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Abstract The global localization of multiple mobile robots
can be achieved cost efficiently by localizing one robot glob-
ally and the others in relation to it using local sensor data.
However, the drawback of this cooperative localization is
the requirement of continuous sensor information.

Due to a limited sensor perception space, the tracking
task to continuously maintain this sensor information is chal-
lenging. To address this problem, this contribution is pre-
senting a Model Predictive Control (M PC) approach for
such cooperative localization scenarios. In particular, the pre-
sent work shows a novel workflow to describe sensor limi-
tations with the help of potential functions. In addition, a
compact motion model for multi-rotor drones is introduced
to achieve M PC real-time capability. The effectiveness of
the presented approach is demonstrated in a numerical simu-
lation, an experimental indoor scenario with two quadrotors
as well as multiple indoor scenarios of a quadrotor obstacle
evasion maneuver.
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1 Introduction

During the last years, there has been a dramatic increase in
the use of Unmanned Aerial Vehicles (U AV's) for all kind of
applications such as surveillance, aerial photography, trans-
port, etc. However, the fast dynamics of these systems and
the extended operational space makes their autonomous pi-
loting a challenging task. The recent development [1] of ap-
plications for such systems targets not only autonomous fly-
ing of single U AV's, but also the coordinated interaction of
multiple U AV's or of U AV's and ground robots. One essen-
tial task herein is the precise localization of these U AV's and
robots in their environment.
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Fig. 1 Cooperative localization scenario

The precise global navigation of U AV's though typically
requires expensive specialized equipment such as differen-
tial GPS in outdoor applications or laser-/RF-based global
positioning systems in indoor applications. For cooperative
mobile robot scenarios, one idea is therefore to deploy a re-
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duced number of mobile robots which are equipped with
the costly global localization system. The broadcasting of
their global position allows all other U AV's to determine
their own global position based on the relative position to
these U AV's. The determination of the relative position can
be achieved by less expensive onboard sensors such as op-
tical sensors as shown in Fig. 1 in a UAV scenario. The
major problem of this approach is the necessity to contin-
uously detect and track the globally localized robots with
sufficient accuracy. This is further exacerbated by very dy-
namical U AV scenarios and the onboard sensor limitations.
Accordingly, the U AV motion has to be controlled in or-
der to keep the globally localized U AV's within the percep-
tion space of the onboard sensors. The major focus of this
work is therefore to provide a central control strategy for
such cooperative localization scenarios. To limit the scope
of this paper, the estimation and localization itself are not
addressed and a stable communication channel is assumed.
Yet, it should be mentioned that all robot systems considered
here do have internal controllers. A communication failure
would thus only lead to missing localization data, but not to
a complete system failure.

One method to handle such complex control scenarios
is model predictive control. M PC' allows defining the con-
trol objective by means of an optimization problem. This
so-called optimal control problem (OC P) is minimizing a
given objective function subject to constraints. In general,
the computational burden to solve an OC'P is high. Hence,
the efficiency of the applied solver is limiting the complexity
of the controlled real-time scenarios. Nevertheless, a central
MPC' is well suited to control a small amount of robots.
Such a central control simplifies the implementation of safety
features and allows the computation of a global OCP so-
lution without considering additional consensus techniques.
However, the presented methods here are also applicable
for distributed controllers which will be addressed in future
work.

One essential factor for fast M PC' is a compact descrip-
tion of the system’s behavior. To tackle this problem, the first
contribution of this work is a novel compact motion model
for multi-rotor systems which is described in section 4. This
simplistic motion model is based on a semi-nonlinear model
for multi-rotor U AV's from previous work [2]. Due to its an-
gle discontinuity problem, as shown experimentally in sec-
tion 4.1, this previous model is not suitable for sensor track-
ing as considered within this work. To address this issue,
section 4.2 is presenting a model, where the typical orien-
tation description with a single yaw 1 angle is replaced by
a direction vector description. For validation, section 4.3 is
showing the M PC of areal AR.Drone 2.0 quadrotor based
on the derived direction vector model. The same modeling
approach can also be adapted to other velocity controlled
mobile robot systems.

Another difficulty of M PC' is the translation of the con-
sidered control scenario into an OC'P. For this purpose, the
second major contribution of this paper is a workflow that al-
lows to represent sensor limitations in the form of potential
functions, as presented in section 5. The considered use case
is a sensor tracking scenario which is introduced in subsec-
tion 5.1. In this scenario, a quadrotor is controlled to keep
an object within the cone-shaped perception space of the
attached sensor. In this context, the sensor limitations are
described as inequality constraints. These are subsequently
transformed into weakened constraints that just appear in
the OC'P cost function, as shown in section 5.2. This trans-
formation is executed with unit steps and is recommended
to maintain a low complexity which facilitates the mathe-
matical and graphical validation of the resulting potential
function. To improve the properties of the potential function
for gradient and Newton based OC P-solvers, section 5.3 is
dedicated to the introduction of artificial gradients in unde-
sired regions of the potential function. As last step, section
5.4 is showing how the potential function is finally trans-
formed into an analytical function by approximating all unit
step functions by sigmoids.

For the experimental validation in the laboratory, addi-
tional safety constraints are introduced in section 6, based
on the described workflow. This includes further potential
functions to avoid collision in section 6.1 and to limit the op-
erational space in section 6.2. Section 7 is finally presenting
the validation of the deduced potential functions in the use
case scenario and the chosen control parameters. The nu-
merical validation is described in section 7.1, using the sim-
ulation environment V-REP. Section 7.2 is subsequently
showing the results of the proposed control approach on real
AR.Drone 2.0 quadrotors. In the following section 7.3, the
influence of obstacles, utilized constraints and different ini-
tial conditions is discussed on the basis of a set of collision
avoidance scenarios in which a U AV is evading an obstacle
while tracking a target.

Finally, conclusion and future perspective are given in
section 8.

2 Related Work

In order to solve a cooperative sensor based robot localiza-
tion, the problem can be divided into a self-localization and
a position tracking problem. The present work is focusing on
providing a control strategy for the position tracking prob-
lem.

To be able to localize a robot by another robot while
executing tasks, both robots have to be controlled in a coop-
erative manner. There is extensive literature regarding such
cooperative control scenarios. A comprehensive overview of
the subject is given by [3] and [4]. [3] is discussing the the-
ory of swarm mechanics and interaction constraints while
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[4] is providing a survey on formation control and coordi-
nation of multiple robots. According to [4] the coordination
and control algorithms can be classified in leader-follower,
behavioral based, virtual structure, graph based and poten-
tial field based approaches. The leader-follower principle
is a well-established approach for non-holonomic mobile
robots [5], [6], particularly regarding decentralized controllers
in order to maintain the flexibility of a distributed system.
These decentralized controllers are typically based on feed-
back linearization [7], [8] or backstepping and can be adapted
to different tasks by switching the control law [9]. The same
control approaches can also be found in behavioral [10], vir-
tual structure [11], [12], graph theory based [13], [14], [15]
and artificial potential [16],[17] based control approaches.

A more generic tool for multi-robot control is M PC
which is based on formulating the control scenario as opti-
mization problem. One typical example of M PC' for UAV's
is trajectory tracking in formation flight while considering
collision avoidance constraints. Examples of a centralized
M PC of cooperative control scenarios is given in [18] and
[19]. In [18] a leader-follower mode is used to perform air-
plane formation flight with collision avoidance using non-
linear M PC. For this purpose [18] compares centralized,
sequential decentralized and fully decentralized methods of
nonlinear M PC. [19] is presenting a non-convex M PC' for
cooperative control. Here, the first objective is to tackle col-
lision avoidance while the secondary performance objective
is to deal with the quality of the collision-free trajectory. Ex-
amples of the use of decentralized M PC' is given by [18],
[20], [21], [22]. The considered scenario in [20] is formation
control of a multi-vehicle system with collision avoidance
and input constraints. For this purpose a feedback lineariza-
tion controller is integrated with M PC'. The application of
[21] is trajectory tracking of aerial robots under formation
constraints using decentralized M PC'. In [22] a decentral-
ized linear time-varying M PC'is used for formation control
of multiple U AV's using a leader-follower approach.

The generality and the high control performance of M PC'
come with a high computational burden. Hence, the real-
time capability is a crucial aspect of M PC which has led to
a variety of fast optimization algorithms to minimize the re-
lated computational effort. A theoretically well-established
and widely used fast M PC algorithm is sequential quadratic

programming (SQ P) in combination with Newton-type solvers

with e.g. Gau-Newton or Broyden-Fletcher-Goldfarb-Shan-

non (BFGS) Hessian approximation. A comprehensive frame-

work with a wide variety of related algorithms is ACADO
[23]. The computational efficiency and real-time feasibility
for fast mobile robot systems have been validated experi-
mentally, as for example in collision avoidance scenarios
with an aerial manipulator [24] under use of BF'GSS. A com-
putationally efficient non-SQ P variation of a Newton-type
method is the continuation generalized minimal residual

(CGM RES) method as presented in [25]. Its underlying
concept is introduced in section 3. A compact version in
C++ code is freely available under [26]. The low compu-
tational burden of CGM RES makes it particularly suit-
able to control fast systems, such as e.g gasoline engines
[27], hover crafts [28] and Eco cruise control scenarios [29].
To increase the numerical stability, the condensed multiple
shooting derivative CMSCGM RES has been developed
n [30], [31]. In the previous publication [2], CM SCGM -
RES has been successfully implemented to control a com-
mercial quadrotor. The low computation time and real-time
capability of CMSCGM RES has been confirmed exper-
imentally for the given scenario. For this reason, this con-
tribution is also based on CM SCGM RES. To reduce the
implementational effort of additional inter-robot communi-
cation and consensus mechanisms and to compute a globally
optimal solution, this contribution is computing the M PC
centrally. Yet, in order to maintain the modularity of the dis-
tributed system in the central M PC' scheme, the modular-
ization scheme from previous work [32] is utilized in the
form of the DEN M PC' framework, as published in [33]
(more details are given in section 3).

Within this work the cooperative control for a localiza-
tion scenario with limited sensor perception is discussed.
In the context of formation control the problem of a lim-
ited sensor perception space is critical along with collision
avoidance and trajectory tracking. One approach for vision
sensors is visual servoing based on optical flow or features,
as shown in [34], [35] and [36]. For traditional backstep-
ping controllers, sensor perception limits are addressed by
switching the robot’s formation control according to the com-
pliance with the sensor constraints [37]. Another approach
is to compute the optimal boundary trajectories to satisfy the
sensor constraint and track these, as shown for non-holonomic
robots in [38] or for visual servoing in [39], [40]. Never-
theless, the task dependency of the control laws makes it
challenging to formulate control laws for complex scenarios
with constraints. One way to avoid this loss of generality is
to use M PC' which allows defining tasks and constraints as
optimization problem in a generic way. An example for a co-
operative M PC' using barrier function constraint handling
with sensor and collision avoidance constraint is given in
[41] . In [42] an aerial manipulator is presented with a cam-
era attached to the end-effector. The camera is controlled
using a stochastic M PC method for visual servoing in or-
der to keep the target in the field of view. [43] is presenting
the direct implementation of sensor constraints in M PC' for
holonomic mobile manipulators. The handling of constraints
in M PC itself is a wide field of research. The major dif-
ficulty in M PC' is how constraints are handled within the
M PC solver. An overview and benchmark of computation-
ally efficient inequality constraint handling techniques with
CGMRES is given in [44]. The disadvantage of these sim-
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plistic constraint handling techniques, as for example auxil-
iary variable and logarithmic barrier method, is that a viola-
tion leads to an infeasible OC'P and accordingly to a crash
of the M PC solver. This is particularly problematic for fast
M PC solvers, as they do not consider invalid values (inf,
nan) within the prediction horizon and do therefore not au-
tomatically recover from an infeasible state. If a small con-
straint violation can be accepted, one way to avoid this prob-
lem is the use of weakened constraints. A weakened con-
straint is approximating the inequality constraint switching
behavior by an analytical function (e.g. sigmoid [45], tanh)
which leads to a potential function. A comprehensive study
on such weakened constraints in combination with M PC
for multi U AV control strategies is given in [46]. The pro-
vided examples are collision avoidance, area exploration and
formation flying. The same approach has been successfully
implemented for collision avoidance of a M PC' controlled
quadrotor system in previous work [2].

To conclude, in order to solve the position tracking prob-
lem of cooperative localization scenarios, this work is pre-
senting a workflow to formulate sensor constraints as poten-
tial functions. To be more flexible than feedback lineariza-
tion and backstepping control approaches in task and con-
straint description, a M PC approach is applied. In order to
achieve real-time capability the M PC' problem is solved by
acentral CM SCGM RES approach. To maintain the mod-
ularity of the MPC with respect to the distributed problem,
this approach is combined with the M PC' modularization
technique, presented in [32]. The prediction model for the
M PC' is based on the quadrotor model from the previous
contribution [2]. An introduction of the utilized M PC' ap-
proach is given in the following section.

3 Model Predictive Control Principle and
Modularization

The idea of M PC'is to compute optimal controls for a given
system objective within a receding horizon as shown in Fig.
2. For this purpose, the current system state is measured at
each control update time instance (¢, txt1, ...). From each
of these measured states, the future systems behavior can be
predicted by means of a system model within a given hori-
zon (0 < 7 < T). The controls for this horizon are then
determined to minimize the error of the future system behav-
ior to a given target behavior. After determining the optimal
controls, u () = u(7) is applied to the system and the
horizon is shifted by At. The control loop is closed by a new
measurement and prediction at time instance ¢ 1 (At later).
The computation of the optimal controls within the predic-
tion horizon can be formulated as optimization problem, a
so called optimal control problem. In this work, OC Ps of

Past AFuture o _
prediction harizon ty,»

Apredi tion horizon t,.4
Apredigtion harizon t,

Xdes(t
X(t) u(t) U)oy -
U(T, g Jlrmresrmssdessseneess Ti(tgsp
40 e L
T
oll) Tl
et e I[k+l I v o () At
I I ; I I I I ; i
Fig. 2 MPC operation cycle
the form
Ty
m&n J :/ l(x,u,7)dr (1)
70

st. x=1f(x,u,71)
Xo = X(T())

are considered. The desired behavior is defined by the cost
function J which is consisting of an integral cost term. It
is subjected to the prediction model dynamics f (x,u, 7).
The initial state condition x is representative for the mea-
surement at each control update interval. A common way to
solve OC Ps in real-time applications is to derive the Hamil-
tonian for (1)

H (x,u,7) =1(x,u,7) + AT (x,u,7), 2)

with the Lagrange multipliers A. A can then be computed
via backward integration from O over the horizon using

‘ OH

S _OH(xur) .

X

The controls are then typically determined by solving the
first order optimality condition

_ 0H (x,u,7) 0l(x,u,7) AT of (x,u,7)
N Ju N Ou + Ou
There is a wide variety of methods to solve (4), whereas
for real-time M PC' common approaches are gradient (e.g.
GRAM PC [47]) or Newton-type (e.g. Gau-Newton in AC-
ADO [23]) line search methods.

Within this work, a continuation generalized minimal
residual method CGM RES derivative is used which has
been already successfully applied in previous work [32], [2].
The continuation idea is to look at the continuous closed
loop dynamics of the stabilized system

0

)

H (X7 u, T) = guH (Xa u, T) (5)
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which can then be used to approximate 1
u=H;'(6H — Hex — Hy). (6)

u can be computed efficiently with a GM RE S method un-
der use of a forward difference approximation of H, '. The
controls u are finally gained by integrating u from the pre-
vious time step with a

ufty +1] = ufty] +ufty] At @)

More detailed information about the CGM RES algorithm
can be found in [25]. By making the continuation assump-
tion (5) also for the states x, a multiple shooting method
can be derived to increase numerical stability. This increases
the problem dimension, as the corresponding equation to
(5) for the inputs u has also to be solved for the predicted
system states within the horizon. An additional condens-
ing addresses this issue by reducing the problem dimen-
sion again. A detailed overview of the CM SCGMRES
method is given in [31]. The major advantage of using the
continuation approach is the low computation time of the
CGM RES method which makes it particularly interesting
for real-time M PC, as already discussed in previous work
[2].

Within this work, a modularization of M PC' for coop-
erative control scenarios is applied, as presented in [32]. For
cooperative scenarios with two entities (agent0 : xg, ug and
agentl : x1,u1) a cost function can have the form

Z(X07u07xlaul> (8)
= lo (x0,10) + 11 (x1,11) + I (X0, 10, X1, 1),
where [y and [; represent tracking cost functions, while . is

defining some interaction costs. Under this assumption the
optimality condition 6 yields to

- 8[0 (XO,UO,T) 8[1 (xl,ul,T)

0 9
8110 8111 ( )
Ol (x0,u9,x1,u1) = 9l (x0,u9,%1,u1)
+
Guo 8u1
Ofo (xg,uq,7) of 1 (x1,u1,7)
)\T ’ 9 )\T 9 )
* A Oug T ouy

With the optimality condition (9) [, will influence ug through
m(%lfoxlul) and u; through al”(%&x““l). The mod-
ularization allows to switch off the influence of /. on e.g.
uy by neglecting %&xl“l) in the optimality condition
(9). This is useful, if one central M PC is used to control the
complete cooperation scenario, but some interaction tasks
shall just influence one drone (e.g. the use case scenario
of this work). The further advantage of this centralized ap-
proach is its high performance, as not just the measured, but
also the predicted future system states are taken into consid-
eration. In the OC'P the exclusion of cost derivatives (e.g.

with respect to ug) will be marked by an index \{ug}, e.g.

1Muo} (%0, 19, %0, ug, 7) (10)

To finally apply a M PC in a mobile robot scenario, a pre-
diction model is required. For real-time applications the com-
plexity of this prediction model is crucial for the perfor-
mance of the M PC solver. Hence, a very compact model
is preferable which is developed in the next section.

4 Direction Vector Prediction Model and Validation

Most mobile robots are designed to move in a planar space.
Their position is defined in a zy-plane and the height of this
plane (z). Accordingly, their attitude is defined by the rota-
tion angle ¥ around the plane normal vector. This descrip-
tion does not only fit for most wheeled ground robots, but
can also be applied to multi-rotor unmanned aerial vehicles.
Multi-rotor U AV's are typically operated around their static
equilibrium. By assuming that rotations around x (roll) and
y (pitch) are so small to be be neglected, the quadrotor atti-
tude can be linearized. This yields to a hover controller [48],
as implemented in most commercial multi-rotor U AV's. As
a result, the pose can be described by a single yaw angle ¥,
representing the rotation around the z axis. To address the
modeling of such systems, this section is introducing a mod-
eling method for hover controlled multi-rotor systems. This
model has furthermore the advantage to contain all elements
from which omnidirectional and unidirectional ground robot
motion models can also be derived.

Y
- (yaw)
z

v
Rotor 4

Rotor 1
wrot2

Rotor 2

Fig. 3 AR.Drone 2.0 coordinate frame definition

To derive the generalized multi-rotor model, the coordi-
nate frames, given in Fig. 3 are considered. A standard ap-
proach is to model the system’s behavior in the state-space
and to give the system function as an Ordinary Differential
Equation (ODFE). The state vector x of such a system

x (1) = [2g () ,yg (1) 26 (1), W () ,dw (), g (8)] - (AD)

is composing zg, yg, z¢g position in the global frame G, the
¥ rotation around zg and the forward 2y, and sideward 1,
velocity in the vehicle frame V. Under use of the forward,
sideward, upward and heading velocity as input

T
u(t) = [uy (t),us (8) ua (1), uw ()] (12)
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the system dynamics f (x (¢) , u (¢)) can be approximated by
a semi-nonlinear state-space model [2]

x(t) =f(x(t),u(?)) (13)

}Map: V-G

Linear model.

Ty (t) cos (¥ (t)) — Yv sin (¥ (1))
zy (t)sin (¥ (t)) + yv cos (¥ (1))
by - u (1)
by - uy (t)
afp -y (t) +by-ug(t)

as - Yy (t) — bs - us (1) 14)

X (t) =

For low-cost quadrotors the velocity inputs are typically just
related to an attitude displacement, e.g. increase pitch angle
to increase forward velocity. Accordingly the inputs are not
expressing the exact velocity in ms™!. The identification
of the linear model parameters helps to describe this atti-
tude control behavior and to accommodate such unnormed
system inputs. Representatively for such low-cost mobile
robotic systems, the quadrotor AR.Drone 2.0 is applied as
example within this work.

4.1 Angle Discontinuity Effect on UAV Control

The attitude of mobile robots which are moving in a planar
plane is typically defined by a single angle ¥ on the interval

U={0eR|—-m1<¥ <7} (15)

For a full rotation of the mobile robot, ¥ is changing the
sign between £7. By artificially limiting the angle on the
interval (15) a discontinuity is introduced into the model of
the angle. This is problematic, if the attitude is controlled
by means of velocity or acceleration. To show the problem-
atic behavior, a model predictive controller is applied to an
AR.Drone 2.0 quadrotor under use of the prediction model
(11) with

(bZa bgﬁ af, bfa As, bs)T
= (1, 1.6, —0.5092, 1.458, —0.5092, 1.458) " (16)

The resulting trajectory is given in Fig. 4. To control the
quadrotor attitude, traditionally the error ey = Wges — ¥
to the desired yaw angle ¥;.s is minimized. The yaw an-
gle plot in Fig. 4 shows a step in the desired angle from
Wges (0s) = 5 to Wy, (2.8s) = 7. To minimize ey, the con-
troller is applying a positive angular velocity to converge
asymptotically towards W;.; = 7. As real mobile robotic
systems are exposed to disturbance, the robot is likely to
overshoot ¥, ., = m which leads to a change of sign to
¥ = —7. This can be seen in Fig. 4 at t ~ 5.4s. Hence,
the quadrotor will again try to reach the desired value from
the new angle ¥;.; = —m. As a result, positions close to
Y4es = £m cannot be stabilized which leads to a repetitive
rotational movement.

The main use of angle ¥ is the mathematical description
for the mapping of the vehicle coordinate frame V to the

X position

-1r x[m] ==+ Xgeg[M]
0 5 10 15 t[s]
y position

-1 = y[m] =-=- ydes[m]
0 5 10 15 {[s]
z position

0 1 1 1
0 5 10 15 {[s]
Yaw Angle
or i/ i wrad)
ot | \I}des[rad]
P I 4 -
0 5 10 15 {[s]
Controls
1 L
I [
0 < - \\% S L H =X
W3
1 U =s=r g — — U, Uy ‘
0 5 10 15 1[s]

Fig. 4 Angle discontinuity problem regarding the control trajectories
of areal AR.Drone 2.0 quadrotor

global coordinate frame G. This is typically done by means
of a rotation matrix, as shown in (14). For the planar case
the rotation matrix yields

_ |cos(¥) —sin(¥)

_mV : _ T
pv = sin(¥) cos(¥) pg = Tgpg withp = [LE y] QY]

To overcome the described angle discontinuity in the trans-
formation, a continuous way to describe the robot attitude
has to be used. One way to do so is to use a direction vector.
For 3D-space this is well established in the form of quater-
nions q € R* which consist of a real part gq and three imag-
inary parts qi, g2, g3 to describe rotations
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q =< qo,q1, 92, qs >. In state space models these four ele-
ments are treated as separate states. For real-time M PC' the
related increase in the OC P dimension is significant. For
the considered robots, the pose control is only based on a
rotation in the 2D xy-plane. Accordingly, a direction vector
approach is sufficient to describe the attitude, as discussed
in the next section 4.2.

4.2 Direction Vector Approach

' d,=cos(¥)

o

Fig. 5 Unit circle

As previously discussed, the direction of a vector can
be used to describe a robot attitude. Each position vector of
the points on the unit circle can accordingly be used which
is directly related to complex number theory. These vectors
are uniquely defined by their projections onto the coordinate
axis x and y as shown in Fig. 5. In comparison to a single
angle description with yaw V¥, this transformation is bijec-
tive. In the context of this work, the combination of these
two projections (d,, and d,) is called direction vector d. The
direction vector d can be written in vector form

d- |d=] _ cos(¥)| de:={de €R|—1<ds <1}
“ldy| T |sin(@)| dy:={d, eR|—1<d, <1}

As the direction vector is expressing the projection from the
unit circle, d, and d, are fulfilling the circle constraint

1=+ a2 (19)

18

To receive the state space description, d yields under use of
(18) to
: d —sin(?)] - —dy|
d=|"7"| = Y = R 2
i) = ooy =[] <0>
This is intuitive, as the derivative d has to be orthogonal to
d to force d to stay on the unit circle.
The system input uy is expressing the angular velocity

¥ in (20) with the constant factor b,. Hence, the derivative
yields to

d= {ddy] by -y (8) 1)

Transformation matrix (17) is transformed with (18) to

d, —d
TS =7 " (22)
o ]
To transform the system dynamics (14) into a direction vec-
tor model, ¥ is substituted by the direction vector in the state
vector

x(t) = [2g () ,yg (V) , 26 () ,du () ,dy (£) ;v (1), v (8)] (23)
Using the direction vector (18), the derivative (21) with uy

and the coordinate transformation (22), the system dynamics
(14) finally leads to

(24)

To track attitude d, a simple quadratic penalty can be used

Ja = (daes =) [ng ’ ] (daes — d) (25)
qdy

under the assumption, that numerical errors of the M PC

solver avoid the singular problem of opposing attitudes, e.g.

dges = [1,0]7T withd = [~1,0]T, or dges = [0,1]" with

d=[0,-1]".

4.3 Experimental Validation of Direction Vector Approach

To validate the direction vector quadrotor model (24), the
desired drone attitude is rotated anti-clock-wise in steps of
¥ = 7. The ¥ plot in Fig. 6 shows the desired and actual
attitude of the system. In contrast to the previous instability
at ¥ = =+ (Fig. 4), Fig. 6 is showing the desired asymp-
totic approaching of the desired trajectory. The oscillations
in z, y, z around the desired point are caused by disturbance.
This includes airflow disturbance, modeling errors, numer-
ical errors and the trade-off between energy optimality and
position tracking. Hence, the direction vector approach is re-
solving the angle discontinuity problem stated in section 4.1.
The proposed approach is a trade-off between the continu-
ous attitude description, the computational effort, regarding
the quaternion approach (4 states) and the standard angle de-
scription (1 state). Regarding the generality of the direction
vector model, the same approach can be easily applied also
to other planar robots with single angle attitude description.
For example ground robots can be modeled by neglecting
the z component of (24) with u, = 0. For unidirectional
robots, the sideward movement can be neglected by setting
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Fig. 6 Experimental Validation of direction vector quadrotor model

us = 0. Based on the resulting direction vector based sys-
tem dynamics, the next sections describe the application of
the model in a sensor constrained model predictive control
scenario.

5 Sensor Based Control With Potential Functions
One major difficulty to control complex tasks autonomously

is the mathematical formulation of such tasks. A generic
way to do so are inequality constraints. M PC can take such

constraints into consideration. In this work, they are consid-
ered in the M PC as weakened constraints. This refers to the
substitution of hard inequality constraints by a cost function,
that imposes a repulsive behavior from a violation of the
constraint. This implementation in the cost function equals
to a potential function. In this section, a generic procedure
to create such potential functions is presented. The formula-
tion of a sensor constraint serves as example. In the exam-
ple scenario an object is tracked with a sensor attached to
a quadrotor. The sensor perception space is thereby shaped
like a cone (e.g. ultrasonic distance sensor). How to describe
this sensor limitation is shown in the following section.

5.1 Sensor Constraints

of a quadrotor

The considered use case is an AR.Drone 2.0 quadro-
tor with the presented dynamics (24). With the example of a
cone-formed sensor perception space, the robot/sensor sys-
tem can be illustrated as shown in Fig. 7. The first step to
implement the sensor based control is, to formulate the per-
ception space limitation in terms of constraints. For this pur-
pose, a target object is defined in the sensor frame with the
position vector ps € S

Ps = [Tps Yps Zps]T e R (26)
Regarding the position of the trackable object in the sensor
frame pg, the field of view of the sensor can be expressed
by the constraints

0>c(ps,a) = yf,s + 212)5 — (zps sin(a))? 27
0> c2(pPs) = —aps, (28)
where (27) is representing a double cone. To receive a single
cone perception space, constraint (28) is limiting the cone to
the positive half plane of x,,s. In contrast to just pointing the
quadrotor into the target’s direction, the formulation of the
perception area offers more flexibility to the M PC to op-
timize the energy consumption and to adapt the scenario to
other constraints e.g. obstacles. The question of how to con-
sider the sensor constraint (27)-(28) in an optimal control
problem is described in the next section.



Model predictive cooperative localization control of multiple UAVs using potential function sensor constraints™ 9

5.2 Potential Function Constraint Handling

Considering the constraints (27)-(28) as hard constraints is
problematic, because their violation would lead to an in-
feasible optimization problem. In the sensor based track-
ing scenario this would be the case, if the object is outside
the sensor perception space. Such a violation is possible due
to disturbance or an infeasible initial pose. For this reason,
the sensor constraints are designed as weakened constraints
by imposing a repulsive behavior from constraint violation.
One way to accomplished this is to add an additional penalty
term to the OCP’s integral costs [. Due to the fact that
OC Ps are typically defined as minimization problems with
the optimum [ = 0, a constraint violation has to be penal-
ized with a higher cost. An intuitive approach to translate the
constraint ¢ < 0 to the weakened constraint [, is therefore
to penalize the compliant area with [ = 0 and the constraint
violation area with [ = 1. This can be described by using a
unit step e, such that

c<0 =  Il.=€(c). (29)
For the cone constraint (27-28) this leads to
le (ps,a) =€(c2 (ps)) +e(c1 (ps,a))e(—c2 (Ps)) (30)

=e(—zps) t+ € (y?ys + 21278 — (zps sin(a))z) e(zps)

co is used to distinguish between the negative and positive
half-space of z,s:
ZC(CQ (ps) >0 — zps GRi) =1 (€2))
le(c2 (ps) <0 — zps € RT) = ¢1 (ps, @) (32)
To initially use the unit step approximation (29) for the
constraint transformation has proven to be particularly help-
ful regarding potential functions developed from nested con-
straints. More complex approximation functions lead to larger
mathematical expression and reduce the readbility of the be-
havior of the potential function. Furthermore, the behavior
of the developed potential function can be easily validated
visually by plotting the areas with potential value [, = 0
and [, = 1. For the example of the weakened cone con-
straint (30), this results in the characterizing cone area with
potential value /. = 0 and the corresponding incompliant
area outside with [, = 1 as shown in Fig. 8.

yim o 1.0 vimo 2 10
- 00 05 00 05
-10 705

T Yy
le(ps,a=0.5)=0.0 |
)

xm] 05

Fig. 8 Unit step penalty function values of cone constraint)

5.3 Addressing Vanishing Gradient

The resulting cost function for the xy-plane is shown in the
left plot of Fig. (9). As expected, the Fig. shows that the
gradient satisfies

Vi (ps,a) =0 Ver (ps,a) # 0 (33)

L Is(x,y,a=0.5,k5=0.5)

-
[ Ic(x.y.a:O.S)/\
m e 10
i os

] 20,
\% 15
2mb5 T 2my .o
05

0.0l : 0.0k
-10 -10
05 05

7

1.0

Fig. 9 Unit step penalty function of cone constraint in the xy-plane)

As most approaches for searching the minimum of the
defined cost function [, are based on a gradient descent, this
property becomes problematic, as the convergence of the
search algorithm cannot be guaranteed. To address this is-
sue a cost slope can be added around the cone as shown in
the right illustration of Fig. 9. To impose a gradient, a sim-
ple quadratic penalty can be added in the undesired regions.
Hence, (30) can be extended to

le (ps,a, ka) (34)
= e(~ps) (1 + kc (255 + vps + 2p5))
+ € (ygs + Zﬁs — (zps sin(a))z)

- e(zps) (1+ ke (yf)s + Zﬁs)) )

whereby parameter kg is controlling the steepness of the
gradient derivative. As a remark, gradient-based solvers typ-
ically require convex OC' P problems to ensure convergence.
Naturally, most sensor perception spaces are convex. How-
ever this should be kept in mind for development of more
complex constraints or the combination of multiple constr-
aints.

5.4 Addressing Differentiability of the Potential Function

The second problematic property of the proposed unit step
constraint translation (29) is that the derivative of the unit
step is not an analytical function. Yet, most fast optimal con-
trol problem solvers require the differentiability of the cost
function. To address this problem, the switching behavior
of the unit step, with respect to the constraints, can be ap-
proximated by means of a sigmoid function. This has been
already validated in previous work for a collision avoidance
constraint [2] and is similar to the tanh approximation, as
introduced in [46]. Accordingly, the unit step can be approx-
imated with
1

G(C) R~ sig (C, KA) = T o

1+ erac ©3)
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where k 4 is a design parameter. The derivative of sig (¢, £ 4)
can be determined analogously

0sig (¢, k4) _ ka(l+ e "a0) (36)

Oc (14 e—rac)2

Fig. 10 is showing the behavior of the sigmoid function and
it’s derivative for a variation of x 4.

sig(c,ka) 1 -0:' """""""" dcsig(c,ka)
— k=4 0.8} k=4
k=1 k=1
0.6
k=0.25 k=0.25
0.
0.
-10 -5 ' 5 10 -10 -5 ' 5 10

Fig. 10 Sigmoid approximation of unit step with corresponding
derivatives

For increasing 4, sig (¢, k4) is converging towards a
step function €(c). Its derivative is accordingly converging
towards a § impulse

lim sig(c,ka) — €(c) 37)
KA—>0O

lim 259(Cra) s (38)
KA—00 aC

Factor k4 is therefore determining the trade-off between
quality of the approximation and condition number of the
function. A bad-conditioned problem for high « 4 is numer-
ically more difficult to solve. The transformation of the ex-
tended weakened cone constraint (34) by means of a sig-
moid function (35), finally yields to

lc (p37 o, kg, HA) (39)
= sig (—2ps, ka) (1 + Kkq (xis + ygs + 212,5))
+ sig (ygs + Zﬁs — (xps Sin(oz))27 HA)
. 2 2
- sig (zps, ka) (1 + 5 (Yps + 2ps))

which is shown in Fig. 11 for k4 = 10.

[ /C([X’yio]T!a:O-S,KGzo.S,KA:1O)j

Fig. 11 Extended weakened cone constraint transformed with sigmoid

To be able to track an object with known position in the
global coordinate system, ps in (30) has to be determined
by its counterpart pg in the global coordinate system. The
required coordinate transformation is explained in the fol-
lowing section.

5.5 Coordinate Transformation

The coordinate transformation from the global coordinate
frame to the sensor frame can be described as a sequential
transformation with homogeneous transformation matrices.
For a matrix that transforms a point p from the global co-
ordinates G into the sensor frame coordinates S we use the
following nomenclature

Ps| _ ms |Pg

[I]Tg[l]. (40)
This transformation matrix can consist of the position dis-
placement of coordinate systems
100
010y

001z
0001

the rotational displacement expressed by an angle S e.g.
around y

T (x) = withx = [z y Z]T , (41)

[cos(B) 0 —sin(B) 0
0 1 0 0
Ty(8) = sin(B8) 0 cos(B8) 0|’ (42)
. 0 O 0 1
and a direction vector e.g. around 2
[ d, dy, 00
| =dyd, 00
L 0 001
With the

Prg =(Trg, Yrg, yrg) ' and
dyg =(dag,dyg) "

the transformation matrix from the global frame G into the
vehicle frame V

TE (drg,Prg) = T2y (drg) T (—Prg) (44)

dzg dyg 0 —dzgTrg — dygyrg
—dyg dyg 0 dygTrg — dzgyrg
0 0 1 g
0 00 1

robot position

robot orientation

and then to the sensor frame S
TS, (5, [ds,O,o]T) =T,, (3T (f [ds, 0, O}T) @5)
cos(B) 0 —sin(B) —ds cos(B)
0 1 o0 0

sin(8) 0 cos(B) —dssin(B)
0 O 0 1
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leads to the transformation matrix
TE (8,ds,drg, Prg) (46)
=TS (,3, [ds,o,o]T> TY (drg, Prg)

dug c05(8) dyg cos(B) —sin(B) zrg sin(B) — v cos(8)
—d dyg 0 dygwrg — dxyrg

g
deg siyn(,B) dyg sin(B) cos(B8) —zrg cos(B) — vsin(B)
0 0 0 1

withv = ds + degxrg + dygyrg,

and the inverse transformation

TE (8,ds, drg, Prg) 47
-1

(TS (187 ds,drg, prg))

dzg cos(B) —dyg dzg sin(B) dsdzg + g
dyg cos(B) dag dygsin(B) dsdyg +yrg
—sin(B) 0 cos(p) Zrg
0 0 0 1

The global coordinates in the sensor frame is accordingly
given by (40) and leads to

[P18:| = TS (57 ds, dTQv p'rg) |:plg:| (48)
Tps (2rg — 2pg) sin(B) — ncos(B)
_ |¥ps| _ |dyg(zrg — Tpg) + dog(Ypg — yrg)
Zps (2pg — 2rg) cos(B) — nsin(B)
1 1

withn = ds + dug (Trg — Tpg) + dyg (Yrg — Ypg)

Finally the target position in the sensor coordinate frame
can be expressed in global coordinates by (48) and applied
inl. (ps, @, kg, £4) (39). Due to its complexity, the result-
ing equation is not given here. Fig. 12 is showing the result-
ing costs in the xy-plane for a quadrotor at position p,g =
(—1,-1,0) " and orientation d,¢ = (0.71,0.71)T =¥ =
45°. The triangular base form of the cone is oriented as ex-
pected from the U AV origin in p,g = (—1,—1,0)".

yiml 0 | K

Io(ps,@=0.5,k=0.5,k4=10),
with ps=T(B,-ds,dc.~Prc)(x.y.0)’,
B=0,-ds==0.1,dc=(0.71,0.71) ,-pe=—(~1,-1,0)’

-2 -1 0 1 2

x[m]

Fig. 12 Tracking of global position with weakened cone constraint

6 Safety Constraints

To validate the derived potential function experimentally,
additional safety measures are necessary. The most impor-
tant safety constraint is treating collision avoidance and en-
sures that a safety distance d,,;, between object and drone
is not violated. Second, the maximum distance d,,,,, of the
sensor has to be considered. This can be accomplished by
implementing a cohesion constraint which introduces a re-
pulsive behavior from large distances between object and
robot. Both constraints are derived according to the work-
flow presented for the sensor constraint in section 5.

6.1 Collision Avoidance Constraint

Considering that pg could also represent an obstacle to avoid,
a potential function for obstacle avoidance can be formu-
lated as penalty of a distance below a limit d;y,,:

dmin < Hpg - prQ” . (49)

The norm can be reformulated by means of quadrature

T
0 < minp = (Pg = Prg) (PG — Prg) —dpin  (50)
which then is transformed into a potential function with unit
steps

lminD = € (CminD) (51)
=e ((Pg —prg) (Pg —Prg) — d?nin) .

To improve the convergence properties, (51) is extended by
a quadratic penalty term

lminp = € (g = Prg) | (PG~ Prg) = i) (52)

: (FaH — kG ((Pg -prg) (PG - Pw)))

Here, x is defining the maximum height and k¢ the decent
of the gradient of the potential function. Finally, (52) can be
transformed to an analytical function with the help of the
sigmoid function (36)

lminD (Pg7 Prg, dmina RH, KRG, HA) (53)

= sig ((Pg —prg) (PG — Prg) — yins ffA) (54)

) (HH — k@ ((pg - prg)T (Pg — PM))) .

k4 is describing the quality of the unit step approximation
as before. The final result of the potential function is shown
in Fig. 13 which shows a high penalty for the area with dis-
tance d,,;, around the origin. The form of the convex top
can be adjusted with k. Fig. 14 is showing penalty values
Iminp > 0.5 for an obstacle in position pg = (z,%,2) "
with robot placed at p,g = (—1,—1,0)". As desired any
violation of d,:,, (49) is addressed with a high penalty. This
yields a repulsive behavior between robot and object.
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Fig. 13 Collision avoidance constraint potential function over zy-
plane
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Fig. 14 Collision avoidance constraint potential function in global per-
spective

6.2 Cohesion Constraint

Cohesion can be seen as inversion of the collision avoid-
ance problem (49), where distances bigger than d,, ., to an
object should be avoided. The constraint can therefore be
formulated as

dmaz > ||Pg — prGH . (55)

As before, the norm can be expressed with a the help of a
quadrature

0 < CmazxD = d?naz - (pg - p’r‘g)T (pg - p’r‘g) (56)

and transformed into a cost function with a unit step function

lmaa:D =€ (cmawD) (57)

= ¢ (2,0 — (Pg — Pro)" (PG — Prg)) -

To manipulate the curvature of the given penalty function,
kg is introduced to define the maximum height. ¢ is de-
scribing the ascent of the gradient of the potential function

linazp = € (dmaacz - (pg - prg)T (pg - pTg)) (58)

: (HH + k@ ((pg ~prg) (g — p’"g)))

The final analytical cost function is gained from an approx-
imation of the unit step e with the sigmoid function (36).
Which yields

limazD (Pg7 Prg, Amaz, KH, KGs HA) (59)
= sig (dfnaz — (Pg —Prg) (PG — Pro) 7/@4)

' (%H + kG ((Pg ~prg) (pg — prg))) '

Fig. 15 is showing the desired inverse behavior as for
the collision avoidance behavior in Fig. 13. The cohesion
constraint leads to a high penalty for distances greater than
dimaz around the origin. Fig. 14 is showing penalty values
lmazp > 0.5 for an obstacle in position pg = (z,y,2)"
with the robot placed at p,g = (—1,—1,0)". The figure
validates that the whole area of ||pg — Prgll > dmax 18
highly penalized which leads to an attracting behavior be-
tween object and robot.

[ /maxD(pG_prGad=2sKH=2sKG=O-5,KA=1O)]

e
X st
LRy
N
i L
‘;\“ S
BN

Fig. 15 Cohesion constraint function over zy-plane

With the developed safety constraints (53) and (59), the
cone constraint has been validated as discussed in the fol-
lowing section.
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T T
/maxD((X,y,Z) _(_1 1_1 10) )
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Fig. 16 Cohesion constraint potential function in global perspective

7 Validation of the Sensor Based Control With Potential
Functions

The validation scenario is a visual quadrotor tracking sce-
nario, where one quadrotor is equipped with a camera and
tracking a target quadrotor. The task is to keep the target
quadrotor in the camera frame as shown in Fig. 17.

Fig. 17 Visual tracking of quadrotor from camera-equipped quadrotor

The control of both quadrotors is accomplished with a
central M PC' controller [49] and extended by the poten-
tial functions that are defining the tracking task. The com-
bination of cone (39), collision avoidance (53) and cohesion
(59) constraint with the coordinate transformation (48) and
quadrotor dynamics (14) with parameters (16) in an OC' P
results in

t
min J = / "o (7) + 11 (7) (60)
u to

+koold 11 (Puavis, @, kGo, Ka0)
+k'01l>n{:le (puav1g7 Puav0G,dmaz, KH1, KG1, KfAl)

+k02l>n{::11D (PuaviGsPuav0g;dmin, KH2, kG2, kA2) dT
st.co(r) <0,e1 (1) <0
0=1fy (Xo,uo,t) ,0=1; (xl,ul,t)
with

(1) = (x5 (1) =% (7)) T Qu (%7 (1) — % (1))
+u; (1) Rsu; (1)

The index \{u; } of the cost functions I, {;yqzp and lyminp
reflects, that the influence of the cost functions on UAV;
is neglected, as explained in (10). This means that the cone,
collision avoidance and cohesion constraint is only affecting
U AVj. The advantage of this modular approach of a central
control for such a scenario is, that future states of both sys-
tems are considered for the computation of the optimal con-
trols, while the effect of the tracking costs can be limited to
one quadrotor.

The parameters of (60) for the experimental validation
are given as

Qo = Diag (]0,0,0,0,0,0.7,0.7]) (1)
R = Diag ([1,1,1,1]) (62)
Q1 = Diag ([1.5,1.5,1.6,1,1,0,0]) (63)
= Diag ([1,1,1,1]) (64)
pe : ds =017, =0.5,3=0.5, (65)

koo = 0.4, kgo = 0.01, ka0 = 2.0
PminD ¢ dimin =1, ko1 = 0.4, (66)

kri = 4.5, ke = 0.001, ka1 = 3.0

: dm(w = 2, koz = 0.47 (67)

kgo = 1.5, kg = 0.001, k42 = 3.0
DPcegmres * hor = 2Oajjhor =ls,er = 10_87< =10 (68)
At = 0.018, ke = 30, Qpor = 2
The parameters pegmres are referring to the CMSCGM-
RES solver and are given in a coherent notation to the pre-
vious work [2]. To examine the dynamic behavior of the
proposed control solution, the target position of UAV; is
moving in a circular trajectory. For U AV, the choice of Qg
leads to a tracking of zero forward velocity &yqv0y (t) = 0
and sideward velocity ¥,qv0v (t) = 0 which yields to the
desired states

x;;:Diag([ooooooo 0.0]) (69)
= Diag ([ cos(0.3t), 5 sin(0.3t),1,0,0,0.0,0.0] ) (70)

Based on the given parameters and target trajectories, the
scenario is validated in the following sections.

PmaxD
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7.1 Numerical Validation

For the numerical validation, two AR.Drone 2.0 models
have been implemented in the simulation environment V-
REP (Fig. 18). The position information of quadrotors and
target trajectories is shared via a Robot Operating System
(ROS) interface.

Fig. 18 Numerical validation of the use case scenario with V-REP

Fig. 19 is showing the trajectories of both UAV's. U AV}
is following the circular moving target which is reflected
by sinusoidal position trajectories. U AV}, is tracking U AV,
with the developed sensor constraints which is indicated by
likewise sinusoidal position trajectories of U AVjy. The form
and position of the resulting trajectory is depending on the
initial U AV positions. As the position of U AV} is just de-
pendent on the applied constraints, U AVj can rotate freely
around U AV;. This explains the drift of the sinusoidal po-
sition trajectory of U AV}. The control trajectories of U AV;
and U AV, are showing that the input limits are respected.
The distance d stays in the defined limits d,,;, < d < dpnas
with one exception at the initial phase of the simulation.
Here the repulsive behavior of the collision avoidance con-
straint can be seen, where the controller increases the dis-
tance to fulfill d > d,,;,. On one hand, the disadvantage
of the weakened constraint is, that d can violate the given
constraint depending on the parametrization of the potential
function and the smoothness of the unit step approximation
by the sigmoid (35). On the other hand, the advantage is, that
a constraint violation does not lead to an infeasible OC P.
To conclude, the distance trajectory is validating the active
collision avoidance and cohesion constraint.

To validate that the tracked U AV; stays within the sen-
sor beam width angle o, Fig. 19 is therefore also showing
the absolute tracking angle o

Ps - (la 0) O)T
Ps|
which is describing the angle between the U AV sensor ori-

entation vector and the distance vector to U AV} in the sen-
sor frame. The resulting «; plot in Fig. 19 is validating, that

)| (71

ay = || arccos(

Agent 0 position

z[m] — y|
| | | | | | | | | |
10 20 30 40 50 60 70 80 90 t[s]

Agent 1 position
T T T T T

2 | | \:r['n?] | y[TYTJ] | z[’ﬂl\] | | |
10 20 30 40 50 60 70 80 90 ts]

—0.5] .
1L, Uy, Uy, Uzyy === Udy,
—1l [ | | | | | | | | | J—
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Fig. 19 Numerical simulation: Trajectories of use case scenario
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the cone constraint keeps the tracking angle a; smaller than
the sensor beam width angle oy < « = 0.5rad. It can
be seen that the tracking angle o is in fact much smaller.
This is caused by the smooth approximation of the unit steps
by sigmoids (35) which leads to a convergence towards the
center of the cone. Especially for undisturbed systems, this
yields to a smaller tracking angle «; than the beam width
angle . To reduce this effect x4 can be increased.

A more intuitive access to the U AV behavior is gained
by plotting the U AV positions and the orientation of U AV,
by means of a vector as shown in Fig. 20. To be able to
associate both U AV positions, time-related U AV positions
are connected with a line. It is visible that U AV; is follow-
ing the desired circular trajectory, while U AV} is tracking
UAV; in an ellipsoidal movement. The orientation vectors
are displayed at each At ~ 1.68s for means of visualization.

XY-Position and Orientation Plot

05 ¢

-0.5

y[m]

X[m]

Fig. 20 xy-plot with U AV} orientation of the numerical simulation of
the use case scenario (Direction samples each At ~ 1.67s)

To resume, Fig. 19-20 validate the desired behavior of
the proposed sensor constrained M PC' controller in simu-
lation. The next section is discussing the extension of this
numerical validation to the real scenario.

7.2 Experimental Validation

The use case scenario with real AR.Drone 2.0 quadrotors,
as shown in Fig. 21, is subject to a variety of disturbance
which is not considered in the numerical validation. Light-
weight UAV's like an AR.Drone 2.0 quadrotor are partic-
ularly responsive to airflow disturbance. In addition, their
flight dynamics are very volatile, as their body consist of de-
formable Styrofoam. These and more influences (communi-

)1-11 06:08:48
. flightArena

{ = —

e
|

nrme A\

= i1 & |
= %

P SRS S

Fig. 21 Experimental validation of the use case scenario with real
quadrotors

cation latency, prediction model errors, measurement uncer-
tainty) are not considered in the M PC model and simula-
tion environment. For this reason an experimental validation
is necessary to assess the robustness of the proposed con-
trol approach. The position data of the real AR.Drone 2.0
quadrotors is hereby measured by a motion capture system.

The resulting system trajectories are given in Fig. 22. In
contrast to the numerical simulation, the real AR.Drone 2.0
trajectories are subject to significant disturbance. Especially
the mutual airflow disturbance is causing low-frequency os-
cillations ~ 0.5Hz which are visible in the y-position of
UAV, and U AV;. As the airflow disturbance error is prop-
agating from the U AV} position to the U AV response, the
resulting oscillations are particularly visible in the controls
of UAV,.

To evaluate the control performance, the distance d and
absolute tracking angle o are given in Fig. 22. The distance
plot is stating that UAV; is tracked within the given dis-
tance limitations. At ¢t ~ 55s the behavior of the weakened
constraint is visible which is allowing a minor violation of
dmin in return for avoiding infeasible solutions and ease of
implementation. The absolute tracking angle (71) in Fig. 22
is measured between the U AV}, orientation vector and the
distance vector to U AV . Due to the initial conditions, oy is
violating the applied cone constraint at the beginning, but is
tracked within the given beam width angle oy < v = 0.5rad
for t > 6s. Hence, the trajectories in Fig. 22 confirm the de-
sired tracking behavior.

Fig. 23 is showing the resulting xy-trajectory with sam-
ples of the UAV, orientation vector. For means of visu-
alization, the orientation sample time is reduced to At ~
1.68s. Due to different initial conditions (positions, veloci-
ties, etc.), the xy-trajectory is not directly comparable with
the numerical simulation. However, it visualizes the closed-
loop U AV position response to mutual airflow disturbance
in the form of small oscillation. In comparison to the sim-
ulation trajectory, the rejection of these oscillations (input
costs) dominate the minor gradient within the compliant area
of the sensor constraint. As a result the absolute tracking
angle «; and distance d plots in Fig. 22 go closer to their
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Fig. 22 Trajectories of real use case scenario

constraint limits and the zy-plot does not follow the ellip-
soidal pattern of U AV} in 20. In order to evaluate the track-
ing without the mutual airflow disturbance and under differ-
ent initial conditions, a further analysis of the robustness is
shown in the experimental discussion (section 7.3).

For the evaluation of the computational efficiency of the
proposed approach, Fig. 24 is giving the M PC computation
time on a standard computer (Dell Latitude E5440). The
peaks in the computation time of ¢y, ~ 20ms are not di-
rectly related to the solver, but are caused by CPU interrupts
by other processes. The resulting average computation time
tav,comp = 2.5ms is very low in comparison to the control
update interval of A¢ = 10ms and states the real-time feasi-
bility of the M PC.

To conclude, the experimental results are validating the
computational efficiency and effectiveness of the M PC' con-
trol based on potential functions.

1X5Y-Position and Orientation Plot

X[m]

Fig. 23 zy-plot with U AV orientation of real use case scenario (Di-
rection samples each At = 1.68s)

Computation Time

20 : : ;
tco p[mS] - tav,cmp [mS]
10
O L L L L
0 20 40 60 80
t[s]

Fig. 24 Computation time of real use case scenario
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7.3 Experimental Discussion

In order to discuss the robustness to disturbance and ini-
tial conditions, the previous experiment of section 7.2 is al-
tered by substituting U AV; by a target with constant posi-
tion Puavog — Prg = [0.04,-0.05,0.96] m . The dis-
turbance is introduced manually by means of an obstacle
with the position pog and a related collision avoidance con-
straint (52) lpminD (pog, Puav0g, dO,min; ka3, kg3, KAS)-
In order to make the evasive behavior visible in the zy-
plane, the z-axis action of U AV} is reduced by increasing
the input penalty for u,. The resulting OC P (72)-(78) does
consider the obstacle and target position within the predic-
tion horizon as constant

t
min J = / " wo (1) Rouo (1) (72)
t

u
0
+koole (Pts, @, KGo, K A0)
+kotlmaxD (ptg, Puav0G,dmaz, KH1, KG1, HAI)
+ko2lminD (PtGs Puav0g, dmin, KH2, G2, KA2)
+ko3lminD (POG, Puav0g, O, min, KH3, KG3,KkA3) dT
st.co (1) <0,c1(7) <0
0 = fy (x0, uo,t)

with
[pf] = T§ (8, —ds, duav06: —Puavog) [pﬂ
Ro = Diag ([1,1,10,1]) (73)
pe i ds =0.17,a = 0.5, 8 = 0.5, (74)
koo = 0.4, kgo = 0.01, ka0 = 2.0
PminD : dmin = 0.7, ko1 = 0.4, (75)
kg1 = 4.5,k = 0.0001, ka1 = 3.0
PrmazD : dmaz = 2, ko2 = 0.4, (76)
kg =1.5,kge = 0.0001, ka2 = 3.0
POminD : A0, min = 1,ko3z = 0.6, an
ks =1.5,kgs = 0.001, ka3 = 3.0
Pegmres  Mhor = 20, Thor = 1s,e7 = 1078,¢ = 10 (78)

At = 0.018, k’maz = 307 Qhor = 2.

The experimental outline is shown in Fig. 25. As in sec-
tion 7.2, the pose of U AV} is measured with a motion cap-
ture system. The constant target position is indicated as green
diamond in the center of the pictures. In its initial pose,
U AV} is not necessarily fulfilling the underlying inequality
constraints of the sensor cone constraint (39). The activation
of the controller therefore initially leads to a convergence
towards a compliant pose. As a next step, an obstacle (red
star) is introduced manually by means of the motion cap-
ture system. U AV} (blue circle) is evading the approaching
obstacle by moving in the opposite direction. This evasion
maneuver shows the form of an arc due to the active tar-
get tracking constraints. Following U AV, with the obstacle
consequently leads to a circular trajectory around the tracked
target point p;g. The corresponding U AV} orientation is in-
dicated by a blue arrow.

To cope different initial conditions and obstacle patterns,
a set of 10 experiments is conducted. Fig. 26 is showing the
resulting zy-trajectory of U AV} (blue line), obstacle (dashed
red line) and the fixed target position (green diamond). To
visualize the system at different time instances, the posi-
tion of the obstacle (red star) and pose of U AV (blue circle
with arrow) is marked every At = 4.2s. The distances be-
tween U AV} and target is signalized as light grey line at
each of these time instances. Accordingly, the distance be-
tween U AV} and the obstacle is indicated as light red line.
The resulting circular patters validates the target tracking
during the evasion maneuver. Furthermore, the direction of
the drone is pointing to the center which is indicating the
tracking of the target. In this context, in plot 7 center left
and plot 9 center up the drone orientations which are not
pointing towards the target are representing initial condi-
tions. These initial poses of U AV} have been chosen arbi-
trarily within the spacial limitations of the laboratory and
its exact values can be exerted from the U AV}, pose plots
in Fig. 27. In this initial phase a typical increase in the alti-
tude (z) can be observed which is caused by the inclination
angle 3 of the sensor cone constraint. The steps in the ¥ val-
ues in Fig. 27 are based on the limited ¥-angle interval. The
sinusoidal trajectories in « and y evidence the circular eva-
sion maneuver of U AVj. Fig. 27 is showing measurements
of the corresponding obstacle position. Also here the sinu-
soidal trajectory, in order to follow the U AV}, and provoke
an evasion, is visible. The steps in the obstacle position at
the beginning are caused by entering the detection zone of
the motion capture system.

To analyze the influence of the obstacle collision avoid-
ance constraint l,,;,,p (53), Fig. 29 is showing the distance
between U AV, and obstacle. The plots show how the ob-
stacle is moved close to dom,i, to provoke an evasion ma-
neuver of U AVj. The measured minimal distances are given
in Table 7.3. As the collision avoidance design is based on
weakened constraints, violations are feasible. For all 10 ex-
periments the highest violation of the obstacle distance dp
appears in run 5 with min(dp) = 0.601m. The violation
generally depends on U AV}, and obstacle speed as well as
cost gradient design of the collision avoidance constraint.
For the here considered U AV and obstacle speeds, the cost
gradient is chosen less steep (77) in order to show a smooth
repulsive behavior while showing the desired evasion. In re-
verse conclusion higher violations are accepted. For higher
system velocities this cost gradient has to be chosen steeper.
Its repulsive behavior can be observed as oscillation around
the constraint border in Fig. 29 run 6, 7 and 9.
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The influence of the target collision avoidance and co-
hesion constraints can be evaluated using the Euclidean dis-
tance of U AV} to the target, as shown in Fig. 30. Both con-
straints restrict the distance to d,,;, = 0.7m < d < 2.0m =
dmas- The measured distance d lies in the interval 0.941m <
d < 1.966 and therefore complies to the target distance
constraints for all 10 experiments. The peak distance val-
ues are given in Table 7.3. The minimum tracking distance
min(d) = 0.941m appears in run 2 and its maximum value
max(d) = 1.966m in run 10.

Finally, the behavior of the developed sensor cone con-
straint (39) is validated. For this purpose the absolute track-
ing angle a; (71)is shown in Fig. 31. The sensor constraint
(39) is restricting the absolute tracking angle to
o < ¢ max = 0.5. For the set of experiments, the ini-
tial conditions do typically not satisfy this constraint due to
a low initial U AV} altitude 2z and incompliant orientation
1. This is directly shown by the controller counteraction as
shown in Fig. 32. In the initial phase experiment 1-5 show a
direct reaction in the altitude by |u,| >> 0, while a signif-
icant adjustment in the ¢-axis by |u,| >> 0 is dominating
in experiment 5-10. The resulting convergence towards the
constraint compliance c; — ¢ ma, can be seen in all plots
of Fig. 30 and is followed by a period of low action, as all
constraints are satisfied and the obstacle is not considered
yet. With the approaching obstacle do — do min in Fig. 29,
the control action in Fig. 32 is increased due to the evasion
maneuver. As a result, also the tracking angle o in Fig. 31 is
disturbed. To measure the constraint violation the maximal
absolute tracking angle in the nominal state max(o ps) i8
given in Table 7.3. For this purpose, max(c ns) takes into
consideration the absolute tracking angle peak values after
the initial convergence phase. a; < At mqz = 0.5rad holds
after the initial phase for all the experiments. The measured
maximum appears in run 2 with max(ay ,s) = 0.438rad.

The experimental results validate the desired behavior of
sensor based tracking also under the influence of disturbance
introduced as obstacle. The senor field of view limitations
are respected and collisions are avoided. Furthermore, the
set of experiments shows the robust convergence towards a
compliant state under differing initial conditions and con-
straint violations.

run 1 2 3 4 5

min(do)[m] | 0976 0.950 0.945 1.038 0.601
min(d)[m] | 1.064 0941 1.176 1.203 0.950
max(d)[m] | 1.785 1931 1.827 1.791 1.834
max (o, ns)[rad] | 0.371 0438 0345 0.183  0.350

run 6 7 8 9 10
min(do)[m] | 0.754 0.773 0915 0.879 1.083
min(d)[m] | 1.091 0.633 1.082 1.191 0.984
min(d)[m] | 1.922 1.815 1.791 1.823 1.966
max (o, ns)[rad] | 0.260 0307 0220 0225 0.271

Table 1 Peak distance values for the set of 10 conducted experiments

8 Conclusion and Perspective

The present paper focuses on the presentation of a work-
flow for the generation of potential functions for sensor con-
strained M PC'. The workflow is tested in simulation and
a real-world implementation of a sensor constraint tracking
scenario with quadrotors.

For this purpose a compact motion model for multi-rotor
U AV's has been developed. To be able to control the robot’s
yaw angle orientation in 360°, the problem of the discontin-
uously defined yaw angle —m < ¥ < 7 has been addressed.
The M PC of the resulting direction vector model has been
validated experimentally with an AR.Drone 2 quadrotor.

Based on the developed system dynamic description, the
workflow for a sensor constrained M PC' control has been
presented. The AR.Drone 2 quadrotor with attached sensor
has served as platform for the sensor based tracking sce-
nario. The first step in the workflow is to formulate the sen-
sor perception space within a sensor coordinate frame by
means of inequality constraints. For the use case, the cone
shape of the sensor perception space has been described
by a combination of two inequality constraints. As second
step, these constraints have been transformed into a poten-
tial function with the help of unit steps. The idea is to intro-
duce a repulsive behavior for a violation of the constraints
which leads to a weakening of the constraints. This allows a
small violation to maintaining feasibility of the OC'P. The
transformation into a weakened constraint with the help of
unit steps helps to verify the cost functions without having
to deal with the increased complexity of sigmoids. In addi-
tion, it allows a simple graphical verification of the poten-
tial function with visualization tools. To improve the solv-
ability of the problem for gradient based solvers, the next
step has been the introduction of a gradient in the unde-
sired ares of the potential function which is pointing away
from the target region. Subsequently, the previously intro-
duced unit steps in the potential function are approximated
with sigmoids which leads to a continuous gradient around
the constraint borders. As a result the potential function be-
comes analytical and therefore solvable by standard real-
time M PC solvers.

In order to validate the derived potential function for the
cone constraint, additional safety measures have been nec-
essary. Therefore, a collision avoidance and a cohesion con-
straint have been developed, using the previously described
workflow. In the validation scenario an AR.Drone?2.0 is
used to track another AR.Drone 2.0 quadrotor which is fol-
lowing a circular trajectory. The tracking by means of the
sensor constraint has been tested experimentally in simu-
lation and a real-world implementation. To further discuss
the influence of obstacles, utilized constraints and different
initial conditions, a series of real-world collision avoidance
scenarios has been presented. In the presented scenarios an
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AR.Drone 2.0 is tracking a fixed target using the developed
constraints for the cooperative control scenario while distur-
bance is introduced in form of an obstacle. The results show
the desired collision evasion maneuver while maintaining
sensor tracking for different initial conditions. The results
have validated the developed multi-rotor prediction model
as well as the sensor constraint potential function.

Future work will focus on the solution of the localization
problem with cameras. A further development will be the
analysis of the energy efficiency of the proposed sensor con-
straint, in contrast to a simple orientation tracking. Particu-
larly interesting would be a statistical analysis of large num-
bers of real-world experiments. Another direction of future
studies is to distribute the presented central M PC and to ex-
plore the applicability of cloud computing. In addition, the
application of the tracking scenario in heterogeneous sys-
tems e.g. ground robots and U AV's, will also be addressed
in future work.
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