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"Free boundary problems deal with solving partial 
differential equations (PDEs) in a domain, a part of 
whose boundary is unknown in advance; that portion 
of the boundary is called a free boundary”

Avner Friedman (Friedman, 2000).
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Bijar, Rohan, Perrier &
Payan 2015
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Finite element mesh
of a tongue with F. Chouly et al.

Hexahedral mesh of a brain
with Bruno Lévy, Inria

Meshless brain discretization
with Bruno Lévy, Inria

Discrete Problem

Mathematical 
Model

Continuous 
Problem
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Bijar, Rohan, Perrier &
Payan 2015
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Model Error

Bijar, Rohan, Perrier &
Payan 2015
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Exact solution is not known
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Computational Mechanics of Interfaces 
with Engineering and Medical Applications
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Immersed collocation, CMAME2017 Real-time cutting, MEDIA2014, IEEE2017
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Interface problems appear naturally 
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Music of materials



Interfaces in practical engineering simulations

0.125 mm

100 plies

CMECH 2007, EFM2008 CAS 2009, with Timon Rabczuk and Goangseup Zi

Meshfree methods

Courtesy, EADS

Phases
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JMPS2015 http://orbilu.uni.lu/bitstream/10993/11024/1/manuscript%20-%20JMPS-D-12-00428.pdf
CMECH2013 http://orbilu.uni.lu/bitstream/10993/11022/1/Manuscript_XZHAO_CMECH_revision.pdf

Phases at the nano-scale  
Surface effects are critical

Equilibrium shapes of nano-heterogeneities (with X. Zhao, R. Duddu, J. Qu).
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Keloid

Healthy skin
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Keloid

weak discontinuity

Healthy skin



IJNME2008, Duddu

Kinematics interfaces



IJNME2008, Duddu, Bordas, Chopp, Moran

Water

Bacteria

Interfaces between different PDEs 
e.g. Biofilms
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Laplace

Poisson

Interfaces between different PDEs
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PhilMag15, Akbari 
CMAME13,CMECH16, Goury 
NMPDES13,CMAME15, Chi

1/2 concurrent

concurrentBiofilms

Interfaces between material models
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Biofilms

Adaptive model selection



IJNME2008, Duddu

CMECH14, IJMSE13 Talebi

Biofilms

Molecular dynamics - continuum interfaces



CMECH2014, CAD2014, CMECH2016, MatCompSim2016, CMAME2017, Nguyen-Vinh Phu 
http://publications.uni.lu/bitstream/10993/13726/1/phu-meshless.pdf
https://orbilu.uni.lu/bitstream/10993/15234/1/bordasphu.pdf

Example: non-matching meshes/discretisation 
Interfaces between different discretizations
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Cracks and cuts 

2017 Nguyen-Vinh Phu
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CRACKS & CUTS
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Real-time simulation of cutting during brain surgery - 
Med. Im. Anal. 2014 Courtecuisse

IJNME2011, CMS2012, Menk

CMECH2017, Agathos

IEEE J. Biomed. Engng. 2017 Bui

COST 2014, Cahill

IJNME,CMAME2016 Agathos

CMAME2016 Peng

EFM2017 3 part paper - Sutula
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Agathos, Chatzi, Ventura, Talaslidis, SPAB: IJNME, CMAME2016, IJNME2017, CMECH18

Fracture of homogeneous materials
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COST 2014, Cahill, McCarthy, Natarajan, SPAB

Composite failure
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EFM2017 3 part paper - Sutula, Kerfriden, van Dam, Bordas - 
funded by Soitec SA

Energy-minimal multi-crack growth  
300 cracks growing in Si due to H+ implantation 

(SmartCut TM)
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IJNME2011, CMS2012, Menk & SPAB funded by Bosch GmbH

Polycrystalline failure (SnAgCu vs. SnPb)
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Ultra-long range delimitation mechanics

 
 

2018 APS - With Tkatchenko, Ambrosetti and Nguyen Thanh-Tung



Stéphane P. A. Bordas, University of Luxembourg and Cardiff University 
Slides can be downloaded here: http://hdl.handle.net/10993/31487- legato-team.eu - 65

 
  Ultra-long range delimitation mechanics
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Cutting in soft tissue



Strong discontinuities

• The primal field of the solution is discontinuous, e.g. 
cracks lead to strong discontinuities in the displacement 
field.

Weak discontinuities

• The first derivative of the solution is discontinuous, e.g. 
discontinuities in the strain field through a material 
interface.

Classification of Discontinuities 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FEM

XFEM

Discretization of interface problems



69

Discretization of interface problems 
Challenges

Evolving and complex geometries
Accurate calculations of front velocities
Error estimation and adaptivity
Time stepping schemes
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Handling interfaces numerically

Question: When are we better off coupling/decoupling the geometry from the field 
approximation? 

no mesh 
calculation

stress analysis

mesh

Coupling - isogeometric analysis Decoupling - implicit interfaces
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calculation

stress analysis

mesh

Isogeometric analysis



Oxford, 2018 March 04 - 20180304
Download these slides at: http://hdl.handle.net/10993/35135

72

Isogeometric analysis

Idea: Hughes et al. 2005. Do not 
discard geometric information by 
creating a mesh. Use the CAD 
information to solve the finite element 
problem.

calculation

stress analysis

mesh

no mesh
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Isogeometric analysis

Idea: Hughes et al. 2005. Do not 
discard geometric information by 
creating a mesh. Use the CAD 
information to solve the finite element 
problem.

direct calculation

stress analysis
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Isogeometric analysis

Idea: Hughes et al. 2005. Do not 
discard geometric information by 
creating a mesh. Use the CAD 
information to solve the finite element 
problem.

stress analysis

CAD: described by 
NURBS

Use NURBS as FE basis 
functions
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Isogeometric Finite Element Analysis 
For shell-like domains
For volumes (needs volume parameterisation)
Coupling between multiple patches (Nitsche, Mortar…)

Question: 
What is the performance of  NURBS-based Isogeometric Analysis 
in Reducing the Mesh Burden? 

Adaptivity
Global refinement - cannot refine field without refining geo…
Local refinement (not with NURBS)… (PH)T-splines…
Geometry independent refinement for the field variables?

Coupling or decoupling
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Mesh refinement in NURBS-IGA
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GIFT approach

Question: How can we fully benefit from the “IGA” concept? 
Refine the field independently from the geometry

Isogeometric Finite Elements

For shell-like domains
For volumes (needs volume 

parameterisation)

Geometry Independent Field 
approximaTion 
(GIFT)

Super/Sub-geometric

[REF] Weakening the tight coupling between geometry and simulation in isogeometric 
analysis: from sub- and super- geometric analysis to Geometry Independent Field 
approximaTion (GIFT), IJNME, 2018, accepted [preprint available on arXiv]

Permalink: http://hdl.handle.net/10993/31469 
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Numerical observations - no proof…
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GIFT - key features

Tight link between CAD and analysis

The same basis functions, which are used in CAD to represent 
the geometry, are used in the IGA as shape functions to 
approximation the unknown solution

Geometry is exact at any stage of the solution refinement 
process

Better accuracy per DOF in comparison with standard FEM but 
higher computational cost (bandwidth…)
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GIFT - key features

Retain the advantages of IGA but decouple the geometry and the field 
approximation

Standard patch tests may not always pass, yet the convergence rates 
are optimal as long as the geometry is exactly represented by the 
geometry basis

With geometry exactly represented by NURBS, using same degree B-
splines or NURBS for the approximation of the solution field yields almost 
identical results

With geometry exactly represented by NURBS, using PHT splines for the 
approximation of the solution gives additional advantage of local adaptive 
refinement

Any other approximation field can be used for the field variables
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IGABEM vs. IGAFEM

Question: How can we fully benefit from the “IGA” concept? 
Suppress the mesh generation and regeneration completely

Fracture mechanics directly from CAD
X. Peng, et al. (2017). IJF, 204(1), 55–78. 
X. Peng, et al. (2017). CMAME, 316, 151–185.

Isogeometric Finite Elements

For shell-like domains
For volumes (needs volume 

parameterisation)

Isogeometric Boundary 
Element Analysis 

For shell-like domains
For volumes

Stress analysis and shape optimisation directly from CAD
H. Lian et al. (2017). CMAME: 317 (2017): 1-41.
H. Lian et al. (2015). IJNME
H. Lian et al. (2013). EACM:166(2):88-99. 
M. Scott et al. (2013) CMAME 254: 197-221.
R. N. Simpson et al. (2013) CAS 118: 2-12.
R. N. Simpson et al. (2012) CMAME Feb 1;209:87-100.
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Handling (complex) interfaces 
numerically

Example applications 
Isogeometric Boundary Element Analysis 

(IGABEM)
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Shape optimisation

Problem definition Design pointsControl points

Optimized solution

Side constraints:

 Model construction 
 with CAD

Design points selection in 
control points

Structural analysis; 
Sensitivity analysis; 

gradient-based optimizer Volume constraint:

Objective function: 
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Shape optimization

Choose design points from the 
control points Conduct sensitivity analysis to 

converge to the optimized solution

Stress analysis and shape optimisation directly from CAD
H. Lian et al. (2017). CMAME: 317 (2017): 1-41.
H. Lian et al. (2015). IJNME
H. Lian et al. (2013). EACM:166(2):88-99. 

M. Scott et al. (2013) CMAME 254: 197-221.
R. N. Simpson et al. (2013) CAS 118: 2-12.
R. N. Simpson et al. (2012) CMAME Feb 1;209:87-100.
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Construct the geometric model  
(imported from Rhino)

Select design points from 
control points Find optimized solution

Shape optimization
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Penny crack under tension

Fracture mechanics directly from CAD
X. Peng, et al. (2017). IJF, 204(1), 55–78. 
X. Peng, et al. (2017). CMAME, 316, 151–185.
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Penny crack growth
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Fracture mechanics directly from CAD
X. Peng, et al. (2017). IJF, 204(1), 55–78. 
X. Peng, et al. (2017). CMAME, 316, 151–185.

Inclined penny crack growth
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Surface cracks
Surface 
discontinuity is 
introduced

Crack = trimming curve

Trimmed NURBS 
technique

Phantom node method
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Partial conclusions on methods coupling geometry 
and field approximations

 There are numerous alternatives (subdivision 
surfaces, IGA, NEFEM, NIGFEM)

 IGA can offer simulations directly from CAD when 
used with boundary elements

 GIFT generalizes this approach by decoupling 
geometry and field approximations 

Next: methods which decouple geometry and field 
approximation
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Conclusions and future work

Future work 

1.Adjoint methods for a large number of design variables and a small number of constraints.  

2.A robust algorithm is need for moving control points in a large scale without distorting the 
control mesh. 

3.Combined with the gradient-less solver. 

4.Using PHT-splines. 

5.GIFT-IGABEM optimization. 

Used the same basis functions in CAD to discretize Boundary Integral Equations (BIE) 

1.2D geometry construction using NURBS, and 3D geometry using T-splines. 

2.No meshing in all the optimization iterative steps. 

3.Implicit differentiation method is suitable for a small number of design variable and a large 
number of constraints. 
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Decoupling geometry and approx.

Implicit surfaces
T. Rüberg (2016) Advanced Modeling and Simulation in Engineering Sciences 3 (1), 22
M. Moumnassi (2011) CMAME 200(5): 774-796. (CSG and multiple level sets)
N. Moës (2003) CMAME192.28 (2003): 3163-3177. (Single level set)
T. Belytschko IJNME 56.4 (2003): 609-635. (Structured XFEM)
…

Question: for which problems are we better off coupling/decoupling the geometry 
from the field approximation? 
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5.2. Analyse de convergence en maillage non-conforme aux frontières courbes

(a) (b)

(c)

Figure 5.27 – Approximation géométrique d’une microstructure contenant des inclusions
lenticulaires. (a) maillage grossier de l’approximation ÉF. (b) raffinement par un sous-
maillage gradué (SMG) de niveau (n = 7) à l’intérieur de chaque élément de frontière EB.
(c) approximation de la géométrie indépendamment de la taille h du maillage.
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5.2. Analyse de convergence en maillage non-conforme aux frontières courbes

(a) (b)

Figure 5.28 – Champs de contraintes (a) et de déplacements (b).

Figure 5.29 – Approximation géométrique d’une microstructure contenant des inclusions
en forme de tore indépendamment de la taille du maillage ÉF.
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Immersed boundary method (Mittal, et al. 2005)
Fictitious domain (Glowinski, et al. 1994)
Embedded boundary method (Johansen, et al. 1998)
Virtual boundary method (Saiki, et al. 1996)
Cartesian grid method (Ye, et al. 1999, Nadal, 2013)

99

✓ Easy adaptive refinement + error estimation (Nadal, 2013)
✓ Flexibility of choosing basis functions
• Accuracy for complicated geometries? BCs on implicit 

surfaces?
➡ An accurate and implicitly-defined geometry from arbitrary 

parametric surfaces including corners and sharp edges 
(Moumnassi 2011; Ródenas Garcia 2016; Fries 2017)
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Moumnassi et al, CMAME DOI:10.1016/j.cma.2010.10.002

marching method  

seed point(s) - 
requires one single 
global search

Level Set representation of a surface defined by a parametric function

• In order to reproduce the geometry accurately, significant mesh refinement is typi-

cally needed;

• Because the whole boundary is defined using one single function, it is not straight-

forward to locate and separate different regions on ∂Ωh for attribution of appropriate

boundary conditions;

• To efficiently approximate a curved domain, one generates a discrete approxima-

tion of the scalar distance field φ by evaluating the function on a sufficiently fine

mesh, or by adaptive schemes like octree techniques to capture details of the domain

boundary ∂Ωh. However, linear interpolation of the mesh values to approximate the

boundary is insufficient for higher order analysis.

Figure 3: Approximation of an object with convex and concave boundaries with the

same background mesh, resulting from Boolean combinations of half-spaces defined using

analytically defined level set functions (8-planes and 3-cylinders). (a) The object is con-

structed by a single level set resultant from Boolean operations (one scalar distance value

is stored at each node). (b) shows the approximation by our new approach that preserves

sharp features (eleven scalar distance values are stored at each node).

In the following section, we present a new approach to represent arbitrary regions

using level set functions, which alleviates the pitfalls of the “single-level-set-description”.

11

Single Multiple level sets

Advance by CRP Henri Tudor in 2011 
(Moumnassi et al, CMAME DOI: 10.1016/j.cma.
2010.10.002

Question: How can we generate level set functions from CAD descriptions 
(including corners/vertices)? 



Stéphane Pierre Alain BORDAS, Department of  Computational Engineering & Sciences University of  Luxembourg and Cardiff  University RealTCut101

 Examples• In order to reproduce the geometry accurately, significant mesh refinement is typi-

cally needed;

• Because the whole boundary is defined using one single function, it is not straight-

forward to locate and separate different regions on ∂Ωh for attribution of appropriate

boundary conditions;

• To efficiently approximate a curved domain, one generates a discrete approxima-

tion of the scalar distance field φ by evaluating the function on a sufficiently fine

mesh, or by adaptive schemes like octree techniques to capture details of the domain

boundary ∂Ωh. However, linear interpolation of the mesh values to approximate the

boundary is insufficient for higher order analysis.

Figure 3: Approximation of an object with convex and concave boundaries with the

same background mesh, resulting from Boolean combinations of half-spaces defined using

analytically defined level set functions (8-planes and 3-cylinders). (a) The object is con-

structed by a single level set resultant from Boolean operations (one scalar distance value

is stored at each node). (b) shows the approximation by our new approach that preserves

sharp features (eleven scalar distance values are stored at each node).

In the following section, we present a new approach to represent arbitrary regions

using level set functions, which alleviates the pitfalls of the “single-level-set-description”.

11

(a) (b) (c)

Figure 12: (a) Conversion of four parametric functions into zero level sets. (b) Polygonal

meshes extraction for the cutting method. (c) Approximated domain with sharp features.

it.

To obtain an accurate geometry description for domains with curved boundaries, we

present in the following section two different techniques: degenerated and graded sub-

meshes which we shall name DSM and GSM, respectively.

5.4.1. Mesh refinement with degenerated sub-mesh (DSM)

We use the parametric information to generate the desired number of cut edges on the

surface inside a boundary element EB which are tangent to this parametric surface (see

Figure 13). These cut edges are created by the corresponding zero level sets such that they

are generated by a succession of analytically known level set planes p (x) = (x− x0) · n

that pass through the point x0 on the surface and defined by the normal n at this point.

Then we apply the cutting method to each boundary element EB by using these zero

level sets to create the sub-elements E∆. The next step is the classification of the sub-

elements into the interior boundary IB and exterior boundary OB to define the part of

the approximate domain Ωh on the boundary B and the part of its boundary Γh (see

Figure 14).

5.4.2. Mesh refinement with graded sub-mesh (GSM)

The marching algorithm (cf. Section 4.3) benefit of a natural strategy to locate the

narrow band from the all elements mesh, in which only the selected elements (i.e. ωi)

need to be used for refinement if desired. This is an attractive strategy to restrict local

mesh refinement to boundary elements EB. This strategy will be used locally in EB and
27

Figure 17: A three-dimensional graded sub-mesh refinement of level (n = 6) inside a

boundary element EB.

1. Subdividing EB based on a linear (as in [23, 54]) or higher order (as in [40, 41])

description of the boundary.

2. Without subdividing EB as proposed in Ventura [55] using equivalent poly-

nomials. It is also possible to use the approach of Natarajan et al.[24, 25]

based on the Schwarz Christoffel (SC) mapping of the interior/exterior polyg-

onal areas to the unit disk. Another alternative is strain smoothing where

domain integration is transformed into boundary integration as in [26]. The

advantage of the latter is that it has the potential to be amenable to three

dimensional cases, whereas the SC mapping technique remains restricted to

two-dimensional problems. To use the SC mapping in 3D, the interior and

outer parts of a boundary element could be integrated using strain smoothing

and the SC mapping subsequently used to integrate along the boundary of the

interior and exterior subregions. Since each of those boundaries is composed

of the union of polygons, the SC mapping (or any other method to integrate

numerically on polygons) can be used to compute the integral on each poly-

gon. Note that strain smoothing modifies the variational principle so that the

resulting stiffness matrix is usually not as stiff as that of the original finite

32

Single level set Multi level sets
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Laplace equation on a 
cube
convergence rates

optimal
requires proper 
Lagrange multiplier 
space to eradicate 
spurious oscillations

102

 Three-dimensional model problem

(a) (b)

Figure 29: Finite element solution of 3D Laplace model problem using implicit computa-

tional domain. (a) implicit representation of the domain with sharp features, (b) illustrate

the cut view of the solution uh.

XFEM representation. These comparisons are shown in Figure 31. As can be seen,

the analysis with conforming and non-conforming mesh yield nearly the same accuracy

and convergence rates in the approximated energy and Lagrange multipliers. As to the

enforcement of the Dirichlet boundary conditions, the accuracy and convergence rate are

governed by the choice of the Lagrange multiplier space L ∗

h . It is interesting to note that

all these numerical results for the case of non-conforming mesh are superior to the standard

mixed method (naive approach), which yields oscillations of the Lagrange multipliers on

the boundary.

8. Conclusions

We presented and validated a general method to carry out finite element analysis on

arbitrary implicitly defined domains obtained from parametric surfaces. The input to the

algorithm is the parametric description of the boundary of the object which is converted

automatically and efficiently into implicit level set representations. The computational

domain is then obtained by Boolean operations on those level set functions. A special

adaptive numerical integration technique which uses the parametric description to increase

51
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Figure 30: Convergence study results for the mixed formulation on unstructured tetra-

hedral mesh: (a) analysis with a conforming mesh and FEM, (b) analysis with a non-

conforming mesh and XFEM using the reduced Lagrange multiplier space.
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Figure 31: Comparison study between analysis with conforming mesh (Figure 30a) and

non-conforming mesh (Figure 30b).

the geometrical faithfulness (thus decrease mesh dependence) was proposed. We showed

that the resulting algorithm is adequate to describe objects with sharp features such as

edges and corners.

The above paradigm required several contributions:
52

Stable boundary condition enforcement (LBB condition) - Nitsche, Augmented Lagrange
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Pixel/Voxel-based FEA on Cartesian grids (Valencia) 
6.1.- Meshing and h-adaptive refinement

45

Geomety- 
based  
refinement

H-adaptive refinement based on error estimation

See recent work of Ródenas 
Garcia (UP Valencia) on 
Cartesian meshes
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Pixel/Voxel-based FEA on Cartesian grids (Valencia) 
6.1.- Meshing and h-adaptive refinement

45

Processing time

Quad8 uniform refinement

See recent work of Ródenas 
Garcia (UP Valencia) on 
Cartesian meshes
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Real-time needle steering



106

Discretization of interface problems 
Challenges

Evolving and complex geometries
Accurate calculations of front velocities
Error estimation and adaptivity
Time stepping schemes



Stéphane Pierre Alain BORDAS, Department of  Computational Engineering & Sciences University of  Luxembourg and Cardiff  University RealTCut107

Moving discontinuities and 
singularities 

Example: fracture mechanics
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Oil extraction from shale - 
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Motivation: fracture of engineering structures and materials

14

quasi-static/cohesive

linear elastic 
fracture & fatigue

dynamics
ductile

dynamics/brittle

EPSRC project 2011-2012

(a) (b)

)LJ���&RPSDULVRQ�RI�QXPHULFDO�VLPXODWLRQ�DQG�H[SHULPHQW

X

σh

σH

Y

)LJ���%RXQGDU\�FRQGLWLRQV�ZLWK�LQLWLDO�FUDFN����
GHJUHH�LQFOLQDWLRQ

 1XPHULFDO�UHVXOW�KDV�D�JRRG�
DJUHHPHQW�ZLWK�H[SHULPHQWDO�UHVXOW

 ([SHULPHQWDO�UHVXOW�VKRZV�WKDW�WZR�
ZLQJ�FUDFN�LV�QRW�VWULFWO\�V\PPHWULFDO�
DORQJ�FHQWUDO�<�GLUHFWLRQ

 7KLV�SKHQRPHQRQ�LV�FDSWXUHG�E\�
QXPHULFDO�VLPXODWLRQ�RI�FUDFN�
SURSDJDWLRQ�

thesis M. Sheng, USA, China, 2016

‣ China/USA: hydraulic fracturing (shale 
gas)

‣ Limerick: unidirectional composites

num exp

thesis L. Cahill, 
2014

exp
num



Oxford, 2018 March 04 - 20180304
Download these slides at: http://hdl.handle.net/10993/35135

Fracture of ‘homogeneous’ materials

112

SPAB and B. Moran, Engineering Fracture Mechanics, 2006  
V.P. Nguyen et al. XFEM C++ Library IJNME, 2007
Industrial applications of extended finite element methods
See also E. Wyart et al, EFM, IJNME, 2008

Question: when should a structure be inspected for flaws?

ad hoc mesh 
refinement
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Main issues in Computational Fracture 

Choice of the Model
Choice of the Discretisation Scheme
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Model Choice

Small scale yielding? Linear elastic 
fracture?
Elastic-Plastic fracture mechanics?
Damage models (local? non-local? 
gradient?)
Multi-scale? (concurrent? semi-concurrent?)
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Discretisation Choice

Finite element method (remeshing?)
Boundary element method (non-linearities?)
Extended finite element methods (multi-
crack?)
Meshfree methods (cost? stability? 
robustess?)

 
 



• Key idea: implement high-level description of finite element 
models in the Unified Form Language. 

• Let algorithms take over the tedious/difficult work of linearisation 
and transforming maths into lower-level languages. 

• Not a toy; scales to huge problems with billions of unknowns on 
Top100 supercomputers.

Steering council: Alnaes, Bletcha, Hale, Logg, Richardson, Ring, Rognes and Wells. 
Contributors: Too many to name!



Problem.

Mathematical 
model.

Linearised model.

Numerical method.

Software.

Expertise.

Algorithmic and suitable for 
automation.

}
}



Stress measure

S =
t3

12

(
2µK+

2µλ

2µ+ λ
tr(K)I

)

mu = Constant(0.3) 
… 
S = (t**3/12)*(2.0*mu*K + \ 
    (2.0*mu*lmbda)/(2.0*mu + lmbda)*tr(K)*Identity(2))

Bending energy

E_b = 0.5*inner(S, K)*dx

Eb =
1

2

∫

Ω
S : K dx



FEniCS Conference 2017 
University of Luxembourg 

12-14 June 2017 
https://fenicsproject.org
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Case study I 

Linear elastic fracture mechanics (LEFM)
(Extended/Enriched) Finite element 
methods
(Extended/Enriched) Isogeometric 
Boundary Element Methods
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What is a crack?
a 1D line in 2D space
a 2D surface in 3D space
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What is a crack?
a 1D line in 2D space
a 2D surface in 3D space
 
 

discontinuity

singularity
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Finite elements for evolving discontinuities & 
singularities

 
  discontinuity

singularity
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Free boundary problems

FEM

XFEM

















 

regular nodesquarter nodes

crack surfaces

Singular elements - Barsoum 1974
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Finite elements are intrinsically limited for problems involving  
discontinuities & singularities such as cracks

 
 

discontinuity

singularity
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discontinuity

singularity

But computational fracture mechanics requires  
high accuracy (energy release rate)
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The idea of Partition of Unity Enrichment (PUFEM, GFEM, XFEM, hp 
clouds, enriched IGA, enriched mesfhree methods, enriched BEM…) 

add what you know about the solution to the (finite element) basis

Singularities?

Discontinuities?

Boundary layers?

 
 

disc
sin
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Free boundary problems

FEM

XFEM



• When the standard finite element method is unable to 
efficiently reproduce certain features of the sought 
solution:

1. Discontinuities - cracks, material interfaces
2. Large gradients - yield lines, shock waves
3. Singularities - notches, cracks, corners
4. Boundary layers - fluid-fluid, fluid-solid
5. Oscillatory behavior - vibrations, impact

• The approximation space can be extended by introducing 
of an a priori knowledge about the sought solution, and 
thereby:

1. Rendering the mesh independent of any phenomena
2. reducing error of the approximation locally and globally
3. improving convergence rates

Enrichment



Strong discontinuities

• The primal field of the solution is discontinuous, e.g. 
cracks lead to strong discontinuities in the displacement 
field.

Weak discontinuities

• The first derivative of the solution is discontinuous, e.g. 
discontinuities in the strain field through a material 
interface.

Classification of discontinuities



Global enrichment

• The enrichment is employed on the global level, over the entire 
domain. 

• Useful for problems that can be considered as globally non-smooth 
e.g. high-frequency solutions (Helmholtz equation)

Local enrichment

• This enrichment scheme is adopted locally, over a local subdomain.
• Useful for problems that only involve locally non-smooth 

phenomena, e.g. solutions with discontinuities. 

Classification



Extrinsic enrichment
• Associated with additional  degrees of freedom and additional shape 

functions to augment the standard approximation basis.
1. Extended finite element method (XFEM) - Moës et al. (1999)
2. Generalised finite element method (GFEM) - Strouboulis et al. (2000a)
3. Enriched element free Galerkin - Ventura et al. (2002)  
4.  hp – clouds (Meshless/Hybrid) - Doarte and Oden 

(1996)

Intrinsic enrichment 
• Not accompanied by additional degrees of freedom. Instead, some 

standard functions are replaced with special (problem specific) 
functions.
1. Enriched moving least squares (Meshless) - Fleming et al. (1997)
2. Enriched weight function (Meshless) - Duflot et al. (2004b)
3. Intrinsic partition of unity methods  - Fries, Belytschko (2006)
4. Elements with embedded discontinuities

Classification of enrichments



 

Partition of Unity FEM



 

Partition of Unity FEM



 

Partition of Unity FEM



 

standard FE PU enriched

Partition of Unity FEM



Partition of Unity FEM



The Generalised Finite Element Method (GFEM)

References:
• Melenk          (1995)
• Melenk and Babuška  (1996)
• Strouboulis et al.         (2000)

 



References:
• Belytschko and Black (1999)
• Moës et. al.  (1999)
• Dolbow         (1999)

XFEM

• Associated with local discontinuous PU enrichment e.g.:

a. propagation of cracks
b. evolution of dislocations
c. phase boundaries

• Both GFEM and XFEM are essentially identical in their 
application, i.e. extrinsic PU enrichment

eXtended FEM (XFEM)



Formulation for crack growth:

singular tip 
enrichment

discontinuous 
enrichment

standard part

Enriched nodes 
     - discontinuous 
     - singular

XFEM/GFEM



Formulation for crack growth:

singular tip 
enrichment

discontinuous 
enrichment

standard part

Enriched nodes 
     - discontinuous 
     - singular

XFEM/GFEM



Formulation for crack growth:

singular tip 
enrichment

discontinuous 
enrichment

standard part

Enriched nodes 
     - discontinuous 
     - singular

XFEM/GFEM





















By refining the mesh, the influence of the enrichment 
zone on the convergence of the method tends to zero 

We lose the benefit of enrichment 



Enriching an area independent of the mesh size 





ensures that as the mesh is refined, more and more nodes become enriched 

the optimal convergence rate is preserved



Conditioning issues can be so severe that 
the set of equations is unsolvable

Large enrichment zones (see stable GFEM, Banerjee, Babuška 
+ Agathos)

For arbitrary enrichment schemes

 T-stress - 2nd order terms in Westergaard expansion

 Multiple enrichments due to multiple cracks

Conclusion: difficult to set up robust and automatic enrichment schemes without 
specific tricks (preconditioner, e.g. Béchet or Menk)
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Summary
Fracture of homogeneous materials
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Question: How to control accuracy and simplify/avoid meshing?

 Partition of Unity - eXtended/Generalized Finite Element 
Methods

 Discretisation error governed by the worst approximant

 Local enrichment of approximations

 Requires enrichment volumes independent of the mesh

 Conditioning issues for large enrichment zones or 
arbitrary enrichment (see stable GFEM, Banerjee, 
Babuška + Agathos)

 3D fracture requires accurate stress intensity factors (SIFs)

 Error at each step ~ (Error on SIF)^4

 Standard enrichment => oscillations along the front
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Fracture of homogeneous materials

174

K. Agathos et al. IJNME 2016, CMAME 2016, IJNME 2017, 
CMAME 2017 with Eleni Chatzi and Giulio Ventura
How can we use large enrichment radii? 
How can we control conditioning in large-
scale enriched FEM?
How can we use higher order terms in the 
expansion?

X. Peng et al. IJNME 2016, CMAME 2017
Enriched Isogeometric Boundary Elements
How to avoid meshing completely 
for crack propagation simulations?

Question: How to control accuracy and simplify/avoid 
meshing?
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Don’t worry…

 
 



Oxford, 2018 March 04 - 20180304
Download these slides at: http://hdl.handle.net/10993/35135

176

Agathos, K., E. Chatzi, and SPA Bordas. "Stable 3D extended finite elements with higher order 
enrichment for accurate non planar fracture." Computer Methods in Applied Mechanics and 
Engineering 306 (2016): 19-46.

Agathos K, Chatzi E, Bordas S, Talaslidis D. A well-conditioned and optimally convergent 
XFEM for 3D linear elastic fracture. International Journal for Numerical Methods in 
Engineering. 2016 Mar 2;105(9):643-77.

https://orbilu.uni.lu/bitstream/10993/22331/2/paper.pdf
http://orbilu.uni.lu/bitstream/10993/22420/1/presentation.pdf

Agathos K, Ventura G, Chatzi E, Bordas S. Stable 3D XFEM/vector-level sets for non-planar 
3D crack propagation and comparison of enrichment schemes. International Journal for Numerical 
Methods in Engineering. Computational Mechanics, 2017.

You can get a gradual introduction 
to the method in the following 

papers
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Conclusions

 
 

Introduces a novel form of enrichment.

Provides improved conditioning.

Enables the use of geometrical 
enrichment.

Enables the use of higher order terms in 
fracture mechanics

Was combined to vector level sets to 
solve crack propagation problems.

Was applied to inverse problems.

Provides high accuracy and optimal 
convergence.

Conclusion: we can now add arbitrary numbers of enrichments and enrich over ‘large’ 
volumes of the domain.
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What if you can’t add new 
functions or you don’t want to 

increase the enrichment radius?
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(Goal oriented) adaptive computational 
fracture: use h-refinement 

 
 

Y. Jin, O. Pierard, et al. Comput. Methods Appl. Mech. Engrg. 318 (2017) 319–348
O.A. González-Estrada et al. Computers and Structures 152 (2015) 1–10
O.A. González-Estrada  et al. Comput Mech (2014) 53:957–976
C. Prange et al. IJNME  91.13 (2012): 1459-1474.
M. Duflot, SPAB, IJNME 2007, CNME 2007, IJNME 2008.
J-J. Ródenas Garcia, IJNME 2007
F.B. Barros, et alIJNME 60.14 (2004): 2373-2398.

Before: mesh “finely” in the region where the crack is “expected” to propagate
M. Rüter CMECH (2013) 1;52(2):361-76.
J. Panetier IJNME 81.6 (2010): 671-700.
P. Hild, CMECH (2010): 1-28.
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Motivation  

Fracture of homogeneous materials: error 
estimation and adaptivity 
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Y. Jin, O. Pierard, et al. Error-controlled adaptive extended finite element method for 3D
linear elastic crack propagation Comput. Methods Appl. Mech. Engrg. 318 (2017) 319–348

M. Duflot, SPAB, IJNME 2007, CNME 2007, IJNME 2008.

After: determine mesh refinement adaptively using a (goal-oriented) error estimate
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Partial Conclusions
FEM has intrinsic difficulties with singularities and 
discontinuities
Enrichment helps to decrease but not eliminate 
remeshing
This remeshing can be driven by error estimates
Arbitrary enrichment functions can be chosen
(almost) arbitrary enrichment zones
Question: what are the limitations of these 
enrichment approaches?
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What if we have to deal with more 
cracks….



Discretization: XFEM

Extended Finite Element Method (XFEM)

Fracture of “XFEM” using 
XFEM



Case study II. Plate with 300 cracks
vertical extension BCs

 

 

Fracture process

Energy-minimal crack growth using XFEM

Sutula et al. Preprint of three part EFM paper at 
http://hdl.handle.net/10993/29414 



Vertical extension of a plate with 300 cracks

Example #1

Post-split roughness



Example #2

Mechanical splitting of a wafer sample
• Post-split roughness as a function of micro crack 

distribution 

3 (mm)

1.
5 

(m
m

)

0.5 (mm)

 

 

damaged zone
(studied area)



Example #2

Mechanical splitting of a wafer sample
• Discretisation (≈1mln. DOF, he = 150 nm)

 

Fracture control parameters
- initial cracked length:
- damage thickness:



Fracture roughness results
• Case example: ,

• Case example: ,

Example #2

more rough

less rough



Summary

LEFM model
• Assuming mechanical interactions dominate during micro 

crack growth 

Crack growth
• crack tip with max SIF in direction of max hoop stress

Discretization
• XFEM for efficient multiple fracture modeling
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More cracks?… 3D? … 
Phase field/thick level sets

With Danas Sutula and Nguyen Vinh Phu (Monash) 
9TH Australasian Congress on Applied Mechanics (ACAM9)
27 - 29 November 2017
phu.nguyen@monash.edu 
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With Danas Sutula and Nguyen Vinh Phu (Monash) 
9TH Australasian Congress on Applied Mechanics (ACAM9)
27 - 29 November 2017
phu.nguyen@monash.edu 

Energy minimal XFEM vs. Phase field
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With Danas Sutula and Nguyen Vinh Phu (Monash) 
9TH Australasian Congress on Applied Mechanics (ACAM9)
27 - 29 November 2017
phu.nguyen@monash.edu 
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Partial conclusions on fracture of 
homogeneous materials using enriched 
FEM

 More than a few cracks in 3D may warrant 
using phase fields models as opposed to 
discrete cracks

 Meshfree methods are possible 
alternatives (See the work of Rabczuk, 

194
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Question: how to handle heterogeneities 
over the scales in computational fracture ?

Case study III: Fracture of heterogeneous 
materials

195
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Partial conclusions on fracture of homogeneous materials using enriched 
FEM

 Adaptivity for enriched approximations using error estimates

 Adapt enrichment radius

 Adapt the choice of enrichment

 Locally h-adapt the mesh

 More than a few cracks in 3D may warrant using phase fields models as 
opposed to discrete cracks

 Meshfree methods are possible alternatives (See the work of Rabczuk, 
Belytschko, Zi, SPAB)

 Next step: heterogeneities

196
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Mild heterogeneities/anisotropy  
Homogenized models are sufficient

 
 

197
L. Cahill et al. Composite Structures, 2014

Experimental/Numerical approach to determining the driving force for fracture in composites

numerical experimentalexperimental

Question: what main factors govern crack growth in composite laminates?

XFEM can effectively deal with orthotropic 
fracture
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Strong heterogeneities 
Homogenized models are insufficient
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Fracture over the scales
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A. Menk and SPAB, IJNME 2011, Comp. Mat. Sci. 2012
XFEM Preconditioning and application to polycrystalline fracture

Solder joint durability (microelectronics), Bosch GmbH

D. A. Paladim et al. Int. J. Numer. Meth. Engng 2017; 110:103–132
P. Kerfriden et al. Int. J. Numer. Meth. Engng 2014; 97:395–422
P. Kerfriden et al. Int. J. Numer. Meth. Engng 2012; 89:154–179
P. Kerfriden et al. Comput. Methods Appl. Mech. Engrg. 200 (2011) 850–866
K. C. Hoang et al. Num Meth PDEs DOI 10.1002/num.21932

Question: what is the role of Pb in thermo-mechanical reliability of solder joints?
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Microstructure plays a major role in 
thermomechanical durability in Pb-free 

solders
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Microstructures have a critical effect on 
the durability of structures at the 

engineering scale
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What can be done to account for 
microstructures for structures of 

engineering relevance?

All is fine as long as the microstructures simulations are localised or few in number



Interfaces in engineering and biomechanics

208

Practical early-stage design simulations (interactive)

[Allix, Kerfriden, Gosselet 2010]
Discretise

0.125 mm
50 mm

100 plies

courtesy: EADS

‣Reduce the problem size while controlling the error (in QoI) 
when solving very large (multiscale) mechanics problems  

Discretise

Surgical simulation 
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Fracture over the scales, adaptivity  
model reduction and selection

 
 

209

O. Goury, P. Kerfriden et al. CMAME, 2016, CMECH (2017) DOI 10.1007/s00466-016-1290-2 - Model reduction for fracture  
C. Hoang et al. Comput. Methods Appl. Mech. Engrg. 298 (2016) 121–158 - Model reduction for elastodynamics
A. Akbari, P. Kerfriden and SPAB, Philosophical Magazine, (2015) http://dx.doi.org/10.1080/14786435.2015.1061716 
P. Kerfriden et al. Comput. Methods Appl. Mech. Engrg. 256 (2013) 169–188 - Model reduction methods for fracture  

Question: how can we account for microstructures in a computationally tractable way?
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Partial conclusions on fracture of heterogeneous 
materials 

210

 Model + mesh adaptivity for adaptive fracture mechanics 
simulations: expensive + implementation must be done 
carefully

 Model order reduction, e.g. POD, PGD are ineffective for 
problems lacking separation of scales (see Kerfriden, Goury 
and others) 

 Domain-wise model selection

 Adaptive model selection

 Machine learning…
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Partial conclusions on fracture of heterogeneous materials 

 Simple methods can deal with fracture in unidirectional composites 

 Model + mesh adaptivity for adaptive fracture mechanics simulations: 
expensive + implementation must be done carefully

 Model order reduction is ineffective for problems lacking separation of scales

 Domain-wise model selection

 Adaptive model selection

 Machine learning…

 Next step: biomechanics/real-time

211
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Topological changes in surgical simulation
Cutting and Needle Insertion

 
 

212

http://orbilu.uni.lu/handle/10993/29846http://orbilu.uni.lu/handle/10993/30937

H. Courtecuisse et al. Medical Image Analysis, 2014 P.H. Bui et al. IEEE T. Biomed Eng. 2017 & Frontiers in Surgery, 2017
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Topological changes in surgical simulation
Cutting and Needle Insertion

 
 

213

http://orbilu.uni.lu/handle/10993/29846http://orbilu.uni.lu/handle/10993/30937

H. Courtecuisse et al. Medical Image Analysis, 2014 P.H. Bui et al. IEEE T. Biomed Eng. 2017 & Frontiers in Surgery, 2017
Question: how can we simulate cutting/fracture in 
real time using implicit time stepping?

Question: how can we adapt the mesh in real 
time using a posteriori error estimates?



Institute of Mechanics and Advanced Materialshttp://www.researcherid.com/rid/A-1858-2009 

I M A M  Thrombus formation in an artery
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IJNMBE2017 Moh



Stéphane Pierre Alain BORDAS, Department of  Computational Engineering & Sciences University of  Luxembourg RealTCut215



Stéphane Pierre Alain BORDAS, Department of  Computational Engineering & Sciences University of  Luxembourg RealTCut216

CHALLENGE: everything 
happens close to the 
needle… focus the 



Stéphane Pierre Alain BORDAS, Department of  Computational Engineering & Sciences University of  Luxembourg RealTCut217

CHALLENGE: everything 
happens close to the 
needle… focus the 

But HOW can we decide 
where and what the element 

size should be?



Stéphane Pierre Alain BORDAS, Department of  Computational Engineering & Sciences University of  Luxembourg RealTCut

Local mesh refinement 
is necessary, but 
where? how? 
What else is missing?

218

QUESTIONS



Stéphane Pierre Alain BORDAS, Department of  Computational Engineering & Sciences University of  Luxembourg RealTCut219

Model of contractile tissue



Stéphane Pierre Alain BORDAS, Department of  Computational Engineering & Sciences University of  Luxembourg RealTCut220

a posteriori error estimates



Stéphane Pierre Alain BORDAS, Department of  Computational Engineering & Sciences University of  Luxembourg RealTCut221

Dual Weighted Residuals (DWR)



Stéphane Pierre Alain BORDAS, Department of  Computational Engineering & Sciences University of  Luxembourg RealTCut222

Genioglossus activation
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Genioglossus activation



Stéphane Pierre Alain BORDAS, Department of  Computational Engineering & Sciences University of  Luxembourg RealTCut224

Effect of adaptive refinement



Stéphane Pierre Alain BORDAS, Department of  Computational Engineering & Sciences University of  Luxembourg RealTCut225

Effectivity of the error indicator



Stéphane Pierre Alain BORDAS, Department of  Computational Engineering & Sciences University of  Luxembourg RealTCut226

Arterial wall activation



Stéphane Pierre Alain BORDAS, Department of  Computational Engineering & Sciences University of  Luxembourg RealTCut227
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Stéphane Pierre Alain BORDAS, Department of  Computational Engineering & Sciences University of  Luxembourg RealTCut230

Effectivity



Stéphane Pierre Alain BORDAS, Department of  Computational Engineering & Sciences University of  Luxembourg RealTCut231



A

4.30 A

10�7

2.6⇥

U
Q

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  20  40  60  80  100  120  140

 

 

   

U Q

15%

3.4
U

Q

xc
W

c

1%

25 U

Courtecuisse, 2014, Implicit method for cutting in real-
time. MEDIA
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‣Generic material models: a priori. 
‣Errors in quantities of interest for cuts in 

linear materials. 
‣ Interactive simulations (solution in ms).

‣Data-driven material models (real-time). 
‣Error control in quantities of interest for 

strong non-linearities, multi-field… 
‣Clinical time scales (solution in minutes).

A generic organ is sufficient. Patient specificity is 

Future  
Surgical assistance and 
planning

ERC RealTCut 
Train surgeons safely on 
simulators

Stimulation 
target 

Predict shift of brain target.

NEXT CHALLENGES



Stéphane Pierre Alain BORDAS, Department of  Computational Engineering & Sciences University of  Luxembourg RealTCut233

User Expertise & Accuracy of the Simulation

Speed

Surgical 
training

Stress 
analysis

Advanced 
Fracture 

Mechanics

Damage 
tolerance

Shape 
opti.

Surgical 
guidance

ms

min

sec

min

hours

days
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ERC RealTCut Bordas, 2014, First implicit method for 
cutting in real-time (25 frames/second): error control

234

Parkinson’s 
disease 
stimulation 
target 

predict 
shift of 

BRAIN 
SHIFT

Current standing after RealTCut 
‣ Interactive cutting 

‣Multi-organ contact 
‣Generic material models 

‣Errors on quantities of interest for 
cuts in linear materials 

Beyond current capabilities 
‣Patient specific geometry & 

materials 
‣Error control for 
‣  contact 
‣non-linear materials and multi-field 
‣Clinical time scales 

A generic organ is sufficient

Patient specificity is essential

inCERT: Surgical assistance and planning: guide with limited data

Non-rigid registration: With Dr Frank Hertel, 
neurosurgeon, Luxembourg

RealTCut

Surgical simulation: train surgeons safely on simulators
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Bordas, 2014, First implicit method for cutting in real-time.
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Current standing  
‣Generic  

‣Material models, 
‣Organ geometry. 

‣Errors in quantities of interest for 
cuts in linear materials. 

Beyond current capabilities 

‣Patient-specific 
‣Material models, 
‣Organ geometry. 

‣Error control in quantities of interest for 
‣ contact, 
‣non-linear materials and multi-field.

A generic organ is sufficient. Patient specificity is 

Tomorrow inCERT: Surgical 
assistance and planning: 
guide with limited data

RealTCut

Today RealTCut, train surgeons 
safely on simulators

Stimulation 
target 

Predict shift of brain target.
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‣Data-driven material models (real-time). 
‣Error control in quantities of interest for 

strong non-linearities, multi-field… 
‣Clinical time scales (solution in minutes).

Patient specificity is 

Future  
Surgical assistance and 
planning

Stimulation 
target 

Predict shift of brain target.

From surgical training to surgical planning and assistance

QUESTION: What (material) 
model should be used for a 

given patient?

Surgical 
guidance
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NUMERICAL 
SOLUTION

GEOMETRY DISCRETISATION

MATERIAL MODELS
Phenomenological 
Elasticity/Plasticity

Crack growth law (Paris…)
Fracture energy

Maximum tensile strength
Multi-scale

Debonding, Fibre pull-out
Fibre breakage, interface 

fracture, grains, dislocations, 

A 
POSTERIORI 

ERROR 

EXPERIMENTS

Validation & parameter identification

Verification

CONVENTIONAL APPROACH
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NUMERICAL 
SOLUTION

IMAGE/MODEL DISCRETISATION

MATERIAL MODELS

Phenomenological 
Neo-Hookean, Ogden, …

Multi-scale
cutting, fracture,

???

Patient specific ???

A 
POSTERIORI 

ERROR 

EXPERIMENTS ???

Validation & parameter identification

Verification
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Data-driven Modelling

model calibration model identification

The structure of f is known  
but its parameters are not.

There is no a priori knowledge 
about the function f available.

model

Embrace the conceptual shift from "model through data abstraction" to "data is the model".

ਈ Ն ০Ҿ ১
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input output
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Two realisations of RF, with a log-normal distribution, 
for the parameter C1 (in MPa).
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‣Different methods: Karhunen–Loève expansion [Adler 
2007], Fast Fourier transform [Nowak 2004].

Assuming the material model is representative, what is the 
influence of each parameter in the model? 
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What is the influence of 
material parameters on 
computed quantities of 
interest?
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Confidence level in predicting the target location
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NUMERICAL 
SOLUTION

GEOMETRICA
L MODEL

DISCRETISATI
ON

LEARN 
MATERIAL 
MODELS

which scales?
what models?

what parameters?

Error 
control

REAL SYSTEM

DIGITAL TWIN

DATA

INFORMATIO
N

Strain

Structural 
Health

Cracks

Environment
Conditions

Scales of 
interest

Crack 
growth 

rate

Worst load 
combination

Inspection 
interval Mission?

Possible approach
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REAL PATIENT

DIGITAL TWIN OF THE PATIENT

DATA

INFORMATION

Organ 
state

Health

Disease

Environment
Conditions

Scales of 
interest

Disease 
evolution

“Inspection”
interval Fitness

Treatment 
simulation

Alex Garland, Ex Machina, 2015
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Prior Knowledge 
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Prior Knowledge 

Hypothesis 

Domain 
expert
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Prior Knowledge 

Hypothesis 

Domain 
expert

(Big) Data 
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Prior Knowledge 

Hypothesis 

Domain 
expert

(Big) Data 

Computational  
Science

HPC
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Prior Knowledge 

Hypothesis 

Domain 
expert

(Big) Data 

Conclusions

Computational  
Science

HPC
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Prior Knowledge 

Hypothesis 

Domain 
expert

(Big) Data 

Conclusions
Computed in Luxembourg

Lux

Data-driven modelling 
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Prior 
Knowledge



251

Prior 
Knowledge

Data Hypothesis
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Measured 
input +

Input noise

Mathematical 
model

Model
output +

Model
uncertainty

Output noise

Measured 
output

Uncertainties and errors in parameter 
identification
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 Uncertainty in Observations only 

Note: We only have “y “ and “x*” from our experiments.

Uncertainties and errors in parameter 
identification

 Model uncertainty and uncertainty in observation only

 Model uncertainty  and uncertainty in both observation and input
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❖Different sources of uncertainty can be considered in an identification problem (here 

we have considered the uncertainties in the output, input and model response). 

Incorporating the model uncertainty as well as the error in the input increases the chance 

 that resulting distribution (so-called posterior) includes the true value of the parameter of  

interest. 

❖ Incorporating  these uncertainty sources furthermore,  result to wider prediction intervals, 

which therefore contain more measurements. 

❖ If the difference between the true response, and the response of the material model 

 increases incorporating the model uncertainty improves the data coverage for interpolation. 

 However, this is not necessarily the case for extrapolation. 

❖In the case above the added value of incorporating the input error as well reduces  

substantially. 

See Hussein Rappel, Lars Beex, Jack Hale, SPAB 2017, 2018 

Conclusions
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