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Abstract

We introduce a novel meshfree Galerkin method for the solution of Reissner-Mindlin
plate problems that is written in terms of the primitive vari ables only (i.e., rotations and
transverse displacement) and is devoid of shear-locking. The proposed approach uses linear
maximum-entropy basis functions for �eld variables approximation and is built variationally
on a two-�eld potential energy functional wherein the shear strain, written in terms of the
primitive variables, is computed via a volume-averaged nodal projection operator that
is constructed from the Kirchho� constraint of the three-�e ld mixed weak form. The
meshfree approximation is constructed over a set of scattered nodes that are obtained from
an integration mesh of three-node triangles on which the meshfree sti�ness matrix and
nodal force vector are numerically integrated. The stability of the method is rendered
by adding bubble-like enrichment to the rotation degrees offreedom. Some benchmark
problems are presented to demonstrate the accuracy and performance of the proposed
method for a wide range of plate thicknesses.
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1. Introduction

Shear-deformable thin-structural theories such as the Timoshenko beam and Reissner-
Mindlin plate theories are widely used throughout engineering practice to simulate the
mechanical response of structures with planar dimensions far greater than their thickness.
The shear deformable theories' popularity over the classical thin-structural theories, Euler-
Bernoulli beam and Kirchho�-Love plate theory, is primarily due to the following two
factors:

� They capture the shear-deformable behaviour inherent to thicker structures [1, 2].
Capturing this behaviour is necessary for simulating modern engineering structures
constructed from e.g. functionally graded materials [3].

� They are second-order PDEs giving rise to weak formulationswith H 1(
 ) reg-
ularity, whereas the classical theories are fourth-order PDEs with weak formula-
tions demanding H 2(
 ) regularity. The di�culty in the construction of an e�cient
H 2(
 )-conforming �nite element method (FEM) is well-known. In c ontrast, H 1(
 )-
conforming FEMs are straightforward.

Unfortunately, it is also the case that na•�vely constructed low-order polynomial H 1(
 )-
conforming numerical methods su�er from shear-locking. Shear-locking is a numerical issue
caused by the inability of a numerical method to represent the Kirchho� limit as the plate
thickness parameter tends to zero. This usually results in anonconvergent numerical
method, or at best, very poor convergence.

The majority of solutions to the shear-locking issue in the �nite element literature
resort to a mixed variational method where the transverse shear stress is treated as an
independent variational quantity in the weak form. There is a huge amount of mathematical
and engineering literature related to constructing plate elements for FEM analysis, which
we cannot hope to do justice to here. Particularly popular examples of this approach
include the Mixed Interpolation of Tensorial Components (MITC) or Assumed Natural
Strain (ANS) approach [4{ 7], and the Discrete Shear Gap (DSG) method [8{ 10].

One desirable aspect of both MITC and DSG is that even though they can be math-
ematically analyzed using (and are based on) an underlying mixed formulation, the �-
nal systems of equations are expressed in terms of the primalunknowns of the standard
Reissner-Mindlin problem only. This is achieved by the use of an operator that reduces or
projects the shear stresses expressed in terms of the primalvariables onto an underlying
mixed �nite element space. This \unlocks" the formulation.

Given the success of using mixed variational methods in constructing shear-locking free
�nite elements, it should be no surprise that many authors have taken this route to con-
struct convergent methods for more modern numerical techniques, such as in Isogeometric
Analysis (IGA) [ 11{ 13] and meshfree methods [9, 10, 14{ 17].
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The work described in this paper is a continuation of the lineof research presented in
the PhD thesis of Hale [18] on developing meshfree methods for shear-deformable structures
using mixed formulations. There the volume-averaged nodalpressure technique that was
proposed in Refs. [19, 20] for the Stokes and nearly-incompressible elasticity problems
and later generalized as the volume-averaged nodal projection (VANP) method [21], was
adapted to the Reissner-Mindlin problem. In the VANPapproach, bubble-like enrichment
is used to ensure inf-sup stability [22] mimicking the MINI element [ 23] and the volume-
averaging procedure is closely related to the average-nodal strain �nite element formulation
proposed in Ref. [24]. The adaptation of the VANPapproach from the Stokes problem to the
Reissner-Mindlin in Ref. [18] was achieved using a stabilized mixed variational formulation
developed in Ref. [25]. Using this stabilization it is possible to bypass the coercivity on the
kernel condition in the LBB theorem [22], opening up the possibility of using inf-sup stable
designs for the Stokes problem (e.g. the MINI element [23] or the VANPoperator [19, 20])
almost directly for the Reissner-Mindlin problem. This stabilization comes at the expense
of the introduction of a stabilization constant. A more detailed analysis in Refs. [26, 27]
shows that in a �nite element context it is possible to quite precisely relate this constant to
the element size and obtain good convergence rates. Unfortunately, numerical experiments
to choose a good scheme for the stabilisation constant in themeshfree context of Ref. [18]
were less successful.

In this paper, we develop a new meshfree scheme for the Reissner-Mindlin plate model
with many of the best aspects of the formulation in Ref. [18], but with none of its drawbacks,
such as reliance on a stabilization scheme with an a priori unknown constant. The scheme
uses linear maximum-entropy basis functions for �eld variables approximation and is built
variationally on a two-�eld potential energy functional wh erein the shear strain, written
in terms of primitive variables (i.e., rotations and transverse displacement), is computed
via a volume-averaged nodal projection operator that is constructed from the Kirchho�
constraint of the three-�eld mixed weak form, which is an idea adapted from the VANP
formulation of Ref. [21] and that leads to a symmetric sti�ness matrix. The meshfree
approximation is constructed over a set of scattered nodes that are obtained from an
integration mesh of three-node triangles on which the meshfree sti�ness matrix and nodal
force vector are numerically integrated. We use recent advances in integration techniques
for meshfree methods, e.g. the work of Duan et. al [28], to ensure e�cient and accurate
integration of the weak form. Bubble-like enrichment of the rotation degrees of freedom
is added to ensure inf-sup stability, similarly to the recent �nite element of Song and
Niu [29] and many others. No further stabilization is required to ensure the stability of
the discrete problem. The �nal system of equations is expressed in terms of the primal
unknowns only, an improvement over the work of Hale [14]. Our numerical experiments
show that the proposed method is optimally convergent for a wide range of thicknesses
(shear-locking-free).

The remainder of the paper is given as follows. Section2 provides a summary of the
notation used in this paper. The main ingredients for the computation of the maximum-
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entropy basis functions are given in Section3. In Section 4, the classical three-�eld for-
mulation for the Reissner-Mindlin plate model is summarized along with its discretization
using meshfree basis functions. TheVANPmethod for the Reissner-Mindlin plate model is
developed in Section5. Section 6 presents some numerical examples that are solved using
the proposedVANPapproach. We end with some concluding remarks in Section7.

2. Notation

The following is a summary of the main notation used in this paper. Slanted bold
symbols such asv are used to represent vectors and tensors. In particular, the follow-
ing notation is used to represent vectors in components form: v = ( v1; : : : ; vn ) in an
n-dimensional space andv = ( vx ; vy) in the two-dimensional Cartesian coordinate system.

Lowercase (nonbold) upright symbols are used to represent row and column vectors.
Their entries are written between square brackets. For instance, r = [ r1 � � � rn ] is a row
vector and c = [ c1 � � � cn ]T is a column vector.

Uppercase (nonbold) upright symbols are used to represent matrices. Their entries are
written between square brackets. An example of a matrix representation is given as follows:

M =

2

6
6
6
4

m11 m12 � � � m1n

m21 m22 � � � m2n
...

...
. . .

...
mn1 mn2 � � � mnn

3

7
7
7
5

:

The gradient operator is denoted asr and the trace operator as tr(�).

3. Maximum-entropy basis functions

Consider a convex domain represented by a set ofn scattered nodes and a prior (weight)
function wa(x ) associated with each nodea. The approximation for a scalar-valued function
u(x ) is given in the form:

u(x ) =
mX

a=1

� a(x )ua; (1)

where ua are nodal coe�cients. On using the Shannon-Jaynes (or relative) entropy func-
tional, the max-ent basis functions f � a(x ) � 0gm

a=1 are obtained via the solution of the
following convex optimization problem [30]:

Problem 1.

min
� 2 IR m

+

mX

a=1

� a(x ) ln
�

� a(x )
wa(x )

�
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subject to the linear reproducing conditions:

mX

a=1

� a(x ) = 1 ;
mX

a=1

� a(x ) ca = 0:

In Problem 1, ca = x a � x are shifted nodal coordinates and IRm
+ is the nonnegative orthant.

In this paper, we use as the prior function the Gaussian radial basis function given
by [31]

wa(x ) = exp
�

�


h2

a
kcak2

�
; (3)

where 
 is a parameter that controls the support size of the basis function and ha is a
characteristic nodal spacing associated with nodea.

On using the method of Lagrange multipliers, the solution toProblem 1 is given by [30]

� a(x ; � ) =
Za(x ; � (x ))

P
b Zb(x ; � (x ))

; Za = wa(x ) exp(� � (x ) � ca(x )) ; (4)

where the Lagrange multiplier vector � (x ) is obtained as the minimizer of the following
dual optimization problem ( x is �xed):

Problem 2.
� � (x ) = arg min

� 2 IR d
ln Z (x ; � ):

Problem 2 leads to a system of two nonlinear equations given by

f (� ) = r � ln Z (� ) = �
nX

a

� a(x ) ~x a = 0; (5)

where r � stands for the gradient with respect to � . Once the converged solution for the
Lagrange multiplier vector � � is found through (5), the basis functions� a(x ) are obtained
by setting � = � � in (4).

Finally, the gradient of the basis function is [31]:

r � a(x ) = � a(x ; � � ) (J (x ; � � )) � 1 ca(x ); (6)

where

J (x ; � ) =
mX

a=1

� a(x ; � ) ca(x ) 
 ca(x ) � r (x ; � ) 
 r (x ; � ); r (x ; � ) = �
mX

a=1

� a(x ; � ) ca(x ):

(7)
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4. Governing equations for the three-�eld formulation

The method that is proposed in the next section relies on the classical three-�eld
Reissner-Mindlin plate problem formulation. It is instruc tive to review this formulation as
many of its aspect are preserved in the new method. Therefore, in this section we provide a
summary of the classical three-�eld formulation for the Reissner-Mindlin plate model and
its discretization procedure using the maxent basis functions.

4.1. Strong form
Consider the midplane of an elastic plate of uniform thicknesst that occupies the open

domain 
 � IR2 and is bounded by the one-dimensional surface� . The coordinates of
a point in this domain is denoted by x = ( x; y). The rotations of �bers normal to the
midplane, the transverse displacement of the midplane, andthe scaled transverse shear
stresses are denoted byr (x ) = ( r x ; r y), w(x ), and s(x ) = ( sx ; sy), respectively. A trans-
verse loadq(x ) 2 L 2(
 ) is also acting on the plate. A schematic representation of the
plate is depicted in Fig. 1.

x

y

q

t

wz,

rx
ry

Fig. 1: Schematic representation of the plate.

The boundary of the plate is assumed to be entirely subjectedto the essential (Dirichlet)
boundary conditions r̂ (x ) : � D ! IR2 and ŵ(x ) : � D ! IR, which implies that � = � D .

The boundary-value problem for this Reissner-Mindlin plate con�guration reads [32]:

Problem 3. Find r (x ) : 
 ! IR2, w(x ) : 
 ! IR and s(x ) : 
 ! IR2 such that

� r � (C" (r )) � s = 0 8x 2 
;

� r � s � q = 0 8x 2 
;

(r w � r ) �
1

�t � 2 s = 0 8x 2 
;

r = r̂ ; w = ŵ 8x 2 � D :
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In Problem 3, " (r ) = 1
2

�
r r + ( r r )T

�
is the strain tensor,C = EY

12(1� � 2 ) ((1 � � )" + � tr( " )I )

is the tensor of bending moduli, and� = � EY
2(1+ � ) , where � = 5=6 is the shear correction

factor; EY and � are the Young's modulus and the Poisson's ratio of the plate material,
respectively.

4.2. Three-�eld mixed weak form

Let the spaces

R :=
�

r : r 2 [H 1(
 )]2; r = r̂ on � D
	

R0 :=
�

� r : � r 2 [H 1(
 )]2; � r = 0 on � D
	

be the trial and virtual spaces for the rotation �eld, respectively,

W :=
�

w : w 2 H 1(
 ); w = ŵ on � D
	

W0 :=
�

�w : �w 2 H 1(
 ); �w = 0 on � D
	

be the trial and virtual spaces for the transverse displacement �eld, respectively, and

S :=
�

z : z 2 [L 2(
 )]2	

be the space for the trial and virtual scaled transverse shear stresses.
On using the preceding space de�nitions, the three-�eld mixed weak form reads [32, 33]:

Problem 4. Find (r ; w; s) 2 R � W � S such that
Z



(" (� r ))T C"(r ) dx �

Z



s � � r dx = 0 8� r 2 R0;

Z



s � r �w dx �

Z



q �w dx = 0 8�w 2 W0;

Z




�
(r w � r ) �

s
�t � 2

�
� � s dx = 0 8� s 2 S:

In Problem 4, " (r ) = [ "xx "yy 2"xy ]T is the strain tensor in Voigt notation, and C is the
Voigt representation of the tensor of bending moduli and is given by

C =
EY

12(1 � � 2)

2

4
1 � 0
� 1 0
0 0 1� �

2

3

5 : (11)
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4.3. Discrete equations using maxent basis functions

The discrete version of Problem4 is obtained by approximating the �eld variables
using the maxent basis functions over a set of scattered nodes that discretely represent
the continuous plate. Due to the nonpolynomial nature of themaxent basis functions, the
weak form integrals cannot be computed exactly. Thus, numerical quadrature is used to
evaluate them. For this purpose, we construct a �nite element mesh whose elements are
used to de�ne integration points and its nodes to discretizethe �eld variables. The whole
procedure can be thought as a �nite element method with basisfunctions having a radial
support. The support is controlled by the maxent parameters and its size is typically
larger than the support of a �nite element basis function. The construction of maxent
basis functions depends only on the nodal coordinates (see Section 3) for which they are
regarded as \meshfree." An advantage of using meshfree basis functions is that since the
element is not involved in the computation of them, the resulting method is less sensitive
to mesh distortion than the �nite element method.

For the construction of the integration mesh, we follow the standard practice in �nite
elements. That is, we consider a mesh of so-called mixed �nite elements that would produce
convergent and stable �nite element solutions for the three-�eld mixed weak form that
models the Reissner-Mindlin plate problem. Several mixed �nite elements are available
in the �nite element literature (see for instance Ref. [34]). In this paper, we construct
the integration mesh inspired by the recent work of Song and Niu [29], as follows: let the
domain be partitioned into disjoint nonoverlapping three-node triangular cells. We denote
an integration cell as E. The partition formed by these cells is denoted asT h , where
h is the maximum cell diameter among the cells in the partition. The standard set of
nodes, denoted byN s, is formed by the vertices of the triangular mesh. In addition to
the standard node set, we de�ne a barycenter node set asN b with nodes located at the
barycenter of each cell. So, the enhanced node set is de�ned as N + = N s [ N b. The
degrees of freedom associated with this partition is summarized as follows:

� each node in the standard node set carries two rotations, onetransverse displacement,
and two transverse shear stresses.

� each node in the barycenter node set carries two rotations.

Fig. 2 presents a schematic representation of the integration mesh.
The partition T h is constructed using a triangular mesh generator and the location

of quadrature points are computed based on this partition. The enhanced node setN +

is constructed when needed by adding the barycenter node setN b to the standard node
set N s. This poses no problem or additional complexity in the method since the absence
of the �nite element structure in the computation of meshfree basis functions permits the
addition of nodes to the mesh very easily.

In the process of evaluating the discrete weak form, maxent basis functions need to be
computed at integration points. To make clear the implications of the numerical integration

8



PSfrag replacements

T h
E

Fig. 2: Schematic representation of the domain partition into cells and nodes for the
discretization of the three-�eld mixed weak form. The shaded triangle is a typical cell of
the partition. The white circles represent the standard node setN s and the black ones the
barycenter node setN b.

procedure using meshfree basis functions, the concept of nodal contribution is introduced as
follows: the nodal contribution at a given integration point with coordinates x is de�ned as
the indices of the nodes whose basis functions have a nonzerovalue at x . It should be noted
that due to the radial support of the maxent basis functions, the evaluation of the them
at an integration point is likely to have a nodal contributio n stemming not only from the
nodes that de�ne the integration cell, but also from nodes located outside the integration
cell. A graphical explanation of the nodal contribution at an integration point located in
the interior of the cell and an integration point located on an edge of the cell is provided
in Fig. 3, where the support of nodal basis functions are representedby circles centered
at nodes. The circles drawn with continuous line and centered at �lled nodes represent
basis functions of nodes de�ning the integration cell and having a nonzero value at the
integration point. Hence, the indices of �lled nodes are part of the nodal contribution. The
circles drawn with dashed line and centered at �lled dashed nodes represent basis functions
of nodes lying outside the integration cell and having a nonzero value at the integration
point. Thus, the indices of �lled dashed nodes are also part of the nodal contribution. The
circles drawn with dotted line and centered at empty nodes represent nodal basis functions
having a zero value at the integration point. The indices of empty nodes are then not part
of the nodal contribution.

The nodal contribution concept is not restricted to the numerical integration procedure
only, it is in general applicable to any evaluation of basis functions within 
 or on � .

On using the maxent basis functions, the discrete trial and virtual �eld variables are

9
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Fig. 3: Graphical explanation of the nodal contribution concept for the evaluation of nodal
basis functions at (a) an integration point (depicted as� ) located in the interior of the cell
and (b) an integration point (depicted as � ) located on an edge of the cell. The support of
nodal basis functions are represented by circles centered at nodes. The indices of the nodes
whose basis functions have a nonzero value at the integration point (i.e., the indices of the
nodes whose associated circles contain the integration point) de�ne the nodal contribution.
In this example, the nodal contribution contains the indices of the nodes that de�ne the
integration cell (�lled nodes) and some nodes that lie outside the integration cell (�lled
dashed nodes).

obtained as follows:

r h(x ) =
nenhX

a=1

� a(x )r a; � r h(x ) =
nenhX

b=1

� b(x )� r b; (12a)

wh(x ) =
nstdX

a=1

� a(x )wa; �w h(x ) =
nstdX

b=1

� b(x )�w b; (12b)

sh(x ) =
nstdX

a=1

� a(x )sa; � sh(x ) =
nstdX

b=1

� b(x )� sb; (12c)

where nenh and nstd are the number of nodes that de�ne the nodal contributions at x in
the enhanced node set (N + ) and the standard node set (N s), respectively, andr a = r (x a),
wa = w(x a) and sa = s(x a) are the unknown nodal coe�cients.
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Thus, the discrete three-�eld mixed weak form at the integration cell level reads:

Problem 5. Find (r h ; wh ; sh) 2 (Rh � R) � (W h � W ) � (Sh � S) such that
Z

E
(" h(� r h))T C" h(r h) dx �

Z

E
sh � � r h dx = 0 8� r h 2 Rh

0 � R0;
Z

E
sh � r �w h dx �

Z

E
q �wh dx = 0 8�w h 2 W h

0 � W0;

Z

E

� �
r wh � r h

�
�

sh

�t � 2

�
� � sh dx = 0 8� sh 2 Sh

0 � S0:

5. The volume-averaged nodal projection method

In analogy to the VANPmethod for nearly-incompressible elasticity [21], this method
when applied to the Reissner-Mindlin plate model allows theelimination of the scaled
shear stresses from the analysis, which leads to a method written in terms of the primitive
variables r and w. In this section, the VANPmethod for the Reissner-Mindlin plate model
is formulated.

5.1. Projection operator

Consider the discrete two-�eld scaled variational formulation for the Reissner-Mindlin
plate model [32, 35]:

Problem 6. The �eld variables (r h ; wh) 2 (Rh � R) � (W h � W ) can be found as the
unique minimum point of the following potential energy functional:

	 (r h ; wh) = inf
r h ;wh

1
2

Z

E
(" h(r h))T C" h(r h) dx +

�t � 2

2

Z

E

�
r wh � r h

� T �
r wh � r h

�
dx �

Z

E
qwh dx :

Problem 6 requires the minimizing pair r h; wh to satisfy the Kirchho� constraint
r wh � r h = 0 as the thickness of the plate becomes very small, which at theelement
level is a severe condition that leads to shear-locking. This issue is purely numerical and
manifests itself as the impossibility for a displacement-based formulation (i.e., a formula-
tion in primitive variables r and w) to undergo deformations as the thickness of the plate
becomes too small.

As a remedy for shear-locking, the following modi�ed version of Problem 6 is considered:

Problem 7. The �eld variables (r h ; wh) 2 (Rh � R) � (W h � W ) can be found as the
unique minimum point of the following modi�ed potential energy functional:

	 (r h ; wh) = inf
r h ;wh

1
2

Z

E
(" h(r h))T C" h(r h) dx +

�t � 2

2

Z

E
(r wh � r h)T (r wh � r h) dx �

Z

E
qwh dx :

11



The \bar" symbol in Problem 7 is intended to de�ne a modi�ed shear strain that alleviates
shear-locking.

On taking the �rst variation of the modi�ed potential energy functional in Problem 7,
leads to the following discrete modi�ed two-�eld weak form for the Reissner-Mindlin model:

Problem 8. Find (r h ; wh) 2 (Rh � R) � (W h � W ) such that

�t � 2
Z

E
(r �w h )T r wh dx � �t � 2

Z

E
(r �w h )T r h dx �

Z

E
�w h qdx = 0

8�w h 2 W h
0 � W0;

� �t � 2
Z

E
(� r h)T r wh dx +

Z

E
(" h(� r h))T C" h(r h) dx + �t � 2

Z

E
(� r h)T r h dx = 0

8� r h 2 Rh
0 � R0:

In contrast to the system that gives form to the local patch projection method [18],
Problem 8 is a symmetric system. This is a consequence of the modi�ed shear strain being
applied to the potential energy functional.

In order to develop the sti�ness matrix from Problem 8, an appropriate construction
for the \barred" quantities that appear therein is needed | h ere \appropriate" means
that shear-locking is precluded. An e�ective procedure to achieve this aim is o�ered by
the Kirchho� constraint given in the last equality of Proble m 5. The procedure consists in
rearranging the Kirchho� constraint such that sh can be computed in terms of the primitive
variables, as follows:

sh = �t � 2� h
h
r wh � r h

i
= �t � 2

�
� h

h
r wh

i
� � h

h
r h

i�
; (15)

where � h is a projection operator that adopts the form of an L 2 projection. By comparing
the second equation in Problem8 with ( 15), the following equalities are proposed:

r wh = � h
h
r wh

i
; r h = � h

h
r h

i
; (16)

which give the de�nition of the \bar" operator as ( � ) := � h [ � ].
We are left with the explicit expression for the projection operator. It is derived as

follows: the discrete scaled transverse shear stresses given in (12c) are replaced into the last
equation in Problem 5 (the Kirchho� constraint), which after relying on the arbit rariness
of nodal variations yields in nodal form

Z

E
� c(x )

h
r wh � r h

i
dx �

1
�t � 2

Z

E
� c(x )� b(x )sb dx = 0 : (17)
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The integral that accompanies the nodal transverse shear stress on the left-hand side of (17)
de�nes a matrix H whose entries are given by

Hcb =
Z

E
� c(x )� b(x ) dx : (18)

Eq. (17) can be solved for the nodal scaled transverse shear stress as follows:

sb = �t � 2 H� 1
cb

Z

E
� c(x )

h
r wh � r h

i
dx ; (19)

whereH� 1
cb is read as the nodal component of the inverse of the matrixH. Since the maxent

basis functions are positive functions, all the entries in the matrix H are nonnegative.
Hence, Eq. (19) can be safely simpli�ed by performing row-sum on H (i.e., by lumping)
leading to the following volume-averaged nodal scaled transverse shear stressvector:

sc = �t � 2

R
E c

� c(x )
�
r wh � r h

�
dx

R
E c

� c(x ) dx
; (20)

which is used to project the scaled transverse shear stress �eld, as follows:

sh =
nstdX

c=1

� c(x )sc = �t � 2
nstdX

c=1

� c(x )

( R
E c

� c(x )
�
r wh � r h

�
dx

R
E c

� c(x ) dx

)

: (21)

The projection operator that de�nes the \bar" operator is re alized by comparing (15)
with ( 21) and is given by

( � ) = � h [ � ] =
nstdX

c=1

� c(x )� c[ � ]; (22)

where � c[ � ] is the volume-averaged nodal projection(VANP) operator given by

� c[ � ] =

R
E c

� c(x )[ � ] dx
R

E c
� c(x ) dx

: (23)

In (23), Ec is a representative nodal volume de�ned as the union of all the elements
attached to nodec. Fig. 4(a) depicts the nodal volumeEc when the standard node setN s

is used, and Fig.4(b) when the enhanced node setN + is used.
The following precautions must be taken into account when computing the VANPoper-

ator:

� It should be noted that since � c(x ) in ( 23) stems from the nodal shear stresses
variations its evaluation must always be performed inN s, which requires Ec to be
de�ned as in Fig. 4(a).
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� Observing the \barred" terms in Problem 8, it must be realized that between the
square brackets in theVANPoperator we will have either r h or r wh . The compu-
tation of the former requires the enhanced node set and thusEc must be de�ned as
in Fig. 4(b), and the computation of the latter requires the standard node set and
thus Ec must be de�ned as in Fig. 4(a).

� The evaluation of the VANPoperator requires numerical integration at quadrature
points and thus the nodal contribution concept (see Fig. 3 to recall this concept)
must also be considered.

Ec
c

(a)

Ec
c

(b)

Fig. 4: De�nition of the representative nodal volume Ec (shaded area) for the evaluation
of the integrals that appear in the volume-averaged nodal projection operator. (a) nodal
volume based on the standard node setN s, and (b) nodal volume based on the enhanced
node setN + .

5.2. Sti�ness matrix and nodal force vector
The sti�ness matrix and nodal force vector are developed by discretizing Problem8 with

the rotation and transverse displacement �elds approximations given in (12a) and (12b),
respectively. On using these approximations, we write

" h(r h) =
nenhX

a=1

Ba(x )r a; " h(� r h) =
nenhX

b=1

Bb(x )� r b; Ba(x ) =

2

4
� a;x 0

0 � a;y

� a;y � a;x

3

5 ; (24)

and

r wh =
nstdX

a=1

Ga(x )wa; r �w h =
nstdX

b=1

Gb(x )�w b; Ga(x ) =
�

� a;x

� a;y

�
: (25)
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In addition, the discrete rotation �eld is conveniently rew ritten as

r h =
nenhX

a=1

Na(x )r a; � r h =
nenhX

b=1

Nb(x )� r b; Na(x ) =
�

� a 0
0 � a

�
: (26)

And on using (22), (25) and (26), the following projected terms are obtained:

r wh =
nstdX

a=1

(
nstdX

c=1

� c(x )� c [Ga(x )]

)

wa; r �w h =
nstdX

b=1

(
nstdX

c=1

� c(x )� c [Gb(x )]

)

�w b; (27)

and

r h =
nenhX

a=1

(
nstdX

c=1

� c(x )� c [Na(x )]

)

r a; � r h =
nenhX

b=1

(
nstdX

c=1

� c(x )� c [Nb(x )]

)

� r b: (28)

Finally, by collecting all the discrete quantities and replacing them into the modi�ed
two-�eld weak form (Problem 8), and appealing to the arbitrariness of nodal variations, the
following global system of equations is obtained after assembling the local contributions:

�
Kww � Kwr

� KT
wr Kee + Krr

� �
w
r

�
=

�
fw
0

�
; (29a)

where w and r are the global column vectors of nodal coe�cients for the transverse dis-
placement and rotations, respectively;Kww , Kwr , Kee and Krr are the assembled sti�ness
matrices, and fw is the assembled nodal force vector.

On de�ning the assembly operator asA, the assembled sti�ness matrices for the parti-
tion of the domain into nel integration cells are obtained as

Kww =
nel
A

E =1
KE

ww ; Kwr =
nel
A

E =1
KE

wr ; Kee =
nel
A

E =1
KE

ee; Krr =
nel
A

E =1
KE

rr ; fw =
nel
A

E =1
fE
w ;

(29b)
where the local sti�ness matrices evaluated on the integration cell E are

KE
ww =

nstdX

a=1

nstdX

b=1

0

@�t � 2
Z

E

 
nstdX

c=1

� c(x )� c [Ga(x )]

! T nstdX

c=1

� c(x )� c [Gb(x )] dx

1

A ; (29c)

KE
wr =

nstdX

a=1

nenhX

b=1

0

@�t � 2
Z

E

 
nstdX

c=1

� c(x )� c [Ga(x )]

! T nstdX

c=1

� c(x )� c [Nb(x )] dx

1

A ; (29d)

KE
ee =

nenhX

a=1

nenhX

b=1

� Z

E
BT

a (x )CBb(x ) dx
�

; (29e)

KE
rr =

nenhX

a=1

nenhX

b=1

0

@�t � 2
Z

E

 
nstdX

c=1

� c(x )� c [Na(x )]

! T nstdX

c=1

� c(x )� c [Nb(x )] dx

1

A ; (29f)
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and the nodal force vector is

fE
w =

nstdX

a=1

� Z

E
� a(x )q(x ) dx

�
: (29g)

It is recalled that in the implementation of these sti�ness matrices and nodal force
vector, nstd and nenh are the number of nodes that de�ne the nodal contributions in the
standard node set (N s) and the enhanced node set (N + ), respectively, that result from
the numerical integration process. The numerical integration of the nodal force vector is
done using standard Gauss integration on triangles, but thenumerical integration of the
sti�ness matrices requires a special treatment which is elaborated in the next subsection.

5.3. Numerical integration
The cell-based integration of the sti�ness matrices that depend on basis functions

derivatives (i.e., Eqs. (29c)-(29e)) introduces integration errors when standard Gauss in-
tegration is used, which results in convergence issues and the patch test is not satis�ed.
To alleviate these integration errors in the VANPmethod, a smoothing procedure known as
quadratically consistent 3-point integration scheme [28] is performed to correct the values of
the basis functions derivatives at the integration points. This smoothing procedure was al-
ready used in the linear [21] and nonlinear [36] VANPformulations for nearly-incompressible
solids. In this paper, we follow the same approach.

A representative integration cell E along with its integration points is depicted in Fig. 5(a)
when the standard node set (N s) is used and in Fig. 5(b) when the enhanced node set
(N + ) is used. Basically, the situation shown in Fig. 5(a) is used to evaluate the deriva-
tives appearing in (29c) and (29d) through the nodal matrix Ga and the situation depicted
in Fig. 5(b) to evaluate the derivatives appearing in (29e) through the nodal matrix Ba.

A summary of the basis functions derivatives correction procedure follows. The Carte-
sian coordinate system is chosen, where for conveniencex � x1 and y � x2. In addition,
n j (j = 1 ; 2) is the j -th component of the unit outward normal to a cell edge in the
Cartesian coordinate system. The integration accuracy of the smoothing procedure is of
second-order, which is obtained by requiring the basis functions derivatives to satisfy the
divergence constraint

Z

E
� a;j f (x ) dx =

Z

@E
� af (x )n j ds �

Z

E
� af ;j (x ) dx ; (30)

where f (x ) is the �rst-order polynomial base

f (x ) = [1 x1 x2]T ; (31)

whose derivative (� ij is the Kronecker delta symbol) is

f ;j (x ) = [0 � 1j � 2j ]T : (32)
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(b)

Fig. 5: Schematic representation of integration cells and their integration points for cor-
rection of basis functions derivatives in the VANPapproach. The shaded region is the
integration cell E . The symbol � represents integration points located in the interior
of the integration cell and the symbol � represents integration points located on the cell
boundary. (a) Integration cell when the standard node set (N s) is used and (b) integration
cell when the enhanced node set (N + ) is used.
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The expanded version of (30) is:
Z

E
� a;1 dx =

Z

@E
� an1 ds; (33a)

Z

E
� a;1x1 dx =

Z

@E
� ax1n1 ds �

Z

E
� a dx ; (33b)

Z

E
� a;1x2 dx =

Z

@E
� ax2n1 ds; (33c)

for � a;1, and
Z

E
� a;2 dx =

Z

@E
� an2 ds; (33d)

Z

E
� a;2x1 dx =

Z

@E
� ax1n2 ds; (33e)

Z

E
� a;2x2 dx =

Z

@E
� ax2n2 ds �

Z

E
� a dx (33f)

for � a;2.
The integration constraints (33) are solved using Gauss integration on the integration

cell E shown in Fig. 5. Consider the following notations:

� hp = ( hp1; hp2) as the Cartesian coordinates of theh-th interior integration point
with an associated Gauss weighthw.

� g
ke = ( g

ke1; g
ke2) as the Cartesian coordinates of theg-th integration point that is

located on the k-th edge of the cell with an associated Gauss weightgkv.

� kn = ( kn1; kn2) as the unit outward normal to the k-th edge of the cell.

On using the preceding notations, the discrete version of the integration constraints (33)
is:

Wdj = fj ; j = 1 ; 2 (34a)

where

W =

2

4
1w 2w 3w

1w 1p1
2w 2p1

3w 3p1
1w 1p2

2w 2p2
3w 3p2

3

5 ; (34b)

f1 =

2

6
6
6
6
6
6
6
4

3P

k=1

2P

g=1
� a(g

ke) kn1
g
kv

3P

k=1

2P

g=1
� a(g

ke) g
ke1 kn1

g
kv �

3P

h=1
� a(hp) hw

3P

k=1

2P

g=1
� a(g

ke) g
ke2 kn1

g
kv

3

7
7
7
7
7
7
7
5

; (34c)
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f2 =

2

6
6
6
6
6
6
6
4

3P

k=1

2P

g=1
� a(g

ke) kn2
g
kv

3P

k=1

2P

g=1
� a(g

ke) g
ke1 kn2

g
kv

3P

k=1

2P

g=1
� a(g

ke) g
ke2 kn2

g
kv �

3P

h=1
� a(hp) hw

3

7
7
7
7
7
7
7
5

; (34d)

and the solution vector of the j -th basis function derivative evaluated at the three interior
integration points is

dj =
�

� a;j (1p) � a;j (2p) � a;j (3p)
� T : (34e)

In the foregoing equations, indexa runs through the nodes that de�ne the nodal con-
tribution either in N s or N + .

Finally, the numerical integration of the sti�ness matrices is performed using 3-point
Gauss rule on the triangular cells, but the basis functions derivatives at these three inte-
gration points are replaced by the corrected derivatives given in (34e).

6. Numerical experiments

In this section, several numerical experiments are performed to assess the accuracy
of the proposed VANPformulation for the Reissner-Mindlin plate model. Unless stated
otherwise, the default numerical integration procedure for the VANPformulation is the
quadratically consistent 3-point integration scheme (QC3). For assessing Reissner-Mindlin
plate problems with known global solution, we use the relative L 2-norm of error and the
relative H 1-seminorm of the error, which are de�ned, respectively, as follows:

ku � uhkL 2 (
 )

kukL 2 (
 )
=

s P
E

R
E (u � uh)T (u � uh) dx

P
E

R
E uT udx

;

ku � uhkH 1 (
 )

kukH 1 (
 )
=

vu
u
t

P
E

R
E

�
u0 � u0h

� T �
u0� u0h

�
dx

P
E

R
E u0T u0dx

;

where u = [ w r x r y ]T and u0 = [ w;x w;y r x;x r x;y r y;x r y;y ]T are the exact solutions, anduh

and u0h are their corresponding approximations.
In addition, on using the exact nodal scaled transverse shear stress solution sa and its

approximation sh
a , the following relative L 2-norm of the nodal error is de�ned to assess the

convergence of theVANPmethod in the scaled transverse shear stress variable:

ks � shkL 2 (
 )

kskL 2 (
 )
=

s P
a (sa � sh

a)T (sa � sh
a)

P
a sT

a sa
;

since in the VANPapproach the scaled transverse shear stress is a nodal quantity that can
be computed aposteriori from the primitive variables using (20).
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6.1. Zero shear deformation patch test

We start by performing a patch test to evaluate whether our VANPformulation, which
uses linear approximations, can reproduce a linear solution within machine precision. We
also want to check that our method is devoid of the shear-locking phenomenon when
the transverse shear deformation approaches zero. For the Reissner-Mindlin problem, the
condition of zero shear deformation requires that the transverse displacementw is one
order higher than the order of the rotations r . To obtain an exact linear solution for
w and be able to test our method, we use the zero shear deformation patch test that is
provided in Ref. [37]. The lowest order solution given therein is quadratic inw and linear
in r . To obtain a linear solution in w, the exact solution provided in Ref. [37] is managed
by appropriately choosing the arbitrary constants so that the following particular exact
solution is obtained:

w = 1 + x + y; rx = 1 ; r y = 1 :

The linear patch test is built by imposing the above exact solution along the entire
boundary of a unit square domain. Three integration meshes are used as shown in Fig.6.
The elastic parameters for the material of the plate are set to EY = 10:92 � 106 psi and

(a) (b) (c)

Fig. 6: Integration meshes for the zero shear deformation patch test.

� = 0 :3. The side of the plateL , which in this case is the unit, is taken as the characteristic
length for de�ning the normalized thickness of the plate ast=L . The relative L 2-norm and
H 1-seminorm of the error are shown in Table1 and Table 2, respectively, for the three
integration meshes and various normalized thicknesses. These results reveal that for the
plates with normalized thicknessest=L = 0 :1, t=L = 0 :01 and t=L = 0 :001, the errors are
extremely small and approaching machine precision; thus, it can be said that they pass
the zero shear deformation patch test in the numerical sense. Even though the errors for
the plate with normalized thickness t=L = 0 :0001 are not within machine precision, they
are su�ciently small to nearly pass the zero shear deformation patch test in the numerical
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sense. Also, the absence of the shear-locking phenomenon inthe VANPformulation is made
evident by these small errors.

Table 1: Relative L 2-norm of the error for the zero shear deformation patch test.

Mesh t=L = 0 :1 t=L = 0 :01 t=L = 0 :001 t=L = 0 :0001
(a) 2:3 � 10� 14 2:6 � 10� 12 1:5 � 10� 10 2:0 � 10� 8

(b) 1:5 � 10� 14 6:3 � 10� 13 6:0 � 10� 11 6:2 � 10� 9

(c) 1:7 � 10� 14 7:5 � 10� 13 4:2 � 10� 11 5:7 � 10� 9

Table 2: Relative H 1-seminorm of the error for the zero shear deformation patch test.

Mesh t=L = 0 :1 t=L = 0 :01 t=L = 0 :001 t=L = 0 :0001
(a) 4:7 � 10� 14 9:7 � 10� 13 5:3 � 10� 11 7:5 � 10� 9

(b) 3:4 � 10� 13 7:0 � 10� 13 5:0 � 10� 11 6:0 � 10� 9

(c) 2:1 � 10� 13 3:9 � 10� 13 2:5 � 10� 11 5:6 � 10� 9

6.2. Circular plate subjected to a uniform load

Fig. 7 depicts a circular plate of radius r that is subjected to a uniform load q and is
clamped along its entire boundary. The normalized thickness of the plate is t=L , where t
is the thickness of the plate andL is a characteristic length of the physical domain, which
in this case is taken as the radius of the plate. The radius of the plate is set tor = 1 in so
that L = 1 in, and the uniform load is set to q = 1 psi. The following elastic parameters
are considered for the material of the plate:EY = 10:92 � 106 psi and � = 0 :3. The exact
solution for this problem is given by [33]

r x =
x(x2 + y2 � 1)

16D
; r y =

y(x2 + y2 � 1)
16D

;

w =
(x2 + y2)2

64D
� (x2 + y2)

�
� � 1t2

4
+

1
32D

�
+

1
4

� � 1t2 +
1

64D
;

where D = EY =(12(1 � � 2)).
The integration meshes that are considered for this problemare shown in Fig. 8.
We start by studying the convergence of the proposedVANPformulation as the inte-

gration mesh is re�ned. For comparison purposes, we also include the convergence re-
sults for the mixed triangular �nite element of Dur�an and Li berman [7], which we de-
note by DL, and the three-node triangular element with cell-based smoothing for bend-
ing strain and discrete shear gap method for shear-locking (CS-DSG3) of Nguyen-Thoi
et al. [38]. The following normalized thicknesses are considered forthe VANPapproach:
t=L = f 0:1; 0:01; 0:001; 0:0001g. For the DL element, we only show the convergence curve

21



r

q(x,y)

Fig. 7: Circular plate subjected to a uniform load.

(a) (b) (c) (d)

Fig. 8: Integration meshes for the circular plate subjectedto a uniform load problem.
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for t=L = 0 :0001 since the curves for the other normalized thicknesses do not change sig-
ni�cantly. For the CS-DSG3 element only the curve for t=L = 0 :01 is shown because
this element did not performed well for thinner plates. The convergence rates are shown
in Fig. 9, where it is observed that the optimal rates of convergence,2 and 1, are delivered
by the VANP, DL and CS-DSG3 approaches in both theL 2-norm and the H 1-seminorn of
the error, respectively. However, the accuracy of theVANPformulation is superior to the
accuracy of the DL and CS-DSG3 elements.

(a) (b)

Fig. 9: Rates of convergence for the circular plate subjected to a uniform load. (a) L 2-norm
of the error and (b) H 1-seminorm of the error for several values oft=L . The VANP, DL
and CS-DSG3 approaches deliver the optimal rates of convergence, but the accuracy of the
VANPapproach is superior to the accuracy of the DL and CS-DSG3 elements.

We also study the sensitivity of the convergence rates to thesupport parameter (
 )
of the maxent basis functions. Three values are considered:
 = f 1:5; 2:0; 3:0g, where
the largest one results in the smaller support. For this test, the normalized thickness
t=L = 0 :0001 is considered. The convergence rates are presented in Fig. 10, where it is
observed that the optimal rates of 2 and 1 are delivered by theVANPformulation in both
the L 2-norm and the H 1-seminorn of the error, respectively, independently of thebasis
function support parameter. It is also observed that the VANPaccuracy decreases as the
support gets smaller, which is a reasonable behavior since as the support gets smaller the
maxent basis function approaches to the \hat" �nite element basis function [31].

6.3. Square plate subjected to a nonuniform load

In this example, we study the convergence properties of theVANPformulation in a more
complicated setting, which includes nonuniform integration meshes and a nonuniform load.
As shown in Fig. 11, the problem domain is a square plate that is clamped along its entire
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(a) (b)

Fig. 10: In
uence of the maxent basis function support parameter (
 ) on the VANPconver-
gence rates. Three values for
 are considered. Optimal convergence rates in the (a)L 2

norm and (b) the H 1 seminorm of the error are obtained for all these cases.

boundary. The side of the plate is taken as the characteristic length for de�ning the
normalized thickness of the plate ast=L . In this problem, we set the side of the plate
to a = 1 in so that the characteristic length becomes L = 1 in. The following elastic
parameters are considered for the material of the plate:EY = 10:92� 106 psi and � = 0 :3.
The nonuniform load is given by

q =
EY

12(1 � � 2)

�
12y(y � 1)(5x2 � 5x + 1)(2 y2(y � 1)2 + x(x � 1)(5y2 � 5y + 1))

+ 12x(x � 1)(5y2 � 5y + 1)(2 x2(x � 1)2 + y(y � 1)(5x2 � 5x + 1))
�

;

and the exact solution is [35]:

r x = � y3(y � 1)3x2(x � 1)2(2x � 1); r y = � x3(x � 1)3y2(y � 1)2(2y � 1);

w =
1
3

x3(x � 1)3y3(y � 1)3 �
2t2

5(1 � � )

�
y3(y � 1)3x(x � 1)(5x2 � 5x + 1)

+ x3(x � 1)3y(y � 1)(5y2 � 5y + 1)
�

:

The integration meshes that are considered for this problemare shown in Fig. 12.
The convergence of theVANPapproach as the integration mesh is re�ned is studied for

the following normalized thicknesses:t=L = f 0:1; 0:01; 0:001; 0:0001g. The convergence
rates are shown in Fig.13, where it is observed that the optimal rates of convergence,2
and 1, are delivered by theVANPmethod in both the L 2-norm and the H 1-seminorn of
the error, respectively, for the normalized thicknessest=L = f 0:01; 0:001; 0:0001g. On the
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a

a

q(x,y)

Fig. 11: Square plate subjected to a nonuniform load.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 12: Integration meshes for the square plate subjected to a nonuniform load problem.
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other hand, the convergence rates fort=L = 0 :1 (the thicker plate case) are above the
optimal.

(a) (b)

Fig. 13: Rates of convergence for the square plate subjectedto a nonuniform load. (a)
L 2-norm of the error and (b) H 1-seminorm of the error for several values oft=L . The
VANPmethod delivers the optimal rates of convergence fort=L = f 0:01; 0:001; 0:0001g and
above the optimal for t=L = 0 :1.

To illustrate the in
uence of the numerical integration in t he accuracy of theVANP
formulation, we compare the numerical solutions using three integration rules on the trian-
gular cell: the 3-point standard Gauss rule (ST3), the 6-point standard Gauss rule (ST6)
and the default VANP's integration scheme (QC3) that was developed in Section5.3. For
this test, the normalized thicknesst=L = 0 :0001 is considered. Fig.14 depicts the conver-
gence curves for each of these integration schemes. As can beseen, the ST3 scheme fails
to converge in both the L 2-norm and the H 1-seminorn of the error. Even though the ST6
scheme exhibits much better convergence properties than the ST3 scheme, the optimal
performance is observed for the QC3 scheme.

6.4. Parallelogram plate subjected to a uniform load

This example is tailored to show the performance of theVANPformulation when dis-
torted integration meshes are used. The problem consists ina parallelogram plate of unit
thickness that is clamped along the entire boundary and subjected to a uniform load, as
shown in Fig. 15. The problem parameters are set as follows:a = 200 in, b = 100 in,
q = 100 psi. The plates' material parameters areEY = 10:92 � 106 psi and � = 0 :3.
The analytical reference value for the maximum transverse displacement can be found in
Ref. [39].

The integration meshes that are considered for this problemare depicted in Fig. 16.
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(a) (b)

Fig. 14: In
uence of the numerical integration on the VANPconvergence rates. (a)L 2-norm
of the error and (b) H 1-seminorm of the error for the ST3, ST6 and QC3 integration
schemes. The ST3 scheme fails to converge, the ST6 improves the convergence and the
QC3 provides the optimal convergence.

a

b q(x,y)

45°

Fig. 15: Parallelogram plate subjected to a uniform load.
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(a) (b)

(c) (d)

(e)

Fig. 16: Integration meshes for the parallelogram plate problem.

The transverse displacement �eld solution for the integration meshes shown in Figs.16(d)
and 16(e) are presented in Fig.17. Table 3 summarizes the maximum transverse displace-
ment (located at the center of the plate) that is obtained for each of the integration meshes
considered. The table also provides the analytical reference solution. It is observed that
the numerical solutions are close to the analytical reference solution for all the integration
meshes considered.

(a) (b)

Fig. 17: Transverse displacement solution for the parallelogram plate problem when the
integration meshes (a)16(d) and (b) 16(e) are used.

Finally, once again we show the importance of the QC3 integration scheme that was
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Table 3: Transverse displacement for the parallelogram plate problem.

Integration mesh
16(a) 16(b) 16(c) 16(d) 16(e) Ref. solution

6.51227 6.52950 6.53558 6.53697 6.52780 6.52000

developed for the VANPformulation. Fig. 18 provides the transverse displacement �eld
solution for the integration mesh shown in Fig. 16(d) when the 3-point standard Gauss
rule (ST3) is used. A comparison between the results shown inFig. 17(a) and Fig. 18
reveals that the ST3 integration scheme leads to an erroneous transverse de
ection �eld.

Fig. 18: Parallelogram plate subjected to a uniform load. The use of the 3-point standard
Gauss rule (ST3) on the integration mesh16(d) leads to an erroneous transverse de
ection
�eld solution.

6.5. Performance of the scaled transverse shear stress solution

The performance of the recovered scaled transverse shear stress predictions is now
assessed. The problem already presented in Section6.3 is used to this aim. In addition
to the unstructured integration meshes shown in Fig.12, we consider the set of structured
integration meshes depicted in Fig.19. It is recalled that the scaled transverse shear
stress variable is directly recovered at the nodes using (20) after the primitive variables are
computed.

Fig. 20 presents theL 2-norm of the nodal error of the scaled transverse shear stress so-
lution. The optimal convergence rate is delivered by theVANPformulation irrespectively of
the plate thickness when the structured integration meshesare used (Fig.20(a)), whereas
(with the exception of the thicker plate considered) the convergence rate deteriorates to
a rate of about half of its optimal value when the unstructured integration meshes are
used (Fig. 20(b)) resulting in degraded accuracy. Notwithstanding this deteriorated per-
formance, the predicted solutions for the primitive variables is excellent and optimally
convergent as it was shown in Section6.3. We also stress that this poor convergence be-
havior of the scaled transverse shear stress variable should not be a concern as its uniform
convergence in theL 2-norm is in general very di�cult to achieve [ 40].
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 19: Structured integration meshes to assess the performance of the transverse shear
stress predictions in theVANPformulation.

(a) (b)

Fig. 20: L 2-norm of the nodal error of the scaled transverse shear stress solution using
(a) structured and (b) unstructured integration meshes in the VANPformulation. For the
structured integration meshes, optimal rates of convergence are delivered irrespectively
of the plate thickness. The unstructured integration meshes deliver the optimal rate of
convergence only for the plate with normalized thicknesst=L = 0 :1, whereas the reminder
plates converge at about half of the optimal rate.
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7. Concluding Remarks

In this paper, a volume-averaged nodal projection (VANP) method for the solution of
Reissner-Mindlin plate problems using primitive variables (i.e., rotations and transverse
displacement) was presented. The proposed approach relieson the construction of a pro-
jection operator that permits the computation of the shear strain in terms of the primitive
variables without presenting shear-locking issues in the limit of the thin-plate theory. The
VANPmethod uses linear maximum-entropy approximations and bubble-like enrichment
of the rotation degrees of freedom is added for stability purposes. A special integration
scheme on triangular meshes was developed to �x integrationerrors in the computation
of the meshfree sti�ness matrices. The assessing of theVANPformulation through several
benchmark problems, which included a zero shear deformation patch test, a circular plate
subjected to a uniform load, a square plate subjected to a nonuniform load and a parallelo-
gram plate subjected to a uniform load, con�rmed the accuracy and optimal convergence of
the VANPapproach for a wide range of plate thicknesses without experiencing shear-locking
issues.

Further improvement of the numerical integration of the sti �ness matrix and force vec-
tor is being explored by developing a nodal integration technique. From a mathematical
standpoint, the construction of error estimates for theVANPapproach would help in under-
standing its optimal performance. The extension of theVANPapproach to the von K�arm�an
theory for nonlinear plates is worth being developed and explored. These topics will be
addressed in subsequent works.
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