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CLONES WITH FINITELY MANY RELATIVE R-CLASSES

ERKKO LEHTONEN AND AGNES SZENDREI

ABSTRACT. For each clone C on a set A there is an associated equivalence
relation analogous to Green’s R-relation, which relates two operations on A if
and only if each one is a substitution instance of the other using operations
from C. We study the clones for which there are only finitely many relative
R-classes.

1. INTRODUCTION

Green’s relations play a central role in semigroup theory. Two elements a,b of a
monoid M are related by Green’s R-relation if and only if they generate the same
right ideal aM = bM. In particular, if M is a transformation monoid on a set
A, then two elements f = f(z) and g = g(z) of M are R-related exactly when
f(h1(z)) = g(x) and g(ha(z)) = f(z) for some hy, hy € M, that is, each one of f, g
is a substitution instance of the other by transformations from M. For example, if
M = T} is the full transformation monoid on A, then fR g if and only if f, g have
the same range.

Henno [9] generalized Green’s relations to Menger algebras (essentially, abstract
clones, the multi-variable versions of monoids), and described Green’s relations on
the clone O4 of all operations on A for each set A. He proved that two finitary
operations on A are R-related if and only if they have the same range.

Relativized versions of Green’s R-relation on the clone Oy 1y of Boolean func-
tions have been used in computer science to classify Boolean functions. In [21]
and [22] a Boolean function g is defined to be a minor of another Boolean function
f if and only if g can be obtained from f by substituting for each variable of f a
variable, a negated variable, or one of the constants 0 or 1. A more restrictive no-
tion of Boolean minor, namely when negated variables are not allowed, is employed
in [5] and [23], while in the paper [8] two n-ary Boolean functions are considered
equivalent if they are substitution instances of each other with respect to the gen-
eral linear group GL(n,F2) or the affine general linear group AGL(n,F3) where Fo
is the two-element field.

The notions of ‘minor’ and ‘R-equivalence’ for operations on a set A can be
defined relative to any subclone C of O 4 as follows: for f,g € Oy, g is a C-minor of
f if g can be obtained from f by substituting operations from C for the variables
of f, and g is C-equivalent to f if f and g are C-minors of each other. Thus, for
example, Henno’s R-relation on O4 is nothing else than O 4-equivalence, and the
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concepts of Boolean minor mentioned in the preceding paragraph are the special
cases of the notion of C-minor where C is the essentially unary clone of Boolean
functions generated by negation and the two constants, or by the two constants
only. Further applications of C-minors and C-equivalence where C is a clone of
essentially unary operations can be found in [3], [4], and [14].

The question we are interested in is the following:

Question. For which clones C are there only finitely many relative R-classes?

That is, we want to know for which clones C it is the case that the C-equivalence
relation on O4 has only finitely many equivalence classes. Let § 4 denote the set of
all such clones on A. It is easy to see that C-equivalent operations have the same
range, therefore if A is infinite, then there will be infinitely many C-equivalence
classes for every clone C, so §4 is empty. If A is finite, then the result of Henno [9]
mentioned above implies that O € §4. It is not hard to see that §4 is an order
filter (up-closed set) in the lattice of all clones on A (Proposition 2.1). Moreover,
if |A| > 1 then the clone P4 of projections fails to belong to Fa, because Py-
equivalent operations have the same essential arity (i.e., depend on the same number
of variables), and on a set with more than one element there exist operations of
arbitrarily large essential arity. Thus the order filter § 4 is proper.

The results of this paper show that the family §4 of clones is quite restricted.
Every clone C in §4 has to be ‘large’ quantitatively in the sense that it contains
a lot of n-ary operations for each n (Proposition 3.3), and it has to be ‘large’ in
the sense that there are strong restrictions on the relations that are invariant with
respect to the operations in C (Corollary 3.2).

There is a rich literature of classification results for ‘large’ subclones of O 4 when
A is finite (see [11] and the references there) where ‘large’ is usually taken to mean
‘near the top of the lattice of clones on A’. Our interest in the order filter §4 stems
from the fact that the property of being in § 4 is a different kind of ‘largeness’. Since
the family § 4 is quite restricted, the clones in §4 may be classifiable. At the same
time, §4 contains interesting families of clones: e.g., all discriminator clones ([13],
see Theorem 2.3) and all clones determined by a chain of equivalence relations on
A together with a set of invariant permutations and an arbitrary family of subsets
of A (Theorem 4.1).

Using Rosenberg’s description of the maximal clones M = Polp on a finite
set A (see Theorem 2.2) we determine which maximal clones belong to Fa (see
Theorem 7.1 and Table 1). Furthermore, for each maximal clone M that belongs
to § 4 we find families of subclones of M that also belong to §4. We also investigate
which intersections of maximal clones are in §4.

2. PRELIMINARIES

Let A be a fixed nonempty set. If n is a positive integer, then by an n-ary
operation on A we mean a function A™ — A, and we will refer to n as the arity of
the operation. The set of all n-ary operations on A will be denoted by 01(4"), and
we will write O 4 for the set of all finitary operations on A. For 1 < i < n the i-th
n-ary projection is the operation pl(.n) DAY = AL (ay,. .., an) & ag.

For arbitrary positive integers m and n there is a one-to-one correspondence
between the functions f: A™ — A™ and the m-tuples f = (f1,..., f;n) of functions



CLONES WITH FINITELY MANY RELATIVE R-CLASSES 3

p (h-ary) Polp é Fa | Proof

bounded partial order no Thm 2.5
prime permutation yes Cor 2.4
nontrivial equivalence relation yes Thm 4.1
prime affine relation no Thm 2.5
central relation

h=1 yes Cor 2.4

2<h<|Al -2 no Thm 5.3

h=]Al-1 yes Thm 5.2
h-regular relation

h < |A] no Thm 6.3

h=|A] yes Thm 6.1

TABLE 1. The membership of the maximal clones in § 4.

fir A" - A (i =1,...,m) via the correspondence

Frof=(f1,. . fm) with fi=p™offoralli=1,...,m.

In particular, p(™ = (pgn), e ,p%n)) corresponds to the identity function A™ — A™.

From now on we will identify each function f: A™ — A™ with the correspond-
ing m-tuple £ = (f1,...,fm) € ((91(4"))’” of n-ary operations. Using this con-
vention the composition of two functions f = (f1,...,fm): A” — A™ and g =
(g1,---,91): A™ — AF can be described as follows:

gof=(giof,...;grof) = (g1(fr, - fm)s- s gk(f1s- s fm)
where

9i(f1,---, fm)(a) = gi(fl(a)7 .. .,fm(a)) for all a € A™ and for all 1.
A clone on A is a subset C of O4 that contains the projections and is closed under
composition; that is, pgn) eCforalll <i<nandgofeC"™ whenever g € C(™)
and f € (C™)™ (m,n > 1). The clones on A form a complete lattice under
inclusion. Therefore for each set F' C O 4 of operations there exists a smallest clone
that contains F', which will be denoted by (F') and will be referred to as the clone
generated by F.

Clones can also be described via invariant relations. For an n-ary operation
fe OXL) and an r-ary relation p on A we say that f preserves p (or p is invariant
under f, or f is a polymorphism of p), if whenever f is applied coordinatewise to
r-tuples from p, the resulting r-tuple belongs to p. If p is an r-ary relation on A and
n is a positive integer, p™ will denote the r-ary relation “coordinatewise p-related”
on A™; more formally, for arbitrary n-tuples a; = (a;1,...,a,) € A" (1 <i<r)

(a1,...,a,) € p” <<= (a1j,...,arj) €pforall j (1<j<n).

We will say that f = (f1,..., fm) € ((91(4”))’” preserves an r-ary relation p on A if
each f; (1 <i < m) does; that is,
(ar,...,a,) €p” = (f(a),....f(a,)) € p™ forall aj,...,a, € A™.

For any family R of (finitary) relations on A, the set Pol R of all operations f € O4
that preserve every relation in R is easily seen to be a clone on A. Moreover, if A
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is finite, then it is a well-known fact that every clone on A is of the form Pol R for
some family of relations on A (see, e.g., [1, 6, 11, 15, 20]). If R = {p}, we will write
Pol p for Pol {p}.

Throughout the paper we will use the following additional notation concerning
operations and relations. The constant tuple (a, ..., a) of any length is denoted by
@ (the length will be clear from the context). If 6 is an equivalence relation on A,
then the equivalence class containing a € A is denoted by a/6. For any operation f
on A that preserves 6, f¢ denotes the natural action of f on the set A/ of f-classes.
Furthermore, for any set F' of operations contained in Pol 8 we write F? for the set
{f?: f € F}. The range of an arbitrary function ¢ will be denoted by Im ¢.

Now let C be a fixed clone on a set A of any cardinality. For arbitrary operations
fe Oil") and g € 07" we say that

e fis a C-minor of g, in symbols f <¢ g, if f = g o h for some h € (C))™;
e f and g are C-equivalent, in symbols f =¢ g, if f <¢ g and g <¢ f.
It is easy to verify (see [13]) that <¢ is a quasiorder on O4, and hence =¢, the
intersection of < with its converse, is an equivalence relation on Q4.

Fa will denote the collection of all clones C on A such that the equivalence
relation =¢ has only finitely many equivalence classes. As we discussed in the
Introduction, if A is infinite, then §4 = @, while if A is finite and |A| > 1, then the
clone O4 of all operations is in §4, and the clone P4 of projections is not.

From now on we will assume that A is finite. The next proposition contains
some useful basic facts about §4.

Proposition 2.1 ([13]). Let C be a clone on a finite set A.

(i) C € Fa if and only if there exists an integer d > 0 such that every operation
on A is C-equivalent to a d-ary operation on A.

(ii) §a is an order filter in the lattice of all clones on A; that is, if C € Fa, then
C' € §a for every clone C' that contains C.

It is well known that every clone on A other than O 4 is contained in a maximal
clone. Since Oy € Fa and F4 is an order filter of clones on A, it is natural
to ask which maximal clones belong to §a4. To answer this question we will use
Rosenberg’s description of the maximal clones.

Theorem 2.2 (Rosenberg [17]). For each finite set A with |A| > 2 the mazimal
clones on A are the clones of the form Polp where p is a relation of one of the
following siz types:

(1) a bounded partial order on A,

(2) a prime permutation on A,

(3) a prime affine relation on A,

(4) a nontrivial equivalence relation on A,
(5) a central relation on A,

(6) an h-regular relation on A.

Here a partial order on A is called bounded if it has both a least and a greatest
element. A prime permutation on A is (the graph of) a fixed point free permutation
on A in which all cycles are of the same prime length, and a prime affine relation
on A is the graph of the ternary operation x — y + z for some elementary abelian p-
group (4;+,—,0) on A (p prime). An equivalence relation on A is called nontrivial
if it is neither the equality relation 04 on A nor the full relation 14 on A.
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To describe central relations and h-regular relations we call an h-ary relation p
on A totally reflexive if p contains all h-tuples from A" whose coordinates are not
pairwise distinct, and totally symmetric if p is invariant under any permutation
of its coordinates. We say that p is a central relation on A if O # p # A", p is
totally reflexive and totally symmetric, and there exists an element ¢ € A such that
{c} x Ah=1 C p. The elements ¢ with this property are called the central elements
of p. Note that the arity h of a central relation on A has to satisfy 1 < h < |A|—1,
and the unary central relations are just the nonempty proper subsets of A.

For an integer h > 3 a family T = {601,...,6,} (r > 1) of equivalence relations
on A is called h-regular if each 6; (1 < i < r) has exactly h blocks, and for arbitrary
blocks B; of 6; (1 <4 < r) the intersection (),_, B; is nonempty. To each h-regular
family T' = {601, ..., 0, } of equivalence relations on A we associate an h-ary relation
Ar on A as follows:

A = {(ay,...,ap) € A" : for each i, ay,...,ay is not a transversal
for the blocks of 6;}.

Relations of the form A\p are called h-regular (or h-regularly generated) relations. It
is clear from the definition that h-regular relations are totally reflexive and totally
symmetric, their arity h satisfies 3 < h < |A|, and h = | 4| holds if and only if T is
the one-element family consisting of the equality relation.

We conclude this section by summarizing earlier known results proving some of
the maximal clones from Theorem 2.2 to belong or not to belong to § 4.

Theorem 2.3 ([13]). Let A be a finite set with |A| > 2.

(i) The clone on A generated by the ternary discriminator function

z, ifx=uy,
talz,y,2) =" z,y,z € A
Ay, 2) {nc7 otherwise (@9 )

18 a minimal member of Fa. Hence every clone containing ta belongs to

SA.
(i) If |A| =2, then a clone is in Fa if and only if it contains ta.

It is well known and easy to check that every maximal clone determined by a
prime permutation on A or by a proper subset of A contains ¢4. Therefore we get
the following corollary.

Corollary 2.4. Every mazimal clone determined by a prime permutation on A or
by a proper subset of A (i.e., a unary central relation on A) belongs to Fa.

Theorem 2.5 ([12]). If A is a finite set with |A| > 2, then the mazimal clones
determined by bounded partial orders or by prime affine relations do not belong to

Sa.

3. TWO NECESSARY CONDITIONS

In this section we establish some necessary conditions for a clone C on a finite set
A to belong to F4. The first condition shows that for C € §4 it is necessary that
for each subset B of A, the operations from C restrict to B so that the restrictions
that are operations on B form a clone belonging to §Fg.
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Proposition 3.1. Let C be a clone on a finite set A, let B be a nonempty subset
of A, and let Cp be the clone on B defined as follows:

Cg={flp:feCnPolB}.
IfC€§a, thenCp € §pB.

Proof. We will prove the contrapositive, so suppose that Cg ¢ §5. Our goal is to
show that C ¢ Fa. Since C4 = C, there is nothing to prove if B = A. Therefore let
us assume that B is a proper subset of A, and let 0 € A\ B. Using the assumption
Cp ¢ §p, select representatives g; (i = 1,2,...) of infinitely many different =¢,,-
classes. Define f; on A such that f;(x) = ¢;(x) if all coordinates of the tuple x are
in B and f;(x) = 0 otherwise. We will prove C ¢ § 4 by showing that the operations
fi i=1,2,...) belong to pairwise different =¢-classes.

Suppose that there exist operations f;, f; (¢ # j) such that f; =¢ f;, that is,
fi=fijohand f; = f; oh’ for some h € (C(™)" and h' € (C™)™ where m is
the arity of f; and n is the arity of f;. Let x € B™. Then f;(x) = ¢;(x) € B, so
fi(h(x)) = (f; oh)(x) = fi(x) € B. Since f;(y) =0 ¢ B if y ¢ B", we get that
h(x) € B". This shows that h preserves B, hence h|g € (Cgm))". Similarly, by
interchanging the roles of f; and f; we conclude that h’ also preserves B, and h'|g €
(C,(Bn))m. By construction, f;, f; preserve B as well, therefore f;|p = fj|p o h|g
and f;|g = fi|p oh’|g. This implies that g, = g; o h|p and g; = g; o h/|5. Hence
9i =cp gj, which contradicts the choice of the operations g;, g;. O

Corollary 3.2. Let p be a relation on a finite set A. If A has a nonempty subset
B such that for the clone determined by the restriction p|g of p to B we have that
Polp|p ¢ §p, then Polp ¢ Fa.

Proof. Let C = Polp, and let Cp be the clone defined in Proposition 3.1. First
we will show that Cg C Polp|g. Indeed, every operation in Cp is of the form f|g
for some f € CNPol B = Pol{p, B}. Since f preserves p and B, it also preserves
pN B% = p|g. Thus f|p also preserves p|p, that is, f|z € Polp|p.

If Polp|p ¢ §B, then the fact that Cp is a subclone of Polp|p implies by
Proposition 2.1 (ii) that Cp ¢ §p. Therefore it follows from Proposition 3.1 that
Polp =C ¢ F 4, as claimed. O

The second necessary condition for C € §4 is a quantitative condition indicating
that the clones in §4 are large in the sense that they must have a lot of n-ary
operations for each n.

Proposition 3.3. Let A be a k-element set. If C € Fa, then there exists a positive
constant ¢ such that |C(")\ > ckF"/™ for alln > 1.

Proof. Denote the number of =¢-classes by u. For every n > 1 the number of
n-ary operations on A is kF", therefore there must be a =c¢-class B such that
|BM)| > kF" /. Any f € B™ has at most |C(™)|™ n-ary C-minors, so we have that

cmm > |{fog:ge (C™)"}H > [BM] >k /p.

It follows that
(CO] 2 (R ) /7 = RN/ > K

The claim now follows by letting ¢ = 1/p. |
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Corollary 3.4. Let C be a clone on a k-element set A. If || < kP for all n,
where p: N — N is a function such that lim M =0, thenC ¢ Fa.

Proof. Suppose that the assumptions of the corollary hold, but C € §4. Proposi-
tion 3.3 implies then that for some positive constant ¢ we have ck*"/™ < |C(™)] for

all n. Hence ck*"/™ < kP(") for all n. Since k > 1, we get that log, ¢+ k" /n < p(n)

1
for all n, or equivalently, ]z) g; ¢ +1< 5(7) for all n. Taking the limit of both sides
" /n " /n
as n — oo we get that 1 < 0, a contradiction. O

n
Every polynomial function p satisfies the condition lim p(n) = 0, hence the

n—oo k™ /n
following statement is a special case of Corollary 3.4.

Corollary 3.5. IfC is a clone on a k-element set A such that for some polynomial
function p we have |C™| < kP for all n, then C ¢ Fa.

Remark 3.6. The converse of Proposition 3.3 is not true, that is, there exist clones
C ¢ F 4 that satisfy the conclusion of Proposition 3.3. For example, if A = {0,1}
is a 2-element set and < is the natural order 0 < 1 on A, then it follows from part
(ii) of Theorem 2.3 that the clone M := Pol < of all monotone Boolean functions
is not in 4. However, Gilbert [7] proved that

|M(")| > 2(Ln72j> for all n > 1.

If n > 2, then (Ln%J) > (Z) forall 0 < k < n and (LnT/LQj) > (g) + (Z), therefore

(Ln%j) > 2" /n. Hence |IM)| > 22"/7 holds for all n > 2. For n = 1 we have

IMD| =3>1.92"/1 Thus |M™| > 1.22"/ for all n > 1, which shows that the
clone C = M satisfies the conclusion of Proposition 3.3.

Another example is the clone Bj_5 on a k-element set A with k& > 4 that consists
of all essentially at most unary operations and all operations whose range has at
most k — 2 elements (see Section 6). We will show in Theorem 6.1 that By_o & Fa.
On the other hand,

Bl 2 (k= 2)M" = kM Tomn(h=2) — k",

where 1/2 < d = log; (k — 2) < 1. Now if we choose ¢ = k~*/2 (0 < ¢ < 1) then for
n = 1 we have that

kdkl > gk/2 — pk/2pk ckkl/l
and for n > 2 we have that dn > 1 and so

kdk" > kdkn/dn _ kkﬂ/n > Ckk"/n.

Thus, |B,(Ji)2| > ckF"/™ for all n > 1, proving that the conclusion of Proposition 3.3
holds for By _s.

Remark 3.7. Theorem 2.5 can be derived from Corollaries 3.2, 3.5, and the fact
that M ¢ §1o,13 holds for the clone M of monotone Boolean functions (see Re-
mark 3.6). Indeed, let first Pol< be a maximal clone on A determined by a
bounded partial order <. We may assume without loss of generality that A =
{0,1,2,...,k — 1} where k > 2 and the least and greatest elements of < are 0 and
1. Thus Pol <[{9,13 = M & F{0,1}, so Corollary 3.2 implies that Pol < & § 4.
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Next let C be a maximal clone on A determined by a prime affine relation. In
this case |A| = ¢" for some prime ¢ and some positive integer r. Moreover, there
exists an elementary abelian g-group (A;+) such that the n-ary operations in C
are exactly the operations Z?:l M;x; + a where a € A and each M, is an r X r
matrix over the g-element field. Thus, using the notation k := |A| = ¢" we get that
lct)| < (qT2)”qT = k™ *+1. Hence Corollary 3.5 implies that C ¢ §a

We conclude this section by two further applications of Propositions 3.1, 3.3
and their corollaries. Recall that Burle’s clone on a finite set A is the subclone
of O4 that consists of all essentially at most unary operations and all quasilin-
ear operations, i.e., all operations of the form g(hl(:cl) DD hn(xn)) where
hi,...,hn: A—{0,1}, g: {0,1} — A are arbitrary mappings and & denotes addi-
tion modulo 2. We will denote Burle’s clone by B; (see Section 6).

Corollary 3.8. If A is a finite set with at least two elements, then By & Fa.

Proof. If |A| = 2, then Burle’s clone is the unique maximal clone determined by
a prime affine relation. As discussed in Remark 3.7, in this case B; ¢ §a can be
proved using Corollary 3.5. From now on let |A| = k > 3, and assume without loss
of generality that A ={0,1,2,...,k — 1}. In this case we can employ either one of
Corollaries 3.2 and 3.5 to prove that By ¢ §a.

First we will discuss the proof that relies on Corollary 3.2. It is well known
that B; = Pol8 where (§ is the 4-ary relation on A that consists of all tuples of
the form (z,z,y,9), (=,y,2,y), and (2,y,y, ) with z,y € A. Since f|{o,1} is the
unique prime affine relation on {0,1}, our argument in Remark 3.7 shows that
Pol B|10,13 ¢ S{0,13- Thus Corollary 3.2 yields that B; = Pol 3 ¢ Fa.

To get the same conclusion using Corollary 3.5 we have to estimate the number of
n-ary operations in B;. The number of functions A — {0,1} is 2¥, and the number
of functions {0,1} — A is k2, so the number of n-ary quasilinear operations on A
is at most k%(2¥)". The number of functions A — A is k¥, so the number of n-ary,
essentially at most unary operations on A is at most nk*. Thus,

|B§n)‘ < k_2(2k)n +nkk < kk(kk)n + (kk)nkk < kk_k(kk)n — k_kn+k+17

where the second inequality holds because k > 2 and hence n < (k¥)" for all n > 1.
It follows from Corollary 3.5 that By ¢ Fa. O

In the proof of Theorem 4.1 we will see an application of Corollary 3.4 where
the function p is not a polynomial.

Our last application answers a question on minimal clones raised by P. Mayr.
Recall that a clone C on A is called minimal if C is not the clone P4 of projections,
and P4 is the only proper subclone of C. Equivalently, C is a minimal clone on A

if and only if C\ P4 # 0 and (f) =C for all f € C\ Pa.

Corollary 3.9. If A is a finite set with at least two elements, then no minimal
clone on A belongs to §a.

Proof. Assume that the statement is false, and let A be a finite set of minimum size
|A| > 2 such that §4 contains a minimal clone C. Let B be any 2-element subset
of A. Since C is a minimal clone, the clone C N Pol B is either P4 or C. Hence
the clone Cp = {f|p : f € C N Pol B} defined in Proposition 3.1 is either Pp or
a minimal clone on B. By Proposition 3.1, the assumption C € §4 implies that
Cp € §p. However, as we discussed in the introduction, Pg ¢ Fp. Therefore Cp is
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a minimal clone on B that is a member of §Fp. The minimality of A implies that
B = A and hence |A| = 2. It is well known from [16] that there are seven minimal
clones on a 2-element set, and each one of them is either a subclone of the maximal
clone M of all monotone Boolean functions, or a subclone of the maximal clone B
of all linear Boolean functions. Therefore Theorem 2.3 or Theorem 2.5 (see also
Remark 3.7) implies that C ¢ F4. This contradicts our assumption on C, and hence
proves Corollary 3.9. O

4. EQUIVALENCE RELATIONS

Let E be a set of equivalence relations on a finite set A. Our aim in this section
is to show that Pol E € §4 if and only if E is a chain (with respect to inclusion).
We will in fact prove the following stronger theorem.

Theorem 4.1. Let A be a finite set, and let E be a set of equivalence relations on
A, T a set of permutations of A, and ¥ a set of nonempty subsets of A. The clone
Pol(E,T, %) is a member of §a if and only if

(a) E is a chain (i.e., any two members of E are comparable), and

(b) T CPolE.

For any set E of equivalence relations on A we call a permutation v of A E-
invariant if v € Pol E, that is, if v is an automorphism of the relational structure
(A; E). Therefore we denote the group of E-invariant permutations of A by Aut E.
Furthermore, we denote the set of all nonempty subsets of A by P (A). Thus, in
Theorem 4.1, ¥ is an arbitrary subset of PT(A) and (b) requires that T' C Aut E.

Proof of Theorem 4.1. Necessity. Let C = Pol(E,T',X) and k = |A|. We want to
show that if (a) or (b) fails, then C ¢ §a. Assume first that (a) fails, that is,
E contains equivalence relations a and S such that a« € 8 and 8 € «a. Clearly,
C C Pol(a, ), therefore in view of Proposition 2.1 (ii) it suffices to prove that the
clone £ = Pol(«, B) fails to belong to §4. Let A denote the algebra (4;¢&). Since
&€ = Pol(a, B), it follows that a and § are congruences of A, and the clones of
the corresponding quotient algebras are Clo(A/a) = €% and Clo(A/B) = &P, the
natural actions of £ on A/a and A/f.

First we will consider the case when a A 8 = 04. Then the embedding A —
A/axA/B, a— (a/a,a/B) represents A as a subdirect product of A/a and A/S.
Hence €& — £% x £, h +— (h®, h®) is a clone embedding. This implies that for each
n’

€] < 1™ - 1) ™)
The assumption that o and § are incomparable ensures that |A/a| < k — 1 and
|A/B| <k—1. Thus

1€M< (k—1)FD" (k= 1)FD" = (k= 1)2(-D" < 200",

2 _ n
Since lim M

To prove the statement in the general case let 6 = a A3, and consider the algebra
A /6 and its congruences a/6 and (/6. Clearly, the clone of A/ is Clo(A/f) = &£,
and the assumptions ensure that a/0  §/60 and §/0 € «/6. Since a/0 N 5/0 =
0.4/¢, the special case established in the preceding paragraph shows that & ¢ Ta /0-
Hence there exists an infinite sequence of operations g, (n > 1) on A/6 such that

= 0, Corollary 3.4 implies that £ ¢ F 4.
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g; #go g; for all i # j. Now choose and fix operations f,, (n > 1) on A such that
gn = f9 for each n. Then f,, € Polf# (n > 1) and f! #eo ff whenever ¢ # j. We
claim that f; #Z¢ f; whenever ¢ # j. Suppose otherwise, and let ¢ # j be such that
fi =¢ f;. Then there exist tuples of operations h and h’ in € such that f; = f;oh
and f; = f; oh’. Since all operations in h and h’ belong to & = Pol(«, ), they
preserve 6 = a A . Hence we get that f{ = f? oh? and f! = f/ o (h')?, which
contradicts the choice of the operations g, = f¢. Thus there are infinitely many
=¢-classes, and hence £ ¢ §4. This proves the necessity of condition (a).

Now assume that condition (b) fails, and let v € T" be such that v ¢ Pol E,
that is, 7 ¢ Polp for some p € E. Let v(p) = {(7(a),7(b)) : (a,b) € p}, and let
E'=FEU{v(p)}. Clearly, v(p) is an equivalence relation on A, and v(p) # p, since
v ¢ Polp. As A is finite, and p and v(p) have the same system of block sizes, it
follows that p and ~y(p) are incomparable. Hence E’ is a set of equivalence relations
that is not a chain. It is easy to verify that every operation that preserves both ~y
and p also preserves (p). Therefore C C Pol E’, and the failure of condition (a)
shows that Pol E' ¢ §4. Thus Proposition 2.1 (ii) implies that C ¢ F 4, establishing
the necessity of condition (b).

Sufficiency. Given a chain F of equivalence relations, there is a smallest clone of
the form Pol(E, T, ) satisfying the assumptions of the theorem and also condition
(b), namely the clone Pol(E, Aut E, PT(A)). Therefore, by Proposition 2.1 (ii), it
suffices to prove that this clone belongs to § 4. This claim, which is the hardest part
of Theorem 4.1, is stated below as Theorem 4.2, and will be proved separately. [

Theorem 4.2. If E is a chain of equivalence relations on a finite set A, then
Pol(E,Aut E, PT(A)) € Fa.

Remark 4.3. For every chain E of equivalence relations on A, the clone Pol(E JAut E, Pt (A))
contains a 2/3-minority operation, i.e., a ternary operation m such that

(4.1) m(z,z,y) =y, m(z,y,z) =2z, and m(x,y,y) =2

for all z,y € A. To define such an operation let 8(a,b) denote the least equivalence
relation € € EU{04,14} such that acb (a,b € A). It is clear that if a,b,c € A and
0(a,b) < 6(a,c),0(b,c), then O(a, c) = 6(b, c). We will write a ~ b ~ ¢ to denote that
0(a,b) = 0(a,c) = 6(b,c), and a ~ b 7 ¢ to denote that 6(a,b) < O(a,c) = (b, c).
Since EU{04,14} is a chain, it follows that exactly one of the following conditions
holds for any triple (a,b,c) € A3:

a~br~e, ({)a~boe (i)a~cgd (iv)b~csa.

We define a ternary operation m on A as follows:

m(m,y, Z) = {

z %facwyrvzorxwyyéz, (2,9, 2 € A).
x fex~zodyory~zide
For any z,y € A we have z ~x ~ yif x = y and ¢ ~ = % y if  # y. Hence,
in either case, the definition of m shows that the equalities in (4.1) hold, which
proves that m is a 2/3-minority operation. Since on any input triple the value of
m equals one of the inputs, it follows that m preserves all nonempty subsets of
A. If v € Aut E, then 0(a,b) = 9(7(a),'y(b)) holds for all a,b € A. Consequently,
for each one of conditions (i)—(iv), a triple (a,b,c) € A3 satisfies this condition
if and only if the triple (v(a),v(b),7(c)) does. This implies that m preserves all
permutations v € Aut E.
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Finally, to see that m preserves all equivalence relations in E let p € E, and let
(a,b,c) p®(a’,V',c’). As we will now show, the latter assumption implies that

0(a,b) V p=06(a",b')V p,
(4.2) O(a,c)Vp=06(d,c)Vp,
O(b,c) VvV p=0(",c)Vp.
Indeed, by our assumption we have that a pa’ and bpb’, therefore
(a',b') € pob(a,b)opCb(a,b)Vp.

Here 0(a, b)V p is the larger one of 8(a, b) and p in the chain E, so (a/,b") € 8(a,b)Vp
implies that the least equivalence relation 6(a’,?’) in E containing the pair (a’,b’)
satisfies 0(a’,b') < 0(a,b)V p. Hence 6(a’, ')V p < 6(a,b) V p. By interchanging the
roles of a,b and a’, b we get the reverse inclusion 6(a,b) V p < 6(a’,b') V p, which
proves the first equality in (4.2). The second and third equalities can be proved
similarly.

Our goal is to verify that the assumption (a, b, ¢) p (a/, ', ¢’) implies that m(a, b, c) pm(a’, ¥, ).
If apbpc or apbpcd, then by the assumption
(a,b,c) p? (a’, V', ') all six elements a, b, ¢, a’, b, ¢ lie in the same p-class, so m(a, b, c)
and m(a’, V', '), too, lie in that p-class, because m(a, b, c) € {a,c} and m(a’, V', ') €
{d’,c'}. Thus m(a,b,c) pm(a’,V',c’) holds in this case.

Now assume for the rest of the proof that

4.3 a,b,c are not all p-related, and a’,b', ¢’ are not all p-related.
p p

We want to prove that

(*) for each one of conditions (i)—(iv), (a, b, ¢) satisfies this condition if and only
if (a/, ¥, ") does.
By the definition of m, this will imply that (m(a,b,c),m(a’,t',c')) = (a,a’) or
(¢, ), hence m(a,b,c) pm(a’,b',¢'). Since statement (x) is invariant under per-
forming the same permutation on the coordinates of the two triples, and since the
roles of the two triples are symmetric, (x) will follow if we show that a ~ b ~ ¢
implies a’ ~ b ~ ¢/, and a ~ b ¢ ¢ implies a’ ~ b «£ ¢’. So, let us assume first that
a ~ b~ ¢, that is, 6(a,b) = 0(a,c) = 0(b,c). Since EU{04,14} is a chain, our
assumption (4.3) forces that 6(a,b) = 0(a,c) = 6(b,c) > p. Therefore (4.2) implies
that
p < 0(a,b) =60(a,c) =0(b,c) =0(a" V')V p=0(,)Vp=0, ) Vp.
The inequality p < 0(a’,b") V p shows that p < 0(a’,b"). Similarly, p < 6(d’,c)
and p < 6(V/,c¢’). Now the displayed equalities imply that 6(a’,b") = 0(a’, ') =
0(t',c')(= 6(a,b)), and hence a’ ~ b’ ~ ¢/. Next let us assume that a ~ b ¢ c.
Thus, 6(a,c) = 0(b,c) > 0(a,b), and since E U {04,14} is a chain, we get from
our assumption (4.3) that 6(a,c) = 6(b,c) > p. This inequality, combined with the
second and third equalities in (4.2) yields, as before, that
0(a’, ") =0(,c") =6(a,c) =0(b,c) > p.

The same holds with p replaced by 6(a, b), since §(a,c) > 0(a,b). Therefore p can
also be replaced by « := 0(a,b) V p, the larger one of 6(a,b) and p. Hence

0(a’,c)=0(,c) > a.
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Making use of (4.2) again we also get that a > 6(a’, '), because
a=0(a,b)Vp=0(a,b)Vp>0@d,b).

Thus a’ ~ b # ¢/, which completes the proof of (x), and thereby establishes the
existence of a 2/3-minority operation in the clone Pol(E, Aut E, PT(A)) for every
chain E of equivalence relations on A.

Remark 4.4. If £ = () (or E C {04,14}), then Aut E is the full symmetric
group on A, the 2/3-minority operation m defined in Remark 4.3 is the ternary
descriminator t4 on A, and Pol(E,Aut E,P+(A)) is the clone generated by t4.
Therefore Theorem 4.2 includes the statement (t4) € §4 from Theorem 2.3 (i) as
a special case.

Let FE be a chain of equivalence relations on A, let I' = Aut F, and let C =
Pol(E, Aut E,P* (A)) We will prove Theorem 4.2 by associating to each operation
on A a finite structure of bounded size in such a way that if two operations have
isomorphic structures associated to them, then they are in the same =¢-class. This
finite structure, to be defined in detail below, will be a I'-set with a tree structure
on it, and the leaves of the tree will have a labeling that is compatible with the
action of T'.

Let G be an arbitrary group. A G-set is a unary algebra (U; G) such that each
g € G acts on U by a permutation U — U, u — ¢ - u, and for any g,¢" € G and
u € U, we have g¢' -u = g- (¢’ - u). Since each g € G acts by a permutation of U,
it follows that the neutral element 1 of G acts by the identity permutation, that is,
1. u = wu holds for all w € U. Consequently, for any g € G, the actions of g and
¢! are inverses of each other. If there is no danger of confusion, we will write gu
instead of g - u. For any element u € U, the stabilizer of u in G is the subgroup
G, :={9 € G: gu=u} of G. For u € U the subalgebra Gu := {gu : g € G}
of (U;G) generated by u € U is called the G-orbit of u. It is well known and
easy to check that the G-orbits of (U; @) are minimal subalgebras, and therefore
they partition U. If (U;G) and (V;G) are G-sets, then a mapping ¢: U — V
is a homomorphism (U;G) — (V;G) of G-sets, if ¢(gu) = g - ¢(u) holds for all
u € U and g € G. By a pointed G-set (U;u,G) we mean a G-set (U;G) with a
distinguished element u € U. If U = Gu is a G-orbit, we will call the pointed G-set
(U;u, @) as well as the pointed set (U;u) (if the G-set structure is irrelevant) a
pointed G-orbit. A homomorphism (U;u,G) — (V;v,G) between pointed G-sets
is a homomorphism ¢: (U;G) — (V;G) between the underlying G-sets such that
o(u) = v. If (U;u,G) and (V;v,G) are pointed G-orbits, that is, U = Gu and
V = Gw, then a homomorphism ¢: (U;u,G) — (V;v,G) exists between them if
and only if G,, C G,; moreover, ¢ is uniquely determined: ¢: U = Gu - Gv =V,
gu — gv for all g € G. We will denote this homomorphism (if it exists) by Xu,v-
Clearly, Xu,o = Xgu,gv for all g € G, and X, is an isomorphism if and only if
G, = G,.

By a tree we mean a finite partial algebra P = (P;*,1p) where *: P\{1p} — P
is a function, called the successor function, such that the distinguished element 1p
can be obtained from any other element a € P\ {1p} by repeated application of
*. Denoting the i-th power of * by * we get that for each a € P there is a unique
integer d > 0 such that a*' = 1p, which will be called the depth of a. The only
element of depth 0 is 1p. An element a of P will be called a leaf if it is not in the
range of the successor function. We will denote the set of leaves of P by P,. If
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every leaf of P has the same depth d, we will say that the tree P has uniform depth
d.

P =(P;*1p) and Q = (Q;*, 1) are trees, we will call a function ¢: P — Q
a homomorphism P — Q of trees if

(HO) ¢(1p) = 1q,

(H1) ¢ maps leaves to leaves, that is, ¢(Pmin) € Qmin, and

(H2) ¢(a*) = p(a)* foralla € P\ {1p}.

An automorphism of P is a bijective homomorphism P — P.

A tree Q = (Q; %, 1¢) is a subtree of another tree P = (P;*,1p) if Q@ C P and the
identity function () — P, ¢ — ¢ is a homomorphism Q — P. Thus Q is a subtree
of P if and only if Q C P, 1g = 1p, Qmin C Pmin, and the successor function of Q
is the restriction to @ \ {1g} of the successor function of P.

Let G be a group. We define a G-tree to be a tree on which G acts by au-
tomorphisms; more precisely, a G-tree is a structure P = (P;*,1p,G) such that
(P;*,1p) is a tree, (P;G) is a G-set, and for each g € G the permutation a — ga
of P is an automorphism of the tree (P;*,1p). The assumption that G acts by tree
automorphisms implies that in every G-tree P = (P;*,1p,G),

g-lp=1p forall g € @G,
and
' =1p (ga)*d(:ga*d)zlp foralla € P\ {lp} and g € G.

Therefore each G-orbit Ga of P consists of elements of the same depth. Similarly,
if a is a leaf, then so are all elements in the G-orbit Ga of a. Thus the leaves of P
form a G-set (Pin; G).

For arbitrary G-trees P = (P;*,1p,G) and Q = (Q;*,1g,G) a G-homomor-
phism P — Q is a mapping ¢: P — @ that is a homomorphism (P;*,1p) —
(@;*,1qg) of trees and also a homomorphism (P; G) — (Q; G) of G-sets; that is, in
addition to (HO), (H1), and (H2), ¢ also satisfies

(H3) ¢(ga) =g-¢(a) for alla € P and g € G.

A G-tree Q = (Q;*,10,G) is a G-subtree of P = (P;*,1p,G) if @ C P and the
identity function Q — P, g — ¢ is a G-homomorphism Q — P. Thus Q is a G-
subtree of P if and only if (Q; *, 1¢) is a subtree of (P;*,1p) and the action of each
g € G on Q is the restriction to @ of the action of g on P. Hence, if P = (P;*,1p, Q)
is a G-tree, then a subtree (Q;*,1p) of (P;*,1p) is (the underlying tree of) a G-
subtree of P if and only if @ is a union of G-orbits of P.

Next we will introduce the concept of a labeled G-tree. The labels will come
from a structure (5; <, G) where (S5; <) is a partially ordered set on which G acts
by automorphisms; more precisely, (S;<,G) is a structure such that (5;<) is a
partially ordered set, (S; G) is a G-set, and for each g € G, the permutation s — gs
of S is an automorphism of (S;<). If P = (P;*,1p,G) is a G-tree, then an S-
labeling of the leaves of P is a homomorphism £: (Pyin; G) — (S;G) of G-sets. An
S-labeled G-tree is a structure (P;¢) = (P;*,1p,G;{) where P = (P;*,1p,G) is a
G-tree and / is an S-labeling of the leaves of P. If the labeling ¢ is understood, we
will write P instead of (P;¢).

For arbitrary S-labeled G-trees P = (P;*,1p,G;¢p) and Q = (Q;*, 1¢,G;
L) a label-preserving G-homomorphism P — Q is a G-homomorphism ¢: (P;
*1p,G) = (Q;*, 1g, G) with the additional property that
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(H4) lp(a) =Lg ((p(a)) for all a € Pin,

and a label-increasing G-homomorphism P Q is a G-homomorphism ¢: (P;
*1p,G) = (Q;*, 1g, G) with the additional property that

(H5) €p(a) < lo(p(a)) for all a € Py,

Clearly, every label-preserving G-homomorphism is a label-increasing G-homomor-
phism. Moreover, the composition of label-preserving G-homomorphisms is a label-
preserving G-homomorphism, and the same holds for label-increasing G-homomor-
phisms. An isomorphism between S-labeled G-trees is a bijective, label-preserving
G-homomorphism. As usual, if there exists an isomorphism P — Q between two
S-labeled G-trees P and Q, then P and Q are said to be isomorphic; is symbols:
P=Q.

An S-labeled G-tree Q = (Q;*,1g,G;{g) is an S-labeled G-subtree of P =
(P;*,1p,G;¢p) if @ C P and the identity function @ — P, ¢ — ¢ is a label-
preserving G-homomorphism Q — P; or equivalently, if (Q;*,1g, G) is a G-subtree
of (P;*,1p, @) and {g is the restriction of £p t0 Qmin.

The main examples of labeled trees we will be concerned with are obtained from
chains F of equivalence relations as follows. Let E = {p; : 1 < i < r}, say,
po =04 < p1 < -+ < pro1 < pr <1y =:ppg1, and let T := Aut E. Since I’
is a group of permutations on A, (A;T") becomes a I'-set with the natural action
defined by va = «(a) for all @ € A and v € T. For each integer n > 1, the n-
th power of (A;T") is the I'-set (A™;T") where I' acts coordinatewise on n-tuples
in A™; that is, va = (v(a1),...,7(ay,)) for all a = (a1,...,a,) € A™. Since each
permutation v € T is p;-invariant for all ¢ (0 < ¢ < r+1), these equivalence relations
are congruences of (A4;T), and for each n > 1, the equivalence relations (p;)"™ are
congruences of (A™;T"). Hence we get quotient I'-sets (A™;T")/(p;)™ = (A™/(p;)™;T)
whose elements are the blocks of (p;)”, and I" acts on them the natural way: if B
is a block of (p;)™ and v € T, then B is the block {vx : x € B} of (p;)™. Thus the
I-orbit of any block B of (p;)™ is the set I'B = {yB : v € T'}. For i = 0 we will
identify A™/(po)™ = A™/04~ with A", and accordingly, if B = {x}, then we will
write I'x for T'{x}.

For each integer n > 1 we define a I'-tree (P,(E);*,1p, (g),I") of uniform depth
r + 1 associated to E as follows:

P, (E):={(,B):0<i<r+1, Bisa block of (p;)” on A"},

Lp,(g) = (r +1,47),

the successor of each element (i, B) (0 < ¢ < r) is defined by (i, B)* =
(i +1,C) where C is the unique block of p; 1 with B C C, and

v+ (i, B) := (4,vB) for all (i, B) € P,(E).

It is clear that (P,(E);*, 1p, (g, ') is indeed a I'-tree of uniform depth r + 1.

Example 4.5. Figure 1 depicts the I'-tree (P,(E);*, 1p, (g), ) for the case when
n=1 A={1,23,4}, E = {p1,p2}, and p; has blocks {1}, {2}, {3,4}, while p,
has blocks {1,2}, {3,4}. It is easy to see that T' = Aut E is the 4-element group
generated by the transpositions (1 2) and (3 4). The transposition (1 2) acts by
switching (0,1) with (0,2), (1,{1}) with (1, {2}), and fixing all other vertices of the
tree, while the transposition (3 4) acts by switching (0, 3) with (0,4) and fixing all
other vertices.
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FIGURE 1

We return to the discussion of the I'-trees (P, (E);*,1p,(g),I") introduced be-
fore the example, where E is an arbitrary chain of equivalence relations on a fi-
nite set A, I' = Aut E, and n > 1. To describe the labelings of the leaves of
(Pn (E);*1p,(B), F) that we will need later on, we have to first define the appro-
priate partially ordered I'-set of labels. To this end let S denote the set of all
functions (T'y,y) — A whose domains are pointed I'-orbits in A™ for some m > 1.
We define an action of I' on S as follows:

e for arbitrary element u: (U,y) — A of S with U = 'y and for any v € T,
the function yu is p considered as a function (U, yy) — A.

That is, the only difference between p and yu is in the distinguished element of the
orbit U. Clearly, vy € S and (vy" )i = v(+'p) hold for all 4,7 € T and p € S, so
we have obtained a I'-set (S;T").

Now we define a quasiorder < on S. Let p: (U,y) = A and v: (V,z) — A be
arbitrary elements of S where U =Ty, V =Tz, and y € A™, z € A™. For any
tuple x € A™ let x* denote the set of coordinates of x. We define 1 < v by the
following condition:

e u 2 vifandonlyifI'y C Iy, vy DOz, andp=vo Xy,z Where xy 5 is the
unique homomorphism (I'y;y,I") — (I'z; z,I'), vy — vz of pointed I'-sets.
~ will denote the intersection of < with its converse. It follows from the definitions
of ~and < that y ~ vifand only if I'y =1, y’ =2, and p = VOXy,z, V= OXz,y-
The equality I'y = I', implies that xy , and X,y are mutually inverse isomorphisms
between the pointed I'-sets (I'y;y,T') and (I'z;z,T"). Therefore
o u~vifandonly if I'y =1, y' =2, and p=vo Xy,z Where xy 5 is the
unique isomorphism (T'y;y,T') — (I'z;2,T), vy — 7z of pointed I'-sets.

The next lemma summarizes some elementary consequences of these definitions

that we will need later on.

Lemma 4.6. Let (S;T") be the I-set, and let < and ~ be the relations on S defined
above.

(1) = is a quasiorder, i.e., it is reflexive and transitive.
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(2) ~ is an equivalence relation, and < induces a partial order < on the quotient
set S/~ by

p/~<v/~ =  upu=<v for all p,v €S.

(3) T acts on S by automorphisms of the relational structure (S; <, ~).

(4) The quotient structure (S/~; <,T") is a partially ordered set on which T acts
by automorphisms of (S/~;<).

(5) The number of ~-classes of S is at most |A[IA1H2IV] hence S/~ is finite.

Proof. Let \: (T,x) = A, p: (U,y) = A, and v: (V,z) — A be arbitrary elements
of Swhere T=Tx,U =Ty, V =Tz, and x € A, y € A™, z € A™.

(1) p =< p, since I'y, =Ty, y? = y°, and Xy,y is the identity function U — U,
SO ft = o Xyy. Thus X is reflexive. To verify that =< is transitive, assume that
A= p 2y, thatis, I'y C Ty C Ty, x' D yb D) zb, and A = poxxy, h = VO Xy.z
Then I'y C Ty, x” D 2°, and A =vo (Xy,z © Xx,y)- Since Xy z © Xx,y = Xx,z, We get
that A\ = v o xx 5, proving that A < v.

(2) is an immediate consequence of (1).

(3) Since ~ is the intersection of < and its converse, it is enough to prove that T’
acts by automorphisms of (S; <). To this end we need to show that p < v implies
yu = qv forall y € T. Let u < v, that is, Iy C Ty, ¥y’ 2 2°, and t = voxy . Then

Ly = ’YFyV_l CHly ™t = Lo,
(vy)" = 7(y") 2 7(2°) = (v2)’,

and Yl = YV O Xqy,yz, DECAUSE [t = VO Xy 2, Xy,z = Xyynyz and g, ypu are the
same function U — A and v, yv are the same function V' — A. This proves that
Y = v

(4) is an immediate consequence of (2) and (3).

(5) We saw earlier that y ~ v if and only if Ty =T, y” = 2°, and y = voyy , for
the unique ismomorphism Yy , between the pointed I'-sets (U;y,I') and (V;2,T).
The equality I'y = T', also implies that (U;y,I') and (V;2,I") are isomorphic to
the pointed I'-set (I'/Ty; 'y, T") of the left cosets of I'y under the natural action
of T' by left multiplication. Therefore the number of ~-classes in S is at most the
number of triples (yb,Fy,U) where y” is a subset of A, I'y is a subgroup of I,
and o is a function (I'/T'y;T'y) — A. Hence the number of ~-classes is at most
2141201 A|ITT < |A[IAIH2IT] as claimed. O

If g is an n-ary operation on A, we define an S/~-labeling ¢, of the leaves of the
I-tree (Pn(E); * lpn(E),F) by
e 15((0,%x)) = glrx,x)/~ for all x € A™
where g\(px,x) denotes the restriction of g to the pointed I'-orbit (I'x,x); thus
gl(rx,x) is an element of S. This labeling yields an S/~-labeled I-tree (P, (E);*,

1p, (), T} Eg), which we will denote by P,(E), and will call the S/~-labeled T'-tree
associated to f.

Example 4.7. Let A, E, and I be as in Example 4.5, and let g be the unary oper-
ation on A defined by ¢(1) =2, g(2) =4, ¢(3) = 4, and g(4) = 3. The S/~-labeled
I-tree Py(E) is obtained from the I-tree (P(E);*, 1p,(x),I') in Example 4.5 by
labeling the leaves via ¢,. For each leaf (0,2) (x € A = {1,2,3,4}), the label of
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(0, x) is the equivalence class p, /~ where p,: (T'z,x) — A is the restriction of g to
the pointed I'-orbit of z; i.e.,

w: ({1L,241) = A 12, 2 4;

({1,2},2) = A, 12, 24
ws: ({3,4},3) = A, 3—4, 4 3;
e ({3,4},4) - A, 3+—4, 4— 3.

The functions p, (z € A) belong to pairwise different ~-classes, because =

{z} # {y} =’ for distinct elements x,y € A. Therefore the labeling ¢, assigns
four distinct labels to the four leaves.

The next lemma shows the relevance of the S/~-labeled I'-trees P;(E) and
P,(E) to the problem of determining whether f <¢ g holds for two operations f, g
on A.

Lemma 4.8. Let E be a chain of equivalence relations on a finite set A, and let
C= Pol(E,Aut E,P+(A)). For arbitrary operations f,g on A, f <¢ g if and only
if there exists a label-increasing I'-homomorphism P(E) / Py (E) between the
S/~-labeled T'-trees associated to f and g.

Proof. Let f be m-ary and g be n-ary. To prove the forward implication assume
that f <c g, and let h € (C"))™ be such that f = goh. Since h preserves the
equivalence relations in F, h maps each block B of (p;)™ into a block of (p;)".
Thus h induces a map

¥: Pp(E) = Py(E), (i, B)~ (i,h(B))

where h(B) denotes the block of (p;)™ containing h(B). We claim that ¢ is a
label-increasing I'-homomorphism P;(E)  Py(E). Clearly, ¢ maps 1p, (g =
(r+1,A™) to 1p,(g) = (r + 1, A"), and it maps leaves to leaves. Furthermore, if
(i,B) € P, (F) with 0 < i <r, then (i, B)* = (i + 1,C) for the unique block C of
(pit1)™ satisfying B C C. Therefore h(B) C h(C'), so h(B) C h(C), which shows
that

¥((i, B)*) = ¢((i + 1,0)) = (i + 1,h(0)) = (i,h(B))" = ¥((i, B))".
Thus ¢ is a homomorphism of trees. Next, if (i, B) € P,,(E) and v € T', then

v(v((0, B))) = ((i,4(B))) = (i-h(+(B)))

and

v(¥((G, B))) =~((i, h(B))) = (i,7(h(B))) = (i,7(h(B))).
Since h preserves -, we have h( ) (h(B)) proving 1/}(7( Z,B))) =
v(w((i,B))). Hence 1 is a I’-homomorphism (Pm( ; ,1pm(E),F) — (Pn(E);
*,lpn(E),F).

Finally, if (0,x) is a leaf of P,,(E), then using the definition of the labelings ¢
and ¢, and the relationship f = g o h we get that

Ef((O,X)) = f|(Fx,x)/N7
£y (¥((0,%))) = £4((0,h(x))) = glrneo,h)/~

and
Flirxx) = (9o h)|(rx,x) = 9l(Th(x).h(x)) © Dl (rx,x)-



18 ERKKO LEHTONEN AND AGNES SZENDREI

Here h|rxx: (Ix,x) — (Th(x),h(x)) is a homomorphism of pointed I'-orbits,
since h preserves all permutations v € I'. Thus I'x C I'y(x) and h|rx x) = Xx,h(x)-
In addition, we have x* D h(x)"7 since h preserves all subsets of A. Thus

flrx,x) = 9l(rh(x),h(x)) © Xx,h(x) = 9/(Th(x)h(x)),

implying that £;((0,x)) < £,(¥((0,x))). This proves that 1 is a label-increasing
I-homomorphism P(E)  P4(E), and hence concludes the proof of the forward
implication.

For the converse, assume that there exists a label-increasing I'-homomorphism
V: Py(E) /' Py(E). Our goal is to show that f <¢ g. Since ¢ is a homomorphism
of trees, therefore it maps each leaf of P;(F) into a leaf of P4 (E). Hence 1 yields
a function h: A™ — A" such that 1((0,x)) = (0,h(x)) for all x € A™. We will
establish f <¢ ¢ by proving that h € (C™)" and f = goh.

First we will show that h preserves all equivalence relations p; (1 <1 <r). Let
X,y € A™ be such that x (p;)™ y. Then x,y are in the same block B of (p;)™,
ie., (0,x)* = (i,B) = (0,y)*". Since 1 is a homomorphism of trees, we get that

(0.100)" = w((0.5))" = w((0.%)") A

—((0,5)"") = 0((0,y))" = (0,h(y))

Hence h(x) and h(y) are in the same block of (p;)™, that is, h(x) (p;)™ h(y).

Next we show that h preserves all permutations v € I'. Since 9 is a I'-homo-
morphism and I' acts on the leaves of P¢(E) and P,(E) by 7 - (0,u) = (0,vu) for
all u and ~, we get that

(O,h(’)/X)) = w((oa’yx)) = ¢(7 . (O7X))
=" (?/’(O»X)) =7 (0’ h(X)) = (vayh(x))

for all x € A™ and v € I'. Hence h(v(x)) = y(h(x)) for all x € A™ and v €T, as
claimed.

This also proves that h restricts to every pointed I'-orbit (I'u,u) in A™ as a
homomorphism h|(ryu): (Tu,u) = (Fh(u), h(u)) between two pointed I'-orbits.
Since such a homomorphism exists only if I'y € I'h(y), and when it exists, it is
uniquely determined, we get that h|ryu) = Xuh(u)-

Since

%t

Ef((ovu)) = f|(Fu,u)/N7
Ly (1((0,))) = £4((0, (1)) = gl(rh(u)n(u)/~
and ¢ is label-increasing, we get that f[ryu) =< gl(Ph(u),h(u))- By the definition of
= this means that I'y C Ty, u” O h(u)’, and flru,w) = 9l(rh),h(u)) © Xu,h(u)-
Combining this with the equality h|yu) = Xunm) We get that
flru,w) = 9lth(u),h)) © hlruw)-

Since A™ is the union of all I'-orbits I'u, we obtain from the last displayed equality
that f = goh. The property that u” O h(u)” for all u € A™ shows that h preserves
all subsets of A. Thus h € (C‘™)™ and f = g o h, which proves that f <¢ g. O

It follows from Lemma 4.8 that f =¢ g holds for two operations f,g on A if
and only if there exist label-increasing I'-homomorphisms P;(E) * P,(E) and
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P,(E) / Py(E) between the S/~-labeled I'-trees associated to f and g. Since
the size of P;(F) increases with the arity of f, this lemma alone is not enough to
conclude that the number of =¢-classes is finite. We want to replace each Pf(E)

by an S/~-labeled I-trec P that is

e homomorphically equivalent to P¢(E), that is, there exist label-preserving
I'-homomorphisms P;(E) — Py and P; — P;(E), and
e as small as possible with this property.

The first condition is to ensure that the analog of Lemma 4.8 remains true if, instead
of P;(E), we associate P ¢ to each operation f. The second condition will allow us
to prove that, up to isomorphism, there are only finitely many P ¢’s, and hence it
will follow that the number of =¢-classes is finite.

The intended relationship between Py and Ps(F) is captured by the concept
of a core, which applies to arbitrary finite structures. For our purposes it will be
enough to discuss cores of S-labeled G-trees.

Let P = (P;*,1p,G;¢p) and Q = (Q;*,1g, G; ) be S-labeled G-trees. We
say that

(1) Q is a core if every label-preserving G-homomorphism Q — Q is onto;
(2) Q is a core of P if
e Q is homomorphically equivalent to P, that is, there exist label-preserving
G-homomorphisms P — Q and Q — P, and
e Q is minimal with this property (i.e., no proper labeled G-subtree of Q
is homomorphically equivalent to P).

For the reader’s convenience we will state and prove the basic properties of cores
for S-labeled G-trees. The first one of these properties is that the two uses of
the word ‘core’ in the definitions above are compatible: every core of an S-labeled
G-tree [in the sense of (2)] is actually a core [in the sense of (1)]. We will use
this propery later on without further reference. The second and third properties
show that every S-labeled G-tree has a core (in fact, it has one among its S-labeled
G-subtrees), and the core is uniquely determined, up to isomorphism.

Lemma 4.9. Let P be an S-labeled G-tree.

(1) Every core of P is a core.

(2) If P is minimal, with respect to inclusion, among all S-labeled G-subtrees
P’ of P for which there exists a label-preserving G-homomorphism P — P/,
then P is a core of P.

(3) Any two cores of P are isomorphic.

Proof. (1) Let Q be a core of P. It follows that there exist label-preserving G-
homomorphisms ¢: P — Q and ¢: Q — P. To prove that Q is a core, we need to
show that every label-preserving G-homomorphism 7: Q — Q is onto. The range
R of 7 is an S-labeled G-subtree of Q, therefore the identity embedding ¢: R — Q
is a label-preserving G-homomorphism. Thus 7 = ¢ o 7 for some label-preserving
G-homomorphism 7: Q — R. Hence we have label-preserving G-homomorphisms

P R

Q

3

< Tls
~ Tl N
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which implies that R is homomorphically equivalent to P, as witnessed by T o
p:P—-Rand Yor: R — P. Since Q is a core of P, the S-labeled G-subtree R
of Q cannot be proper. Thus R = Q and 7 is onto.

(2) Let P be minimal, with respect to inclusion, among all S-labeled G-subtrees
P’ of P for which there exists a label-preserving G-homomorphism P — P’
Such a P exists, since P is finite. Moreover, the identity embedding PP
is a label-preserving G-homomorphism, because P is an S-labeled G-subtree of
P. Thus P is homomorphically equivalent to P. The choice that P is minimal
among the S-labeled G-subtrees P’ of P for which there exists a label-preserving
G-homomorphism P — P’ ensures that P is also minimal among the S-labeled
G-subtrees of P that are homomorphically equivalent to P. This proves that P is
a core of P, as claimed.

(3) Let Q and Q' be cores of P. Then Q and Q' are homomorphically equivalent
to P, so we can choose label-preserving G-homomorphisms

© ¢’ ,
QsP=2Q
P P’

witnessing this fact. Thus we have label-preserving G-homomorphisms

Q-5Q, Q<< Q, Q7%Q ad Q&7 Q
where o = ¢’ o) and ¢’ := p o). Since Q and Q’ are cores by part (1), the latter
two label-preserving G-homomorphisms are onto. Since Q and Q' are finite, they

are also one-to-one. This implies that o and ¢’ are both onto and one-to-one, hence
they are isomorphisms. O

To prove that for each d there are, up to isomorphism, only finitely many S-
labeled trees of uniform depth d that are cores (Lemma 4.13), we need some nec-
essary conditions for an S-labeled G-tree to be a core (Corollary 4.12). These
necessary conditions will be derived from a general lemma on label-preserving G-
homomorphisms between S-labeled G-trees (Lemma 4.11).

We start with some preparation. Let P = (P;*, 1p, G;¢) be an S-labeled G-tree.
The set of elements of depth 1 in P, that is, the set of elements a € P such that
a* = 1p, will be denoted by Pyax. For any a € Pyax the set of all elements b € P
such that b*" = a for some integer ¢ > 0 will be denoted by (a]. The next lemma
summarizes some basic facts on Pax and (a] (@ € Pyax) that we will need later
on.

Lemma 4.10. Let P = (P;*,1p,G;{) be an S-labeled G-tree.
(1) (a]N(b] =0 if a,b are distinct elements of Pmax, and

P={1p} UU((a] ta € Prax).

(2) Prax and Py, are unions of G-orbits.
(3) For each a € Ppax,

(1) if c € (a], ¢ # a, then c* € (a];

(i1) if g € G, then g - (a] = (ga]; hence g - (a] = (a] if and only if g € G,.
(4) For each a € Pax, (a] is the underlying set of an S-labeled G,-tree

(a]P = ((a]; 5 ]-(a];Ga;g)



CLONES WITH FINITELY MANY RELATIVE R-CLASSES 21

where 1) = a, * is the restriction of the successor function of P to the set
(a] \ {a}, the action of each g € G, on (a] is obtained by restricting the
action of g to (a], and ¢ is the restriction of the labeling of the leaves of P
to the leaves of (a].

(5) ((alp),;, = Pmin N (a] for each a € Pyax, so if |P| > 1, then

Pmin == U(((a]P)min ra € Pmax)-

Proof. Recall that for each element v € P\ {1p} there exists a unique positive
integer d, the depth of u, such that u*" = 1p. Thus u** " € Pax and u € (u*dil],
which proves the displayed equality in (1). Moreover, if u € (a] for some a € Py,
then the definitions of Ppay and (a] yield that «* = 1p and u*" = a for some integer
i >0. Thus u* = 1p, and the uniqueness of the depth of v implies that d = i+ 1.
Hence a = u*dil, showing that u € (a] for a unique a € Py ax. This completes the
proof of (1).

(2) and (3) are immediate consequences of the definitions, using also the fact that
each g € G acts by automorphisms of the tree (P;1p,*). (3) ensures that * and
g € G, restrict to (a] as claimed. The properties of the operations of ((a]; * 1al, Ga)
that make it a G,-tree are inherited from P. Furthermore, it follows from the
definition of (a] that the leaves of the tree ((a;1(,),*) are exactly the leaves of
P that are in (a]. This establishes the first equality in (5), and also implies that
the restriction of £ to (a] (also denoted by ¢) yields an S-labeling of the leaves of
the Gg-tree ((a]; * 1(a],Ga). This proves (4). Finally, the displayed equality in (5)
follows from the equality ((a]p)min = Puin N (a] proved earlier and the displayed
equality in (1). O

It follows from the preceding lemma that every S-labeled G-tree is the disjoint
union of the S-labeled G,-trees (a]p (a € Pax) with a new top element 1p added.
In the next lemma we will use this structure of S-labeled G-trees to analyze the
label-preserving G-homomorphisms between them.

Lemma 4.11. Let P = (P;*,1p,G;¢p) and Q = (Q;*,1g,G;{g) be S-labeled
G-trees, and let {a; : 1 < i < t} be a transversal for the G-orbits of Puax. If b;
(1 <i<t) are elements of Qmax such that G,, = Gy, for each i, then
(1) every family {¢; : 1 < i < t} of label-preserving G,,-homomorphisms
it (ailp — (bilq has a unique extension to a label-preserving G-homo-
morphism p: P — Q.
(2) ¢ is onto if and only if every G-orbit of Qmax contains at least one b;, and

(bi] = J(h-Tmyp; : 1< <t, heG, hb; =b;)

for eachi (1 <i<t).

(2)" In particular, if {b; : 1 < i <t} is a transversal for the G-orbits of Qmax,
then ¢ is onto if and only if each 1; is onto.

(3) ¢ is bijective if and only if {b; : 1 < i <t} is a transversal for the G-orbits
of Qmax and each ; is bijective.

Proof. Let a;,b; (1 < i < t) satisfy the assumptions of the lemma. Fix an ¢
(1 <i<t), and consider the G-orbit Ga; = {ha; : h € G} of a;. As we noticed in
Lemma 4.10 (2), Ga; € Pyax. We claim that the subset P; = {1p} U, (has] of
P is the underlying set of an S-labeled G-subtree P; of P. Indeed, the definition of
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Pax and Lemma 4.10 (3) shows that the successor of every element of P; \ {1p}
is in P;, and that P; is closed under the action of G. Furthermore, it follows from
the first equality in Lemma 4.10 (5) that (P;)min = Pmin N P;. This proves that
P; is the underlying set of an S-labeled G-subtree P; of P. In fact, P; is the
smallest S-labeled G-subtree of P that contains (a;]. For, if P} is an S-labeled
G-subtree of P such that (a;] C P/, then 1p € P/ by the definition of a subtree,
and (ha;] = h - (a;] C P/, since P} is closed under the action of G. Thus P; C P).

Similarly, for each i (1 <14 <), the subset Q; = {1} UJ,c(hbilq of Q is the
underlying set of an S-labeled G-subtree Q; of Q, and Q; is the smallest S-labeled
G-subtree of P that contains (b;].

(1) Now assume that {¢; : 1 < i < t} is a family of label-preserving G-
homomorphisms ¥;: (a;]p — (b;]q. First we prove the uniqueness of the extension
¢ claimed in (1). Assume p: P — Q is a label-preserving G-homomorphism that
extends all ¢p;. Then ¢(1p) = 1p and, by Lemma 4.10 (3)(ii), for each h € G and
¢ € (ha;] we have h=1c € (a;], so

p(c) = p(h(h™ ")) = hop(h™"¢) = hays(h™"e).
This proves that ¢ is uniquely determined by the v;’s.

To prove the existence of ¢ we will verify that under the assumptions of the
lemma, for each i (1 <i <t),

(I); the rule
1 ife=1p
pile) = {hwi(h_lc) it ¢ € (ha;] (h € G)
defines a label-preserving G-homomorphism ¢;: P; — Q; that extends 1,
and

(IT) for any family {¢; : 1 < i < t} of label-preserving G-homomorphisms
pi: P; = Q;, the union ¢ of the ¢;’s is a label-preserving G-homomorphism
P—- Q.
We will start with (II). By Lemma 4.10 (1) every element ¢ of P other than 1p
belongs to a subset of the form (a] for a unique a € Pyay. Since {a; : 1 <i <t} is
a transversal for the G-orbits of P .., the G-orbits Ga; partition P,.. Moreover,
(Pi)max = Ga; for each i, therefore it follows that every element ¢ of P other
than 1p belongs to exactly one of the G-subtrees P; of P. As for 1p, we have
@i(lp) = 1¢ for each i, since ¢; is a homomorphism of trees. Thus we get that
w = Ule ; is a well-defined function P — Q.

To prove that ¢ is a label-preserving G-homomorphism P — Q we have to verify
that it satisfies conditions (H1)—(H4) ((HO) is established already). Since all ¢; are
label-preserving G-homomorphisms, they satisfy conditions (H1)—(H4). In partic-
ular, ¢; maps (P;)min into (Q;)min- But the displayed equality in Lemma 4.10 (5)
applied to P and each P; shows that P, = Ule(Pi)min, so (H1) follows for ¢.
Since each P; is an S-labeled G-subtree of P, conditions (H2)-(H4) immediately
follow from the corresponding conditions for the ;’s. This completes the proof of
(I1).

For each 4, statement (I); is a special case of the general statement about the
existence of ¢, namely the special case when P,y is a single G-orbit Ga. Therefore
all (I); will be proved if we show the existence of ¢ for the case when ¢ = 1 holds
for P. To simplify notation, we will omit subscripts; that is, we let a be an element
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of Pax, and assume that P = {1p} U J,cq(halp. Furthermore, we let b be an
element of Qmax with G, = Gy, and let ¢: (alp — (b]q be a label-preserving
Gg-homomorphism. Our goal is to show that

~J1g ife=1p
p(c) = {hw(h_%) if ¢ € (ha] (h € G)

defines a label-preserving G-homomorphism ¢: P — Q that extends .

First we show that ¢ is a well-defined function P — Q. If ¢ € (ha], then
h=1c € (al, therefore ¢(h~!c) is defined, and hence so is hi)(h~'c). Suppose now
that ¢ € (ha] and ¢ € (ga]. Since ha,ga € Ppax, Lemma 4.10 (1) shows that
ha = ga. Thus g~ 'ha = a, that is, g~'h € G,. Hence

g¥(g~ ) = gv((g " h)(h"e)) = g(g~ ' h)y(h~"e) = hp(h "),

where the middle equality holds, because 1 is a G,-homomorphism. This shows
that ¢ is well-defined. Clearly, ¢ is an extension of v, for if ¢ € (a], then an
application of the definition of ¢ to h = 1, the neutral element of G, yields that
o) = ¥(c).

To prove that ¢ is a label-preserving G-homomorphism P — Q, we need to check
that conditions (HO)—(H4) hold for ¢. (HO) is obvious from the definition of ¢, and
(H1) holds, because ¢ as well as the actions of h € G map leaves to leaves. To
show that (H2) holds let ¢ € P\ {1p}. As ¢ # 1p, we have that ¢ € (ha] for some
h € G. Assume first that ¢ = ha. Since 9 is a Gg-homomorphism (alp — (b]q
and a = 1(q), b = 1), therefore we get that +(a) = b, Hence if ¢ = ha, then
p(c) = hp(h~'c) = hip(a) = hb € Quax, 50 (c)* = 1o = p(1p) = p(c*). Now
assume that ¢ € (ha] but ¢ # ha. Then h~'c € (a] and h=tc # a. Hence (h~1c)* in
(a]p is the same as (h~1c)* in P, which is equal to h~'¢*. Using this (in the fourth
equality below) we get that

ple) = (hp(h™'e))" = h(yp(h7'e)” = hp((h'e)") = hp(h™e") = p(c?),

which completes the proof of (H2). Next we prove (H3). Every g € G acts by
tree automorphisms, therefore g-1p = 1p and g- 1g = 1g, whence ¢(g - 1p) =
o(lp) =1g = g-1g = gp(lp). To prove (H3) for elements ¢ # 1p let ¢ € (hal
and g € G. Then gc € (gha], hence p(gc) = ght)((gh) " ge) = ghty(h=1e) = gp(c).
Thus (H3) holds for ¢. Finally, we verify (H4). Let ¢ € Py,. Then ¢ is a leaf in
(ha]p for some h € G, and hence h™'c is a leaf in (a]p. Since ©: (a]lp — (blq is a
label-preserving G,-homomorphism, ¥)(h~'c) is a leaf in (b]q. Using the facts that
lp, Lg are labelings of P and Q, and their restrictions are the labelings of (a]p and
(blq, we get that

lo(p(e) = Lo (hp(h~"e)) = hlg(¢(h~'c))
= hep(h~lc) = hh ™ p(c) = Lp(c),

proving (H4). This finishes the proof of statement (1) of the lemma.

(2) We return to the general case; that is, {a; : 1 < i < t} is a transversal for
the G-orbits of Puax, {b; : 1 < i < t} is a subset of Quax such that G,, = Gy,
for each 4, {tp; : 1 < i < t} is a family of label-preserving G,,-homomorphisms
i (a;lp — (bi]q, and ¢ is the unique extension of all ¢;’s to a label-preserving
homomorphism ¢: P — Q constructed in part (1). The two-step construction of ¢
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described in (I); and (IT) above shows that

( ) 1Q if c= ].p,
C) =
4 hi;(hte) if ¢ € (hay] for some 1 < <t and some h € G.

We claim that an element u of Q is in the range of ¢ if and only if either u = 1g
or u € h-Im1; for some i and some h € G. The necessity of this condition is clear
from the description of ¢ above. For the sufficiency, let v = 1g or v € h - Im);.
In the first case, clearly, v is in the range of ¢. In the second case u = hap;(v) for
some v € (a;], so for ¢ = hv we have ¢ € (ha;] and u = hi);(v) = hp;(h ™ c) = p(c).
Thus u is in the range of ¢, as claimed. This proves that

Ime ={lo} U{ J(G ITm¢; : 1< j <)
Since 1; maps a; = 1) to 1) = bj, we have b; € Im¢); C (b;]. It follows that

J

Qumax NG - Imv; = Gb; holds for all 5. Thus

Quax N1 = | J(Quax NG - Tmp; : 1< j < 1) = J(Gb; - 1< j < 1),

For any two distinct elements b, b’ € Quax, the subsets (0] and ('] are disjoint by
Lemma 4.10 (1). Therefore (b;] is disjoint from h - Imv;(C (hb;]) unless b; = hb;,
and hence h - Im1); C (b;]. Thus, for each ¢ (1 <i <t),

(bi]NTmep = (] N[ J(G - Tmep; : 1< j < t)
= Imyp; : 1< <t, he G, hb; =b;).

Hence, for ¢ to map onto @, it is necessary that Qmax = J(Gb; : 1 < j <t) and
(i) =U(h-Imy,; : 1 <j<t, he€ G, hbj =b;) for each 7 (1 < i <t). This shows
that the conditions in (2) are necessary. Conversely, assume that ¢ satisfies these
conditions. The second one of these conditions implies that (b;] C Im ¢ for all ¢
(1 <4 <t). Since ¢ is a G-homomorphism P — Q, its range is closed under the
actions of all ¢ € G. Combining this with the condition Qmax = J(Gb; : 1 < j <)
we obtain that

Q\ {1o} = J((® : b € Quuax)
:U((gbi]:lgigt, gGG)
:U(G-(bi]:lgigt)glmap.

Since 1g € Im ¢, we get that ¢ is surjective. This proves statement (2).

(2)" Now assume that {b; : 1 <4 <t} is a transversal for the G-orbits of Quax.
Then hb; = b; holds for some 1 <4,j <tand h € Gonly if i = j and h € Gy,.
Therefore

U -tmy;:1<j<t, heG, hbj=b)=|J(h-Im¢; : h € Gy,) =Im.

Hence the criterion in (2) implies that in this special case ¢ is onto if and only if
all ¢; are onto.

(3) To prove the necessity of the conditions in (3) suppose that ¢ is bijective.
First we show that {b; : 1 < ¢ < t} is a transversal for the G-orbits of Quax.
Since ¢ is onto, we get from part (2) of the lemma that every G-orbit of Quax is
represented by at least one element in {b; : 1 < i < ¢}. If {b; : 1 < i <t} was not
a transversal, there would exist 1 < j <1 < ¢ such that b; = hb; for some h € G.
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Hence ¢(a;) = b; = hby = p(ha;), but a; # ha; as {a; : 1 <i <t} is a transversal
for the G-orbits of Pyyax. This shows that {b; : 1 < i < t} is a transversal for
the G-orbits of Quax- Since ¢ is onto, it follows from part (2)’ of the lemma that
each ; is onto; v; is also one-to-one, since ¢ extends ¢; and ¢ is one-to-one. This
proves that the conditions in (3) are indeed necessary for ¢ to be bijective.
Conversely, if ¢ satisfies the conditions in (3), then it is clearly onto by the
criterion in part (2)’. To verify that ¢ is one-to-one, let ¢, ¢’ be elements in P such
that p(c) = p(c’). Tt is clear from the description of ¢ that the only element whose
p-image is 1¢ is 1p. Therefore if 1p € {c, '}, say ¢ = 1p, then p(¢/) = p(c) = 1q,
so ¢ = 1p and hence ¢ = ¢/. Assume from now on that ¢,¢’ # 1p. Then ¢ € (ha;]
and ¢ € (W a;] for some i,4' (1 < i,i’ <t)and h,h' € G. Since ¢(c) = hp;(h~c) €
h - (b;] = (hb;] and similarly ¢(c’) € (h'by], the assumption that ¢(c) = (),
combined with Lemma 4.10 (1), implies that hb; = h'by. Our assumption that
{b; : 1 < i <t} is a transversal for the G-orbits of Quax forces that ¢ = i’ and
hGp, = WGp,. Throughout the lemma we assume G, = G, for each i, therefore
ha; = h'a; and both of ¢, ¢’ belong to (ha;]. Thus the equality ¢(c) = ¢(c’) can be
rewritten as hip;(h~te) = hap;(h=tc). Hence v;(h~te) = b;(h~1c'), and since ; is
bijective, h~'c = h~1¢/, which implies that ¢ = ¢/. This proves the sufficiency of
the conditions in (3), and completes the proof of the lemma. (]

Corollary 4.12. If Q = (Q;*,1g,G;¥) is an S-labeled G-tree that is a core, then
the following hold for arbitrary elements a,b of Quax:

(i) (a]lq, as an S-labeled G,-tree, is a core.
(ii) If G4 = Gy and (a]q = (blq as S-labeled G4 -trees, then Ga = Gb.

Proof. (i) Suppose that (a]q, as an S-labeled G,-tree, is not a core. Then there
exists a label-preserving G,-homomorphism ¢: (a]q — (a]q that is not surjective.
Let a1 = a,as,...,a; be a transversal for the G-orbits of Quax, let ¥1 = 9, and for
2 <4 <t let 9; be the identity isomorphism (a;]q — (a;]q. Applying Lemma 4.11
we get that the family {¢; : 1 <1 <t} can be extended to a unique label-preserving
G-homomorphism ¢: Q — Q. Moreover, since ¥;(a;) = a; for all 4, part (2)’ of the
lemma applies and yields that ¢ is not surjective. Therefore Q is not a core.

(ii) Assume that a,b € Quax are in different G-orbits such that G, = G, and
(alq = (b]q as S-labeled G,-trees. Let ¢ be a label-preserving G,-isomorphism
(a]q — (blg. We want to show that Q is not a core. Let a1 = a,a2 =b,a3...,q
be a transversal for the G-orbits of Quax, let 91 = 1, and for 2 < i <t let ¥; be the
identity isomorphism (a;]q — (a;]q- Applying Lemma 4.11 we get that the family
{t; : 1 < i <t} can be extended to a unique label-preserving G-homomorphism
v: Q — Q. Since {¢;(a;) : 1 < i <t} = {b,as,...,a;} does not represent all
G-orbits of Quax, it follows from part (2) of the lemma that ¢ is not surjective.
Therefore Q is not a core, as claimed. O

Lemma 4.13. For every group G and G-set (S; G) of labels, and for each natural
number k there exists an integer ng, = ni(G,S) depending only on k, G, and (S; G)
such that there are at most n nonisomorphic S-labeled G-trees of uniform depth k
that are cores.

Proof. Let Q = (Q;*,1g,G;{) be an S-labeled G-tree of uniform depth k that is a
core. We want to find an upper bound on the number of possibilities for Q, up to
isomorphism.
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If £ =0, then @ = {1¢}, and the unique element (which is a leaf) can be labeled
in |S] different ways. Therefore in this case there are ng = |S| possibilities for Q,
up to isomorphism.

Now let £ > 1, and assume that ng_; = ng_1(G, S) has been found for all G
and (5;G). Choose a transversal {a; : 1 < i < t} for the G-orbits of Quax, and
for each transversal element a; consider the pair (G, , ((a:]q)™°) where ((a;]Q)™°
denotes the isomorphism type of (a;]q, as an S-labeled Gg,;-tree. Each (a;]q has
uniform depth k£ — 1, since Q has uniform depth k. Since Q is a core, we get from
Corollary 4.12 that the S-labeled Gg,-tree (a;]q is a core for every i (1 < i < t).
Moreover, if 1 < i < j < t, then G, # G4, or (a;]q % (a;]q. Thus the pairs
(Ga,, ((ailq)™) (1 < i < t) are pairwise distinct. By part (3) of Lemma 4.11 the
set

{(Gav ((ail@)™) s 1< i <t}
determines Q, up to isomorphism. Therefore the number of possible isomorphism
types for Q is at most

nk(G,S) =2° where s= Z(nk_l(H, S) : H is a subgroup of G).
This completes the proof. ([

We return to the proof of Theorem 4.2. As before, let A be a finite set, and let
E ={p;:1<i<r}bea chain of equivalence relations, say, pg := 04 < p1 < -+- <
Pr—1 < pr < 1lag =:pr41, and let I' ;== Aut E. Earlier in this section we defined for
each operation f on A an S/~-labeled I'-tree P¢(E) of uniform depth r + 1. By
Lemma 4.9 P¢(E ) has a core Pf = (Pf, <, Ef) that is an S/~-labeled T'-subtree
of P¢(E). Thus P ¢ is of uniform depth r 4 1, and there exists a label-preserving
I-homomorphism ¢;: P(E) — P ¢. Moreover, P ¢ is uniquely determined up to
isomorphism. We will refer to f’f as the core of the S/~-labeled T'-tree associated

to f.

The following statement is an easy consequence of Lemma 4.8.

Corollary 4.14. Let E be a chain of equivalence relations on a finite set A, let
I'=AutE, and let C = Pol(E7 Aut E,’P+(A)). For arbitrary operations f,g on A,

(1) f <c g if and only if there exists a label-increasing homomorphism f’f Va f’g
between the cores of the S/~-labeled I'-trees associated to f and g.

(2) f=c 9 if and only if there exist label-increasing homomorphisms Pf N P
and Pg S Pf between the cores of the S/~-labeled T'-trees associated to f
and g.

Proof. Let f,g be arbitrary operations on A. By construction, there exist label-
preserving I'-homomorphisms ¢;: P;(E) — 13]« and @4: Py(E) — f’g. Since
f’f is an S/~-labeled I'-subtree of P;(E), and f’g is an S/~-labeled T'-subtree
of P,(E), the identity mappings ¢ : f’f — P#(F) and ¢4: f’g — P,(F) are also
label-preserving I'-homomorphisms.

By Lemma 4.8, f <¢ ¢ if and only if there exists a label-increasing I'-homo-
morphism P;(E) /' Py(E). We claim that there exists a label-increasing I'-homo-
morphism P f( ) /‘ P,(F) if and only if there exists a label-increasing I'-homo-
morphism Pf Ve P Indeed, if ¢: Py(E)  Py(E), then pgotpouiy: f’f Va f’g,
and conversely, if 9: 13f Ve l?’g, then 1y 09/ 0 p: Pp(E) / Py(E), since the
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composition of label-increasing (or label-preserving) I'-homomorphisms is a label-
increasing I'-homomorphism. This proves (1).

The relation =¢ is the intersection of <¢ with its converse, therefore (2) is an
immediate consequence of (1). (]

Proof of Theorem 4.2. Let E be a chain of equivalence relations on a finite set A,
let ' = Aut E, and let C = Pol(E, Aut E,PT(A)). Corollary 4.14 implies that

f =c g holds for two operations f and g on A if and only if for the cores f’f and lA3

of the associated S/ ~-labeled I'-trees there exist label-increasing I'- hOmOmOrphlbmb
Pf Va P and P ya Pf In particular, it follows that f =¢ ¢ if Pf = f’ By
Lemma 4.13 there exist only finitely many isomorphism classes of trees P ¢ as fruns
over all operations on A. Therefore there exist only finitely many =c-classes. [

5. CENTRAL RELATIONS

Let A be a k-element finite set, & > 3. In this section, our aim is to find all
maximal clones Pol p on A that are determined by central relations and are members
of Fa. Note that the arity r of a central relation on A satisfies 1 <r <k —1, and
the case of unary central relations is settled in Corollary 2.4. Therefore in this
section we consider only central relations of arity r» > 2.

We will show that if p has arity r < k — 2, then Polp ¢ F4 (Theorem 5.3), while
if p has arity r = k£ — 1, then Pol p € §a (Theorem 5.2). Note that for each element
¢ € A there is a unique central relation o, of arity & — 1 with central element c,
namely

ac:{(al,...,ak_l)eAkfl:ai:aj forsome 1 <i<j<k-—1,or
a; =cfor some 1 <i<k-—1}.

Therefore all central relations of arity & — 1 are of the form o, for some ¢ € A.
In Theorem 5.2 we will, in fact, prove that Pol(o.,{c}) € §a for all ¢ € A, which
implies by Proposition 2.1(ii) that all maximal clones Polo, (c € A) also belong to
Sa-

We start by stating Jablonskii’s Lemma which we will need in the proof of
Theorem 5.2.

Lemma 5.1. (Jablonskii [10]) Let f be an n-ary operation on a finite set A such
that f depends on at least two of its variables. If the range Im f of f hasr > 3
elements, then there exist D1,..., D, C A such that |D;| <r for all1 <i<mn and
f[D1 % -+ x D,] = Im .

Theorem 5.2. If 0. is the (k — 1)-ary central relation with central element ¢ on a
k-element set A (k > 3), then Pol(o., {c}) € Fa.

Proof. We may assume without loss of generality that ¢ = 0, and we will write o
for gg. So, let C = Pol(c,{0}). Since o contains all (k—1)-tuples whose coordinates
are not pairwise distinct or include 0, it follows that o is preserved by

e all operations f: A™ — A with [Im f] < k — 2, and also

e all operations f: A" — A with [Im f| =%k —1 and 0 € Im f.

To prove that C € §4 we partition O4 into two subsets, Oy and O1 = O4 \ O,
as follows: an operation f belongs to O if and only if its domain A™ where n
is the arity of f contains a subset C; x --- x (), such that 0 € C; # A for all i
(1<i<n)and f[Cy X -+ x Cp] =Im f. First we will show that all nonsurjective
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operations f on A belong to Og. Indeed, assume first that f is nonsurjective and
essentially unary, say it depends on its first variable only. Then there exists a
nonsurjective unary operation fi such that f(x) = fi(z;) for all x = (21,...,2,) €
A™. Therefore fi(a) = f1(b) for some distinct a,b € A such that a # 0. Hence the
choice C1 = A\{a}, Co = --- = C,, = {0} shows that f € Op. Now assume that f is
nonsurjective and depends on at least two of its variables. If | Im f| = 2, then there
exists a = (ay,...,ay) distinct from 0 such that f(a) # f(0). Hence the choice
C; ={a;,0} (1 <4 <mn)shows that f € Oy (C; # A, since k = |A| > 3). Finally, if
|Im f| > 2 but f is nonsurjective, then by Jablonskil’s Lemma (Lemma 5.1) there
exist (k — 2)-element subsets Dy, ..., D, of A such that f[Dy x --- x D] =Im f.
Hence we can choose C; = D; U {0} (1 <i < n) to show that f € Oy.

Claim 1. If Im f = Img, f(0) = g(0), and f, g € Op, then f =¢ g.

Proof of Claim 1. Let f be n-ary and g be m-ary. Using the assumption f € Oy,
we fix sets C; C A (1 < i < n) such that 0 € C; and f[Cy x --- x Cy] = Im f.
Furthermore, we choose a transversal {by,...,b,} C C; X --- x C,, of ker f where
b; = 0. Now we define a function h: A™ — A™ as follows: for each a € A™ we have
g(a) € Img = Im f, therefore g(a) = f(b;) for a unique j; we let h(a) = b;. It is
clear from this definition that g = f o h. By assumption, ¢g(0) = f(0) and by = 0,
therefore g(0) = f(by). Hence h(0) = by = 0, which implies that h preserves {0}.
Since Imh = {0,bs,...,b.} C Cy x --- x C,, the range of each component h; of h
satisfies 0 € Imh; C C; # A. As was observed at the beginning of the proof, this
implies that each h; preserves o. Thus h preserves o. This proves that h € (C (m))”
and hence g <¢ f. A similar argument shows that f <cg. <

Claim 2. If f(0) = g(0) and f,g ¢ Oq, then f =¢ g.

Proof of Claim 2. Again, let f be n-ary and g be m-ary. We proved earlier
that all nonsurjective operations belong to Og, therefore f and g are necessarily
surjective. Let {by,..., by} be a transversal of ker f where by = 0. As before,
we define h: A™ — A™ such that for each a € A™, h(a) = b; for the unique j
such that g(a) = f(b;). We get, as before, that g = f o h and that h preserves
{0}. It remains to show that h preserves o. Let aj,...,ar_1 € A™ be m-tuples
such that (h(ay),...,h(ax_1)) ¢ o™. Since the range of h is {0,bo,...,bs} and
o™ contains every (k — 1)-tuple which has repeated coordinates or has 0 as one of
its coordinates, we get that {h(a;),...,h(ax_1)} = {ba,...,bg}. Hence

{9(6),9(31),---,g(ak—1)} = {(foh)(ﬁ)a(fOh)(al)a"'v(th)(ak—l)}

implying that g[D; x --- X D,;] = A = Im g where D; is the set of i-th coordinates
of 0,ai,...,a5_1 for each i (1 < i < m). Since by assumption g ¢ Oy, we have
D; = A for at least one i. Thus (ay,...,a5_1) ¢ ¢™, proving that h preserves o.
This completes the proof that h € (C(™)™ and hence g <¢ f. A similar argument
shows that f <cg. ©

Now consider the mapping

D: 04 - PT(A) x Ax{0,1}, fr (Imf, f(0),iy)

where iy = 0 if f € Op and ¢y = 1 if f € O;. Claims 1 and 2 show that we have
f =c g whenever ®(f) = ®(g). Therefore the number of =¢-classes does not exceed
the number of kernel classes of ®. The number of kernel classes of ® is finite, since
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the codomain PT(A) x A x {0,1} of ® is finite. Hence the number of =¢-classes is
also finite, which proves that C € §4. O

Theorem 5.3. If p is an r-ary central relation on a k-element set A such that
2<r<k—2(k>4), thenPolp ¢ Fa.

Proof. Let C = Polp. We may assume without loss of generality that A is the
set {0,...,k — 1}, 0 is a central element of p7 and (1,2,...,r) ¢ p. For each
n > 2and 1 < ¢ < n we define 2n-tuples a}, b}, and c as follows: a =
(0,0,...,0,0,1,1,0,0,...,0,0) with the two 1’s occurring in the (2¢ — 1)-th and
2i-th coordinates; b = (1,2,...,1,2,0,0,1,2,...,1,2) with the two 0’s occurring
in the (2¢ — 1)-th and 2i-th coordinates; ¢ = (0,0, ...,0,0,2,1,0,0,...,0,0) with
the 2 and 1 occurring in the (2¢ — 1)-th and the 2i-th coordinates. Next we define
a 2n-ary operation f,: A" — A for each n > 2 as follows:

ifa=al (1 <i<n),
ifa=bl(1<i<n),
ifa=cl (1<i<n),
ifa=a 3 <u<lr),
r—+ 1 otherwise.

fn(a) =

S o~ O

We claim that f, #¢ f, whenever n # m. Suppose on the contrary that
fn =c¢ fm for some m < n. Then there exists h € (C?"))?™ such that f,, = f, oh.
For each element v in the common range {0,1,...,r,r+ 1} of f,,, and f,,, h maps
the inverse image f, !(v) of v under f, into the inverse image f,,'(v) of v under
fms; for, if x € f71(v), then v = f,(x) = fm(h(x)), implying that h(x) € f,.,'(v).
Thus, in particular, h(z) = a for all 3 <wu < r, and

h(a}) e {aT",...,a}, h(b}) e {bl",...,b"}, h(c}) e {c]",...,ch}

for all ¢ (1 < i <n). Since m < n, there exist 1 <p < ¢g<nand 1< s <m such
that h(a)) = h(a}') = al". We have (a},b?,3,...,7) € p*", as in each coordinate
the first or second component of the tuple is 0. Therefore, since h preserves p, we

get that

(a2, (b2),3, ..., 7) = (h(a?), h(by), h(3), ..., h(r)) € "
If j # s then (a;",b;”,g, ...,T) ¢ p*™, because the 2s-th coordinate of the tuple
s (1,2,3,...,7) ¢ p. This forces h(by) = bf*. The same argument with a7 in

place of a shows that h(b}) = b". Similarly, since (c,b7,3,...,7) € p* and h
preserves p, we get that

(h(cp), b2, 3,...,7) = (h(c}),h(b}),h(3),...,h(F)) € P>

Again, if j # s then (c]*, by, 3,...,7) & p*™ because the 2j-th coordinate of the
tuple is (1,2,3,...,7) ¢ p. Thus h(cy) = c*. The same argument with c in place
of ¢ yields that h(c}) = c*. Now we see that (a},c},3,...,7) € p**
each coordinate the first or second component is 0, but

, since in

(h(a}),h(c}),h(3),....h(7)) = (al",c}",3,....F) & p°™,

because the (2s — 1)-th coordinate is (1,2,3,...,7) ¢ p. This contradiction shows
that f, Z¢ fm if m < n, and hence proves that C ¢ F4. O
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6. h-REGULAR RELATIONS

Let A be a finite set with k elements (k > 3). In this section our goal is to find
all maximal clones Pol Ay on A determined by h-regular relations Ay (see Section 2
for the definition) that are members of F4. Recall that the arity of an h-regular
relation Ay is h with 3 < h < k. The only h-regular relation with h = k is Ap
where T is the singleton consisting of the equality relation on A, and then Pol A
is Stupecki’s clone on A.

We will show that Pol A\r ¢ F4 unless Pol Ap is Stupecki’s clone (Theorem 6.3).
Moreover, we will find an interval in the clone lattice that includes Stupecki’s clone
and is contained in §4 (Theorem 6.1).

As a preparation for stating the latter result we introduce some notation. For
2 < i < k, B; will denote the subclone of 04 that consists of all essentially at
most unary operations and all operations whose range contains at most ¢ elements.
Thus, Bj_1 is Stupecki’s clone and By _» is the clone introduced in Remark 3.6. For
i = 0, By will stand for the clone of all essentially at most unary operations, and
for ¢ = 1, By denotes Burle’s clone defined preceding Corollary 3.8. Furthermore,
T4 will denote the full transformation monoid (91(41) on A, and Ty its submonoid
consisting of the identity function and all nonpermutations. For any submonoid
M of Ty containing Ty and for any i (1 < i < k) we will use B;(M) to denote
the clone that arises from B; by omitting all operations depending on at most one
variable which are outside the clone (M).

It is well known (see [19] and [2]) that the subclones of O4 containing T4 are
exactly the clones in the (k + 1)-element chain

(Ta) =By C By CByC -+ CBy_y C By = Oy,

which is often referred to as the Stupecki-Burle chain. Szabé (unpublished, [20])
extended this result and showed that the proper subclones of O4 containing 1", are
exactly the clones B;(M) where 0 < i < k and M is a submonoid of T4 containing
T,.

Theorem 6.1. If C is a clone on a k-element set A (k > 3) such that T, C C,
then C € Fa if and only if B,_1(T4) CC.

Proof. Let N'= Bj_1(T ), which is the subclone of O 4 that consists of all projec-
tions and all nonsurjective operations. Assume first that N/ C C. We want to show
that C € F4. By Proposition 2.1 (ii) it suffices to prove that N' € Fa. We will start
with the following claim.

Claim. If f and g are operations on A that are not essentially unary
and satisfy Im f = Im g, then f =5 g.

Proof of Claim. Let Im f =Img = S, and let f be n-ary and g be m-ary. Since f
and g are not essentially unary, |S| > 2. If |S| > 3, then it follows from Jablonskii’s
Lemma (Lemma 5.1) that there is a transversal B = {by,...,bjg/} for ker f such
that B C Cy x Cs x - - - x (), for some proper subsets C; C A. This condition clearly
holds also in the case |S| = 2. The assumption Im f = Im g combined with the
choice of B ensures that for each a € A™ there exists a unique b; € B such that
g(a) = f(b;). Therefore we get a well-defined function h: A™ — A™ by setting
h(a) = b; whenever g(a) = f(b;). It is clear from this definition that g = f o h.
Since B C (1 x Cy x - -+ x Cy,, we see that the components h; of h = (hy,..., hy)



CLONES WITH FINITELY MANY RELATIVE R-CLASSES 31

are non-surjective, and hence they are members of /. Thus, g <nr f. The same
argument with the roles of f, g switched shows also that f <xrg. ¢

It follows from the Claim above that every operation f on A that is not essentially
unary, is A/-equivalent to a binary operation. It is easy to see that for any clone K,
every essentially unary operation is K-equivalent to a unary operation. Therefore
we get from Proposition 2.1 (i) that A/ € 4. Proposition 2.1 (ii) thus implies that
C € §a whenever N C C.

For the converse assume that A/ € C. Since T, C C, Szabd’s theorem implies
that C is a subclone of By_5. Therefore, by Proposition 2.1 (ii), C ¢ Fa will follow
if we show that By_o ¢ 4. For k = 3 the clone Bj_5 is Burle’s clone, so in this
case By_o ¢ §4 follows from Corollary 3.8.

From now on let £ > 3, and assume without loss of generality that A =
{0,1,...,k —1}. For each n > 2 and 1 < i < n let u? denote the n-tuple whose
i-th coordinate is 1 and all other coordinates are kK — 1. Now we define an n-ary
operation f, on A by

l ifa=[withl<Il<k-2,
fa@=<qk—1 ifa=u? (1<i<n),
0 otherwise.

It is clear that f, depends on all of its variables, because it is invariant under all
permutations of its variables, and is not constant. Our claim By_o ¢ §4 will follow,
if we show that f,,, #g,_, fn whenever m # n.

Assume that, on the contrary, f,, <g,_, fn for some n < m. Then there exists
h=(hy,....,h,) € (B,(CT)Q)" such that f,, = f, o h. This implies that h maps each
kernel class f,.1(l) (I € A) of f,, to the corresponding kernel class f,1(l) of f,.
Applying this for I € {1,...,k — 2} we obtain that h(l) = [, so the range of each h;
contains the elements 1,2,...,k— 2. Applying the same property of h for [ =k —1
we get that the range of h must also contain an n-tuple of the form ul for some
1 < s < n. For each i # s the i-th coordinate of u? is k — 1, therefore for all such
i all elements 1,2,...,k — 2,k — 1 must be in the range of h;. This implies that
each h; (i # s) is essentially unary, because the only members of By_o with ranges
containing at least k —1 elements are essentially unary. On the other hand, it is not
the case that hg, too, is essentially unary, because n < m and f,,, depends on all
of its variables. Thus hs has essential arity > 2. The facts established so far about
the ranges of the h;’s imply that the range of hy is {1,...,k — 2}. Furthermore,
the other hy’s (1 < i < n, i # s) are of the form h;(x) = hj(z,@) for some
o:{1,...,n} = {1,...,m} and some unary operations h} that fix the elements
1,...,k —2. Choose and fix t # s (1 <t < n) arbitrarily, and let p = o(¢); hence
hi(x) = hi(x}). Since h maps f,,'(k —1) to f,'(k — 1), we get that h(u}") = u}
for some j (1 < j < n). Thus hi(u)’) = 1if i = j and h;(u}') = k — 1 if i # j.
As the range of hy does not contain k — 1, it must be the case that j = s. Hence
h¢(uy') = k — 1. Since the p-th coordinate of uj’ is 1, we get that hy(uy*) = hy(1),
and hence h}(1) = k — 1. This contradicts the fact established earlier that hj fixes
1. The proof of Theorem 6.1 is complete. (I

Now we turn to the second main result of this section which shows that if A\ is
an h-regular relation of arity h < k, then the maximal clone Pol A7 is not a member
of Fa. We will use the notation h = {1,..., h} throughout the rest of the section.
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The following property of the operations in Pol Ay will be useful (see, e.g., [18,
Lemma 7.3]).

Lemma 6.2. Let T = {61,...,0,} be an h-regular family of equivalence relations
on A, let § = m::1 0;, and let g be an m-ary operation in Pol A\yp. If the range of g
contains a transversal for the blocks of each 0; (1 <1 <r), then
(1) for each i (1 < i <r) there exist p (1 <p <m) and g (1 < q <r) such
that for all a,b € A™,

g(a)b; g(b) whenever a0, by;
consequently,

(2) g preserves 8, and
(3) the operation g° on A/0 depends on at most r variables.

Theorem 6.3. If At is an h-regular relation such that h <k, then PolAr ¢ §4.

Proof. Let T = {61,...,6,} be an h-regular family of equivalence relations on A,
let 0 = ﬂ;l 0;, and let C = Pol Ar. First we will consider the case when r > 2.
Since T is h-regular, there exists a surjective function ¢: A — h” such that each 6;
is the inverse image under ¢ of the kernel of the i-th projection map m;: h" — h.
The diagonal A = {@: u € h} of h" is a common transversal for the kernel classes
of ; for each i. Therefore by choosing t,, € A for each u € h such that ¢(t,) = @
we get an h-element subset {¢, : u € h} of A that is a common transversal for the

blocks of each 6; € T. In particular, tq,...,t, are pairwise non-equivalent modulo
6. The number of blocks of 6 is A" > h + 2 (since r > 2 and h > 3). Hence we can
extend t1,...,t, to a transversal o, e, t1,...,th, tht1,...,ts of 8 (s = h" — 2).

For n > 2 define an n-ary operation f,, on A as follows:

ap ifayfaxf---0a, but (ar,e) ¢ 6,
fular,...;an)=qe if[{i:a;0e}=n—1,
o  otherwise.

We will show that if f,, <¢ f, then m < nr. Hence, if f,, =¢ fn then n/r <m <
nr. This will imply that no two operations in the infinite sequence f,,, { =1,2,...,
with ng = ! +r~1 + ... 4 r + 1 are in the same =¢-class, and therefore C ¢ FaA.

Assume that f,, <¢ f,. Hence there exists g = (g1,...,9,) € (C0™)™ such that
fm=fnog. Subbtltutlng ty = (tu,.--,ty) € A™ (1 < u < h) into this equality
we get that t, = fi,(t,) = ( (ty ) Since t, # o and t, # e, the definition of f,
implies that

= 91( )992( )aagn({u)

Thus, it follows from the ch01ce of t1,...,t, that the range of each g; (1 < j <n)
contains a transversal for the blocks of all equivalence relations 6;. Therefore by
Lemma 6.2 each g; preserves ¢ and the operation g? on A/6 depends on at most r
variables. It is easy to see from their definitions that the operations f,, and f, also
preserve 6. Hence for the operations f? and f? on A/6 we get that f? = f?og®.
Since each g? depends on at most 7 variables, we conclude that f? depends on at
most nr variables. But the definition of f,, shows that f¢ depends on all of its
m variables, because it is symmetric in all of its variables (that is, every operation
obtained from f? by permuting variables is f? itself) and is not constant. This
implies that m < nr, completing the proof of the theorem in the case when r > 2.
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Now let r = 1, that is, T = {6} where 6 has h > 3 blocks, but 6 is not the equality
relation. We may assume without loss of generality that A = {0,1,...,k — 1},
h={1,2,...,h} is a transversal for the blocks of #, and 00 1. For n > 2 define an
n-ary operation f, on A as follows:

a1 ifa;fazf---0a, but (ar,1) ¢ 6,
falar,...;an) =491 if[{i:aq;01} =n—1,
0  otherwise.

We want to show that if f,, <¢ f, then m < n. Hence, if f,, =¢ f, then m = n.
This will imply that no two operations in the infinite sequence f,,, n = 2,3,..., are
in the same =¢-class, and hence C ¢ F 4.

Assume that f,, <¢ f,. Hence there exists g = (g1,...,9,) € (C0™)™ such that
fm = fnog. Substituting @ = (u,...,u) € A™ (2 < u < h) into this equality we
get that u = f,,,(@) = fn (g(ﬂ)) Since u # 0 and u # 1, the definition of f,, implies
that

u=g1(u) 6 g2(u)0---0gn(u).
Thus, the range of each g; (1 < j < n) contains an element from every 6-block
2/0,...,h/0 (ie., from every #-block other than 1/6).

Now let v; denote the m-tuple whose i-th coordinate is 2 and all other coordinates
are 1. Substituting the tuple v; into f,, = fn, og we get that 1 = f,,(v;) =
fn(g(v;)). The definition of f,, yields that

(x) for each i (1 <14 <m), exactly n — 1 of the n elements

91(vi), 92(vi), -+, gn(Vi)
are in the #-block 1/6.

This implies that at least n — 1 of the operations g1, ..., g, have the property that
their ranges contain transversals for the blocks of 8. We want to argue that all
operations ¢, ..., g, have this property.

Assume not, and let, say, g; be the unique operation among g¢i,...,g, whose
range fails to contain a transversal for the blocks of 8. Since the range of ¢; contains
an element from each one of the 6-blocks other than 1/6, the range of g; must be
disjoint from 1/6. Now (x) implies that g;(v;) 081 for all j > 1 and all ¢ (2 < j < n,
1 <4 < m). In particular, for j = 2, this shows that the range of g, contains a
transversal for the blocks of 6, so by Lemma 6.2 (case r = 1) there must exist a p
(1 < p <m) such that for arbitrary arguments a,b € A™

g2(a) 6 g2(b) whenever ap 0b,.

However, this fails for a = v, and b = 2; indeed, the p-th coordinates of v, and 2
are both 2, but as we established earlier, g2(v,) 01, g2(2) 62, and (1,2) ¢ 6. This
contradiction proves that all operations gi,...,g, have the property that their
ranges contain transversals for the blocks of 6.

Now we can finish the proof the same way as before. It follows from Lemma 6.2
that each g; preserves # and the operation g]e on A/0 depends on at most one
variable. It is easy to see from their definitions that the operations f,, and f, also
preserve 6. Hence for the operations f?, and f? on A/0 we get that f? = f%ogf.
This implies that f? depends on at most n variables. But the definition of f,,
shows that f? depends on all of its m variables. Thus m < n. This completes the
proof of Theorem 6.3 (]
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7. INTERSECTIONS OF MAXIMAL CLONES

Theorems 4.1, 5.2, 5.3, 6.1, 6.3 from previous sections of this paper, combined
with earlier results stated in Theorem 2.5 and Corollary 2.4 completely describe
which maximal clones on a finite set A belong to the filter §4. This description is
summarized below (see also Table 1).

Theorem 7.1. Let A be a finite set with k elements (k > 3). For a mazimal clone
M on A we have M € F 4 if and only if M is one of the following clones:

M = Pol~ for a prime permutation v on A,

M = Pole for a nontrivial equivalence relation € on A,

M = Pol B for a nonempty proper subset B of A,

M = Polo, for some c € A where o is the (k—1)-ary central relation with
central element c,

e M is Stupecki’s clone.

In this section we determine for each pair of maximal clones in §F4 whether or
not their intersection is in §4. The results can be summarized as follows.

Theorem 7.2. Let A be a finite set with k elements (k > 3), and let M and N be
distinct mazximal clones in §4.

(1) If N is Stupecki’s clone, then M NN ¢ Fa.
(2) If N =Polo, for some c € A, then MNN € Fa if and only if M = Pol{c}.
(3) If N' = Pole for a nontrivial equivalence relation ¢ on A and M = Polp
where p is a prime permutation, a nonempty proper subset, or a nontrivial
equivalence relation on A, then M NN € F4 unless
e p =1 is a prime permutation such that v ¢ N, or
e p is an equivalence relation incomparable to €.
(4) If M =Pol p and N = Pol T where p, T are prime permutations or nonempty
proper subsets of A, then M NN € Fa.

Since every clone in §4 other than O4 is below a maximal clone in §4, the
ordered set F4\{O4a} can be decomposed into a union of up-closed sets of the form
Fa(M) ={C:C M}
for each maximal clone M in F4. Statement (1) of Theorem 7.2 shows that for
Stupecki’s clone A, the set §4(N) is disjoint from all other §4(M)’s. Similarly,
statement (2) shows that for each N' = Pol o, the set F4(N) is almost disjoint from
all other §4(M)’s. In contrast, by statements (3) and (4) (or by the more general
Theorem 4.1) there are large overlaps between the sets §4(M) for the remaining
three types of maximal clones. Thus, Theorem 7.2 can be viewed as a structure
theorem for the order filter § 4, stating that § 4 consists of three almost independent
parts: (i) the clones contained in Stupecki’s clone, (ii) the clones contained in Pol o,
for some ¢ € A, and (iii) the clones that lie below at least one maximal clone of
one of the remaining three types (i.e., a maximal clone determined by a prime

permutation, a subset, or an equivalence relation); see Figure 2.

For the proof of Theorem 7.2 we have to verify that almost all intersections
M NN of maximal clones M, N € F4 fail to be in F4 if M is Stupecki’s clone or
a maximal clone determined by a (k — 1)-ary central relation. This will be done in
Lemmas 7.3-7.6 and Lemmas 7.9-7.12 below.
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Oa

(k—1)-ary
central
rels

N
Pol(E, Aut E, PT(A))

(E a chain of equiv rels)

FIGURE 2. The structure of §4 for A ={1,2,...,k} (k> 3)

We will assume throughout that A is a finite set with k£ elements, and will use
the notation By_1 and By_o from Section 6 for Stupecki’s clone and its lower cover
in the Stupecki-Burle chain.

Lemma 7.3. Ifc € A, then Polo. N Br_1 ¢ Fa.

Proof. Let C = Polo, N Bi_1, and assume without loss of generality that A =
{0,1,...,k— 1} and ¢ = 0. To simplify notation we will write o for o¢. For each
n > 1 define an n-ary operation f, on A as follows:

uw ifa=u,1<u<k-—1,
0 otherwise.

fn(a) =

Clearly, f, depends on all of its variables, because it is invariant under all permu-
tations of its variables, and is not constant.

We claim that f,, Z¢ fn, whenever n # m, and hence C ¢ F4. For, suppose on
the contrary that f,, =c f, for some n < m. Then there exists h = (hy,...,h,) €
(C™)™ such that f,, = f, oh. Thus h maps f,.!(u) into f; *(u) for each u € A.
Since for 1 < u < k—1 the set f,,1(u) (resp. f,, *(u)) contains the m-tuple (n-tuple)
@ only, we get that h(u) = u holds for all u with 1 < u < k—1. We will distinguish
two cases according to whether or not h(0) = 0.

Assume first that h(0) = 0. Then each h; (1 <i < n) is surjective and, being a
member of By_1, h; is thus essentially unary. Therefore the equality f,, = fnoh
implies that f,, depends on at most n (< m) variables. This is impossible, since
we established earlier that f,, depends on all m of its variables.

Assume now that h(0) = b = (by,...,b,) # 0. Then b; = b # 0 for some i

(1<i<n). Then (1, ..., b—1,0, b+1, ..., k—1) € 0™, but
(h(1), ..., h(b—1), h(0), h(b+1), ..., h(k—1))
=(,...,b=1,b, b+1, ..., k—1)¢o",

since the i-th coordinate of the tuple is (1,...,b0—1,b,b+1,...,k—1) ¢ 0. This is
again impossible, since our assumption that h € (C(™)™ requires that h preserve
0. [
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Lemma 7.4. If v is a prime permutation on A, then PolyNBr_1 ¢ Fa.

Proof. Let C = Poly N Bi_1 and k = |A|. Our goal is to prove that C C Bj_s.
Since Bi_2 ¢ §a by Theorem 6.1, this will imply our claim that C ¢ Fa.

By assumption, v is a prime permutation. Therefore v has no fixed points, and
every cycle of v has the same prime length p. So k = mp for some integer m > 1.
First we will show that the range of every operation in Pol~ is closed under +.
Indeed, let f be an n-ary operation in Pol~v, and let a € Im f, i.e., a = f(a1,...,an)
for some ay, ..., a, € A. Thenv(a) =~(f(ay,...,a,)) = f(v(a1),...,v(an)) holds
because f € Pol~, hence v(a) € Im f. This proves that if f € Polvy, then Im f
is closed under ~. It follows that Im f is closed under all powers of ~, including
4~1 = 4”71 Hence A\ Im f is also closed under +. This implies that if Im f # A4,
then |Im f| < |A| —p=k —p.

Now we are ready to prove that C C Bi_s. Let f € C. If f is essentially at
most unary, then f € By C Bg_s. So, suppose that f is not essentially at most
unary. Then f € Bj_1 implies that Im f # A, and hence f € Pol~ implies, by our
discussion in the preceding paragraph, that |Im f| < k — p. For k = p this shows
that such an f cannot exist, while for k = mp > 2p it shows that f € By, C By_2.
In either case, this completes the proof that C C By _», and finishes the proof of the
lemma. O

Lemma 7.5. If B is a nonempty proper subset of A, then PolBN Byx_1 ¢ Fa.

Proof. Let C = PolB N Bi_1. We may assume without loss of generality that
A={0,1,...,k—1} and B={0,1,...,7—1} (1 <r < k). For the proof of C ¢ §4
we will use a description of Stupecki’s clone Bj_1 via relations. As we mentioned
at the beginning of Section 6, By_1 = Pol Ay where Ap is the h-regular relation
associated to the singleton T'= {04} consisting of the equality relation on A. It is
clear from the definition of h-regular relations in Section 2 that the relation A ,}
is nothing else than the k-ary relation

e ={(a1,...,ax) € A* s ay, ..., a; are not pairwise distinct}.

Hence Bi_1 = Pol .
Now we turn to the proof of C ¢ F4. First we will consider the case when r = 1,
and hence B = {0}. Tt is straightforward to verify that

oo ={(ar,...,ap_1) € A¥ " :(ay,...,ax_1,0) € 11}
= {(al,...,ak_l) e AP
there exists ay € B such that (a1,...,ax_1,ax) € tx}

This shows that every operation on A that preserves i and B, also preserves og.
Therefore we get that C C Polog N Bi_1. By Lemma 7.3, Polog N Br_1 ¢ §a, so it
follows that C ¢ Fa.

From now on we will assume that » > 2. Foreacha (0 <a < k—1) let eZ denote
the k-tuple whose j-th coordinate is (a+j — 1) mod k for each j. Furthermore, for
eacha (0 <a <k—1)andn > klet e denote the n-tuple that is the concatenation
of e® with the constant (n — k)-tuple repeating the last coordinate of e¥. Thus,

eg=(0,1,...,k—1,k—1,...,k—1), and
el =(a,a+1,....,k—1,0,...,a—1,a—1,...,a—1) forl<a<k-1
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Note that none of the n-tuples e} is a member of B”, since all elements of A occur
among the coordinates of e
For each n > k we define an n-ary operation f,, on A as follows:

ay if (a1,...,a,) € B™,

ap ifag=ay=--=ap, r<a; <k-1,
folar,...;ap) =41 ifa; =1and (a,...,a,) ¢ BU{el},

1 if (aq,...,a,) = €l for some a # 1,

0 otherwise.

Note that f,, depends on all of its variables, which can be seen as follows: for any
1 with 1 < i < n the n-tuple £k — 1 and the n-tuple u; obtained from k£ — 1 by
changing the i-th coordinate to 0 satisfy f,(k—1) =k —1#0= fo(u,).

We claim that f, Z¢ fn, whenever n # m, and hence C ¢ §4. For, suppose on
the contrary that f,, =¢ f for some n < m. Then there exists h = (hy,..., h,) €
(™)™ such that f,, = f, o h. Thus h maps each set f'(u) (u € A) into the set
ft(u). Since for r < a < k— 1 the set f,.1(a) (resp. f,,1(a)) contains the m-tuple
(n-tuple) @ only, we get that h(a) = a holds for all r < a < k — 1. In particular,
hi(@)=aforallr <a<k-1.

Now let a = (ay,...,am) € B™. Since h preserves B, we have that h(a) =
(hl(a), ceey hn(a)) € B™. So, by applying the definitions of f,, and f,, for tuples in
B we get that

a1 = fm(a) = fn(h(a)) = fn((hl(a)7 .- ,hn(a))) = hl(a)a

that is, hy restricted to B is projection onto the first variable. Combining this
with the property of hy established in the preceding paragraph we get that h is
surjective, and hence, being a member of By_1, it is essentially unary. The fact
that hp restricted to the set B of size > 2 depends on its first variable forces that
it is the first variable that h; depends on. Since hj(a) = a for all a (whether a € B
orr <a<k-—1), we conclude that hy is projection onto the first variable.

Next we want to determine h(e?*) for each a € A. Since h; is projection onto
the first variable and e* has first coordinate a, we get that h(el*) also has first
coordinate a. On the other hand,

fn(h(e;n)) = fm(e;n) =

1 ifa#1,
0 ifa=1.

If @ # 1, then h(el?") is an n-tuple with first coordinate a # 1 whose f,-image is 1.
It follows from the definition of f,, that the only such n-tuple is e, so h(el’) = el.
If @ = 1, then h(e]*) is an n-tuple with first coordinate 1 whose f,-image is 0.
Again, the definition of f,, shows that the only such n-tuple is e}, so h(e]*) = el.
This proves that h(e]’) = e} for all a € A.

Since for each ¢ (1 < ¢ < n) the i-th coordinates of the tuples e” (a € A) exhaust
A, we obtain that each h; is surjective. But, h; € By_1 for each i, therefore each h;
is essentially unary. Hence f,, = f, oh yields that f,, depends on at most n (< m)
variables, contradicting the fact that f,,, depends on all m of its variables. O

Lemma 7.6. If e is a nontrivial equivalence relation on A, then PoleNBi_1 ¢ Fa.

Proof. Let C = Pole N Bg—1. We may assume without loss of generality that A =
{0,1,...,k—1}, and the equivalence classes of € are {0,1,...,n1}, {n1+1,...,n2},
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cow {n—1+1,...,k—1} for some r > 2 and some 0 =np+1 <1< m <ng <
< np_y <np.=k—1.

For0<a<k—1andn>1let e’;” denote the kn-tuple that is a concatenation
of k constant n-tuples such that the (jn + 1)-th coordinate of " is (a + j) mod &
for each j (0 < j <k — 1); equivalently,

e =(aa+1,....,k—1,0,...,a—1) (0<a<k-1)

a

where each constant tuple b (0 < b < k — 1) has length n. Two properties of these
tuples will be important:

o (eln efn) ¢ b if a # b, and

e /" /ck™ has an element other than ef” for each a.
The first property can be verified by observing that if (a,b) ¢ e, then the first
coordinates of ef” and elg” are not e-related, while if (a,b) € e, say n; +1 < a <
b < n;;1, then (a—i—(niﬂ —b+1),b+(njp1—b+ 1)) ¢ ¢, so that for j =n; 1 —b+1
the (nj + 1)-th coordinates of e™ and ef™ are not e-related. The second property
is true because the assumption (0,1) € € ensures that if for any £ (1 < ¢ < n) we
replace the ¢-th occurrence of 0 in ef™ by 1, we get a kn-tuple (ef")l¥] which is
ekn_related, but not equal to e*™.

For n > 1 we now define a kn-ary operation f,, on A as follows:

a if a = ek for some a,
fn(@) =< (a+1) mod k if (a,ef™) € e, a # ek for some q,
0 otherwise.

The properties of " established in the preceding paragraph make sure that f, is
well-defined, and that f,,[e"" /c#"] is a 2-element set for each a. Moreover, it follows
also that f,, depends on all of its variables, because for each j (1 < j < kn) there
exist @ and £ such that the kn-tuples €™ and (e#™)l¥] differ in their j-th coordinates
only, and fn(ef") = a # (a+1) mod k = f,((ef™)!).

We claim that f, Z¢ fr, whenever n # m, and hence C ¢ F4. For, let n < m,
and suppose on the contrary that there exists h = (hy,...,hy) € (C"))" such
that f,, = fn o h. It follows from the definition of f, that for each block B of
gkn f,[B] is the 2-element set consisting of a and (a + 1) mod k, if B = ef"/ckn
(0 <a<k-1), and f,[B] is the singleton {0} otherwise. We want to use this
fact to prove that h(ef™) = e*" holds for each a (0 < a < k — 1). Indeed, since h
preserves ¢, therefore h maps €™ /e¥™ into a single e¥"-block B in A*". As

{a,(a+1) mod k} = finlez™ /"] = fu[hlez™ /"] C fulB),

we get that B = ek /eF". Since a = f,,(el™) = f.(h(ef™)), and a = ef" is
the only element a € B for which f,(a) = a, we conclude that h(e*™) = e as
claimed.

Since for each ¢ (1 <4 < n), all elements of A occur in the i-th coordinate of
some ef™ the equalities h(ef™) = e (a € A) imply that each h; is surjective.
As each h; is a member of By_1, we get that each h; is essentially unary. Hence
fm = fn oh yields that f,, depends on at most n (< m) variables, contradicting

the fact established earlier that f,, depends on all m of its variables. O

Next we will consider intersections of Pol o, with other maximal clones in §4.
We will start with two auxiliary lemmas.
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Lemma 7.7. Let A=1{0,1,...,k—1}, and let o¢ be the (k—1)-ary central relation
on A with central element 0. A subclone C of Pol oy fails to belong to § 4 if for some
integers ng > 3 and | € {0, 1}, there exist n-tuples ¢’ (1 <i < n—1) for eachn > ng
such that the following two conditions are satisfied:

(1) For allm >ng and 1 <i < j <n—1 we have

(c?, ¢ 3,....k—1) € (09)" <= j—i<l.

R R

(2) For all m,n > ng, we have h(c*) = ¢ whenever h € (C™)™ is such that
(i) h(c!) e{cl:1<i<n-—1},
(ii) h(c_,) =ck_,, and

(iii) h(b) =b for all 3 <b <k —1.

Proof. Let C be a subclone of Polog, and assume that conditions (1) and (2) are
satisfied for some n-tuples ¢’ (n > ng, 1 <i <n —1). For each n > ny we define
an n-ary operation f,, on A as follows:
1 ifa=cl (1<i<n-=1),
2 ifa=c?_,
fn(a) = e O
b ifa=bB<b<k-1),

0 otherwise.

We will prove C ¢ §a by showing that f,, #Z¢ fn whenever n # m.

Suppose that, on the contrary, there exist m < m such that f, =¢ f,,. Hence
there exists h € (C(™)" such that f,, = f, o h. Thus h maps each set f,'(b)
(b € A) into the set f,(b). Applying thisto 3 < b <k —1 and to b = 2 we get
that h(b) = b for all 3 < b < k— 1 and h(c™_,) = c"_,. The same property for
b =1 shows that

(7.1) h(cj’) e {ci:1<i<n—1} forallj(1<j<m-—I).

In particular, h(cf’) € {c? : 1 <i < n —1}. Thus h € (C"™))" satisfies all three
requirements (i)—(iii) in (2). Therefore we can apply condition (2) to conclude that

(7.2) h(cl") =cf.

By condition (1) we have (c}*, ¢ 1,3,...,k —1) € (59)™ forall j (1 <j<m—1).
Since h € (C(m))", and therefore h preserves o, the h-images of these tuples are
in (09)™. Since h satisfies (iii), this means that

(7.3) (h(c}),h(c]"),3,....,k—1) € (00)" forall j (1<j<m-—1).
Using (7.1) we obtain that the (m — [)-element sequence of h-images
c71L = h(dln)v h(cgl)v sy h(c;'n)a h(c;’T—LH)v cees h(CZ—z—D, h(Cm—z) = CZ—I

has its first m —{ — 1 members in the set {c} : 1 <1i <n —1}. (The equalities for
the first and last members follow from (7.2) and the fact that h satisfies (ii).) Thus
h(cgn) :c?j foreach j (1<j<m—1I)sothat s =1,1<s9,...,8m_1—1 <n-—1,
and $y,—; = n — . Combining this with (7.3) we get that

(ch,ct ,3,...,k—1) €(0p)" forallj (1<j<m-—1-1).

559 V85410

Since oy is totally symmetric, we also have that

(c? . ,cl.3,...,k—1) €(0p)" forallj (1<j<m-—1-1).

Sj410 7850
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Thus it follows from condition (1) that |sj41 —s;| <lforallj (1 <j<m—-I1-1).
Therefore n—1—1 = |8, —$1| < E _l ! |sj+1—s;| < m—I—1, which contradicts
our assumption that m < n. This completes the proof of the lemma. O

Lemma 7.8. Let A={0,1,...,k—1}, let o9 be the (k—1)-ary central relation on
A with central element 0, and forn >4 and2 <i<n-—1 let

en:(]‘7"'7170’270?]‘7""1)GAn

K2

be the n-tuple where the sole 2 is in the i-th coordinate. For all2 <1< j<mn-—1
we have

(el el 3,....k—1) € (op)" <= j—i<L

Proof. Let j > 4. If j =i or j = i+ 1, then in each coordinate, the (k — 1)-
tuple (e}, e},3,...,k — k —1) is of the form (0,0,...), (1,1,...), (2,2,...), (0,1,...),
(2,0,...), (0,2,...), or (1,0....). Thus (e},e?,3,....k —1) € (oo)". Ifj > i+
1, then in the i-th coordinate of the (k — 1)-tuple ( e;,e},3,...,k—1) we have

(2,1,3,....k —1) & 0¢, hence (e,e?,3,...,k—1) & (a0)". U

I ]

Lemma 7.9. If ¢ € A and B is a nonempty proper subset of A such that B # {c},
then PolBNPolo,. ¢ Fa.

Proof. Let C = Pol B N Polo.. We may assume without loss of generality that
A={0,1,...,k—1} and ¢ = 0. In view of Lemma 7.7, our claim that C ¢ §4 will
follow if we exhibit tuples ¢} that satisfy conditions (1) and (2). We will distinguish
two cases according to whether ¢ = 0 is a member of B or not.

Case 1: 0 € B. In this case |B| > 2. Assume without loss of generality that
0,1 € Band 2 ¢ B. Forn > 4, let ¢! = (0,0,1,1,...,1) € A", and let ¢ =
el (2 < i < mn—1) be the tuples from Lemma 7.8. We claim that (1)—(2) of
Lemma 7.7 hold true (with ng = 4 and [ = 1). For j > ¢ > 2, condition (1)
follows from Lemma 7.8. So, let © = 1. Then it is straightforward to check that
(ct',c5,3,...,k—1) € (00)", while if j > 2, then (cf,c},3,...,k—1) ¢ (00)",
because in the j-th coordinate we have (1,2,3,...,k — 1) §é 0. This proves that
condition (1) holds. To establish condition (2) assume that h € (C™)* (m,n > 4)
satisfies requirements (i)—(iii) in condition (2); in fact, in this case it will be enough
to assume that h satlsﬁes (i), that is, h(cf*) € {c¢} : 1 <i < n—1}. Here c* € B™,
¢t € B" and c§,...,c"_, ¢ B™, because B contains 0,1 and does not contain 2.
Since h preserves B, we must have that h(c}") = c?.

Case 2: 0 ¢ B. Assume without loss of generality that 2 € B. For n >
4, consider the following n-tuples: ¢} = 2, ¢§ = (2,0,0,...,0), and c?' = el" ,
from Lemma 7.8 for 3 < i < n. We want to show that condltions (1) and (2)
of Lemma 7.7 are satisfied (with ng = 4 and [ = 0). For j > ¢ > 3 condition
(1) follows from Lemma 7.8. For i = 2 we have (c},c%,3,....,k—1) € (o0)",
since in each coordinate one of c5, c§ is 0. On the other hand, if j > 3, then
(c2 ,cl 3,k — 1) ¢ (0¢)™, because in the first coordinate we have (2,1,3,..., k—

1) ¢ 0g. For i =1, (c{‘,cg,g,...,k - 1) € (o¢)™, since in each coordinate this
(k — 1)-tuple has the form (2,2,...) or (2,0,...). However, for j > 2 we have
(ct, ¢, 3,...,k—1) ¢ (00)", because in every coordinate where ¢/ is 1 we have

(2,1,3,...,k—1) ¢ gg. This proves condition (1). As before, to verify condition (2)
let h € (CU™)™ (m,n > 4) be such that h(cy?) € {c : 1 <i < n}. Here c]* € B™,
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ct € B" and c,...,cl'_; ¢ B™, because 2 € B and 0 ¢ B. Since h preserves B,
it must be the case that h(c}") = c}. O

Lemma 7.10. If ¢ and d are distinct elements of A, then Polo. NPolog ¢ Fa.

Proof. Let C = Polo. N Polo;. We may assume without loss of generality that
A={0,1,...,k—1}, c=0, and d = 2. We will again use Lemma 7.7 to show that
C ¢ § 4. In fact, we will show that the tuples ¢’ (1 < ¢ < n) exhibited for Case 2 of
the proof of Lemma, 7.9 satisfy conditions (1) and (2) of Lemma 7.7 (with ng = 4 and
[ = 0) for this clone C as well. Since (1) is independent of the choice of the subclone C
of Pol oy, there is nothing more to do to prove (1). It remains to show that condition
(2) is satisfied. Let h € (C(™)™ (m,n > 4), and assume that h satisfies requirements
(i)-(iii) in condition (2), that is, h(c{*) € {c} : 1 < ¢ < n}, h(c]) = c., and
h(B) =bforall 3<b<k—1. Since C is a subclone of Poloy, h preserves oo. In
particular, the h-image of the (k—1)-tuple (c]*,c™,3,...,k — 1) € (02)™ is a tuple
in (02)™; that is,

(h(ct"),cr,3,...,k—1) € (02)"™
By assumption, h(c]") € {c} : 1 < i < n}; on the other hand, for i = 2 we
)

have (c%,c”,3,...,k — 1) ¢ (02)", because the second coordinate is (0,1,3,...,k—
1) ¢ o2, while for 3 < i < n we have (cP',cl,3,...,k—1) ¢ (052)", because the
last coordinate is (1,0,3,...,k — 1) ¢ o9. Thus it must be that h(c]*) = c7, as
required. ([l

Lemma 7.11. If v is a nonidentity permutation of A and ¢ € A, then Poly N
Pol Oc ¢ SA-

Proof. Let C = Polvy N Polo., and assume without loss of generality that A =
{0,1,...,k—1} and ¢ = 0. Let d = v(0), and let B = {a € A : y(a) = a} be the
set of fixed points of . It is easy to verify that

oa={(v(a),...,v(ar-1)) : (ar,...,a5-1) € 00}

Thus it follows that every operation that preserves oy and -y also preserves B and
4. Hence C C Polog NPol BN Poloy. In case d # 0 we get from Lemma 7.10 and
Proposition 2.1 (ii) that C ¢ §4. If d = 0, then 0 € B. Moreover, since v is not the
identity permutation, B is a proper subset of A. Therefore Lemma 7.9, combined
again with Proposition 2.1 (ii), yields that C ¢ F4 unless B = {0}.

So, it remains to consider the case when B = {0}, that is, 0 is the unique fixed
point of . Assume from now on that ~ satisfies this condition. To prove that
C ¢ §4 holds in this case as well, we will use Lemma 7.7, that is, we will exhibit
tuples c that satisfy conditions (1) and (2) of Lemma 7.7.

First let k£ > 4. Since 0 is the only fixed point of v, we may assume without loss
of generality that v(2) = 3. Now let ¢ (n >4, 1 <i < n) be the tuples defined in
Case 2 of the proof of Lemma 7.9. We know from that proof that condition (1) is
satisfied. To prove that (2) is satisfied with our current choice of clone C, consider
any h € (C™)" (m,n > 4) that satisfies h(3) = 3, a fragment of requirement (iii)
in (2). Since (¢f",3) = (2,3) € ™ and h preserves v, we get that (h(c]"),3) € y".
As v is a permutation, it follows that h(c]*) = 2 = c.

Finally, let £ = 3. Since 0 is the only fixed point of ~, 7 is the transposition (1 2).
For each n > 7 define n-tuples ¢ (1 < i < n) as follows: ¢} = (2,2,...,2,0,1,0),
ct = (2,0,...,0,0,0,0), and for 3 < i < n, ¢! = e ; are the tuples from
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Lemma 7.8. Since these tuples, with the exception of cf, are the same as those
in Case 2 of the proof of Lemma 7.9, we know from that proof that condition (1)
holds whenever j > 4 > 2. For i = 1, clearly, (c},c}) € (0¢)", because in each co-
ordinate the pair is (2,2) or contains a 0. However, if j > 2, then (c7,c}) ¢ (c0)",
because we have (2,1) ¢ o either in the fourth coordinate (if j = 3), or in the first
coordinate (if j > 3). This proves that (1) holds. To prove that (2) also holds,
let h € (C")™ (m,n > 7) satisfy requirement (ii) from condition (2), that is,
h(c) = cl. Since (", i) € ™ and h preserves 7, we get that (h(c*),c?) € 4.
As ~ is a permutation, it follows that h(c]*) = ¢, completing the proof.

Lemma 7.12. If ¢ is a nontrivial equivalence relation on A and ¢ € A, then
PoleNPolo. ¢ §a.

Proof. Let C = Pol(e) N Polo,, and assume without loss of generality that A =
{0,1,...,k}, ¢ =0, and 2 is an element of A such that (0,2) ¢ ¢, but at least one
of the e-classes 0/¢e, 2/¢ is not a singleton. For n > 4 let e (2 < i < mn—1) be
the n-tuples from Lemma 7.8. The following two properties of these tuples will be
important:

o (ef,ef) g e ifi# j;
e €7 /c has an element other than e} for each 1.

To verify the first property we may assume that ¢ < j, since £" is a symmetric
relation. If j =i + 1, then (e}, e) ¢ €", because in the i-th coordinate (2,0) ¢ ;
if j > i+ 1, then (e}',e}) ¢ ", because in the j-th and (j + 1)-th coordinates we
have the pairs (1,2), (1,0), which cannot simultaneouly be in &, or else we would
get (2,0) € . The second property follows from the assumption that at least one
of the e-classes 0/¢, 2/¢ is not a singleton.

For n > 4 we now define an n-ary operation f,, on A as follows:

ifacel_,/e" but a#el_q,
ifa=b(B<b<k-1),
otherwise.

1 ifa=eq,

2 ifacel/e" but a#el,

1 ifa=el 2<i<n-—1),

0 ifacel/e"buta#el (2<i<n-—1),
fa@) =4, ifa:e;;/l, e )

0

b

0

The properties of e} established in the preceding paragraph make sure that f,, is
well-defined, and that f,[e’/e"] is a 2-element set for each 2 <i <n —1. Our aim
is to prove that f,, Z¢ f. whenever m # n, which will show that C ¢ §4.

Suppose that, on the contrary, there exist m < n such that f,, =¢ f.. Hence
there exists h € (C™)" such that f,, = f, o h, that is, h maps each set f.'(b)
(b € A) into the set f;1(b). Applying this to 3 < b < k—1 we get that h(b) = b for
all 3 < b <k —1. Since h preserves ¢, it maps each €"-class into an e"-class. In
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particular, let B; denote the e"-class containing h[e”/¢™] (2 < i < m —1). Then
{17 2} = fm[egn/gm] = fn [h[egl/gm]] - fn[B2]7
{1,0} = fule"/e™] = fu[hle"/e™]] C fulBi] for2<i<m—1,
{2’0} = fm[e%q/fm] fn [h[eﬁq/gmﬂ c fn[Bmfl]'

However, it follows from the definition of f, that for each "-class B,

1,2} if B = e} /c",

1,0 if B=el/e" (2<i<n-—1),
R L 8 = e /e )

{2,0} if B=el'_,/e",

C C{0,3,...,k—1} otherwise.

Therefore By = el /e", B,,—1 =e],_;/e", and for each 2 <i<m — 1, B; = e /"
for some s; with 2 < s; <n —1. Since 1 = f,,(e5") = fn(h(e}")), h(e}") € Bs, and
the only element a € By with f,(a) = 1 is a = e}, we get that h(e}') = e}. We
conclude similarly that h(ej") = el for all 2 <i <m —1, and h(e];_,) = e} ;.
By introducing the notation s3 = 2 and s,,—-1 = n — 1 we can write these results
more compactly as follows:

h(ef") =e} (2<i<m—1) where 2 =55 <53,....,5pn2<8p_1=n— 1.

Now we can finish the proof the same way as in Lemma 7.7. We know from
Lemma 7.8 that (e],e|,3,...,k—1) € (09)™ for all i (2 <4 < m —2). Since h

7

preserves g, the h-images of these tuples are in (0¢)"; that is,

(el el 3,...,k—1) € (09)" foralli(2<i<m-—2).

859 Y8410

Since o is totally symmetric, the tuples obtained by interchanging e and el
are also members of (0g)™. Thus we get from Lemma 7.8 that |s; —s;41| < 1 for all
2 < i <m—2. This implies that (n—1)—2 = |s,,_1 —s2| < 21'52 [sj+1—s,] <m—3,
which contradicts our assumption that m < n. This completes the proof of the
lemma. (]

Proof of Theorem 7.2. Statement (1) follows from Lemmas 7.3-7.6. In Statement
(2) the necessity is a consequence of Lemmas 7.3 and 7.9-7.12, while the suffi-
ciency was established in Theorem 5.2. Statements (3) and (4) are special cases of
Theorem 4.1 and Theorem 2.3. (]
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