
A Blockchain-Based PKI Management Framework
Alexander Yakubov ∗, Wazen M. Shbair ∗, Anders Wallbom †, David Sanda †, Radu State ∗

∗ University of Luxembourg, SnT, 29, Avenue J.F Kennedy, L-1855 Luxembourg
Email:{alexander.yakubov, wazen.shbair, radu.state}@uni.lu

† Nexus Group
Email:{anders.wallbom, david.sanda}@nexusgroup.com

Abstract—Public-Key Infrastructure (PKI) is the cornerstone
technology that facilitates secure information exchange over the
Internet. However, PKI is exposed to risks due to potential
failures of Certificate Authorities (CAs) that may be used to issue
unauthorized certificates for end-users. Many recent breaches
show that if a CA is compromised, the security of the correspond-
ing end-users will be in risk. As an emerging solution, Blockchain
technology potentially resolves the problems of traditional PKI
systems - in particular, elimination of single point-of-failure and
rapid reaction to CAs shortcomings. Blockchain has the ability
to store and manage digital certificates within a public and
immutable ledger, resulting in a fully traceable history log. In
this paper we designed and developed a blockchain-based PKI
management framework for issuing, validating and revoking
X.509 certificates. Evaluation and experimental results confirm
that the proposed framework provides more reliable and robust
PKI systems with modest maintenance costs.

I. INTRODUCTION

Public Key Infrastructure (PKI) provides a secure mean of
authenticating identities over Internet. It defines the policies
and procedures needed to issue, manage, validate and dis-
tribute digital certificates in order to use public-key encryption
securely [1]. PKI management of public-keys is usually based
on the certificate standard X.509 which provides verification of
ownership of a private-key by some external entity (certificate
authority). The X.509 certificate is defined as a data structure
that binds public-key values to subjects (e.g., domain names).
The binding is asserted by trusted Certificate Authorities
(CA) digitally signing each certificate. The CA may base this
assertion by profoundly validating the identify of the private
certificate holder [2].

Recently, flaws in the security procedures of well-known
CAs show that the security of CAs is subject to operational
errors. As CAs appear to be single points of failure in PKI,
CA’s errors or breaches have resulted in unauthorized certifi-
cates being issued [3]. For instance, one of a high-profile event
is the security breach of CA DigiNotar, which led to use of
the company’s infrastructure for the issue of hundreds of rogue
digital certificates for high-profile domains, including one for
Google.com. As a result web browser vendors were forced
to blacklist all certificates issued by the Dutch CA DigiNotar
after more than 500 fake certificates were discovered [4].

In another case, DigiCert Sdn. Bhd., a Malaysian subor-
dinate certificate authority, mistakenly issued 22 weak SSL
certificates, which could be used to impersonate websites and
sign malicious software. As a result, major browsers had to
revoke their trust in all certificates issued by DigiCert Sdn.

Bhd. (Note: DigiCert Sdn. Bhd. is not affiliated with the
U.S.-based corporation DigiCert, Inc.) [4]. There were also
certificate breach problems with TrustWave, a large U.S.-
based certificate authority. TrustWave admitted that it issued
subordinate root certificates to one of its customers so the
customer could monitor traffic on their internal network.
Subordinate root certificates allow their holders to create SSL
certificates for nearly any domain on the Internet. Although
TrustWave has revoked the certificate and stated that it will
no longer issue subordinate root certificates to customers, it
illustrates just how easy it is for CAs to make missteps and
how severe the consequences of those missteps might be.

A. PKI issues and existing solutions

Two approaches were proposed to solve SSL/TLS PKI
issues: Log-based PKIs schema, and decentralized networks
of peer-to-peer certification, known as Web of Trust (WoT).

Log-based PKIs approach has been proposed as an emerg-
ing solution to the problem of misbehaving CAs. The idea
behind is using highly-available public log servers that monitor
and publish the certificates issued by CAs. These public logs
provide transparency by ensuring that only publicly-logged
certificates are accepted and trusted by end-customers. Hence
any misbehavior by CAs will be detected by users and servers.
Google’s certificate Transparency (CT) [5] is the most widely
deployed log-based PKI, and it is currently available in both
Chrome and Firefox. In parallel, many proposals intend to
extend the features of Log-based PKI schema by support for
revocation and error handling. Unfortunately, despite these
benefits, log-based PKIs still have several challenges related
for instance to certificate revocation as explained in [6], [7].

Web of Trust (WoT) approach is entirely decentralized:
users are able to designate others as trustworthy by signing
their public key certificates. By doing so, a user accumulates
a certificate containing his public key and digital signatures
from entities that have deemed him trustworthy. The certificate
is then trusted by a third party if it is possible to verify that the
certificate contains the signature of someone she/he trusts. This
system benefits from its distributed nature because it removes
any central point of failure. However, it makes it difficult for
new or remote users to join the network, since some existing
member of WoT typically must meet with the new user in
person to have her/his identity verified and public key signed
for the first time. Also, unlike a CA-based approach, the WoT
has no way to deal with key revocation. A user is limited to



choosing another user to be her/his ”designated revoker” with
the rights to revoke her/his certificate when the private key is
lost or compromised. The current practical approaches depend
on periodically pushing revocation lists to browsers. However,
such method makes invalid certificates to be trusted until the
browser’s revocation lists get the the next push [1].

Blockchain-based PKI inspired many studies [8], [9],
[10] proposing blockchain technology to build secure PKI
systems. Their main argument is that blockchain-based so-
lution can merge the benefits of the Log-based PKIs and
the WoT approaches, and solve some of the problems with
conventional PKI system. On one hand blockchain resolves
the potential points-of-failure of log-based PKI approach and
deployment issues as we will discuss later. On the other hand
the blockchain-based approach mitigates the WoT needs for
new certificate holders to prove the trustworthiness by existing
network members.

Our main contribution is a complete blockchain-based PKI
framework to manage X.509 certificates. Our framework in-
cludes several innovations. First, we extend the standard X.509
certificate to be compatible with blockchain-based PKI ap-
proach, thanks to X.509 extension fields that we used to embed
blockchain meta data. Second, we design and implement a
blockchain-based PKI which provides reliable management for
digital certificates.

The rest of the paper is organized as follows: Section II
provides a background of the certificate validation mechanism,
named chain-of-trust and an introduction to the Blockchain
technology and how it helps to build secure PKI systems.
Section III explores related work on using blockchain to
implement PKI. In Section IV we present our blockchain-
based PKI solution. Evaluation results and discussion are
provided in Section V. Finally, Section VI concludes the paper.

II. BACKGROUND

In this section, first we present the idea behind the chain
of trust, which used to validate X.509 certificates. Then we
provide a brief introduction to the blockchain technology and
how it can be used to build PKI management framework.

A. Chain of trust

The classical PKI systems are CA-based. CAs issue a signed
certificate, specifically complying with the X.509 standard,
that certifies an entity’s ownership of a public key. For
instance, when a user logs into Twitter through a web browser,
first the web browser validates the claimed certificate which
holds Twitter’s public key by checking the CA of the given
certificate. Usually web browsers are pre-configured to accept
certificates from certain known CAs. Therefore, in order for a
certificate to be trusted, it must has been issued by a Root-CA
that exists in the trusted store of the user browser or device,
or by sub-CA that has been trusted with Root-CA signature.
Typically, Mozilla products come with 154 root certificates
[11]. Also, Apple, Microsoft and Google have their own store
of trusted root certificates embedded in their products.

The link between a given certificate and the Root certificate
is known as a Chain of Trust. Importantly, chain of trust may
include any number of sub-CA certificate between a given
certificate and the Root-CA certificate. However, the X509v3
has an extension named Basic Constraints and this extension
can limit the maximum depth of valid certificate chain (chain
of trust) [2].

Figure 1 illustrates a certification path from an end-entity
certificate to the Root-CA, where the chain of trust begins.
Hence, if the end-entity certificate was not issued by a trusted
CA, the web browser will then check to see if the certificate
of the issuing CA was issued by a trusted CA, and so on until
either a trusted CA is found, or no trusted CA can be found
in the chain then the browser will usually display an error.

Owner’s name

Plublic Key

Issuer’s name

Issuer’s signature

End-Entity Certificate

CA Certificate

Owner’s name

Plublic Key

Issuer’s name

Issuer’s signature
Root CA’s name

Root CA’s Plublic Key

Root CA’s name

Root CA’s signature

Reference

Verify Signature

Verify Signature

Reference

Root Certificate

self-sign

Fig. 1: Chain of trust

B. Blockchain Technology

Blockchain or distributed ledger turns out to be the most
intriguing technology in the Internet industry, mainly after
witnessing success of Bitcoin. Currently, most blockchain
platforms are used in the financial applications, however more
and more new applications for different fields start to appear.
Applications that require high reliability and full elimination
of data manipulation risks can use blockchain. In addition,
blockchain is distributed, so it avoids the single point-of-failure
situations.

In the recent years blockchains have been evolved to allow
the execution of arbitrary logic known as Smart Contracts.
Conceptually the smart contract is an application which runs
on the top of blockchain and uses the underlying ordering of
transactions to keep consistency of smart contract execution
results between peers [12]. For example, Ethereum blockchain
supports complex and stateful Turing-complete language, like
Solidity1, that can be used to program and define wide range
of application scenarios [13].

In the context of PKI, the blockchain technology pro-
vides valuable security features such as certificate revocation,

1http://solidity.readthedocs.io/en/develop/



elimination of central points-of-failure and a reliable transac-
tion record. For instance with the fast certificate revocation,
blockchain-based PKIs can instantaneously isolate the infected
CA and the corresponding certificates without the need to wait
until the next update of Certificate Revocation Lists (CRLs).
Also, blockchain-based PKI, as a public append-only log,
naturally provides the certificate transparency (CT) property
proposed by Google [9].

In this work, we selected the Ethereum platform and So-
lidity smart contract programming language, since they have
large open-source community making the development process
much more efficient.

III. RELATED WORK

Blockchain implementations to build PKI system was scru-
tinized by many different prior work. In [14] the authors
propose Blockstack that uses Bitcoin blockchain to provide
name registration system where the names are bound with
public keys.

Similar to Blockstark blockchain-based PKI is realized
in Emercoin2 (EmerSSH project). Emercoin is a public
blockchain quite close to Bitcoin in terms of architecture fea-
turing the hybrid Proof-of-Work and Proof-of-Stake consensus
depending on availability of mining capacity. Emercoin does
not have smart contracts and stores the certificate hashes into
blockchain. This means that the verification of the certificates
is not distributed depending exclusively on the code outside
blockchain. EmerSSH is not focusing on Chain of Trust as
by default the certificate does not contain links to its parent
CA in the extension fields. On the contrary EmerSSH stores
certificate hash to blockchain thus according to authors miti-
gating the man-in-the-middle risk. Once the hash of certificate
is loaded into blockchain the secure connection using the
certificate’s public key is established and the exchange of
brand-new keys is conducted for each connection.

Fromknecht et al. [10] leverage Certcoin to implement a
blockchain-based PKI, storing domains and their associated
public keys. Meanwhile in [9] authors scrutinize the privacy
issue of the Certcoin.

All the aforementioned studies propose pure blockchain-
based approaches. However, in this work, we propose to use
the common standard X.509v3 certificate with a minor addi-
tion to the extension fields with blockchain related information
[2]. Thus, the exended X.509 certificate it can be validated
by the classical CA-based chain of trust or using blockchain-
based PKI framework. To the best of our knowledge, we are
the first to propose such a hybrid certificate. As future work,
we plan to develop a plug-in for web browsers that validates
claimed certificates using public blockchain.

IV. BLOCKCHAIN-BASED PKI FRAMEWORK

This section presents our framework for managing PKI in
a blockchain platform. Firstly we will provide an overview
of the main benefits of the proposed approach. Then, we shall

2https://emercoin.com/en/tech-solutions/

explain our methodology for arranging the main players in the
PKI system (i.e., Root CA, Sub CAs, Certificate holders).

A. Overview

Our blockchain-based PKI framework supports the revoca-
tion of the certificate, which is a real issue in the traditional
PKI systems. Moreover, as it is impossible to delete informa-
tion from blockchain, only a parent CA can mark a certificate
issued by him as revoked. Thus, any misbehavior of a CA
regarding certificate revocation will be also traced and noticed
by all other entities.

B. Design Methodology

The design of blockchain-based PKI is based on hybrid
X.509 certificates, as shown in Figure 2. A certificate contains
certain information on PKI environment in the extension fields.
The value of extension fields are as follow:

• Subject Key identifier: holds the certificate’s owner iden-
tity.

• Blockchain name: holds the name of the blockchain
platform. Currently, we use Ethereum public blockchain
but we envision to cover more platforms.

• CA key identifier: holds the smart contract address of
the current CA, if this is CA certificate. For non-CA
certificates this field is empty.

• Issuer CA identifier: holds the address of the smart con-
tract of the CA which issued this certificate. It allows val-
idator to find parent CA smart contract in the blockchain
and check if the certificate with the corresponding hash
was issued and was not revoked. For root certificates this
field is empty.

• Hashing algorithm: holds information regarding hashing
algorithm which used in calculation of the certificate’s
hash loaded into blockchain.

Version

Algorithm Identifier

Period of Validity

Subject Name

Public Key Information

Issuer Unique ID

Subject Unique ID

Extensions

Signature

x.509v3 certificate standard

Version

Algorithm Identifier

Period of Validity

Subject Name

Public Key Information

Issuer Unique ID

Subject Unique ID

Signature

x.509 hybrid certificate

Blockchain name

Subject Key identifier

CA key identifier

Issuer CA identifier

Hashing algorithm

Extenstions

Fig. 2: Standard vs. Hybrid X.509 certificate



Based on the extension structure above our framework en-
visages three types of certificates: Root-CA, Sub-CA and End-
user certificates. Table I illustrates the hierarchy of blockchain
hybrid certificates. The first row presents a Root CA where
the certificate is issued and signed by himself, so there is no
issuer CA as shown as a Issuer CA ID in the fifth column (i.e
0x00000000). The Sub-CA’s certificate is given in the second
row - it has been issued by a Root-CA and the Issuer-CA ID
points to the Root-CA. The last row holds end-user certificate
issued by Sub-CA. In the next section we explain how we
realized this structure on a blockchain platform.

TABLE I: Blockchain hybrid certificates hierarchy

Cert. Issued By Issued To CA Contract ID Issuer CA ID
RootCA RootCA RootCA 0x1234xxxx 0x00000000
SubCA RootCA SubCA 0x5631xxxx 0x1234xxxx
EndUser SubCA End user - 0x5631xxxx

C. Architecture

The main idea of our framework is that each CA has a ded-
icated smart contract that includes the following information:

• Array with the hashes of the issued certificates. It also
may include expiration date for each certificate and some
other technical information.

• Mapping of the revocation data referenced by the certifi-
cate hash. If a certificate is revoked the CA which issued
this certificate adds the revoked certificate’s data to this
mapping.

Moreover, if a certificate is a CA’s certificate the certificate
itself is also loaded into the corresponding CA’s smart con-
tract. As certificate contains address of the parent CA smart
contracts, it allows to validate the whole certificate authority
tree (chain of trust) from the leaf up to root certificate.

D. Implementation

The proposed Blockchain-based PKI framework includes
three main parts: Restful service, certificate validation and the
Web user interface basically used for testing.

1) Restful service: it has been developed with Golang
as a stand alone web server providing access to Ethereum
public blockchain. It provides all functionality of issuing,
revocation and validation of the certificates. Importantly, the
validation is conducted ”for free” from the view point of public
blockchain’s crypto-currency costs, as validation does not add
or alter data in the blockchain.

The Restful service provides the following core functions:
• Enroll-user: adding a hash of certificate to a given CA’s

smart contract. As an alternative to providing hash as a
parameter, the certificate can be uploaded to the Restful
service. In this case the hash is calculated based on the
uploaded certificate.

• Blacklist-user: revokes a certificate, i.e. moves the cer-
tificate (either ordinary or CA) from the white-list to
the black-list. Technically this is achieved by adding the

certificate hash reference to revocation mapping in the
smart contract.

• Create-contract: creates empty contract for a new CA.
This is called by the parent CA when issuing the certifi-
cate for its sub-CA.

• Populate-contract: after creating empty smart contract for
a sub-CA the parent CA has to upload into it the sub-CA’s
certificate containing the parent smart contract address
and the sub-CA’s smart contract address in the extension
fields. After the population of sub-CA smart contract with
the certificate by its parent CA the sub-CA’s Ethereum
account address is recorded into owner variable of the
smart contract thus providing the write access only to
the sub-CA.

• Validate-cert (view/constant function): validation of the
certificate from leaf to the root of the CA tree. Impor-
tantly, verification of the certificates can be conducted by
Restful service based on Golang code or based on the call
to the separate validating smart contract. As we discussed
above, all validation is conducted at zero cost.

The first four functions of the Restful service functionality
imply the authorization of an Ethereum user corresponding
to the parent certificate authority (CA). The important feature
about Restful service functionality is intentionally multistage
initiation of sub-CA enrollment (adding sub-CA certificate to
the list of approved certificates in the smart contract of the
parent CA). In contrast to traditional end-user certificate which
is initiated just with the Restful service’s function Enroll-user,
sub-CA certificate is initiated with the following steps:

• Parent CA should create empty smart contract for sub-
CA with the function Create-contract. Now parent CA
can generate the hybrid certificate putting the new smart
contract address into the corresponding field of the cer-
tificate extensions.

• Then parent CA populates sub-CA’s new smart contract
with the generated certificate using Populate-contract
function of the Restful service. After execution of the
Populate-contract function the writing rights to the new
smart contract are transfered exclusively to the sub-CA
with the filling of the sub-CA Ethereum address into the
new smart contract’s owner field

• And, at last, the hash of the smart contract is recorded to
the parent CA’s white list with Enroll-user function

2) Validation: The validation module contains a smart
contract that allows to validate the chain of trust for a given
certificate (path from the leaf, or end-entity certificate, to the
root in the CA tree). Importantly, the smart contract valiad-
tion is independent from the Restful service’s Golang code
valiadtion, an alterntive approach to certificate validation also
implemented in our framework. Obviously, both of these two
validation approaches imply no payments of cryptocurrency,
as blockchain is not altered.

3) User Web interface: The user interface allows clients
to test the whole application - to add CA and end-user
certificates at different level of CA tree under different CA



accounts, revoke certificates, etc. Obviously, web interface
can be considered as a shell to the Restful service mentioned
above. It is worth mentioning that the test web interface has
its own smart contract that stores some data including the
links from a parent CA to smart contracts of its sub-CAs.
This allows to navigate from root to the leafs (end-entity
certificates) of the certificate tree, obviously under conditions
that the given chain of trust was loaded with the Web interface.

E. Advantages of Blockchain-based PKI

A blockchain-based PKI has the following advantages over
a traditional PKI. First, the validation of a certificate and its
CA certificate chain is simple and fast. Second, blockchain-
based PKI solves a longstanding problem of traditional PKIs
by not requiring the use of a service that issues certificate
revocation lists (CRLs) thanks to blockchain synchronization
between network’s nodes where any modification to the state
of a certificate will be instantaneously notified to the all nodes
[8].

Another important aspect in the context of Internet security
is that the blockchain-based PKI provides flexible protection
against the man-in-the-middle (MITM) attacks. Traditionally,
MITM is considered as a major security risk implying attacker
to hijack a browser’s connection for a given websites by
presenting a valid certificate (i.e., forged public-key) for that
domain. For users and web browsers it is difficult to identify
the replacement of certificate in case the related CA has been
hacked by the attacker [15]. Blockchain-based PKI approach
makes MITM attacks virtually impossible as when a CA
publishes or revokes the public key of a website/domain on the
blockchain, the information will be distributed across thousand
nodes, so tampering the public-key will be (theoretically) out
of the question [16]. Traditional PKI resolves MITM risks
by embedding Root CA certificates into browser installations,
thus artificially expanding CA entrance barriers and increasing
the time necessary for Root CA certificate revocation.

V. EVALUATION AND EXPERIMENTAL RESULTS

This section presents different evaluations tests. We start
with general performance evaluation, then we measure the cost
of blockchain-based functions and we finish with the limitation
of the blockchain-based PKI platform.

A. Performance

To prove the efficiency of the PKI based on Ethereum’s
smart contracts, we conducted a number of experiments on
public Ethereum Testnet (Rinkeby)3 regarding the performance
of CA certificate verification through the full path from the
leaf (a given CA certificate) to the root (chain of trust). The
idea of the experiment is the performance comparison between
the smart contract-based verification and the Golang code
verification of the Restful service.

Restful service verification : initially our certificate valida-
tion though full chain of trust was based on the Restful service
that gets the certificate for each CA from the blockchain,

3https://www.rinkeby.io

0 2 4 6 8 10 12

0

2

4

6

8

10

12

14

Trust Chain Length (X100)

Ti
m

e(
se

c)

Smart contract

GoLang REST service

Fig. 3: CA certificate trust chain verification

parses the certificate with Golang libraries to extract the parent
CA’s smart contract address and then checks the certificate
validity based on the corresponding hash stored in the parent
CA’s smart contract.

Smart contract-based verification: an alternative approach
that proves to be significantly more efficient. The idea is that
a dedicated Smart contract reads and parses CA certificates
stored in the blockchain exclusively with the code of Solidity,
a compiler for Ethereum smart contract. Notably, as the smart
contract does not alter the blockchain, the verification is done
for free. The difficulty was connected with the parsing due to
absence of Solidity core libraries for string manipulation.

As one can see on Figure 3, although smart contract
performance could be less impressive compared to Golang
crypto libraries based on the relatively short chains of trusts
(less than 400 sub-CAs), starting from chain of trust length
exceeding 500 sub-CAs the performance of smart contract
based verification is higher than that of Golang code.

For instance, for a chain of trust with the length of around
1100 sub-CAs the smart contract based validation took approx-
imately 7 seconds, while Golang code using Golang crypto-
graphic libraries needed almost 15 seconds. For experiments
we used relatively standard DELL workstation with Intel core
i7 processor but with the operating memory of 32GB.

B. Costs for initiation of a new CA in Ethereum.

Costs for the support of the infrastructure appears in our
view the important advantage of blockchain-based PKI solu-
tions. Assuming local replica of public blockchain to be used
by end-users anyway, all costs are basically consist of the
fees to the miners that confirm the recording of the data into
blockchain.

Based on our experiments with Rinkeby test public
blockchain, the initiation of a CA (including creation of empty
smart contract, uploading of the certificate into this smart



contract, recording of the hash of this certificate into parent
CA’s smart contract, etc) costs 0,07 Ethers, which based on
the present Ether rate of around 700 USD per Ether translates
into 50 USD per CA certificate.

Obviously, the initiation of an ordinary end-entity certificate
implying only recording of its hash into its parent CA smart
contract results in much smaller costs amounting to 7-10 USD
per certificate. Given the present price for originating annual
end-entity certificate amounting to several hundred USD the
blockchain certificate costs seem not to exceed the costs spent
on CAs’ present infrastructure.

C. Limitation and Challenges

Obviously, one can also find some challenges of blockchain-
based PKI infrastructure that comes from the nature of
blockchain technology. First, public blockchains are character-
ized by substantial growth of the blockchain’s size replicated
to all nodes participating in the system. Especially this is the
case for Ethereum and other similar platforms with the support
of the smart contracts which are important for arrangement of
efficient PKI. For instance, in December 2017, the Ethereum
ChainData size with FAST Sync reached 38.89 GB compared
to 20.46 GB in September 20174.

Second, the extensive volatility of the cryptocurrencies
results in some uncertainty with certificate load/update costs
in both long run and short term. In other words the cost of
blockchain operation is directly linked with the price of the
corresponding cryptocurrencies like Ether. For example, in
May 2017 the Ether price was 85.43 US dollars5, while in
December 2017 the price reaches 729.01 US dollars which
implies the cost of blockchain operations growing 8 times in
seven months.

Third, if for certificate validation we use smart contract’s
parsing with Solidity code rather than external golang module
(i.e., Restful services) we can be restricted in the use of hash
functions and asymmetric crypto functions available for smart
contracts. For instance, for Ethereum without preliminary data
processing one can use only SHA256 as hash function and
ECDSA signatures based on elliptic curve cryptography.

Lastly, as the access rights to modify certificate authority
data is based on user accounts system of the blockchain
platform, the lost password results in irrevocably lost access
to the account. Some solution of the troubles of CA loosing
its blockchain access password could be the arranging empty
smart contract and copying all the data from the old smart
contract to the new one, as theoretically speaking any smart
contract is always available for reading to anyone. Obviously,
the establishment of the new CA smart contract could result
in reissue of CA certificate (at least in our current implemen-
tation), as CA certificates may contain the reference to the
corresponding smart contract.

4https://etherscan.io/chart2/chaindatasizefast
5https://bitcoinmagazine.com/price/

VI. CONCLUSION

Traditional PKI is CA-based, so the security of PKI systems
will be in risk if one CA is compromised. Various researches
in the literature investigated using blockchain technology to
build secure PKI systems, so they can merge the benefits
of the Log-based PKIs and the WoT approaches, and solve
some of the problems with conventional PKI system. Therefore
our main contribution is a complete working blockchain-based
PKI framework. The framework is distributed under the LGPL
license and available on Github6. The advantages proposed by
our framework mitigate the problems with traditional PKI such
as the difficulties with rapid certificate revocation, elimination
of single points-of-failure and CAs misbehavior. Evaluation
results show the benefits of using blockchain technology to
build robust PKI system due to reasonable performance and
attractive maintenance costs. As future work, we plan to
develop a browser plugin to validate certificates based on our
blockchain-based PKI framework.

REFERENCES

[1] J. Yu and M. Ryan, “Evaluating web pkis,” in Software Architecture for
Big Data and the Cloud. Elsevier, 2017, pp. 105–126.

[2] D. Cooper, “Internet x. 509 public key infrastructure certificate and
certificate revocation list (crl) profile,” 2008.

[3] H. Anada, J. Kawamoto, J. Weng, and K. Sakurai, “Identity-embedding
method for decentralized public-key infrastructure,” in International
Conference on Trusted Systems. Springer, 2014, pp. 1–14.

[4] J. Prins and B. U. Cybercrime, “Diginotar certificate authority
breach’operation black tulip’,” 2011.

[5] B. Laurie, A. Langley, and E. Kasper, “Certificate transparency,” Tech.
Rep., 2013.

[6] S. Matsumoto and R. M. Reischuk, “Ikp: Turning a pki around with
blockchains.” IACR Cryptology ePrint Archive, vol. 2016, p. 1018, 2016.

[7] S. Matsumoto, P. Szalachowski, and A. Perrig, “Deployment challenges
in log-based pki enhancements,” in Proceedings of the Eighth European
Workshop on System Security. ACM, 2015, p. 1.

[8] K. Lewison and F. Corella, “Backing rich credentials with a blockchain
pki,” 2016.

[9] L. Axon and M. Goldsmith, “PB-PKI: A privacy-aware blockchain-
based PKI,” in Proceedings of the 14th International Joint Conference
on e-Business and Telecommunications (ICETE 2017) - Volume 4:
SECRYPT, Madrid, Spain, July 24-26, 2017., 2017, pp. 311–318.
[Online]. Available: https://doi.org/10.5220/0006419203110318

[10] C. Fromknecht, D. Velicanu, and S. Yakoubov, “Certcoin: A namecoin
based decentralized authentication system,” Massachusetts Inst. Tech-
nol., Cambridge, MA, USA, Tech. Rep, vol. 6, 2014.

[11] “Mozilla included ca certificate list,” 2017.
[12] E. Androulaki, C. Cachin, A. D. Caro, A. Sorniotti, and M. Vukolic,

“Permissioned blockchains and hyperledger fabric,” ERCIM News, vol.
2017, no. 110, 2017. [Online]. Available: https://ercim-news.ercim.eu/
en110/special/permissioned-blockchains-and-hyperledger-fabric

[13] A. J. Nicholas Stifter and E. Weippl, “A holistic approach
to smart contract security,” ERCIM News, vol. 2017, no. 110,
2017. [Online]. Available: https://ercim-news.ercim.eu/en110/special/
a-holistic-approach-to-smart-contract-security

[14] M. Ali, J. C. Nelson, R. Shea, and M. J. Freedman, “Blockstack: A
global naming and storage system secured by blockchains.” in USENIX
Annual Technical Conference, 2016, pp. 181–194.

[15] M. Alicherry and A. D. Keromytis, “Doublecheck: Multi-path verifica-
tion against man-in-the-middle attacks,” in Computers and communica-
tions, 2009. iscc 2009. ieee symposium on. IEEE, 2009, pp. 557–563.

[16] “Blockchain & cyber security. let’s discuss,” 2017. [On-
line]. Available: https://www2.deloitte.com/content/dam/Deloitte/ie/
Documents/Technology/IE C BlockchainandCyberPOV 0417.pdf

6https://github.com/snt-sedan/pki-blockchain

https://doi.org/10.5220/0006419203110318
https://ercim-news.ercim.eu/en110/special/permissioned-blockchains-and-hyperledger-fabric
https://ercim-news.ercim.eu/en110/special/permissioned-blockchains-and-hyperledger-fabric
https://ercim-news.ercim.eu/en110/special/a-holistic-approach-to-smart-contract-security
https://ercim-news.ercim.eu/en110/special/a-holistic-approach-to-smart-contract-security
https://www2.deloitte.com/content/dam/Deloitte/ie/Documents/Technology/IE_C_BlockchainandCyberPOV_0417.pdf
https://www2.deloitte.com/content/dam/Deloitte/ie/Documents/Technology/IE_C_BlockchainandCyberPOV_0417.pdf

