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ABSTRACT: Short-range correlations in motion of electrons in
matter are captured well by semilocal exchange−correlation (XC)
functionals in density functional theory (DFT), but long-range
correlations are neglected in such models and must be treated by
van der Waals (vdW) dispersion methods. Whereas the effective
range of distances at which fluctuations are correlated is usually
explicit in the vdW models, the complementary range of semilocal
functionals can be observed only implicitly, requiring an
introduction of empirical damping functions to couple the
semilocal and nonlocal contributions to the XC energy. We
present a comprehensive study of the interplay between these
short-range and long-range energy contributions in eight semilocal
functionals (LDA, PBE, TPSS, SCAN, PBE0, B3LYP, SCAN0,
M06-L) and three vdW models (MBD, D3, VV10) on
noncovalently bonded organic dimers (S66×8), molecular crystals (X23), and supramolecular complexes (S12L), as well as
on a series of graphene-flake dimers, covering a range of intermolecular distances and binding energies (0.5−130 kcal/mol). The
binding-energy profiles of many of the DFT+vdW combinations differ both quantitatively and qualitatively, and some of the
qualitative differences are independent of the choice of the vdW model, establishing them as intrinsic properties of the respective
semilocal functionals. We find that while the SCAN+vdW method yields a narrow range of binding-energy errors, the effective
range of SCAN depends on system size, and we link this behavior to the specific dependence of SCAN on the electron
localization function α around α = 1. Our study provides a systematic procedure to evaluate the consistency of semilocal XC
functionals when paired with nonlocal vdW models and leads us to conclude that nonempirical generalized-gradient and hybrid
functionals are currently among the most balanced semilocal choices for vdW systems.

■ INTRODUCTION

In a true many-body electronic wave function, the motions of
electrons are correlated across the entire range of interelec-
tronic distances. The (in principle exact) Kohn−Sham density
functional theory (KS-DFT)1 captures all the correlations in
the form of the exchange−correlation (XC) energy. Many
approximate functionals are able to efficiently estimate most of
the XC energy, which established KS-DFT as a basic tool in
computational chemistry and condensed-matter physics. But
the standard approximations are semilocal in space, resulting in
XC energy that decays exponentially with distanceas if the
electrons were essentially uncorrelated at long-range (except for
the special case of slowly varying electron density). This leads
to severe underestimation of van der Waals (vdW) dispersion
interactions, which are mostly caused by long-range electron
correlation. As these interactions strongly contribute to
properties of nearly all biological and modern synthetic
materials, many models were developed that account
specifically for the long-range correlation2−7 to augment the
semilocal (or hybrid) density-functional calculations. The range
separation of electron correlation into short-range and long-

range models can be in principle done formally,8 but
insufficient knowledge about the ranges of different semilocal
functionals prevents this in practice. The vdW methods range
from interatomic pairwise sums, to spatial double-integral
functionals, to Hamiltonian many-body models, but in all these
cases the issue of range separation can be reduced to empirical
damping mechanisms that couple the semilocal and nonlocal
contributions to the electron correlation.
Fitting empirical damping functions to benchmark binding

energies has three associated issues, all of which decrease the
transferability and hence generality of the resulting DFT+vdW
methods. First, the asymptotic binding energies predicted by
the approximate vdW models may have both systematic and
unsystematic errors, which can be “fixed” by the fitting only for
a fairly small class of systems. Second, the effective range of the
semilocal functionals may systematically depend on the system
type. The fitted damping function would then strongly depend
on the selection of the training set. Third, this approach
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assumes that the only error in the KS-DFT energies is the
missing long-range correlation, where in fact other noncovalent
interactions may also be estimated incorrectly by the
approximate semilocal functionals. The fitting then effectively
corrects for these errors, but such compensation is non-
transferable to systems besides the training set. These issues
could be largely solved if the effective range of the semilocal
functionals was well-defined, which would restrict the form of
the damping functions, limiting the chance of spurious error
overcorrection. Understanding the effective range of current
semilocal functionals is then a first step toward a more
systematic range separation in the DFT+vdW methods.
Traditionally, the differences between XC functionals in their

contribution to the binding in vdW systems have been
formulated in terms of strength rather than range. Whereas
the strength is attested simply by the magnitude of binding
energies at equilibrium geometries, the range is more subtle and
decides about the rate of decay of the binding when the
interacting objects are moved apart, as well as about the scaling
of the binding energies with system size. Besides numerical
results, the strength of the vdW binding by different XC
functionals has been often analyzed analytically via the so-called
enhancement factor, FXC. But this approach is not well-
transferable to the analysis of the effective range Instead, we
chose to study the range by careful analysis of the binding
energies across a range of intermolecular distances and system
sizes. To this end, we employ several vdW benchmark data sets
from small noncovalently bonded organic dimers, to molecular
crystals, to supramolecular complexes, as well as a series of
graphene-flake dimers of increasing size. With the use of the
range-separation parameters in vdW methods, we are then able
to deduce information about the effective ranges of XC
functionals that would not be possible from the analysis of FXC.
The SCAN functional is a recent first-principles semilocal

functional9 with promising results across a broad range of
systems in chemistry and physics, in many cases reaching the
accuracy of hybrid functionals at a fraction of their cost.10

SCAN is still only a semilocal functional, however, and does not
describe long-range electron correlation, resulting in a lack of
long-range vdW interactions. However, the many-body
dispersion (MBD) method is an interatomic model of long-
range electron correlation7,11 that can be combined with any
short-range correlation method, such as semilocal DFT, the
density-functional tight-binding method,12 or classical force
fields.13 The crossover regime, where a short-range description
blends with the long-range MBD description, is controlled with
a single parameter directly via a range-separated interelectronic
Coulomb potential. When trying to adjust this parameter for
the SCAN functional (essentially estimating the XC range of
SCAN for vdW interactions), we observed that the optimal
value depends significantly on the choice of the studied systems
and for some system types also on the choice of the optimized
statistical quantity. Because this is not the case for some older
density functionals such as PBE or TPSS, we set out to study in
general the range of electron correlation as described by
different density functionals in vdW-bound systems.
Figure 1 illustrates the general notion of the effective range of

semilocal functionals. On the basis of the asymptotic binding
energy of the uracil dimer and bucky-catcher complex, the
functionals can be sorted in order of increasing effective range
as BLYP < RPBE ≈ TPSS ≈ PBE < SCAN ≈ M06-L ≈ LDA.
The uracil dimer is bound relatively more strongly by the
semilocal functionals than the bucky-catcher complex, because

of relatively smaller distance between the “surfaces” of the
molecules (larger density overlap) and larger ratio of the
overlap surface to the volume of the interacting molecules. All
three strongest-binding functionals capture more than 80% of
the binding energy in the uracil dimer (LDA even overbinds),
but only 40−80% in the bucky-catcher complex. Most
importantly, none of the semilocal functionals yields correct
asymptotic binding, so that, while M06-L captures 80% of the
interaction energy of the bucky-catcher at equilibrium, it is only
50% when the intermolecular distance increases by 2 Å and
15% after additional 3 Å. This work attempts to formulate and
answer the general question whether the effective range of the
functionals is consistent between such two different systems.

■ BACKGROUND
Density Functionals: Short-Range Correlation Models.

Some aspects of the “tail” behavior of semilocal density
functionals in vdW systems are known, mostly from
observations made on particular systems. The Hartree−Fock
(HF) model separates the correlation of electronic motions
into the exchange and “pure” correlation parts, the second of
which is exclusively responsible for vdW attraction. This does
not translate well into exchange and correlation as approxi-
mated by semilocal density functionals in DFT, where the
exchange part often contributes much more than the
correlation part to the vdW attraction at equilibrium distances.
This behavior is caused by the XC functionals modeling the
corresponding exchange and correlation holes locally and is
reflected by the fact that most of the literature on the topic of
vdW interactions and XC functionals is concerned with

Figure 1. Range of functionals. Binding-energy curves of a stacked
uracil dimer (top) and a buckyball-catcher complex (bottom) with
different XC functionals. The circles denote minima; the black circle
corresponds to a reference value (see text). PBE+MBD is shown as an
example of a method with the correct (algebraic) asymptotic behavior.
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exchange, not correlation functionals. (See ref 14 for a more
detailed Discussion.)
Nearly all exchange energy functionals of the electron

density, n, are constructed such that they are exact for the
uniform electron gas, and are therefore of the form

∫ ε=E n n n F nr r r r[ ] d ( ) ( ( )) [ ]( )x x
unif

x (1)

where the exchange energy density of a uniform electron gas,
εx
unif(n) = −3kF(n)/4π, kF(n) = (3π2n)1/3, is multiplied with the
so-called enhancement factor, Fx[n](r), which goes to 1 for a
homogeneous density. (This is also the reason why all such
functionals describe the electron correlation energy completely
in the uniform gas, including the long-range part. However,
because this description is only local and effective, it does not
transfer into inhomogeneous systems, which vdW-bound
systems inherently are.)
The XC functionals studied in this work span first four rungs

of the Jacob’s ladder of density functionals.15 The local density
approximation (LDA, first rung) is defined by setting Fx[n] =
1.16 In a generalized gradient approximation (GGA, second
rung), the enhancement factor depends locally on the
dimensionless density gradient, s[n] = |∇n|/2kF(n)n, Fx(r) =
Fx
GGA(s(r)), and it is the particular form of Fx

GGA(s) that
distinguishes different GGAs. Our study includes the GGA
functional from Perdew, Burke, and Ernzerhof (PBE).17

The search for semilocal functionals with the appropriate XC
range has been done mostly within the space of GGAs and in
the context of the vdW-DF nonlocal functional,2,18,19 a long-
range correlation method whose correlation range is not easily
modified. Several special-purpose functionals designed to
combine well with long-range correlation models were
developed, ranging from completely new constructions,20,21 to
recombinations of older forms,22−24 to simple reparametriza-
tions of standard functionals.25−27 (An “ideal” exchange
functional in this regard would be different from the exact
exchange, because it would still contain a part of the short-
range post-HF correlation that is not covered by GGA
correlation functionals.) Some of these functionals perform
well for vdW-bound systems (when combined with a vdW
model), but not much is known about their accuracy for other
systems, preventing them from becoming general methods. A
similar approach was used in the construction of several XC
functionals,28−30 spanning the whole Jacob’s ladder, based on
the B97 functional,31 in which the fixed vdW counterpart was
VV10 instead of vdW-DF. These functionals were designed for
and tested extensively32 on small and midsized molecules but
have not yet been adopted for solids and organic/inorganic
interfaces.
In meta-GGAs, the third rung of the Jacob’s ladder, still

higher derivatives of the electron density (or occupied orbitals,
ϕi) beyond the gradient are used to construct the enhancement
factor, Fx. This includes the Laplacian of the density and the KS
kinetic energy density, τ[n] = ∑i

occ|∇ϕi|
2/2. Three meta-GGAs

are included in this study: TPSS,33 M06-L,34 and the already
mentioned SCAN. In both of them (and in SCAN only so), the
kinetic energy density enters via a local density parameter,
α[n](r), which serves as a measure of localization of
electrons,35

α τ τ τ= − ≥( )/ 0W unif
(2)

where τW[n] = |∇n|2/8n is the von Weizsac̈ker kinetic energy
functional, exact for single-orbital electron densities, and τunif(n)

= 3kF(n)
2n/10 is the Thomas−Fermi kinetic energy functional,

exact for the uniform electron gas. This parameter can
distinguish different kinds of electron density:36 α ≈ 0 where
a single orbital dominates the electron density, α ≈ 1 for a
slowly varying (metallic) electron density, and α ≫ 1 where
two closed-shell electron densities overlap, which is character-
istic of vdW-bound systems in equilibrium (and to lesser degree
also for intershell regions within atoms and molecules35).
SCAN uses this information directly by interpolating and
extrapolating forms constructed for α = 0 and α = 1, using the
following function:

α α α θ α

α θ α

= − − −

− − −

f c

d c

( ) exp( /(1 )) (1 )

exp( /(1 )) ( 1)
1x

x 2x (3)

where θ is the Heaviside step function and c1x = 0.667, c2x = 0.8,
and dx = 1.24 are three of the total seven parameters in SCAN
which are determined by fitting to properties (norms) of
several model systems.
Commonly, the strength of exchange functionals for vdW-

bound systems has been estimated from the behavior of FX[n]
for large values of the reduced gradient, s[n], which are
characteristic of the density tails, where density overlap in vdW
systems occurs. In general, this analysis leads to conclusions
similar to those we find by the analysis of binding energies in
this work. For instance (referring to Figure 1), FX grows faster
with s in RPBE than in PBE, and in both cases FX is well above
that of LDA (value of 1). Both of these observations are in line
with the effective range observed on the binding-energy curves
of both the uracil dimer and the buckyball−catcher complex. In
meta-GGA functionals, FX becomes a two-dimensional function
(depending on s and α), and judging the effective range from its
behavior becomes more complicated. In this work, we provide
an alternative analysis of the effective range of XC functionals,
which can be universally applied to both GGA and meta-GGA
functionals and is not limited to exchange functionals.
The fourth rung of functionals contains GGAs and meta-

GGAs with partial admixture of exact exchange, which is
nonlocal functional of the occupied orbitals. As in HF, exact
exchange does not contribute to the vdW attraction at any
distance, but substantially improves accuracy of (meta-)GGAs
for many chemical problems. Here, we study the hybrid GGAs
PBE037,38 and B3LYP.39 We also analyze SCAN0,40 a PBE0-
like version of SCAN with 25% of exact exchange. (We do not
include the fifth-rung functionals, such as the random-phase
approximation or double-hybrid functionals, because they
already contain long-range electron correlation by construction,
at the price of much increased computational cost.)

van der Waals Methods: Long-Range Correlation
Models. By construction, density functionals from the first
four rungs cannot describe long-range electron correlation. We
use three different vdW methods to form DFT+vdW methods
that capture the correlation of electrons at all interelectronic
distances. All three have some explicit form of range separation
built into them, which enables us to use them as probes to
examine the implicit correlation range of the semilocal XC
functionals. Hence, we briefly review the range-separation
mechanisms in these vdW methods.
MBD is a many-body interatomic model of long-range

electron correlation based on density-dependent atomic
polarizabilities and a dipole potential in place of the electronic
Coulomb potential. To avoid double counting of the electron
correlation at short range, where the density functionals

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.7b01172
J. Chem. Theory Comput. 2018, 14, 1361−1369

1363

http://dx.doi.org/10.1021/acs.jctc.7b01172


describe it (and are better at that job than a long-range model
can be), the dipole potential is damped, and the onset of this
damping is controlled via a single parameter, βMBD, that relates
to atomic vdW radii.
The nonlocal functional of Vydrov and Van Voorhis

(VV10)3 is a point-pairwise long-range correlation model
based on a local effective polarizability functional of the
electron density. Here, the mechanism for damping works by
reducing the polarizability at two interacting points if they are
too close, and the parameter controlling the range, bVV10, relates
to the magnitude of the local effective polarizability.
Both MBD and VV10 are functionals of the electron density.

In contrast, the D3 method by Grimme et al.6 is a pairwise (or
three-body) interatomic vdW model based on atomic polar-
izabilities that depend only on the local atomic structure, and
on damped dipole−dipole and dipole−quadrupole potentials.
The particular form of damping in D3 received some
attention,41−44 and of the two main variants (both based on
atomic vdW radii), the original one is similar to that used in
MBD, whereas the other, originally from Johnson and Becke4

(BJ), has a different limiting behavior at short range. Because
our goal here is to cover a broad range of vdW models, we use
the BJ damping for its distinction from the damping used in
MBD. The BJ-damped D3 method uses three parameters that
control its short-range behavior: s8

D3 controls global mixing of
the dipole−quadrupole term (which is inherently short-ranged
due to its faster algebraic decay compared to the case of the
dipole−dipole term), and the closely related a1

D3 and a2
D3

control the onset of the dipole−dipole term (a1
D3 scales vdW

radii, a2
D3 offsets them).

VdW Benchmark Sets from Dimers to Crystals.
Whereas the vdW models have an explicit correlation range,
the range of semilocal density functionals is only implicit, and
the combined DFT+vdW models are therefore constructed by
optimizing the range separation in vdW models against some
benchmark properties, usually binding or lattice energies.
Several benchmark sets of vdW-bound systems have been
established, of which we use predominantly three: the S66×8
set of 66 smaller organic dimers,45 the X23 set of 23 molecular
crystals,46,47 and the S12L set of 12 large supramolecular
complexes.48 The S66×8 set is especially useful here, because
each of the 66 dimers is given at 8 intermolecular distances
distributed around the equilibrium distance, enabling at least
partial separation of the short- and long-range behavior of a

method. Further vdW benchmark sets include the 3B-69 set of
three-body interaction energies of small molecules49 and the
X40 set of binding energies of halogenated dimers.50

Here, we shortly discuss only the expected accuracy of the
reference values in the benchmark sets and refer the reader to
the cited works for additional details. The S66×8 set was
benchmarked with the coupled-cluster method with single,
double, and perturbative triple excitations at the complete basis-
set limit (CCSD(T)/CBS), a method that has been itself
benchmarked to give at least an order-of-magnitude more
accurate binding energies than any of the DFT+vdW methods
investigated here.51 The X23 benchmark lattice energies were
obtained from experimental sublimation enthalpies by sub-
tracting the zero-point vibration energy, with the estimated
uncertainty of 1 kcal/mol. This we recently confirmed by
CCSD(T) calculations of the benzene crystal (13.4 kcal/mol
compared to the benchmark value of 12.4 kcal/mol).52 The
S12L reference binding energies were obtained by subtracting
calculated solvation and zero-point energies from experimental
free energies of association. Such a procedure has inherent
uncertainty of several kcal/mol, which is supported by recent
accurate diffusion quantum Monte Carlo calculations of the
buckyball-catcher complex (30 ± 1 kcal/mol compared to the
benchmark value of 27.5 kcal/mol).53

The performance of approximate DFT+vdW methods is
evaluated by comparing calculated binding energies, Ei, to the
reference values, Ei

ref, yielding a distribution of errors, ΔEi = Ei
− Ei

ref. Because the interaction energies in vdW systems span
orders of magnitude, we use relative errors, ΔrEi = ΔEi/(−Ei

ref)
(assuming Ei are negative). The comparison of error
distributions between different methods and systems is aided
by introducing various statistical measures. Two popular
measures are the mean absolute error (MAE), ∑i|ΔEi|/N,
and mean absolute relative error (MARE), ∑i|ΔrEi|/N, which
both individually serve well as a single numerical indicator of
performance but do not provide much insight into the actual
error distributions. Instead, we use the mean relative error
(MRE), ∑iΔrEi/N, and the standard deviation of the relative
errors (SDRE),

∑= Δ −
N

ESDRE
1

( MRE)
i

ir
2

This enables us to study both the systematic error of a method
(overall underbinding or overbinding), represented by MRE,

Figure 2. Distributions of relative errors in binding energies on the S66×8 set of several DFT+MBD combinations. The distributions are displayed
as box-and-whisker plots: a box shows the quartiles and whiskers represent the rest of the distribution, except for outliers that are more than 2.5-fold
the interquartile distance from the box, which are shown individually. The x-axis labels denote the functional and the value of the MBD range-
separation parameter, βMBD. The blue−red spectrum encodes the scaling, q, of the respective equilibrium distances of individual complexes. The
green numbers indicate the mean absolute error (kcal/mol) for q = 1. The values of βMBD were selected as follows: β-values shown for PBE, PBE0,
B3LYP, SCAN* (see text), and M06-L optimize MARE for q = 0.95−1.05; β = 1.4 for LDA optimizes MARE for q = 2; and for SCAN and all q, β =
1.09 optimizes SDRE, and β = 1.16 optimizes MRE.
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and the “statistical” error (how consistent a method in terms of
the range of errors), represented by SDRE.

■ RESULTS

To study the range of the density functionals LDA, PBE, TPSS,
SCAN, PBE0, B3LYP, SCAN0, and M06-L, we evaluated their
combinations with the vdW methods MBD, VV10, and D3 at a
range of their respective range-separation parameters, on the
benchmark sets S66×8, X23, S12L, 3B-69, X40, and on rare-gas
dimers. We analyze the first three (S66×8, X23, S12L) in detail
below in Figures 2 and 3, whereas the results from 3B-69
(Figure S1), X40 (Figure S2) and rare-gas dimers (Figure S3)
are presented in the Supporting Information because they do
not reveal any additional trends in the data. The full data,
obtained with FHI-aims54 and Quantum Espresso,55,56 as well
as computational details and other resources, are published via
a Git repository57 and summarized in the Supporting
Information.
The case of the S66×8 set and different DFT+MBD

combinations (Figure 2) shows that summarizing the error
distributions into a single number such as the mean absolute
error reduces the method comparison to a one-dimensional
classification, whereas comparing the full distributions in fact
reveals distinct patterns specific to individual functionals. Of the
tested functionals, LDA is the only one that systematically
overbinds S66×8 at equilibrium even without any long-range
correction. At the same time, when the equilibrium distances
are scaled by 2, LDA predicts essentially no binding. In this
regard, although LDA binds vdW systems in equilibrium (too)
strongly, it is very short-ranged. The tail behavior can be fixed
accurately by MBD with βMBD = 1.4, but the short-range
overbinding cannot be compensated by a vdW energy term.
The increased overestimation of the XC energy with decreased
distance then leads to the well-known underestimation of
binding distances by LDA. Already, LDA thus illustrates that
the degree to which a (semi)local functional binds vdW systems

is in general not a good measure for how well-suited it is for a
generally applicable DFT+vdW method.
In contrast, both PBE and PBE0 are strongly underbinding

S66×8 at all intermolecular separations, but with MBD and
appropriate range separation (βMBD ≈ 0.83), the resulting PBE
+MBD and PBE0+MBD methods are well balanced, with
symmetric error distributions, MAE independent of distance,
and SDRE monotonously increasing at shorter distances. The
admixture of exact exchange decreases SDRE from 10.2% with
PBE to 8.7% with PBE0 at equilibrium, but in general has only
a small effect. Another hybrid GGA, B3LYP, behaves as a true
opposite of LDA, being at the same time very repulsive, yet
quite long-ranged. Even with a fairly short-range correlation
covered by MBD (βMBD ≈ 0.7), B3LYP+MBD still underbinds
at equilibrium, and perhaps more surprisingly at longer
distances. In contrast to PBE/PBE0, the distributions are
highly asymmetric, with underbound outliers being mostly the
hydrogen-bonded complexes.
With SCAN, optimizing for MRE and SDRE leads to

somewhat different values of βMBD, 1.09 and 1.16, respectively,
and correspondingly different error distribution profiles. Both
of these β values are substantially larger than that for PBE,
demonstrating the potentially longer range of SCAN. When
SDRE is optimized, SCAN+MBD has consistently narrower
error distributions compared to those of PBE+MBD across all
distances, with a slight systematic overbinding that grows with
decreasing distances. When MRE is optimized, the profile of
SCAN+MBD is similar to that of PBE+MBD, with smaller
outliers. Adding exact exchange in SCAN0 (not shown) has an
even smaller effect than in PBE0, making the SCAN and
SCAN0 error distributions almost indistinguishable.
Finally, M06-L requires only slightly larger amount of long-

range correlation than SCAN, and most of the complexes from
the S66×8 set are described well around equilibrium. But
several outliers are strongly overbound, and all complexes are
overbound at longer distances, which is in line with previous

Figure 3. Dependence of means (MRE) and standard deviations (SDRE) of relative errors in binding energies on range-separation parameters.
Three long-range correlation models with their respective parameters are shown: (a) MBD with βMBD, (b) VV10 with bVV10, and (c) D3 with a2

D3.
Density functionals correspond to columns, and benchmark sets to rows within each subplot. Only the equilibrium-distance configurations of the
S66×8 set are used. SCAN* denotes two reparametrizations of the SCAN functional discussed in the text. The vertical dotted lines show where
MRE equals to zero or SDRE reaches minimum. For DFT+D3, two choices are shown of the two other range-separation parameters in D3: a1

D3 and
s8
D3.
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studies.58 Both issues may stem from the fact that the heavily
fitted M06-L is parametrized also on the S22 set, a smaller
version of S66×8, but S66×8 contains additional complexes
and out-of-equilibrium complexes for which M06-L was not
“trained”.
Of the tested functionals, PBE and SCAN (or their hybrid

versions) show a potential to work as general balanced DFT
+vdW methods. To rule out the possibility that this conclusion
about the two functionals is specific to MBD, we studied how
MRE and SDRE of their combinations with MBD, VV10, and
D3 depend on the respective range-separation parameters
(Figure 3). Comparing the results for the S66×8 set shows that
all three vdW models have similar behavior, including the
increased ambiguity in optimizing for either SDRE or MRE on
the X23 set in the case of SCAN. It is the case even for D3,
which is potentially more flexible when adapting to a functional
thanks to its three parameters. Furthermore, Figure 3 shows
that whereas the optimal range separation of the vdW models is
shared across different system types for the PBE functional, this
is not the case for SCAN, for which the XC range seems to
grow with the system size (see Figure S4 for system-size
dependence of the binding-energy errors within each data set).
All these observations are true for all three vdW models. The
results for other functionals are presented in Figure S5 and
summarized in Table 1.
To gain further insight into the range of the functionals

beyond statistical analysis, we calculated the binding energies of
a series of graphene-flake dimers dimers ranging from a
benzene dimer to a graphene bilayer using DFT without any
long-range correction (Figure 4). We consider LDA as a
reference short-range functional, accounting for any potential
edge effects, and PBE+MBD as a reference full-range method.

The functionals B3LYP, PBE, and TPSS have a behavior similar
to that of LDA, with the binding energies being offset only by a
constant. In contrast, the SCAN and M06-L show a much

Table 1. Overall Performance of DFT+MBD/VV10/D3 Methods

MAREa MREb

XC S66 X23 S12L S66 X23 S12L βMBD c

MBD
LDA 32% 21% 12% −31% −17% 0.1% ∞
B3LYP 15% 8.0% 12% 5.2% −2.4% 2.5% 0.64
PBE 8.4% 6.1% 5.3% −2.1% −2.6% −0.4% 0.84
PBE0 7.6% 5.4% 6.5% −1.1% −1.7% −4.4% 0.85
SCAN 4.8% 8.4% 11% −3.0% −7.7% −10% 1.12
M06-L 9.2% 16% 29% 2.4% −16% −28% 1.20

MAREa MREb

XC S66 X23 S12L S66 X23 S12L bVV10

VV10
LDA 36% 37% 21% −27% −37% −21% ∞
B3LYP 11% 32% 45% −9.3% −32% −45% 4.6
PBE 9.9% 15% 15% −6.1% −15% −15% 6.8
PBE0 8.3% 15% 20% −5.3% −15% −20% 6.9
SCAN 9.3% 10% 11% 2.4% −9.4% −9.9% 13.7
M06-L 11% 17% 27% 5.5% −17% −27% 16.2

MAREa MREb

XC S66 X23 S12L S66 X23 S12L a2
D3

LDA 33.1% 24.9% 11.5% −32.2% −22.6% −2.7% ∞
B3LYP 17.0% 10.3% 16.9% 5.4% 2.6% 13.0% 1.62
PBE 10.6% 7.1% 11.7% −1.1% 2.7% 10.3% 3.0
PBE0 9.9% 6.2% 9.1% −1.2% 3.2% 5.1% 3.1
SCAN 6.0% 7.4% 7.1% −3.8% −5.0% −5.0% 5.1
M06-L 8.3% 14.5% 24.1% 0.9% −14.2% −23.5% 5.6

aMean absolute relative error. bMean relative error. cRange-separation parameter minimizing MARE on S66×8.

Figure 4. Binding energies of graphene-flake dimers. The individual
data points correspond to (increasing in size) benzene, naphthalene,
pyrene, coronene, two larger circular hexagonal flakes (shown), and
graphene. All dimers are in a parallel-displaced configuration, as cut
out from a graphite crystal without any geometry relaxations. The
geometries and computational details are available in the Supporting
Information. The plotted quantity is binding energy with respect to
the LDA binding energy, per carbon atom. The (infinite) number of
atoms in graphene is set arbitrarily to 500.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.7b01172
J. Chem. Theory Comput. 2018, 14, 1361−1369

1366

http://dx.doi.org/10.1021/acs.jctc.7b01172


stronger dependence on the system size, at both the small and
large ends of the spectrum. The difference in the offset to LDA
between benzene dimer and graphene is 60% for M06-L and
35% for SCAN with respect to PBE+MBD. The ability to
capture at least partially this system-size effect could be seen as
advantageous, but it is unfortunate for developing DFT+vdW
methods, because it breaks the core assumption that the
functionals behave as short-range models of the electron
correlation. After all, these functionals are semilocal by
construction and the fact that they are sensitive to this strongly
nonlocal environment contradicts this semilocality. Further-
more, there are no known nontrivial exact constraints on the
XC energy of overlapping density tails, and so the behavior of
current semilocal functionals for such systems is essentially an
uncontrolled result of the overall functional design, which
complicates any development of “farsighted” density func-
tionals. The fact that a semilocal functional can capture a
nonlocal information about the system in the first place
(besides that contained implicitly in the electron density) can
be understood by recognizing that the kinetic energy density,
while being an explicit local function, is in fact an implicit
nonlocal functional of the electron density.
Both SCAN and M06-L are meta-GGAs, but so is TPSS,

which does not show this sensitivity. We speculate that in the
case of SCAN, this sensitivity is caused by the particular
parametrization of its dependence on the dimensionless
electron localization parameter, α (see Background). The
values of α typically count in single figures within the electronic
valence shells and decay close to zero with distance from the
electronic system, while crossing α = 1 at some point.35,36 (This
is followed either by asymptotic decay to zero in the case of
valence s-like orbitals or by asymptotic increase to infinity in all
other cases.) Among meta-GGA functionals, SCAN has a
relatively wide plateau around α = 1 (due to eq 3),59 where the
interpolating function is equal to 1, and the functional
dependence of FX becomes that of the fourth-order expansion
around the uniform electron gas (see Figure 5). This results in

spatial regions in the electron density tails (dominated by
HOMO, the highest-occupied molecular orbital) that are
described with a uniform-like functional instead of the more
appropriate single-orbital form of α ≈ 0. This can lead to
sudden spikes in the exchange−correlation potential fairly
outside the spatial regions where covalent bonding occurs.60

In the series of graphene-flake dimers, the electronic gap
(calculated with SCAN) decreases from 4.7 eV for the benzene
dimer to 0.9 eV for the graphene bilayer, which makes the
density tail decay slower with increasing system size. Because

the α = 1 behavior of SCAN makes it quite sensitive in the
density tails, whose overlap also encodes the vdW bonding on
the electron-density level, it only makes sense that SCAN is
able to extract the nonlocal information about the system size
via the decreasing electronic gap. This mechanism could be also
partially responsible for the discrepancies in optimal range
separation for SCAN observed on the S66×8, X23, and S12L
sets (Figure 3).
To check this hypothesis, we constructed several reparamet-

rizations of SCAN and tested them on these benchmark sets.
We focused on the three parameters in eq 3 because their
values are determined weakly, having been fitted only to
system-specific rather than universal norms. We found that the
overall XC range of SCAN can be changed substantially by
modifying either of these parameters, without any regression in
the overall performance of the SCAN+vdW methods. However,
the system-size dependence of the optimal range separation for
SCAN is not affected by either of them. For illustration, Figures
2, 3, and 4 show results for a SCAN reparametrization with dx
changed from 1.24 to 1.6, which minimizes the overall error on
S66×8 and reduces the XC range of SCAN (optimal βMBD of
0.97). Figure 4 clearly shows that the reparametrization does
not change the sensitivity of SCAN in the density tails, as it
only shifts the binding energy in graphene flakes by a constant.

■ DISCUSSION
SCAN has been previously combined with VV10 by Peng et
al.14 and with D3 and VV10 by Brandenburg et al.61 The
obtained optimal values of bVV10 were 15.7 and 14.0,
respectively, and optimal parametrization of D3 was found to
be s8

D3 = 0, a1
D3 = 0.54, and a2

D3 = 5.4. From the results in Figure
3, this corresponds to an optimal MRE on S66×8 for SCAN
+VV10 (but systematic overbinding on X23 and S12L), and to
optimal statistical error (SDRE) for SCAN+D3, leading again
to some degree of systematic overbinding. Brandenburg et al.61

associated this tendency mainly with hydrogen-bonded systems,
which is in line with the observed overbinding of various ice
structures by SCAN (without any vdW correction).62

Peng et al.14 argued that shifting the range separation
between a semilocal functional and a vdW model toward the
latter is beneficial. Such a shift could also avoid some of the
problems that long-range correlation models need to deal with
at short range, such as the quadrupole interaction. Our results
confirm that such a shift is indeed possible in principle, but with
the caveat that the description of the intermediate range by the
density functional must be balanced and independent of system
size.
Our toy reparametrization of the SCAN functional illustrates

that the XC range of even a very sophisticated functional can be
changed by a single parameter, whose value is not fixed by any
physical constraint. At the same time, it shows that a more
subtle behavior of the XC range such as the system-size
dependence is likely a result of the inherent functional form
rather than a specific value of a numerical parameter.
Furthermore, we did not evaluate any other properties besides
vdW binding, and it is quite possible that the new parameter
values would introduce regressions for other systems. To give a
true alternative parametrization, the original fitting procedure
would need to be performed with an additional constraint on
vdW binding, perhaps expressed via a single simple system,
which is beyond the scope of this work.
The results on the graphene flakes, which do not use any

vdW method, as well as those on the vdW benchmark sets,

Figure 5. Interpolation and extrapolation used in the SCAN exchange
functional. The fixed points that are inter- and extrapolated are α = 0
and α = 1. The shape of the function is controlled with three
parameters, c1x = 0.667, c2x = 0.8, and dx = 1.24 (original values).
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which are universal across three different vdW methods, suggest
that modifying the SCAN functional would be a more
straightforward approach to fixing the observed issues with
the range separation. That being said, it is certainly possible in
principle to attack the problem from the other side, and try to
develop a more complex range-separation scheme in the
different vdW models, which would fit the effective range of the
SCAN (or another meta-GGA) functional. However, such a
scheme would certainly require explicit consideration of the
functional form of meta-GGA functionals, and perhaps
incorporation of the dependence on the density parameter α.

■ CONCLUSIONS
We showed that although the range of semilocal functionals
cannot be known explicitly, it is still possible to obtain
meaningful and detailed information about their range by
probing them with long-range correlation models, for which the
range is known explicitly. This information can then be used to
construct the functionals in such a way that their range is
consistent across different systems, a condition necessary for a
generally applicable DFT+vdW method. After all, semilocal
functionals and vdW methods model two interconnected parts
of the electron correlation, and it is reasonable to develop them
in tandem.
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