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Problem definition: We consider dual sourcing in a distribution network for spare parts consisting of one

central warehouse and multiple local warehouses. Each warehouse keeps multiple types of repairable parts

to maintain several types of capital goods. The repair shop at the central warehouse has two repair options

for each repairable part: a regular repair option and an expedited repair option. Irrespective of the repair

option, each repairable part uses a certain resource for its repair. In the design of these inventory systems,

companies need to decide upon stocking levels and expedite thresholds such that total stock investments are

minimized while satisfying asset availability and expediting constraints.

Academic / Practical Relevance: Although most companies have the possibility to expedite the repair

of parts in short supply, no contributions have been made that incorporate such dynamic expediting policies

in repairable investment decisions. Anticipating expediting decisions that will be made later leads to sub-

stantial reductions in repairable investments.

Methodology: We use queueing theory to determine the performance of the central warehouse and sub-

sequently find the performance of all local warehouses using binomial disaggregation. For the optimization

problem, we develop a greedy heuristic and a decomposition and column generation based algorithm.

Results: Both solution approaches perform very well with average optimality gaps of 2.38 and 0.27 percent,

respectively, across a large test bed of industrial size. The possibility to expedite the repair of failed parts

is effective in reducing stock investments with average reductions of 7.94 percent and even reductions up to

19.61 percent relative to the state of the art.

Managerial Implications: Based on a case study at Netherlands Railways, we show how managers can

significantly reduce the investment in repairable spare parts when dynamic repair policies are leveraged to

prioritize repair of parts whose inventory is critically low.
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1. Introduction

For many industries and service organizations, the availability of capital goods such as

rolling stock, manufacturing equipment and aircraft is of crucial importance for their oper-

ations. To ensure high availability of these capital goods, companies stock critical compo-

1



2 Drent and Arts: Expediting in Two-Echelon Spare Parts Inventory Systems

nents and replace a defective component with a ready-for-use spare component after failure.

Since many critical components represent a significant financial investment, defective com-

ponents are usually repaired and put back on stock rather than discarded. Consequently,

the availability of capital goods largely depends on the design of the underlying spare parts

inventory system for repairing and supplying these so-called repairable components.

Spare parts inventory systems for capital goods often have a two-echelon structure, in

which many different types of components are stocked (Cohen et al. 1997). In this paper, we

study such a multi-item two-echelon spare parts inventory system. The system consists of

a set of local warehouses, i.e. operating sites, that are supported by one central warehouse.

Each local warehouse maintains field inventories for spare components and sends defective

components to the repair shop. The repair shop repairs these defective components and

sends them to the central warehouse which replenishes the local warehouses. It is obvious

that next to the inventory levels of spare components, the repair operations at the repair

shop affect the availability of capital goods at the operating sites. Hence, the determination

of spare components inventory levels and the design of the repair operations in the repair

shop are two key aspects in the design of these two-echelon spare parts inventory systems.

In the capital goods industry, it is common practice to acquire spare components together

with the acquisition of the capital good because, at that time, it is possible to negotiate

reasonable prices. The determination of spare components inventory levels is therefore

closely related to what is known in literature as the initial spare parts supply problem (e.g.,

Van Houtum and Kranenburg 2015). With respect to the repair operations at the repair

shop, companies often have the flexibility to expedite the repair of defective components.

Although expediting comes at an extra price, either because internal repair resources are

limited or because an external repair shop charges a higher price, the possibility to expedite

can significantly reduce the required initial financial investment in spare parts. Indeed,

expediting the repair of defective components more often implies that a smaller initial

financial investment in spare parts is required to ensure the same availability of capital

goods as in spare parts inventory systems where no repair flexibility is incorporated.

Hence, in the design of the spare parts inventory systems sketched in the last two para-

graphs, decision makers face two major questions:

1. How many spare parts of each repairable type should the company initially purchase

and place at each warehouse?
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2. When should the repair of a detective part of a given repairable type be expedited?

The objective of this paper is to present a tractable optimization model that assists deci-

sion makers in answering these two questions. These questions are faced among others

by Netherlands Railways (NS), the principal Dutch passenger railway operator. Our col-

laboration with their maintenance department led to the present work. To establish the

practical value of our optimization model, we report on a case study on their data.

As is often the case in practice, we consider a setting with several capital good types

(e.g. regional trains and inter-city trains; wide-body aircraft and narrow-body aircraft)

and where repairables may use different repair resources (e.g. electronic and mechanical).

Because not all repairs can be expedited, many companies, including NS, use agreements

between the repair shop manager and the inventory manager that determine how much

of the total workload can be expedited per repair resource. Hence, the objective of our

optimization model is to minimize the total investment costs in spare parts while

• not exceeding a given maximum total mean number of backorders over all local ware-

houses for each capital good type, and

• keeping the fraction of repairs that are expedited per repair resource below a given

target level. (We will also consider an alternate setting in which expediting repairs comes

at additional costs rather than being constrained).

Because we consider critical components, a backorder for a spare part implies that the

affected capital good becomes inoperable. Since failures of components typically occur very

infrequently, a common assumption in the spare parts literature is that the probability that

two or more backorders are from the same capital good at any point in time is negligible

(e.g., Muckstadt 2005, Sherbrooke 2004). Under that assumption the average availability

of a capital good type is the number of capital goods of that type minus the expected

number of backorders of parts in that capital good type. As such, the first constraint of our

optimization model guarantees a certain availability of each capital good type throughout

the geographical region covered by the local warehouses.

In this paper, we provide a mathematical model for the decision problem described above.

We assume that each local warehouse is replenished by an (S−1, S) base stock policy. This

means that each defective part is replaced with a ready-for-use item and is sent to the repair

shop at the central warehouse immediately after the defect occurs. This replenishment

policy is common in practice and is considered as well-suited for spare parts inventory
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control (Van Houtum and Kranenburg 2015). The central warehouse operates under an

(S,T ) policy similar to Song and Zipkin (2009), which keeps the usual inventory position at

constant level S, just as in a standard base stock policy. In addition, expedite threshold T

triggers expedited repairs when outstanding orders in the repair pipeline are too far away.

This dynamic repair policy thus takes into account real-time information about the repair

pipeline of the repair shop, which can be obtained through modern tracking technologies.

We assume that unsatisfied demand is backordered at all warehouses. Furthermore, we

assume deterministic lead times for the replenishments of the local warehouses as well as

for both repair options at the central warehouse.

The main contributions of this paper are summarized as follows:

1. We are the first to integrate stocking and expedited repair decisions in multi-item

two-echelon spare parts inventory systems, where parts belong to different capital good

types and where parts that use the same repair resource compete for expedited repair.

2. We provide a tractable optimization model that yields a tight lower bound on the opti-

mal solution and near optimal feasible solutions. We show that our formulation allows us

to decompose the non-linear non-convex integer programming problem into sub-problems

per repairable type and subsequently use column generation algorithms. For the result-

ing sub-problem, whose state space has dimensions equal to the number of locations plus

one, we provide an efficient solution algorithm that searches over only two dimensions and

where each instance involves independent Newsvendor type problems.

3. As an alternative solution approach, we provide a greedy heuristic that yields excellent

results. Different from most literature on greedy heuristics in spare parts inventory systems,

our greedy heuristic does not only decide upon stocking levels given a certain target service

level, but also on expedite thresholds such that the fraction of the total demand that

receives expedited repair per repair resource remains below a certain target level.

4. Based on a case study at NS, we present insights that will help managers to under-

stand how a dynamic repair policy can be leveraged to reduce the total investment costs

in spare parts while meeting availability targets.

In his seminal paper on the METRIC model, Sherbrooke (1968) already argued that

in practice, parts in short supply should be scheduled into repair first. Though, he and

most contributions on the METRIC model assume that the repair lead times of each part

are i.i.d. distributed, meaning that no scheduling or prioritization in repairs is possible.
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As a direct consequence, performance obtained in practice (either investments in stock or

availability) is better than theory predicts (e.g., Rustenburg 2000, Rustenburg et al. 2001),

though exact percentages are lacking. In this paper, we are the first to relax this assumption

by explicitly incorporating the possibility to change the repair lead time of a part based

on the current state of the system, thereby actually scheduling parts in short supply into

repair first. We show that effective usage of this possibility may lead to reductions in stock

investments of up to 19.61 percent compared to static repair lead times. We show that such

reductions remain attainable even when we incur additional costs for using this flexibility.

The remainder of this paper is organized as follows. Section 2 reviews related literature.

In Section 3, we provide a formal description of the model. In Section 4, we present an exact

evaluation procedure for a given control policy as well as the mathematical formulation

of our decision problem. Section 5 presents two solution approaches to solve this decision

problem. We show in Section 6 that these solution approaches also apply to an alternate

setting in which expediting has an additional cost. Section 7 provides managerial insights

based on a case study at NS and evaluates the performance of both solution approaches

in a large test bed. Finally, some concluding remarks are presented in Section 8.

2. Literature review

Although spare parts inventory systems have been studied extensively in a variety of set-

tings, our review involves literature with similar modeling assumptions or similar solution

approaches as those used in this paper. For an extensive discussion of the existing literature

in the broad field of spare parts inventory management, we refer the reader to Basten and

Van Houtum (2014), Van Houtum and Kranenburg (2015) and Muckstadt (2005).

This paper contributes to the classical research line of multi-item spare parts inventory

systems that started in 1968 with the seminal paper of Sherbrooke on the METRIC model.

This model assumes that demand follows a Poisson process and that all warehouses operate

under base stock policies. Via an approximative evaluation method, expected backorders at

all local warehouses are determined for a given control policy. Since then, many extensions

have been made to the METRIC model: While some researchers have focused on deriving

exact steady state distributions (e.g., Graves 1985, Simon 1971), others have extended

the model itself by integrating hierarchical or indentured parts structures (e.g., Muckstadt

1973), by allowing for part failures that lead to downtime after a delay (e.g., Bitton et al.
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2019), or by including emergency shipments (e.g., Alfredsson and Verrijdt 1999, Lee 1987,

Howard et al. 2015). The exact evaluation procedure of our paper shows similarities with

Graves (1985). The main difference is that he considers only one supply mode at the central

warehouse, whereas we consider both a regular and an expedited supply mode.

The system studied in this paper extends previous research which examined inventory

models with multiple supply modes. We refer to Svoboda et al. (2019) for an extensive

discussion of such inventory models, here we discuss only the important and more relevant

results. Since optimal control policies for inventory systems with expediting have complex

structures (e.g., Feng et al. 2006, Whittemore and Saunders 1977), most recent papers

study relatively simple heuristic policies and aim at finding (near) optimal parameters.

For single-echelon inventory systems under periodic review, an often studied heuristic

policy is the dual-index policy, in which two different inventory positions are kept track off:

The inventory position including arrivals within the expedited lead time and the inventory

position including arrivals within the regular lead time (e.g., Arts et al. 2011, Sheopuri

et al. 2010, Sun and Van Mieghem 2019, Veeraraghavan and Scheller-Wolf 2008). Moin-

zadeh and Schmidt (1991) consider a similar policy for single-echelon inventory systems

facing Poisson under continuous review. They focus on obtaining performance measures

for a given dual-index policy when both the expedited and regular lead time are determin-

istic. Song and Zipkin (2009) reinterpret and extend the work of Moinzadeh and Schmidt

(1991) by showing that the same inventory system with a dual-index policy and stochastic

lead times is a special type of product form queueing network with one or more overflow

bypasses. The dual-index policy in the setting of Moinzadeh and Schmidt (1991) and Song

and Zipkin (2009) is in fact optimal for the special case where the regular repair lead time

has a shifted exponential distribution and the base stock level for the regular inventory

position is fixed (Arts et al. 2016). The policy that we consider for the central warehouse

is equivalent to the dual-index policy of Song and Zipkin (2009). The methods of Song

and Zipkin (2009) have been incorporated in a two-echelon spare parts inventory system

before, albeit to decide upon emergency shipments from a so-called support warehouse to

the local warehouses (Howard et al. 2015).

Literature on multiple supply modes in multi-echelon distribution systems is relatively

scarce. Building upon the dual-index policy of Moinzadeh and Schmidt (1991), Moinzadeh

and Aggarwal (1997) consider a two-echelon distribution system facing Poisson demand
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under continuous review in which all warehouses have the option to replenish their inven-

tory through an expedited or regular supply channel. Similar to Moinzadeh and Schmidt

(1991), they assume deterministic lead times for both types of shipments to all warehouses.

Moinzadeh and Aggarwal (1997) describe a procedure to find optimal policy parameters

and show that this system substantially improves its single-sourcing counterpart. By con-

trast to their paper, we consider a system where only the central warehouse has two supply

modes. Yet, we impose no limitations on the lead times of those supply modes.

Within the stream of literature focusing on inventory systems for repairable items, many

contributions have been made on either expediting the repair or prioritizing the scheduling

of repairs in the repair shop. As deriving structural properties of optimal policies is known

to be complex when the number of different repairable types increases (Tiemessen and

Van Houtum 2013), most contributions in this area resort to heuristic priority rules. We

distinguish two categories of such heuristic priority rules. Under static priority rules, the

priority of a repairable depends on its type only. Although these type of priority rules are

relatively simple, several studies have shown that such rules outperform simple first come

first serve rules in terms of investment costs (e.g., Adan et al. 2009, Sleptchenko et al.

2005). Under more sophisticated dynamic priority rules, the priority of a repairable also

depends on the current state of the system. The expediting policy in our model falls into

this latter category as it essentially changes the repair lead time of a part based on the

current state of the repair pipeline. In a recent contribution, Arts et al. (2016) study an

expediting policy similar to the present model, albeit in a single-echelon single-item setting

under fluctuating demand. They remark that this expediting policy does not suffer from

the tractability issues that other dynamic priority rules suffer from, while still providing

the lead time flexibility inherent to this category of heuristic priority rules. Loeffen (2012)

shows that this expediting policy can also be implemented in elaborate simulation models

of the repair shop and yield similar performance.

Few researchers have considered dynamic repair priority rules in multi-echelon inventory

systems for repairable items. Pyke (1990) jointly addresses dynamic repair and inventory

allocation decisions in a two-echelon system very similar to the one we study. He sketches a

mathematical formulation of the problem to emphasize its complexity and computational

intractability and subsequently resorts to simulation experiments. More recently, Caggiano

et al. (2006) consider a similar problem related to dynamic repair and inventory allocation
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decisions. Different from the present work, their model is a finite-horizon, periodic-review

model involving only one repair resource focusing on operational decisions for repairable

spare parts in the exploitation phase of capital goods.

On the analysis side, we use two techniques that are widely used in the context of multi-

item spare parts inventory optimization. The first technique, decomposition and column

generation, is appropriate for problems that have a complicated aggregation constraint

that links the different repairable types. Decomposing this problem leads to relatively

simple sub-problems per repairable type. This technique has been used extensively in recent

contributions on spare part inventory optimization (e.g., Alvarez et al. 2013, 2015, Arts

2017, Kranenburg and Van Houtum 2007, Topan et al. 2017, Wong et al. 2007). Most

contributions only consider an aggregated service level constraint that links the different

repairable types. In this paper, repairable types are not only linked through such a service

level constraint, but also through the maximally allowed mean fraction of expedited repairs

over all repairable types that use the same repair resource. Arts (2017) considers a similar

optimization model with linking constraints on both expedited repairs and service levels.

The major difference between our work and Arts (2017) is that we consider a two-echelon

spare parts inventory system. For an extensive discussion on decomposition and column

generation, we refer to Dantzig and Wolfe (1960) and Lübbecke and Desrosiers (2005).

The second technique, a greedy method, is a search algorithm that iteratively selects the

alternative that has the highest ratio of improvement in performance over cost increase

until a feasible solution is obtained. A greedy method is quick, intuitive, easy to implement

and provides satisfactory results. Although the technique has been applied in many papers

on multi-item spare parts inventory optimization (e.g., Cohen et al. 1990, Kranenburg and

Van Houtum 2009, Topan et al. 2017, Wong et al. 2007), none have proposed a greedy

method on both stocking and expediting decisions that yields good results.

3. Model description

In this section, we first provide a brief description of the two-echelon spare parts inventory

system and introduce the notation that we use throughout this paper. We then describe

the policy we propose to control the system.

3.1. Description and notation

We consider a two-echelon spare parts inventory system consisting of a central warehouse

and multiple local warehouses. Let the non-empty set of local warehouses be denoted
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by Nl. The set of all warehouses is denoted by N , i.e. N = {0} ∪Nl. Hence, the central

warehouse has index zero while the local warehouses are numbered as n = 1,2, . . . , |Nl|.

Each local warehouse n is responsible for serving an operating site consisting of a number

of capital goods, which may be of the same or different type. Let C denote the non-

empty set of capital good types. Each capital good type c ∈ C consists of a number of

critical components that fail infrequently and independently. These critical components

are crucial for operating the capital good, i.e. the capital good is down if one of these

components fails. The components are at such levels in the material breakdown structure

of the capital good that they can be replaced as a whole by spare parts. Component types

are also called Stock Keeping Units (SKUs). Let M denote the non-empty set of critical

SKUs that occur in the configurations of the different capital good types. The SKUs are

numbered as m= 1,2, . . . , |M | and each part of SKU m ∈M has an acquisition cost cma .

The set of SKUs that occur in the configuration of capital good type c ∈C is denoted by

MC
c . There is a set of repair resources, denoted by R, that are used to repair failed parts

in the repair shop (at the central warehouse). The SKUs that use repair resource r ∈ R

in their repair are contained in the set MR
r . We assume that MC

c and MR
r partition M ,

i.e. ∪c∈CMC
c = ∪r∈RMR

r =M and ∩c∈CMC
c = ∩r∈RMR

r = ∅. This assumption is common in

practice and simplifies notation considerably; it is however not essential to our analysis.

We briefly show in Online Appendix D how this assumption can be readily relaxed along

similar lines as is done in Kranenburg and Van Houtum (2007).

Demand for SKU m∈M at local warehouse n∈Nl is a Poisson process with rate λm,n.

This demand model is common in literature and accurate in practice for spare parts (e.g.,

Graves 1985). When a demand for SKU m occurs at local warehouse n, it will be filled

from stock, or backordered if the stock is depleted. In the latter case, the capital good

remains down until a spare part becomes available at the local warehouse. The failed part is

shipped to the repair shop at the central warehouse, where all failed parts are immediately

sent into regular or expedited repair, where the corresponding resource r ∈R is used for

repair. At the same time, the central warehouse ships a spare part to the local warehouse

from its inventory, if it has an available spare part. Otherwise, the replenishment order is

backordered at the central warehouse until a part is repaired and becomes available. Upon

completion of repair a part is put back on stock at the central warehouse.
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The order and shipment time for a spare part of SKU m from the central warehouse to

local warehouse n is fixed and denoted by tm,n. Note that tm,n excludes any waiting time

at the central depot when a spare part is not available. For returned failed parts at the

repair shop, it takes either tregm,0 time units, in case of the regular repair, or texpm,0 time units,

in case of the expedited repair, until the part is returned to the spare parts stock at the

central warehouse. We assume that both repair times are fixed, with tregm,0 > t
exp
m,0 > 0. Figure

1 provides a graphical representation of the system under consideration and notation is

summarized in Table 1 (including notation introduced later).

Figure 1 Two-echelon spare parts inventory system with expediting
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3.2. Control policy

Each failed part at a local warehouse results in an immediate replenishment order at the

central warehouse. This implies that the inventory positions of a given SKU m∈M remain

constant at all local warehouses. Hence, we have base stock control at each local warehouse

n∈Nl for each SKU m∈M and we denote the corresponding base stock levels by Sm,n.

The central warehouse is controlled by a dual-index policy. This policy has two param-

eters for each SKU m∈M , integers Sm,0 and S′m,0, with Sm,0 ≥ S′m,0. Let t1m,0 = tregm,0− t
exp
m,0,

i.e. the additional regular lead time, and t2m,0 = texpm,0. We define two inventory positions for

each SKU m: IP1
m,0 and IP2

m,0. IP1
m,0 is the usual local inventory position and includes

net inventory INm,0 (on-hand stock OHm,0 minus any backorders BOm,0) plus all parts

in repair Xm,0. IP2
m,0 is similar but only includes those parts in repair X2

m,0 that will be

repaired and returned to on-hand stock within t2m,0 time units. Hence, the number of parts

in repair that will not be repaired and returned to on-hand stock within t2m,0 time units

X1
m,0 is equal to Xm,0 − X2

m,0. Figure 2 provides a graphical representation of the two

different inventory positions at the central warehouse.
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Table 1 Overview of notation

Notation Description

Sets
N Set of all warehouses.
Nl ⊂N Set of local warehouses.
M Set of all SKUs.
C Set of capital good types.
R Set of repair resources.
MR
r ⊆M Set of SKUs that use repair resource r ∈R in the repair of failed parts.

MC
c ⊆M Set of SKUs that occur in the configuration of capital good type c∈C.

Input parameters
λm,n Demand intensity for SKU m∈M at warehouse n∈N .

δrm Fraction of demands over all parts of SKUs k ∈MR
r that are from SKU m, i.e.

λm,0∑
k∈MRr

λk,0
.

tm,n Lead time from the central warehouse to local warehouse n∈Nl of SKU m∈M .
tregm,0 Regular repair lead time of SKU m∈M .
texpm,0 Expedited repair lead time of SKU m∈M , also denoted by t2m,0.
t1m,0 Additional regular repair lead time of SKU m∈M .
cma Acquisition cost for SKU m∈M .
τ Useful lifespan of each SKU m∈M .
κ Expediting cost multiplier for each SKU m∈M .
cme Cost for expediting the repair of SKU m∈M , i.e. κ · cma .
cmd Depreciation cost rate for SKU m∈M , i.e. cma /τ .
Bmaxc The maximally allowed mean number of backorders over all SKUs m∈MC

c for capital good type c∈C.
Emaxr The maximally allowed mean fraction of expedited repairs over all SKUs m∈MR

r that use repair resource
r ∈R during their repair.

Decision variables
Sm,n Base stock level of SKU m∈M at warehouse n∈N .
Sm The vector (Sm,0, Sm,1, . . . , Sm,|Nl|).
S The base stock levels matrix [Sm,n].
Tm Expedite threshold of SKU m∈M .
T The vector (T1, T2, . . . , T|M|).
State variables
Xm,0 Number of outstanding repairs of SKU m∈M at the central warehouse.
X2
m,0 Number of outstanding repairs of SKU m∈M at the central warehouse that will be repaired within t2m,0

time units.
X1
m,0 Number of outstanding repairs of SKU m∈M at the central warehouse that will not be repaired within

t2m,0 time units, i.e. Xm,0-X2
m,0.

Xm,n Number of outstanding orders of SKU m∈M at local warehouse n∈Nl.
Output of model
EBOm,n(Sm, Tm) Mean number of backorders for SKU m at local warehouse n∈Nl under a given control policy (Sm, Tm),

i.e.
∑∞
x=Sm,n+1(x−Sm,n)P{Xm,n = x}.

EBOc(S,T ) Aggregate mean number of backorders for capital good type c ∈ C under a given control policy (S,T ),
i.e.

∑
m∈MCc

∑
n∈Nl

EBOm,n(Sm, Tm).

EXPm(Tm) Fraction of failed parts of SKU m ∈M that utilize the expedited repair option under a given expedite
threshold (Tm), i.e. P{X1

m,0 = Tm}.
EXPr(T ) Aggregate mean fraction of failed parts over all SKUs m ∈MR

r that utilize the expedited repair option
under a given expedite threshold vector T , i.e.

∑
m∈MRr

δrmEXPm(Tm).

C (S) The total investment costs in spare parts under a given base stock levels matrix S, i.e.∑
m∈M

∑
n∈N c

m
a Sm,n.

Cd(S) The total depreciation cost rate in spare parts under a given base stock levels matrix S, i.e.∑
m∈M

∑
n∈N c

m
d Sm,n.

Ce(T ) The total repair expediting cost rate under a given expedite threshold vector T , i.e.∑
m∈M cme λm,0EXPm(Tm).

CUB
P (C LB

P ) Upper (lower) bound for the optimal solution to problem (P ).
C LB

BM Lower bound for the optimal solution of a benchmark instance BM .

The dual-index policy works as follows: Keep IP1
m,0 at constant level Sm,0 (as in standard

base stock control) and also IP2
m,0 ≥ S′m,0. Thus upon the demand of a part and the return

of a failed part of SKU m ∈M , we first examine IP2
m,0. If IP2

m,0 (after the failed part is

returned, but before deciding upon the repair option) is already S′m,0 or greater, we send it
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Figure 2 Inventory positions at the central warehouse
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into regular repair. However, if a regular repair would leave IP2
m,0 <S

′
m,0, then we use the

expedited repair option. Note that IP2
m,0 = INm,0 +X2

m,0 = IP1
m,0−X1

m,0 = Sm,0−X1
m,0, and

thus, equivalently, the dual-index policy keeps Sm,0−X1
m,0 ≥ S′m,0. Hence, defining expedite

threshold Tm = Sm,0− S′m,0 ∀m ∈M , the dual-index policy sends failed parts into regular

repair as long as X1
m,0 ≤ Tm (cf. Song and Zipkin 2009).

Let Sm = (Sm,0, Sm,1, . . . , Sm,|Nl|), m∈M , denote the vector of base stock levels for SKU

m. Then, a control policy (S,T ) is denoted by base stock levels matrix S and a vector

T = (T1, T2, . . . , T|M |) containing the expedite thresholds of each SKU m∈M .

4. Performance evaluation and problem formulation

In this section, we provide an exact evaluation procedure for a given control policy (S,T ),

and we present the mathematical formulation of the decision problem.

4.1. Exact evaluation of a given control policy

The evaluation of a given control policy (S,T ) can be done per SKU. Consider therefore

some SKU m ∈M that has base stock vector Sm and expedite threshold Tm. We first

consider the performance of SKU m at the central warehouse, and subsequently link this

to its performance at all local warehouses.

Key in evaluating the performance of the central warehouse for SKU m is to obtain the

distribution of the number of parts in repair Xm,0. Since each failure of SKU m results

in an immediate replenishment request for SKU m at the central warehouse, the demand

process for parts of SKU m as seen by the central warehouse is a Poisson process with

constant rate λm,0 =
∑

n∈Nl λm,n. Each replenishment request for SKU m is accompanied

by a failed part that goes into repair. Hence, failed parts of SKU m enter the repair pipeline

according to a Poisson process with constant rate λm,0. The fraction of demands for SKU

m over demands from all SKUs that use the same repair resource r ∈R as SKU m uses, is

then given by δrm = λm,0∑
k∈MR

r
λk,0

. Now, under the dual-index policy described in the previous
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section, the repair pipeline of each SKU m can be seen as an open queueing network with

outside Poisson arrivals at constant rate λm,0 and two •/D/∞ queues that cause delays of

t1m and t2m time units (see Figure 3).

Figure 3 Repair pipeline as an open queueing network

λm,0 INm,0

Central

warehouse

X1
m,0 X2

m,0?

X1
m,0 ≤ Tm

Yes

No

•/D/∞ •/D/∞

Repair pipeline

Observe that a normal repair first passes through queue 1, where it remains t1m units, and

then passes through queue 2, where it remains t2m units. Failed parts that receive expedited

repair bypass the first part of the repair pipeline and only pass through queue 2. After

a part completes queue 2, it arrives to inventory at the central warehouse. In effect, the

dual-index policy directs failed parts of SKU m into normal repair as long as the number

of repairs at queue 1, i.e. X1
m,0, is not greater than the expedite threshold Tm. When an

arriving failed part would overflow Tm, the failed part bypasses queue 1 and goes directly

to queue 2, that is, the failed part goes into expedited repair. In the queueing literature,

this is sometimes referred to as jump over blocking or as an overflow bypass (e.g., Lam

1977, Song and Zipkin 2009).

The distribution of the number of parts in repair Xm,0, follows from the joint dis-

tribution of (X1
m,0,X

2
m,0). Let pm(x1, x2) = P{X1

m,0 = x1,X
2
m,0 = x2} denote the steady-

state joint distribution of (X1
m,0,X

2
m,0). Let φ1

m(x1) and φ2
m(x2) denote the Poisson prob-

abilities eλm,0·t
1
m(λm,0 · t1m)x1/x1! and eλm,0·t

2
m(λm,0 · t2m)x2/x2!, respectively. The support of

(X1
m,0,X

2
m,0) is denoted by X (Tm) = {(x1, x2) ∈ N2

0 : x1 ≤ Tm}. Then, as shown by Lam

(1977) and Song and Zipkin (2009), the joint distribution of (X1
m,0,X

2
m,0) has product-form

pm(x1, x2) =
φ1
m(x1)φ

2
m(x2)∑

x1≤Tm φ
1
m(x1)

, (x1, x2)∈X (Tm).

Letting pm(x) = P{Xm,0 = x} denote the equilibrium probability of the number of parts in

repair Xm,0 and φm(x) denote the Poisson probability eλm,0·t
reg
m (λm,0 · tregm )x/x!, we obtain

pm(x) =
x∑
i=0

pm(i, x− i) =

( ∑
x1≤Tm

φ1
m(x1)

)−1


φm(x) x≤ Tm,
Tm∑
i=0

φ1
m(i)φ2

m(x− i) x> Tm.
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The main performance measures of the central warehouse are now easily obtained. In

particular, the number of backorders BOm,0 for SKU m is equal to (Xm,0−Sm,0)+, where

x+ = max(0, x). For its probability distribution, we have

P{BOm,0 = x}=


Sm,0∑
j=0

pm(j), x= 0,

pm(Sm,0 +x), x > 0.

In addition, letting ρm = λm,0 · t1m,0, the fraction of failed parts of SKU m that utilize the

expedite repair option is given by

EXPm(Tm) = P{X1
m,0 = Tm}=

ρTmm
Tm!

(
Tm∑
i=0

ρim
i!

)-1

,

which is the (Erlang) blocking probability of an M/G/c/c queue, where the numbers of

parallel servers c is equal to expedite threshold Tm (e.g., Gross et al. 2008).

Key in evaluating the performance of each local warehouse n ∈ Nl for SKU m is to

obtain the distribution of orders outstanding for each local warehouse. Therefore we need

to determine the distribution of backorders for a SKU m at the central warehouse that

belong to local warehouse n.

Simon (1971) shows that when outstanding orders at the central warehouse are filled

on a first-come first-served bases, then each backorder at the central warehouse belongs

to local warehouse n with probability λm,n
λm,0

, independently across backorders. Let BOn
m,0

denote the number of backorders of local warehouse n in the backorder queue of SKU m

at the central warehouse. Then, by conditioning on the number of backorders of SKU m at

the central warehouse and using Simon’s result that the conditional distribution of BOn
m,0

is a binomial distribution, we obtain the following probability distribution for this number

of backorders

P{BOn
m,0 = x}=

∞∑
y=x

P{BOn
m,0 = x|BOm,0 = y}P{BOm,0 = y}

=
∞∑
y=x

(
y
x

)(λm,n
λm,0

)x (
1− λm,n

λm,0

)y−x
P{BOm,0 = y}. (1)

Now, we determine the distribution of the outstanding orders of SKU m at each local

warehouse n. The outstanding orders at any time t consists of demand that occurred in the

interval (t−tm,n, t) (notation Dm,n(t−tm,n, t)) and backorders at the central warehouse that
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belong to local warehouse n at time t− tm,n (notation BOn
m,0(t)), i.e. Xm,n(t) =Dm,n(t−

tm,n, t) + BOn
m,0(t). Since the Poisson process has independent increments, Dm,n(t− tm,n, t)

and BOn
m,0(t) are independent random variables so that in stationary state

Xm,n =Dm,n + BOn
m,0,

where Dm,n has a Poisson distribution with mean λm,ntm,n and the distribution of BOn
m,0

is given in (1). Therefore the stationary distribution of Xm,n is obtained by convolution.

From this point, the main performance measure of each local warehouse is easily

obtained. For SKU m, the number of backorders BOm,n at local warehouse n is equal to

(Xm,n−Sm,n)+. Its probability distribution is then obtained in a similar way as the proba-

bility distribution of the number of backorders at the central warehouse. In particular, the

mean number of backorders for SKU m at local warehouse n is given by

EBOm,n(Sm, Tm) =
∞∑

x=Sm,n+1

(x−Sm,n)P{Xm,n = x}. (2)

4.2. Problem formulation

For a given control policy (S,T ), we define the total investment costs in spare parts as

C(S) =
∑
m∈M

∑
n∈N

cma Sm,n,

the aggregate mean number of backorders for capital good type c as

EBO c(S,T ) =
∑

m∈MC
c

∑
n∈Nl

EBOm,n(Sm, Tm),

and the aggregate mean fraction of failed parts of all SKUs m ∈ MR
r that utilize the

expedited repair option using repair resource r ∈R as

EXP r(T ) =
∑

m∈MR
r

δrmEXPm(Tm).

The objective of our decision problem is to minimize the total investment costs in spare

parts while keeping the mean number of aggregate backorders for each capital good type

c∈C below Bmaxc and keeping the fraction of repairs that are expedited per repair resource

r ∈ R below Emaxr . Combining the aforementioned results in the following mathematical

formulation of our decision problem which we call problem (P ):

(P ) min
{S,T}

C(S) (3)
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subject to EBO c(S,T )≤Bmaxc , ∀c∈C (4)

EXP r(T )≤Emaxr , ∀r ∈R (5)

S∈S , T ∈N|M |0 , (6)

where S = {S : Sm,n ∈N0, ∀m∈M and ∀n∈N}. Let (S∗,T ∗) denote an optimal solution

to problem (P ) and let CP be the corresponding optimal cost.

We note that problem (P ) can be considered as a non-linear non-convex knapsack prob-

lem with multiple constraints, where more than one copy of each item can be selected. It

is well-known that even the simplest type of knapsack problems belongs to the class of

NP-hard problems (Kellerer et al. 2004). As our knapsack problem is more complex, it is

very likely that also for problem (P ) no polynomial time optimization algorithm exists.

5. Optimization of base stock levels and expedite thresholds

The focus of this section is on finding the optimal base stock levels and expedite thresholds.

We first present a decomposition and column generation (DCG) algorithm to construct a

lower bound for problem (P ). We then show how the sub-problem of this algorithm can

be solved efficiently. We continue with showing how to find a good feasible solution for

problem (P ). We conclude this section with devising an alternative solution approach in

which we greedily optimize the expedite thresholds and base stock levels.

5.1. Constructing lower bounds

We first reformulate problem (P ) as a partitioning problem so that we can apply the tech-

nique of column generation (also known as Dantzig-Wolfe decomposition). This technique

was pioneered by Dantzig and Wolfe (1960) and a thorough modern treatment is given by

Lübbecke and Desrosiers (2005). Thus we obtain an integer linear program for which we

relax the integrality constraints. We refer to this problem as the master problem (MP).

Let Km be the set of all policies k for SKU m∈M that respect constraint (6) of problem

(P ). Each policy k ∈Km has base stock vector Skm := (Skm,0, S
k
m,1, . . . , S

k
m,|Nl|) and expedite

threshold T km. Let xkm ∈ {0,1}, m ∈M , k ∈ Km, denote the decision variable indicating

whether policy k is chosen (xkm = 1) for SKU m or not (xkm = 0). Then, by relaxing the

integrality constraint on xkm, the master problem (MP) is defined as follows:

(MP) min
{xkm:m∈M,k∈Km}

∑
m∈M

∑
n∈N

∑
k∈Km

cma S
k
m,nx

k
m (7)
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subject to
∑
m∈MC

c

∑
n∈Nl

∑
k∈Km

EBOm,n(Skm, T
k
m)xkm ≤Bmaxc , ∀c∈C (8)

∑
m∈MR

r

∑
k∈Km

δrmEXPm(T km)xkm ≤Emaxr , ∀r ∈R (9)

∑
k∈Km

xkm = 1, ∀m∈M (10)

xkm ≥ 0, ∀m∈M,∀k ∈Km (11)

Let C LB
P denote the optimal cost for master problem (MP). Due to the relaxation of the

integrality constraint on xkm, an optimal cost C LB
P is also a lower bound on the optimal

cost for problem (P ), CP .

Since the set Km contains an infinite number of policies, a restricted master problem

(RMP) is introduced in which, for each SKU m∈M , only a small subset of policies Kres
m ⊆

Km is considered. After solving (RMP) to optimality, we are interested in policies Km\Kres
m

that will improve the solution of (RMP) if they are added. To check whether such policies

exist, we solve, for each SKU m, a column generation sub-problem. To this end, let pc

denote the dual variable of (RMP) corresponding with the expected backorder constraint

(8) for capital good type c ∈ C, let ρr denote the dual variable of (RMP) corresponding

with the expected fraction of expedited repairs constraint (9) for repair resource r ∈R and

let υm denote the dual variable of (RMP) corresponding to constraint (10) that assures

that for each SKU m∈M a convex combination of policies is chosen. (The dual variables

pc, ρr, and vm can also be interpreted as Lagrange multipliers of relaxing the corresponding

constraints; see Brooks and Geoffrion (1966) and Lübbecke and Desrosiers (2005).) Then,

the column generation sub-problem for SKU m∈MR
r ∩MC

c of (RMP) is given by:

(SUB(m)) min
{(Sm,Tm)}

∑
n∈N

cma Sm,n− pc
∑
n∈Nl

EBOm,n(Sm, Tm)− ρrδrmEXPm(Tm)− υm (12)

subject to Sm ∈N|N |0 , Tm ∈N0. (13)

If a feasible solution to (SUB(m)) exists with a negative objective value, then the objec-

tive of (RMP) can be improved by adding this policy to Kres
m and solving (RMP) with the

larger set Kres
m . An optimal solution for (RMP) is also an optimal solution for (MP) if for

none of the SKUs a policy with negative reduced costs exists.

In the next section, we present an exact solution method to solve (SUB(m)). However,

we remark that all policies that yield a negative objective value for (SUB(m)), can improve
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the solution of (RMP). Hence, we do not necessarily have to solve (SUB(m)) to optimality

each time we obtain new dual variables from (RMP).

5.2. Solving the sub-problem

This section treats an exact solution method for (SUB(m)). All proofs are in Online

Appendix A. If we fix the control policy parameters at the central warehouse, then this

warehouse simply becomes a supplier with a known stochastic lead time from the perspec-

tive of each local warehouse. Hence, for fixed Tm and Sm,0, each local warehouse n ∈Nl

operates as an independent Newsvendor subsystem, and we can optimize them separately:

Theorem 1. The optimal Sm,n, n∈Nl, for fixed values of Sm,0 and Tm, S∗m,n(Sm,0, Tm),

is the smallest Sm,n(Sm,0, Tm) that satisfies

P{Xm,n(Sm,0, Tm)≤ Sm,n(Sm,0, Tm)} ≥ pc + cma
pc

. (14)

The remaining problem of finding the optimal control policy parameters at the central

warehouse is more involved. In fact, it is known that objective function (12) is not convex

in Sm,0 for a fixed Tm and corresponding S∗m,n, n ∈ Nl (e.g., Gallego et al. 2007, Rong

et al. 2017). Similarly, it can readily be verified that the objective function (12) is also not

convex in Tm for a fixed Sm,0 and corresponding S∗m,n, n∈Nl. Finding the optimal control

policy parameters at the central warehouse therefore requires an enumerative search.

To simplify this search, we establish an upper bound on the optimal base stock level

at the central warehouse for a given expedite threshold. If the expedite threshold is fixed

and the local warehouses carry no inventories, then only the base stock level at the cen-

tral warehouse can influence the expected backorders at all local warehouses. Hence, the

following lemma shows that for fixed Tm and Sm,n = 0 ∀n∈Nl, the central warehouse also

operates as an independent Newsvendor subsystem:

Lemma 1. The optimal Sm,0 for fixed Tm and Sm,n = 0 for all n ∈Nl, say S̄m,0(Tm), is

the smallest Sm,0 that satisfies

P{Xm,0(Tm)≤ Sm,0} ≥
pc + cma
pc

. (15)

Observe that if the local warehouses increase their base stock levels, then the amount

of inventory that the central warehouse should carry can only decrease (assuming that

the expedite threshold is fixed). It is therefore clear that S̄m,0(Tm) obtained using Lemma
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1 is in fact an upper bound on S∗m,0(Tm) because it assumes no inventories at the local

warehouses. This is formalized in the next two results.

Lemma 2. Let S∗m,n(Sm,0, Tm) be the optimal value of Sm,n, n ∈Nl, for given values of

Tm and Sm,0. Then S∗m,n(Sm,0, Tm) is non-increasing in Sm,0.

Theorem 2. S̄m,0(Tm), as specified in Lemma 1, is an upper bound for S∗m,0(Tm).

Based on the results presented above, we propose the following exact solution method

to solve (SUB(m)). We set Tm to 0 and then search over Tm. For each value of Tm, we vary

Sm,0 over 0≤ Sm,0 ≤ S̄m,0(Tm), where S̄m,0(Tm) is determined using Lemma 1. For each pair

(Sm,0, Tm), we optimize Sm,n for all n∈Nl using Theorem 1. Since the objective function of

(SUB(m)) for fixed values of Sm,0 and corresponding S∗m,n(Sm,0, Tm), n∈Nl, is not convex

in Tm, we continue the search over Tm by examining a few values beyond the last observed

local minimum.

5.3. Constructing a good feasible solution

When no more policies can be added to Kres
m , then a solution to the final version of problem

(RMP) provides a lower bound, C LB
P , on the optimal cost for problem (P ), CP . In case there

are no fractional solutions for any xkm, m∈M , k ∈Km, this also is an upper bound, C UB
P ,

for CP . If there are fractional solutions for any xkm, we solve the final version of problem

(RMP) as an integer linear program. Alvarez et al. (2013, 2015) show that this approach

yields very good results compared to other methods such as local search algorithms. To

speed up the solution process of solving the final version of problem (RMP) as an integer

linear program, we use the feasibility pump heuristic of Fischetti et al. (2005), and we stop

the solution of the integer linear program as soon as a feasible solution with optimality

gap of less than 0.5 percent is found or 1 minute has elapsed (whichever occurs first). This

results in a good feasible solution to problem (P ). The corresponding cost of this solution

is also an upper bound, C UB
P , for CP .

Pseudo-code of the DCG algorithm as well as the greedy heuristic described in the next

section can be found in Online Appendix B.

5.4. A two-step greedy approach

We now describe a greedy heuristic for problem (P ). This greedy heuristic consists of two

steps that are executed consecutively. In the first step, we determine, independent of base
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stock level matrix S, expedite threshold vector T . Subsequently, based on the vector of

expedite thresholds T determined in the first step, we find base stock levels matrix S.

Expediting the repair of a given SKU m ∈M implies that fewer parts of m are needed

to provide the same availability as when no repairs are expedited. Hence, given that repair

resources are limited, we want to expedite the repair of expensive parts more often than

cheaper parts. In addition, the cost benefit of expediting the repair of a given SKU m∈M

increases in its additional regular lead time, i.e. t1m,0. Hence, given that repair resources are

limited, we want to expedite the repair of parts with a greater additional regular repair

lead time more often than parts with a smaller additional regular repair lead time.

If there were no restrictions on the aggregate mean fractions of failed parts that are

expedited, then, irrespective of base stock levels matrix S, the zero vector would be the

optimal vector of expedite thresholds. Hence, in the first step of the greedy heuristic, we

set all expedite thresholds Tm, m∈M , to zero and then start with greedy steps, in which

we increase Tm leading to the largest decrease in distance to the set of feasible expedite

vectors per acquisition cost and additional regular repair lead time.

The first step of the greedy heuristic is formally described as follows. We first partition

the set of all expedite thresholds vectors T into a subset Tfeas of feasible expedite thresh-

olds vectors, i.e. that respect constraint (5) of problem (P ), and a subset N|M |0 \T feas of

infeasible expedite thresholds vectors. Next, for each expedite thresholds vector, we define

the distance d(T ) to T feas as

d(T ) =
∑
r∈R

(EXP r(T )−Emaxr )+ .

In each greedy step, we have a current solution T ∈ N|M |0 \ T feas, and we look at the

ratio of the decrease in distance to Tfeas if Tm, m ∈M , is increased by one unit and the

product of the acquisition cost and the additional regular repair lead time. To this end,

let −∆md(T ) denote the decrease in distance to the set of feasible vectors of expedite

thresholds. For a given SKU m ∈M that uses repair resource r ∈ R in the repair of its

failed parts, we obtain

∆md(T ) = d(T + em)− d(T ) = (EXP r(T + em)−Emaxr )+− (EXP r(T )−Emaxr )+ ,

where em is an |M |-dimensional vector with a 1 on position m and zero otherwise.
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Since the Erlang loss formula, and thus EXP(Tm), is convex and decreasing in Tm (e.g.,

Messerli 1972), it follows that −∆md(T )≥ 0 for all m∈M . The ratio ΓT
m = −∆md(T )

t1m,0c
m
a

denotes

the decrease in distance to the set of feasible vectors of expedite thresholds per both the

acquisition cost and the additional regular repair lead time. During each greedy step, we

increase the expedite threshold of SKU m with the highest ΓT
m to Tm + 1. We continue

with these steps until we arrive at a feasible solution T and we denote this solution by T̄ .

We now proceed with the second step of the greedy heuristic. If there were no restrictions

on the aggregate mean numbers of backorders, then, irrespective of the vector of expedite

thresholds, the zero matrix would be the optimal base stock levels matrix. Hence, in the

second step of the greedy heuristic, we set all base stock levels Sm,n, m∈M , n∈N , to zero

and then start with greedy steps, in which we increase Sm,n leading to the largest decrease

in distance to the set of feasible base stock levels matrices per acquisition cost.

The second step of the greedy heuristic is formally described as follows. We first partition

the set of all base stock levels matrices S into a subset S feas of feasible base stock

levels matrices, i.e. that respect constraint (4) of problem (P ), and a subset S \S feas of

infeasible base stock levels matrices. Next, for each base stock levels matrix, we define the

distance d(S, T̄ ) to S feas as

d(S, T̄ ) =
∑
c∈C

(
EBO c(S, T̄ )−Bmaxc

)+
.

In each greedy step, we have a current solution S∈S \S feas, and we look at the ratio

of the decrease in distance to S feas and the acquisition cost if Sm,n, m ∈M , n ∈ N , is

increased by one unit. To this end, let −∆m,nd(S, T̄ ) denote the decrease in distance to

the set of feasible base stock levels matrices. For each SKU m∈M and warehouse n∈N ,

let Em,n be an |M | × |N | matrix with positions (m′, n′), m′ ∈M , n′ ∈ N , with ones on

positions m and n and zero otherwise. Then, for a given SKU m∈M of capital good type

c∈C, we obtain

∆m,nd(S, T̄ ) = d(S+Em,n, T̄ )− d(S, T̄ )

=
(
EBO c(S+Em,n, T̄ )−Bmaxc

)+−
(
EBO c(S, T̄ )−Bmaxc

)+
.

Increasing the base stock level of a given SKU m ∈M at the central warehouse has

a decreasing effect on the expected backorders at all local warehouses n ∈ Nl, and no
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effect on the expected backorders of all other SKUs. Moreover, increasing the base stock

level of a given SKU m ∈M at some local warehouse n ∈ Nl has a decreasing effect on

the expected backorders for that SKU at that local warehouse and no effect on all other

expected backorders. These assertions are easily verified along similar lines as the proof of

Lemma 2. It then immediately follows that −∆m,nd(S, T̄ )≥ 0 for all m ∈M and n ∈N .

The ratio ΓS
m,n = −∆m,nd(S,T̄ )

cma
denotes the decrease in distance to the set of feasible base

stock levels matrices per acquisition cost. During each greedy step, we increase the base

stock level of SKU m at warehouse n with the highest ΓS
m,n to Sm,n + 1. We continue with

these steps until we arrive at a feasible solution S.

6. Expediting repairs at additional costs

We have considered a constraint on the aggregate mean fraction of failed parts that are

expedited per repair resource so far. This constraint models the agreements between repair

shop managers and inventory managers that determine how much of the total stream of

failed parts can be expedited per repair resource. When there is an internal repair shop,

these agreements may for example relate to the available expedited repair capacity per

repair resource. There might be settings where it is relatively easy to obtain the exact

costs associated with expediting a repair (e.g. in case of an external repair shop). In this

section, we show that our DCG algorithm can be applied in this alternate setting almost

immediately. In fact, as we will see shortly, there exists an equivalence relation between

this setting and our original setting for a certain expediting cost structure.

When expediting has an additional cost, the objective is to minimize a total cost rate

per time unit consisting of the total depreciation cost rate in spare parts and the total

expediting cost rate, where the depreciation cost rate is obtained by depreciating the total

initial investment costs in spare parts over their useful lifespan. We note that an alternative,

but mathematically equivalent, formulation is to minimize a total initial cost consisting

of both the total investment costs in spare parts (as in the original setting) and the total

expected discounted expediting costs over an infinite horizon (see Online Appendix C).

We first introduce some additional notation. Let the cost of expediting the repair of one

part of SKU m ∈M be denoted by cme . We assume that this cost is linearly proportional

to the acquisition cost of that SKU, so that expediting the repair of more expensive SKUs

is also more expensive than expediting the repair of cheaper SKUs. That is, cme = κ · cma ,
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where κ > 0 denotes what we refer to as the expediting cost multiplier. The deprecia-

tion cost rate of each part of SKU m ∈M is denoted by cmd , and can be obtained by

linearly depreciating its acquisition cost cma over its useful lifespan τ , i.e. cmd = cma /τ . For

a given control policy (S,T ), the total depreciation cost rate in spare parts is defined

as Cd(S) =
∑

m∈M
∑

n∈N c
m
d Sm,n and the total repair expediting cost rate as Ce(T ) =∑

m∈M cme λm,0EXPm(Tm). The mathematical formulation of the alternate decision problem,

which we call problem (P̂ ), is given as follows:

(P̂ ) min
{S,T}

Cd(S) +Ce(T ) (16)

subject to EBO c(S,T )≤Bmaxc , ∀c∈C (17)

S∈S , T ∈N|M |0 . (18)

We note that problem (P̂ ) constitutes the Lagrangian relaxation of our original decision

problem (P) when either (i) each SKU has a dedicated repair resource or more generally

when (ii) expediting costs are identical for all SKUs that use the same repair resource. The

cost of expediting the repair of SKU m (cme ) is then equivalent to the Lagrange multiplier

(ρr) for the resource needed for the repair of SKU m divided by the constant λm,0.

We now proceed to show how the DCG algorithm can be altered so that it applies to

problem (P̂ ). We note that the main structure of the DCG algorithm remains unchanged;

only its master problem and column generation sub-problem should be modified. The

master problem of the DCG algorithm is now given by problem (M̂P):

(M̂P) min
{xkm:m∈M,k∈Km}

∑
m∈M

∑
n∈N

∑
k∈Km

cmd S
k
m,nx

k
m +

∑
m∈M

∑
k∈Km

cme λm,0EXPm(T km)xkm

subject to
∑
m∈MC

c

∑
n∈Nl

∑
k∈Km

EBOm,n(Skm, T
k
m)xkm ≤Bmaxc , ∀c∈C

∑
k∈Km

xkm = 1, ∀m∈M

xkm ≥ 0, ∀m∈M,∀k ∈Km.

The corresponding column generation sub-problem for SKU m∈MC
c is now given by:

(ŜUB(m)) min
{(Sm,Tm)}

∑
n∈N

cmd Sm,n + cme λm,0EXPm(Tm)− pc
∑
n∈Nl

EBOm,n(Sm, Tm)− υm

subject to Sm ∈N|N |0 , Tm ∈N0.
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For a fixed expedite threshold Tm, (ŜUB(m)) has exactly the same structure as the column

generation sub-problem for our original setting. Hence, all results on (SUB(m)) presented

in Section 5.2 remain to hold for (ŜUB(m)) exactly as stated. In particular the solution

method described at the end of that section immediately applies to (ŜUB(m)).

7. Computational study

The computational study in this section consists of two parts. In Section 7.1, we report on

a case study at NS and present managerial insights. In Section 7.2 and Online Appendix

E, we evaluate and benchmark the performance of our solution approaches in an extensive

numerical study based on a large test bed of randomly generated instances. We do so

both for constrained expediting, i.e. problem (P ), and expediting at additional costs, i.e.

problem (P̂ ). We programmed our solution approaches as single threaded applications in

C with GLPK as the solver of both linear and integer linear programs. All computations

were carried out on a Windows PC (32 bit) with an Intel Quad Core 2.20 GHz processor

and 8 GB RAM.

7.1. Case study at NS

NS is the principal passenger railway operator in the Netherlands. Its fleet consists of 900

rolling stock units, divided over twelve different train series. The spare parts inventory

system of NS consists of one central warehouse and twelve local warehouses. There is a

large repair center incident to the central warehouse. This repair center consists of multiple

repair shops, each responsible for a different repair resource.

7.1.1. Setup and objective This case study is focused on the VIRM train series; our

case study therefore involves one capital good type, i.e. |C|= 1. The VIRM series consist of

176 rolling stock units, all of which are being operated as intercity trains that connect most

cities in the Netherlands. We consider the six most important warehouses where the VIRM

train series is maintained and leave a handful of locations with only incidental demand out

of scope; hence, |Nl|= 6.

We select 74 critical SKUs that occur in the configuration of the VIRM series. Of these

SKUs, 30 require a mechanical resource for their repair and 44 require an electronic resource

for their repair; hence, |MR
r | = 2. The regular and expedited repair lead time for both

repair resources is three weeks and one week, respectively. The transportation time is one

week and includes administration time and shipment time from the central warehouses to
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all local warehouses. The acquisition costs of all SKUs range between 150.52 and 23,399.64

euros, and are 2,282.54 euros on average. We applied Maximum Likelihood Estimation to

5 years of historical failure data to estimate the demand intensities for each SKU. This

estimation procedure leads to demand intensities that vary between 1 and 174 per year.

In Figure 4, we plot and classify each SKU based on its normalized demand intensity

and normalized acquisition cost. This classification will be important when we discuss the

results of our case study.

Figure 4 Scatterplot of SKUs in case study
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The current practice at NS can be described as follows. On a strategic level, inventory

managers decide upon stocking levels using a single-item single-echelon model of the com-

mercial package Servigistics (formerly Xelus Parts Planning). This model does not take into

account that NS has the possibility to expedite the repair of parts in short supply. Expe-

diting decisions are then made by inventory managers and repair shop managers together

operationally on a weekly basis. For the electronic and mechanical repair shop, we observe

from historical data that 30 percent of the total stream of failed parts is expedited.

The main objective of this case study is twofold. First, we want to determine the reduc-

tions in investment costs that can be achieved when our solution approaches are used to

achieve the same performance as the current approach of NS achieves. Second, and more

importantly, we want to understand how a dynamic repair policy can be leveraged to

reduce the total investment costs in spare parts while meeting availability targets.

Our benchmark for the case study is the current solution that NS uses. In this solution,

the investment in each spare part is determined by the stocking model of Servigistics. For
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this investment decision, we determine the best achievable availability performance by opti-

mizing expediting decisions and stock placement within our modeling framework. We then

use the DCG algorithm and the greedy heuristic to find alternative investment decisions

with at least the same availability performance. Further details regarding this benchmark,

including the single-item model of Servigistics, are provided in Online Appendix F.

7.1.2. Results and managerial implications Table 2 shows the normalized investment

costs of the three approaches to make investment decisions and the corresponding avail-

ability performance and expediting fractions. We observe that the greedy heuristic leads to

an investment costs reduction of 52.43% compared to the current approach. As expected,

the DCG algorithm has an even higher cost benefit with 53.55%. We remark that these

savings are in the same order of magnitude as in other real-life applications that have com-

pared a system approach with a single-item approach in a multi-item spare parts context.

See, for example, Sherbrooke (2004) and Van Houtum and Kranenburg (2015) for various

applications at the US Air Force and the Royal Dutch Navy, respectively. (We see later in

Section 7.2.2 that our solution approaches also lead to high savings in the setting of NS

when we benchmark against a state-of-the-art multi-item model).

Apart from the substantial investment costs reductions that can be reaped, it is inter-

esting to note that the gap between the DCG algorithm and the greedy heuristic is small.

Later when we discuss the results of our numerical experiments in Section 7.2, we will see

that this holds across a large variety of industrial size problem instances.

Table 2 Main results case study at NS

Solution approach Investment costs (normalized) EBOVIRM EXPelectronic (%) EXPmechanical (%)

Current approach NS 100 13.70 29.82 29.98

Greedy heuristic 47.57 13.65 29.99 29.97
DCG algorithm 46.45 13.65 29.99 29.94

Recall that we classified all SKUs into four distinct SKU groups based on their acquisi-

tion costs and demand intensities. To illustrate how the decisions of our new approaches

realize the substantial cost reductions reported in Table 2, we will investigate the per-

formance of each of these SKU groups. To facilitate presentation, we first introduce

some additional notation. Let G denote the set of different SKU groups, hence G =

{high demand, low demand} × {high cost, low cost} and thus |G| = 4. The SKUs that
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belong to group g ∈ G are contained in the set MG
g . For each of the three investment

decisions consisting of acquired stock S and expedite thresholds T , we now calculate the

following performance measures:

EXP g(T ) =
(∑

m∈MG
g

EXPm(Tm)
)
/|MG

g |,

EXP g(T ) =
∑

r∈R
∑

m∈MG
g
δrmEXPm(Tm),

STOCK g(S) =
(∑

m∈MG
g

∑
n∈N Sm,n

)
/
(∑

m∈MG
g
λm,0

)
,

EBOg(S,T ) =
∑

m∈MG
g

∑
n∈Nl EBOm,n(Sm, Tm), and

COST g(S) = 100 ·
(∑

m∈MG
g

∑
n∈N c

m
a Sm,n

)
/C(S),

which all provide meaningful information about an SKU group g ∈G. The mean expedited

repair utilization and the total aggregate mean expedited repair utilization of g are given by

EXP g(T ) and EXP g(T ), respectively. Note that EXP g(T )∈ [0,1] and EXP g(T )∈ [0,0.6].

STOCK g(S) provides a normalized measure of how much stock of all SKUs in g is acquired.

The total mean number of backorders for g is given by EBOg(S,T ). Finally, COST g(S)

measures the relative difference between the investment costs in g and the overall total

costs under the investment decision.

Table 3 provides the performance measures for each SKU group g ∈G under each of the

three investment decisions. For now, we only consider the performance measures of our

solution approaches, and we turn our attention to the left upper quadrant: SKUs with low

demand intensities and high acquisition costs. As the table indicates, the unavailability

due to this group of SKUs is kept relatively low by providing full repair priority to failed

parts rather than by investing in spare parts. Similar to Sherbrooke (2004, p.12) in an

application at the US Air Force, we observe that for “high cost items [. . .] the model has

allocated a zero or low stock level”. Although failed parts always receive expedited repair,

this SKU group utilizes only 9.22% of the total available expediting capacity. Conversely,

if we look at the right lower quadrant, SKUs with low acquisition costs and high demand

intensities receive almost no expedited repair. Instead, the unavailability due to this group

of SKUs is kept relatively low by acquiring large amounts of spare parts.

For the other two SKU groups, our solution approaches neither solely invest in spare

parts nor solely expedite the repair of failed parts. If we look at the SKUs with low demand

intensities and low acquisition costs, we indeed observe that this group has a large amount
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Table 3 Performance measures per SKU group under each solution approach

Solution approach

DCG Greedy Current DCG Greedy Current Measure

A
cq

u
is

it
io

n
co

st H
ig

h

100 100 9.34 67.08 65.56 34.63 EXP (%)

9.22 9.22 1.25 46.73 41.96 27.25 EXP (%)
0.00 0.00 92.57 15.62 16.17 23.98 STOCK

0.00 0.00 37.75 52.51 54.37 46.18 COST

1.94 1.94 0.92 8.39 8.54 5.76 EBO

L
o
w

55.57 61.39 13.43 5.11 10.83 36.60 EXP (%)

2.04 4.18 1.26 1.94 4.60 30.04 EXP (%)

66.00 66.00 104.5 44.24 44.24 23.78 STOCK
5.08 4.22 4.92 42.41 41.41 11.14 COST

1.09 1.05 0.96 2.22 2.12 6.06 EBO

Low High

Demand intensity

of normalized acquired stock as well as a high average expedited repair utilization. As a

result, this group has the smallest mean number of backorders of all groups. The impact

on the total investment costs and the total available expediting capacity is however small

as both demand intensities and acquisition costs are low.

From the right upper quadrant, we observe that a large part of the available expediting

capacity is utilized by the group of SKUs with both high demand intensities and high

acquisition costs. Although the investment costs in this group are more than half of the

total costs of the investment decision, the normalized acquired stock is relatively small.

Finally, with more than 8 expected backorders, the unavailability due to this group of

SKUs is significantly larger than all other groups.

Our integrated solution approaches thus lead to well-balanced investment decisions in

which we acquire large amounts of spare parts of SKUs with low acquisition costs. In

doing so, we maximize the availability of these SKUs at relatively low investment costs.

Almost all available expediting capacity is then leveraged to dynamically prioritize the

repair of failed parts with high acquisition costs, which allows us to refrain from excessively

acquiring spare parts with such high costs. The current approach leads to a less balanced

investment decision. As Table 3 indicates, the current approach invests heavily in spare

parts with high acquisition costs and mainly prioritizes the repair of failed parts of SKUs

with high demand intensities.

We emphasize that the dynamic repair policy requires real-time information about the

repair pipeline in deciding upon expedited repairs. This should be taken into account when
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implementing our solution approaches in practice. In case of NS, this real-time information

is obtained through modern tracking technology that utilizes radio-frequency identification.

7.2. Numerical experiments

In the previous section, we have described how our solution approaches leverage a dynamic

repair policy to reduce the total investment costs in spare parts while satisfying availability

and expediting constraints. In this section and Online Appendix E, we assess the value

of having such an advanced dynamic repair policy in the first place. We also investigate

whether our solution approaches find solutions that are close to optimal and whether they

find such solutions within reasonable time. We answer these questions for both the original

decision problem that was also faced by NS, i.e. problem (P ), and the alternate decision

problem in which expediting a repair comes at an additional cost, i.e. problem (P̂ ).

7.2.1. Test beds Our test bed for decision problem (P ) consists of 2592 randomly

generated problem instances obtained by permuting all input parameters over multiple

levels that are based on representative data for the capital goods industry. This test bed

consists of both symmetric instances, in which the demand intensities across all local

warehouses are identical but varied for different SKUs, and asymmetric instances, in which

the demand intensities are varied across all local warehouses and SKUs. Our test bed for

decision problem (P̂ ) also consists of 2592 instances, and is identical to the test bed for

decision problem (P ) except for the two input parameters that are specific to problem (P ),

i.e. Emaxr and |R|. We replace those two input parameters with the two input parameters

that are specific to problem (P̂ ), i.e. the expediting cost multiplier κ and the useful life

span τ . Further details regarding both test beds are relegated to Online Appendix E.

7.2.2. Results when expediting is constrained We first consider decision problem

(P ). To evaluate the effectiveness of our solution approaches in solving this problem, we

compute a feasible solution for each generated instance using both solution approaches

and we measure the relative difference between the total cost obtained by the solution

approach and the corresponding lower bound. That is, %GAP = 100 · (CUB
P −CLB

P )/CLB
P , where

C LB
P is obtained using the method described in Section 5.1 and where C UB

P is obtained

using the method described in Section 5.3 in case of the DCG algorithm, or using the

method described in Section 5.4 in case of the greedy heuristic.
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To quantify the value of our dynamic repair policy, we create a state-of-the-art bench-

mark instance for each original instance of problem (P ) that we generate. This benchmark

instance is identical to the original instance except that it is not possible to differentiate

repair lead times through expediting. The mean repair lead time of this benchmark instance

is then kept below the mean repair lead time of the original instance. This is achieved as fol-

lows: We set Emaxr to 1.0 for each repair resource r ∈R in the original instance such that it is

feasible (and optimal) to expedite all repairs. We then change the expedited lead time t2m,0

of each SKU m∈M to the shortest mean repair lead time possible in the feasible solution

to the original instance. For a given SKU m∈M that requires resource r ∈R for its repair,

this shortest mean repair lead time is (1−Emaxr ) · (t1m,0 + t2m,0) +Emaxr · t2m,0. For this bench-

mark instance, we compute a lower bound on the optimal cost using the method described

in Section 5.1. We denote this lower bound by C LB
BM and we compare it with C UB

P of the

original instance, obtained by the DCG algorithm. That is, %RED = 100 · (CLB
BM−CUB

P )/CLB
BM ,

where %RED will indicate how much stock investment reductions can be achieved because

of the possibility to expedite the repair of parts in short supply.

Aggregated results of the numerical experiments involving problem (P ) are presented in

Table 4. Detailed results are provided in Online Appendix E. We note that the solutions

to the problem instances generally exhibit the same behavior as extensively described in

the case study.

Table 4 Aggregated results numerical experiments involving problem (P )

DCG algorithm Greedy heuristic Benchmark

%GAP CPU time (s) %GAP CPU time (s) %RED

Problem instances Avg Max Avg Max Avg Max Avg Max Avg Max

Asymmetric 0.26 0.75 90.08 939.03 1.07 3.15 1.55 11.47 7.95 18.81
Symmetric 0.28 0.77 111.34 1271.85 3.69 8.43 1.75 12.85 7.92 19.61

Total 0.27 0.77 100.71 1271.85 2.38 8.43 1.66 12.85 7.94 19.61

The numerical experiments indicate that both solution approaches perform very well.

The average optimality gaps of the DCG algorithm over the asymmetric and the symmetric

problem instances are only 0.26 and 0.28, respectively. The optimality gaps of the greedy

heuristic are slightly larger with 1.07 and 3.69 over the asymmetric and the symmetric

problem instances, respectively. The greedy heuristic is the most efficient heuristic in terms
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of computation time. Although the computation time of the DCG algorithm is considerably

higher, it is still acceptable given the size and strategic nature of the decision problem.

The stock investment reductions that can be achieved because of the possibility to expe-

dite the repair of parts in short supply are quite high with an average stock investment

reduction of around 7.9 percent and even reductions of up to 19.61 percent. Before we

continue with analyzing the alternate setting, we briefly return to the case study at NS.

The value of a dynamic repair policy in their setting is substantial with a stock investment

reduction of 36.40 percent. This is not surprising because our numerical experiments indi-

cate that the value of a dynamic repair policy increases in the additional regular repair

lead time or in the fraction of total demand that may be expedited. Both input parameters

are slightly larger in the case study than in the problem instances of our test bed.

7.2.3. Results when expediting comes at additional costs We now proceed with deci-

sion problem (P̂ ). The optimality gap of the DCG algorithm in this setting is defined as

%GAP = 100 · (CUB
P̂
−CLB

P̂
)/CLB

P̂
, where CUB

P̂
and CLB

P̂
are defined in a similar way as in the

previous section, and can they be obtained using the methods described in Section 6.

Recall that in this alternate setting, there is an external (or internal) repair shop that

charges an additional cost whenever we decide to expedite the repair of a failed part.

Even though we thus have to pay a cost premium for a shorter repair lead time, we can

leverage this flexibility when inventory is critically low. Our model anticipates precisely

these future expediting decisions when deciding upon stocking levels. To quantify the

value of our dynamic repair policy in this setting, we create a state-of-the-art benchmark

instance that is identical to the original instance except that we do not have the possibility

to shorten the repair lead time at the expense of a cost premium when backorders are

imminent. Hence, similar to the benchmark for problem (P ), we can only decide upon

stocking levels in meeting availability constraints. This benchmark is created as follows:

In the original instance we set cme =∞ for each SKU m ∈M such that it is optimal to

not expedite any repairs. For this benchmark instance, we compute a lower bound on the

optimal cost using the method described in Section 6. We denote this lower bound by C LB
B̂M

and we compare it with CUB
P̂

of the original instance, obtained by the DCG algorithm.

That is, %RED = 100 · (CLB
B̂M
−CUB

P̂
)/CLB

B̂M
, where %RED will now indicate by how much the

total cost rate can be reduced because of the possibility to dynamically expedite repairs

at the expense of a cost premium when inventory is critically low.
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The aggregated results of the numerical experiments involving problem (P̂ ) are presented

in Table 5. Detailed results are again relegated to Online Appendix E. We can draw three

Table 5 Aggregated results numerical experiments involving problem (P̂ )

DCG algorithm Benchmark Expediting

%GAP CPU time (s) %RED EXP(%)

Avg Max Avg Max Avg Max Avg Max

0.18 0.54 176.21 2757.51 4.86 29.29 17.37 94.02

main conclusions from these results. First, the DCG algorithm performs even better when

it is applied to problem (P̂ ): The average and maximum %GAP are only 0.18 and 0.54

percent, respectively. Second, although the computation time of the DCG algorithm is

higher for problem (P̂ ) than for problem (P ), it is still well within acceptable bounds

given the size and strategic nature of the decision problem. Finally and most importantly,

we find that anticipating expediting decisions that will be made later with investment

decisions in repairable spare parts leads to substantial savings, even when those expedited

repairs come at a cost premium. Indeed, the possibility to expedite the repair of failed

parts at additional costs is effective in reducing the total cost rate with average reductions

of around 4.9 percent and even reductions up to 29.29 percent.

8. Concluding remarks

We have considered a multi-item two-echelon spare parts inventory system, where each

warehouse keeps multiple repairable types to maintain several types of capital goods, and

where the repair shop at the central warehouse has two options for the repair of each

defective part: a regular repair option and an expedited repair option. Irrespective of the

repair option, each defective part uses a certain resource for its repair. Assuming a dual-

index policy at the central warehouse and base stock control at the local warehouses, we

have proposed an exact evaluation procedure for a given control policy.

To find an optimal control policy, we have formulated an optimization problem aimed at

minimizing the total investment costs under constraints on both the aggregate mean num-

ber of backorders per capital good type and the aggregate mean fraction of repairs that are

expedited per repair resource. We have shown how this non-linear non-convex integer pro-

gramming problem can be decomposed into independent Newsvendor type sub-problems

per repairable type, which subsequently allows us to use column generation algorithms.
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As an alternative solution approach, we have presented an efficient greedy heuristic. Both

solution approaches perform very well across a large test bed of industrial size.

We have shown that a dynamic repair policy is effective in reducing the stock invest-

ment needed to meet availability requirements for multiple types of capital goods while

also satisfying expedited repair constraints for multiple repair resources. Our numerical

experiments further show that such reductions remain attainable when expediting repairs

comes at additional costs rather than being constrained. Based on a case study at NS,

we have shown that our solution approaches lead to well-balanced investment decisions in

which large amounts of spare parts of SKUs with low acquisition costs are acquired. In

doing so, the availability of these SKUs can be maximized at relatively low investment

costs. Almost all available expediting capacity can then be leveraged to dynamically prior-

itize the repair of failed parts with high acquisition costs, which allows us to refrain from

excessively acquiring spare parts with such high costs.

The research in this paper can be extended in two important ways. The first class

of possible extensions would consider additional transportation modes, either from the

central warehouse to the local warehouses, or in between the local warehouses themselves.

The former relates to expedited transportation while the latter relates to so-called lateral

transhipments. Both can serve as an emergency mode in case a local warehouse is out

of stock, or as an expedited transport mode in case of imminent downtime. The second

class of possible extensions would allow for demand to be non-stationary. Such processes

can capture demand fluctuations for repairable spare parts over time, which might occur

in practice due to for instance periodic inspections or revisions of equipment. Similar to

Arts et al. (2016), assuming that demand for each repairable type is a Markov modulated

Poisson process would then be a promising approach.
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Appendix A: Proofs

Proof of Theorem 1 Let Sm,0 and Tm be fixed. Let f : N|Nl|→ R be the part of objective function (12)

that depends on Sm,n, n∈Nl. Then, by omitting constants, objective function (12) reduces to

f(Sm,1, Sm,2, . . . , Sm,|Nl|) =
∑
n∈Nl

[cma Sm,n− pcEBOm,n(Sm,n)] ,

where EBOm,n now depends only on Sm,n because Sm,0 and Tm are fixed. By observing that each term in f

is precisely the cost of an independent Newsvendor type problem, one for each local warehouse n ∈Nl, the

desired result directly follows. �

Proof of Lemma 1 Let Tm be fixed and Sm,n = 0 for all n ∈Nl. Let f : N→ R be the part of objective

function (12) that depends on Sm,0. Then, by omitting constants, objective function (12) reduces to

f(Sm,0) = cma Sm,0− pc
∑
n∈Nl

EBOm,n(Sm,0),

where EBOm,n(Sm,0) now depends only on Sm,0 because Tm is fixed and Sm,n = 0 for all n∈Nl.

Recall that the number of parts outstanding at local warehouse n ∈Nl is the sum of the demand during

transport and shipping time tm,n from the central warehouse to local warehouse n, Dm,n, and the number of

backorders at the central warehouse that belong to local warehouse n. Hence, since Sm,n = 0 for all n ∈Nl,

EBOm,n(Sm,0) is equal to the sum of the expected backorders at the central warehouse that are from local

warehouse n and the expectation of Dm,n (see Equation (2)).

Then, since the number of backorders at the central warehouse that belong to local warehouse n is bino-

mially distributed for a fixed total number of backorders (see Equation (1)), we have

f(Sm,0) = cma Sm,0− pc
∑
n∈Nl

λm,n
λm,0

EBOm,0(Sm,0) = cma Sm,0− pcEBOm,0(Sm,0),

where we have used the definition of λm,0 and the fact that E[Dm,n] is constant and can thus be omitted. By

observing that f is precisely the cost of a Newsvendor type problem, the desired result directly follows. �

Proof of Lemma 2 Let Tm and Sm,0 be fixed and take some local warehouse n∈Nl. Let Y ≥st Ỹ denote

that a random variable Y is stochastically larger than another random variable Ỹ in the usual stochastic

order. Then, observe that BOm,0(Sm,0, Tm)≥st BOm,0(Sm,0 + 1, Tm). This implies that BOn
m,0(Sm,0, Tm)≥st

BOn
m,0(Sm,0 + 1, Tm), and thus BOn

m,0(Sm,0) + Dm,n ≥st BOn
m,0(Sm,0 + 1) + Dm,n, which is equivalent

to Xm,n(Sm,0, Tm) ≥st Xm,n(Sm,0 + 1, Tm). Hence, in particular it holds that P{Xm,n(Sm,0, Tm) ≤ x} ≤

P{Xm,n(Sm,0 + 1, Tm) ≤ x} for any x ∈ N. Hence, as S∗m,n(Sm,0, Tm) is the smallest Sm,n(Sm,0, Tm) that

satisfies Equation (14), we must have that S∗m,n(Sm,0 + 1, Tm)≤ S∗m,n(Sm,0, Tm). �

Proof of Theorem 2 This follows directly from Lemma 1 and Lemma 2. �

Appendix B: Pseudo-code of solution approaches

This section provides pseudo-code of the DCG algorithm, including the exact solution method for (SUB(m)),

as well as the two-step greedy heuristic. Note that in the pseudo-code of the exact solution method for

(SUB(m)) (i.e. Algorithm 2), we continue the search over Tm by examining 4 values beyond the last observed

local minimum, that is Nmax = 4.
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Algorithm 1 DCG algorithm for problem (P )
Step 1: Initialization

Determine an initial set of trivial policies Kres
m ⊆Km for each SKU m∈M ;

Step 2: Master Problem
Solve the restricted master problem (RMP) (7)− (11) with Km replaced by Kres

m ;
Obtain primal and dual solution;

Step 3: Column generation sub-problem
For the dual variables obtained in Step 2, execute Algorithm 2 for each SKU m∈M ;

Step 4: Termination test
If Step 3 results in any policies with negative costs, add these to Kres

m and go to Step 2;
Else solve final version of (RMP ) as an integer linear program and obtain a solution for problem (P );

Algorithm 2 Solution method for (SUB(m))
Step 1: Initialization

Set Tm and N to 0, and Nmax to 4;
Step 2: Initialization per Tm

Determine upper bound S̄m,0(Tm) using Lemma 1 and set Sm,0 to 0;
Step 3: While Sm,0 ≤ S̄m,0(Tm)

Determine S∗m,n(Sm,0, Tm) using Theorem 1;
Determine corresponding reduced costs using Equation (12);
If lowest reduced costs per Tm so far then store policy (S∗m,0, Tm) and corresponding reduced costs;
Increase Sm,n by 1;

Step 4: Termination test
If reduced costs of (S∗m,0, Tm)> (S∗m,0, Tm− 1) then N =N + 1 else N = 0;
If N ≥Nmax then stop else increase Tm by 1 and go to Step 2;

Algorithm 3 Greedy heuristic for problem (P )
Step 1: Determine vector of expedite thresholds T̄

For each repair resource r ∈R
Set Tm to 0 ∀ m∈MR

r ;
Calculate ΓT

m ∀ m∈MR
r ;

While d(T )> 0:
Determine m′ with ΓT

m′ ≥ ΓT
m ∀ m∈MR

r ;
Increase Tm′ with 1;
Calculate ∆md(T ) and update ΓT

m ∀ m∈MR
r ;

Set T̄ to T ;
Step 2: Determine matrix of base stock levels S

For each capital good type c∈C
Set Sm,n to 0 ∀ m∈MC

c , n∈N ;
Calculate ΓS

m,n ∀ m∈MC
c , n∈N ;

While d(S, T̄ )> 0:
Determine (m′, n′) with ΓS

m′,n′ ≥ ΓS
m,n ∀ m∈MC

c , n∈N ;
Increase Sm′,n′ with 1;
Calculate ∆m,nd(S) and update ΓS

m,n ∀ m∈MC
c , n∈N ;

Appendix C: Alternative formulation expediting repairs at additional costs

Rather than minimizing a total cost rate, one might also be interested in minimizing a total initial cost

consisting of both the total investment costs in spare parts (as in the original model) and the total expected

discounted expediting costs. To this end, let β > 0 denote the discounting factor. For a given vector of

expedite thresholds T , the total expected discounted expediting costs over an infinite horizon is then given

by:

C̃e(T ) =
∑
m∈M

∫ ∞
0

e−βtcme λm,0EXPm(Tm) dt=
∑
m∈M

1

β
cme λm,0EXPm(Tm),

where the second equality follows from assuming that the system starts in steady state. The remaining

analysis is now identical to the case with a total cost rate, with Ce(T ) changed to C̃e(T ).



40 Drent and Arts: Expediting in Two-Echelon Spare Parts Inventory Systems

Appendix D: Allowing for commonality

In this section, we relax the assumption that MC
c and MR

r partition M , that is, the assumption that each

SKU m ∈M occurs in the configuration of only one capital good type c ∈ C and uses only one resource

r ∈ R for its repair. We first introduce additional notation to differentiate between demands for the same

SKU that stem from different capital good types. We then briefly describe how problem (P ) and its solution

approaches change when commonality between SKUs is allowed.

Let λm,n,c denote the demand intensity for SKU m∈M at warehouse n∈N originating from capital good

type c∈C. If SKU m does not occur in the configuration of capital good type c, then λm,n,c = 0 by definition.

Let the fraction of demands for SKU m at warehouse n that originate from capital good type c over all

demands for that SKU at that warehouse be denoted by δcm,n =
λm,n,c∑
k∈C λm,n,k

.

The aggregate mean number of backorders for each capital good type c ∈ C is now given by a weighted

sum of the mean number of backorders for all SKUs occurring in the configuration of capital good type c,

with the fractions δcm,n as weights. That is,

EBOc(S,T ) =
∑

m∈MC
c

∑
n∈Nl

δcm,nEBOm,n(Sm, Tm). (19)

The definition of the aggregate mean fraction of failed parts that are expedited per repair resource r ∈R,

i.e. EXPr(T ), remains however the same: SKUs now simply contribute to multiple aggregate mean fractions

of expedited repairs whenever they require multiple resources for their repair. Hence, with EBOc(S,T )

now being defined as in Equation (19), we readily generalize our decision problem to the setting where

commonality between SKUs is allowed.

The rest of the analysis goes along similar lines as for the setting without commonality. In particular,

constraint (8) in the master problem of the DCG algorithm should be reformulated to∑
m∈MC

c

∑
n∈Nl

∑
k∈Km

δcm,nEBOm,n(Skm, T
k
m)xkm ≤Bmaxc , ∀c∈C,

which now incorporates our new definition for the aggregate mean number of backorders.

As SKUs may now belong to multiple capital good types and may now use multiple resources for their

repair, the column generation sub-problem for SKU m∈M is now formulated as follows:

(S̃UB(m)) min
{(Sm,Tm)}

∑
n∈N

cma Sm,n−
∑
c∈C

∑
n∈Nl

pcδ
c
m,nEBOm,n(Sm, Tm)−

∑
r∈R

ρrδ
r
mEXPm(Tm)− υm

subject to Sm ∈N|N|0 , Tm ∈ n∈N0.

Note that the structure of (S̃UB(m)) is identical to (SUB(m)). It is therefore readily verified that all

properties as well as the exact solution method presented in Section 5.2 also hold for (S̃UB(m)), with the

critical fraction
pc+c

m
a

pc
in Theorem 1 and Lemma 1 changed to

∑
c∈C δ

c
m,npc+c

m
a∑

c∈C δ
c
m,npc

.

In addition to the DCG algorithm, the two-step greedy approach can also be applied almost immediately

to the setting where commonality between SKUs is allowed. The only difference is that the decreases in

distances ∆md(T ) and ∆m,nd(S, T̄ ) should now be calculated over multiple repair resources and multiple

capital good types, respectively, with the additional note that in calculating ∆m,nd(S, T̄ ), we use Equation

(19) for the aggregate mean number of backorders for each capital good type c∈C.
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Appendix E: Numerical experiments

In this section, we report on our numerical experiments. The main objective of these experiments is to

examine how the performance of our solution approaches, in terms of %GAP and %RED , is affected by the

input parameters of the decision problem. To this end, we consider a large test bed of randomly generated

instances based on data representative for the capital goods industry. We first do so for the original decision

problem, i.e. problem (P ), and we subsequently treat the alternate setting in which additional costs are

associated with expediting as well, i.e. problem (P̂ ).

E.1. Numerical experiments involving problem (P )

The test bed for the numerical experiments of this section consists of 2592 instances obtained through all

combinations of the parameter values in Table 6. For each instance, we first use an uniform distribution

U [0.005,0.25] to generate the demand intensity for each SKU m ∈M at all local warehouses n ∈ Nl, and

subsequently multiply this generated demand intensity at each local warehouse n ∈ Nl with a demand

intensity multiplier, denoted `. We consider symmetric instances in which demand intensities are identical

across all local warehouses but varied for different SKUs, i.e. ` = 1, as well as asymmetric cases in which

demand intensities are varied across both local warehouses and different SKUs, i.e. `=U [0.5,1.5]. Note that

in each instance, we assign all SKUs uniformly at random to a repair resource set MR
r for r= 1, . . . , |R|.

Table 6 Input parameter values for test bed involving problem (P )

Input parameter No. of choices Values

1 Number of local warehouses, |Nl| 3 2, 4, 6
2 Number of capital good types, |C| 2 2, 4
3 Number of repair resources, |R| 2 2, 4
4 Number of SKUs per capital good type, |MC

c | 3 20, 50, 100
5 Lead time from the central warehouse to local warehouse n∈Nl

of SKU m∈M , tm,n

1 1

6 Expedited repair lead time of SKU m∈M , t2m,0 2 1, 2
7 Additional regular repair lead time of SKU m∈M , t1m,0 2 3, 5
8 Acquisition cost of SKU m∈M , cma 1 U [100,1000]
9 Demand intensity for SKU m∈M at each local warehouse n∈

Nl, λm,n

1 U [0.005,0.25]

10 Demand intensity multiplier, ` 2 1, U[0.5,1.5]
11 Maximally allowed mean number of backorders over all SKUs

m∈MC
c for capital good type c∈C, Bmaxc

3 ν
∑
m∈MCc

∑
n∈Nl

λm,n
for ν = 0.04,0.06,0.08

12 Maximally allowed mean fraction of expedited repairs over all
SKUs m ∈ MR

r that use repair resource r ∈ R during their
repair, Emaxr

3 0.05, 0.10, 0.20

The results of our numerical experiments involving problem (P ) are summarized in Table 7. In this table,

we present the average and maximum %GAP and computation times (in seconds) of both solution approaches

as well as the average and maximum %RED . We first distinguish between subsets of instances with the

same value for a specific input parameter of Table 6 and then present the results for all instances. That is,

the bottom row of Table 7 contains the results computed over all instances, and the other rows present the

results computed over subsets of instances that have the same value for a specific input parameter.

The main observations drawn from Table 7 can be summarized as follows:

• The DCG algorithm performs very well. The average and maximum %GAP are 0.27 and 0.77 percent,

respectively.
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Table 7 Summary of numerical results involving problem (P )

DCG algorithm Greedy heuristic Benchmark

%GAP CPU time (s) %GAP CPU time (s) %RED

Input parameter Value Avg Max Avg Max Avg Max Avg Max Avg Max

Number of local
warehouses, |Nl|

2 0.32 0.77 10.75 71.39 3.07 8.43 0.24 0.77 9.66 19.61
4 0.26 0.63 61.38 292.86 2.23 5.75 1.23 4.42 7.54 14.70
6 0.23 0.55 230.01 1271.85 1.85 4.77 3.49 12.85 6.62 13.27

Number of capital good
types, |C|

2 0.29 0.77 62.42 611.31 2.36 8.43 1.10 6.49 7.86 19.61
4 0.26 0.56 139.00 1271.85 2.41 8.04 2.20 12.85 8.01 18.63

Number of repair
resources, |R|

2 0.25 0.57 100.54 1271.85 2.40 8.43 1.65 12.85 8.02 19.61
4 0.29 0.77 100.89 1135.98 2.37 8.01 1.65 12.78 7.85 18.32

Number of SKUs per
capital good type, |MC

c |
20 0.36 0.77 35.37 328.09 2.49 8.43 0.58 2.70 7.85 18.81
50 0.24 0.51 88.36 731.60 2.34 7.64 1.45 6.43 8.01 19.61
100 0.21 0.50 178.42 1271.85 2.32 6.52 2.92 12.85 7.96 18.49

Expedited repair lead
time, t2m,0

1 0.28 0.77 79.87 926.74 2.57 8.43 1.43 9.99 8.98 19.61
2 0.26 0.75 121.55 1271.85 2.20 7.27 1.88 12.85 6.89 14.91

Additional regular repair
lead time, t1m,0

3 0.28 0.77 67.21 682.63 2.48 8.43 1.38 9.39 6.38 14.24
5 0.27 0.75 134.22 1271.85 2.28 6.70 1.92 12.85 9.50 19.61

Demand intensity
multiplier, `

1 0.28 0.77 111.34 1271.85 3.69 8.43 1.75 12.85 7.92 19.61
U[0.5,1.5] 0.26 0.75 90.08 939.03 1.07 3.15 1.55 11.47 7.95 18.81

Fraction of total demand
that may be backordered,
ν

0.04 0.27 0.75 100.48 1104.62 2.43 8.43 1.74 12.85 7.98 18.37
0.06 0.27 0.66 100.49 992.75 2.40 7.64 1.65 11.72 7.87 19.61
0.08 0.28 0.77 101.17 1271.85 2.32 8.04 1.57 11.69 7.97 18.63

Fraction of total demand
that may be expedited,
Emaxr

0.05 0.27 0.62 104.42 1271.85 2.13 6.09 1.70 12.85 5.21 9.83
0.1 0.28 0.69 98.99 1135.98 2.29 8.01 1.66 12.43 7.79 14.81
0.2 0.27 0.77 98.72 1125.12 2.73 8.43 1.59 11.88 10.81 19.61

Total 0.27 0.77 100.71 1271.85 2.38 8.43 1.66 12.85 7.94 19.61

• The greedy heuristic performs very well when demand intensities are asymmetric. The average and

maximum %GAP in this case are only 1.07 and 3.15, respectively. The greedy heuristic performs slightly

worse with symmetric demand intensities: The average %GAP is 3.69 but instances with 8 or more do occur.

This observation is in line with previous research which examined greedy heuristics in multi-item spare parts

problems (e.g., Topan et al. 2017). A possible explanation for this slightly worse performance is due to how

the second step of the greedy heuristic works. With symmetric demand intensities, we have the property that

if in a given iteration the base stock level of a specific SKU is increased at one local warehouse, then also the

base stock levels of the same SKU at all other local warehouses are most likely increased in the succeeding

iterations. However, in most practical situations in which each local warehouse serves a distinct market with

a different demand structure, one will most likely encounter asymmetric demand intensities and hardly ever

symmetric demand intensities.

• The average %GAP of both solution approaches seem to decrease as the instance size (in terms of

the number of local warehouses, capital good types and SKUs per capital good type) becomes larger. This

is very convenient since we typically face large-sized instances in practice. The average %GAP percent of

the DCG algorithm tends to increase with the number of repair resources. This is not surprising, because

problem (MP ) has |M |+ |C|+ |R| constraints and the same number of basic variables in an optimal solution.

Since constraint (10) assures that for each SKU m ∈M a convex combination of policies is chosen, there is

a basic variable for each SKU m. Hence, there are at most |C|+ |R| SKUs for which the optimal solution
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to problem (MP ) is fractional. This explains why the GAP percent increases with the number of repair

resources. Note that this does not hold for the number of capital good types because the number of basic

variables that increase with the number of capital good types is clearly more than the corresponding increase

in the maximum number of SKUs for which the optimal solution to problem (MP ) is fractional.

• The average %GAP of the DCG algorithm tends to decrease as the fraction of total demand that may be

expedited or backordered decreases. This also seems to hold for the greedy heuristic, except with symmetric

demand intensities. In the latter case, the average %GAP of the greedy heuristic increases when the fraction

of total demand that may be backordered decreases.

• The greedy heuristic is the most efficient heuristic in terms of computation time. The computation time

of the DCG algorithm is considerably higher. Over 98 percent of that computation time is spent on solving

the sub-problems. This task can also be parallelized using a multi-threaded approach, which would reduce

the computation time of the DCG algorithm even further. The computation time of both solution approaches

increases as the problem size (in terms of the number of local warehouses, capital good types and SKUs per

capital good type) gets larger and decreases when the means of the repair lead times get smaller.

• The stock investment reductions that can be achieved because of the possibility to expedite the repair

of parts in short supply are quite high with an average stock investment reduction of around 7.9 percent and

even reductions of up to 19.61 percent.

• The stock investment reductions due to our dynamic repair policy increase when the additional regular

repair lead time or the fraction of total demand that may be expedited increase, and decrease when the

expedited repair lead time increase.

E.2. Numerical experiments involving problem (P̂ )

In this section, we consider a test bed that is identical to the test bed used in the previous section except

for the two input parameters that are specific to problem (P ), i.e. Emaxr and |R|. We replace those two input

parameters with the two input parameters that are specific to problem (P̂ ), i.e. the expediting cost multiplier

κ and the useful life span τ . We vary the expediting cost multiplier over three levels: κ∈ {0.002,0.004,0.006}.

Assuming that a regular repairs costs 5 to 10 percent of the acquisition cost of a part, these expediting

cost multipliers imply a relative cost premium for expedited repairs of 2 to 12 percent. Such relative cost

premiums are often reported in the dual-sourcing literature, where a cost premium is paid to utilize an

expedited supplier over a regular supplier (e.g., Klosterhalfen et al. 2011, Sun and Van Mieghem 2019). The

useful lifespan (in years) is varied over two levels, both of which are representative for the capital goods

industry: τ ∈ {8,10} (we now explicitly assume that demand intensities are per day). Note that the total

number of instances remains unchanged and hence this test bed also consists of 2592 instances.

Table 8 summarizes the results of our numerical experiments involving problem (P̂ ). We present the

average and maximum %GAP and computation times (in seconds) of the DCG algorithm, the average and

maximum %RED as well as the average and maximum EXP (expressed as percentages), i.e. the aggregated

mean fraction of failed parts that receive expedited repair. Similar to Table 7 in the previous section, we

first distinguish between subsets of instances with the same value for a specific input parameter and then

present the results for all instances.
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Table 8 Summary of numerical results involving problem (P̂ )

DCG algorithm Benchmark Expediting

%GAP CPU time (s) %RED EXP(%)

Input parameter Value Avg Max Avg Max Avg Max Avg Max

Number of local
warehouses, |Nl|

2 0.22 0.54 11.69 75.27 7.59 29.29 23.13 94.02
4 0.18 0.51 95.15 676.21 4.10 18.44 16.18 84.33
6 0.15 0.52 421.78 2757.51 2.88 14.05 12.81 72.81

Number of capital good
types, |C|

2 0.15 0.54 111.81 1767.52 4.89 28.98 17.24 94.02
4 0.21 0.52 240.61 2757.51 4.82 29.29 17.51 93.64

Useful lifespan (years), τ
8 0.19 0.54 161.15 2757.51 5.74 29.29 21.93 94.02
10 0.17 0.52 191.26 2587.05 3.97 21.11 12.81 65.99

Number of SKUs per
capital good type, |MC

c |
20 0.22 0.54 59.22 661.44 4.82 29.29 17.55 93.85
50 0.16 0.52 151.53 1515.09 4.87 28.98 17.34 94.02
100 0.16 0.50 317.87 2757.51 4.87 28.81 17.24 92.57

Expedited repair lead
time, t2m,0

1 0.19 0.54 135.44 2499.62 5.70 29.29 18.45 94.02
2 0.17 0.52 216.97 2757.51 4.01 22.08 16.29 93.24

Additional regular repair
lead time, t1m,0

3 0.17 0.54 129.29 1922.82 2.38 12.07 9.05 43.07
5 0.19 0.52 223.13 2757.51 7.33 29.29 25.70 94.02

Demand intensity
multiplier, `

1 0.19 0.54 191.42 2757.51 4.75 28.49 16.96 94.02
U[0.5,1.5] 0.16 0.51 160.99 2300.56 4.96 29.29 17.78 93.64

Fraction of total demand
that may be backordered,
ν

0.04 0.18 0.52 173.86 2757.51 5.10 29.29 17.77 93.24
0.06 0.18 0.52 178.50 2458.69 4.84 28.59 17.41 94.02
0.08 0.18 0.54 176.26 2587.05 4.63 29.23 16.94 93.85

Expediting cost multiplier,
κ

0.002 0.19 0.54 93.84 1081.79 9.68 29.29 40.13 94.02
0.004 0.19 0.52 188.04 2304.80 3.26 12.83 8.45 26.59
0.006 0.16 0.51 246.74 2757.51 1.62 7.64 3.54 12.59

Total 0.18 0.54 176.21 2757.51 4.86 29.29 17.37 94.02

The numerical results in Table 8 are mostly in line with the numerical results of the previous section. We

will now briefly discuss the main differences and important observations:

• The DCG algorithm also yields excellent results when it is applied to problem (P̂ ): The average and

maximum %GAP are 0.18 and 0.54 percent, respectively. These optimality gaps are smaller than the opti-

mality gaps of the DCG algorithm applied to problem (P ), which is not surprising as problem (P̂ ) has |R|
fewer constraints than problem (P ) and therefore fewer SKUs for which the optimal solution to problem

(M̂P ) is fractional (see also our discussion related to the optimality gaps in the previous section).

• Although the computation time of the DCG algorithm is higher for problem (P̂ ) than for problem (P ),

it is still well within acceptable bounds given the size and strategic nature of the decision problem. We note

that this increase in computation time can in large part be explained by the fact that we use the two-step

greedy heuristic to create initial policies for the DCG algorithm; this heuristic is not devised specifically for

problem (P̂ ) and these initial policies are therefore not necessarily good. This in contrast with problem (P )

where the two-step greedy heuristic leads to very good policies for initializing the DCG algorithm.

• The possibility to expedite the repair of failed parts at additional costs is effective in reducing the total

cost rate with average reductions of around 4.9 percent and even reductions up to 29.29 percent. Hence,

anticipating expediting decisions that will be made later with investment decisions in repairable spare parts

leads to substantial savings, even when those expedited repairs come at an additional price.

• The reductions in the total cost rate due to our dynamic repair policy decrease when expediting repairs

becomes more costly, and increase when the useful lifespan of SKUs becomes shorter.
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Appendix F: Approach to determine benchmark for case study

Our benchmark for the case study is the current solution that NS uses. In this solution, the investment in

each spare part is determined by the stocking model of Servigistics. This stocking model is a single-item

model that essentially ensures that for each SKU m∈M sufficiently many spare parts are acquired to cover

the lead time demand plus a safety level to protect against variability in demand. Hence, the amount of

stock of SKU m∈M determined by this stocking model is given by:

Snsm = µ+ k ·σ,

where k is a safety factor, and where µ and σ are the average and standard deviation of the demand over the

total lead time (regular repair lead time + transportation time). The safety factor k for NS is quite involved

but is set such that the fill rate for each SKU is 98%. See also Section 7.2 of Drent (2017) for more details.

Given Snsm , we determine the best achievable availability performance by optimizing expediting decisions

and stock placement within our modeling framework. That is, we want to determine an expedite threshold

T̃m ∈N0 and a base stock levels vector S̃m ∈
{
N|N|0 : 1 ·N|N|0 = Snsm

}
such that EBO(S̃, T̃ ) is minimized while

EXPmechanical(T̃ )≤ 0.3 and EXP electronic(T̃ )≤ 0.3. This results in the following mathematical formulation of

the optimization problem:

(NS ) min
{S̃,T̃}

EBO(S̃, T̃ ) (20)

subject to EXPmechanical(T̃ )≤ 0.3, (21)

EXP electronic(T̃ )≤ 0.3, (22)

S̃∈C , T̃ ∈N|M|0 , (23)

where C =
{
S̃ : 1 · S̃m = Snsm ∀m∈M

}
. We solve problem (NS ) using a decomposition and column generation

approach similar to our approach to solve problem (P ), described in Section 5. The resulting corresponding

sub-problem, however, does not allow for an easy solution method other than enumeration over T̃m, and for

each T̃m, enumerating over all possible allocations of S̃m over all local warehouses; see Section 7.2 of Drent

(2017) for further details.


