣∣σ{B}] − 1
t

F E
[
Gt −G

∣∣∣σ{W}] − 1
t
G E

[
Ft − F

∣∣∣σ{B}]
→ L(FG) − FLG −GLF .

Using L = −δD, D(FG) = FDG + GDF (Leibniz rule) and δ(FDG) = Fδ(DG) − 〈DF,DG〉
(see [18, Proposition 1.3.3]), it is easy to check that L(FG) − FLG −GLF = 2〈DF,DG〉, which
concludes the proof of Proposition 8.1. �

Remark 8.1. The expression appearing in the right-hand side of (b) is nothing else but 2 Γ(F,G),
the (doubled) carré du champ operator.

To conclude this section, we show how our approach allows to recover the diffusion property
of the Ornstein-Uhlenbeck operator.

Proposition 8.2. Fix d ∈ N, let F = (F1, . . . , Fd) ∈ Ad (withA given in (8.1)), and Ψ : Rd → R
be a polynomial function. Then

LΨ(F) =

d∑
j=1

∂ jΨ(F)LF j +

d∑
i, j=1

∂i jΨ(F)〈DFi,DF j〉 .(8.2)

Proof. We first define Ft = (F1,t, . . . , Fd,t) as explained in the beginning of the present section.
Using classical multi-index notations, Taylor formula yields that

Ψ(Ft) − Ψ(F) =

d∑
j=1

∂ jΨ(F)
(
F j,t − F j

)
+

1
2

d∑
i, j=1

∂i, jΨ(F)
(
F j,t − F j

)(
Fi,t − Fi

)
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+
∑
|β|=3

3
β1! . . . βd!

(Ft − F)β
ˆ 1

0
(1 − s)k(∂β1

1 . . . ∂
βd
d Ψ

)(
F + s(Ft − F)

)
ds .(8.3)

In view of the previous proposition, the only difficulty in establishing (8.2) is about controlling
the last term in (8.3) while passing t ↓ 0. Note first

(
∂
β1
1 . . . ∂

βd
d Ψ

)(
F + s(Ft − F)

)
is polynomial

in F and (Ft − F), so our problem reduces to show

lim
t↓0

1
t

E
[
|Fα(Ft − F)β|

]
= 0 ,(8.4)

for α = (α1, . . . , αd), β = (β1, . . . , βd) ∈
(
N ∪ {0}

)d with |β| ≥ 3.
Indeed, (assume β j > 0 for each j)

1
t

E
[
|Fα(Ft − F)β|

]
≤

1
t

E
[
|Fα|2

]1/2E
[
|(Ft − F)β|2

]1/2 by Cauchy-Schwarz inequality;

≤ E
[
|Fα|2

]1/2 1
t

 d∏
j=1

E
[
(F j,t − F j)2|β|

] β j
|β|


1/2

by Hölder inequality;

≤C E
[
|Fα|2

]1/2 t
|β|
2 −1

 d∏
j=1

1
tβ j

E
[
(F j,t − F j)2

]β j


1/2

,

where the last inequality follows from point-(iii) in Remark 5.1 with C > 0 independent of t.
Since Fα ∈ A and |β| ≥ 3, (8.4) follows immediately from the above inequalities. �

9 Peccati-Tudor theorem revisited too
In this section, we combine a multivariate version of Meckes’ abstract exchangeable pairs [12]
with our results from Section 3 to prove (1.5), thus leading to a fully elementary proof of Theorem
1.4 as well.

First, we recall the following multivariate version of Meckes’ theorem (see [12, Theorem 4]).
Unlike in the one-dimensional case, it seems inevitable to impose the exchangeability condition
in the following proposition, as we read from its proof in [12].

Proposition 9.1. For each t > 0, let (F, Ft) be an exchangeable pair of centered d-dimensional
random vectors defined on a common probability space. Let G be a σ-algebra that contains σ{F}.
Assume that Λ ∈ Rd×d is an invertible deterministic matrix and Σ is a symmetric, non-negative
definite deterministic matrix such that

(a) lim
t↓0

1
t

E
[
Ft − F|G

]
= −ΛF in L1(Ω),

(b) lim
t↓0

1
t

E
[
(Ft − F)(Ft − F)T |G

]
= 2ΛΣ + S in L1(Ω, ‖ · ‖HS) for some matrix S = S (F), and

with ‖ · ‖HS the Hilbert-Schmidt norm
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(c) lim
t↓0

d∑
i=1

1
t

E
[
|Fi,t − Fi|

3] = 0, where Fi,t (resp. Fi) stands for the ith coordinate of Ft (resp.

F).

Then, with N ∼ Nd(0,Σ),

(1) for g ∈ C2(Rd),

∣∣∣E[g(F)] − E[g(N)]
∣∣∣ ≤ ‖Λ−1‖op

√
d M2(g)

4
E


√√√ d∑

i, j=1

S 2
i j

 ,
where M2(g) := supx∈Rd

∥∥∥D2g(x)
∥∥∥

op
with ‖ · ‖op the operator norm.

(2) if, in addition, Σ is positive definite, then

dW(F,N) ≤
‖Λ−1‖op‖Σ

−1/2‖op
√

2π
E


√√√ d∑

i, j=1

S 2
i j

 .
Remark 9.1. Constant in (2) is different from Meckes’ paper [12] . We took this better constant
from Christian Döbler’s dissertation [5], see page 114 therein.

By combining the previous proposition with our exchangeable pairs, we get the following
result, whose point 2 corresponds to (1.5).

Theorem 9.1. Fix d ≥ 2 and 1 ≤ p1 ≤ . . . ≤ pd. Consider a vector F :=
(
IB

p1
( f1), . . . , IB

pd
( fd)

)
with fi ∈ L2([0, 1]pi

)
symmetric for each i ∈ {1, . . . , d}. Let Σ = (σi j) be the covariance matrix of

F, and N ∼ Nd(0,Σ). Then

(1) for g ∈ C2(Rd),

∣∣∣∣E[g(F)] − E[g(N)]
∣∣∣∣ ≤ √d M2(g)

2p1

√√√ d∑
i, j=1

Var
(
pi p j

ˆ 1

0
Ipi−1( fi(x, ·))Ip j−1( f j(x, ·))dx

)
,

where M2(g) := supx∈Rd

∥∥∥D2g(x)
∥∥∥

op
.

(2) if in addition, Σ is positive definite, then

dW(F,N) ≤
2‖Σ−1/2‖op

q1
√

2π

√√√ d∑
i, j=1

Var
(
pi p j

ˆ 1

0
Ipi−1( fi(x, ·))Ip j−1( f j(x, ·))dx

)
.

Proof. We consider Ft =
(
IBt

p1
( f1), . . . , IBt

pd
( fd)

)
, where Bt is the Brownian motion constructed in

Section 3. We deduce from (3.1) that

1
t

E
[
Ft − F|σ{B}

]
=

(
e−p1t − 1

t
IBt

p1
( f1), . . . ,

e−pdt − 1
t

IBt

pd
( fd)

)
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implying in turn that, in L2(Ω) and as t ↓ 0,

1
t

E
[
Ft − F|σ{B}

]
→ −ΛF,

with Λ = diag(p1, . . . , pd) (in particular, ‖Λ−1‖op = p−1
1 ). That is, assumption (a) in Proposition

9.1 is satisfied (with G = σ{B}). That assumption (c) in Proposition 9.1 is satisfied as well
follows from Proposition 1.1(c). Let us finally check that assumption (b) in Proposition 9.1 takes
place too. First, using the product formula (2.2) for multiple integrals with respect to Bt (resp. B)
yields

FiF j =

pi∧p j∑
r=0

r!
(
pi

r

)(
p j

r

)
IB

pi+p j−2r
(
fi ⊗r f j

)
Fi,tF j,t =

pi∧p j∑
r=0

r!
(
pi

r

)(
p j

r

)
IBt

pi+p j−2r
(
fi ⊗r f j

)
.

Hence, using (3.2) for passing to the limit,

1
t

E
[
(Fi,t − Fi)(F j,t − F j)

∣∣∣σ{B}] − 1
t

E
[
Fi,tF j,t − FiF j

∣∣∣σ{B}]
= −

1
t

Fi E
[
F j,t − F j|σ{B}

]
−

1
t

F j E
[
Fi,t − Fi

∣∣∣σ{B}]
→ (pi + p j)FiF j =

pi∧p j∑
r=0

r!
(
pi

r

)(
p j

r

)
(p + q)IB

pi+p j−2r
(
fi ⊗r f j

)
as t ↓ 0.

Now, note in L2(Ω),

1
t

E
[
Fi,tF j,t − FiF j

∣∣∣σ{B}]
=

pi∧p j∑
r=0

r!
(
pi

r

)(
p j

r

)
1
t

E
[
IBt

pi+p j−2r
(
fi ⊗r f j

)
− IB

pi+p j−2r
(
fi ⊗r f j

)∣∣∣σ{B}]
→

pi∧p j∑
r=0

r!
(
pi

r

)(
p j

r

)
(2r − pi − p j)IB

pi+p j−2r
(
fi ⊗r f j

)
, as t ↓ 0, by (3.2) .

Thus, as t ↓ 0,

1
t

E
[
(Fi,t − Fi)(F j,t − F j)

∣∣∣σ{B}]→ 2
pi∧p j∑
r=1

r!r
(
pi

r

)(
p j

r

)
IB

pi+p j−2r
(
fi ⊗r f j

)
= 2pi p j

ˆ 1

0
IB

pi−1( fi(x, ·))IB
p j−1( f j(x, ·))dx ,

where the last equality follows from a straightforward application of the product formula (2.2).
As a result, if we set

S i j = 2pi p j

ˆ 1

0
Ipi−1( fi(x, ·))Ip j−1( f j(x, ·))dx − 2piσi j
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for each i, j ∈ {1, . . . , d}, then assumption (b) in Proposition 9.1 turns out to be satisfied as well.
By the isometry property (point 2 in Section 2), it is straightforward to check that

p j

ˆ 1

0
E
[
Ipi−1( fi(x, ·))Ip j−1( f j(x, ·))

]
dx = σi j .

Therefore,

E


√√√ d∑

i, j=1

S 2
i j

 ≤
√√√ d∑

i, j=1

E
[
S 2

i j
]

= 2

√√√ d∑
i, j=1

Var
(
pi p j

ˆ 1

0
Ipi−1( fi(x, ·))Ip j−1( f j(x, ·))dx

)
.

Hence the desired results in (1) and (2) follow from Proposition 9.1. �
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the resulting limit laws. Ann. Probab. 42, no. 2 (2014), 497-526

[18] D. Nualart. The Malliavin Calculus and Related Topics, second edition. Probability and Its
Applications, Springer-Verlag Berlin Heidelberg (2006)

[19] D. Nualart and G. Peccati. Central limit theorems for sequences of multiple stochastic
integrals. Ann. Probab. 33(1), 177-193 (2005).

[20] G. Peccati and C.A. Tudor. Gaussian limits for vector-valued multiple stochastic integrals,
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Paper 4: Fourth moment theorems on the Poisson space in
any dimension

Christian Döbler, Anna Vidotto and Guangqu Zheng

to appear in Eletron. J. Probab.

We extend to any dimension the quantitative fourth moment theorem on the Poisson set-
ting, recently proved by C. Döbler and G. Peccati (2017). In particular, by adapting the
exchangeable pairs couplings construction introduced by I. Nourdin and G. Zheng (2017)
to the Poisson framework, we prove our results under the weakest possible assumption of
finite fourth moments. This yields a Peccati-Tudor type theorem, as well as an optimal
improvement in the univariate case.

Finally, a transfer principle “from-Poisson-to-Gaussian” is derived, which is closely related
to the universality phenomenon for homogeneous multilinear sums.

Abstract

1 Introduction and main results

1.1 Outline
In the recent paper [13], the authors succeeded in proving exact quantitative fourth moment
theorems for multiple Wiener-Itô integrals on the Poisson space. Briefly, their method consisted
in extending the spectral framework initiated by the remarkable paper [22], and further refined
by [1], from the situation of a diffusive Markov generator to the non-diffusive Ornstein-Uhlenbeck
generator on the Poisson space. The principal aim of the present article is to extend the results
from [13] to the multivariate case of vectors of multiple integrals. In view of the result of Peccati
and Tudor [35] on vectors of multiple integrals on a Gaussian space, we are in particular interested
in discussing the relationship between coordinatewise convergence and joint convergence to
normality. Indeed, one of our main achievements is a complete quantitative version of a Peccati-
Tudor type theorem on the Poisson space (see Theorem 1.7 and Corollary 1.8).

Furthermore, still keeping the spectral point of view as in [13], by replacing the rather intrinsic
techniques used there with an adaption of a recent construction of exchangeable pairs couplings
from [32], we can even remove certain technical conditions which seem inevitable in order to
justify the computations in [13]. In this way, we are able to prove our results under the weakest

Key words and phrases. Stein’s method; Exchangeable pairs; Brownian motion; Malliavin calculus.
AMS 2000 Classification: 60F05; 60H07; 60H05
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possible assumption of finite fourth moments. In the univariate case, our strategy provides an
optimal improvement of the Wasserstein bound given in Theorem 1.3 of [13] and, a fortiori,
of the associated qualitative fourth moment theorem on the Poisson space (see Corollary 1.4
in [13]).

1.2 Motivation and related works

The so-called fourth moment theorem by Nualart and Peccati [33] states that a normalised
sequence of multiple Wiener-Itô integrals of fixed order on a Gaussian space converges in
distribution to a standard normal random variable N, if and only if the corresponding sequence
of fourth moments converges to 3, i.e. to the fourth moment of N. For future reference, we give
a precise statement of this result:

Theorem 1.1 ( [33]). Let Fn = IW
q ( fn) be a sequence of multiple Wiener-Itô integral of order

q ≥ 2, associated with a Brownian motion (Wt, t ∈ R+) such that fn ∈ L2(Rq
+) is symmetric for

each n ∈ N, and limn→+∞ E[F2
n] = σ2 > 0. Then, the following statements are equivalent:

(1) E[F4
n]→ 3σ4, as n→ +∞.

(2) Fn converges in law to a Gaussian distribution N(0, σ2), as n→ +∞.

(3) For each r ∈ {1, 2, . . . , q − 1}, ‖ fn ⊗r fn‖L2(R2q−2r
+ ) → 0, as n→ +∞.

The contraction fn ⊗r fn is defined as in Section 2. See [27] for any unexplained notions and
notation of Gaussian analysis.

Note that such a result significantly simplifies the method of moments for sequences of random
variables inside a fixed Wiener chaos. In the years after the appearance of [33], this result has
been extended and refined in many respects. While [35] provided a significant multivariate
extension (see Theorem 1.10), the paper [26] combined Stein’s method of normal approximation
and Malliavin calculus in order to yield quantitative bounds for the normal approximation
of general smooth functionals on the Wiener space. We refer to the monograph [27] for a
comprehensive treatment of the so-called Malliavin-Stein approach on the Wiener space and of
results obtained in this way. One remarkable result quoted from [27] is that, if F is a normalised
multiple Wiener-Itô integral of order q ≥ 1 on a Gaussian space, then one has the bound

(1.1) dTV(F,N) ≤ 2

√
q − 1

3q
(
E[F4] − 3

)
,

where dTV denotes the total variation distance between the laws of two real random variables.
The techniques developed in [26] have also been adapted to non-Gaussian spaces which admit a
Malliavin calculus structure: for instance, the papers [16, 34, 36, 41] deal with the Poisson space
case, whereas [17,18,30,44] develop the corresponding techniques for sequences of independent
Rademacher random variables. The question about general fourth moment theorems on these
spaces, however, has remained open in general, until the two recent articles [13] and [11].
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1.3 General framework

Let us fix a measurable space (Z,Z ), endowed with a σ-finite measure µ. We let

Zµ := {B ∈ Z : µ(B) < ∞}

and define
η = {η(B) : B ∈ Z }

to be a Poisson random measure on (Z,Z ) with control µ, defined on a suitable probability
space (Ω,F ,P). By definition, the distribution of η is completely determined by the following
two properties:

(i) for each finite sequence B1, . . . , Bm ∈ Z of pairwise disjoint sets, the random variables
η(B1), . . . , η(Bm) are independent;

(ii) for every B ∈ Z , the random variable η(B) has the Poisson distribution with mean µ(B).

Here, we have extended the family of Poisson distributions to the parameter region [0,+∞] in
the usual way. For B ∈ Zµ, we also define η̂(B) := η(B) − µ(B) and denote by

η̂ = {̂η(B) : B ∈ Zµ}

the compensated Poisson random measure associated with η. Before stating our main results,
we need to define some objects from stochastic analysis on the Poisson space. For a detailed
discussion see, among others, [19] and [21].

For q ∈ N0 := {0, 1, 2, . . . } and f ∈ L2(µq), we denote by Iηq( f ) the q-th order multiple Wiener-
Itô integral of f with respect to η̂. Let L be the generator of the Ornstein-Uhlenbeck semigroup
with respect to η, then it is well known that the spectrum of −L is given by the set of nonnegative
integers N0 and that, for q ∈ N0, F is an eigenfunction of −L with eigenvalue q, if and only if
F = Iηq( f ) for some f ∈ L2(µq). The corresponding eigenspace Cq will be called the q-th Poisson
Wiener chaos associated with η. In particular, C0 = R.

1.4 Main results in the one-dimensional case

Recall that the Wasserstein distance between (the distributions of) two real random variables X
and Y in L1(P) is defined by

dW(X,Y) := sup
h∈Lip(1)

∣∣∣E[h(X)] − E[h(Y)]
∣∣∣ ,

where Lip(1) denotes the class of all 1-Lipschitz functions on R.

In the univariate case, our main result reads as follows.
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Theorem 1.2 (Fourth moment bound on the Poisson space). Fix an integer q ≥ 1 and let F ∈ Cq

be such that σ2 := E[F2] > 0 and E[F4] < ∞. Then, with N denoting a standard normal random
variable, we have the bounds:

dW(F, σN) ≤

 2q − 1

σq
√

2π
+

2
3σ

√
4q − 3

q

 √
E[F4] − 3σ4(1.2)

≤

 1
σ

√
2
π

+
4

3σ

 √
E[F4] − 3σ4 .(1.3)

Theorem 1.2 immediately implies the following qualitative statement, which is analogous to
the Nualart-Peccati theorem [33] on a Gaussian space.

Corollary 1.3 (Fourth moment theorem on the Poisson space). For each n ∈ N, let qn ∈ N and
Fn ∈ Cqn satisfy

lim
n→∞
E
[
F2

n
]

= 1 and lim
n→∞
E
[
F4

n
]

= 3 .

Then, the sequence (Fn)n∈N converges in distribution to a standard normal random variable N.

Remark 1.4. (a) Theorem 1.2 and Corollary 1.3 are genuine improvements of Theorem 1.3 and
Corollary 1.4 from [13], respectively, since they do not require any additional regularity
from the involved multiple integrals like e.g. Assumption A in [13]. The main reason for
the appearance of such a condition in [13] was that certain intrinsic tools used there, notably
the Mecke formula and a pathwise representation of the Ornstein-Uhlenbeck generator L,
require L1(P ⊗ µ)-integrability conditions. It is the reconciliation of such conditions with the
L2 nature of the objects under consideration which necessitated these assumptions. As will
become clear from our proofs in Section 4, such conditions can be completely avoided using
an adaptation of exchangeable pairs couplings introduced in [32].

(b) In view of the well-known relation dK (F,N) ≤
√

dW(F,N) between the Kolmogorov distance
and the Wasserstein distance, one can obtain the fourth moment bound in the Kolmogorov
distance with order 1/4 from Theorem 1.2, under the weakest possible assumption of finite
fourth moment. However, the techniques applied in the present paper do not seem capable
of proving a bound of order 1/2 in the Kolmogorov distance dK (F,N).

(c) Indeed, it is an open question whether there is a general bound in the Kolmogorov distance
via Stein’s method of exchangeable pairs leading to the same accuracy as the one in the
Wasserstein distance. It is worth noting that the authors of [13] were able to obtain, under a
certain local version of Assumption A therein, the fourth moment bound in the Kolmogorov
distance:

dK (F,N) ≤ C
√
E[F4] − 3σ4 ,

where F ∈ Cq with q ∈ N and C is a numerical constant. See [13] for more details.

In the particular case where

η is a Poisson random measure on R+ with Lebesgue intensity, (#)
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we observe the following transfer principle that is of independent interest.

Proposition 1.5. Assume (#) and (Wt, t ∈ R+) is a standard Brownian motion. Given p ∈ N,
fn ∈ L2(Rp

+) symmetric for each n ∈ N such that

lim
n→+∞

p! ‖ fn‖
2
L2(Rp

+) = 1 ,

then the following implications holds (N ∼ N(0, 1))

lim
n→+∞

E
[
Iηp( fn)4] = 3 =⇒ lim

n→+∞
E
[
IW

p ( fn)4] = 3 =⇒ lim
n→+∞

dTV
(
IW

p ( fn),N
)

= 0 .

Remark 1.6. This transfer principle “from-Poisson-to-Gaussian” is closely related to the uni-
versality of Gaussian Wiener chaos and Poisson Wiener chaos, see Section 1.6. It is also worth
pointing out that the transfer principle “from-Gaussian-to-Poisson” does not hold true, due to a
counterexample given in [4], See Proposition 5.4 therein.

1.5 Main results in the multivariate case
In this subsection, let us fix integers d ≥ 2 and 1 ≤ q1 ≤ q2 ≤ . . . ≤ qd and consider a random
vector

F := (F1, . . . , Fd)T ,

where F j ∈ Cq j , 1 ≤ j ≤ d. We will further assume that F j ∈ L4(P) for each j ∈ {1, . . . , d}.
Furthermore, we denote by Σ := (Σi, j)i, j=1,...,d the covariance matrix of F, i.e. Σi, j = E[FiF j]
for 1 ≤ i, j ≤ d. Note that Σi, j = 0 whenever qi , q j due to the orthogonality properties of
multiple integrals (see Section 2.1), and hence Σ is always a block diagonal matrix. Denote by
N = (N1, . . . ,Nd)T a centred Gaussian random vector with the same covariance matrix Σ.

In order to formulate our bounds, we need to fix some further notation: for a vector x =

(x1, . . . , xd)T ∈ Rd, we denote by ‖x‖2 its Euclidean norm and for a matrix A ∈ Rd×d, we denote
by ‖A‖op the operator norm induced by the Euclidean norm, i.e.,

‖A‖op := sup{‖Ax‖2 : ‖x‖2 = 1} .

More generally, for a k-multilinear form ψ : (Rd)k → R, k ∈ N, we define the operator norm

‖ψ‖op := sup
{
|ψ(u1, . . . , uk)| : u j ∈ R

d, ‖u j‖2 = 1, j = 1, . . . , k
}
.

Recall that for a function h : Rd → R, its minimum Lipschitz constant M1(h) is given by

M1(h) := sup
x,y

|h(x) − h(y)|
‖x − y‖2

∈ [0,∞] .

If h is differentiable, then M1(h) = supx∈Rd‖Dh(x)‖op. More generally, for k ≥ 1 and a (k−1)-times
differentiable function h : Rd → R, we set

Mk(h) := sup
x,y

‖Dk−1h(x) − Dk−1h(y)‖op

‖x − y‖2
,
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viewing the (k − 1)-th derivative Dk−1h of h at any point x as a (k − 1)-multilinear form. Then, if
h is k-times differentiable, we have

Mk(h) = sup
x∈Rd
‖Dkh(x)‖op .

Recall that, for two matrices A, B ∈ Rd×d, their Hilbert-Schmidt inner product is defined by

〈A, B〉H.S. := Tr
(
ABT ) = Tr

(
BAT ) = Tr

(
BT A

)
=

d∑
i, j=1

Ai, jBi, j .

Thus, 〈·, ·〉H.S. is just the standard inner product on Rd×d � Rd2
. The corresponding Hilbert-

Schmidt norm will be denoted by ‖·‖H.S.. With this notion at hand, following [7] and [24], for
k = 2 we finally define

M̃2(h) := sup
x∈Rd
‖Hess h(x)‖H.S. ,

where Hess h is the Hessian matrix corresponding to h. Note that for a symmetric matrix
A ∈ Rd×d with eigenvalues λ1(A) ≤ . . . ≤ λd(A), one has

‖A‖2H.S. =

d∑
j=1

λ j(A)2 ≤ d max{|λ1(A)|2, . . . , |λd(A)|2} = d‖A‖2op .

From this, it follows immediately that M̃2(h) ≤
√

d M2(h).

The next statement is our main result in the multivariate setting.

Theorem 1.7. Under the above assumptions and notation, we have the following bounds:

(i) For every g ∈ C3(Rd) such that g(F), g(N) ∈ L1(P), we have

∣∣∣E[g(F)] − E[g(N)]
∣∣∣ ≤ B3(g)

d∑
i=1

√
E[F4

i ] − 3E[F2
i ]2

+ A2(g)

 d−1∑
i=1

E[F4
i ]1/4

 d∑
j=2

(
E[F4

j ] − 3E[F2
j ]

2)1/4
,(1.4)

with B3(g) = A2(g) +
2qd
√

dTr(Σ)
9q1

M3(g) and A2(g) =
(2qd − 1)

√
2d

4q1
M2(g).

(ii) If in addition Σ is positive definite, then for every g ∈ C2(Rd) such that g(F), g(N) ∈ L1(P),
we have ∣∣∣E[g(F)] − E[g(N)]

∣∣∣ ≤ B2(g)
d∑

i=1

√
E[F4

i ] − 3E[F2
i ]2

+ A1(g)

 d−1∑
i=1

E[F4
i ]1/4

 d∑
j=2

(
E[F4

j ] − 3E[F2
j ]

2)1/4
,(1.5)



Paper 4 139

with

B2(g) = A1(g) +
qd
√

2π‖Σ−1/2‖op
√

Tr(Σ)
6q1

M2(g)

and

A1(g) =
(2qd − 1)‖Σ−1/2‖op

q1
√
π

M1(g) .

The qualitative statement in the multivariate situation reads as follows.

Corollary 1.8. Fix d ∈ N and q1, . . . , qd ∈ N and suppose that, for each n ∈ N, F(n) :=
(F(n)

1 , . . . , F(n)
d )T is a random vector such that each F(n)

k belongs to the qk-th Poisson Wiener
chaos. Moreover, assume that C = C(i, j)1≤i, j≤d is a fixed nonnegative definite matrix and that
N = (N1, . . . ,Nd)T is a centred Gaussian vector with covariance matrix C. Assume that the
following two conditions hold true:

(i) The covariance matrix of F(n) converges to C as n→ ∞.

(ii) For each 1 ≤ k ≤ d it holds that limn→∞ E
[
(F(n)

k )4] = 3C(k, k)2.

Then, as n→ ∞, the random vector F(n) converges in distribution to N.

Remark 1.9. (a) Comparing the bounds in Theorem 1.7 with the one provided in Theorem 1.2,
one observes that in the multivariate case the order of dependence on the fourth cumulants
of the respective coordinates is 1/4 instead of 1/2. This phenomenon, which technically
results from an application of the Cauchy-Schwarz inequality in order to disentangle certain
joint moments of the coordinate variables, is nothing peculiar of the Poisson framework but
also arises in the Gaussian situation [25] and in the recent multivariate de Jong type CLT
for vectors of degenerate non-symmetric U-statistics [12]. Moreover, this phenomenon only
arises in the case when there are components belonging to different chaoses (see Remark
4.3).

(b) We stress that it is remarkable that, as in the Gaussian case [35], the bounds and conditions
in Theorem 1.7 and Corollary 1.8 can be expressed just in terms of the individual fourth
cumulants of the components of the random vectors. Indeed, both in the general situation of
diffusive Markov generators (see [5, Theorem 1.2]) and for the multivariate CLT for vectors
of degenerate non-symmetric U-statistics (see [12, Theorem 1.7]), one additionally needs to
assume the convergence of mixed fourth moments of those entries, which are of the same
chaos and Hoeffding order, respectively.

(c) Corollary 1.8 is a full Poisson space analogue of the Peccati-Tudor theorem [35] for vectors
of multiple integrals on a Gaussian space, which boils down the question about joint
convergence of the whole vector to conditions guaranteeing coordinatewise convergence
(via Corollary 1.3).

For the convenience of later reference, we state below the theorem of Peccati-Tudor on a
Gaussian space.
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Theorem 1.10 ( [35]). Let (Wt, t ∈ R+) be a real standard Brownian motion, and we fix integers
d ≥ 2 and 1 ≤ q1 ≤ . . . ≤ qd. Let C = C(i, j)1≤i, j≤d be a d × d symmetric nonnegative definite
matrix and for any n ≥ 1, i ∈ {1, . . . , d}, let fn,i ∈ L2(Rqi

+ , dx) be symmetric. Assume that the
d-dimensional random vectors

F(n) =
(
F(n)

1 , . . . , F(n)
d

)T :=
(
IW
q1

( fn,1), . . . , IW
qd

( fn,d)
)T

satisfy
lim

n→+∞
E
[
F(n)

i F(n)
j
]

= C(i, j) , i, j ∈ {1, . . . , d} .

Then, as n→ +∞, the following assertions are equivalent:

(1) The vector F(n) converges in distribution to a d-dimensional Gaussian vector N(0,C);

(2) for every i ∈ {1, . . . , d}, F(n)
i converges in distribution to a real Gaussian random variable

N
(
0,C(i, i)

)
;

(3) for every i ∈ {1, . . . , d}, E
[
(F(n)

i )4]→ 3C(i, i)2;

(4) for every i ∈ {1, . . . , d} and each 1 ≤ r ≤ qi − 1,
∥∥∥ fn,i ⊗r fn,i

∥∥∥
L2(R2qi−2r

+ )
→ 0.

For a proof, one can refer to [27].

1.6 Universality of Homogeneous sums
The transfer principle in Proposition 1.5 is closely related to the universality phenomenon for
multilinear homogeneous sums in independent Poisson random variables. We refer to the pa-
pers [29], [37], [28] and [2] for the universality results on multilinear homogeneous sums. Before
we can state the result, we need to introduce some notation.

Notation. Suppose that d ≥ 2, N ∈ N, and that f ∈ `2(Nd) is a function, which is symmetric in its
arguments and vanishes on diagonals, i.e. for any i1, . . . , id ∈ N, f (i1, . . . , id) = f (iσ(1), . . . , iσ(d))
for any σ ∈ Sd and f (i1, . . . , id) = 0, whenever ip = iq for some p , q. For a sequence
X = (Xi, i ∈ N) of real random variables, we define the multilinear homogeneous sum of order d,
based on the kernel f and on the first N elements of X by

Qd( f ,N,X) : =
∑

1≤i1,...,id≤N

f (i1, . . . , id)Xi1 · · · Xid .(1.6)

Now let us consider an independent sequence P = (Pi, i ∈ N) of normalised Poisson random
variables, which can be realised via our Poisson random measure η on R+. More precisely, let
(ti, i ∈ N) be a strictly increasing sequence of positive numbers. Set

Pi :=
η̂([ti, ti+1))
√

ti+1 − ti
= Iη1

(
1

√
ti+1 − ti

I[ti,ti+1)

)
,

i ∈ N. We are now in the position to state the universality result.
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Theorem 1.11. Let the above notation prevail. Fix integers d ≥ 2 and qd ≥ . . . ≥ q1 ≥ 2. For
each j ∈ {1, . . . , d}, let (Nn, j, n ≥ 1) be a sequence of natural numbers diverging to infinity, and
let fn, j : {1, . . . ,Nn, j}

q j → R be symmetric and vanishing on diagonals such that

lim
n→+∞

I(qk=ql)qk!
∑

i1,...,iqk≤Nn,k

fn,k(i1, . . . , iqk) fn,l(i1, . . . , iqk) = Σ(k, l) ,

where Σ = Σ(i, j)1≤i, j≤d is a symmetric nonnegative definite d by d matrix. Then the following
condition (A0) implies two equivalent statements (A1), (A2) :

(A0) For each j ∈ {1, . . . , d}, one has lim
n→+∞

E
[
Qq j

(
fn, j,Nn, j,P

)4]
= 3Σ( j, j)2 .

(A1) Let G be a sequence of i.i.d. standard Gaussian random variables, then, as n → +∞,(
Qq1( fn,1,Nn,1,G), . . . ,Qqd ( fn,d,Nn,d,G)

)T converges in distribution to N(0,Σ).

(A2) For every sequence X =
(
Xi, i ∈ N

)
of independent centred random variables with

unit variance and supi∈N E
[
|Xi|

3] < +∞, the sequence of d-dimensional random vectors(
Qq1( fn,1,Nn,1,X), . . . ,Qqd ( fn,d,Nn,d,X)

)T converges in distribution to N(0,Σ), as n →
+∞.

If, in addition, inf{ti+1 − ti : i ∈ N} > 0, then (A0) and (A1)-(A2) are equivalent to the following
assertion

(A3)
(
Qq1( fn,1,Nn,1,P), . . . ,Qqd ( fn,d,Nn,d,P)

)T converges to N(0,Σ) in distribution, as n→ +∞.

Remark 1.12. The authors of [37] established a fourth moment theorem for sequences of
homogeneous sums in independent Poisson random variables whose variance is bounded away
from zero, namely, inf{ti+1 − ti : i ∈ N} > 0 in our language. In particular, in order to get the
implication “(A0)⇒ (A1)”, they relied heavily on the assumption that inf{ti+1 − ti : i ∈ N} > 0,
which is inevitable due to their use of product formula. As a consequence, our Theorem 1.11 is
an improvement of the results in [37].

Plan of the paper. In Section 2, we review some necessary definitions and facts about
multiple integrals and Malliavin operators on the Poisson space. Section 3 is devoted to the
essential construction of a suitable family of exchangeable pairs for the concrete purpose of
establishing fourth moment bounds on the Poisson space. In order to make use of it, we also
state two new abstract plug-in results for such families of exchangeable pairs. In Section 4 we
give the proofs of our main results, whereas Section 5 presents the proofs of Proposition 1.5,
Theorem 1.11 as well as certain technical auxiliary results.

2 Some stochastic analysis on the Poisson space

2.1 Basic operators and notation
For a positive integer p, we denote by L2(µp) the Hilbert space of all square-integrable and
real-valued functions onZp, and we denote by L2

s(µ
p) the subspace of L2(µp) whose elements
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are µp-a.e. symmetric. Moreover, we indicate by ‖·‖2 and 〈·, ·〉2 respectively the usual norm and
scalar product on L2(µp) for any value of p. We also set L2(µ0) := R. For f ∈ L2(µp), we define
Iηp( f ) to be the multiple Wiener-Itô integral of f with respect to the compensated Poisson random
measure η̂. If p = 0, then, by convention, Iη0(c) := c for each c ∈ R.

The multiple Wiener-Itô integrals satisfy the following properties:

1) For p ∈ N and f ∈ L2(µp), Iηp( f ) = Iηp( f̃ ), where f̃ denotes the symmetrization of f ∈ L2(µp),
i.e.

f̃ (z1, . . . , zp) =
1
p!

∑
π∈Sp

f (zπ(1), . . . , zπ(p)) ,

where Sp is the symmetric group acting on {1, . . . , p}. Note c̃ = c for any c ∈ R.

2) For p, q ∈ N0 and f ∈ L2(µp), g ∈ L2(µq), one has Iηp( f ), Iηq(g) ∈ L2(P) and E
[
Iηp( f )Iηq(g)

]
=

δp,q p! 〈 f̃ , g̃〉2, where δp,q denotes Kronecker’s delta symbol.

See Section 3 of [19] for the proofs of the above well known results.

For p ∈ N0, the Hilbert space Cp := {Iηp( f ), f ∈ L2(µp)}, is called the p-th Poisson Wiener
chaos associated with η. The well-known Wiener-Itô chaotic decomposition states that every
F ∈ L2(P) := L2(Ω, σ{η},P) admits a unique representation

(2.1) F = E[F] +

∞∑
p=1

Iηp( fp) in L2(P), where fp ∈ L2
s(µ

p), p ≥ 1.

Let F ∈ L2(P) and p ∈ N0, then we define by Jp(F) the orthogonal projection of F on Cp.
Note that, if F has the chaotic decomposition as in (2.1), then Jp(F) = Iηp( fp) for all p ≥ 1 and
J0(F) = E[F].

For F ∈ L2(P) with the chaotic decomposition as in (2.1), we define

PtF = E[F] +
∑
p≥1

e−pt Iηp( fp) .

This gives us the Ornstein-Uhlenbeck semigroup (Pt, t ∈ R+). The domain dom L of the Ornstein-
Uhlenbeck generator L is the set of those F ∈ L2(P) with the chaotic decomposition (2.1) verifing∑∞

p=1 p2 p!‖ fp‖
2
2 < +∞, and for F ∈ dom L, one has

(2.2) LF = −

∞∑
p=1

pIηp( fp) .

We conclude from (2.2) that LF is always centred, N0 is the spectrum of −L and F ∈ dom L
is an eigenfunction of −L with corresponding eigenvalue p if and only if F = Iηp( fp) for some
fp ∈ L2

s(µ
p), i.e. Cp = Ker(L + pI).

Moreover, it is easy to see that L is symmetric in the sense that E[GLF] = E[FLG] for all
F,G ∈ dom L. Finally, for F,G ∈ dom L with FG ∈ dom L, we define the carré du champ
operator Γ associated with L by

(2.3) Γ(F,G) :=
1
2
(
L(FG) − FLG −GLF

)
,
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and it is easy to verify that E[Γ(F,G)] = −E[FLG] = −E[GLF]. It follows from Lemma 2.1
below that Γ(F,G) is always well-defined whenever F,G ∈ L4(P) and both have a finite chaotic
decomposition.

In the book [3], the authors develop Dirichlet form method for the Poisson point process, and
starting from the Dirichlet form associated with the Ornstein-Uhlenbeck structure, they obtain
an expression of carré du champs operator that is close to the one derived in [13]. As readers
will see, we only need the spectral decomposition rather than the intrinsic tools in [3, 13]. This
highlights the elementary feature of our method.

For p, q ∈ N, 0 ≤ r ≤ p ∧ q and f ∈ L2
s(µ

p) and g ∈ L2
s(µ

q), we define the r-th contraction
f ⊗r g : Zp+q−2r → R by

f ⊗r g(x1, . . . , xp−r, y1, . . . , yq−r) :=
ˆ
Zr

f (x1, . . . , xp−r, z1, . . . , zr)

· g(y1, . . . , yq−r, z1, . . . , zr)dµr(z1, . . . , zr) .

Observe that f ⊗r g ∈ L2(µp+q−2r) is in general not symmetric and that f ⊗0 g = f ⊗ g is simply
the tensor product of f and g.

Lemma 2.1 (Lemma 2.4 of [13]). Let p, q ∈ N and F = Iηp( f ), G = Iηq(g) be in L4(P) with f , g
symmetric, then FG has a finite chaotic decomposition of the form

FG =

p+q∑
r=0

Jr(FG) =

p+q∑
r=0

Iηr (hr) ,

where hr ∈ L2
s(µ

r) for each r. In particular, hp+q = f ⊗̃g.

2.2 Useful estimates via spectral decomposition

To conclude the section, we state several lemmas that are useful for our proofs.

Lemma 2.2. Let F ∈ L4(P) ∩Cp and G ∈ L4(P) ∩Cq for p, q ∈ N. Then,

(2.4) Var
(
Γ(F,G)

)
≤

(p + q − 1)2

4
(
E
[
F2G2] − 2E[FG]2 − Var(F) Var(G)

)
,

and

(2.5) 0 ≤
3
p
E
[
F2Γ(F, F)

]
− E

[
F4] ≤ 4p − 3

2p
(
E
[
F4] − 3E

[
F2]2)

.

In particular, for F = G, we obtain

(2.6) Var
(
Γ(F, F)

)
≤

(2p − 1)2

4
(
E[F4] − 3E[F2]2) .
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Note the authors of [13] provided a proof of (2.5) under the Assumption A therein, while we
only require the assumption of finite fourth moment. Although (2.6) is the content of Lemma 3.1
in [13], we will provide another proof, in which we deduce a nice relation between contractions
of kernels and the fourth cumulant. Such a relation is crucial for us to obtain the transfer principle
“from-Poisson-to-Gaussian”. The proof of Lemma 2.2 as well as that of the next lemma will be
presented in Section 5.

Lemma 2.3. Under the same assumptions of Lemma 2.2, we have that

(1) If p < q, then

Cov(F2,G2) = E
[
F2G2] − Var(F)Var(G)

≤
√
E[F4]

√
E[G4] − 3E[G2]2 ;(2.7)

(2) if p = q, then

Cov(F2,G2) − 2E[FG]2 ≤ 2
√(
E[F4] − 3E[F2]2)(E[G4] − 3E[G2]2) .(2.8)

This lemma is motivated by Proposition 3.6 in [5].

3 Stein’s method of exchangeable pairs

The exchangeable pairs approach within Stein’s method was first used in the paper [9] which,
however, attributes the method to Charles Stein himself. Later, this technique was presented in
a systematic way in Stein’s monograph [43]. We recall that a pair (X, X′) of random elements
on a common probability space is said to be exchangeable, if (X, X′) has the same distribution
as (X′, X). In the book [43], it is highlighted that a given real random variable W is close in
distribution to a standard normal variable N, whenever one can construct an exchangeable pair
(W,W ′) such that W ′ is close to W in some sense and that the linear regression property

E
[
W ′ −W

∣∣∣ W]
= −λW

is satisfied for some small λ > 0 and Var
( 1

2λE[(W ′ −W)2|W]
)

is small. For a precise statement,
we refer to Theorem 1 in [43, Lecture III].

In recent years, the method of exchangeable pairs has been generalised for other distributions
and multi-dimensional settings in many papers like [6–8, 10, 15, 38–40, 42], to name a few.

Moreover, the articles [7, 14, 23, 24] develop versions of the exchangeable pairs method
suitable for situations, in which one can construct a continuous family (W,Wt)t>0 of exchangeable
pairs. By their continuity assumptions, these papers succeed in reducing the order of smoothness
of test functions and hence in obtaining bounds in more sophisticated probabilistic distances.
For instance, the bounds from [23] are expressed in terms of the total variation distance. It is
this framework of exchangeable pairs that is most closely related to the variant of the method
developed in the present paper. In contrast to the quoted papers, however, our abstract results on
exchangeable pairs do not make such strong continuity assumptions and hence, allow us to deal
with the inherent discreteness of the Poisson space, which, in general, does not even allow for
convergence in the total variation distance, see Section 3.2 for details.
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3.1 Exchangeable pairs constructed via continuous thinning
Recall that, in our general framework, η is a Poisson random measure on some σ-finite measure
space

(
Z,Z , µ

)
. As a consequence, we can assume that η is a proper Poisson point process, that

is, almost surely

η =

κ∑
n=1

δXn ,(3.1)

where Xn, n ≥ 1 are random variables with values in Z and κ is a N0 ∪ {+∞}-valued random
variable. Indeed, according to Corollary 3.7 in [21], any Poisson random measure η on some
σ-finite measure space is equal in distribution to some proper Poisson point process. As in this
work, we are only concerned with distributional properties, we will always assume that η is of
the form (3.1).

Let Nσ be the collection of σ-finite measures ν : Z → N0 ∪ {+∞} and Nσ(Z) be the σ-
algebra generated by the maps ν ∈ Nσ 7−→ ν(B), B ∈ Z . We consider the Poisson point process
η as a random element in

(
Nσ,Nσ(Z)

)
. Moreover, for any F ∈ L0(Ω, σ{η},P), one can find a

(P-a.s. unique) representative f of F such that F = f(η), see [19] for more details.
Now let Q be a standard exponential measure on R+ with density exp(−y) dy, and let (Yn)n∈N

be a sequence of i.i.d. random variables with distribution Q, independent of (κ, Xn). Then the
marked point process ξ, given by

ξ :=
κ∑

n=1

δ(Xn,Yn) ,

is a Poisson point process with control µ ⊗ Q. For each t ∈ R+, we define

ηe−t(A) := ξ
(
A × [t,+∞)

)
,

which is called the e−t-thinning of η: it is obtained by removing the atoms (Xn) in η independently
of each other with probability 1 − e−t. Moreover, ηe−t and η − ηe−t are two independent Poisson
point processes with control measure e−tµ, (1 − e−t)µ respectively. One can refer to Chapter 5
in [21] for more details.

For any fixed t ≥ 0, let η′1−e−t be a Poisson point process on Z with control (1 − e−t)µ such
that it is independent of (η, ηe−t). Then the Mehler formula gives a useful representation of the
Ornstein-Uhlenbeck semigroup (Pt): for F ∈ L2(Ω, σ{η},P),

PtF = E
[
f(ηe−t + η′1−e−t)

∣∣∣σ{η}] ,
where f is a representative of F, see [19] for more details. We remark that the Mehler formula
on the Poisson space has already been effectively used in [20] in order to obtain a pathwise
representation for the pseudo-inverse of the Ornstein-Uhlenbeck generator L on the Poisson
space, which has led to second-order Poincaré inequalities.

We record an important observation in the following lemma.

Lemma 3.1. For each t ∈ R+, set ηt := ηe−t + η′1−e−t . Then,
(
η, ηt) is an exchangeable pair of

Poisson point processes.
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Proof. To prove this lemma, it suffices to notice that η = ηe−t + η − ηe−t and that η − ηe−t , η′1−e−t

have the same law, and are both independent of ηe−t .
Let f : Nσ → R be Nσ(Z)-measurable; then, for any Borel subsets A1, A2 of R, one has that

P
(
f(η) ∈ A1 , f(ηt) ∈ A2

)
= P

(
f(ηe−t + η − ηe−t) ∈ A1 , f(ηe−t + η′1−e−t) ∈ A2

)
= P

(
f(ηe−t + η′1−e−t) ∈ A1 , f(ηe−t + η − ηe−t) ∈ A2

)
(by conditioning on ηe−t)

= P
(
f(ηt) ∈ A1 , f(η) ∈ A2

)
.

This implies the exchangeability of (η, ηt). �

The following result is a consequence of Lemma 3.1 and Mehler formula: it is a key ingredient
for us to obtain exact fourth moment theorems in any dimension. Indeed, it fits extremely well
with the abstract results for exchangeable pairs that are presented in Section 3.2.

Proposition 3.2. Let F = Iηq( f ) ∈ L4(P) for some f ∈ L2
s(µ

q) and define Ft = Iη
t

q ( f ). Then, (F, Ft)
is an exchangeable pair for each t ∈ R+. Moreover,

(a) lim
t↓0

1
t
E
[
Ft − F|σ{η}

]
= LF = −qF in L4(P).

(b) If G = Iηp(g) ∈ L4(P) and Gt = Iη
t

p (g) for some g ∈ L2
s(µ

p), then we have lim
t↓0

1
t
E
[
(Ft − F)(Gt −G)|σ{η}

]
= 2Γ(F,G),

with the convergence in L2(P).

(c) lim
t↓0

1
t
E
[
(Ft − F)4] = −4qE[F4] + 12E

[
F2Γ(F, F)

]
≥ 0.

Proof. The exchangeability of F, Ft is an immediate consequence of Lemma 3.1. Relation (a) is
a direct consequence of the Mehler formula:

1
t
E
[
Ft − F|σ{η}

]
=

Pt(F) − F
t

=
e−qt − 1

t
F ,

and such a quantity converges almost surely, and in L4(P) to LF = −qF, as t ↓ 0.
By Lemma 2.1, FG =

∑p+q
k=0 Jk(FG) =

∑p+q
k=0 Iηk (hk) for some hk ∈ L2

s(µ
k), and consequently

FtGt =
∑p+q

k=0 Iη
t

k (hk), so that

1
t
E
[
FtGt − FG|σ{η}

]
=

1
t

p+q∑
k=0

E
[
Iη

t

k (hk) − Iηk (hk)|σ{η}
]

converges almost surely and in L2(P) to
∑p+q

k=0 −k Jk(FG) = L(FG), as t ↓ 0. Hence almost surely
and in L2(P), we infer that

1
t
E
[
(Ft − F)(Gt −G)|σ{η}

]
=

1
t
E
[
FtGt − FG|σ{η}

]
− F
E[Gt −G|σ{η}]

t
−G
E[Ft − F|σ{η}]

t
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→ L(FG) − FLG −GLF = 2 Γ(F,G) ,

as t ↓ 0. Since the pair (F, Ft) is exchangeable, we can write

E
[
(Ft − F)4] =E

[
F4

t + F4 − 4F3
t F − 4F3Ft + 6F2

t F2]
= 2E[F4] − 8E

[
F3Ft

]
+ 6E

[
F2F2

t
]

(by exchangeability)
= 4E

[
F3(Ft − F)

]
+ 6E

[
F2(Ft − F)2] (after rearrangement)

= 4E
[
F3E[Ft − F|σ{η}]

]
+ 6E

[
F2E[(Ft − F)2|σ{η}]

]
.

so (c) follows immediately from (a),(b) and the fact that F ∈ L4(P). �

3.2 Abstract results for exchangeable pairs
As indicated in the introductory part of this section, the following two Propositions should be
seen as complements to [23, Theorem 1.4] and [24, Theorem 4] as well as [7, Theorem 2.4],
respectively. The main difference with respect to these results, as mentioned above, is that we do
not assume any continuity from the respective families of exchangeable pairs, which precisely
means that we allow for non-zero limits in the respective conditions (c) below.

Proposition 3.3. Let Y and a family of random variables (Yt)t≥0 be defined on a common
probability space (Ω,F ,P) such that Yt

law
= Y for every t ≥ 0. Assume that Y ∈ L4(Ω,G ,P) for

some σ-algebra G ⊂ F and that, in L1(P),

(a) lim
t↓0

1
t
E[Yt − Y |G ] = −λY for some λ > 0,

(b) lim
t↓0

1
t
E[(Yt − Y)2|G ] = (2λ + S )Var(Y) for some random variable S ,

(c) lim
t↓0

1
t
E
[
(Yt − Y)4] = %(Y) Var(Y)2 for some %(Y) ≥ 0.

Then, with N ∼ N(0,Var(Y)), we have

dW(Y,N) ≤
√

Var(Y)

λ
√

2π
E
[
|S |

]
+

√
(2λ + E[S ])Var(Y)

3λ

√
%(Y) .

Remark 3.4. If the quantity %(Y) = 0 in (c), then Proposition 3.3 reduces to Theorem 1.3 in [32]
and one has

dTV
(
Y,N

)
:= sup

A⊂R Borel

∣∣∣P(Y ∈ A) − P(N ∈ A)
∣∣∣ ≤ E[|S |]

λ
.

The following result is a multivariate extension of Proposition 3.3. The proofs will be
postponed to Section 5.5 and 5.6.

Proposition 3.5. For each t > 0, let (X, Xt) be an exchangeable pair of centred d-dimensional
random vectors defined on a common probability space (Ω,F ,P). Let G be a σ-algebra that
contains σ{X}. Assume that Λ ∈ Rd×d is an invertible deterministic matrix and Σ is a symmetric,
non-negative definite deterministic matrix such that
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(a) lim
t↓0

1
t
E
[
Xt − X|G

]
= −ΛX in L1(P),

(b) lim
t↓0

1
t
E
[
(Xt − X)(Xt − X)T |G

]
= 2ΛΣ + S in L1(Ω, ‖ · ‖H.S.) for some random matrix S ,

(c) for each i ∈ {1, . . . , d}, there exists some real number %i(X) such that

lim
t↓0

1
t
E
[
(Xi,t − Xi)4] = %i(X) ,

where Xi,t (resp. Xi) stands for the i-th coordinate of Xt (resp. X).

Then, with N ∼ N(0,Σ), we have the following bounds:

(1) For g ∈ C3(Rd) such that g(X), g(N) ∈ L1(P), one has∣∣∣∣E[g(X) − g(N)
]∣∣∣∣

≤ Θ1(g)E[‖S ‖H.S.] + Θ2(g)

√√
d∑

i=1

2Λi,iΣi,i + E[S i,i]

√√
d∑

i=1

%i(X) ,

where the constants Θ1(g) and Θ2(g) are given by

Θ1(g) =
‖Λ−1‖op M2(g)

√
d

4
and Θ2(g) =

√
dM3(g)‖Λ−1‖op

18
.(3.2)

(2) If, in addition, Σ is positive definite, then for g ∈ C2(Rd) such that
g(X), g(N) ∈ L1(P), one has∣∣∣∣E[g(X) − g(N)

]∣∣∣∣
≤ K1(g)E[‖S ‖H.S.] + K2(g)

√√
d∑

i=1

2Λi,iΣi,i + E[S i,i]

√√
d∑

i=1

%i(X) ,

where the constants K1(g) and K2(g) are given by

K1(g) =
M1(g)‖Λ−1‖op‖Σ

−1/2‖op
√

2π
,(3.3)

K2(g) =

√
2πM2(g)‖Λ−1‖op‖Σ

−1/2‖op

24
.(3.4)
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4 Proofs of main results

4.1 Proof of Theorem 1.2
Without loss of generality, we assume F = Iηq( f ) for some f ∈ L2

s(µ
q), and we define Ft = Iη

t

q ( f )
for t ∈ R+. Then, by Proposition 3.2, (F, Ft) is an exchangeable pair and the assumptions (a), (b),
(c) in Proposition 3.3 are satistified with

• λ = q • S = 2
Γ(F, F)
σ2 − 2q • %(F) =

−4qE[F4] + 12E[F2Γ(F, F)]
σ4 .

More precisely,

(a) lim
t↓0

1
t
E[Ft − F|σ{η}] = −qF,

(b) lim
t↓0

1
t
E[(Ft − F)2|σ{η}] = 2Γ(F, F) ,

(c) lim
t↓0

1
t
E
[
(Ft − F)4] = %(F)σ4.

Therefore, one has (using that E
[
Γ(F, F)

]
= qE[F2] )

dW
(
F,N(0, σ2)

)
≤

√
2/π
σq

√
Var

(
Γ(F, F)

)
+

2
√

2
3σ

√
3
q
E
[
F2Γ(F, F)

]
− E[F4] .

The desired result follows immediately from Lemma 2.2.

4.2 Proof of Theorem 1.7
Assume that

F =
(
F1, . . . , Fd

)T
=

(
Iηq1

( f1), . . . , Iηqd
( fd)

)T

with 1 ≤ q1 ≤ . . . ≤ qd and f j ∈ L2
s(µ

q j) for each j, and for each t ∈ R+, define

Ft =
(
F1,t, . . . , Fd,t

)T
=

(
Iη

t

q1
( f1), . . . , Iη

t

qd
( fd)

)T
.

Then, by Lemma 3.1, (Ft, F) is an exchangeable pair and by Proposition 3.2, we deduce

E

[
1
t
(Fi,t − Fi)(F j,t − F j) − 2Γ(Fi, F j)

∣∣∣ σ{η} ]→ 0 ,

as t ↓ 0, where the convergence takes place in L2(P). Therefore, as t ↓ 0 and in L1(P), we have∥∥∥∥∥1
t
E
[
(Ft − F)(Ft − F)T |σ{η}

]
−

(
2Γ(Fi, F j)

)
1≤i, j≤d

∥∥∥∥∥2

H.S.
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=

d∑
i, j=1

(
E

[
1
t
(Fi,t − Fi)(F j,t − F j) − 2Γ(Fi, F j)

∣∣∣ σ{η} ] )2

→ 0 .

It is easy to see that for each j ∈ {1, . . . , d},

lim
t↓0

1
t
E
[
F j,t − F j|σ{η}

]
= −q jF j in L4(P),

from which we deduce that as t ↓ 0 and in L2(P), we have∥∥∥∥∥ 1
t
E
[
Ft − F|σ{η}

]
− ΛF

∥∥∥∥∥2

2
=

d∑
j=1

(
E

[
F j,t − F j

t
+ q jF j

∣∣∣σ{η}])2

→ 0 ,

with Λ = diag(q1, . . . , qd) in such a way that ‖Λ−1‖op = 1/q1.
It is also clear that, for each i ∈ {1, . . . , d},

%i(F) := lim
t↓0

1
t
E
[
(Fi,t − Fi)4] = −4qi E[F4

i ] + 12E
[
F2

i Γ(Fi, Fi)
]

≤ 2(4qi − 3)
(
E[F4

i ] − 3E[F2
i ]2

)
by (2.5).

Now define S i, j := 2Γ(Fi, F j) − 2qi Σi, j for i, j ∈ {1, . . . , d}, and observe in particular that S i, j has
zero mean. Thus, √√

d∑
i=1

2Λi,iΣi,i + E[S i,i]

√√
d∑

i=1

%i(F)

≤

√√
d∑

i=1

2qiΣi,i

√√
d∑

i=1

2(4qi − 3)
(
E[F4

i ] − 3E[F2
i ]2

)
≤

√
4qd(4qd − 3)Tr(Σ)

√√
d∑

i=1

(
E[F4

i ] − 3E[F2
i ]2

)
≤ 4qd

√
Tr(Σ)

d∑
i=1

√
E[F4

i ] − 3E[F2
i ]2 ,(4.1)

where the last inequality follows from the elementary fact that
√

a1 + . . . + ad ≤
√

a1 + . . .+
√

ad

for any nonnegative reals a1, . . . , ad.

Now we consider E
[
‖S ‖H.S.

]
:

E
[
‖S ‖H.S.

]
= E


√√√ d∑

i, j=1

S 2
i, j

 ≤
 d∑

i, j=1

E[S 2
i, j]


1/2

= 2

 d∑
i, j=1

Var
(
Γ(Fi, F j)

)
1/2

.(4.2)
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It follows from (2.4) that

d∑
i, j=1

Var
(
Γ(Fi, F j)

)
≤

d∑
i, j=1

(qi + q j − 1)2

4

(
E[F2

i F2
j ] − 2E[FiF j]2 − Var(Fi) Var(F j)

)
≤

(2qd − 1)2

4

d∑
i, j=1

(
E[F2

i F2
j ] − 2E[FiF j]2 − Var(Fi) Var(F j)

)
=

(2qd − 1)2

4
E
[
‖F‖42 − ‖N‖

4
2
]
,(4.3)

where the last equality is a consequence of the fact that (see e.g. (4.2) in [31])

E
[
‖N‖42

]
=

d∑
i, j=1

(
Σi,iΣ j, j + 2Σ2

i, j
)
.

Lemma 4.1. Let F,N be given as before, then

E
[
‖F‖42

]
− E

[
‖N‖42

]
≤ 2

 d∑
i=1

√
E[F4

i ] − 3E[F2
i ]2

2

+ 2

 d−1∑
i=1

√
E[F4

i ]

 d∑
j=2

√
E[F4

j ] − 3E[F2
j ]2 .

In particular, if q1 = . . . = qd, one has,

E
[
‖F‖42

]
− E

[
‖N‖42

]
≤ 2

 d∑
i=1

√
E[F4

i ] − 3E[F2
i ]2

2

.

Proof. Let us first consider the particular case where q1 = . . . = qd. One obtains from Lemma
2.3 that

E
[
‖F‖42

]
− E

[
‖N‖42

]
=

d∑
i, j=1

(
E[F2

i F2
j ] − 2E[FiF j]2 − Var(Fi) Var(F j)

)
≤ 2

d∑
i, j=1

√(
E[F4

i ] − 3E[F2
i ]2)(E[F4

j ] − 3E[F2
j ]2)

= 2

 d∑
i=1

√
E[F4

i ] − 3E[F2
i ]2

2

.

In the general case where q1 ≤ . . . ≤ qd, Lemma 2.3 implies

E
[
‖F‖42

]
− E

[
‖N‖42

]
=

d∑
i, j=1

I(qi=q j)

(
Cov(F2

i , F
2
j ) − 2E[FiF j]2

)
+ 2

∑
1≤i< j≤d

I(qi<q j)Cov(F2
i , F

2
j )(4.4)
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≤ 2

 d∑
i=1

√
E[F4

i ] − 3E[F2
i ]2

2

+ 2
∑

1≤i< j≤d

√
E[F4

i ]
√(
E[F4

j ] − 3E[F2
j ]2) .

One can rewrite
∑

1≤i< j≤d

as
d∑

j=2

j−1∑
i=1

and then the desired result follows. �

Remark 4.2. Note that in the same way, we can provide another proof of the quantitative Peccati-
Tudor Theorem in the Gaussian setting. In particular, keeping the indicator functions in (4.4),
we can obtain the bound in a similar form as in [25, Theorem 1.5].

End of the proof of Theorem 1.7. First we obtain from (4.2)-(4.3) and Lemma 4.1 that

E
[
‖S ‖H.S.

]
≤ (2qd − 1)

√
E
[
‖F‖42 − ‖N‖

4
2
]

≤
√

2(2qd − 1)
d∑

i=1

√
E[F4

i ] − 3E[F2
i ]2

+
√

2(2qd − 1)

 d−1∑
i=1

E[F4
i ]1/4

 d∑
j=2

(
E[F4

j ] − 3E[F2
j ]

2)1/4
.(4.5)

If g ∈ C3(Rd) and g(F), g(N) are integrable, then by Proposition 3.5, we deduce∣∣∣∣E[g(F) − g(N)
]∣∣∣∣

≤ Θ1(g)E[‖S ‖H.S.] + Θ2(g)

√√
d∑

i=1

2Λi,iΣi,i + E[S i,i]

√√
d∑

i=1

%i(F)

≤
√

2(2qd − 1)Θ1(g)
d∑

i=1

√
E[F4

i ] − 3E[F2
i ]2

+ 4qdΘ2(g)
√

Tr(Σ)
d∑

i=1

√
E[F4

i ] − 3E[F2
i ]2

+
√

2(2qd − 1)Θ1(g)

 d−1∑
i=1

E[F4
i ]1/4

 d∑
j=2

(
E[F4

j ] − 3E[F2
j ]

2)1/4
,

where the last inequality follows from (4.5) and (4.1). It is easy to check that
√

2Θ1(g)(2qd − 1) + 4qd

√
Tr(Σ)Θ2(g) = B3(g) and

√
2(2qd − 1)Θ1(g) = A2(g) .

Assertion (i) of Theorem 1.7 follows immediately. Assertion (ii) can be proved in the same way,
by using moreover the relations:

√
2K1(g)(2qd − 1) + 4qd

√
Tr(Σ)K2(g) = B2(g) and

√
2(2qd − 1)K1(g) = A1(g) .
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Remark 4.3. With the notation and assumptions given as in Theorem 1.7, if in addition q1 = qd,
that is, all the components of the random vector F belong to the same Poisson Wiener chaos,
then we can obtain better bounds, namely:

(i) For every g ∈ C3(Rd) such that g(F), g(N) ∈ L1(P), we have

∣∣∣E[g(F)] − E[g(N)]
∣∣∣ ≤ B3(g)

d∑
i=1

√
E[F4

i ] − 3E[F2
i ]2 .

(ii) If, in addition, Σ is positive definite, then for every g ∈ C2(Rd) such that g(F), g(N) ∈ L1(P),
we have ∣∣∣E[g(F)] − E[g(N)]

∣∣∣ ≤ B2(g)
d∑

i=1

√
E[F4

i ] − 3E[F2
i ]2 .

5 Proofs of technical and auxiliary results
In this section, we first provide the proofs of Lemma 2.2, Lemma 2.3. The following result
from [31] will be helfpul.

Lemma 5.1 (Lemma 2.2 of [31]). Given p, q ∈ N, f ∈ L2
s(µ

p) and g ∈ L2
s(µ

q), then

(p + q)! ‖ f ⊗̃g‖22 = p!q!
p∧q∑
r=0

(
p
r

)(
q
r

)
‖ f ⊗r g‖22 ≥ p!q! ‖ f ‖22‖g‖

2
2 + δp,q p!q! 〈 f , g〉22 ,

and in the case of p = q, one has

(2p)!
〈

f ⊗̃ f , g⊗̃g
〉

2 = 2p!2 〈 f , g〉22 +

p−1∑
r=1

p!2
(
p
r

)2〈
f ⊗r g, g ⊗r f

〉
2 .

Here we follow the convention that
0∑

r=1

= 0.

5.1 Proof of Lemma 2.2
Without loss of generality, we assume F = Iηp( f ) and G = Iηq(g) for some f ∈ L2

s(µ
p) and

g ∈ L2
s(µ

q). It follows from Lemma 2.1 and the definition of Γ that Jp+q(FG) = Iηp+q( f ⊗̃g) and

2 Γ(F,G) = (p + q)E
[
FG

]
+

p+q−1∑
k=1

(p + q − k) Jk(FG) .(5.1)

By orthogonality,

Var
(
Γ(F,G)

)
=

1
4

p+q−1∑
k=1

(p + q − k)2 Var
(
Jk(FG)

)
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≤
(p + q − 1)2

4

p+q−1∑
k=1

Var
(
Jk(FG)

)
.

Similarly, as FG ∈ L2(P), we have FG = E[FG] +
∑p+q

k=1 Jk(FG) so that

E[F2G2] = E[FG]2 +

p+q−1∑
k=1

Var
(
Jk(FG)

)
+ Var

(
Jp+q(FG)

)
= E[FG]2 +

p+q−1∑
k=1

Var
(
Jk(FG)

)
+ (p + q)!‖ f ⊗̃g‖22 .

It follows from Lemma 5.1 that

(p + q)!‖ f ⊗̃g‖22 ≥ p!q!‖ f ‖22‖g‖
2
2 + δp,q p!q!〈 f , g〉22 = Var(F) Var(G) + E[FG]2 .

Hence

Var
(
Γ(F,G)

)
≤

(p + q − 1)2

4

p+q−1∑
k=1

Var
(
Jk(FG)

)
=

(p + q − 1)2

4

(
E[F2G2] − E[FG]2 − (p + q)!‖ f ⊗̃g‖22

)
≤

(p + q − 1)2

4

(
E[F2G2] − 2E[FG]2 − Var(F)Var(G)

)
.(5.2)

In particular, Lemma 5.1, applied to p = q and f = g, gives us

(2p)!‖ f ⊗̃ f ‖22 = 2p!2‖ f ‖42 + p!2
p−1∑
r=1

(
p
r

)2

‖ f ⊗r f ‖22 ,

therefore implying

Var
(
Γ(F, F)

)
≤

(2p − 1)2

4

(
E[F4] − E[F2]2 − (2p)!‖ f ⊗̃ f ‖22

)
=

(2p − 1)2

4

E[F4] − 3E[F2]2 − p!2
p−1∑
r=1

(
p
r

)2

‖ f ⊗r f ‖22

 .

This proves (2.6) and

p!2
p−1∑
r=1

(
p
r

)2

‖ f ⊗r f ‖22 ≤ E[F4] − 3E[F2]2 .(5.3)

It is also clear from (5.2) that

2p−1∑
k=1

Var
(
Jk(F2)

)
≤ E[F4] − 3E[F2]2 .(5.4)
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It remains to show (2.5) now: similarly, we write F2 = E[F2] +
∑2p

k=1 Jk(F2) and by (5.1)

Γ(F, F) = pE[F2] +
1
2

2p−1∑
k=1

(2p − k)Jk(F2) .(5.5)

So by orthogonality, we have

−E[F4] +
3
p
E
[
F2 Γ(F, F)

]
= −E[F4] + 3E[F2]2 +

3
2p

2p−1∑
k=1

(2p − k) Var
(
Jk(F2)

)
≤ −E[F4] + 3E[F2]2 +

3(2p − 1)
2p

2p−1∑
k=1

Var
(
Jk(F2)

)
≤ −E[F4] + 3E[F2]2 +

3(2p − 1)
2p

(
E[F4] − 3E[F2]2)

=
4p − 3

2p
(
E[F4] − 3E[F2]2) .

The other inequality in (2.5) is a trivial consequence of Proposition 3.2-(c). The proof of Lemma
2.2 is complete.

Remark 5.2. 1. Let F ∈ Cp have nonzero variance, then we have that E[F4] > 3E[F2]2.
Indeed, we can always assume F ∈ L4(P). If p = 1, F = Iη1( f ) for some f ∈ L2(µ),
then by product formula (see e.g. Proposition 6.1 in [19]), one has E

[
Iη1( f )4] = 3 ‖ f ‖42 +´

Z
f (z)4 dµ > 3E[F2]2. For p ≥ 2, F = Iηp( f ) for some f ∈ L2

s(µ
p), then according to (5.3),

E[F4] = 3E[F2]2 would imply ‖ f ⊗1 f ‖2 = 0, which would further imply by standard
arguments that f = 0 µ-almost everywhere, which is a contradiction to the fact that F is
nonzero.

2. Let F ∈ Cp∩L4(P), one has p
(
E[F4]−3E[F2]2) ≤ 6 Var

(
Γ(F, F)

)
, which shall be compared

with (2.6). In fact, it follows first from (2.5) that E[F4] − 3E[F2]2 ≤ 3E
[
F2(p−1Γ(F, F) −

E[F2]
)]

, and by (5.5) and orthogonality property, we have

E
[
F2(Γ(F, F) − pE[F2]

)]
=

1
2

2p−1∑
k=1

(2p − k) Var
(
Jk(F2)

)
≤

1
2

2p−1∑
k=1

(2p − k)2 Var
(
Jk(F2)

)
= 2 Var

(
Γ(F, F)

)
,

hence p
(
E[F4] − 3E[F2]2) ≤ 6 Var

(
Γ(F, F)

)
.

3. Let F,N be given as in Theorem 1.7, then from (4.3) it follows that E
[
‖F‖42

]
≥ E

[
‖N‖42

]
.

Moreover, if one of the components F j in F has nonzero variance, it follows from the
above two points and again (4.3) that E

[
‖F‖42

]
> E

[
‖N‖42

]
.
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5.2 Proof of Lemma 2.3
Assume F = Iηp( f ) and G = Iηq(g) are in L4(P) for some f ∈ L2

s(µ
p), g ∈ L2

s(µ
q). Then it follows

from Lemma 2.1 that J2p(F2) = Iη2p( f ⊗̃ f ) and J2q(G2) = Iη2q(g⊗̃g). Moreover, one has

E[F2G2] = E

F2
2q∑

k=0

Jk(G2)


= E

[
F2J0(G2)

]
+ E

[
F2J2q(G2)

]
+ E

F2
2q−1∑
k=1

Jk(G2)


= Var(F) Var(G) + E

[
F2 J2q(G2)

]
+ E

F2
2q−1∑
k=1

Jk(G2)

 .
If p < q, then E

[
F2 J2q(G2)

]
= 0, so that

Cov(F2,G2) = E

F2
2q−1∑
k=1

Jk(G2)

 ≤ √
E[F4]

√√√2q−1∑
k=1

Var
(
Jk(G2)

)
,

where the above inequality follows from Cauchy-Schwarz inequality and isometry property. The
desired result (2.7) follows from (5.4).

Now we consider the case where p = q,

E

F2
2p−1∑
k=1

Jk(G2)

 =

2p−1∑
k=1

E
[
Jk(F2)Jk(G2)

]
≤

√√√2p−1∑
k=1

Var
(
Jk(F2)

) √√√2p−1∑
k=1

Var
(
Jk(G2)

)
(by Cauchy-Schwarz)

≤

√(
E[F4] − 3E[F2]2)(E[G4] − 3E[G2]2) due to (5.4).

By orthogonality property, we have

E
[
J2p(F2)J2p(G2)

]
= (2p)!

〈
f ⊗̃ f , g⊗̃g

〉
2

= 2p!2〈 f , g〉22 +

p−1∑
r=1

p!2
(
p
r

)2〈
f ⊗r g, g ⊗r f

〉
2 ,

where the last equality follows from Lemma 5.1.
As a consequence, one has

E
[
F2J2p(G2)

]
− 2E[FG]2 =

p−1∑
r=1

p!2
(
p
r

)2〈
f ⊗r g, g ⊗r f

〉
2 ≤

p−1∑
r=1

p!2
(
p
r

)2∥∥∥ f ⊗r g
∥∥∥2

2

by Cauchy-Schwarz. Note that, by definition of contractions and Fubini theorem, we have∥∥∥ f ⊗r g
∥∥∥2

2
=

〈
f ⊗p−r f , g ⊗p−r g

〉
2 for each r = 1, . . . , p − 1. Thus,
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p−1∑
r=1

p!2
(
p
r

)2∥∥∥ f ⊗r g
∥∥∥2

2

=

p−1∑
r=1

p!2
(
p
r

)2〈
f ⊗p−r f , g ⊗p−r g

〉
2 =

p−1∑
r=1

p!2
(
p
r

)2〈
f ⊗r f , g ⊗r g

〉
2

≤

p−1∑
r=1

p!2
(
p
r

)2

‖ f ⊗r f ‖2‖g ⊗r g‖2 (by Cauchy-Schwarz)

≤

√√√ p−1∑
r=1

p!2

(
p
r

)2

‖ f ⊗r f ‖22

√√√ p−1∑
r=1

p!2

(
p
r

)2

‖g ⊗r g‖22 (by Cauchy-Schwarz)

≤
√
E[F4] − 3E[F2]2

√
E[G4] − 3E[G2]2 due to (5.3).

Hence, we obtain

Cov(F2,G2) − 2E[FG]2 = E
[
F2 J2p(G2)

]
− 2E[FG]2 + E

F2
2p−1∑
k=1

Jk(G2)


≤ 2

√
E[F4] − 3E[F2]2

√
E[G4] − 3E[G2]2 .

The proof is completed.

5.3 Proof of Proposition 1.5

It follows from (5.3) that

p!2
p−1∑
r=1

(
p
r

)2

‖ fn ⊗r fn‖
2
2 ≤ E[Iηp( fn)4] − 3E[Iηp( fn)2]2 .

If E[Iηp( fn)4] → 3 as n → +∞, then ‖ fn ⊗r fn‖2 → 0 for each r ∈ {1, . . . , p − 1}. Therefore by
Theorem 1.1, E[IW

p ( fn)4]→ 3 and moreover by (1.1),

lim
n→+∞

dTV
(
IW

p ( fn),N
)

= 0 .

This completes the proof of our transfer principle.

5.4 Proof of Theorem 1.11

The equivalence of (A1) and (A2) is the content of Theorem 7.5 in [29]. For each i ∈ N, define

gi =
1

√
ti+1 − ti

I[ti,ti+1),
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then the homogeneous sum Qd( f ,N,P), defined according to (1.6), can be expressed as the d-th
multiple integral Iηd( f̂ ), where

f̂ :=
∑

1≤i1,...,id≤N

f (i1, . . . , id)gi1 ⊗ · · · ⊗ gid .(5.6)

From now on, we identify f̂ with f in case of no confusion. Observe that the sequence G of i.i.d
standard Gaussian random variables can be realised via the Brownian motion (Wt, t ∈ R+). That
is, for each i ∈ N, we put Gi = IW

1 (gi). As a consequence, the homogeneous sum Qd( f ,N,G) can
be rewritten as IW

d ( f̂ ), with f̂ given in (5.6).
With these notions at hand and in view of our transfer principle, if (A0) holds, then, for each

j ∈ {1, . . . , d} and every r ∈ {1, . . . , q j − 1},
∥∥∥ fn, j ⊗r fn, j

∥∥∥
2
→ 0, as n → +∞. Then, (A1) is an

immediate consequence of Theorem 1.10.
Finally, it is known that the fourth central moment of a Poisson random variable with parameter

λ ∈ (0,+∞) is given by λ(1 + 3λ), then E[P4
i ] = 3 + (ti+1 − ti)−1. If inf{ti+1 − ti : i ∈ N} > 0, then

Jensen’s inequality implies

sup
i∈N
E
[
|Pi|

3] ≤ sup
i∈N
E
[
|Pi|

4]3/4
< +∞ .

Hence, we obtain the implication “(A2) ⇒ (A3)”, while the implication “(A3) ⇒ (A0)” is a
consequence of Theorem 3.4 in [37]. The proof of Theorem 1.11 is finished.

5.5 Proof of Proposition 3.3
Without loss of any generality, we may and will assume that Var(Y) = 1 and N ∼ N(0, 1). Let
f : R→ R be 1-Lipschitz function and consider

g(x) = ex2/2
ˆ x

−∞

(
f (y) − E[ f (N)]

)
e−y2/2 dy , x ∈ R ,

which satisfies the Stein’s equation

(5.7) g′(x) − xg(x) = f (x) − E[ f (N)]

as well as ‖g′‖∞ ≤
√

2/π, ‖g′′‖∞ ≤ 2, see e.g. Section 2.3 in [44]. In what follows, we fix such a
pair ( f , g) of functions. Let G : R→ R be a differentiable function such that G′ = g. Then due
to Yt

law
= Y and Y ∈ L4(P), one has

0 = E
[
G(Yt) −G(Y)

]
= E

[
g(Y)(Yt − Y) +

1
2

g′(Y)(Yt − Y)2] + E[Rg]

with |Rg| ≤
1
6
‖g′′‖∞ |Yt − Y |3. It follows that

0 = E

[
g(Y) ×

1
t
E
[
Yt − Y |G

]]
+

1
2
E

[
g′(Y) ×

1
t
E
[
(Yt − Y)2|G

]]
+

1
t
E[Rg].
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By assumption (c) and as t ↓ 0,∣∣∣∣∣1t E[Rg]
∣∣∣∣∣ ≤ 1

3t
E
[
|Yt − Y |3

]
≤

1
3

√
1
t
E
[
(Yt − Y)2]√1

t
E
[
(Yt − Y)4]

→
1
3

√
2λ + E[S ]

√
%(Y)

Therefore as t ↓ 0, assumptions (a) and (b) imply that

0 = λE
[
g′(Y) − Yg(Y)

]
+

1
2
E
[
g′(Y)S

]
+ lim

t↓0

1
t
E[Rg] .

The above equation shall be understood as “the limit limt↓0 t−1E[Rg] exists and is equal to
−λE

[
g′(Y) − Yg(Y)

]
− 1

2 E
[
g′(Y)S

]
, bounded by 1

3

√
2λ + E[S ]

√
%(Y).

Plugging this into the Stein’s equation (5.7), we deduce the desired conclusion, namely

dW(Y,N) = sup
f∈Lip(1)

∣∣∣∣E[ f (Y) − f (N)]
∣∣∣∣ ≤ sup

‖g′‖∞≤
√

2/π
‖g′′‖∞≤2

∣∣∣∣E[g′(Y) − Yg(Y)]
∣∣∣∣

≤ sup
‖g′‖∞≤

√
2/π

‖g′′‖∞≤2

(
‖g′‖∞

2λ
E
[
|S |

]
+

∣∣∣∣∣1λ lim
t↓0

1
t
E[Rg]

∣∣∣∣∣)

≤
1

λ
√

2π
E
[
|S |

]
+

√
2λ + E[S ]

3λ

√
%(Y) .

The general case follows from the fact that dW(Y,N) = σ dW(Y/σ,N/σ) for σ > 0.

5.6 Proof of Proposition 3.5
By the same argument as in the proof of Theorem 3 in [24], we can assume g ∈ C∞(Rd) and
define

f (x) =

ˆ 1

0

1
2t

(
E
[
g(
√

t x +
√

1 − t N)
]
− E[g(N)]

)
dt ,

which is a solution to the following Stein’s equation

(5.8) 〈x,∇ f (x)〉 − 〈Hess f (x),Σ〉H.S. = g(x) − E[g(N)] .

It is known that Mr( f ) ≤ r−1 Mr(g) for r = 1, 2, 3 and M̃2( f ) ≤ 1
2 M̃2(g). In particular, if Σ

is positive definite, then M̃2( f ) ≤
√

2/π ‖Σ−1/2‖op M1(g) and M3( f ) ≤
√

2 π ‖Σ−1/2‖op M2(g)/4,
see [24, Lemma 2].

Again, it follows from the same arguments as in [24] that

0 =
1
t
E

[
1
2

〈
Hess f (X),Λ−1(Xt − X)(Xt − X)T

〉
H.S.

]
+

1
t
E
[ 〈

Λ−1(Xt − X),∇ f (X)
〉]

+
1
2t
E[R],(5.9)



160 G. Zheng

where R is the error in the Taylor approximation satisfying

|R| ≤
1
3
‖Λ−1‖op‖Xt − X‖32β ≤

√
d

3
‖Λ−1‖opβ

√√
d∑

i=1

(Xi,t − Xi)2

√√
d∑

i=1

(Xi,t − Xi)4 ,

where β := min
{
M3(g)/3,

√
2π‖Σ−1/2‖op M2(g)/4

}
, and the last inequality follows from the

elementary inequality ‖x − y‖22 ≤
√

d
(∑d

i=1(xi − yi)4)1/2 for x, y ∈ Rd.
Notice meanwhile that the assumptions (a) and (b) imply that the limit t−1E[R], as t ↓ 0, is

well defined and

− lim
t↓0

1
2t
E[R] = E

[〈
Hess f (X),Σ

〉
H.S. −

〈
X,∇ f (X)

〉]
+

1
2
E
[〈

Hess f (X),Λ−1S
〉

H.S.

]
= E

[
g(N) − g(X)

]
+

1
2
E
[〈

Hess f (X),Λ−1S
〉

H.S.

]
,

where the last equality comes from the definition of Stein’s equation. Moreover, by assumption
(c) and the above inequality, we have

∣∣∣∣∣limt→0

1
t
E[R]

∣∣∣∣∣ ≤
√

d
3
‖Λ−1‖op β

√√
lim
t↓0

1
t
E

d∑
i=1

(Xi,t − Xi)2

√√
lim
t↓0

1
t
E

d∑
i=1

(Xi,t − Xi)4

=

√
d

3
‖Λ−1‖op β

√√
d∑

i=1

2Λi,iΣi,i + E[S i,i]

√√
d∑

i=1

%i(X),

where the last equality follows from assumptions (b) and (c). To conclude our proof, it suffices
to notice that E

[
〈Hess f (X),Λ−1S

〉
H.S.

]
is bounded by

min

1
2

M̃2(g),

√
2
π
‖Σ−1/2‖op M1(g)

 ‖Λ−1‖op E
[
‖S ‖H.S.

]
.
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Paper 5: A Peccati-Tudor type theorem for Rademacher
chaoses

Guangqu Zheng∗

submitted

In this article, we prove that in the Rademacher setting, a random vector with chaotic
components is close in distribution to a centred Gaussian vector, if both the maximal influence
of the associated kernel and the fourth cumulant of each component is small. In particular,
we recover the univariate case recently established in Döbler and Krokowski (2017).

Our main strategy consists in a novel adaption of the exchangeable pairs couplings
initiated in Nourdin and Zheng (2017), as well as its combination with estimates via chaos
decomposition.

Abstract

1 Introduction

1.1 Motivation

Nualart and Peccati’s fourth moment theorem states that a normalised sequence of fixed-order
multiple Wiener-Itô integrals associated to a Brownian motion converges in law to the standard
Gaussian if and only if the corresponding fourth moment converges to 3. It was proved in [21]
using the Dambis-Dubins-Schwartz random-time change technique. Soon after the appearance
of [21], several extensions have been made, among which the paper [23] by Peccati and Tudor
provided a significant multivariate extension using the same techique. Roughly speaking, a
sequence of chaotic random vectors on the Wiener space converges in distribution to a centred
Gaussian vector with matched covariance matrix if and only if the asymptotic normality holds
true for each component. Note that the necessary condition boils down to the convergence of the
fourth moments due to the fourth moment theorem of Nualart and Peccati.

In 2009, Nourdin and Peccati [15] combined the Malliavin calculus and Stein’s method of
normal approximation so as to literally create a new field of research, known as the Malliavin-
Stein approach. One of its many highlights is the obtention of the (quantitative) fourth moment
theorem in the total-variation distance. Here is the bound quoted from the monograph [16]:
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Key words and phrases. Fourth moment theorem; Rademacher chaos; Stein’s method; exchangeable pairs;

spectral decomposition; maximal influence.
∗Email: guangqu.zheng@uni.lu
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given a normalised q-th Wiener-Itô integral F associated to a Brownian motion, one has

dTV(F,Z) := sup
A∈B(R)

∣∣∣∣P(F ∈ A
)
− P

(
Z ∈ A

)∣∣∣∣ ≤ 2
√

3

√
q − 1

q
(
E[F4] − 3

)
,

where Z is a standard Gaussian random variable and B(R) denotes the Borel σ-algebra on R. As
an immediate consequence, the fourth moment theorem of Nualart and Peccati follows.

The success of the Malliavin-Stein approach stems from the integration by parts on both
sides, namely, the Stein’s lemma within the Stein’s method and the duality relation between
Malliavin derivative and Skorohod divergence on a Gaussian space, see the monograph [16] for a
comprehensive treatment. The only ingredients required from the Stein’s method are the Stein’s
lemma, Stein’s equation and the regularity properties of the Stein’s solution, while “exchangeable
pairs”, another fundamental tool and notable cornerstone of Stein’s method, had not been touched
until the recent investigation [20] made by Nourdin and Zheng. They constructed infinitely many
exchangeable pairs of Brownian motions and combined them with E. Meckes’ abstract results
[12, 13] on exchangeable pairs to recover the quantitative fourth moment theorem on a Gaussian
space in any dimension. Such an elementary strategy was soon adapted by Döbler, Vidotto
and Zheng in [7] for their investigation on the Poisson space, and they were able to obtain the
quantitative fourth moment theorem in any dimension. In fact, the univariate fourth moment
theorem on the Poisson space was established earlier in [6] under some integrability assumptions
involving the difference operator, which are partially due to the inherent discreteness of the
Poisson space. Remarkably, the authors of [7] were able to obtain the exact fourth moment
theorem under the weakest possible assumption of finite fourth moment. This illustrates the
power of the elementary exchangeable pairs approach.

In this work, under suitable assumptions, we establish a Peccati-Tudor type theorem in the
Rademacher setting using the elementary exchangeable pairs approach.

1.2 Main result
We first fix a rich probability space

(
Ω,F ,P

)
, on which our random objects are defined. Let E be

the associated expectation operator.
We write N := {1, 2, . . .} and denote by X a sequence of independent Rademacher random

variables (Xk, k ∈ N) such that P
(
Xk = 1

)
= pk = 1 − qk = 1 − P

(
Xk = −1

)
∈ (0, 1). We call it the

symmetric case, whenever pk = 1/2 for each k ∈ N; otherwise, we call it the general case. We
write Y =

(
Yk, k ∈ N

)
for the normalised version of X, that is,

Yk =
Xk − pk + qk

2
√

pkqk
, k ∈ N .(1.1)

We write H = `2(N), equipped with usual `2-norm and for p ∈ N, H⊗p means the p-th tensor
product of H and H�p its symmetric subspace. We denote H�p

0 :=
{
f ∈ H�p : f |4c

p = 0
}

with
4p =

{
(i1, . . . , ip) ∈ Np : ik , i j for different k, j

}
. Clearly, H�0

0 = H⊗0 = R and H�1
0 = H.

Let f ∈ H�d
0 with d ∈ N and Ξ = (ξk, k ∈ N) be a generic sequence of independent normalised

random variables. We define the following homogeneous sum with order d, based on the kernel
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f , by setting,

Qd( f ; Ξ) :=
∑

i1,...,id∈N

f (i1, . . . , id)ξi1 · · · ξid(1.2)

and in particular, Qd( f ; Y) is called the (discrete) multiple integral of f . We write Cd ={
Qd( f ; Y) : f ∈ H�d

0
}

and call it the d-th Rademacher chaos, and as a convention, we put C0 = R.
In case of no ambiguity, we will simple write Qd( f ) for Qd( f ; Y).

Let us introduce an important notion before we state our main result: for a given kernel
f ∈ H�d

0 , we denote byM( f ) the maximal influence of f , namely

M( f ) := sup
k∈N

∑
i1,...,id−1∈N

f (i1, . . . , id−1, k)2 for d ≥ 2 and M( f ) := sup
k∈N

f (k)2 for d = 1.
(1.3)

This notion is adapted from the boolean analysis (see e.g. [22]), in which the class of low-
influence functions is often what is interesting or necessary in practice. It is also closely related
to the invariance principle established in [14] and the universality phenomenon of Gaussian
Wiener chaos [18]. See also Section 4 for more details.

In this work, we are mainly concerned with random variables in a Rademacher chaos and
random vectors with components in Rademacher chaoses. More precisely, we establish the
following result.

Theorem 1.1. Fix integers d ≥ 2 and 1 ≤ q1 ≤ . . . ≤ qd, and consider the sequence of random
vectors

F(n) = (F(n)
1 , . . . , F(n)

d )T :=
(
Qq1( f1,n), . . . ,Qqd ( fd,n)

)T

with kernels f j,n in H�q j

0 for each n ∈ N, j ∈ {1, . . . , d}. Assume that the covariance matrix
Σn of F(n) converges in Hilbert-Schmidt norm to a nonnegative definite symmetric matrix
Σ =

(
Σi, j, 1 ≤ i, j ≤ d

)
, as n→ +∞. Suppose that the following condition holds:

lim
n→+∞

d∑
j=1

M( f j,n) = 0 .

If for each j ∈ {1, . . . , d}, E
[(

F(n)
j
)4
]

converges to 3Σ2
j, j, as n → +∞, then F(n) converges in

distribution to Z ∼ N(0,Σ), as n→ +∞.

The above theorem is analogous to the Peccati-Tudor theorem on a Gaussian space [23], so
we call it a Peccati-Tudor type theorem, which explains our title. One of the main tools we need
for the proof is the following ingredient from Stein’s method of exchangeable pairs. As one will
see easily, we can obtain a quantitative version of Theorem 1.1, which will be an analogue to [7,
Theorem 1.7] and left for interested readers.

Recall first that two random variables W and W ′, defined on a common probability space, are
said to form an exchangeable pair, if (W,W ′) has the same distribution as (W ′,W).
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Proposition 1.1 (Proposition 3.5 in [7]). For each t > 0, let (F, Ft) be an exchangeable pair
of centred d-dimensional random vectors defined on a common probability space. Let G be a
σ-algebra that contains σ{F}. Assume that Λ ∈ Rd×d is an invertible deterministic matrix and Σ

is a symmetric, non-negative definite deterministic matrix such that

(a) lim
t↓0

1
t
E
[
Ft − F|G

]
= −ΛF in L1(Ω),

(b) lim
t↓0

1
t
E
[
(Ft − F)(Ft − F)T |G

]
= 2ΛΣ + S in L1(Ω, ‖ · ‖H.S.) for some matrix S = S (F), and

with ‖ · ‖H.S. the Hilbert-Schmidt norm,

(c) for each i ∈ {1, . . . , d}, there exists some real number ρi(F) such that limt↓0
1
t E

[
(Fi,t −

Fi)4] = ρi(F), where Fi,t (resp. Fi) stands for the i-th coordinate of Ft (resp. F).

Then, for g ∈ C3(Rd) such that g(F), g(Z) ∈ L1(P), we have, with Z ∼ N(0,Σ),∣∣∣E[g(F)] − E[g(Z)]
∣∣∣

≤
‖Λ−1‖op

√
d M2(g)

4
E


√√√ d∑

i, j=1

S 2
i, j

 +

√
dM3(g)‖Λ−1‖op

18

√√
d∑

i=1

2Λi,iΣi,i + E[S i,i]

√√
d∑

i=1

ρi(F) ,

where Mk(g) := supx∈Rd

∥∥∥Dkg(x)
∥∥∥

op
with ‖ · ‖op the operator norm.

The rest of this paper is organised as follows: Section 1.3 is devoted to a brief overview of
related results and we sketch our strategy of proving Theorem 1.1 in Section 1.4; in Section
2, we provide preliminary knowledge on Rademacher chaos and a crucial exchangeable pairs
coupling. The proof of our main result will be given in Section 3 and some discussion about
universality around Rademacher chaos will be presented in Section 4.

1.3 A brief overview of literature
Soon after the appearance of [15], Nourdin, Peccati and Reinert combined Stein’s method and
a discrete version of Malliavin calculus to study the Gaussian approximation of Rademacher
functionals in the symmetric case. This analysis is known as the discrete Malliavin-Stein
approach. It has been generalised by the authors of [9, 10] not only in the multivariate setting
but also in the general case where functionals involving non-symmetric, non-homogeneous
Rademacher random variables were investigated. Recently, Döbler and Krokowski [5] gave the
following fourth-moment-influence bound and pointed out that it is optimal in the sense that there
are examples, in which the fourth moment condition alone would not guarantee the asymptotic
normality.

Theorem 1.2 (Theorem 1.1 in [5]). Fix p ∈ N and f ∈ H�p
0 satisfying p!‖ f ‖2

H⊗p = 1. Let Z be a
standard Gaussian and F = Qp( f ; Y) ∈ L4(P), then we have the following bound in Wasserstein
distance:

dW
(
F,Z

)
:= sup
‖h′‖∞≤1

∣∣∣∣E[h(F) − h(Z)
]∣∣∣∣ ≤ C1

√∣∣∣E[F4] − 3
∣∣∣ + C2

√
M( f ) ,
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where C1,C2 are two numerical constants. This result echoes the remarkable de Jong’s central
limit theorem [4].

Besides the aforementioned references, Krokowski [8] derived a multiplication formula that
generalises the one in [17], and applying as well the Chen-Stein’s method, he studied the Poisson
approximation of Rademacher functionals. Independently, Privault and Torrisi [26] also derived
a multiplication formula and moreover, they obtained a generalisation of the approximate chain
rule from [17], and applied them to study Gaussian and Poisson approximation of Rademacher
functionals in the general case. Concerning the normal approximation in [17] or [26], the
authors were only able to obtain the bounds in some “smooth-version” distance, due to regularity
involving in their chain rules and Stein’s solution. In a follow-up work, Zheng [28] obtained
a neater chain rule that requires minimal regularity (see [28, Remark 2.3]), from which he
obtained the bound in Wasserstein distance as well as an almost sure central limit theorem for
Rademacher chaos. It is worthy pointing out that without using any chain rule, the authors of
[9, 10] used carefully a representation of the discrete Malliavin gradient and the fundamental
theorem of calculus to deduce the Berry-Esseen bound for normal approximation. Using similar
ideas, Döbler and Krokowski [5] also provided the Berry-Esseen bound for their fourth-moment-
influence theorem, which is of the same order as the above Wasserstein bound.

1.4 Strategy of proving Theorem 1.1
Stein’s method of exchangeable pairs was first systematically presented in Charles Stein’s 1986
monograph [27], which was subsequently developed and ramified by many authors. Concerning
our work, we mention in particular E. Meckes’ dissertation [12], in which she developed an
infinitesimal version of this method to obtain total-variation bound in normal approximation.
This infinitesimal version of Stein’s method of exchangeable pairs was later generalised in [3, 13]
for the multivariate normal approximation.

As announced, Proposition 1.1 is one of our main tools, and it can be seen as a generalisation
of [13]. To use it, we need to construct a suitable family of random vectors Ft, t ≥ 0 such that
(Ft, F) is exchangeable for each t and satisfies several asymptotic regression conditions. In fact,
we will first construct a family of Rademacher sequences Xt such that

(
Xt,X

)
is an exchangeable

pair of {±1}N-valued random variables for each t ≥ 0. More precisely, let X′ be an independent
copy of X and Θ = (θk, k ∈ N) be a sequence of i.i.d. standard exponential random variables
such that X, X′ and Θ are independent. For each t ∈ [0,+∞), we define

Xt
k := Xk1(θk≥t) + X′k1(θk<t) .

It has been pointed out in [10] that Xt has the same distribution as X, see also Remark 3.4 in
[17] for the symmetric case. However, both of these two articles did not explicitly state the
exchangeability of Xt and X, which will be proved in Lemma 2.2. Assuming this and writing
F = f(X) for some representative f : {±1}N → Rd, we can set Ft = f(Xt). It is easy to see that
the exchangeability can be passed to (F, Ft) now. If F =

(
Qp1( f1; Y), . . . ,Qpd ( fd; Y)

)
, then we

can write Ft =
(
Qp1( f1; Yt), . . . ,Qpd ( fd; Yt)

)
with Yt the normalised version of Xt in the sense of

(1.1).
Moreover, this exchangeable pairs coupling fits well with the Mehler’s formula, which

gives a nice representation of the discrete Ornstein-Uhlenbeck semigroup
(
Pt, t ≥ 0

)
: given
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F ∈ L2(Ω, σ{X},P), we can first write F = f(X) for some f : {±1}N → R, then the Mehler
formula ([10, Proposition 3.1]) states that

PtF = E
[
f
(
Xt) |σ{X}] .(1.4)

For ξ ∈ Cp, as we will see in Section 2, Ptξ = e−ptξ, then the asymptotic linear regression (a) in
Proposition 1.1 follows easily, and with slightly more effort, the higher order regressions can
also be obtained, see Proposition 2.1.

Another important ingredient in our proof is Ledoux’s spectral point-of-view for fourth
moment theorem [11], which was later refined e.g. in [1, 2]. Such a spectral viewpoint helps one
get rid of some computational deadlock that is usually caused by the complicated multiplication
formula. In particular, our proof is motivated by some arguments in [2].

As a byproduct of our strategy, we will provide a short proof of Theorem 1.2 in the beginning
of Section 3. Some estimate from this proof will also be helpful for our multivariate case.

Acknowledgement. Part of this work was done during a visit at National University of Singa-
pore. I thank very much Professor Louis H. Y. Chen at NUS for his very generous support and
kind hospitality. The gratitude also goes to Professor Giovanni Peccati for sharing his alternative
proof of Lemma 2.4 in [6], which motived our proof of Lemma 2.1.

2 Preliminaires
Denote by σ{X} the σ-algebra generated by the sequence X, and note that σ{X} = σ{Y}. The
Wiener-Itô-Wash chaos decomposition asserts that any random variable F ∈ L2(Ω, σ{X},P)
admits a unique representation

F = E[F] +
∑
p≥1

Qp( fp) with fp ∈ H
�p
0 for each p ∈ N,(2.1)

where the above series converges in L2(P). We denote by Jk(·) the projection onto the k-th
Rademacher chaos Ck: for F given in (2.1), Jp(F) = Qp( fp) for each p ∈ N, and J0(F) = E[F].
It is not difficult to check that for f ∈ H�p

0 and g ∈ H�q
0 , it holds that

E
[
Qp( f )Qq(g)

]
= 1{p=q}p!〈 f , g〉H⊗p .

This is known as the orthogonality property of the multiple integrals. One can refer to N.
Privault’s survey [25] for more details and relevant discrete Malliavin calculus.

The authors of [17] established a multiplication formula for discrete multiple integrals in the
symmetric case: given f ∈ H�p

0 and g ∈ H�q
0 , one has

Qp( f )Qq(g) =

p∧q∑
r=0

r!
(
p
r

)(
q
r

)
Qp+q−2r

(
f ⊗̃rg14p+q−2r

)
,(2.2)

where the r-contraction f ⊗r g of f and g is defined by

( f ⊗r g)
(
i1, . . . , ip−r, j1, . . . , jq−r

)
:=

∑
k1,...,kr∈N

f
(
i1, . . . , ip−r, k1, . . . , kr

)
· g

(
j1, . . . , jq−r, k1, . . . , kr

)
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and f ⊗̃rg is the canonical symmetrisation of f ⊗r g, i.e. for any h ∈ H⊗p, h̃ is given by

h̃(i1, . . . , ip) =
1
p!

∑
σ∈Sp

h
(
iσ(1), . . . , iσ(p)

)
,

with Sp the permutation group over {1, . . . , p}. We follow the convention that c̃ = c for each
c ∈ R. Note it is easy to deduce from the Cauchy-Schwarz inequality that ‖̃h‖H⊗p ≤ ‖h‖H⊗p for
each h ∈ H⊗p, then applying the above orthogonality property and mathematical induction gives
us a weak form of the hypercontractivity property in the symmetric case, namely, E

[
|F|r

]
< +∞

for any F ∈ Cp, p, r ∈ N.
However, in the general case, one can not even guarantee the existence of finite fourth moment

of a generic multiple integral. Such a phenomenon, due to the asymmetry, is also revealed in the
corresponding multiplication formulae, see Proposition 2.2 in [8] and Proposition 5.1 in [26].
As already pointed out in [5], given F ∈ Cp ∩ L4(P), one can not directly deduce from these
multiplication formulae that F2 admits a finite chaotic decomposition. Adapting the induction
arguments from the proof of [6, Lemma 2.4], Döbler and Krokowski gave the following positive
result.

Lemma 2.1 (Lemma 2.3 in [5]). Let F = Qp( f ) ∈ L4(P) and G = Qq(g) ∈ L4(P) for some
f ∈ H�p

0 and g ∈ H�q
0 . Then FG ∈ L2(P) admits a finite chaos decomposition of the form

FG = E[FG] +

p+q−1∑
k=1

Jk(FG) + Qp+q
(
f ⊗̃g14p+q

)
.

In particular, if Q1(h) belongs to L4(P) for some h ∈ H, then

Q1(h)2 = ‖h‖2H + Q1(w) + Q2
(
h⊗̃h142

)
with w(k) =

h(k)2(qk − pk)
√

pkqk
, k ∈ N.

(As this lemma is crucial for our work and for the sake of completeness, we provide in Section
3.3 another and direct proof suggested by Giovanni Peccati.)

2.1 Ornstein-Uhlenbeck Structure and carré du champs operator
Denote by dom(L) the set of those F in (2.1) verifying

∞∑
p=1

p2E
[
Qp( fp)2] =

∞∑
p=1

p2 p!‖ fp‖
2
H⊗p < +∞ .

For such a F ∈ dom(L), we define LF = −
∑

p≥1 pQp( fp). In particular, if F ∈ Cp, LF = −pF.
In other words, −L has pure spectrum N ∪ {0} and each eigenvalue p ∈ {0} ∪ N corresponds to
the eigenspace Cp. And we call L the Ornstein-Uhlenbeck operator, equipped with its domain
dom(L).

For F,G ∈ dom(L) such that FG ∈ dom(L), we define the carré du champs operator Γ(F,G)
by setting

Γ(F,G) :=
1
2
(
L(FG) − FLG −GLF

)
.



172 G. Zheng

In particular, for F,G as in Lemma 2.1, one has FG ∈ dom(L) and

Γ(F,G) =
1
2
[
(p + q) + L

]  p+q∑
k=0

Jk(FG)

 =
p + q

2
E[FG] +

p+q−1∑
k=1

p + q − k
2

Jk(FG) ,(2.3)

and as a consequence of the orthogonality property, one deduces that

Var
(
Γ(F,G)

)
=

p+q−1∑
k=1

(p + q − k)2

4
Var

(
Jk(FG)

)
≤ max{p2, q2}

p+q−1∑
k=1

Var
(
Jk(FG)

)
,(2.4)

which is all we need about the carré du champs.

For each t ∈ [0,+∞) and F as in (2.1), we define

PtF := E[F] +

∞∑
p=1

e−ptQp( fp) .

(Pt, t ≥ 0) is called the Ornstein-Uhlenbeck semigroup, which can be represented alternatively
by the Mehler formula (1.4). To verify (1.4), one can first consider F = Qp( fp) in a Rademacher
chaos with fp ∈ H

�p
0 having finite support and then use the standard approximation argument.

Note that for F ∈ dom(L), it is not difficult to check t−1(PtF − F) converges in L2(P) to LF, as
t ↓ 0.

2.2 Exchangeable pairs of Rademacher sequences
Lemma 2.2. Let Xt and X be given as before, then

(
X,Xt) has the same distribution as

(
Xt,X

)
.

In particular, for any f j ∈ H
�p j

0 with p j ∈ N, j = 1, . . . , d,(
Qp1( f1; Y), . . . ,Qpd ( fd; Y)

)
and

(
Qp1( f1; Yt), . . . ,Qpd ( fd; Yt)

)
form an exchangeable pair, where Yt stands for the normalised version of Xt in the sense of
(1.1).

Proof. Note first that Xt is a sequence of independent Rademacher random variables for each
t ∈ [0,+∞). For each k ∈ N, it is easy to check that

P
(
Xt

k = −1, Xk = 1
)

= P
(
Xt

k = 1, Xk = −1
)

= (1 − e−t)pkqk .

This gives us the exchangeability of (Xk, Xt
k) for each k ∈ N. Let a = (ai, i ∈ N),b = (bi, i ∈ N) ∈

{±1}N, then using the independence within those two sequences X,Xt, we obtain

P
(
X = a,Xt = b

)
=

∏
k∈N

P
(
Xk = ak, Xt

k = bk
)

=
∏
k∈N

P
(
Xk = bk, Xt

k = ak
)

by exchangeability of Xk, Xt
k

= P
(
X = b,Xt = a

)
.
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This proves the exchangeability of X,Xt. The rest follows from a standard approximation
argument: it is clear that after truncation, (with [N] := {1, . . . ,N})(

Qp1( f11[N]p1 ; Y), . . . ,Qpd ( fd1[N]pd ; Y)
)

and
(
Qp1( f11[N]p1 ; Yt), . . . ,Qpd ( fd1[N]pd ; Yt)

)
form an exchangeable pair; letting N → +∞ and keeping in mind that the exchangeability is
preserved in limit, we get the desired result. �

The following result brings more connections between our exchangeable pairs and Ornstein-
Uhlenbeck operator.

Proposition 2.1. Let F = Qp( f ; Y) ∈ L4(P) for some f ∈ H�p
0 and define Ft = Qp( f ; Yt). Then,

(F, Ft) is an exchangeable pair for each t ∈ R+. Moreover,

(a) lim
t↓0

1
t
E
[
Ft − F|σ{X}

]
= LF = −pF in L4(P).

(b) If G = Qq(g; Y) ∈ L4(P) and Gt = Qq(g; Yt) for some g ∈ H�q
0 ,

then we have lim
t↓0

1
t
E
[
(Ft − F)(Gt −G)|σ{X}

]
= 2Γ(F,G), with the convergence in L2(P).

(c) lim
t↓0

1
t
E
[
(Ft − F)4] = −4pE[F4] + 12E

[
F2Γ(F, F)

]
≥ 0.

Proof. By the Mehler formula (1.4), we have

1
t
E
[
Ft − F|σ{X}

]
=

Pt(F) − F
t

=
e−pt − 1

t
F ,

converges in L4(P) to −pF = LF, as t ↓ 0. As a consequence of Lemma 2.1, FG has a finite
chaos expansion of the form FG = E[FG] +

∑p+q
k=1 Qk

(
hk; Y

)
for some hk ∈ H

�k
0 . Therefore,

FtGt = E[FG] +
∑p+q

k=1 Qk
(
hk; Yt), implying

1
t
E
[
FtGt − FG|σ{X}

]
=

p+q∑
k=1

1
t
E
[
Qk

(
hk; Yt) − Qk

(
hk; Y

)
|σ{X}

]
converges in L2(P) to

∑p+q
k=1 −k Jk(FG) = L(FG), as t ↓ 0. Hence, we infer that in L2(P) and as

t ↓ 0,

1
t
E
[
(Ft − F)(Gt −G)|σ{X}

]
=

1
t
E
[
FtGt − FG|σ{X}

]
− F
E[Gt −G|σ{X}]

t
−G
E[Ft − F|σ{X}]

t
→ L(FG) − FLG −GLF = 2 Γ(F,G) .

Since the pair (F, Ft) is exchangeable, we can write

E
[
(Ft − F)4] =E

[
F4

t + F4 − 4F3
t F − 4F3Ft + 6F2

t F2]
= 2E[F4] − 8E

[
F3Ft

]
+ 6E

[
F2F2

t
] (

by exchangeability of (F, Ft)
)

= 4E
[
F3(Ft − F)

]
+ 6E

[
F2(Ft − F)2] (after rearrangement)

= 4E
[
F3E[Ft − F|σ{X}]

]
+ 6E

[
F2E[(Ft − F)2|σ{X}]

]
.

so (c) follows immediately from (a),(b) and the fact that F ∈ L4(P). �
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3 Proofs
We begin with the following lemma, whose proof is postponed to Section 3.3.

Lemma 3.1. Given F = Qp( f ) with f ∈ H�p
0 and G = Qq(g) with g ∈ H�q

0 , we assume that
F,G ∈ L4(P). Then we have the following estimates:

p+q−1∑
k=1

Var
(
Jk(FG)

)
≤ E

[
F2G2] − 2E[FG]2 − Var(F)Var(G) + (p + q)!

∥∥∥ f ⊗̃g14c
p+q

∥∥∥2

H⊗p+q ,(3.1)

and in particular,

max

 2p−1∑
k=1

Var
(
Jk(F2)

)
, p!2

p−1∑
r=1

(
p
r

)2∥∥∥ f ⊗r f
∥∥∥2

H⊗2p−2r

 ≤ E[F4] − 3E[F2]2 + (2p)!
∥∥∥ f ⊗̃ f 14c

2p

∥∥∥2

H⊗2p ,

(3.2)

with ∥∥∥ f ⊗̃g14c
p+q

∥∥∥2

H⊗p+q ≤

p∧q∑
r=1

r!
(
p
r

)(
q
r

)
min

{
‖ f ‖2

H⊗pM(g), ‖g‖2
H⊗qM( f )

}
.(3.3)

(As a convention, we put
0∑

r=1

= 0.)

Before we prove our multivariate limit theorem, we will give a short proof of the univariate
case in Wasserstein distance, using our exchangeable pairs coupling.

3.1 Alternative proof of Theorem 1.2
We need the following result, which is the univariate analogue of Proposition 1.1.

Proposition 3.1. Let F and a family of real random variables (Ft)t≥0 be defined on a common
probability space (Ω,F ,P) such that Ft

law
= F for every t ≥ 0. Assume that F ∈ L4(Ω,G ,P) for

some σ-algebra G ⊂ F and that in L1(P),

(a) lim
t↓0

1
t
E
[
Ft − F|G

]
= −λ F for some λ > 0,

(b) lim
t↓0

1
t
E
[
(Ft − F)2|G

]
= (2λ + S )Var(F) for some random variable S ;

(c) and lim
t↓0

1
t
E
[
(Ft − F)4] = ρ(F)Var(F)2 for some ρ(F) ≥ 0.

Then, with Z ∼ N
(
0,Var(F)

)
, we have

dW(F,Z) ≤
√

Var(F)

λ
√

2π
E
[
|S |

]
+

√
(2λ + E[S ])Var(F)

3λ

√
ρ(F) .

For the proof, one can refer to [7, Proposition 3.3]. One may also want to refer to Theorem 3.5
of [17] for a different coupling bound.
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Now given F = Qp
(
f ; Y

)
∈ L4(P) (with E

[
F2] = 1), we can get by using (2.4) and (3.2) that

Var
(
p−1Γ(F, F)

)
≤

2p−1∑
k=1

Var
(
Jk(F2)

)
≤ E[F4] − 3E[F2]2 + (2p)!

∥∥∥ f ⊗̃ f 14c
2p

∥∥∥2

H⊗2p

≤ E[F4] − 3E[F2]2 + γpE[F2]M( f ) with γp :=
(2p)!

p!

p∑
r=1

r!
(
p
r

)2

.(3.4)

Also using the chaos expansion of F2 and Γ(F, F) as well as the orthogonality property, we have

3E
[
F2Γ(F, F)

]
− pE[F4] = 3E

[
F2(Γ(F, F) − p

)]
− p

(
E[F4] − 3

)
= 3E


 2p∑

k=0

Jk(F2)


2p−1∑

k=1

2p − k
2

Jk(F2)


 − p

(
E[F4] − 3

)
≤ 3p

2p−1∑
k=1

Var
(
Jk(F2)

)
− p

(
E[F4] − 3

)
.

It follows from (3.4) that

3E
[
F2Γ(F, F)

]
− pE[F4] ≤ 2p

(
E[F4] − 3

)
+ 3pγpM( f ) .(3.5)

Now define Ft = Qp
(
f ; Yt) for each t ∈ [0,+∞), then by Proposition 2.1, (Ft, F) is an exchange-

able pair satisfying the conditions in Proposition 3.1 with G = σ{X}, λ = p, S = 2Γ(F, F) − 2p
and ρ(F) = −4pE[F4] + 12E

[
F2Γ(F, F)

]
. Therefore,

dW(F,N) ≤
1

p
√

2π
E
[
|2Γ(F, F) − 2p|

]
+

√
2p

3p

√
−4pE[F4] + 12E

[
F2Γ(F, F)

]
≤

2
√

2π

√
Var

(
p−1Γ(F, F)

)
+

√
2p

3p

√
−4pE[F4] + 12E

[
F2Γ(F, F)

]
(as E[Γ(F, F)] = p)

≤
√

2/π
√
E[F4] − 3 + γpM( f ) +

2
√

2
3

√
2
(
E[F4] − 3

)
+ 3γpM( f )

≤
( √

2/π +
4
3
) √
|E[F4] − 3| +

( √
2/π +

2
√

6
3

)√
γp

√
M( f )

This proves Theorem 1.2 with C1 =
√

2/π +
4
3

and C2 =
(√

2/π +
2
√

6
3

)√ (2p)!
p!

p∑
r=1

r!
(
p
r

)2

.

Remark 3.1. (1) For F in the first Rademacher chaos, one can directly prove Theorem 1.2
without using the exchangeable pairs. Indeed, if F = Q1(h) ∈ L4(P) for some h ∈ H with
‖h‖H = 1 and Z ∼ N(0, 1), then by [28, Theorem 3.1],

dW(F,Z) ≤

√√
∞∑

k=1

1
pkqk

h(k)4 .

By Lemma 2.1, F2 = 1 + Q1(w) + Q2
(
h⊗ h142

)
with w(k) =

h(k)2(qk−pk)
√

pkqk
, k ∈ N. This implies

E
[
F4] = 1 +

∞∑
k=1

h(k)4 (qk − pk)2

pkqk
+ 2‖h ⊗ h‖2

H⊗2 − 2‖h ⊗ h14c
2
‖2
H⊗2
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= 3 +

∞∑
k=1

h(k)4 (qk − pk)2

pkqk
− 2

∞∑
k=1

h(k)4 = 3 +

∞∑
k=1

h(k)4 q2
k + p2

k

pkqk
− 4

∞∑
k=1

h(k)4 .

Noticing p2
k + q2

k ≥ 1/2 for each k ∈ N, we have

1
2

∞∑
k=1

1
pkqk

h(k)4 ≤ 4
∞∑

k=1

h(k)4 + E
[
F4] − 3 ≤ 4M(h) + E

[
F4] − 3 .

Hence, dW(F,Z) ≤
√

2
√∣∣∣E[F4] − 3

∣∣∣+ 2
√

2
√
M(h). Moreover, using the so-called second-

order Poincaré inequality in [10, Theorem 4.1], we can have the Berry-Esseen bound

dKol
(
F,Z

)
:= sup

z∈R

∣∣∣P(F ≤ z
)
−P

(
Z ≤ z

)∣∣∣ ≤ 2

√√
∞∑

k=1

1
pkqk

h(k)4 ≤ 3
√∣∣∣E[F4] − 3

∣∣∣+ 6
√
M(h) .

(2) Continuing the discussion in previous point and assuming pk = p = 1 − q = 1 − qk for
each k, we have

E
[
F4] − 3 =

p2 + q4 − 4pq
pq

∞∑
k=1

h(k)4 .(3.6)

If p ∈ (0, 1) \ { 12 ±
1

2
√

3
}, then we have the exact fourth moment bounds:

dW(F,Z) ≤

√√
1
pq

∞∑
k=1

h(k)4 ≤

(
E[F4] − 3

p2 + q2 − 4pq

)1/2

and dKol(F,Z) ≤ 2
(
E[F4] − 3

p2 + q2 − 4pq

)1/2

,

see also Corollary 1.4 in [5].

3.2 Proof of Theorem 1.2
Without losing any generality, we assume that Σn = Σ and each component of F(n) belongs
to L4(P). Recall that F(n) = (F(n)

1 , . . . , F(n)
d )T :=

(
Qq1

(
f1,n; Y

)
, . . . ,Qqd

(
fd,n; Y

))T
and we define

F(n)
t = (F(n)

1,t , . . . , F
(n)
d,t )

T with F(n)
i,t := Qqi

(
fi,n; Yt) so that by Lemma 2.2 and Proposition 2.1,(

F, Ft
)

:=
(
F(n), F(n)

t
)

form an exchangeable pair satisfying the conditions in Proposition 1.1 with
G = σ{X}, Λ = diag(q1, . . . , qd) and

S =
(
2Γ

(
F(n)

i , F(n)
j
)
− 2q jΣi, j

)
1≤i, j≤d

, ρi
(
F(n)) = −4qi E

[
(F(n)

i )4
]

+ 12E
[
(F(n)

i )2Γ(F(n)
i , F(n)

i )
]
.

Indeed, the condition (c) in Proposition 1.1 follows from the relation (c) in Proposition 2.1, and
for each i, j ∈ {1, . . . , d}, we have

lim
t↓0

1
t
E
[
F(n)

i,t − F(n)
i |σ{X}

]
= −qiF

(n)
i in L4(P),
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and

lim
t↓0

1
t
E
[(

F(n)
i,t − F(n)

i
)(

F(n)
j,t − F(n)

j
)
|σ{X}

]
= 2q jΣi, j +

[
2Γ

(
F(n)

i , F(n)
j
)
− 2q jΣi, j

]
in L2(P).

It follows that

∥∥∥∥1
t
E
[
F(n)

t − F(n)|σ{X}
]
+ ΛF(n)

∥∥∥∥2

Rd
=

d∑
i=1

(
1
t
E
[
F(n)

i,t − F(n)
i |σ{X}

]
+ qiF

(n)
i

)2

converges to zero in L2(P), as t ↓ 0; and∥∥∥∥1
t
E
[(

F(n)
t − F(n))(F(n)

t − F(n))T
|σ{X}

]
− 2ΛΣ − S

∥∥∥∥2

H.S.

=

d∑
i, j=1

(
1
t
E
[(

F(n)
i,t − F(n)

i
)(

F(n)
j,t − F(n)

j
)
|σ{X}

]
− 2Γ

(
F(n)

i , F(n)
j
))2

converges to zero in L1(P), as t ↓ 0.
Hence we can apply Proposition 1.1 and consequently, it suffices to show

E
[
‖S ‖H.S.

]
+

√√
d∑

i=1

ρi
(
F(n)) ≤  d∑

i, j=1

Var
(
Γ
(
F(n)

i , F(n)
j
))

1/2

+

√√
d∑

i=1

ρi
(
F(n))→ 0 , as n→ +∞.

In view of (3.4) and (3.5), it reduces to prove limn→+∞Var
(
Γ
(
F(n)

i , F(n)
j
))

= 0 for i < j. We split
this part into two steps.

Step 1. Suppose F,G are two real random variables given as in Lemma 2.1 with p ≤ q, then
we have

E
[
F2G2

]
= E[FG]2 +

p+q−1∑
k=1

Var
(
Jk(FG)

)
+ (p + q)!

∥∥∥ f ⊗̃g14p+q

∥∥∥2

H⊗p+q

and by (2.4) and Lemma 3.1, we get

1
q2 Var

(
Γ(F,G)

)
≤

p+q−1∑
k=1

Var
(
Jk(FG)

)
≤ Cov

(
F2,G2) − 2E[FG]2 + (2q)!

p∑
r=1

r!
(
p
r

)(
q
r

)
min

{
‖ f ‖2

H⊗pM(g), ‖g‖2
H⊗qM( f )

}
.

Thus, we can further reduce our problem to show

lim
n→+∞

(
Cov

(
(F(n)

i )2, (F(n)
j )2) − 2E[F(n)

i F(n)
j ]2

)
= 0 for any 1 ≤ i < j ≤ d,(3.7)

which will be carried out in the next step.
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Step 2. Let F,G be given as in previous step, we have

E
[
F2G2] = E

F2

E[G2] +

2q−1∑
k=1

Jk(G2) + J2q(G2)




= Var(F)Var(G) + E

F2
2q−1∑
k=1

Jk(G2)

 + 1(p=q)E
[
J2q(F2)J2q(G2)

]
.

If p < q, then E[FG] = 0 and

∣∣∣∣Cov
(
F2,G2)∣∣∣∣ ≤ √

E
[
F4]√√√2q−1∑

k=1

Var
(
Jk(G2)

)
≤

√
E
[
F4]√E[G4] − 3E[G2]2 + γpE[G2]M(g) ,

where the second inequality follows from (3.4) and the constant γp is given therein.

If p = q, then

E
[
J2q(F2)J2q(G2)

]
= (2q)!

〈
f ⊗̃ f , g⊗̃g142q

〉
H⊗2q

= (2q)!
〈

f ⊗̃ f , g⊗̃g
〉
H⊗2q
− (2q)!

〈
f ⊗̃ f , g⊗̃g14c

2q

〉
H⊗2q

= 2q!2〈 f , g〉2
H⊗q +

q−1∑
r=1

q!2
(
q
r

)2〈
f ⊗r g, g ⊗r f

〉
H⊗2q−2r − (2q)!

〈
f ⊗̃ f , g⊗̃g14c

2q

〉
H⊗2q

,

where the last equality follows from Lemma 2.2 in [19]. Consequently, Cov
(
F2,G2) − 2E[FG]2

is equal to

E

F2
2q−1∑
k=1

Jk(G2)

 +

q−1∑
r=1

q!2
(
q
r

)2〈
f ⊗r g, g ⊗r f

〉
H⊗2q−2r − (2q)!

〈
f ⊗̃ f , g⊗̃g14c

2q

〉
H⊗2q

.(3.8)

The first term in (3.8) can be rewritten as E

2q−1∑
k=1

Jk(F2)Jk(G2)

, which can be bounded by

√√√2q−1∑
k=1

Var
(
Jk(F2)

)√√√2q−1∑
k=1

Var
(
Jk(F2)

)
≤

√
E
[
F4] − 3E[F2]2 + γqE[F2]M( f )

√
E
[
G4] − 3E[G2]2 + γqE[G2]M(g) ;

and the second term in (3.8) can be bounded by

q−1∑
r=1

q!2
(
q
r

)2∥∥∥ f ⊗r g
∥∥∥2

H⊗2q−2r =

q−1∑
r=1

q!2
(
q
r

)2〈
f ⊗q−r f , g ⊗q−r g

〉
H⊗2r(3.9)

≤

q−1∑
r=1

q!2
(
q
r

)2∥∥∥ f ⊗q−r f
∥∥∥
H⊗2r ·

∥∥∥g ⊗q−r g
∥∥∥
H⊗2r
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=

q−1∑
r=1

q!2
(
q
r

)2∥∥∥ f ⊗r f
∥∥∥
H⊗2q−2r ·

∥∥∥g ⊗r g
∥∥∥
H⊗2q−2r

≤

√√√ q−1∑
r=1

q!2

(
q
r

)2∥∥∥ f ⊗r f
∥∥∥2

H⊗2q−2r

√√√ q−1∑
r=1

q!2

(
q
r

)2∥∥∥g ⊗r g
∥∥∥2

H⊗2q−2r(3.10)

≤

√
E
[
F4] − 3E[F2]2 + γqM( f )E[F2]

√
E
[
G4] − 3E[G2]2 + γqM(g)E[G2] ,(3.11)

where (3.9) follows from the easy fact that ‖ f ⊗r g‖2
H⊗2q−2r =

〈
f ⊗q−r f , g ⊗q−r g

〉
H⊗2r , and

we used Cauchy-Schwarz inequality in (3.10), while (3.11) can be deduced from Lemma
3.1 and (3.4); finally, the third term in (3.8) can be bounded by ‖ f ‖2

H⊗q(2q)!
∥∥∥g⊗̃g14c

2q

∥∥∥
H⊗2q ≤

‖ f ‖2
H⊗q

√
(2q)!γqE[G2]M(g). To conclude this case, we obtain∣∣∣Cov

(
F2,G2) − 2E[FG]2

∣∣∣
≤ 2

√(
E
[
F4] − 3E[F2]2 + γqM( f )E[F2]

)(
E
[
G4] − 3E[G2]2 + γqM(g)E[G2]

)
+ ‖ f ‖2

H⊗q

√
(2q)!γqE[G2]M(g) .

Combining the above two cases, we get immediately the relation (3.7), and hence we finish the
proof of Theorem 1.1.

3.3 Proofs of technical lemmas
Proof of Lemma 2.1 Let us first introduce some notation: if F = f

(
X), we write

F⊕k = f
(
X1, . . . , Xk−1,+1, Xk+1, . . .

)
and F	k = f

(
X1, . . . , Xk−1,−1, Xk+1, . . .

)
,

we define the discrete gradient DkF =
√

pkqk
(
F⊕k − F	k), in particular, DkYk = 1. We can

define the iterated gradients D(m)
k1,...,km

= Dk1 ◦ D(m−1)
k2,...,km

with D(1)
k = Dk. For example, DkQd( f ) =

dQd−1
(
f (k, ·)

)
and D(2)

k,`Qd( f ) = d(d − 1)Qd−1
(
f (k, `, ·)

)
for d ≥ 2 and f ∈ H�d

0 , see [10] for more
details.

Proof. It is clear that FG ∈ L2(P) has the chaotic expansion

FG = E[FG] +
∑
m≥1

Qm(hm) ,

where for each m ∈ N, the kernel hm ∈ H
�m
0 is given by hm(k1, . . . , km) := 1

m!E
[
D(m)

k1,...,km
(FG)

]
, due

to the Stroock’s formula (Proposition 2.1 in [10]). So it suffices to show that

D(p+q)
k1,...,kp+q

(FG) = (p + q)!( f ⊗̃g)(k1, . . . , kp+q)14p+q(k1, . . . , kp+q) and D(s)
k1,...,ks

(FG) = 0(3.12)

for any s > p + q. Note that the second part follows immediately from the first one.
Recall the product formula (see e.g. [10, (2.4)]) for the discrete gradient Dk: for F,G ∈ L2(P),

Dk(FG) = (DkF)G + F(DkG) −
Xk
√

pkqk
(DkF)(DkG) =: DL

k (FG) + DR
k (FG) + DM

k (FG) ,
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that is, we decompose Dk into three operations DL
k , DR

k and DM
k . Therefore, we can write for

k1 < . . . < kp+q,

D(p+q)
k1,...,kp+q

(FG) =
∑

A1,...,Ap+q∈{L,M,R}

DA1
k1
◦ · · · ◦ DAp+q

kp+q
(FG) =

∑
A1,...,Ap+q∈{L,R}

DA1
k1
◦ · · · ◦ DAp+q

kp+q
(FG) ,

where the last equality follows from the fact that for k , `, D`(XkF) = XkD`F. Moreover,
DA1

k1
◦ · · · ◦ DAp+q

kp+q
(FG) = 0 unless L appears exactly p times and R appears exactly q times in the

words A1, . . . , Ap+q, so that one can further rewrite D(p+q)
k1,...,kp+q

(FG) as∑
σ∈Sp+q:

σ(1)<...<σ(p)
σ(p+1)<...<σ(p+q)

(
D(p)

kσ(1),...,kσ(p)
F
)(

D(q)
kσ(p+1),...,kσ(p+q)

G
)

=
∑

σ∈Sp+q

f
(
kσ(1), . . . , kσ(p)

)
g
(
kσ(p+1), . . . , kσ(p+q)

)
,

where the last equality follows from the symmetry of f and g, and it gives us D(p+q)
k1,...,kp+q

(FG) =

(p + q)!( f ⊗̃g)(k1, . . . , kp+q). This proves (3.12), while the particular case follows from again
the Stroock’s formula. More precisely, one can first deduce from the previous discussion that
Q1(h)2 = ‖h‖2

H
+ Q1(w) + Q2

(
h ⊗ h142

)
for some w ∈ H given by w(k) := E

[
Dk

(
Q1(h)2)]. By the

definition of discrete gradient, one has

Dk
(
Q1(h)2) =

√
pkqk


∑

j,k

h( j)Y j + h(k)
1 − pk + qk

2
√

pkqk


2

−

∑
j,k

h( j)Y j + h(k)
−1 − pk + qk

2
√

pkqk


2 

= h(k)2 qk − pk
√

pkqk
+ 2h(k)

∑
j,k

h( j)Y j ,

which concludes our proof of Lemma 2.1. �

Proof of Lemma 3.1: It follows from Lemma 2.1 that

FG = E[FG] +

p+q−1∑
k=1

Jk(FG) + Qp+q

(
f ⊗̃g14p+q

)
,

therefore, by orthogonality property, one has

E
[
F2G2] = E[FG]2 +

p+q−1∑
k=1

Var
(
Jk(FG)

)
+ (p + q)!

∥∥∥ f ⊗̃g14p+q

∥∥∥2

H⊗p+q

= E[FG]2 +

p+q−1∑
k=1

Var
(
Jk(FG)

)
+ (p + q)!

∥∥∥ f ⊗̃g
∥∥∥2

H⊗p+q − (p + q)!
∥∥∥ f ⊗̃g14c

p+q

∥∥∥2

H⊗p+q .

Recall from [19, Lemma 2.2] that

(p + q)!
∥∥∥ f ⊗̃g

∥∥∥2

H⊗p+q = p!q!
p∧q∑
r=0

(
p
r

)(
q
r

)∥∥∥ f ⊗r g
∥∥∥2

H⊗p+q−2r ≥ p!q!‖ f ‖2
H⊗p‖g‖2H⊗q + 1(p=q) p!2〈 f , g

〉2
H⊗p ,

(3.13)
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thus (3.1) follows by noticing that E[FG] = 1(p=q) p!
〈

f , g
〉
H⊗p and Var(F)Var(G) = p!q!‖ f ‖2

H⊗p‖g‖2H⊗q .
Using (3.13) again, we have

p+q−1∑
k=1

Var
(
Jk(F2)

)
= E

[
F4] − 3E[F2]2 − p!2

p−1∑
r=1

(
p
r

)2∥∥∥ f ⊗r f
∥∥∥2

H⊗2p−2r + (2p)!
∥∥∥ f ⊗̃ f 14c

2p

∥∥∥2

H⊗2p ,

(3.14)

which implies (3.2).
It remains to prove (3.3) and we’ll use the same arguments as in the proof of [5, Lemma 3.3]:∥∥∥ f ⊗̃g14c

p+q

∥∥∥2

H⊗p+q ≤
∥∥∥ f ⊗ g14c

p+q

∥∥∥2

H⊗p+q =
∑

(i1,...,ip, j1,..., jq)∈4c
p+q

f (i1, . . . , ip)2g( j1, . . . , jq)2

=

p∧q∑
r=1

r!
(
p
r

)(
q
r

) ∑
(i1,...,ip)∈4p
( j1,..., jq)∈4q

card({i1,...,ip}∩{ j1,..., jq})=r

f (i1, . . . , ip)2g( j1, . . . , jq)2 ,(3.15)

where card(A) means the cardinality of the set A, and the combinatorial constant r!
(

p
r

)(
q
r

)
is

the number of ways one can build r pairs of identical indices out of (i1, . . . , ip) ∈ 4p and
( j1, . . . , jq) ∈ 4q.

Therefore, it is enough to notice that for each r ∈ {1, . . . , p ∧ q}, the inner sum in (3.15) is
bounded by ∑

(i1,...,ip−r ,k1,...,kr)∈4p
( j1,..., jq−r ,k1,...,kr)∈4q

f (i1, . . . , ip−r, k1, . . . , kr)2g( j1, . . . , jq−r, k1, . . . , kr)2

≤
∑

(i1,...,ip−1,k)∈4p
( j1,..., jq−1,k)∈4q

f (i1, . . . , ip−1, k)2g( j1, . . . , jq−1, k)2 ≤ min
{
‖ f ‖2

H⊗pM(g), ‖g‖2
H⊗qM( f )

}
.

The proof of Lemma 3.1 is complete.

4 Universality of Homogeneous sums
Fix d ≥ 2 and a divergent sequence (Nn, n ≥ 1) of natural numbers. Consider the kernels
fn : {1, . . . ,Nn}

d → R symmetric and vanishing on diagonals and d!‖ fn‖
2
H⊗d = 1, then according

to (1.2),
Qd( fn; Ξ) =

∑
i1,...,id≤Nn

fn(i1, . . . , id)ξi1 · · · ξid .

The following central limit theorem due to de Jong [4] gave sufficient conditions for asymptotic
normality of Qd( fn; Ξ).

Theorem 4.1. Under the above setting, let Ξ = (ξi, i ≥ 1) be a sequence of independent centred
random variables with unit variance and finite fourth moments. If E

[
Qd( fn; Ξ)4] → 3 and the

maximal influence M( fn) → 0 as n → +∞, then Qd( fn; Ξ) converges in law to a standard
Gaussian.
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The above result exhibits the universality phenomenon as well as the importance of the notion
“maximal influence”. Another striking result with similar nature is the invariance principle
established in [14], in which the authors were able to control distributional distance between
homogeneous sums over different sequences of independent random variables in terms of
maximal influence, see e.g. Theorem 2.1 therein.

Let us restrict ourselves to the Gaussian setting for a while: when G is a sequence of i.i.d.
standard Gaussians, Qd( fn; G) belongs to the d-th Gaussian Wiener chaos, and the fourth moment
theorem [21] implies that if Qd( fn; G) converges in law to a standard Gaussian (or equivalently
E
[
Qd( fn; G)4]→ 3), then ‖ fn⊗d−1 fn‖H⊗2 → 0. WhileM( fn) ≤ ‖ fn⊗d−1 fn‖H⊗2 due to [17, Lemma

2.4], so thatM( fn)→ 0. This hints the universality of the Gaussian Wiener chaos, see [18] for
more details.

The following result is (slightly) adapted from Theorem 7.5 in [18].

Theorem 4.2. Fix integers d ≥ 2 and qd ≥ . . . ≥ q1 ≥ 2. For each j ∈ {1, . . . , d}, let (N j,n, n ≥ 1)
be a sequence of natural numbers diverging to infinity, and let f j,n : {1, . . . ,N j,n}

q j → R be
symmetric and vanishing on diagonals (i.e. f j,n ∈ H

�q j

0 with support contained in {1, . . . ,N j,n}
q j)

such that
lim

n→+∞
1(qk=ql)qk!

∑
i1,...,iqk≤Nk,n

fk,n(i1, . . . , iqk) fl,n(i1, . . . , iqk) = Σk,l ,

where Σ = (Σi, j, 1 ≤ i, j ≤ d) is a symmetric nonnegative definite d by d matrix. Then the
following statements are equivalent:

(A1) Given a sequence G of i.i.d. standard Gaussians,
(
Qq1( f1,n; G), . . . ,Qqd ( fd,n; G)

)T converges
in distribution to N(0,Σ), as n→ +∞.

(A2) For every sequence Ξ =
(
ξi, i ∈ N

)
of independent centred random variables with

unit variance and supi∈N E
[
|ξi|

3] < +∞, the sequence of d-dimensional random vectors(
Qq1( f1,n; Ξ), . . . ,Qqd ( fd,n; Ξ)

)T converges in distribution to N(0,Σ), as n→ +∞.

Similar universality result for Poisson chaos was first established in [24] and refined recently
in [7]. It was pointed out in [24] and [18] that homogeneous sums inside the Rademacher chaos
are not universal with respect to normal approximation and a counterexample is available e.g. in
[24, Proposition 1.7]:

A Counterexample: Let Y be a sequence of i.i.d. random variables with P(Y1 = 1) = P(Y1 =

−1) = 1/2 (that is, in the symmetric setting). Fix q ≥ 2 and for each N ≥ q, we set

fN(i1, . . . , iq) =


1

q!
√

N − q + 1
, if {i1, . . . , iq} = {1, 2, . . . , q − 1, s} for q ≤ s ≤ N;

0 , otherwise.

Then in the symmetric case,

Qq( fN; Y) = Y1Y2 · · · Yq−1

N∑
i=q

Yi√
N − q + 1
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converges in law to the standard Gaussian, while if G is a sequence of i.i.d. standard Gaussians,
then for every N ≥ 2, Qq( fN; G) law

= G1G2 · · ·Gq fails to be Gaussian. It is easy to check that
the maximal influenceM( fN) of the kernel fN is equal to 1/(qq!) for every N ≥ 2, which is
consistent with de Jong’s theorem.

In the end of this section, we provide a (partially) universal result for Rademacher chaos that
complements [7, 18, 24].

Proposition 4.1. Let the assumptions in Theorem 4.2 prevail. Then, the following statement is
equivalent to (A1) and (A2) in Theorem 4.2:

(A3) in the symmetric case, as n→ +∞,
(
Qq1( f1,n; Y), . . . ,Qqd ( fd,n; Y)

)T converges in distribu-
tion to N(0,Σ), andM( f j,n)→ 0 for each j ∈ {1, . . . , d}.

Proof. Suppose (A1) holds true, then
(
Qq1( f1,n; Y), . . . ,Qqd ( fd,n; Y)

)T converges in distribution
to N(0,Σ) by “(A2) ⇔ (A1)”; and by the fourth moment theorem on a Gaussian space [21],
(A1) implies that ‖ f j,n ⊗q j−1 f j,n‖H⊗2 → 0, as n → +∞. Recall from [17, Lemma 2.4] that
M( f ) ≤ ‖ f ⊗d−1 f ‖H⊗2 for each f ∈ H�d

0 , thereforeM( f j,n) → 0 for each j ∈ {1, . . . , d}. This
proves the implication “(A1)⇒ (A3)”.

It remains to show “(A3)⇒ (A1)”. Now we assume that (A3) is true, then by a weak form of
the hypercontractivity property (see Section 2), we have limn→+∞ E

[
Qq j( fn, j; Y)4] = 3Σ2

j, j for each
j = 1, . . . , d. It follows from Lemma 3.1 that

∥∥∥ f j,n ⊗r f j,n

∥∥∥
H
⊗2q j−2r → 0 for each r = 1, . . . , q j − 1,

and any j = 1, . . . , d. Hence, (A1) follows immediately from the Peccati-Tudor theorem [23].
This concludes our proof. �
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Séminaire de Probabilités XXXVIII, 2005

[24] G. Peccati and C. Zheng. Universal Gaussian fluctuations on the discrete Poisson chaos.
Bernoulli, 20(2):697-715, 2014



Paper 5 185

[25] N. Privault. Stochastic analysis of Bernoulli processes, Probab. Surv. 5 (2008) 435-483.

[26] N. Privault and G. L. Torrisi. The Stein and Chen-Stein methods for functionals of non-
symmetric Bernoulli processes. ALEA 12 (2015) 309 -356.

[27] Ch. Stein. Approximate computation of expectations. In Institute of Mathematical Statistics
Lecture Notes - Monograph Series, volume 7. Institute of Mathematical Statistics, 1986.

[28] G. Zheng. Normal approximation and almost sure central limit theorem for non-symmetric
Rademacher functionals. Stochastic Process. Appl., Volume 127, Issue 5, 2017, page1622–
1636.



This is the last page.


	Introduction
	Around the FMT on Gaussian Wiener chaos
	How Stein meets Malliavin?
	A methodological breakthrough by Nualart and Ortiz-Latorre 
	Nourdin-Peccati analysis

	Discrete Malliavin-Stein approach
	Homogeneous sums and Rademacher chaos
	Stein's method and normal approximation of Poisson functionals

	What is new?

	Preliminaries: Exchangeable pairs @let@token Carré du champ 
	Stein's method of normal approximation
	Basics on Stein's method
	Stein's method of exchangeable pairs

	Exchangeable pairs on chaoses

	Fourth moment phenomena via exchangeable pairs 
	FMTs on Gaussian and Poisson space
	Main results
	Proof of Lemma 3.1.2 and Remarks 

	Extension to the Rademacher setting
	Fourth moment-influence theorems
	Proofs of Lemma 3.2.1 and Lemma 3.2.2 

	Universality results on homogeneous sums

	Introduction (1)
	Discrete Malliavin calculus
	Star-contractions
	Stein's method of normal approximation

	Main results
	Normal approximation in Wasserstein distance
	Almost sure central limit theorem for Rademacher chaos

	Main results of the paper
	Convergence of random oscillatory integrals
	A motivating example
	Plan of the paper

	Preliminary results
	Asymptotic behaviour of the covariance function of q
	Taqqu's theorem and convergence to Hermite process Z
	Wiener integral with respect to Z
	Some facts about slowly varying functions

	Proofs of main results
	Proof of Theorem 1.1
	Proof of Theorem 1.2

	Introduction (2)
	Multiple Wiener-Itô integrals: definition and elementary properties
	Exchangeable pair of Brownian motions: a first construction
	Exchangeable pair of Brownian motions: a second construction
	Proof of Proposition 1.1
	Proof of E. Meckes' Theorem 1.2
	Quantitative fourth moment theorem revisited via exchangeable pairs
	Connections with Malliavin operators
	Peccati-Tudor theorem revisited too
	Introduction and main results
	Outline
	Motivation and related works
	General framework
	Main results in the one-dimensional case
	Main results in the multivariate case
	Universality of Homogeneous sums

	Some stochastic analysis on the Poisson space
	Basic operators and notation
	Useful estimates via spectral decomposition

	Stein's method of exchangeable pairs
	Exchangeable pairs constructed via continuous thinning
	Abstract results for exchangeable pairs

	Proofs of main results (1)
	Proof of Theorem 1.2
	Proof of Theorem 1.7

	Proofs of technical and auxiliary results
	Proof of Lemma 2.2
	Proof of Lemma 2.3
	Proof of Proposition 1.5
	Proof of Theorem 1.11
	Proof of Proposition 3.3
	Proof of Proposition 3.5

	Introduction (3)
	Motivation
	Main result
	A brief overview of literature
	Strategy of proving Theorem 1.1

	Preliminaires
	Ornstein-Uhlenbeck Structure and carré du champs operator
	Exchangeable pairs of Rademacher sequences

	Proofs
	Alternative proof of Theorem 1.2
	Proof of Theorem 1.2
	Proofs of technical lemmas

	Universality of Homogeneous sums

